Supporting Information

(NH₄)₂AgX₃ (X=Br, I): 1D Silver Halides with Broadband White Light Emission and Improved Stability

Tielyr D. Creason,^{1†} *Hadiah Fattal*,^{1†} *Isaiah W. Gilley*, ¹ *Timothy M. McWhorter*,¹ *Mao-Hua Du*,² *Bayram Saparov*¹*

¹Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway,

Norman, OK 73019, United States

²Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States

*Corresponding Author: saparov@ou.edu

[†]These authors contributed equally.

Formula	(NH ₄) ₂ AgBr ₃	(NH ₄) ₂ AgI ₃	
Formula weight (g/mol)	383.68	524.65	
Temperature (K)		295(2)	
Radiation, wavelength (Å)	Μο Κα, 0.71073		
Crystal system	Orthorhombic		
Space group	Pnma		
Ζ		4	
Unit cell parameters (Å)	a = 9.5890(3)	a = 10.1968(16)	
	b = 4.5949(2)	b = 4.8347(7)	
	c = 18.5212(6)	c = 19.847(4)	
Volume (Å ³)	816.05(5)	978.4(3)	
Density (ρ_{calc}) (g/cm ³)	3.123	3.562	
Absorption coefficient (μ) (mm ⁻¹)	17.060	11.445	
$\theta_{\min} - \theta_{\max}$ (°)	3.93 - 32.50	2.864 - 30.603	
Reflections collected	18128	18780	
Independent reflections	1796	1514	
	$R_1 = 0.0275$	$R_1 = 0.0202$	
κ^{*} indices $(I \geq 2\sigma(I))$	$wR_2 = 0.0507$	$wR_2 = 0.0389$	
Goodness-of-fit on F^2	1.006	1.069	
Largest diff. peak and hole (e ⁻ /Å ³)	1.511 and -1.468	1.535 and -1.183	

Table S1. Selected single crystal data and structure refinement parameters for $(NH_4)_2AgBr_3$ and $(NH_4)_2AgI_3$.

where $w = 1/|\sigma^2 F_0^2 + (AP)^2 + BP|$, with $P = (F_0^2 + 2F_c^2)/3$ and weight coefficients A and B

Atom	x	у	Z	$U_{ m eq},{ m \AA}^2$		
(NH ₄) ₂ AgBr ₃						
N1	0.2438(4)	0.250000	0.5426(2)	0.0385(8)		
N2	0.5731(4)	0.250000	0.2119(2)	0.0371(8)		
Ag	0.37369(4)	0.750000	0.36795(2)	0.04454(11)		
Br1	0.50543(5)	0.250000	0.40239(3)	0.03634(11)		
Br2	0.11781(4)	0.750000	0.42793(2)	0.03461(11)		
Br3	0.30945(5)	0.750000	0.22524(2)	0.03436(11)		
(NH ₄) ₂ AgI ₃						
N1	0.0743(4)	0.250000	0.7110(2)	0.0432(10)		
N2	0.2519(5)	0.250000	0.4577(2)	0.0457(10)		
Ag	0.36573(4)	0.750000	0.63506(2)	0.04790(11)		
I1	0.50037(3)	0.250000	0.60023(2)	0.03764(9)		
I2	0.30864(3)	0.750000	0.77602(2)	0.03687(9)		

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for $(NH_4)_2AgBr_3$ and $(NH_4)_2AgI_3$.

^{*a*}Ueq is defined as one-third of the trace of the orthogonalized *Uij* tensor.

0.750000

0.57080(2)

0.03735(9)

0.11746(3)

I3

Table S3. A comparison of bond distances and angles within the $1D_{\infty}^{1}[AgX_{3}]^{2}$ - chains in $(NH_{4})_{2}AgBr_{3}$ and $(NH_{4})_{2}AgI_{3}$.

Atom pair	Distance (Å)	Label	Angle (°)				
(NH ₄) ₂ AgBr ₃							
Ag – Br1 (×2)	2.6983(3)	Br1-Ag-Br2	109.207(14)				
Ag-Br2	2.6934(3)	Br1-Ag-Br3	109.664(14)				
Ag – Br3	2.7139(6)	Br2-Ag-Br3	101.239(19)				
		I					
(NH ₄) ₂ AgI ₃							
Ag – I1 (×2)	2.8647(4)	I1-Ag-I2	109.505(12)				
Ag – I2	2.8576(8)	I1-Ag-I3	108.630(14)				
Ag – I3	2.8345(7)	I2-Ag-I3	104.982(19)				

Table S4. Summary of time-resolved photoluminescence (TRPL) refinement parameters for

 $(NH_4)_2AgBr_3$ and $(NH_4)_2AgI_3$.

Parameter	(NH ₄) ₂ AgBr ₃	$(NH_4)_2AgI_3$
A ₁ (Cnts)	532.3859	62.81477
$\tau_1 (\mu s)$	0.521073 μs	5.994375 μs
A_2 (Cnts)	72.95995	434.3554
$\tau_2 (\mu s)$	4.455118µs	0.5617258 μs
Average lifetime	0.995 μs	1.25 µs

Figure S1. Photographs of (a) $(NH_4)_2AgBr_3$ and (b) $(NH_4)_2AgI_3$ single crystals grown via hydrothermal synthesis method.

Figure S2. Room temperature PXRD patterns (black) fitted using the Pawley method (red) for (a) (NH₄)₂AgBr₃ and (b) (NH₄)₂AgI₃ prepared through hydrothermal synthesis.

Figure S3. PXRD patterns of polycrystalline samples of (a) $(NH_4)_2AgBr_3$ and (b) $(NH_4)_2AgI_3$ left in ambient air for 3 weeks.

Figure S4. Differential scanning calorimetry (DSC, in red) and thermogravimetric analysis (TGA, in blue) plots for (a) (NH₄)₂AgBr₃ and (b) (NH₄)₂AgI₃.

Figure S5. Kubelka-Munk transformed diffuse reflectance plots for (a) $(NH_4)_2AgBr_3$, (b) $(NH_4)_2AgI_3$, (c) AgBr, and (d) AgI. Arrows indicate minor impurities of AgX in $(NH_4)_2AgX_3$.

Figure S6. The Commission Internationale de l'Eclairage (CIE) color coordinates of $(NH_4)_2AgBr_3$ and $(NH_4)_2AgI_3$. $(NH_4)_2AgBr_3$ is found to exhibit excitation-dependent light emission properties. A Planckian locus has been included to estimate correlated color temperature (CCT) for the various PL emissions of $(NH_4)_2AgX_3$.

Figure S7. Comparisons of PL emission from single crystals and polycrystalline powders of (a) $(NH_4)_2AgBr_3$ and (b) $(NH_4)_2AgI_3$.

Figure S8. Environmental scanning electron microscope (ESEM) images of (a) a single crystal and (b-d) ground polycrystalline powders of $(NH_4)_2AgI_3$.

Figure S9. A comparison of PL emission using different excitation energies for (NH₄)₂AgBr₃.

Figure S10. Excitation-dependent PL emission spectra for (a) (NH₄)₂AgBr₃ and (b) (NH₄)₂AgI₃.