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Abstract: Winter wheat is a main cereal crop grown in the United States of America (USA), and
the USA is the third largest wheat exporter globally. Timely and reliable in-season forecast and
year-end estimation of winter wheat grain production in the USA are needed for regional and global
food security. In this study, we assessed the consistency between the agricultural statistical reports
and satellite-based data for winter wheat over the contiguous US (CONUS) at both the county and
national scales. First, we compared the planted area estimates from the National Agricultural Statistics
Service (NASS) and the Cropland Data Layer (CDL) from 2008–2018. Second, we investigated the
relationship between gross primary production (GPP) estimated by the vegetation photosynthesis
model (VPM) and grain production from the NASS. Lastly, we explored the in-season utility of
GPPVPM in monitoring seasonal production. Strong spatiotemporal consistency of planted areas was
found between the NASS and CDL datasets. However, in the Southern Great Plains, both the CDL
and NASS planted acreage were noticeable larger (>20%) than the NASS harvested area, where some
winter wheat fields were used as forage for cattle grazing. County-level GPPVPM was linearly related
with grain production of winter wheat, with an R2 value of 0.68 across the CONUS. The relationships
between grain production and GPPVPM in those counties without a substantial difference (<20%)
between planted and harvested area were much stronger and their harvest index (HIGPP) values
ranged from 0.2–0.3. GPPVPM in May could explain about 70–90% of the variance of winter wheat
grain production. Our findings highlight the potential of GPPVPM in winter wheat monitoring,
especially for those high harvested/planted ratio, which could provide useful data to guide planning
and marketing for decision makers, stakeholders, and the public.

Keywords: winter wheat; crop production; harvested area; planted area; gross primary production;
vegetation photosynthesis model

1. Introduction

Wheat is one of the most widely cultivated grain crops in the world, covering ap-
proximately one sixth of the total arable land area, and wheat grain contributes ~20% of
total dietary calories worldwide [1]. Wheat is also widely traded in the world food market
with approximately ~23% of the world’s annual wheat grain production being traded
internationally. The United States of America (USA) ranks the fifth for wheat production
(after the European Union, China, India, and Russia) and the third for wheat grain export
(after Russia and the European Union) [2]. Winter wheat dominates the USA wheat grain
production, accounting for approximately 80% of national wheat production [3]. The inter-
annual fluctuation of winter wheat production in the USA could have significant impacts
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on the international wheat trade and global food security. Therefore, timely, reliable, and
spatially explicit information on winter wheat planted and harvested areas, grain yield,
and production are critical for regional and global food security as well as international
food trade.

The agricultural surveys and statistical reports by governmental agencies have been
the major data sources for crop acreages (including planted and harvested area), grain
yield, and grain production for each year from county to national scales [4–7]. The U.S.
Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) leads
the effort for in-season forecast and year-end estimation of grain production of most crops
grown in the USA. Each year, the NASS conducts several surveys and extensive field
observations to collect a variety of data needed to fulfill this task [6,7]. Spatially, an efficient
sample design is usually required for agricultural surveys to provide crop estimates over
regions. However, the sampling fields only covers part of the intended region. Temporally,
it takes time for the government to gather and process the survey data and, for information
confidentiality, the agricultural survey data usually have a scheduled release. There are no
reports or data available between the scheduled releases. Thus, agricultural surveys are
usually time consuming, expensive, and have spatial and temporal gaps [8].

Satellite-based Earth observation has been a viable technology for identifying and
mapping planted and harvested crop areas since the early 1970s [9]. Numerous studies
have used multiple temporal remote sensing data to characterize and map individual crop
types [10–14]. The Cropland Data Layer (CDL) datasets, released by the NASS/USDA [15],
have reported annual planted areas for all major crops in the contiguous United States
(CONUS) since 2008. Annual maps of pixel-based crop planted areas from the CDL pro-
vide supplementary acreage estimates to NASS acreage survey data, but it was reported
that CDL-based crop planted area estimates were slightly lower than the NASS statistical
estimates [15]. To date, there has no systematic comparative study to examine the spa-
tiotemporal consistency of winter wheat planted area estimates between NASS and CDL
datasets from 2008–2018 in the CONUS. Additionally, the spatiotemporal consistency and
dynamics between winter wheat planted areas (CDL, NASS) and harvested area (NASS)
from 2008–2018 in the CONUS has not been investigated.

Satellite remote sensing is also widely applied in estimating crop yield or produc-
tion [16–19]. The process-based mathematical models and statistical regression models use
climate inputs and satellite images to predict crop yield [20–23]. Climate variables, such as
downward short-wave radiation, air temperature, and precipitation, are common inputs
in those models [20,24]. Though climate data describe the environmental conditions that
affect crop growth, it cannot directly measure the impacts of abiotic and biotic factors on
crop growth. Climate data are usually used with other datasets to predict crop yield [21].
Vegetation indices, such as the enhanced vegetation index (EVI) and normalized difference
vegetation index (NDVI), are widely utilized to monitor crop growth status and estimate
crop yield [22,25,26]..

