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THESIS ABSTRACT 

Monitoring wheelchair user movement is an essential task for assessing a wheelchair 

user’s mobility and helping them maintain an active lifestyle. Research has shown that 

increased mobility leads to healthier overall lifestyles, and that people with disabilities 

are at an increased risk for sedentary lifestyles and the health problems associated with 

that lifestyle, including cardiovascular disease, obesity, and the development of pressure 

ulcers (WHO, 2014). Existing technology for analyzing wheelchair user mobility data 

requires the use of external sensors that must be purchased and maintained (Warms & 

Belza, 2004). To improve the ease by which mobility data is maintained and analyzed, a 

wheelchair user can utilize existing technology, such as smart mobile devices, to gather 

and analyze motion data. This study will focus on the development of a recurrent neural 

network (RNN) that is trained using wheelchair user data collected from smart devices 

attached to the wheelchair or wheelchair user. The benefit of collecting data this way is 

that it does not require the use of additional sensors or equipment, as most wheelchair 

users will already have access to a smart device capable of collecting movement data. 

The study found that it was feasible to meaningfully analyze data gathered from a smart 

device using an RNN.  The raw data is analyzed with the RNN to gather information 

about the mobility of a wheelchair user. The final analysis includes the total time spent 

moving, number of bouts of movement, and the longest bout of movement. This resulting 

data could be used by a wheelchair user or healthcare professional to help assess healthy 

lifestyle habits. 

KEYWORDS: Artificial Intelligence (A.I.); Recurrent Neural Network (R.N.N.); 

Wheelchairs; Smart Devices; Mobility Assessment. 
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Chapter I 

Introduction: Wheelchair Movement Analysis Motivation 

1.1 Background 

Individuals with inactive lifestyles are at an increased risk for a variety of health 

issues. Some of these issues include cardiovascular disease, obesity, and hypertension 

(WHO, 2014). The World Health Organization reports that nearly two million deaths per 

year are due to causes associated with lack of physical activity. Wheelchair users in 

particular are more likely to lead inactive lifestyles that contribute to increased risk for 

these diseases along with other issues such as the formation of pressure ulcers (Nooijen et 

al., 2015). A study done with 197 sedentary overweight or obese adults concluded that 

self-monitoring physical activity using sensor-based technology with real-time feedback 

improved weight loss in those adults (Shuger et al., 2011). While self-monitoring has 

been proven to help increase the amount of physical activity individuals engage in, 

collecting and assessing movement data, especially for wheelchair users, is difficult to do 

manually and usually requires the use of sensors and technology to collect and analyze 

the data.  

The research conducted in this study aims to collect and analyze movement data 

from wheelchair users without the need for extraneous sensors, by utilizing existing 

sensors in smart devices worn by the wheelchair users, e.g., smartwatch and smartphone. 

The study will build on current methods for collecting and analyzing wheelchair 

movement data through smart device sensors by incorporating the use of deep learning 

algorithms to classify the movement characteristics of the wheelchair. These deep 
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learning algorithms will produce more accurate movement data, with the benefit of 

working in real-time and the ability to provide immediate feedback to the wheelchair 

user. 

1.1.1 Traditional Movement Analysis 

Capturing human movement for the purpose of data analysis has become more 

sophisticated as technology has improved. Marey (1873) and Muybridge (1878) were 

some of the first researchers to use photography to quantify and analyze human 

movement (Mündermann et al., 2006). Now it is possible to capture and analyze human 

movement data in real time with sensor-based technology. One such example is a 

pedometer, which is capable of counting human steps with electronics. Pedometers work 

by capturing the movement of a person’s step by swinging a small metal pendulum wired 

into an electronic counting circuit (Woodford, 2020). These devices and similar ones are 

very practical for gathering movement data as they are generally small, inexpensive, and 

often integrated into other devices. Fitness applications for smart phones such as Google 

Fit and MyFitnessPal make use of a phone’s internal sensors to gather movement data. 

These apps use the gyroscope and accelerometer to capture the lateral, longitudinal, and 

vertical movements to estimate steps (Wise & Hongu, 2009). Pedometers and similar 

technologies gather useful movement data for walking but are not viable options for 

individuals whose primary form of locomotion is in a wheelchair. The movements of a 

person propelling a manual wheelchair or operating a powered wheelchair are not able to 

be captured in the same way as a person walking, whose hip movements are used to 

capture movement data. 

1.1.2 Wheelchair Movement Characteristics 
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The movement characteristics of wheelchair users are fundamentally different 

than the movements of an individual walking. Manual wheelchair users primarily propel 

themselves by using their arms. However, while during a traditional walking cycle there 

is always movement in the body, a wheelchair user can coast with the momentum 

imparted during a push to continue moving without moving any part of their body. 

Wheelchair propulsion involves two distinct phases, the propulsion phase where the 

extremities are activated to induce motion, and a recovery phase where hands are not 

directly engaged with the wheels (Woude et al., 2001). Some research has identified 

different propulsion patterns, that differ based on the level of impairment and skill of the 

wheelchair user. For powered wheelchair users, the limbs may have little or no 

movement while the chair is moving, as pressure only needs to be applied to the joystick 

by the hand to induce propulsion. These differences make traditional methods for 

gathering and analyzing movement data impossible for wheelchair users. 

