KINETIC ISOTOPE EFFECTS IN THE $CH_4 + H \leftarrow CH_3 + H_2$ SYSTEM. PREDICTIONS OF THE LMR SIX-BODY POTENTIAL-ENERGY REACTION HYPERSURFACE

By

TERRY DON MARRIOTT Bachelor of Science Oklahoma State University Stillwater, Oklahoma

1969

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1976

•

:

Thesis 1976 D M 359 k Cop. 2

y de la composition de la comp

.

2000 - 2010 - 20

KINETIC ISOTOPE EFFECTS IN THE $CH_4 + H \stackrel{2}{\leftarrow} CH_3$ SYSTEM. PREDICTIONS OF THE LMR SIX-BODY

POTENTIAL-ENERGY REACTION HYPERSURFACE

Thesis Approved:

Streat E. Schoppele
Thesis Adviser
J. M. Raff
J. Raul Devlin
Elienton
H. Olin Savay
Norman M Kucham
Dean of the Craduate College

ACKNOWLEDGEMENTS

I wish to extend my appreciation to my major adviser, Dr. Stuart E. Scheppele for his guidance, encouragement, patience, and friendship throughout the course of this study. I would also like to thank my advisory committee: Drs. L. M. Raff, E. J. Eisenbraun, J. Paul Devlin, and H. O. Spivey. I wish to express my appreciation to Dr. L. M. Raff for providing a copy of his potential energy surface computer programs. I am pleased to acknowledge Drs. J. P. Devlin and L. B. Sims for many helpful discussions and suggestions regarding normal mode frequency calculations. Appreciation is also extended to Dr. H. Burchard for his assistance in deriving some of the numerical partial differentiation algorithms. I wish also to extend my appreciation to my fellow graduate students for their friendship and helpful discussions.

I am indebted to the Oklahoma State University Chemistry Department for financial assistance in the form of a Special Summer Research Award from the Graduate College, a Special Summer Appointment, and teaching assistantships.

I am pleased to acknowledge Peggy Peaden for her excellent job in typing and preparation of the final copy of this thesis.

Finally, I wish to extend my special appreciation to my parents, Mr. and Mrs. D. L. Marriott, for their enduring patience, encouragement, and moral and financial support.

iii

TABLE OF CONTENTS

Page

Chapter

I.	INTRODUCTION	1
II.	COMPUTATIONAL PROCEDURES	19
	Calculation of Force Constants and Geometries	19
	$General \dots \dots$	19
	Description of the LMR-PES	20
	Reactant and Product Geometries and	
	Coordinates	26
	Transition-State Geometry and Coordinates	27
	Numerical Methods of Force Constant	
	Determination	30
	Force Constant Calculation.	39
III.	THEORETICAL KINETIC ISOTOPE EFFECTS FOR THE REACTION	
	$CH + H \neq CH + H$	55
	Results and Discussion	55
	Comparison of Theoretical Vibrational	
	Frequencies and Force Constants	55
	Theoretical and Experimental Temperature))
	Dependences	75
	Theoretical Primary Carbon Effects	91
	Theoretical Secondary a-Deuterium Effects	06
	The Effect of Transition-State Geometry on	90
	the Isotope Effects	104
	Contributions of the Bending and Strotching	104
	Frequencies to the Primary KIF	110
	Relating Primary Deuterium and Tritium	110
	Isotopo Effects	110
	Polating 130 and 140 Jactone Effects	100
	Relating for and for isotope filects.	124
	Rule of the Geometric Mean Relationships	124
A CELEO	THEN BIRITOODADIN	107
A SELEC	JED DIDLIUGKAFHI	127
APPEND	IX A - LMR-PES COORDINATE RELATIONSHIPS	131
APPENDI	IX B - CALCULATION OF NORMAL MODE FREQUENCIES AND ASSOCIATED	
VI I DWD1	PARAMETERS.	139

TABLE OF CONTENTS (Continued)

Chap	ter
------	-----

APPENDIX	С	-	TABULATION PARAMETERS	OF ISOTO USED IN	PIC NO TRANSI	RMAL TTON-	MODE -STATI	FRE TH	QUEN EORY	CIES	5 ANI	D E		
			EFFECT CALC	ULATIONS	• • •	• •	• •	•••	•••	•••	•••	•	•	146
APPENDIX	D	-	TABULATION DEPENDENCE	OF THE K PARAMETE	IEs US RS	ED TO ••	O OBTA	AIN.'	TEMP	ERAT	URE	•	•	175
APPENDIX	Е	_	LISTING OF	COMPUTER	PROGR	AMS.								189

v

LIST OF TABLES

Page

Table

I.	Experimental KIEs	7
11.	Temperature Dependence of Experimental KIEs	8
III.	LMR-PES and Valence Internal Coordinates Designations and Values for Reactants	22
IV.	LMR-PES Parameters	24
۷.	LMR-PES and Valence Internal Coordinates Designations and Values for the Transition State	28
VI.	Transition-State Scanning Results	29
VII.	Summary of Three-Point Cross-Term Difference Equations .	35
VIII.	Transition-State Diagonal Internal Coordinate Force Constant Values	40
IX.	Transition-State Diagonal Cartesian Coordinate Force Constants Calculated by Different Numerical Methods	43
Х.	Transition-State Normal Mode Frequencies	45
XI.	Transition-State Cartesian Coordinate Eigenvectors	48
XII.	Tetrahedral CH_4 Normal Mode Frequencies	50
XIII.	Planar CH_3 and H_2 Frequencies	51
XIV.	Planar CH $_3$ Force Constants and Bondlengths	54
XV.	CH3-H-H Transition-State Frequencies from Different Sources	56
XVI.	Comparison of Transition-State Parameters	57
XVII.	Experimental and Theoretical Kinetic Isotope Effects	66
XVIII.	Experimental and Theoretical Temperature Dependences for $k(CH_4,H)/k(CH_4,D)$.	76

LIST OF TABLES (Continued)

