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 Abstract 

Total knee replacement implant surgery is at an all-time high, with 10% of Americans age 80 

and older are currently living with at least one total knee replacement (TKR). An ideal 

implant should ensure lifelong mechanical stability with the adjoining tissues However, 

micromotions that occur at the implant surface activate osteoclasts, which resorb bone around 

the implant and contribute to implant loosening and eventual implant failure. A method to 

improve mechanical fixation of a TKR implant is clinically important and is the purpose of 

the proposed research project. This research uses a noble method that designs microgrooves 

on tibia tray using a laser. The goal of this study is to measure the effects of the designed 

microgrooves on a tibia implant that is used in dogs. The first objective of this study was to 

design a tibia tray for a dog by using a 3-D scanner and exporting the image into solid works. 

Solid works was used to design the tibia and CNC machine was used to machine the part. Six 

samples were made, and laser machine was used to produce laser microgrooves on three of 

the samples. The samples were characterized by measuring the roughness. The second 

objective was to design the experimental setup for use in Test Resource machine to measure 

the effects of grooves on the fatigue life. The third objective was to perform finite element 

analysis on the groove and the non-groove tibia tray and compare the results with the test 

result. The results were analyzed after 100000 cycles and data showed that there was a 0.017 

increase in the stroke from the initial stroke to the final stroke. Using an X-ray imaging 

technique with a dental X-ray camera, there were some traces of cracks indicating there was a 

micromotion between the implant and bone. The samples with Microgrooves showed 

significant stability from the samples with no grooves. 
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Chapter 1 Introduction 

1.1.  Total Knee Replacement   

Science has helped improve living standards and healthy living, however the need for a 

perfectly functioning knee replacement is at an all-time high, where 10% of Americans at 

the age 80 and above are currently living having at least one total knee replacement (TKR) 

[1]. Statistics reported that, as of 2012, 4.5 million Americans were living with at least one 

total knee replacement; this in turn accounts for roughly 4.7% of the population age 50 years 

or older [2]. These statistics indicate the necessity for this type of important procedure, as 

the knee is heavily influential in the dynamic mobility of the human body. Without a 

functioning knee, a patient is extremely confined, with hindered movement causing a 

devastating loss of mobility.  

                 In addition, with the average lifespan increasing, the need for treatment which 

preserves and restores normal body functionality is becoming much more in demand. 

Approximately 90% of the total number of total knee replacement surgeries performed has 

occurred within the last 10 years [3], a clear indication of how this surgical operation has 

increasingly become a seemingly routine orthopedic procedure to remedy the immobility 

associated with a malfunctioning knee. Subsequently, the demand for a successful method 

of restoration of the knee is at an all-time high, which is why total knee replacement surgery 

is currently so popular. 

            Additionally, the popularity of this surgery is reflected in the statistics; for instance, 

95% of patients report that they are satisfied with their procedure [3]. This procedure is 

sustainable as well, as the revision rate is fairly low. In another study, it was found that 
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revision rates of 12% after 10 years are common in the United States [4]. The typical reason 

for revision after a long time period such as 10 years is due to loosening of the implant and 

general wear due to dynamic fatigue. This type of surgery also has a very low complication 

rate. Based on a study of 1.82 million patient records in all age groups, 7.5% of patients 

endure complications within 90 days of surgery [4]. These comprehensive statistics indicate 

the demand, and the effectiveness of total knee replacement surgery, which has truly become 

a growing industry within the medical community.  

          Total knee replacement surgery is a procedure whereby part of the knee joint is 

replaced with artificial material [3]. The artificial material usually titanium is held in position 

using a cement. The cemented total joint prosthesis is one of the most frequent operations in 

the orthopedic fields. Poly methyl methacrylate (PMMA) bone cements are widely used to 

fix artificial joints for filling the free space between bone and prostheses.  

          The biggest challenge in knee surgery and orthopedic research are the implant 

loosening at the interface or the breakage at the point of implantation [5]. The mechanical 

failure of the implant-cement interfaces has been proposed as one of the most possible causes 

leading to the eventual clinical loosening of cemented total joint prosthesis. It is an active 

area of research to develop an optimal implant-cement interface by improving mechanical 

stability of PMMA bone cement. PMMA bone cement, which are used in human and animal 

orthopedics surgeries, show fast and slow curing properties.  

       A total knee replacement is shown in Figure 1-1 with all the parts clearly shown. 
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Figure 1-1: Total knee replacement surgery with femoral and tibia 

tray(https://www.mayoclinic.org). 

 

1.2.  Reasons for Total Knee Replacement Surgery 

          There are enormous reasons for a patient to require total knee replacement. Amongst 

the many reasons, arthritis is the most common [1,2]. The three most common types of 

arthritis which destroy the knee joint and surrounding bone includes osteoarthritis, rheumatoid 

arthritis, and post-traumatic arthritis [3,4]. Arthritis is an extremely painful disease of the 

knee, causing the patient to suffer high level of pain affecting normal everyday movement. 