Gross and net primary production (GPP, NPP, respectively), aboveground biomass
(AGB), and grain production and yield (GP, GY, respectively) of crop fields are inter-
linked by the concept of the harvest index (HI), which can be defined in three ways:
(1) HIAGB = GY/AGB, (2) HINPP = GY/NPP, and (3) HIGPP = GY/GPP. Most of the agricul-
tural literature uses HIAGB or HINPP to estimate crop yield and/or grain production [27–29].
GPP estimates from light use efficiency (LUE) models driven by climate and satellite data
are available to the public [30–32]. Crop yield is estimated from GPP and GPP-based HI
(HIGPP). He et al. [26] modeled HIGPP from county-level MODIS GPP and grain production
statistics for croplands in Montana from 2008–2015 and applied the HIGPP for yield predic-
tion in Montana. For maize and soybean croplands in the CONUS, Wu et al. [33] reported
strong relationships between GPP simulated by the vegetation photosynthesis model
(VPM) and grain production from the NASS, and there are small interannual changes of
HIGPP. However, knowledge is still limited on the spatiotemporal relationship between
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GPP and grain production in the CONUS and on the performance of GPP for in-season
grain production forecasting for winter wheat.

In this study, as one of a series of papers to explore the relationship between GPPVPM
and grain production, we followed the general framework of the previous paper [33].
However, this paper focused on winter wheat croplands. First, we investigated the spa-
tiotemporal dynamics of winter wheat cropping areas in the CONUS at national and county
scales from 2008 to 2018. We quantified the spatiotemporal consistencies between NASS
and CDL datasets for planted areas and for planted/harvested areas. Differences between
winter wheat planted area and harvested area were expected because winter wheat fields
can be used as dual-purpose fields: beef cattle grazing and/or grain production. This is
a typical phenomenon in the Southern Great Plains (SGP). Second, we hypothesize that
the relationships between winter wheat GPP and grain production are strong and linear.
We analyzed the spatiotemporal dynamics of winter wheat GPP and grain production
over the CONUS at national and county scales from 2008–2018. The GPP data are derived
from the VPM (GPPVPM), which were evaluated with GPP data from the in situ cropland
eddy flux tower sites (GPPEC) [30]. Third, we explored the relationships between GPPVPM
and NASS grain production and quantified the ratio between GPP and grain production,
namely, GPP-derived harvest index (HIGPP). Finally, we assessed the linear regression
models between county-level cumulated GPP over time and annual grain production and
explored the potential to monitor winter wheat grain production in the CONUS within the
growing season of winter wheat.

2. Materials and Methods
2.1. Study Area

The CONUS includes 3233 counties and 48 states. The climate is diverse, ranging
from a temperate climate in the northern region to a subtropical climate in the southern
region (e.g., Florida). Winter wheat is primarily cultivated in the Great Plains (Figure 1).
The Southern Great Plains (Texas, Oklahoma, and Kansas) are the largest winter wheat
producing region, accounting for over 40% of national wheat grain production in the
USA [34]. Winter wheat cultivation is largely rain-fed. Note that in the Southern Great
Plains, varying areas of winter wheat fields are used as dual-purpose fields: beef cattle
grazing and/or grain production, dependent upon weather, market conditions, and other
factors [35].

2.2. Winter Wheat Planted and Harvested Areas, and Grain Production Data from 2008–2018 from
the USDA NASS Statistical Dataset

The USDA National Agricultural Statistic Service (NASS) Quick Stats database
(https://quickstats.nass.usda.gov/, accessed on 28 April 2021) provides annual statistics
on crop acreages (planted and harvested area) and grain production at national and county
scales. The NASS crop statistical data are derived from the surveys of farm operators, grain
processors, commercial storage firms, in situ yield samples, etc. As an example, the NASS
winter wheat planted area and harvested area estimates come mostly from the Agricultural
Survey in December and June. Farmers are asked by NASS survey enumerators about the
acreage they planted and the acreage they plan to harvest [3]. The grain yield statistical
data were derived from both the Objective Yield Survey (OYS) and Agricultural Yield
Survey (AYS). The AYS is based on farmers’ reported yield and the OYS is based on crop
biophysical measurements of selected samples. Grain production is calculated by yield
estimates at survey dates and to-be-harvested area, and predicted by assuming normal
weather conditions for the remaining part of the growing season.

https://quickstats.nass.usda.gov/
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Figure 1. Annual maps of county-level winter wheat over CONUS for year 2010: (a) CDL-derived planted area (plt_CDL), 

(b) NASS planted area (plt_NASS), (c) NASS harvested area (harv_NASS), (d) NASS grain yield, (e) NASS grain produc-

tion, and (f) annual averaged GPPVPM of winter wheat. 

2.2. Winter Wheat Planted and Harvested Areas, and Grain Production Data from 2008–2018 

from the USDA NASS Statistical Dataset 

The USDA National Agricultural Statistic Service (NASS) Quick Stats database 

(https://quickstats.nass.usda.gov/, accessed on 28 April 2021) provides annual statistics on 

crop acreages (planted and harvested area) and grain production at national and county 

scales. The NASS crop statistical data are derived from the surveys of farm operators, 

grain processors, commercial storage firms, in situ yield samples, etc. As an example, the 

NASS winter wheat planted area and harvested area estimates come mostly from the Ag-

ricultural Survey in December and June. Farmers are asked by NASS survey enumerators 

about the acreage they planted and the acreage they plan to harvest [3]. The grain yield 

statistical data were derived from both the Objective Yield Survey (OYS) and Agricultural 

Yield Survey (AYS). The AYS is based on farmers’ reported yield and the OYS is based on 

crop biophysical measurements of selected samples. Grain production is calculated by 

yield estimates at survey dates and to-be-harvested area, and predicted by assuming nor-

mal weather conditions for the remaining part of the growing season. 