1.1.3 Movement Data from Smart Devices 

Modern smart phones contain a variety of sensors for collecting movement data. 

Among these sensors are accelerometers, gyroscopes, and GPS trackers. GPS-enabled 

smart phones are typically accurate within 16 feet under open sky, with decreasing 

accuracy in buildings, under trees, etc. (van Diggelen & Enge, 2015). Accelerometers and 

gyroscopes measure device movement. These movements include rotation, shakes, 

swings, etc. and these measurements reflect not only the movements of the phone but also 

the movements of the environment that the phone is in. This makes it possible to record 

movement data for a person holding a smart phone, or the movement data of a wheelchair 

that the smart phone is mounted to.  
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1.2 Health Issues Associated with Wheelchair Users and Inactivity 

The need for movement analysis is based on the understanding that wheelchair 

users who move more and for longer periods are less likely to develop sedentary 

lifestyles than users who have fewer periods of wheelchair movement. A study of women 

that took place over 12 years found that women with the highest amount of sedentary 

time had an increased risk of several diseases that would ultimately result in death 

(Seguin et al., 2014). The result of this study was that diet and exercise alone did not 

completely reduce the risk of disease, if a person spent a significant amount of time 

sedentary, they were still at a higher risk of disease. For wheelchair users who have no 

use of lower extremities, it is even more important to maintain active lifestyles to reduce 

the risks of these diseases. 

1.2.1 Cardiovascular Disease, Obesity, and Diabetes 

Cardiovascular disease is a blanket term used to describe a range of conditions 

that affect the heart. Some of the diseases that fall under this category include coronary 

artery disease, heart rhythm problems, and heart defects. Cardiovascular disease as a term 

is generally used when referring to conditions that involve impeded blood vessels, which 

are either narrowed or blocked, leading to a heart attack. Usually this is due to a buildup 

of fatty plaques in the arteries, inhibiting blood flow to organs and tissues. This is the 

most common cause of cardiovascular disease, and is caused by problems including 

unhealthy diet, lack of exercise, being overweight, and smoking. Because wheelchair 

users are more likely to be sedentary, their lack of exercise puts them at an increased risk 

for this disease. 
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The lack of exercise also puts wheelchair users at an increased risk for developing 

obesity. Studies show a rise in obesity among the general American populace but 

especially for people with disabilities. Adults with disabilities have an estimated obese 

population of 25% to 31% while adults without disabilities have an estimated obese 

population of 15% to 19% (Froehlich-Grobe & Lollar, 2011). Obesity is associated with 

increased risk for other diseases, including diabetes, high blood pressure, and certain 

cancers. 

Weight gain due to lack of exercise, the increase of fatty tissue, and the way a 

person with disabilities body processes insulin also put them at an increased risk for 

diabetes. Diabetes occurs when the blood glucose is too high, due to the pancreas no 

longer supplying enough insulin to help the glucose make it to the body’s cells. High 

blood glucose from diabetes leads to other health issues including stroke, kidney disease, 

and eye problems. 

All of the diseases discussed are related to sedentary lifestyles and lack of 

exercise among other factors. While it may not be possible to completely reduce the risks 

of developing these diseases by maintaining active lifestyles, it has been shown that 

active lifestyles help to reduce the risk of developing these diseases. It is for this reason 

that the need to properly track movement data for wheelchair users is so important. A 

wheelchair user that is tracking their movements and providing this data to their 

healthcare providers will be able to assess their current lifestyle and identify if any 

changes are necessary to ensure healthy levels of activity. For manual wheelchair users, 

the act of propelling the wheelchair can burn up to 120 calories in half an hour, three 

times more than someone performing the same action in a motorized wheelchair (Conger 
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& Bassett, 2011). While the act of moving itself is not enough to assess an individual’s 

lifestyle, an increase in movement is associated with increased levels of physical activity. 

Working with a healthcare professional the mobility information can be helpful in 

determining how much a person’s movement is contributing to their overall lifestyle. 

1.2.2 Pressure Ulcer Formation 

In addition to the risks associated with sedentary lifestyles, wheelchair users, 

especially powered wheelchair users, are at risk of developing pressure ulcers. Pressure 

ulcers are the result of prolonged pressure on the skin, causing damage to the skin and 

underlying tissue. Powered wheelchair users, many of whom do not have feeling of their 

lower bodies, are much more likely to develop pressure ulcers (James et al., 2020). 

Preventing pressure ulcers is largely done by exercises designed to relieve stress on the 

lower body and reduce pressure on specific areas.  

Traditional tools for assisting in the prevention of pressure ulcers are largely 

based on assessments made by healthcare professionals and not applicable for home use 

by wheelchair bound individuals (AHRQ, 2012). There also exists expensive technology 

for automatic exercises used primarily in hospitals that involve seats or beds that move an 

individual automatically to assist in pressure ulcer prevention. This study will also 

attempt to help close the gap in pressure ulcer prevention for wheelchair users by 

allowing them to automatically monitor the amount of time spent doing exercises. This 

information will enable the user to identify whether or not they are spending adequate 

time performing exercises and can be used with a healthcare provider for further 

guidance. 
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Chapter II 

Introduction: Artificial Intelligence and Machine Learning (ML) 

2.1 Background 

The process of analyzing the characteristics of the large data sets provided by the 

sensors requires the use of artificial intelligence. The data received from sensors is noisy 

and inconsistent. Artificial intelligence algorithms, specifically recurrent neural networks, 

are able to analyze the sequence of data from sensors quickly and provide meaningful 

output (Mitchell, 1997). 