Because of this loss of movement, an individual suffering from arthritis within the knee is 

confined to uncomfortable and sedentary living [3,4,5]. This type of living is non ideal, 

painful, as well as unhealthy. Inactivity, especially among older adults, greatly affects health 

and life expectancy. Damage due to arthritis such as aforementioned may lead to deterioration 

of the surrounding bone. This high level of pain affects mechanical strength leading to 

Femur 

Tibia tray 

Tibia 

https://www.mayoclinic.org/
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decreased activity. The decrease activity further leads to deterioration eventually resulting in 

loss in bone density around the damage area. 

          When medication and other forms of treatment no longer become a viable option, a 

total knee replacement becomes the best option. Total knee replacement surgery restores the 

patient’s ability to perform everyday activities without severe pain. In addition, severe 

arthritis can cause knee deformities, such as bowing in or out of the knee. A total knee 

replacement can restore the “natural” look of the knee if this type of damage is apparent. As 

previously outlined, follow up surgery is uncommon for total knee replacement surgery, 

indicating that this type of surgery is a viable and effective option for those suffering from 

immobility due to arthritis. Other reasons for the need of a total knee replacement surgery 

include but not limited to accidents and sports injuries. 

1.3.   Total Knee replacement Material 

1.3.1.  Stem 

          The stem is the portion of the replacement that fits into the bone. Titanium alloys have 

several amazing properties that make it a good fit for use as stem in medicine. Titanium, in its 

pure form, has a low density, high strength and a high level of corrosion resistance [5]. In 

addition, it is also non-toxic and non-magnetic - two properties that are specifically beneficial 

for use in biomedical applications [6,7]. Titanium alloys exhibit attractive properties such as 

biocompatibility, safety and ductility. Titanium (Ti) is used as an orthopedic and orthodontic 

implant material for excellent biocompatibility [7]. The process of dissolution of Titanium into 

body is very fundamental because titanium surface reacts spontaneously to form a stable and 

unreactive coating of titanium dioxide (Ti2O), this coating prevents titanium element from the 
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reaction with body fluids [8]. Titanium is very biocompatibility, show high corrosion 

resistance, very low level of ion-formation capability, extremely low electronic conductivity 

due to the formation of the oxide inert layer. However, for this study since it is an in vitro study 

with a saw bone, aluminum was the test material that was used because of limitation in finance 

and because it is basically a testing process for the effect of Laser microgroove on an artificial 

tibia tray. 

          Cobalt-chromium alloys are also used in implants. They are considered highly 

biocompatible as well as titanium and have shown excellent short-term results in the United 

States and may be useful when utilized in specific patients [1]. Ceramic when coupled with 

ceramic balls is very strong material and provides low wear rate in an implant. Polyethylene is 

most often used as a liner in implant [6].  

1.3.2.  Bone cement 

          Bone cement is used in various orthopedic surgeries for both human and animals. 

Among the many materials with high potential for used as bone cement, 

polymethylmethacrylate (PMMA) bone cement has been used successfully many surgeries 

mostly because of its strong mechanical bonding with implant. PMMA bone cements 

commercially available as material with two components; liquid (MMA monomer) and  

powder (PMMA beads). These components are mixed in the ratio 2:1 to allow for the mixture 

polymerize. The current most commercially available human PMMA bone cements are Cobalt 

(Biomet, Inc.), Simplex (Stryker, Inc.), and Palacos (Heraeus Company). The current most 

commercially available animal PMMA bone cements are BioMedtrix, Patterson, Jorgensen 

Labs veterinary bone cement that was used in this study is shown in figure 1-2 below.  
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Figure 1-2: PMMA bone cement used in the study; Biomedtrix 3 Veterinarian bone cement 

 

          Several drawbacks associated with PMMA bone cement limit its efficacy. Some of the 

drawbacks associated with PMMA include; inadequate adherence to the bone surfaces (no 

bioactivity) [11], it has a high exothermic reaction temperature [12] and it exhibits monomer 

toxicity [12]. Particularly, enough bonding strength of cement with the implant and bone is 

required for the design of optimal bone cement, which may be greatly influenced by the high 

exothermic temperature. It is important to determine temperature changes in the PMMA bone 

cements during curing and how the different level of curing time and temperature influences 

the mechanical properties of bone cement and bonding strength between implant and cement. 

The change of mechanical properties of bone cements with different curing time is required for 

their use in bone cement 

1.4.   Problem Statement 

          An ideal implant for TKR surgeries should ensure lifelong mechanical stability with 

the joining tissues [13]. Most often, the implant surface is inadequate, micromotions that 
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occur at the implant surface activate osteoclasts, which resorb bone around the implant and 

contribute to implant loosening and eventual implant failure [14,15,16]. A method to 

improve mechanical fixation of a TKR implant is clinically important and is the purpose of 

the proposed research project 

1.5.   Hypothesis 

         No study has reported the effect of LIM on a TKR implant surface on the mechanical 

performances in cemented TKR surgery. Is laser induce microgroove the solution to improve 

the mechanical strength of total knee replacement surgery? This is the solution being 

investigated in this study. 