2.3. Winter Wheat Planted Area Data from the USDA NASS Cropland Data Layer Dataset 

(CDL) 

The annual CDL dataset at a 30 m spatial resolution includes more than one hundred 

crop types in the CONUS [15]. The CDL dataset is produced by using a machine learning 

method, in situ reference data, and multi-date satellite images to identify crop types. The 

training data used in the crop classification include the National Land Cover Dataset 

(NLCD) and the USDA Farm Service Agency (FSA) Common Land Unit (CLU) data. The 

CLU attributes include the crop types and acreages reported by producers to the FSA 

county offices in the early growing season. The CDL classifier utilizes multiple temporal 

Figure 1. Annual maps of county-level winter wheat over CONUS for year 2010: (a) CDL-derived planted area (plt_CDL),
(b) NASS planted area (plt_NASS), (c) NASS harvested area (harv_NASS), (d) NASS grain yield, (e) NASS grain production,
and (f) annual averaged GPPVPM of winter wheat.

2.3. Winter Wheat Planted Area Data from the USDA NASS Cropland Data Layer Dataset (CDL)

The annual CDL dataset at a 30 m spatial resolution includes more than one hundred
crop types in the CONUS [15]. The CDL dataset is produced by using a machine learning
method, in situ reference data, and multi-date satellite images to identify crop types. The
training data used in the crop classification include the National Land Cover Dataset
(NLCD) and the USDA Farm Service Agency (FSA) Common Land Unit (CLU) data. The
CLU attributes include the crop types and acreages reported by producers to the FSA county
offices in the early growing season. The CDL classifier utilizes multiple temporal remote
sensing images from multiple sensors, including Landsat TM/ETM+, AWiFS, Deimos-1,
UK-DMC-2, and MODIS images [15]. The spatial resolution of the CDL dataset is 30 m
from 2010–2018 and 56 m from 2008–2009. In 2018, the CDL data for 2008 and 2009 were
reprocessed to 30 m. The CDL data from 2008 to 2018 at a 30 m spatial resolution were
used, which ensures the spatial resolution is consistent during the study period.

The CDL dataset provides detailed spatial information for individual crop types, and
high classification accuracies (>90%) for major crop types (e.g., winter wheat, soybean, and
maize) were reported [15]. Numerous agriculture-related studies and land cover change
studies have used the CDL dataset [36–39]. CropScape, which is a web-based data portal,
provides interactive tools for people to download, visualize, and analyze the CDL data in a
more effective and efficient way [40]. The annual total planted area of winter wheat in each
county was calculated from CropScape. The national total areas in each year were then
calculated as the total of annual planted crop areas over all the counties in the nation.
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2.4. Gross Primary Production Estimates for Winter Wheat from the Vegetation Photosynthesis
Model (GPPVPM)

The VPM estimates the daily GPP from the amount of PAR absorbed by chlorophyll
(APARchl) and the light use efficiency [41,42]. GPP derived from the eddy-covariance tower
sites (GPPEC) was used to assess daily GPPVPM in different croplands, including winter
wheat [43,44], soybean [45,46], paddy rice [47], maize [45,48], and sugarcane [49]. Strong
temporal consistency between GPPEC and GPPVPM was reported in the aforementioned
publications, with R2 values ranging from 0.70 to 0.98. The driving data of the VPM
include vegetation indices (land surface water index (LSWI) and EVI) and meteorological
data (air temperature, shortwave radiation). The theory, model structure, and parameters
of the VPM were documented in [30,31]. We followed the same procedure to run VPM
simulations as reported in an earlier publication [30], which used different maximum light
use efficiency (LUE0) parameter values for C3 and C4 crops to improve GPP estimation in
croplands, as follows:

GPP = APARchl × LUE (1)

APARchl = FPARchl × PAR (2)

LUE = LUE0 × Tscalar × Wscalar (3)

LUE0 = LUE0-C3 × FAC3 + LUE0-C4 × FAC4 (4)

where FPARchl is the fraction of PAR absorbed by chlorophyll in the canopy; LUE0 is the
maximum light use efficiency without environmental stress; Tscalar and Wscalar are the
temperature and water limitation scalars; FAC3 and FAC4 are the area fractions of C3 and
C4 plants within each 500 m MODIS pixel (range of 0–1.0), LUE0-C3 and LUE0-C4 are the
maximum LUE values for C3 and C4 plants, respectively.

The growing season total GPP of winter wheat at each pixel was calculated by summa-
rizing daily GPP between the USDA planted and harvested dates. The mean GPP values in
each county during the growing season were area weighted according to the area fraction
of winter wheat in a county derived from the CDL datasets within 500 m pixels. More
details about the VPM and GPP calculation can be found in [33]. The growing season total
GPP of winter wheat in each county was calculated by the mean GPP multiplied by the
total area of winter wheat within all pixels in the county (Figure 1f).

2.5. Statistical Analysis

To explore the interannual changes of winter wheat cropping areas and grain pro-
duction from 2008–2018, we calculated the anomaly of each variable as the difference
between the value in a specific year and the multi-year average from 2008–2018, and then
normalized it by the multi-year average. We used linear regression models to quantify the
relationships between grain production and cropping areas, and between GPPVPM and
grain production at national and county scales. The performance of models was assessed
using the coefficient of determination (R2), bias, and root mean square error (RMSE) be-
tween the modeled grain production estimates and the NASS grain production statistics.
The regression slope between grain production and GPPVPM, representing the conversion
coefficient from GPPVPM to grain production, was also termed as the GPP-based harvest
index (HIGPP).