2.1.1 Overview of Artificial Intelligence 

Artificial intelligence (AI) algorithms are algorithms that are designed to enhance 

their own efficacy by learning from input data. They differ from traditional algorithms in 

that they do not follow strict rules or give predetermined responses. AI algorithms take in 

information from multiple sources, analyze the data, and produce responses based on that 

analysis.  

The benefit of using AI over other data processing algorithms is their ability to be 

used with data that is not the same every time, or data that is contaminated with noise.  AI 

algorithms are also able to instantly classify large data sets, removing the need for tedious 

manual classification. 

2.1.2 Introduction to Machine Learning 
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Machine learning (ML) is an application of AI in which systems automatically 

learn to improve based on past experience without being explicitly programmed to do so. 

ML algorithms learn by building a model based on sample data.. 

2.2 Machine Learning 

ML algorithms learn by using a training set of data to construct a mathematical 

model, which is then used to make predictions or decisions on input data without 

explicitly being told what to do. ML algorithms are designed to evolve over time, so that 

the more data they are trained with, the more accurate their predictions are. ML 

algorithms are used in various applications, such as computer vision, image recognition, 

speech recognition, and self-driving cars (Mitchell, 1997). For the purposes of analyzing 

wheelchair movements, the goal of the ML algorithms is to take in large amounts of 

sensor data and learn how to classify that data to give characteristics about the movement 

of a wheelchair. 

2.2.1 Machine Learning Approaches 

There are several different types of ML algorithms, which differ based on their 

approach to classifying data, the type of data they work on, and the problem they are 

designed to solve. The different types of algorithms learn in different ways, which result 

in different applicational use. Each type of algorithm was considered, and the final 

decision was made based on the information that will be available for the given problem 

statement. In particular, the sensor data will be read from a device and output in a raw 

format. The data will be timestamped and organized sequentially. The data will likely 

contain noise as the available sensors are sensitive to small vibrations and are not 
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perfectly accurate. There will also be a training set available, with the raw data correctly 

categorized as moving or not moving. With this information the available learning 

algorithms are discussed, with consideration on which algorithms are applicable for the 

study. 

Unsupervised learning algorithms are one type of algorithm considered. 

Unsupervised algorithms are used on data sets where the input data is not labeled. The 

model created by the algorithm attempts to find structures present in the data and extract 

rules to organize new data based on the found structures. The K-means clustering 

algorithm (Hartigan, 1975), for example, can take a raw data set and organize it into 

objects based on each data points distance to other points.  

Figure 1. Example of K-means clustering (Viswarupan, 2017) 



While this would in theory be able to organize the raw sensor data into groups based on 

the intensity of the sensor readings, it would sacrifice the sequential ordering of the data 

and make further analysis difficult.   

Reinforcement learning algorithms are another type of algorithm considered. 

Reinforcement algorithms learn by attempting to maximize reward for a given task 

(Mitchell, 1997). The algorithm tries to make a sequence of decisions and is either 

rewarded or penalized for those decisions based on metrics specified by the programmer. 

The algorithm learns over time which set of actions will produce the highest reward. This 

form of learning is not well suited to analyzing data from a sensor as it is difficult to 

represent the data as a set of decisions, with performance-based metrics. For this reason, 

reinforcement learning algorithms were not considered for this study. 

Supervised learning algorithms are the final type of algorithm considered. They 

learn by having a set of training data, with input data mapped to correct output data 

(Hastie et al., 2009). Supervised learning algorithms are trained iteratively, where an 

objective function is used to give a resulting output based on one or more inputs. If the 

output does not match the training data, the objective function is modified, and the 

process begins again. This continues until the objective function reaches a target 

accuracy, or the function fails to become more accurate after a set number of iterations. 

This form of learning fits the problem description, because a training set is available for 

use by the learning algorithm. Because supervised learning is able to learn from past 

experience with sequential data, and able to utilize a training set, it was chosen as the 

focus area for this study. 

Review of Literature 

13 
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2.3 Supervised Learning 

While supervised learning was identified as the best candidate for this study, there 

are multiple implementations of supervised learning to consider. The “No Free Lunch” 

theorem states that there is no best algorithm for all problem statements (Wolpert & 

Macready, 1995). Choosing an appropriate supervised learning algorithm for the given 

problem statement involves looking at various metrics, including the variance of training 

data sets, the amount and complexity of training data available, the amount of noise in the 

output values, etc. Some previous studies using ML for the analysis were considered 

while choosing the appropriate algorithm. 