1.6.  Motivation and Goals 

          The majority of cemented knee replacements fail due to implant loosening. One of the 

important factors that may affect implant loosening is the mechanical behavior of cement at 

the implant-cement interface. The motivation of this study is to design implant loosening 

free tibia tray for a dog to determine the efficiency so as to extend to human for orthopedic 

surgeries. The goal of the study is to understand how mechanical behavior of implant-cement 

interface is influenced by the change of mechanical design. 

          Laser-induced microgrooves (LIM) on a titanium TKR implant can increase the 

mechanical fixation of implant due to high contact surface area and transfer of force from 

implant to adjoining tissue [21,22,23]. No study has reported the effect of LIM on a TKR 

implant surface on the mechanical performances in cemented TKR surgery. This research 

has three main objectives. 
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1.7.  Objectives 

          This study has three main objectives geared towards investigating the effect of laser 

induced microgroove on tibia tray. The objectives are; 

Objective 1: To design a tibia tray for a dog by using a 3-D scanner and exporting the image 

into solid works. The samples were characterized by measuring the roughness 

Objective 2: To design the experimental setup for use in Test Resource machine to measure 

the effects of grooves on the fatigue life of tibia tray implant of a canine total knee 

replacement systems.  

Objective 3: To develop finite element analysis model of tibia tray implant of a canine total 

knee replacement and determine the effect of groove on stress distribution around the 

implant.  

1.8.   Organization of the thesis 

          The outline of this thesis was organized into five chapters; chapter 1 is the introductory 

chapter while from chapter 2 to chapter 5 is organized to such as to attain the above three 

main objectives of this project. 

Chapter 1 

          The first chapter of this thesis gives a brief introduction, 3-D scanning and exporting 

the image into solid works. Solid works was used to design the tibia and CNC machine was 

used to machine the part. Six samples were made, and laser machine was used to produce 

laser microgrooves on three of the samples. The samples were characterized by measuring 

the roughness. 
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Chapter 2 

        This chapter focuses on design the experimental setup for use in Test Resource machine 

to measure the effects of grooves on the fatigue life 

Chapter 3 

          The third chapter of this research focuses on performing finite element analysis on the 

groove and the non-groove tibia tray and compare the results with the test result. 

Chapter 4 

          The last section of this study gives the Conclusion and future work 
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Chapter 2 Tibia Tray Design Using Solid Works, Manufacture Using 

CNC Machine and Characterization Using a Profiler. 

2.1.  Abstract 

           Different knee implant models have been studied in several different articles [27-29]. 

In the last decades major developments in knee implant designs have improved the outcome 

of the surgery in a way that the lives of those with implants have greatly improved and has 

also increased the value of life to people with arthritis, people with injured knees and war 

veterans. Artificial joints should satisfy certain design requirements, i.e., they should be 

ergonomical and biocompatible. 

          This study designs tibia tray using solid works, manufacture using CNC machine and 

characterize the surface of the manufactured tibia tray using 3-D optical profiler. The need 

for an implant has been established and the use of titanium and cement for an in vitro study 

has also been established. This study used an artificial saw bone of a dog and aluminum to 

design the tibia tray used for this study. Artificial bone was used since this is an ex vivo 

study and real bone is not possible to acquire. Aluminum was use because it is relatively 

cheap and available and show some similar characteristics to aluminum in an implant. 

2.2.   Introduction 

          Different studies have design tibia tray using different materials and shapes in an 

endeavor to mimic the natural knee. The important issue is the biomedical product design 

and development. Other theories and experiments have studied and contributed to the 

process of  strengthening and optimizing the design and production of tibia tray in an attempt 
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to improve the implant performance through the examination of the wear and tear of design 

with time [25, 30].  

          Other studies have studied the coverage comparing anatomic and symmetric tibia tray 

coverage. In recent study, the anatomic tray when compared to symmetric trays and 

asymmetric trays have proven to show significantly, a higher surface coverage [39]. 

2.3.   Summary 

          This study designed tibia tray using solid works, manufactured using CNC machine 

and characterized the surface of the manufactured tibia tray using 3-D optical profiler. 

Artificial bone was used since this is an ex vivo study and real bone was not possible to 

acquire. Aluminum was use because it is relatively cheap and available and show some 

similar characteristics to aluminum in an implant. 

          The objective of this study was to design a tibia tray for a dog by using a 3-D scanner 

and exporting the image into solid works. Solid works was used to design the tibia and CNC 

machine was used to machine the part. Six samples were made, and laser machine was used 

to produce laser microgrooves on three of the samples. The samples were characterized by 

measuring the roughness. 

2.4.  Materials and Methods 

2.4.1.  Protocol to Fabricate Tibia Tray Implant 

            This includes using MeshLab for pre-processing of an obtained CT scanned tibia 

model, SolidWorks design of each model under examination, as well as FE simulation 

modeling techniques. 
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            The following steps were performed to create each studied assembly, for each 

geometry type and size. This process was kept consistent in order to ensure results obtained 

from each assembly had minimal variability in model formation. 

(a) 3-dimensional scan model of a dog tibia-fibula was obtained as a .dxf format (Drawing 

Exchange Format). 