R2 =

 ∑n
i=1
(
GPsim(i)− GPsim

)
×
((

GPNASS(i)− GPNASS
))√

∑n
i=1
(
GPsim(i)− GPPsim

)2
√

∑n
i=1
(
GPNASS(i)− GPPNASS

)2

2

(5)

RMSE =
√

∑n
i=1(GPsim(i)− GPNASS(i))

2/n (6)

bias = GPsim − GPNASS (7)
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where GPsim is the simulated grain production at a county scale based on linear models,
GPsim is the mean GPsim across counties in the CONUS, i is the county number, and n is the
total number of counties. As there are missing NASS statistics data for some counties over
the years, we only kept those counties with continuous data from 2008–2018. The total
number is 795. GPNASS is the NASS grain production, GPNASS is the mean GPNASS across
counties in the CONUS.

2.6. In-Season Forecasting of Winter Wheat Grain Production Using Cumulated GPPVPM Data

Accurate and timely prediction of grain production and yield is one requirement
in crop production monitoring programs. To explore the in-season prediction skill from
GPPVPM, linear regression models were applied between cumulated GPP (GPPcum) over
time and grain production at the county scale (see Equation (1)).

Grain Production = a × ∑t
1(GPPt × k) + b t = 1, 2, 3, . . . , 46 (8)

where t is the time intervals in a year (ranging from 1 to 46), as GPPVPM data are at an 8-day
temporal resolution and have 46 estimates within each year; k is the number of days within
a time interval, being 8 days for t = 1 to 45, and 5 or 6 days (non-leap year, leap year) for
t = 46. In this study, we used a calendar year schedule to run the statistical models for all
counties, though winter wheat is usually planted in late fall of the previous year (e.g., late
September to October). The GPPcum in the previous fall season is usually low and was not
included in Equation (1), as we tried to make the task simple, without delineating the exact
planting dates of winter wheat in the fall season of the previous year. We also assumed
that it has a negligible effect on the modeling skills.

3. Results
3.1. Spatiotemporal Consistency of Winter Wheat Planted and Harvested Areas from 2008–2018

At the national scale, the NASS winter wheat planted and harvested areas had three
phases of changes in the study period: (1) a decrease phase from 2008–2010, (2) an increase
phase from 2010–2013, and (3) a decrease phase from 2013–2018 (Figure 2a). The CDL
winter wheat planted area had similar three-phase dynamics similar to the NASS planted
area (Figure 1a). The disagreements between the NASS planted area and CDL planted area
were relatively small for most of the years (<10%). We calculated the anomaly for the mean
values of 2008–2018, and the planted area from both NASS and CDL datasets showed a
significant decrease from 2013 (Figure 2b). The NASS harvested area had a similar change
pattern to the planted area but with different magnitudes over the years (Figure 2b).

At the county scale, for all the counties with winter wheat planted acreages from
both NASS and CDL datasets in the period of 2008–2018, winter wheat planted areas
calculated from the CDL were highly consistent with those from the NASS’s officially
reported dataset (R2 = 0.98, p < 0.001) (Figure 3a). There are relatively small interannual
variations in the slope values (<10%) and R2 values among the individual years (Table 1).
In many counties, winter wheat harvested areas were much smaller than winter wheat
planted areas (Figure 3b,c). Most of those counties with a large discrepancy between winter
wheat planted area and harvested area were distributed in the Southern Great Plains and
California, where some winter wheat fields were used as cool-season forage for beef cattle
production (grazing or haying).

At the county scale, the interannual trends of winter wheat planted areas from 2008–
2018 were calculated (Figure 4). As the NASS dataset has missing data in each year for
various counties, only 626 counties were included (Figure 4b,d). According to the CDL
dataset, 2168 counties had a loss of winter wheat planted area and 998 counties had a
gain of winter wheat planted area (Figure 4a). There was a geographic shift of winter
wheat plant area, as shown by the loss and gain of winter wheat planted area at the county
scale (Figure 4a). Many counties in Kansas and the Northern Great Plains (in particular,
South Dakota) had large losses of winter wheat planted area (Figure 4a). In comparison,
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many counties in Oklahoma, Texas, and several other midwest states had moderate to
large gains of winter wheat planted area (Figure 4a). For most states, there is a reasonable
spatial agreement of loss and gain of winter wheat planted area between the NASS and
CDL datasets, however, in Oklahoma and Texas, there are noticeable differences between
these two datasets (Figure 4a,b). A number of counties in Oklahoma and Texas had losses
of winter wheat planted area according to the NASS dataset but gains of winter wheat
area according to the CDL dataset. This discrepancy could be related to the imprecise
estimates of winter wheat area from the CDL dataset because of image spatial resolution,
misclassifications, and misalignment of field boundaries [36].
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Figure 2. Interannual changes of winter wheat planted and harvested areas in the CONUS from 2008–2018 (plt_CDL,
plt_NASS, harv_NASS): (a) planted area and harvested area; (b) anomalies of planted area and harvested area for the
multi-year averages from 2008–2018.

Table 1. A summary of the relationships among winter wheat cropping areas between the CDL and NASS datasets from
2008–2018 (plt_CDL, CDL planted area; plt_NASS, NASS planted area; harv_NASS, NASS harvested area).