2.3.1 K-Nearest Neighbor 

For example, a 2013 study on wheelchair movement characteristics used the K-

Nearest Neighbors (KNN) algorithm (Fu et al., 2013). The KNN algorithm uses the 

distance between points in a set of data points to organize the data. Specifically, the 

group uses a KNN classification algorithm that classifies each point based on the 

majority of its neighboring points. By using this supervised algorithm, the group was able 

to smooth the noise in the raw sensor data. 
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Figure 2. KNN smoothed data (Fu et al., 2013) 

The group then use the smoothed data from both the accelerometer and gyroscope 

to roughly estimate the movements of a wheelchair. This study was effective in 

classifying wheelchair movements in batches collected and analyzed after the movements 

were performed. However, the KNN algorithm does not take into account the sequential 

ordering of the data other than to make determinations about each data points 

neighboring points, which were sequentially ordered in the referenced study. The data 

collected for this paper, however, is time-stamped which can be used with an algorithm 

that has a memory component in the learning process. The algorithm used for the 

referenced study was also only able to be used after data was collected in batches, and the 

algorithm had to relearn and smooth the curve of each batch of data. In order to get real-
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time data analysis for wheelchair movements, it is necessary to have an algorithm that 

can be taught beforehand and categorize data as it comes in from the sensors. 

2.3.2 Linear Regression 

In another study done  for the purposes of analyzing wheelchair movement, a 

research group collected sensor data and ran the data through a curve fitting algorithm 

that produces a regression curve based on the sensor data (Fu et al., 2018). Linear 

regression algorithms work by creating a linear equation with a set of input values to 

produce a predicted output value. A simple regression equation could be in the form: 

𝑦 = 𝐵0 + 𝐵1𝑥 

Where y is the predicted output based on the coefficients 𝐵0, 𝐵1 and the input value 𝑥. A 

machine learned linear regression algorithm will change the coefficients to attempt to 

produce a line that best fits the data. More input variables can be used to potentially 

increase the accuracy of linear regression algorithm, however it should be noted that 

using too many inputs could result in overfitting the data, reducing the efficacy of the 

algorithm on new data. The group used a linear regression algorithm on a modified 

version of the sensor data to produce a line where peaks in the data represented periods of 

wheelchair movements. 
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Figure 3. Linear regression curve fitting (Fu et al., 2018) 

While this approach for analyzing wheelchair movement was largely successful, it 

had some error in correctly predicting the duration of movement in each bout, with an 

average error of 19%. This error was due to the fact that the duration of a bout was 

estimated based on the peaks and valleys of the modified data set. For this study, a more 

complex learning algorithm that is able to take into account the time-stamped data to 

produce more accurate bout duration readings will be considered.  

2.2.2 Neural Networks 

Artificial neural networks are supervised learning algorithms loosely based on 

biological neural networks like the human brain. They work by creating a collection of 

neurons, where each neuron takes one or more weighted inputs and produces an output. 
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Figure 4. Artificial neuron (Saxena, 2017) 

The neurons are grouped into layers with an input layer, output layer, and usually 

one or more hidden layers. The input layer accepts the data from the original source, that 

data is then passed through the hidden layers where they are acted upon by an internal 

weighing system that alters the values and produces an output. Neural networks learn by 

comparing their outputted values to the training values and adjusting the weights for the 

hidden layers to increase the accuracy of the network. This adjustment is done by 

backpropagation, where the outputted error is backward propagated through the network 

to adjust the weights.  

One of the benefits of a neural network is that once the network has been trained 

it can very quickly classify new data in real-time without the need to further train the 

network. This is beneficial for this study where new sensor data can be automatically run 

through the network and classified for real-time movement analysis. In addition to real-

time analysis the neurons are able to use activation functions to aid in data classification. 

This allows for the use of sigmoid functions to transform the output into binary 

classifications for moving or stationary. Several popular forms of neural networks exist, 
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with the most popular being feedforward neural networks. These networks are the most 

basic form of neural network where data travels only forward through the network. 

Convolutional neural networks are another form of neural network that are used primarily 

in processes such as image classification (Krizhevsky et al., 2017).  

2.2.3 Recurrent Neural Networks (RNN) 

RNNs are a form of neural network that work especially well on sequential 

information. While a traditional neural network assumes that all inputs are completely 

independent, RNNs have a form of memory by performing tasks sequentially where the 

output for one node is dependent on the previous computations. 

Figure 5. Unrolled recurrent neural network (Olah, 2015) 

As shown in the figure above, data in a RNN is looped so that some information from the 

neuron is passed back into the neuron, essentially turning the network into a series of 

identical networks with different inputs and outputs, each of which passes along 

information to the next network. For the purposes of this study, the ability to pass along 

temporal information is useful because the current state of a wheelchair’s movement 

characteristics influences the next state of the wheelchair’s movement characteristics. 

The movement of the chair is affected by friction and the acceleration of the chairs motor 
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or the arms propelling of the wheel. For instance, if accelerometer is reading a high 

acceleration value in the x direction, it is likely that the next value read by the sensor will 

be similar, either slightly higher or slightly lower depending on the movement state of the 

wheelchair.  

2.2.4 LSTM Networks 

Long short-term memory (LSTM) networks are a further refined form of RNN. 

While RNNs are able to hold memory about previous inputs in theory, in practice they 

generally cannot hold long term dependencies (Bengio, et al., 1994). LSTM networks 

solve this problem by using a module with a different structure than traditional RNN 

modules. Traditional RNN modules usually have a structure consisting of a single 

function, LSTM modules however have four interacting network layers. 