(b) The model was Imported into MeshLab for model simplification, exported as an .IGES 

file type (Initial Graphics Exchange Specification). Then the file was further imported into 

SolidWorks. 

(c) Tibia tray was designed on the scanned model to ensure efficiency and dimensional 

specifications. This was done so as to also ensure model assembly without so much offsets  

(d) Experimental setup was designed using solid works to mimic the femoral bone so to 

perform fatigue test on the assembly. 

2.4.2.   3-D Scanning     

         The bone was scanned using an Open-frame desktop 3D scanner. This scanner-type 

was use because it’s flexibility in terms of 3D scanning area but they should be used in a 

compartment with a constant source of light and the light must not be too bright. This desktop 

3D scanners is made up of a light projector or cameras that is mounted on a tripod to ensure  

stability and more accurately scanned image, figure 2-1 



 

13 

 

 

Figure 2-1: Open-frame desktop 3D scanners 

After performing several scanning procedures, the most accurate 3-D scan that was obtained 

is shown in the figure below; 

 

Figure 2-2: Scanned image of a Dog Tibia 

 

2.4.3.  3D Modeling 

         In order to ensure accuracy of the tibia tray for this study, the scanned tibia-fibula was 

imported into MeshLab for model simplification, exported as an .IGES file type (Initial 

Graphics Exchange Specification), then imported .IGES file into SolidWorks, then repair 
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geometry. Using the scanned data as reference, the tibia tray was designed on the scanned 

bone to get the design with groove and the design without grooves as shown in figure 2-3.  

  

(a)                                                                     (b) 

Figure 2-3: Design of a tibia tray on scan tibia-fibula. (a) Model with microgrooves. (b) 

Model with no grooves. 

          After the designing the tibia tray, the scanned bone was suppressed to get a perfect 

design of the tibia tray. Six sample were machined using CNC machine. Laser microgrooves 

were performed on three of the samples as shown in the image in figure 2-4 below; 

 

(a)                        (b) 

Figure 2-4: Image of the tibia tray ready for machining. (a) Smooth tibia tray. (b) Tibia tray 

with Microgrooves.  
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The radiuses of solid works file shown above in figure 4 was clearly defined for machining 

using a CNC machine. The data is shown below; 

 

Figure 2-5: Machine data 

 

2.5.   Results 

          Six samples were machined using CNC machine and the samples were characterized 

using a profiler to determine the roughness. Figure 2-6 smooth sample (sample with no 

grooves) after it has been produced using CNC machine. These samples have a heart shape. 

This shape is the most appropriate shape that will cover more surface area and will be 

symmetric together with the bone sample. This smooth sample showed an average roughness 

of 6 microns as showed in figure 8. This roughness is further indicated in detail in figure 2-

8. This roughness is important in cement adhesion and is of greater importance when dealing 

uncemented implant to improve bonding between the bone and the implant. 

         The rough sample (sample with grooves) was design in solid works and manufactured 

in CNC machine as well and was engraved with microgrooves using laser machine for 6hrs 
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[figure 2-9]. The samples with microgrooves were characterized in profiler. The sample with 

groove had a mean roughness of 11.41 micron [Figure 2-10 and Figure 2-11]. 

         Figure 2-6 is the result of the design after being machined using CNC machine. The 

samples were well polished. Figure 2-7 shows the variation in roughness of the smooth tibia 

tray. It gives the roughness map indicating areas of maximum roughness and minimum 

roughness. 

          The average roughness of the sample is indicated in Figure 2-8. This figure indicates 

the minimum roughness, the maximum roughness, the average roughness and the mean 

height of roughness. 

          Figure 2-9 is the result of the tibia tray after it has been engraved by the use of a laser 

for 6 hours. This figure gives the visibility of the grooves of the tibia tray. Figure 2-10 shows 

the roughness map of the tibia tray with grooves. Figure 2-11 gives the minimum height of 

roughness, maximum height and average height. 

 

Figure 2-6: Tibia Tray Machined Using CNC Machine 
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Figure 2-7: Profiler Image of Smooth Sample Roughness. 

 

 

Figure 2-8: Details of Roughness of Smooth Tibia Tray 

 

 

Figure 2-9: Tibia Tray with Micro Grooves 
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Figure 2-10: Profiler Image of Tibia with Grooves 

 

 

Figure 2-11: Details of Mean Roughness of Tibia Tray with Grooves 

 

2.6.  Conclusion 

          To convert the saw bone into a form readable by the computer, 3D scanner was used 

to get the exact dimension, solid works was used to design the implant. The  measurement 

was made effective on the scanned components and proper identification of the different  

shapes of the bone was made appropriate.  

          This study successfully designed, manufactured and characterized 6 tibia tray samples 

for an in vitro study using canine bone. Upon the six samples, three were smooth and three 
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were engraved with laser microgroove. These sample showed every good characteristic 

ready for mechanical test (static and cyclic fatigue test) in vitro. 

          The samples with no grooves show an average roughness of 9 microns while the 

sample with grooves shows an average roughness of 19 microns. These values are very 

important in that it presents the surface characteristics of the sample.  
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Chapter 3 Experimental study to evaluate the effect of groove on static 

and cyclic load. 