Table

XIX.	Experimental and Theoretical Temperature Dependences for $k(CH_3, H_2)/k(CH_3, D_2)$.	78
XX.	Experimental and Theoretical Temperature Dependences for $k(CD_3, H_2)/k(CD_3, D_2)$.	80
XXI.	Experimental and Theoretical Temperature Dependences for $k(CH_3, HD)/k(CH_3, DH)$.	82
XXII.	Experimental and Theoretical Temperature Dependences for $k(CD_3, HD/k(CD_3, DH) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	84
XXIII.	Comparison of $k(CH_4, H)/k^{13}CH_4, H$ Results	92
XXIV.	Comparison of $k(CH_3, H_2)/k(^{13}CH_3, H_2)$ Results	93
XXV.	Comparison of Secondary a-Deuterium k(CH ₄ ,H)k(CH ₄ ,D) Results	97
XXVI.	Comparison of Secondary α-Deuterium k(CH ₃ ,H ₂)/k(CD ₃ ,H ₂) Results	100
XXVII.	The Effect of CH_3 Geometry in the Activated Complex	106
XXVIII.	The Effect of CH ₃ Geometry on the Temperature Dependences	108
XXIX.	Reactant Isotopic Frequencies	111
XXX.	Transition-State Isotopic Frequencies	112
XXXI.	Bending and Stretching Frequency Contributions to the ZPE	113
XXXII.	Bending and Stretching Frequency Contributions to the EXC	115
XXXIII.	Bending and Stretching Frequency Contributions to the VP	117
XXXIV.	Bending and Stretching Frequency Contributions to the KIE	118
XXXV.	Relationships of Tritium and Deuterium Isotope Effects	120
xxxvi.	Relationships of $\overset{13}{\sim}$ C and $\overset{14}{\sim}$ C Isotope Effects	123

LIST OF TABLES (Continued)

Table

.

XXXVII.	Rule of the Geometric Mean Realtionships for Secondary Isotope Effects
XXXVIII.	LMR-PES Data for Isotopic Hydrogen
XXXIX.	LMR-PES Data for Isotopic Methyl Radical 148
XL.	LMR-PES Data for Isotopic Methane
XLI.	LMR-PES Activated Complex Data
XLII.	LMR-PES Activated Complex Data $\phi_i(i=1,2,3) = 90^\circ$ and $\phi_i(i=4,5,6) = 120^\circ \dots \dots$
XLIII.	LMR-PES Activated Complex Data for ϕ_i (i=1-6) = 109°28'
XLIV.	BEBO Activated Complex Data
XLV.	LEPS Activated Complex Data
XLVI.	BEB03 Activated Complex Data for $F_{\beta}^{\dagger} = 0.0001 \text{ mdyne-}^{\circ}A$ 163
XLVII.	LEPS2 Activated Complex Data for $F_{\beta}^{\ddagger} = 0.0001 \text{ mdyne-A} \cdot . 165$
XLVIII.	BEBO3 Activated Complex Data for $F_{\beta}^{\ddagger} = 0.26 \text{ mdyne-}^{\square} A \dots 167$
XLIX.	LEPS2 Activated Complex Data for $F_{\beta}^{\ddagger} = 0.26 \text{ mdyne-}^{A} \dots$ 169
L.	BEB03 Activated Complex Data for $F_{\beta}^{\ddagger} = 0.568 \text{ mdyne-} \text{Å}$. 171
LI.	LEPS2 Activated Complex Data for $F_{\beta}^{\ddagger} = 0.568 \text{ mdyne-} \text{Å}$. 173
LII.	Values for $k(CH_4, H)/k(CH_4, D)$
LIII.	Values for $k(CH_3, H_2)/k(CH_3, D_2)$
LIV.	Values for $k(CD_3, H_2)/k(CD_3, D_2)$
LV.	Values for $k(CH_3, HD)/k(CH_3, DH)$
LVI.	Values for $k(CD_3, HD)/k(CD_3, DH)$
LVII.	Values for $k(CH_4, H)/k({}^{13}CH_4, H)$
LVIII.	Values for $k(CH_3, H_2)/k({}^{13}CH_3, H_2)$

LIST OF TABLES (Continued)

Table		Page
LIX.	Values for $k(CH_4, H)/k(CD_{3^{{\sim}}}, H)$	183
LX.	Values for $k(CH_3, H_2)/k(CD_3, H_2)$	184
LXI.	LMR-PES KIES Using Different Transition-State Geometries	185
LXII.	LMR-PES KIEs Using Different Transition-State Geometries	186
LXIII.	LMR-PES KIEs Using Different Transition-State Geometries	187
LXIV.	LMR-PES KIEs Using Different Transition-State Geometries	188

LIST OF FIGURES

Figu	re	Pa	ge
1.	Interatomic Distances Used in the LMR-PES	•	21
2.	Grid of Incremented Coordinate Positions for Which Energies Were Calculated	•	38

CHAPTER I

INTRODUCTION

Within the limits of the Born-Oppenheimer approximation, the equilibrium molecular configuration and the hypersurface expressing the electronic potential energy for nuclear motion as a function of internuclear coordinates are independent of isotopic substitution. However, the kinetics of nuclear motion on the potential-energy surface are affected by isotopic substitution. This phenomenon leads to isotope effects on equilibria and rates of chemical reactions. Since kinetic isotope effects (KIEs) can be treated within the framework of transition-state (absolute rate) theory,¹ experimental kinetic isotope effects can be either predicted from or used to extract information about the potential-energy reaction hypersurface. This research is concerned with experimental and theoretically calculated KIEs in the following reactions.

$$CH_4 + H \cdot \rightarrow CH_3 \cdot + H_2$$
 (I-1)

$$CH_3 + H_2 \rightarrow CH_4 + H \cdot (1-2)$$

The purpose of this theoretical investigation is two-fold. First, it serves to test in part the usefulness of the LMR six-body potentialenergy surface (LMR-PES) for the thermal reactions (I-1) and (I-2).² In this regard the agreement between experimental and theoretical KIEs,

if the former values are assumed to be accurate, provides information concerning the accuracy of the curvature of the potential-energy surface for motion both parallel and perpendicular to the reaction coordinate. Second, these isotope effects were used to assess the validity of a number of the qualitative interpretations of KIEs developed in physical organic chemistry. It should be pointed out that this research is meant to augment the extensive theoretical studies of KIEs on model systems³ and/or the deduction of transition-state parameters from experimental KIEs. ³⁶, ^{3h}, ⁴ Klein has most recently published a literature review of current isotope-effect publications. ⁵