Figure 6. LSTM cell structure (Wikipedia, 2020) 
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LSTM modules are usually referred to as cells. The cell state 𝑐𝑡 is the chain that 

runs through the entire network, and the LSTM adds or removes information to the cell 

state at each cell. The first step in the LSTM is to decide whether the information at the 

cell state should be kept or forgotten. The first slayer in the LSTM is called the “forget 

gate layer”. It is a sigmoid layer that takes the hidden state vector from the previous cell 

ℎ𝑡−1 and the input vector for the current cell 𝑥𝑡, and outputs a value between 0 and 1. A 0 

represents “forget this state completely” while a 1 represents “remember this state 

completely”. In the context of this study, this would be where information about the 

current movement state is remembered or forgotten. If it appears that the wheelchair is no 

longer moving, the cell may forget the moving state that was passed into the new cell. 

The next two layers of the cell update whatever is kept from the old cell state into 

the new cell state. The sigmoid layer called the “input gate layer” produces a list of which 

inputs to update and the tanh layer creates a vector representing the new candidate values. 

These are combined to update the cell state. This would correspond to the new movement 

state identified being added to memory, replacing the old movement state. 

The last step is to create the output for the cell and update the hidden state ℎ𝑡. A 

sigmoid layer controls which parts of the cell state to output, the current cell state is 

pushed through a tanh function to get the values between -1 and 1, then multiplied with 

the output of the sigmoid gate so only the relevant parts of the cell state are transformed 

and pushed to the output. This is where relevant information about the movement 

characteristics would be identified to move into the next cell state. 

LSTM networks fit the data available for this study well. They take into 

consideration the context for the data, the current state of the wheelchair, and after being 
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trained can very quickly categorize new data in real-time. Training the LSTM network 

will take some time, but this can be done once and then used for all subsequent bouts of 

movement. For these reasons, LSTM networks will be used in the study to train an RNN 

on wheelchair movement characteristics. 

Chapter III 

Research Purpose 

3.1 Purpose Statement 

Existing technologies for analyzing wheelchair movements and maneuvers, and 

for assisting in necessary exercises to promote healthy lifestyles such as sensors placed 

on the wheels of the chair or automatic seat adjustment hardware are more costly and 

complicated than working with technology already present for the wheelchair user. The 

purpose of this study is to use the wheelchair users’ existing technology, namely their 

smartphone or smart watch devices equipped with accelerometers in conjunction with an 

RNN to provide useful data about wheelchair movements and use that data to construct 

an application to assist wheelchair users and healthcare professionals in assessing 

wheelchair user mobility. 

3.2 Method 

In order to assess wheelchair user mobility, this study looks at whether or not it is 

possible to gather data from a smartphone or smart watch and train a recurrent neural 

network to analyze that data to identify bouts of movement. For the purpose of this study, 

the total number of bouts, the longest bout, and total amount of time spent moving are 

used to assess the wheelchair user’s mobility. 
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3.2.1 Equipment and Technology Used 

The majority of the data used in this study was collected from powered 

wheelchairs. The accelerometer data was collected from a Google Nexus 5 and Google 

Pixel 2 running Android version 11.0. The phone was either mounted in a phone holder 

attached to the arm of the wheelchair or was placed flat on an inclined table attached to 

the wheelchair. Some data was also obtained from the Fossil Sport Smart Watch 

(DW9F2) running Wear OS version 2.5.0.  

3.2.2 Python Development Environment 

The data preprocessing and RNN programs were developed in Python 3.6.7 using 

Google’s Colab notebook development environment. The Colab development 

environment allows developers to use rich text formatting along with executable code in 

a single document. Google Colab also provides libraries for importing and saving files.  

The Python Pandas 1.1.0 library was used to read the comma separated data files 

containing the accelerometer data. Pandas was also used to construct the data frames, 

which are 2-dimensional labeled data structures. These data frames hold the labeled 

rotational axis data and the timestamp data obtained from the smart devices.  

The Python Numpy 1.19.0 library was used to apply functions to the matrices 

necessary for correct formatting of the accelerometer data. The Seaborn and MatPlotLib 

libraries were used to create graphs inside the Colab notebook. The Tensorflow 2.3.0 

library was used to create the RNN. 

3.2.2 Method for Gathering Movement Data 
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In order to measure wheelchair user mobility, movement data from wheelchair 

users was collected using the accelerometer of the user’s smart devices. Two applications 

were created to collect the data, one for a smartphone running the Android operating 

system, and one for a smart watch running the WearOS operating system. The 

functionality of the applications were very similar. The applications connected to the 

device’s accelerometer using the SensorManager class. The polling rate for the data was 

set to be the same as the refresh rate for the Android UI mode (14-16 Hz). This polling 

rate provided data quickly enough to account for movements in the wheelchair without 

having a large impact on the battery of the devices. 

The sensors output data as three-dimensional vector representing acceleration 

along each axis, excluding gravity.  This data, along with the timestamp in milliseconds 

was saved to a csv file for further processing. 