3.1.  Abstract 

          When a total knee implant is designed and manufactured, several tests are performed 

on the sample to ensure lifelong mechanical, biomedical and biocompatibility stability. This 

study designs the experimental setup for use in Test Resource machine to measure the effects 

of grooves on the fatigue life. The test setup is designed to perform static and cyclic fatigue 

test. Physical measurement of the cross-section of the tibia tray was measured to determine 

the exact dimensions of the experimental setup. These measurements were done to design a 

perfect setup to mimic the human femoral tray that will help perform the fatigue test. 

          This study designs and assemble experimental setup using solid works and CNC 

machine. The sample is then machined using CNC machine. After all the parts are produced, 

they are assembled and mounted onto Test Resources for the experiment. Two sets of tests 

are performed using the test run; the cyclic fatigue test and the static compression test. These 

two tests were performed to establish the effects of laser induced microgrooves on cemented 

tibia tray implant. The first sets of tests were performed, and the sample was allowed to relax 

before the last sets of tests were performed until the sample failed. These tests were 

performed until failure was established and each sample was analyzed using x-ray images to 

visualize any internal change in structure. The samples with grooves showed greater stability 

because it needed a greater force to fail after being subjected to the same conditions with the 

samples with no grooves. 
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3.2.   Introduction 

           An ideal implant should ensure lifelong mechanical, biomedical and biocompatibility 

stability. Most implant suffer from micromotions that occur at the implant surface. This 

micromotions activate osteoclasts, which resorb bone around the implant and contribute to 

implant loosening and eventual implant failure. After an implant is designed, to ensure that all 

the properties are maintained, the implant is subjected into test to measure the mechanical 

strength and durability. 

           Another test that is performed on tibia tray is the compression test to determine the point 

of failure to establish the maximum yield strength. Other test that are performed in different 

clinical study are Component Pull Tests and Component Ultimate Strength Tests [38]. 

3.3.       Materials and Method 

3.3.1.  Material 

          This experiment was carried out in vitro using a sawbone. The rationale behind this 

experiment is based on the fact that Since the amount of implant-to-bone contact area 

determines the mechanical stability of implants [24,13], the effect of the fabricated laser 

induced microgrooving (LIM) topography on a custom-made tibial tray implant will be 

measured by means of in vitro mechanical examinations using an artificial dog tibia model. 

3.3.2.  Experimental Setup 

          Four different models were designed and machined using solid works and CNC 

machine respectively. Figure 3-1 shows part a of the experimental design.  



 

22 

 

 

Figure 3-1: Part (a) with a Point Attachment to the Compression Machine 

         The second experimental part was part (b) that could perfectly fit into part (a)as shown 

in the image below; 

 

Figure 3-2: Experimental Part (b) 

 

The third part, part (c) was the part that will hold the bottom of the bone as shown in the 

Figure below; 
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Figure 3-3: Bottom Part, Part (c). 

 

          Part a, b, and c were produced using the CNC machine. The experimental setup was then 

assembled in solid works as shown in Figure 3-4 below; 

 

Figure 3-4: Experimental Setup Design 
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The samples were manufactured using CNC machine as shown in Figure 3-5 below. 

 

Figure 3-5: Test Tools Designed and ready for Assembly onto Test Resources for 

Experiment. 

3.3.3.  Sample preparation 

A) Bone Preparation   

         Six dog sawbones were cut following strict surgical procedure as shown in figure 3-5 

and figure 3-6 below; 

 

Figure 3-6: The Process of Cutting the Sawbone 
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Figure 3-7: Six Saw Bones cut according to Surgical Procedure 

          A 0.25in diameter hole was drilled into the bones using a drill bit to a depth of 0.5in 

to effectively accommodate the tibia tray as shown in figure 3-7. 

 

Figure 3-8: Tibia Fibula Bone with a Hole to Accommodate Tibia Tray. 

 

B) Cement Preparation  

          2.4g of cement (figure 3-8) was used with 600 micro liter of liquid. The mixture was 

stirred up for a few minutes to obtain a homogenous mixture. 
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Figure 3-9: Preparation of 2.40g of PMM Cement 

 

B) Fixation Technique 

          The big challenges in orthopedic and orthodontic are  the failure of the implant at the 

implant-cement interface [20,26]. Cemented fixation is more common for osteoporotic bone, 

where the bone cement is used to attach the implant to the bone. However, cement less 

fixation is available and is more expensive. But this study focuses on cemented in vitro 

analysis of a dog bone. 

To ensure the effectiveness of the implant, the tibia tray was press-fit at a load, F = 70 N 

during the period of bone cement polymerization  to ensure resemblance of the surgeons’ 

pressure on the implant and avoid wrong position of the implant [20, 26]. This force will 

reconcile an average stress of 60 kpa [20]. 