The KIEs for various labelled reactants in equations (I-1) and (I-2) were computed within the framework of absolute-reaction-rate theory. The exact equations are expressed in equations (I-3) and (I-4) using the simplified notation of Wolfsberg and Stern, ^{3b,6} where

KIE =
$$\frac{k_1}{k_2} \left(\frac{s_2 s_1^{\ddagger}}{s_1 s_2^{\ddagger}} \right)$$
 = (MMI) (EXC) (ZPE) (I-3)

$$KIE = \frac{k_1}{k_2} \left(\frac{s_2 s_1^{\ddagger}}{s_1 s_2^{\ddagger}} \right) = \frac{v_{1L}^{\ddagger}}{v_{2L}^{\ddagger}} (VP) (EXC) (ZPE)$$
(I-4)

 k_1/k_2 is the isotopic rate constant ratio and $\left(\frac{s_2s_1^{\dagger}}{s_1s_2^{\dagger}}\right)$ is the ratio of symmetry numbers associated with the isotopic configurations.⁷ MMI is the mass moment of inertia term composed of the molecular weights, M_j , and the moments of inertia, I_{A_j} , I_{B_j} and I_{C_j} , about the three principal axes of the labelled and unlabelled reactants and transition states, see

equation (I-5).⁷ The vibrational excitation term, EXC, and the zero

MMI

$$= \frac{\left(\binom{M_{2}}{M_{1}}\right)^{3/2} \left(\frac{\binom{I_{A_{2}}I_{B_{2}}I_{C_{2}}}{I_{A_{1}}I_{B_{1}}I_{C_{1}}}\right)^{1/2}}{\left(\binom{M_{2}^{\ddagger}/M_{1}^{\ddagger}}{M_{1}}\right)^{3/2} \left(\frac{\binom{I_{A_{2}}I_{B_{2}}I_{C_{1}}}{I_{A_{2}}B_{2}C_{2}}}{I_{A_{1}}I_{B_{1}}I_{C_{1}}^{\ddagger}}\right)^{1/2}}$$

point energy term, ZPE, are given by (I-6) and (I-7), respectively,

EXC =
$$\frac{3n^{-6}}{\prod_{\substack{i=1\\i=1}}^{n}} \frac{1 - \exp(-u_{1i})}{1 - \exp(-u_{2i})}}{\frac{3^{\frac{1}{7}} - 7}{n_{\Pi}} \frac{1 - \exp(-u_{1i}^{\frac{1}{1}})}{1 - \exp(-u_{2i}^{\frac{1}{1}})}}$$
(I-6)

ZPE =
$$\frac{\exp \left[\begin{array}{c} 3_{n}-6 \\ \Sigma \\ i=1 \end{array} (u_{1i} - u_{2i})/2 \right]}{\exp \left[\begin{array}{c} 3_{n}^{\dagger}-7 \\ n_{\Sigma} \end{array} (u_{1i}^{\dagger} - u_{2i}^{\dagger})/2 \right]} \\ i=1 \end{array} \right]$$
(I-7)

where $u_{ji} = hcv_{ji}/kT$; h is Planck's constant; c is the velocity of light; k is Boltzmann's constant; T is the temperature in °K; and v_{ji} is the ith normal mode frequency in cm⁻¹ for the jth isotopic species.⁷ By the Teller-Redlich product theorem, MMI can be equated to the vibrational product term, VP, times the ratio $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$, v_{1L}^{\ddagger} and v_{2L}^{\ddagger} are the imaginary frequencies representing motion of the light and heavy isotopic species, respectively, along the reaction coordinate

(I-5)

in the transition-state configuration, see (I-8).⁸ Therefore,

$$MMI = v_{1L}^{\ddagger} / v_{2L}^{\ddagger} VP = v_{1L}^{\ddagger} / v_{2L}^{\ddagger} \qquad \begin{array}{c} 3_n^{-6} \\ I \\ i=1 \end{array} \\ \frac{3_n^{-6}}{1} \\ \frac{1}{2i} / u_{1i} \\ \frac{3_n^{\ddagger} -7}{n_{\Pi}} \\ u_{2i}^{\ddagger} / u_{1i}^{\ddagger} \\ i=1 \end{array}$$
(I-8)

equations (I-3) and (I-4) are completely equivalent.

The normal mode frequencies and the moments of inertia for the variously labelled species were calculated using force constants and geometries computed from the LMR-PES in the Wolfsberg-Stern modification of the Schachtschneider (WMS) normal mode frequency computer program.⁹ In this way, the theoretically calculated KIEs are expressed as a function of the LMR-PES.

In the reaction represented by (I-1), quasiclassical-trajectory analysis has shown that the LMR-PES reasonably reproduces the isotopic yield ratio $(HT/CH_4)/(DT/CD_4)$ obtained by Chou and Rowland using translationally hot (2.8 eV) tritium atoms.¹⁰ Chou and Rowland report a value for the yield ratio isotope effect $(HT/CH_4)/(DT/CD_4)$ of 1.43¹⁰ compared to the computed value of 1.18.² This agreement indicates that the LMR-PES predicted relative isotopic reaction cross sections are reasonably accurate.²

The high temperature limit for KIEs calculated using transitionstate theory corresponds to $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$.¹¹ The 2.8 eV of translational energy contained by the tritium atoms used in the LMR-PES trajectory analysis computation of the isotopic yield ratio (HT/CH₄)/(DT/CD₄) corresponds to an ideal gas temperature of approximately 22,000°K. These high-energy tritium atoms collide with room temperature (~300°K or approximately stationary relative to the tritium atoms) isotopic methane molecules. Even though the tritium atoms translational energies will be moderated to some extent prior to their reactions with methane, their energy distribution will not be Boltzmann. However, as a first approximation translationally hot tritium atoms might exhibit an isotope effect similar to the KIE for the reactions represented by (I-9) and (I-10) at high temperature.

$$CH_{\prime} + T \cdot \rightarrow CH_{3} \cdot + HT$$
 (I-9)

$$CD_{4} + T \rightarrow CD_{3} \rightarrow DT$$
 (I-10)

Comparison of the $v_{1L}^{\dagger}/v_{2L}^{\dagger}$ ratio for (I-9) and (I-10) to the isotopic yield ratio (HT/CH₄)/(DT/CD₄) is discussed in Chapter III.