3.2.3 Factors Affecting Data 

For this experiment multiple factors that could affect the accuracy of the result 

were identified and suitable mitigation techniques were implemented. For each risk factor 

identified, at least one solution was created to mitigate the risk. Factors negatively 

affecting this experiment could produce errors in the training set of data, the resulting 

accuracy of the RNN algorithm, or misrepresent the population that is the subject of the 

experiment. Because this experiment is intended to assess the mobility of a wheelchair 

user for the purposes of providing the results to a healthcare professional in order to 

create a personalized exercise program, it was important for risks to be adequately 

mitigated. 
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Different types of wheelchairs, either manual or powered, would produce 

different types of accelerometer data, and could affect the outcome of the experiment. For 

this experiment only powered wheelchair data was collected, however the resulting RNN 

was tested against manual wheelchair data and the results are discussed later in this study. 

Individuals in the same wheelchair also move differently to one another, and so data was 

collected from multiple people controlling the powered chair. 

The placement of the device, the type of device used, and the accuracy of the 

device’s accelerometer are also factors that could affect the outcome of the experiment. 

To mitigate these risks, different devices were tested on, with different placements on the 

wheelchair. Two different phones with different hardware were used, namely a Google 

Nexus 5 and Google Pixel 2. The different hardware on these two phones ensure that the 

accuracy of the sensor will not affect the results. The device was also placed using 

different holders to ensure different device orientation did not negatively affect the 

results. The devices were placed on a table mounted to the chair and in a phone holding 

mount attached to the arm of the chair. These different mounting solutions ensured that 

the device was in different orientations and could experience different types of motion 

that would be typical for a device mounted on a wheelchair. 

3.3 Experimental Study: Analyzing Data with an RNN 

The device accelerometer reads the acceleration of the device along each axis, 

excluding the acceleration from gravity. The sensor measures the acceleration applied to 

the device 𝐴𝑑by measuring the forces applied to the sensor itself 𝐹𝑠 using the relation: 

𝐴𝑑 = −𝑔 − ∑ 𝐹𝑠/𝑚𝑎𝑠𝑠 
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where 𝑔 represents the acceleration due to gravity. For the linear acceleration, the effect 

of gravity is accounted for and the equation can be simplified to: 

𝐴𝑑 = − ∑ 𝐹𝑠/𝑚𝑎𝑠𝑠 

This equation simply represents the negative sum of all forces applied to the sensor 

divided by the mass of the device (AndroidDev, 2020). 

Figure 7. Illustration of linear acceleration axes (Mathworks, 2014) 

The acceleration data collected from the devices was in a raw format. Each line of 

the file contained the x, y, and z axis data along with the timestamp represented by 

milliseconds since January 1st, 1970 UTC. The collected data can be represented as a 

sequence of accelerations: 

𝐷𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}

where 𝑐𝑖 =  〈𝑎𝑖
𝑥, 𝑎𝑖

𝑦
, 𝑎𝑖

𝑧 , 𝑡𝑖〉 with (1 ≤ 𝑖 ≤ 𝑛 and 𝑡1 ≤ 𝑡𝑖 ≤ 𝑡𝑛) and 𝑎𝑖
𝑥 , 𝑎𝑖

𝑦
, 𝑎𝑖

𝑧 represent

the accelerations of the device measured along each axis, at time 𝑡𝑖. 
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In order to obtain meaningful data from this information, the raw acceleration 

data is transformed into a set of jerk data. Jerk is the derivative of action with regard to 

time: 

f = 
𝑑𝛼

𝑑𝑡

where f is the jerk while  is the acceleration. 

If we consider jerks in three axes, we can obtain the overall jerk using the 

equation: 

𝐷𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑛−1|𝑓𝑖 = √𝑓𝑖𝑥
2 + 𝑓𝑖𝑦

2 + 𝑓𝑖𝑧
2  𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑛}

Where 𝑓𝑖𝑥 , 𝑓𝑖𝑦 , 𝑓𝑖𝑧 are defined as the difference between two consecutive accelerations 

since the difference in time between two consecutive accelerations is small enough to be 

negligible. Using this equation provides a single jerk value to represent each sensor 

reading, which is used to determine if movement was read from the wheelchair. 

3.3.1 Python RNN Programs 

To analyze the data, two python programs were created. A data preprocessing 

program was created to organize and clean the raw data, and an RNN data processing 

program to create an RNN, train it with labeled data, test the accuracy of the RNN against 

data that has already been labeled, and to run the algorithm on unlabeled datasets and 

analyze the results. 

3.3.2 Data Preprocessing Program 
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The data preprocessing program was created to apply the transformation to the 

raw data and clean the data to remove erroneous elements that occurred to due to noise in 

the sensor. The data manually is read into the program using the files library as part of the 

google.colab suite. A data frame is constructed with four columns, one for each 

acceleration axis, and one for the timestamp. Once the data is loaded into the program, 

the accelerations are transformed into a series of jerk values with associated timestamp. 