Year
plt_CDL vs. plt_NASS plt_CDL vs. harv_NASS plt_NASS vs. harv_NASS

Slope R2 Bias
(102 km2)

RMSE
(102 km2) Slope R2 Bias

(102 km2)
RMSE

(102 km2) Slope R2 Bias
(102 km2)

RMSE
(102 km2)

2008 0.96 0.97 –12.22 280.66 1.07 0.94 3.82 266.03 1.11 0.96 16.03 280.66
2009 0.99 0.99 –6.46 306.28 1.11 0.87 16.84 286.65 1.13 0.90 23.30 306.28
2010 1.02 0.99 1.13 292.75 1.12 0.95 15.93 279.13 1.11 0.97 14.80 292.75
2011 1.02 0.99 0.75 287.00 1.15 0.86 23.09 268.17 1.14 0.90 22.34 287.00
2012 1.02 0.99 1.67 300.82 1.10 0.91 17.68 288.64 1.09 0.95 16.01 300.82
2013 1.01 0.99 –1.11 301.23 1.15 0.87 22.61 279.99 1.14 0.89 23.72 301.23
2014 0.97 0.98 –4.41 302.44 1.13 0.84 21.75 275.66 1.18 0.88 26.16 302.44
2015 1.06 0.99 5.12 321.55 1.19 0.93 26.63 303.82 1.14 0.96 21.51 321.55
2016 1.06 0.98 5.54 311.76 1.17 0.92 23.35 296.98 1.11 0.96 17.81 311.76
2017 1.07 0.97 6.33 298.89 1.21 0.87 29.65 281.70 1.15 0.94 23.31 298.89
2018 1.09 0.98 8.90 303.80 1.22 0.84 34.24 285.68 1.14 0.90 25.34 303.80
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2008 0.96  0.97  –12.22  280.66  1.07  0.94  3.82  266.03  1.11  0.96  16.03  280.66  

2009 0.99  0.99  –6.46  306.28  1.11  0.87  16.84  286.65  1.13  0.90  23.30  306.28  
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Figure 3. Comparisons between winter wheat planted areas and harvested area over CONUS from 2008–2018 at the county
scale from the CDL and NASS datasets (plt_CDL, plt_NASS, harv_NASS). (a) Planted area, (b,c) planted area vs. harvested
area, (d–f) the spatial discrepancy (relative difference, %) in 2010 for planted area (d), and between planted area and
harvested area (e,f). Year 2011 is a typical drought year over the winter wheat belt, and 2016 is a wet year.

For all the counties with winter wheat grain production, from planted and harvested
area data from 2008–2018, grain production had noticeably stronger relationships with
harvested areas than with planted area (Figure 5) due to part of the planted acreages being
used for grazing and hay. Table 2 lists the statistics of the linear regression models (slope,
R2, and RMSE) between grain production and cropping areas in the period of 2008–2018,
and the poorest relationship occurred in the spring drought year of 2014.

Table 2. A summary of the relationships between county-level winter wheat grain production and cropping areas in the
CONUS from 2008–2018 from the NASS and CDL datasets.

Year
prod_NASS vs. plt_CDL prod_NASS vs. plt_NASS prod_NASS vs. harv_NASS

Slope R2 Bias
(103 ton)

RMSE
(103 ton) Slope R2 Bias

(103 ton)
RMSE

(103 ton) Slope R2 Bias
(103 ton)

RMSE
(103 ton)

2008 257.56 0.80 5.02 74.06 251.73 0.81 5.65 73.27 293.28 0.89 1.17 79.10
2009 214.09 0.66 4.65 71.02 215.73 0.69 4.46 71.25 273.40 0.86 –2.45 80.06
2010 257.45 0.80 1.12 80.36 265.18 0.82 0.26 81.46 306.04 0.89 –4.26 87.52
2011 215.92 0.60 3.51 70.60 225.97 0.63 2.33 71.93 290.31 0.79 –5.22 81.19
2012 243.86 0.75 2.98 79.01 256.14 0.79 1.48 80.81 293.26 0.87 –3.03 86.51
2013 221.88 0.61 4.56 74.68 227.6 0.63 3.85 75.47 296.46 0.82 –4.64 85.83
2014 181.54 0.56 5.81 60.39 179.37 0.57 6.06 60.10 244.45 0.77 –1.54 69.66
2015 197.58 0.72 3.57 69.65 213.49 0.76 1.49 72.19 256.62 0.85 –4.14 79.55
2016 278.65 0.75 2.53 95.96 305.26 0.80 –0.75 100.07 359.77 0.89 –7.45 109.08
2017 244.46 0.67 1.87 83.97 275.46 0.75 –1.94 88.52 343.50 0.88 –10.30 99.43
2018 218.49 0.59 2.08 79.48 249.05 0.65 –1.73 83.93 319.78 0.8 –10.53 95.35
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Figure 4. The distributions of interannual trends of county-level winter wheat planted area over CONUS between 2008
and 2018 derived from the CDL and NASS datasets. (a) Trends from the CDL dataset, (b) trends from the NASS dataset,
(c) p-value for the CDL dataset, S: significant, p-value < 0.05, NS: not significant, p-value > 0.05, (d) p-value for the NASS
data, (e) the relationships between the trends of planted areas calculated from CDL and NASS, (f) the histograms of the
trends of planted areas calculated from CDL and NASS.
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Figure 5. The relationships between county-level winter wheat grain production and cropping areas in the CONUS from
2008 to 2018 from the CDL and NASS datasets (plt_CDL, plt_NASS, harv_NASS). (a) Grain production versus CDL planted
area, (b) grain production versus NASS planted area, and (c) grain production versus NASS harvested area. The black solid
line is the linear regression result for all the counties from 2008 to 2018.

3.2. Spatiotemporal Dynamics of GPPVPM and Grain Production from NASS Dataset from 2008–2018

At the national scale, winter wheat grain production showed a decreasing trend from
2008–2018 (Figure 6), which is largely determined by the decrease in planted and harvested
area (Figure 1). GPPVPM showed a similar decreasing trend as grain production from 2008
to 2018, but with strong response in some drought years, such as 2011 and 2014.
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Figure 6. Interannual changes of (a) NASS winter wheat grain production (prod_NASS) and total GPP estimated from VPM
(GPPVPM), (b) anomalies of prod_NASS and GPPVPM for the mean of 2008–2018.