Abstraction is the only reaction observed between thermalized hydrogen atoms and thermalized methane molecules, see (I-1). However, translationally hot hydrogen (tritium) atoms also react with methane via substitution as shown in (I-11).

$$CH_4 + T \cdot^* \rightarrow CH_3T + H \cdot$$
 (I-11)

where T^{*} represents a translationally hot tritium atom.¹⁰ Since transition-state theory assumes a Maxwellian distribution of atom and molecule energies, it is only applicable to computation of KIEs for reactions that occur at thermal energies, for example (I-1) and (I-2).

Kurylo, Hollinden and Timmons have investigated the temperature dependence of the hydrogen (deuterium) atom abstraction from methane.¹²

$$CH_{4} + D \cdot \rightarrow CH_{3} \cdot + HD$$
 (1-12)

The isotopic reactions, see (I-1) and (I-12), were run independently and monitored by following the hydrogen or deuterium atom decay with ESR spectroscopy as a function of flow rate and distance down the fast flow reactor tube. Equation (I-13) gives the experimentally observed temperature dependence of $k_{\rm H}/k_{\rm D}$ which corresponds to a value of

$$k_{\rm H}^{\prime}/k_{\rm D}^{\prime} = 1.38 \, \exp[(-500 \pm 150)/RT]$$
 (I-13)

 $k_{\rm H}^{\prime}/k_{\rm D}^{\prime} = 0.762$ at 424°K.¹² Analysis of the data is complicated by the fact that the deuterium atoms react at a measurable rate with the product CH₃ radicals to give CH₂D and H atoms as well as abstracting H from methane; see equations (I-14) and (I-12).¹²

$$CH_3 \cdot + D \cdot \rightarrow CH_2D \cdot + H \cdot$$
 (I-14)

Due to the error introduced into the experimental determination of the rate constant for (I-12) by (I-14), Kurylo, Hollinden and Timmons found it necessary to approximate the preexponential factor, 1.38, in (I-13) using a simple collision theory calculation.¹²

Kurylo, Hollinden and Timmons compared their experimental results to KIEs calculated using London-Eyring-Polanyi-Sato (LEPS) and bondenergy-bond-order (BEBO) potential-energy surfaces using a computational approach developed by Weston.³ These results are compared to the corresponding transition-state theory computations on the LMR-PES.

The experimental KIEs for the variously isotopically labelled reactants in equation (I-2) are given in Table I. Table II gives the temperature dependences of these results. The different KIEs in Tables I and II are designated according to the isotopic ratio of the

TABLE .	L
---------	---

Isotopic Rate Constant Ratio	Temperature °K	^k 1 ^{/k} 2	Source
k(CH ₃ , H ₂)	296	2.12	a
$\frac{1}{k(CH, D)}$	399	4.80	b
x(0 ¹ 3, ¹ 2)	403	4.79	С
	403	5.50	d
$k(CD_{a}, H_{a})$	296	0.465	а
$\frac{3}{1}$	402	3.33	Ъ
$k(CD_3, D_2)$	403	2.98	с
	403	4.11	d
		I	
k(CH ₂ , HD) ^f	296	6.37 ^e	а
<u> </u>	403	2.33	с
$k(CH_3, \tilde{D}H)$	467	2.08	Ъ
_			
$k(CD_2, HD)^{f}$	402	1.81	Ъ
$\frac{3}{1-(CD, DNI)}$	402	1.76	с
$\kappa(c_{3}, \tilde{\nu}_{n})$			

EXPERIMENTAL KIEs

^aSee Reference 13.

^bSee Reference 14.

^cSee Reference 15.

^dSee Reference 16.

^eTing and Weston state that this value is probably excessively high due to the effect of the high HD pressures required for the hot methyl radical reaction. See Reference 13.

 $^{\rm f}{\rm The}$ atom underlined is the one being abstracted by the methyl group.

TABLE II

KIE	A1/A2	∆E cal./mole	Temperature Range °K	Source
$\frac{k(CH_3, H_2)}{k(CH_3, D_2)}$	0.911 0.194 0.246	1327 1760 2516 1100	399-645 403-564 ^e 408-571 ^e 409-591	້ຍ ເ d e
$\frac{k(CD_3, H_2)}{k(CD_3, D_2)}$	1.592	588	402-611	b
	3.724	-201	410-572 ^e	c
	1.727	701	407-570 ^e	d
k(CH ₃ , HD)	0.283	1929	467-651	b
k(CH ₃ , DH)	0.452	1350	408-569	c
k(CD ₃ , HD)	0.932	546	402-611	Ե
k(CD ₃ , DH)	1.73	0	410-572	Ը

TEMPERATURE DEPENDENCE OF EXPERIMENTAL KIES

^aKIEs were fit to the Arrhenius equation of the form $ln(k_1/k_2) = ln(A_1/A_2) + \Delta E/RT$.

^bSee Reference 14.

^cSee Reference 15.

^dSee Reference 16.

^eDavison and Burton assumed a steric factor of $S_1/S_2 = 1$ in their calculation of ΔE from their data. See Reference 17.

^fSince Whittle and Steacie and Majury and Steacie did not run simultaneous isotopic reactions the temperatures indicate the smallest range encompassing both isotopic reactions. corresponding reactants. For example, the KIE designated $k(CD_3, HD)/k(CD_3, DH)$ refers to the k_1/k_2 rate constant ratio for the reactions represented by equation (I-15) and (I-16).

$$CD_3 + HD \xrightarrow{k_1} CD_3H + D$$
 (I-15)

$$CD_3 + DH \xrightarrow{k_2} CD_3D + H$$
 (I-16)

Theoretical KIEs were computed for a comparison to the experimental values in Tables I and II and are discussed relative to each other in Chapter III.