Figure 8. Example boxplot showing data collected from a series of bouts

In order to remove extreme outliers in the data that would likely be caused by 

errors in the sensor, the inner quartile range, upper and lower quartiles was calculated for 

each set of data, as shown in Figure 8.. Zero is defined for the lower quartile since the 

values can never fall below zero, and any values identified above the upper quartile are 

replaced with the value of the upper quartile. While the wheelchair is in motion, the 

acceleration along one or more of the axes would increase, resulting in a higher jerk 

value. A low value indicates the wheelchair is stationary. 
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Figure 9. Graph of all adjusted jerk values for one data set 

As shown in Figure 9, the data collected from the sensors contains noise making it 

difficult to analyze. There are clear patterns in the jerk data, but the variation makes it difficult to 

precisely tell where the movement starts and stops. The data sets used for training also contain the 

correct labels for each sensor reading, so it was possible to do a manual analysis to find the 

approximate threshold to use to determine whether the jerk value should be categorized as 

moving or not moving, in this case a value of 0.25 was used.  
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Figure 10. Movement Data after threshold is applied 

A min-max scalar was applied to the data using the threshold resulting in a dataset where 

all values are marked either zero or one as shown in Figure 10. While the patterns are clearer in 

this dataset, there is still too much noise for a proper analysis. To further refine the set so that it 

can be used as training data for the RNN, the set was split into groups of 10, where the most 

common label for each group was assigned as the label for the entire group. This change resulted 

in a data set where with very clearly marked bouts of movement. There were occasionally noise 

values that made it into the final training set, so a small algorithm to further clean the data was 

developed that looks at the neighbors for each value to determine if a value was incorrectly 

classified. It is assumed that since the sensor data is gathered at a fast rate and bouts of movement 

last long enough for many sensor outputs to be present in each bout that a single differing value in 
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the middle of  set is determined to be incorrectly classified and automatically updated to the 

correct value. 

Figure 11. Correctly labeled training set data 

This data set is then used to train the RNN which will then be able to 

automatically classify sensor data as it is received from the sensors. The final step to 

prepare the training data is to convert the data from a single movement value into a set of 

features for the RNN LSTM cells. Each group contains ten elements, all with the same 

label, so a new data frame is created with ten values, one for each movement value in the 

group. The final data frame format contains twelve columns, one for each weight 

𝑥0, 𝑥1, … , 𝑥9 and column for the label to train the RNN, and the timestamp.  

3.3.3 RNN Data Processing Program 

The RNN program takes the cleaned training data from the preprocessing 

program, trains the RNN, then runs the RNN with another set of cleaned data to test the 



results. The first step in this process is to separate out a validation set from the original 

training data. In this study, one hundred rows were taken from the training set to use as a 

validation set. The RNN is configured using the sequential model, where each layer has 

exactly one input tensor and exactly one output tensor. The RNN is also configured to 

monitor the value loss of the RNN and stop the algorithm early when the value loss stops 

improving. The RNN is created with two layers, the LSTM layer, with 10 LSTM units, 

the input of which contains 10 data items, and a time distributed dense layer with a 

sigmoid function to ensure the output is either a one or zero to signify motion or 

stationary. After the RNN has been configured, it is trained with the training data set and 

validation set, then run against a separate test set to check the algorithms accuracy. 

Figure 12. Example Output Prediction Set from RNN

3.3.4 Collecting Time Data for Analysis 

After running the RNN algorithm and obtaining a prediction set, the associated 

timestamp data is used to collect movement information. The difference between the first 

32 
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and last timestamp in every run of values is collected and marked as stationary or moving 

based on the predicted value of that run. From this information, the total time spent for 

the entire session is collected by adding all the collected instances of time together. The 

total amount of time spent moving, total number of movement bouts, and longest bout of 

movement are also able to be extrapolated from the collected data. 

3.4 Experimental Study: Gathering Data from a Smart Watch 

In addition to collecting movement data from an android phone mounted to a 

powered wheelchair, a study was also done on gathering movement data from a smart 

watch worn by a wheelchair user. Rather than collect data of the wheelchairs motion, this 

allows the collection of and individuals arm movements. If motion can be tracked this 

way, it would allow manual wheelchair users to track movement using the pushing 

motions involved in manual wheelchair movement. It would also allow both manual and 

powered wheelchair users to track movement for exercises to gather data about when 

exercises are performed, and how long each exercise is performed. 

3.4.1 Android Studio 

For this study, two applications were created. A smart watch application to collect 

movement data, and a partner app for the android phone the watch connects to the watch 

and saves the output locally. The smart watch app is built using the same structure as the 

application for the previous study. The SensorManager starts collecting sensor data when 

the user presses a button on the watch face and stops when the user presses the button 

again, the screens and buttons displayed to the user are shown in Figure 13.  
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Figure 13. Smart Watch Application Screens

The collected sensor information is sent to the phone application where it is saved locally 

so the data can be easily accessed by connected the phone to a computer and moving the 

files. 

3.4.2 Differences in Accelerometer Data 

For this study, the movement data was collected while an individual in a powered 

wheelchair performed various exercises designed to prevent the formation of pressure 

ulcers. The accelerometer data across each axis varied depending on the exercise and did 

not appear similar to the raw data collected from the previous study. However, after 

transforming the raw acceleration data into a set of jerk data, the differences in the data 

were not as visible. The periods of movement varied but there were still clear patterns 

where motion was detected and where the device was stationary.  