          From the design, the total surface area of the designed tibia tray is 1.28*10-3 M2 and 

the average mass of a dog is 30kg. dividing the mass by 4 to get the average weight on each 

leg gives an approximate average mass of 7.5kg per leg of the dog.  
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The cement was prepared and press-fit with a mass of 7kg for 30 minutes as shown in the 

figure 3-9 below; 

 

Figure 3-10: Fixation of Implant into The Bone 

3.3.4.  Fatigue and Compression Test 

          A scientific method used for the determination of the behavior of materials under 

fluctuating loads. A specific mean load and an alternating load were applied to the samples 

with grooves and samples without grooves and the number of cycles required to produce 

failure (fatigue life) was recorded. Loads were applied axially, in compression. Data from 

fatigue testing were presented in an S-N diagram which is a plot of the number of cycles 

required to cause failure in a specimen against the amplitude of the cyclical stress developed. 

          A compression test is a scientific method used to determine the behavior of materials 

under a compressive load. Compression tests were conducted by loading the test samples in 
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test resources, and then applying a force to the samples by pressing both ends of the samples 

together.          

             After performing the test, the sample is analyzed by plotting deformation versus the 

applied load recorded. The compression test was used to determine elastic limit, proportional 

limit, yield point, yield strength, and compressive strength [33]. 

3.4.  Design of Experiment 

A) Fatigue Test  

       Four samples were prepared and mounted on test resources as shown in figure 3-10 and 

figure 3-11 below for the fatigue test analysis. 

 

Figure 3-3-11: Mounting of the Sample on Compression Test Machine 
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Figure 3-12: Complete Setup of the System for Fatigue Test 

 

           In order to mimic a real time scenario and to ensure the validity of the experiment, 

the mean average load was set at 150N ( which is the maximum load a dog knee can 

withstand), the amplitude set at 30, the frequency set at 1Hz and the experiment was for 

100000 cycles and observed under high speed camera. The X-ray of all the samples were 

taken before and after every 100000 cycles to record every change. The details of every 

experiment can be shown in figure 3-12 below. Fatigue test was performed on two groups 

of sample; the samples with grooves and the samples with no grooves. 
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Figure 3-13: Details of Fatigue Test 

3.4.1.  Compression Test 

Two samples were used for compression test. 

1) Sample Without Grooves 

          Compression test was performed on the sample without grooves by increasing the 

displacement at a rate of 0.05mm and the system automatically recorded the force until 

failure. The automatically stops when it records a failure, that is at the point where the 

displacement is increasing but the force is reducing.  

2) Sample with Grooves  

          Compression was also applied on the sample with grooves using test resources by 

increasing the displacement at a rate of 0.05 mm and measuring the axial force in Newtons 

at every instant. This process was set to run automatically in test resources and the force 

being recorded until at the point of failure, where an increase in displacement is not 

accompanied by a corresponding increase in force. This is point of failure where the implant 

has failed.  
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3.5.   Results 

3.5.1.  Fatigue Test 

A) Sample Without Grooves 

          After running the experiment for an axial load of 150N, amplitude of 30, frequency of 

1Hz, and 100000 cycles, the data from the first experiment shows that as time went on, the 

amplitude of oscillation was slightly increasing until it arrived at a constant as shown in the 

graph below in figure 3-14; 

 

Figure 3-14: Changes in the Amplitude of Oscillation as a Result of Fatigue Test. 
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X ray image of each sample with no grooves was taken before the experiment and after to help 

detect any cracks or changes in internal structure of the implant (Figure 3-15).                                          

 

 

Figure 3-15: X-ray images before and after fatigue test. (a) before fatigue test (b) after 

fatigue 

 

Figure 3-15 shows the x-ray of the sample before and after the fatigue test and there are some 

small changes. These changes indicate the effects of the fatigue test. 

B) Tibia Tray with Grooves 

B 

A 
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          Tibia tray with grooves was set to run with the same condition as with the non grooves. 

The test run was set up with axial load of 150N, amplitude of 30, frequency of 1Hz, and 

100000 cycles, X-ray image of the sample with groove was taken. The most visible of all 

the images is shown in figure 3-15 below; 

 

 

Figure 3-16: X-ray images grooved sample before and after fatigue test. (a) before fatigue 

test (b) after fatigue test 
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          Figure 3-16 show the changes that occurred in the internal structure. In the image, 

there are some traces of compression in the tibia-cement interface. This result shows the 

effect of fatigue test and other changes in the internal structure of the implant. 

3.5.2.  Compression Test 

A) Sample Without Grooves 

           It was observed that the sample without grooves showed the force was increasing 

at a constant rate before failure. The sample without groove failed at a force of 550N. 

Figure 3-17 shows the increase in load and stroke until failure at a load of 550. Figure 3-

18 shows deformation characteristics of the sample after failure and the changes that 

occurred at the cement-implant interface. 

 

Figure 3-17: A Graph of Load Vs Stroke to Indicate the Point of Failure for Tibia Tray 

Without Grooves 
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Figure 3-18: Failure Characteristics after the Sample Failed 

B) Sample with Gsrooves 

It was observed that the sample with grooves showed the force was increasing at a 

constant rate before failure. The sample with groove failed at a force of 640N. Figure 3-

18 shows the increase in load and stroke until failure at a load of 640N. 