Except in the studies done by Ting and Weston, ¹³ methyl radicals were generated by photolysis of acetone or acetone-d₆ using a mercuryvapor 1amp.^{14,15,16,17} The intensity of the 253.7 nm radiation was minimized in order to reduce the mercury sensitized decomposition and scrambling of isotopic reactants.^{14,15,16,17} Only a small percentage of the initial acetone was photolyzed (Shapiro and Weston, ¹⁴ 1-2%; Whittle and Steacie, $^{15} \leq 5\%$; Majury and Steacie, $^{16} < 10\%$) in order to reduce the occurrence of secondary reactions of methyl radicals with the product methanes. The experimental KIE rate constant ratios in Table I were calculated in terms of the initial concentrations of the isotopic reactants, molecular hydrogen and acetone, ^{13b} and the final concentrations of the products, methane 13-17 and ethane. 15,16Shapiro and Weston used competitive techniques to determine the KIEs for CH₃ and CD₃ abstraction from H_2/D_2 mixtures.¹⁴ Majury and Steacie¹⁶ and Whittle and Steacie¹⁵ determined these KIEs by measuring the individual rate constants. As seen in Table I, the Shapiro values appear to agree reasonably well with those of Whittle and Steacie.

However, the temperature dependence data in Table II show that the agreement is somewhat fortuitous. Due to the effect of identical isotopic reaction conditions the KIEs determined by competitive techniques should be the more accurate over the temperature range reported, other factors being equal. Indeed the ensemble of experimental data is contradictory in nature and indicates the necessity for precise evaluation of the status of experimental procedures.

Shapiro and Weston used LEPS and BEBO methods together with their experimental results in an attempt to deduce the transition-state geometry and force constants for reaction (I-2).¹⁴ One deficiency in the LEPS and BEBO functions is that they do not include valence bending force constants between the nonreacting methyl hydrogens and between the nonreacting methyl hydrogens and the hydrogen being abstracted. Therefore, Shapiro and Weston used bending force constants from spectroscopic methane data for the HCH bending coordinates not directly associated with the reaction coordinate motion.¹⁴ These authors investigated the dependence of the KIEs on the assumed magnitudes of the HCH valence bending force constants, ${f F}_{
m g}$, associated with the partially formed C-H bond in the transition state.¹⁴ The results from these calculations are discussed in detail in Chapter III. However, it is worth noting that a self-consistent set of transition-state parameters cannot be deduced from the various isotope effects measured for reaction (I-2). It can be seen in Tables I and II that there is considerable difference between the corresponding CH_3 and CD_3 KIE results. This difference must be associated with the transition state force constants. By adjusting the HCH bending force constant in the transition state, Shapiro and Weston could approximately fit either the CH2 or the CD, KIE results, but not both.

Ting and Weston generated hot methyl radicals by photolyzing CH_3Br and $CD_{3}Br$ with 185 nm light.¹³ The KIE determined for reaction of hot CH_3 with H_2 or D_2 was normal ($k_H/k_D = 2.12$) while the corresponding KIE for CD₃ was inverse $(k_H^2/k_D^2 = 0.465)$; see Table I. Ting and Weston attempted to explain these unusual results using activated-complex theory to calculate the average cross sections for reaction as a function of total energy. The resultant KIEs, $k(CH_3, H_2)/k(CH_3, D_2) = 1.30$ and $k(CD_3, H_2)/k(CD_3, D_2) = 1.79$, are not close to the experimental values.¹³ Chapman and Bunker¹⁸ calculated relative cross sections for reaction of both CH_3 and CD_3 with H_2 and D_2 , that is, $\sigma(CH_3, H_2)/$ $\sigma(CH_3, D_2) = 1.84$ and $\sigma(CD_3, H_2)/\sigma(CD_3, D_2) = 0.70$, which correlate with Ting and Weston's experimental isotope effects.¹³ The significance of this result is not clear since a cross section ratio is not the same measured or calculated quantity as a KIE. These isotope effects were indicated to occur only for ground state vibrational energy in the methyl radical.¹⁸ However, the Chapman and Bunker results show that vibrational excitation of $H_2(D_2)$ tended to preserve this unusual isotope effect and enhance the reaction rates. This enhancement of reaction rates is in agreement with the experimental data of Sims and others for reactions of halogen atoms with H₂.¹⁹

The transition-state configuration for reactions (I-1) and (I-2) is treated as being linear along the two bonds directly involved in the hydrogen transfer reactions, see (I-17), where r_1^{\ddagger} is the C-H₁ bondlength,

$$r_{1}^{\dagger}$$
 r_{2}^{\dagger}
CH₃...H₁...H₂ (I-17)

 r_2^{\ddagger} is the $H_1 - H_2$ bond length and r_1^{\ddagger} and r_2^{\ddagger} are collinear. If the CH₃

moiety is treated as a point group, then there are four normal mode frequencies associated with the linear configuration (I-17); v_{s}^{\dagger} is the symmetric stretching frequency, v_L^{\dagger} is the imaginary asymmetric stretching frequency representing translational motion along the reaction coordinate and $\nu_{\rm R}^{\ddagger}$ corresponds to the doubly degenerate linear bending Theoretical treatments of the linear three-center transifrequency. tion-state configuration have often neglected the linear-bending frequencies on the assumption that the sum of the two frequencies compensates for the loss in reactant-state bending frequencies. (That is, in passing from the reactant state to the activated complex no net change in vibrational energy due to the normal vibrational bending modes is associated with the H(D) being transferred.) This allowed the isotope effect to be rationalized as a result of the normal mode stretching vibrations v_S^{\dagger} and v_L^{\dagger} . The transition state harmonic potential energy expression for this simplified configuration is given in (I-18),

$$2V = f_{1}^{\dagger} \Delta r_{1}^{\dagger} + f_{2}^{\dagger} \Delta r_{2}^{\dagger} + 2f_{12}^{\dagger} \Delta r_{1}^{\dagger} \Delta r_{2}^{\dagger}$$
(I-18)

where f_1^{\dagger} and f_2^{\dagger} are the stretching force constants associated with r_1^{\dagger} and r_2^{\dagger} , respectively, f_{12}^{\dagger} is the stretching interaction force constant, and Δr_1^{\dagger} and Δr_2^{\dagger} are deviations from the equilibrium values for r_1^{\dagger} and r_2^{\dagger} , respectively.²⁰ Bigeleisen²⁰ and Willi and Wolfsberg²¹ have shown that the primary hydrogen (deuterium) KIE is a maximum for a symmetric transition-state configuration where $r_1^{\dagger} \cong r_2^{\dagger}$ and $f_1^{\dagger} \cong f_2^{\dagger}$ when $v_L^{\dagger} = 0$. (That is, the PES is flat at the top of the barrier along the reaction coordinate.) However, Willi and Wolfsberg have demonstrated that if v_L^{\dagger} has an imaginary value then the transition-state bond orders can be very unequal and still yield a KIE value that is almost identical to the KIE calculated for the symmetric transition-state configuration.²¹ This shows that knowledge of the temperature independent factor, $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$, is really essential in determining the transition-state configuration. Thus, insight into the transition-state bonding and geometry requires comparison of $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$ ratios and KIEs calculated from a complete and reasonably accurate potential-energy surface with experimental KIEs and their temperature dependency data.