3.4.3 Analysis of Data with the RNN 

The way that this data is interpreted based on the RNN algorithms prediction will 

be different but the RNN from the previous study was still able to analyze this data set. 

For this study, periods where the device is stationary indicate that an exercise is being 
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performed, whereas periods of movement indicate the transition from one exercise to 

another. The users performing the exercises were also required to start and stop recording 

data by pressing a button on the watch which resulted in movement at the beginning and 

end of the data set that was unrelated to the exercises. 

Chapter IV 

Results and Discussion 

4.1 Results from Experimental Studies 

4.1.1 Accuracy of the RNN on Powered Wheelchair Movement 

The study attempted to train the data set with five different sets of movement data 

collected from a smart phone that was in a phone holder mounted to the arm of the chair. 

Each time the RNN was trained with a new data set it was tested against the other data 

sets and the accuracy of the RNN was recorded. The lowest accuracy determined during 

this study was 96% and the highest accuracy recorded was 99%.  

File ID Number of data items in file RNN Accuracy 

1 4158 99% 

2 4378 97% 

3 4074 98% 

4 4433 97% 

5 6656 96% 

Table 1. Accuracy obtained on tested data sets 



36 

Figure 14. Example of actual movement data versus predicted movement data 

As shown in Figure 14, the area where the RNN failed to accurately predict the 

movement value most often occurred at the beginning or end of a bout of movement. This 

is explained by the accelerometer data being close to or at the threshold value at the 

beginning and end of a movement, as the accelerations begin to increase or decrease. The 

loss and validation loss were also recorded and graphed for each test set. 



37 

Figure 15. Example of loss and validation loss from RNN

The loss value is associated with the loss in the test data and the validation loss 

value is associated with the loss in the validation set. The validation loss value is used to 

trigger an early stop in the RNN when it no longer decreases, resulting in the final loss 

value. 

4.1.2 Accuracy of the RNN on Smart Watch Movement 

The accuracy of the RNN when used to analyze the data from the smart watch 

was less precise, with an average accuracy of 87%.  

File ID Number of data items in file RNN Accuracy 

1 2559 85% 

2 2859 84% 

3 1469 90% 

4 2365 90% 

5 2070 89% 
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Table 1. Accuracy obtained on tested data sets 

The movements for the smart watch were more difficult to accurately model, as during a 

bout of exercise, and individual is likely to experience some level of movement in the 

hands and wrist due to the strain of the exercise. There was also some movement 

captured at the beginning and end of each sensor collection session sue to the need for the 

user to press the start and stop button on the watch. This was not an issue for the phone as 

it was mounted but pressing the button on the watch usually resulted in some amount of 

movement being captured. While the results from the watch are less accurate, they are 

still useful, as the errors would not greatly affect the amount of exercise data recorded 

and would only affect the determination for the start and end of each exercise.  

4.2 Analysis of Results 

The experimental studies proved that it is possible for a sufficiently trained AI to 

analyze the movements of wheelchair users. The accuracy of the results obtained from 

the experiment is comparable to the accuracy of extra equipment attached to the 

wheelchairs, without the need for additional cost and installation. The information can be 

used by an individual to assess their own lifestyle or be sent to a healthcare professional 

to help assess the individual’s overall health. 

While the accuracy of the smart watch application study was not as high as the 

smartphone application study, there was still useful information gathered from the results. 

These results could be used to ensure that an individual is performing their exercises for 
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the appropriate amount of time, and in conjunction with the first application create an 

even better assessment of overall health and activity. 

5 Conclusion and Future Research Direction 

In this study, we presented an approach aiming to quantitatively assess a 

wheelchair user’s mobility. Our approach only uses a wheelchair user’s own 

smartphone/smartwatch to collect wheelchair maneuvering data, thus excluding the cost 

of purchasing and maintaining additional data sensors. We have developed approaches 

for sensor data processing and analysis. Particularly, we have developed a recurrent 

neural network (ANN), which could accurately classify wheelchair maneuvering data and 

provide meaningful analysis results on a wheelchair user’s mobility. 

In the next step of research, we will extend our research scope to manual 

wheelchair users, which account for the majority of the wheelchair population. 

4.3.1 Application of Current Research to Manual Wheelchair Users 

The smart watch application that was created could be used with manual 

wheelchair users to collect movement data without needing to have the phone mounted to 

the chair in any way. The movement data could be generated from the movements of a 

wheelchair user pushing the wheels, since the transformation of accelerations into 

individual jerk values is less concerned with the type of movement than the presence of 

movement. There would also still be the physical movement of the chair to add motion, 

so that even if the users hands are stalled at the beginning or end of a wheel push, there 

would still be accelerations from the chair captured by the sensors. 

4.3.1 Continuation of Smart Watch Application 
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The smart watch application could be extended to help ensure individuals 

correctly perform their exercises. A new RNN could be trained to recognize the distinct 

movements involved in each exercise to better analyze which individual exercises are 

performed and for how long. Each exercise is associated with acceleration in a different 

direction and with a different range of movements. If this acceleration data is captured 

without being converted to jerk data and an RNN is trained for each exercise it would be 

possible to correctly predict which exercise if being performed given a set of 

accelerations. 
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