 

Figure 3-19: A Graph of Load Vs Stroke to Show the Changes in Tibia Tray with Grooves 

 

 



 

36 

 

3.6.   Conclusion 

          The experiment setup was design, machined and assembled (figure 3-12) after which 

they were mounted onto test resources. Fatigue tests were performed. 

          After performing four fatigue experiments, it was observed that all the samples were 

generally showing the same trend. The were some traces of cracks and the axial distance was 

increasing up to a about 0.017mm then after about 10000 cycles, the system was stabilized. 

Some traces of cracks were observed but could not be analyzed properly with currently 

available equipment. The samples with grooves showed some significant stability when 

compared with the samples with no grooves. This result let to the final experiment to 

completely compress the sample using a static load to failure. 

          For the compression test, it was observed that the samples with grooves showed more 

stability as the force was increasing at a constant rate before failure. However, the sample 

with grooves failed at a force of 640N while the sample with no grooves failed at a force of 

550N. (figure 3-17 and figure 3-19). The deformation characteristic shown in figure 3-18 

indicates the change that occurred at the cement-implant interface. 
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Chapter 4 Finite element analysis to evaluate the stress distribution 

around tibia tray implant due to static and cyclic load 

4.1.  Abstract 

This study, started from the designing 3D model of the dog tibia tray using a dog knee 

prosthesis, 3D model of tibia tray was designed and bonded with a dog bone. The study 

investigates the effects of laser induced microgrooves on cemented knee implant fixation 

using finite element analysis. Using AnsysWorkbench16.0 Engineering tool, the 

deformation and the strain and stress maps were obtained for cemented total knee 

replacement implant with grooves and for samples without grooves. Different loading force 

were considered ranging from 100N to 600N. In the study, each tibia tray assembly 

considered two cases; samples with grooves and samples with no grooves respectively. The 

results, confirmed by mechanical simulation, suggest that the samples with grooves had 

more stability than the samples without grooves. 

4.2.  Introduction  

          Finite Element Analysis (FEA) with ansys workbench is a technique that uses the 

finite element analysis method to analyze an engineering design and determine effects of 

applied stresses on the design [39]. FEA also help determine all points of potential weakness 

in an Engineering design before it is properly manufactured [38]. This analysis was carried 

out by using a fine mesh and point of contact between the bone-cement -implant interface. 

Finite element (FE) modeling allows implants to be tested and has been used in several 

biomechanical studies [27-31]. 
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           FE method is used to evaluate biomechanical characteristics of cancellous bone on 

patellofemoral surgical replacement of a joint [31,32,33]. The influence of different designs 

of the joint area on tibial component fixation, kinematics and clinical outcome after a 

cemented total knee arthroplasty was studied in [33]. In knee implant study [27, 33,40], the 

finite element analysis method is used to simulate the loading conditions applied to the 

prosthesis device during the walking cycle.  The objective was to perform finite element 

analysis on the groove and the non-groove tibia tray and compare the results with the test 

result. 

4.3.    Method 

4.3.1.  Geometry 

          The scanned and designed model was stored in .xt format. The model was imported 

into ansys workbench. This process was done to ensure accuracy and allow for the model to 

be formed as an assembly of all imported models for each TKR stem type under study. Doing 

so allowed for consistency in the assembly build, in order to avoid any differentials from 

assembly to assembly. The same procedure was done for the sample with grooves and the 

sample with no grooves. The properties of the assembled design used in this study is shown 

in table 4-1. 
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Properties Unit Bone Aluminum PMM cement 

Density Kg/m3 1550 2770 1190 

     

Young’s 

modulus 

Mpa 1*105 7.1*104 3.3 

Poison ration  0.45 0.33 0.39 

Shear modulus Mpa  2.6*104 1.1871*105 

Compressive 

ultimate strength 

Mpa 60 310 120 

Compressive 

yield strength 

Mpa 60 280 120 

Tensile ultimate 

strength 

Mpa 70 310 69 

Tensile yield 

strength  

Mpa 70 280 70 

 

Table 4-1: Properties of Bone and Aluminum used Simulation 

4.3.2.   Mesh 

The imported model was meshed as showed in figure 31. The fine meshing was applied. 

 

Figure 4-1: Fine Meshing 

4.3.3.   Boundary Conditions 

Bonded contact was defined for the tibia tray and bone sample. Bonded contact was defined 

to account for the cement in this in vitro analysis.  
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           A                                                                     B 

  

Figure 4-2: Bonded Contacts Between Bone and Tibia Tray 

 

4.3.4.  Post Process Output 

A)  Deformation 

          The deformation of the samples with groove and the sample with no groove were 

analyzed using ansys workbench. The deformation characteristic showed greater 

deformation at one side of the sample where the bone had little surface area. Figure 4-3 and 

4-4 shows the distribution of deformation.  

B) Stress field 

          The stress field of the sample with groove and the sample with no groove was also 

analyzed using ansys workbench and the stress field showed high stress only at the point of 

contact. 
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4.4.  Results and Discussion 

4.4.1.  Samples without Grooves 

           The fatigue test simulation results for the sample with no groove showed that only a 

fraction of the force was transferred from the tibia tray into the bone as shown in the figure 

4-3 and figure 4-4. The deformation was exported and plotted to show the variation in 

deformation with load as shown in figure 4-8.  