The approximation of neglecting all bending frequencies associated with the isotopic atom being transferred in a reaction proceeding via a linear three-center activated complex may have some validity at least in certain instances. Kresge and Chiang determined a KIE for a proton transfer reaction involving the hydrolysis of ethyl vinylether by HF (or DF). These reactions assumably proceed through a linear transition-state configuration.²² The magnitude of this KIE was considerably less than the value expected. Kresge and Chiang attributed the low KIE to the existence of a doubly degenerage linear-bending frequency in the transition-state configuration which tends to compensate for the loss in the HF (DF) stretching vibration. The magnitude of the bending vibration necessary to cause the observed lowering of the KIE was about 1100 cm^{-1} .²² Kresge and Chiang noted that since 1100 cm⁻¹ is not very different from HCX bending frequencies in many molecules this could account for the reasonable success in predicting maximum KIEs with neglect of the bending frequencies associated with the atom being transferred in the activated complex. 22 A semiquantitative estimate of the effect on the KIEs of the C-H-H linear bend in the six-body transition-state configuration, CH_3^{-H-H} , was

made on the basis of a normal mode frequency analysis using force constants obtained from the LMR-PES. This normal mode frequency analysis allowed an estimate of the inaccuracy that would be incurred by neglecting bending frequencies in the calculation of KIEs for (I-1) and (I-2).

The Swain-Schaad relationship, see (I-19), provides a simple method of relating primary deuterium and tritium KIEs.²³ The

$$k_{\rm H}/k_{\rm T} = (k_{\rm H}/k_{\rm D})^{1.442}$$
 (1-19)

Swain-Schaad relationship takes advantage of the fact that at low temperatures primary hydrogen isotope effects principally reflect changes in the zero-point energy associated with the hydrogen (deuterium or tritium) being transferred in passing from the reactant state to the transition state. The assumptions basic to the Swain-Schaad relationship are as follows. First, in a reaction like (I-1) the isotopic H being transferred is bonded to a polyatomic and relatively heavy molecular entity. Thus, as a reasonable first approximation isotopic substitution affects only the harmonic frequencies associated with the bond to the isotopically substituted atom. Second, no tunneling is assumed to occur.²³ Consequently, the KIE is effectively equated to the ZPE term, see (I-7), involving only the vibrations associated with the H being transferred. For high temperatures Swain and others included a vibrational excitation correction factor, α , based on the temperature dependency of EXC, see (I-6), such that $k_{\rm H}/k_{\rm T} = \alpha (k_{\rm H}/k_{\rm D})^{1.442}.^{23}$

Bigeleisen, using a more complete transition-state theory approach, predicted a range of $1.33 \le r \le 1.58$ for the relative deuterium to tritium KIEs where r is defined by (I-20) and r = 1.442 is

$$r = \frac{\ln(k_{\rm H}/k_{\rm T})}{\ln(k_{\rm H}/k_{\rm D})}$$
(I-20)

equivalent to the Swain-Schaad equation (I-19).²⁴ Stern and Vogel calculated the temperature dependences for r in a large number of model calculations and agreed with Bigeleisen's observation that an experimental value for r lower than 1.33 would be evidence for the existence of tunneling provided that the isotope effects are large primary (or mixed secondary-primary) normal individual isotope effects exhibiting a monotonic temperature dependence.²⁵ However, in a more recent paper Stern and Weston found that there was no direct general correlation between the magnitude of r and the extent of tunneling.²⁶

In this research values of r as a function of temperature were obtained from the calculated KIEs for reaction (I-1) relative to (I-21) and (I-22). Correspondingly similar calculations of r were also

 $CH_4 + D(T) \rightarrow CH_3 + HD(HT)$ (I-21)

$$CH_{3}D(T) + H \rightarrow CH_{3} + DH(TH)$$
 (I-22)

made for the isotopic reactions of equation (I-2). These values are discussed in Chapter III.

A relationship similar to the Swain-Schaad equation has been developed for relating carbon-13 and carbon-14 KIEs. This relationship was tested relative to the transition-state theory calculated KIEs in a manner similar to that used for the tritiumdeuterium relationship.

Bigeleisen has developed equations for relating, $S_2/S_1f(\frac{2}{1})$, the vibrational partition function ratios of isotopically substituted molecules which are commonly referred to as the rule of the geometric mean (RGM).²⁷ These equations were developed from the relationship between the vibrational frequency sum rules of Decius and Wilson^{27c} and the approximation of the Bigeleisen $S_2/S_1f(\frac{2}{1})$ factor by the truncated expansion in powers of u_i , see (I-23), where u_i is as

$$\ln[S_2/S_1f(\frac{2}{1})] = 1/24 \sum_{i=1}^{n} u_{1i}^2 - u_{2i}^2$$
(I-23)

previously defined, see (I-7), and S_2/S_1 is the symmetry number ratio.^{7b} Equation (I-23) is the first-order approximation to the exact equation for $S_2/S_1f(\frac{2}{1})$, see (I-24), and is valid at sufficiently high tempera-

$$S_{2}/S_{1}f(\frac{2}{1}) = \pi \frac{\frac{u_{2i}}{u_{1i}} \left(\frac{e^{-u_{2i/2}}}{1-e^{-u_{2i}}}\right)}{i \ln \left(\frac{e^{-u_{1i/2}}}{1-e^{-u_{1i}}}\right)}$$
(I-24)

ture that $u_{1i}^{<2\Pi}$. The sum-rule relationships between isotopically different $S_2^{/S_1f(\frac{2}{1})}$ values approximated by (I-23) require the involvement of three or more different isotopic molecular species.^{27c} Bigeleisen has given a general expression for higher order approximations to $S_2^{/S_1f(\frac{2}{1})}$, see (I-25), where the B's are Bernoulli numbers

$$\ln(S_{2}/S_{1}f(\frac{2}{1})) = \sum_{\substack{j=1\\i \ j=1}}^{3n-6} \sum_{\substack{j=1\\j=1}}^{m} (-1)^{j+1} \frac{B_{2j-1}\delta_{u}i}{2j(2j!)}$$
(I-25)