At the county scale, we quantified the interannual trends of GPPVPM and grain produc-
tion from 2008–2018 (Figure 7). Out of 291 counties with continuous NASS grain production
data during the 11 years, winter wheat grain production showed increasing trends in 90 coun-
ties and decreasing trends in 201 counties (Figure 7a,c). The interannual trend of NASS grain
production had a strong linear relationship with the that of GPPVPM (Figure 7e). Out of
2609 counties in the CONUS, GPPVPM data show 821 counties with a substantial increas-
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ing trend and 1788 counties with a decreasing trend (Figure 7b,d). Many counties with a
decrease in GPPVPM were located in the Great Plains (South Dakota, Kansas, Oklahoma)
and the states along the Mississippi River (Figure 7b,d). Many counties in the northwestern
states and the western edge of the Southern Great Plains showed an increasing trend of
GPPVPM (Figure 7b,d). The probability distributions of the interannual trends of NASS grain
production and GPPVPM were similar, with narrow ranges of normal distribution (Figure 7f).
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Figure 7. Interannual trends of NASS winter wheat grain production (prod_NASS) and GPPVPM from 2008–2018 in the
CONUS at a county scale. (a) Changing trend for NASS grain production from 2008–2018; (b) changing trend for GPPVPM

from 2008–2018; (c) p-value of the linear regression model for calculation of NASS grain production trends, S means significant
trend with p < 0.05, and NS means not significant trend with p > 0.05; (d) similar to (c), but for the trend of GPPVPM; (e) linear
regression between the trend of NASS grain production and of GPPVPM for those counties with continuous NASS grain
production and GPPVPM data from 2008–2018; (f) histograms for the trend of NASS grain production and of GPPVPM.
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3.3. The Relationships between County-Level GPPVPM and Winter Wheat Grain Production from
2008 to 2018

At the county scale, the relationships between GPPVPM and winter wheat grain pro-
duction from 2008 to 2018 varied from one year to another (Figure 8a), with R2 values
ranging from 0.59 (2008) to 0.75 (2016) (Table 3). The slope values in the models with no
intercept (GP = HIGPP × GPPVPM) varied from 0.25 (2012) to 0.33 (2011) (Table 3). When all
the county-year data in the CONUS were used in the linear regression model for GPPVPM
and grain production (GP), GPPVPM could explain 68% of the variance in winter wheat
grain production (Figure 8a). The relationships (Figure 8b) were also affected by the dif-
ferences between the planted area calculated from CDL and harvested area from NASS
statistics, which varied according to county and year (Figure 3). When including only
those counties with differences less than 20% between the planted area from CDL and the
harvested area from NASS, the relationship between GPPVPM and grain production was
much stronger (R2 > 0.8, Table 4).
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Figure 8. (a) The relationships between county-level winter wheat GPPVPM and grain production in the CONUS from 2008
to 2018, labeled by year, and the black solid line is the linear regression results for all the county-year data. (b) Linear
regression between GPPVPM and NASS grain production from 2008 to2018, labeled by the relative difference between CDL-
derived planted area (plt_CDL) and NASS harvested area (harv_NASS). (c) Density plot of the relationship between HIGPP

and the difference between plt_CDL and harv_NASS. (d) Histogram of HIGPP for all the county-years with a difference of
plt_CDL and harv_NASS less than <20%.
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Table 3. Statistics of linear regression results between county-level GPPVPM and winter wheat grain
production from NASS over CONUS from 2008–2018. All the counties are considered.

Year Slope R2 Bias (103 ton) RMSE (103 ton)

2008 0.306 0.711 5.374 72.506
2009 0.298 0.591 4.899 69.652
2010 0.320 0.741 1.736 79.246
2011 0.343 0.688 1.404 71.655
2012 0.254 0.694 4.260 78.217
2013 0.290 0.692 3.840 76.209
2014 0.295 0.609 3.397 60.451
2015 0.229 0.660 4.071 68.616
2016 0.304 0.746 2.831 96.078
2017 0.306 0.713 0.657 84.463
2018 0.321 0.709 0.356 81.633

Table 4. Statistics of linear regression results between county-level GPPVPM and winter wheat grain
production from NASS over CONUS from 2008–2018 by considering the relative differences between
CDL-derived planted area and NASS harvested area.

Relative Difference Slope R2 Bias (103 ton) RMSE (103 ton) Number of Counties

[0,10] 0.27 0.87 0.42 113.62 3715
[10,20] 0.22 0.83 3.07 71.80 2501
[20,30] 0.17 0.79 4.48 48.47 1609
[30,40] 0.14 0.80 4.28 40.65 1076
[40,50] 0.11 0.81 3.47 34.56 691
[50,60] 0.10 0.83 3.48 38.22 519

>60 0.07 0.69 0.44 26.57 2127

HIGPP values had a moderate range of variation across most of the county-years
(Figure 8c), which was not affected much by the difference between the two cropping areas
(Figure 8c). For those counties with small differences (<20%) between the two cropping
areas, HIGPP values ranged from 0.2–0.3 (Figure 8d). Geographically, high HIGPP values
occurred in the northern part of the CONUS, and the winter wheat belt region in the
Southern Great Plains generally had a lower HIGPP, except for part of western Kansas
(Figure 9).
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3.4. In-Season Forecasting of Winter Wheat Grain Production Using Cumulative GPP Data