 

Figure 4-3: Deformation Characteristics of Top View of Cemented Tibia Tray on Bone 
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Figure 4-4: Side view of cemented tibia tray 

 

Figure 4-5: Variation of Load Against Deformation for Sample Without Groove 

4.4.2.   Samples with Grooves 

The sample with grooves showed a field of deformation characteristics that was somewhat 

similar to that of the sample with no grooves but there was some difference in the 

deformation values. The samples with grooves showed some stability with increase in load 

accompanied by increase in deformation up to a force of 600N. A graph to show the 

deformation characteristic is shown in the figure 4-9 below: 
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Figure 4-6: A Graph of Load Against Deformation for Sample with Groove 

 

4.4.3.  Comparison of result with experimental result 

A) Samples with Grooves 

The experimental result show that at a force 640N, the sample failed. The simulation showed 

that at a force of about 640N there was a deformation or displacement of 0.003mm at the 

interface.  

This result show that the sample will groove will experience failure at a force of 640N. 

B) Sample with no Groove 

Experimental result for sample with groove showed a failure at 540N while the simulation 

showed a deformation of 0.025mm at a force of 540N. 

The sample without grooves have less surface area for the cement to adhere and as such the 

sample with no groove will experience failure at a force of 540N. 
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4.5.  Comparison of DIC Strain and FEA Strain 

During the experiment, some data was collected and used to analyze the strain using the DIC 

method. The result of the strain from the DIC method is shown in the figure below. 

 

Figure 4-7: Strain obtain from DIC 

 

 

Figure 4-8: Equivalent Elastic Strain at 11000 cycles 
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No Cycles DIC FEA Error 

1 1 0.002769 0.001808 34.72373 

2 11000 0.003126 0.001808 42.16251 

3 21000 0.004326 0.001808 58.2062 

 

Table 4-2: The percentage Error for different Cycles in DIC and FEA 

The percentage error shows a constant value for the FEA analysis for cycles while the strain 

value for DIC is increasing. This result may be due to different changes in the geometry of 

the sample from the scanned model.  

4.6.  Conclusion  

In this study, starting from the design model of the tibia tray with grooves and dog tibia tray 

with no grooves and existent of knee prosthesis, often used in total knee arthroplasty,  3D 

model of tibia tray with grooves and tibia tray with no grooves were designed. The bone 

properties and the tibia tray properties were defined as well as the bonded contact to account 

for the use of cement in this study. Using AnsysWorkbench16.0 software, the stress and 

displacements maps are obtained for tibia tray with grooves and tibia tray with no grooves. 

The Finite Element Method is used to investigate the effects of tibia tray with grooves and 

tibia tray with no grooves and graphs are used to show the deformation at different loads. 

The findings of this study confirm that the samples with laser induce microgrooves have 

greater stability than the samples with no grooves. The main advantage of the numerical 

simulation is that they can be done in order to evaluate the biomechanical behavior of an 

animal joints without an invasive intervention. A finite element analysis of the normal and 

prosthetic knee model will help surgeons and biomechanical researchers to develop 

improved devices for rehabilitation movements of patients suffering diseases. 
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Chapter 5 Conclusion and future work 

5.1.  Conclusion 

This study was conducted based on three objectives: 

1. The very first objective of this study was to design a tibia tray for a dog by using 

a 3-D scanner and exporting the image into solid works. The samples were 

characterized by measuring the roughness 

2. The second objective was to design the experimental setup for use in Test Resource 

machine to measure the effects of grooves on the fatigue life.  

3. The third objective was to perform finite element analysis on the groove and the non-

groove tibia tray and compare the results with the test result. 

This study found the following as per objective; 

1. The average height of roughness for smooth tibia tray was 11 micrometer while that for 

the tibia tray with groove was 100 micrometer. For the smooth tibia, the roughness did not 

affect the stability much but for the sample with grooves, the roughness was of utmost 

importance because it improved the stability of the sample. 

2. The experiment was designed and performed. The conclusion from the experiment was 

that there was no great damage from the fatigue test in vitro. The samples showed a great 

stability and there was very little transfer of stress from the designed model to the bone. 

However, compression test revealed the stability of the sample with grooves. This also 

shows that for this study, the designed was very stable and working properly. 

3. The simulation from ansys workbench showed very little trace of transfer stress from the 

designed sample into the bone. The stress was also distributed at one side of the 

circumference of the bone model. However, the maximum deformation was recorded from 
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the sample with no grooves. The smooth sample had a maximum deformation of 0.025mm 

while that from the sample with grooves was 0.03mm. 

 

5.2.  Future Work 

This study was carried out in vitro and the cement was used to bond the tibia tray into the 

bone. The design of a tibia tray with laser microgrooves has proven to be a good model 

for future studies. For future work, it will be very imperative to perform this experiment in 

vivo with no cement and monitor the effect of laser induced microgrooves in relation to 

the bone cells in the surrounding. 
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