 $(B_1 = \frac{1}{6}, B_3 = \frac{1}{30}, B_5 = \frac{1}{42}$, et cetera), and $\delta u_i = u_{1i} - u_{2i}$ for $u_{1i} < 2\pi$.^{27b} Bigeleisen has stated that systems that obey sum rules through the order m will obey the RGM through the order of δu_i^{2m} .^{27b} Some examples of RGM relationships given by Bigeleisen are exhibited in (I-26) through (I-28).^{27b}

$$[S_{2}/S_{1}f(\frac{CH_{2}D_{2}}{CH_{3}D})]^{3} = S_{2}/S_{1}f(\frac{CHD_{3}}{CH_{4}})$$
(I-26)

$$[s_{2}/s_{1}f(\frac{CHD_{3}}{CH_{2}D_{2}})]^{3} = s_{2}/s_{1}f(\frac{CD_{4}}{CH_{3}D})$$
(I-27)

$$[s_{2}/s_{1}f(\frac{CHD_{3}}{CH_{3}D})]^{2} = s_{2}/s_{1}f(\frac{CD_{4}}{CH_{4}})$$
(I-28)

The Bigeleisen S_2/S_1^f factors are also defined in terms of equation (I-29), where VP·EXC·ZPE are as previously defined, see (I-4).⁷ Using

$$\frac{s_2/s_1 f(\frac{2}{1})}{s_2^{\frac{1}{2}}/s_1^{\frac{1}{2}} f^{\frac{1}{2}}(\frac{2}{1})} = VP \cdot EXC \cdot ZPE$$
(I-29)

(I-29), calculations similar to (I-26) through (I-28) were done using the normal mode frequencies obtained from the LMR-PES, see (I-30) through (I-33). The results of these relationships are discussed in Chapter III.

$$\left[\frac{s_{2}/s_{1}f(\frac{CH_{3}D}{CH_{4}})}{s_{2}^{\dagger}/s_{1}^{\dagger}f^{\dagger}(\frac{CH_{2}D-H-H}{CH_{3}-H-H})}\right]^{3} = \frac{s_{2}/s_{1}f(\frac{CHD_{3}}{CH_{4}})}{s_{2}^{\dagger}/s_{1}^{\dagger}f^{\dagger}(\frac{CD_{3}-H-H}{CH_{3}-H-H})}$$
(I-30)

$$\begin{bmatrix} \frac{S_2/S_1 f(\frac{CH_3D}{CH_4})}{S_2^{\frac{1}{2}}/S_1^{\frac{1}{2}} f^{\frac{1}{2}}(\frac{CH_2D-H-H}{CH_3-H-H})} \end{bmatrix}^2 = \frac{S_2/S_1 f(\frac{CH_2D_2}{CH_4})}{S_2^{\frac{1}{2}}/S_1^{\frac{1}{2}} f^{\frac{1}{2}}(\frac{CHD_2-H-H}{CH_3-H-H})}$$
(I-31)

$$\left[\frac{S_2/S_1f(\frac{CH_2D}{CH_3})}{S_2^{\dagger}/S_1^{\dagger}f^{\dagger}(\frac{CH_2D-H-H}{CH_3-H-H})}\right]^3 = \frac{S_2/S_1f(\frac{CD_3}{CH_3})}{S_2^{\dagger}/S_1^{\dagger}f^{\dagger}(\frac{CD_3-H-H}{CH_3-H-H})}$$

$$\begin{bmatrix} \frac{s_2/s_1 f(\frac{CH_2 D}{CH_3})}{s_2^{\dagger}/s_1^{\dagger} f^{\dagger}(\frac{CH_2 D-H-H}{CH_3-H-H})} \end{bmatrix}^2 = \frac{s_2/s_1 f(\frac{CHD_2}{CH_3})}{s_2^{\dagger}/s_1^{\dagger} f^{\dagger}(\frac{CHD_2-H-H}{CH_3-H-H})}$$
(I-33)

CHAPTER II

COMPUTATIONAL PROCEDURES

Calculation of Force Constants and Geometries

General

The application of transition-state theory to the calculation of kinetic isotope effects for reactions (I-1) and (I-2) by equations (I-3) and (I-4) requires the normal-mode vibrational frequencies associated with the isotopic reactant and transition-state molecular Calculation of these normal mode frequencies requires the species. force constant description of the bonding in the various molecular species and the associated geometry and atomic masses. The harmonic force-constant description is calculated as the second derivative of the internal energy of a molecular species with respect to an internal coordinate motion.²⁸ For example, molecular hydrogen, H₂, has the bond stretching internal coordinate defined by ${\bf r}_{\rm H}^{}.~$ If V is the internal potential function for H_2 , then the force constant F_H is given by $\frac{\partial^2 v}{\partial r_H^2}$. The normal-mode frequency for this simple $r_{H} = (r_{H})_{eq}$

molecule is calculated by $v_{\rm H} = 2\pi (\frac{F_{\rm H}}{\mu_{\rm H}})^{1/2}$, where $\mu_{\rm H}$ is the reduced mass of the H₂ molecule. Normal-mode frequencies for large molecular species are calculated using the WMS program method described in Appendix B.⁹

Description of the LMR-PES

The LMR-PES is defined as a sum of three-body interactions plus harmonic bond-bond interactions, where the three-body terms,

$$V(R_{i},\theta_{j}) = T(r_{1},r_{5},r_{6}) + T(r_{2},r_{5},r_{7}) + T(r_{3},r_{5},r_{8}) + T(r_{4},r_{5},r_{9}) + \frac{1}{2} \int_{j=1}^{6} k_{j}(\theta_{j} - \theta_{j}^{\circ})^{2}$$
(II-1)