In the CONUS, winter wheat is usually planted from September–November, and
harvested from June–August of the following year. We assessed the potential of the simple
linear regression model in forecasting grain production based on cumulative GPP. When
using all the county-year data in the CONUS, the model prediction skill increased over time,
reaching 60% to 80% by the end of June (Figure 10a). When using all the county-year data
in a state, the model prediction skills for those states located in the cold northern part of the
CONUS, where there were few differences between CDL-derived planted area and NASS
harvested area, reached 90% by the end of May (Figure 10b,c). For those states located
in the Southern Great Plains with big differences between the two cropping areas, that is,
CDL-derived planted area and harvested area from NASS statistics, the model prediction
skill varies over the years, ranging from 70% to 90% (Figure 10d,e). After excluding those
counties with a difference larger than 20% between the two cropping areas, the model
prediction skill for the CONUS increases and varies between 80% and 90% over the years
(Figure 10f).
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Figure 10. The prediction skill of the linear regression models that predict county-level crop grain production from NASS
statistics by using accumulative GPP estimates over time (8-day interval) from the VPM and CDL cropping area over the
years for winter wheat from 2008–2018 over (a) all counties in CONUS; (b) all counties in Montana; (c) all counties in
Washington; (d) all counties in Kansas; (e) all counties in Oklahoma; (f) CONUS for all counties with differences less than
20% between CDL-derived planted area and NASS harvested area.

4. Discussion
4.1. Spatiotemporal Dynamics of Winter Wheat Planted Area, GPP, and Grain Production

Many factors contributed to the spatiotemporal changes of winter wheat planting,
GPP, and grain production, including the grain market volatility (e.g., international trade
market, fluctuating market price), and climate-induced variation. For international trade,
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the US share of global exports for wheat was ~20% before 2013, which then shrank to
~15% in recent years, driven by rising exports from Russia, the European Union, and South
America [50]. The global wheat price also experienced an increase from ~5 dollars/bushel
in 2008 to ~9 dollars/bushel in 2012, then decreased to ~USD 5/bushel in 2018 [51]. The
interannual variation of winter wheat planted area, GPP, and grain production is highly
consistent with the wheat price dynamics (Figures 2 and 6). Domestically, as winter wheat
is usually planted from September to October, and is harvested in June and July after
maize and soybean planting, this makes it compete directly with maize and soybean. With
less profit created by winter wheat over the years, maize and soybeans are preferred by
US farmers. The recurring droughts throughout the Great Plains also exacerbated the
shrinkage of winter wheat acreage. The 2011 drought in the Southern Great Plains and the
2017 drought in the Northern Great Plains impacted wheat growing, resulting in a large
production reduction in 2012 (Figure 6). After the 2017 drought, wheat was replaced by
soybean as the predominant crop in North Dakota, and more US states are increasingly
planting maize and soybeans rather than wheat. For example, in Kansas, the largest wheat
growing state in the US, wheat planted areas become smaller than maize and soybean areas
in 2017 [52].

4.2. Spatiotemporal Consistency of Winter Wheat Cropping Areas from the CDL and NASS Datasets

Crop planted area and its spatial distribution are the first data layer for crop production
monitoring and forecasting. A few studies compared the planted area derived from the
CDL dataset and NASS statistics over a few years or over a few states [15,36]. The CDL
pixel-based planted area estimates generally showed a satisfying accuracy for major crops
(85–95% for maize, soybean, and wheat), but had a tendency of underestimation compared
with NASS planted area. The pixel counting estimation of crop acreage from the CDL may
underestimate crop acreages for certain counties and states but may yield overestimation
for other states and counties. It should be indicated that the R2 value does not indicate that
the estimation is biased up or down. In this study, the winter wheat planted area estimates
in the CONUS for the CDL dataset showed a strong spatiotemporal consistency (R2 = 0.98)
with those from the NASS dataset from 2008–2018 at the county scale (Figure 3). This high
spatiotemporal consistency can be largely attributed to the accuracy of the CDL and NASS
statistical data, especially for major crop types (winter wheat, soybean, and maize) [15] in
the major crop production areas. The high accuracy and robustness of the CDL dataset for
winter wheat planted area estimation makes it reliable for crop monitoring.

Crop harvested area and its spatial distribution were directly related to crop produc-
tion because some crop fields could not be harvested due to damage, failure, and other
factors. However, there is still a lack of pixel-based harvested area at a regional scale.
Thus, it is important to calculate the difference between planted and harvested area for
monitoring crop production. In our study, we found that the spatiotemporal consistency of
winter wheat planted and harvested area in the CONUS varied substantially, especially
in the Southern Great Plains and in some spring drought years (2011, 2013–2014), with a
difference of more than 20% (Figures 2 and 3). The Southern Great Plains are one of the
key regions for the nation’s wheat and beef production. In many counties of the Southern
Great Plains region, winter wheat is used as part of a dual purpose graze–grain system,
serving as both a grain crop and a forage crop to supply beef cattle [35,53]. Drought is an
important factor that can lead to the loss of grain yield and abandonment of winter wheat
acreage in the Southern Great Plains. Winter wheat crops in this area normally break from
dormancy in late February or early to mid-March. A lack of precipitation or snow before
the dormancy period could significantly reduce the growth of winter wheat crops [54].
These factors could have led to the significant differences between planted and harvested
area, especially over the Southern Great Plains.
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4.3. Harvest Index—The Relationship between Winter Wheat Grain Production and GPPVPM

The “harvest index” (HI) is used in crop production research in different ways: the
ratio of crop grain production over (1) aboveground biomass (AGB), namely HIAGB [28],
(2) net primary production (NPP), namely HINPP [27,29], and (3) gross primary production
(GPP), namely HIGPP [26,33]. These three His are different but related to each other, as GPP,
NPP, and AGB are closely related. GPP represents the total carbon fixed by photosynthesis
during the growing season. NPP is part of GPP, deducted by autotrophic respiration, and
is often estimated as a sum of aboveground biomass and belowground biomass at harvest
time. AGB is the total biomass allocated to the leaves, stems, branches, and seeds. The
grain production (yield) is part of AGB at harvest.

HIAGB derived from field-level studies showed a large variability in previous stud-
ies [28,55], which is contributed to the seed variety and growing condition. HINPP is usually
calculated from HIAGB and the root:shoot ratio at the field scale. The root:shoot ratio for
wheat ranges from 0.19–0.21 [28,56]. For HIGPP, Done et al. [57] and He et al. [26] reported
a value of 0.29–0.37 based on modeled GPP and yield data at a regional scale. Our results
showed a median HIGPP of 0.30 from 2008–2018, and it fluctuated over counties and years
(Figure 5). This variation of the GPP–yield relationship (HIGPP) could result from envi-
ronmental factors, crop management, and crop varieties (genomics). For example, winter
wheat grain production in the Southern Great Plains is relatively low and more variable
than for other regions, because some winter wheat fields are used as pasture for cattle
grazing. The rate of abandonment could vary in some extreme climate years, as adverse
weather reduces wheat yield. In addition, fertilizer application, tillage, and row spacing
could also affect the yield both spatially and temporally [58]. Additional studies are needed
to quantify the responses of GPP and grain production under extreme climate events.

4.4. In-Season Forecasting for Winter Wheat Grain Production

The LUE-based GPP models provide a simple but efficient way to estimate biomass or
yield [59]. Unlike empirical models, they are semi-empirical and can be applied at both site
or regional scales with calibration and validation [59,60]. Our study combined the GPP
estimated from the VPM and CDL crop area and to predict winter wheat grain production.
At the county and state scales, the predicted grain production estimates correlated well
with the NASS grain production. This in-season forecasting pilot study was run at county
and state scales because the NASS grain production data are readily available at those
scales. Lack of access to the field-scale grain production data limits the validation of
GPPVPM-based grain production data at the field scale. GPP data at a moderate spatial
resolution (500 m) were used in this study. For the major production regions of winter
wheat, which produced more than 40% of the total winter wheat grain, the field sizes are
usually large and there are few mixed pixels in these counties and states. However, for
other regions, the mixed pixels problem can cause significant discrepancies in calculating
wheat GPP and grain production. GPP products with high spatial resolutions (e.g., 30 m
Landsat, and 10 m Sentinel-2) and suitable temporal frequency (weekly) may overcome the
above limitations for field-scale agricultural applications.

This study highlighted the importance of accurate and in-season or annual maps of
crop types for the prediction of crop production, including both planted and harvested
areas. Annual or in-season maps of crop planted areas provided the basic information at
the beginning of the growing season. Annual to-be-harvested area maps in the growing
season would be helpful in predicting grain production as grain production is calculated as
a function of “to-be-harvested” crop areas. For some major crops like maize and soybean,
there could be no significant differences between planted area and harvested area in the
CONUS [33]. Thus, early mapping of the planted area in the growing season could be
used for grain production estimation. However, for winter wheat, our study showed that
there were significant differences between planted and harvested areas over the CONUS,
especially the Southern Great Plains, where the relative difference could be greater than
20%. Though numerous studies have tried to provide in-season crop type maps as early
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as possible based on remote sensing data [61,62], there is not much attention paid to the
research of planted and harvested area mapping. A separate classification of planted
area and harvested area can help to get a more accurate prediction of grain production.
Another issue is to have updated (in-season) and high spatial resolution (e.g., 30 m or
10 m) crop classification maps. The CDL dataset usually has a six-month lag time after
harvest, before being released to the public, and a delay of six months after harvest would
preclude in-season grain production prediction. Time series satellite observations at high
spatial resolutions, for example, from Sentinel-2 (5-day to 10-day revisit) and Sentinel-1
(6-day or 12-day revisit), offer rich data to map different types of crops at a field scale in a
timely fashion, especially in those regions with complicated crop landscapes and frequent
cloud cover.

5. Conclusions

We evaluated the spatiotemporal consistency among NASS winter wheat statistics
(planted area, harvested area, grain production), CDL-derived planted area, and GPPVPM
for 2008–2018 at national and county scales. High spatiotemporal consistencies of planted
area from the CDL and NASS datasets were found. There were large disagreements
between the CDL planted area and NASS harvested area in many counties, especially
in the SGP. The correlation between annual total GPPVPM and grain production varied
with individual counties, depending upon the differences between CDL planted area and
NASS harvested area. It was found that the cumulative GPPVPM at an 8-day interval and
HIGPP were able to accurately predict winter wheat grain production at the county scale
from early May to late June. HIGPP, calculated as the ratio of grain production over GPP,
varied over a small range over different counties and years, when excluding those counties
with large differences of CDL planted and NASS harvested areas, with a median value
of 0.27. The results from this study highlight the importance of differentiating planted
area and harvested area in crop mapping. Our results also demonstrate the potential of
using GPPVPM products in estimating and monitoring grain production of winter wheat in
the CONUS.
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