 $T(r_{AB}, r_{AC}, r_{BC})$, and the harmonic bond-bond terms $k_j (\theta_j - \theta_j^\circ)^2$ are defined in terms of the LMR-PES internal coordinates shown in Figure 1 and/or designated in Table III. Values of the internal coordinates for the $CH_4 + H$ and $CH_3 + H_2$ reactant states are also presented in Table III. Each of the three-body terms in equation (II-1) are defined in terms of the interaction energies between the two atoms in the diatomic pairs represented by the interatomic distances r_i , r_j , and r_k ,

$$T(r_{i}, r_{j}, r_{k}) = Q_{AB} + Q_{AC} + Q_{BC}$$
(II-2a)
1/2[(J_{AB} - J_{BC})² + (J_{AC} - J_{AB})² + (J_{BC} - J_{AC})²]^{1/2}

$$Q_{\alpha\beta} = \left[{}^{1}E_{\alpha\beta} + {}^{3}E_{\alpha\beta} \right]/2 \qquad (II-2b)$$

$$J_{\alpha\beta} = \left[{}^{1}E_{\alpha\beta} - {}^{3}E_{\alpha\beta} \right]/2 \qquad (II-2c)$$

where ${}^{1}E_{\alpha\beta}$ and ${}^{3}E_{\alpha\beta}$ are the singlet and triplet state energies, respectively, for each $\alpha\beta$ diatomic system. The singlet state energy is represented by a Morse function, see(II-3), where r_n is the interatomic

TABLE III

Atoms in Coordinate	LMR-PES Designation	Еq С СН	uilibrium Va <u>oordinates De</u> 4 ^{+ H}	ues and Valence signations for CH ₃ + H ₂	
		Value ^a	Coordinate ^b	Value ^a	Coordinate ^b
CH ₁	r ₁	2.0673	R ₁	20.0000	
сн ₂	r ₂	2.0673	R ₂	2.0673	R ₁
CH ₃	r ₃	2.0673	R ₃	2.0673	R ₂
CH ₄	r ₄	2.0673	R ₄	2.0673	R ₃
CH ₆	r ₅	1002.0673		21.4020	
^H 1 ^H 6	r ₆	1000.0000		1.4020	R ₁ ^c
^H 2 ^H 6	r ₇	1002.7583		21.5016	
^н з ^н 6	r ₈	1002.7583		21.5016	
^H 4 ^H 6	r ₉	1002.7583		21,5016	
^H 1 ^{CH} 2	θ	109.4712	^ф 1	90	
H ₁ CH ₃	^θ 2	109.4712	[¢] 2	90	
H ₁ CH ₄	θ3	109.4712	^ф з	90	
H ₂ CH ₃	^θ 4	109.4712	[¢] 4	120	ф ₁
H ₂ CH ₄	^θ 5	109.4712	[¢] 5	120	[¢] 2
н _з сн ₄	θ6	109.4712	[¢] 6	120	[¢] 3

LMR-PES AND VALENCE INTERNAL COORDINATES DESIGNATIONS AND VALUES FOR REACTANTS

^aBond lengths and interatomic distances in atomic units and bond angles are in degrees.

^bOut-of-plane bending valence coordinate for CH3 is not defined by the LMR-PES.

 $^{\rm c}$ Specifies the vibrational motion of H $_2$.

$${}^{1}E_{\alpha\beta} = D[\exp\{-2\alpha(r_{n} - r_{e})\} - 2\exp\{-\alpha(r_{n} - r_{e})\}]$$
(II-3)

distance between one of the nine $\alpha\beta$ diatomic pairs in Table III, r is the equilibrium $\alpha\beta$ bond distance, D is the bond dissociation energy plus the zero-point energy, and α is the exponential Morse parameter.² As shown in equation (II-4), the triplet state energy is given by a

$$E_{\alpha\beta}^{3} = {}^{3}D[\exp\{-2\beta(r_{n} - r_{e})\} + 2\exp\{-\beta(r_{n} - r_{e})\}]$$
 (II-4)

similar functional representation for the condition that all $r_n \leq r^*$. If $r_n > r^*$ then ${}^{3}E_{\alpha\beta}$ is represented by (II-5). Thus, r^* is the

$$E_{\alpha\beta}^{3} = C[r_{n} + A]exp(\sigma r_{n}) \qquad (II-5)$$

changeover point between the functional forms (II-4) and (II-5). Values for the triplet state parameters in (II-4) and (II-5) are given in Table IV. These parameters were empirically determined by a procedure previously described by Raff and coworkers.^{2,29} The harmonic bond-bond interaction terms, $1/2 \int_{j=1}^{6} k_j (\theta_j - \theta_j^0)^2$, are a function of the six HCH angles described in Table III, where the θ_j^0 are the angles characteristic of the equilibrium molecular configuration and the θ_j and k_j are the angles and bending force constants, respectively, for a specified molecular configuration. The force constant values are determined by (II-6),

$$k_{j} = k_{j}^{o} f(r_{C-H_{i}}, r_{H_{i}} - H_{6}) f(r_{C-H_{k}}, r_{H_{k}} - H_{6})$$
(II-6)

with i = 1, 2, 3, 4, $\ell = 1, 2, 3, 4$ and $\ell \neq i$. The equilibrium bending force

TABLE IV

	Diatomic Pair				
Parameter	С-Н	C-H' ^a	H-H		
$\mathbf{p}^{\mathbf{b}}$	4.5808	1.1452	4.7466		
$\alpha^{\mathbf{c}}$	0.98058	0.98058	1.04435		
red	2.0673	2.0673	1.402		
De ^b	1.63	0.4075	1.9668		
β ^c	0.60	0.60	1.000122		
с ^ь	3675.92	918.98	25.55301785		
A^{d}	-2.360263	-2.360263	1.0		
σ ^c	2.296479	2.296479	1.6756385		
r* ^d	3.0	3.0	1.6		
a ₁ e	0.8999975				
a_{2}^{e}	0.448035				
a ^{fe} a ₃	0.606528				
a a 4	3.239921				
a ₅	0.080768				
a ₅	0.080768				

LMR-PES PARAMETERS

^aCorresponds to the two atoms describing r_5 in Table III.

^bIn units of electron volts (eV).

^cIn (atomic units (a.u.))⁻¹.

^dIn a.u.

^eIn (a.u.)⁻².

constant k_j^o equals 3.4436 eV/rad.² Each $f(r_{C-H}, r_{H-H_6})$ term is a function of one of the C-H bonds defining the angle θ_j and the corresponding interatomic distance between the hydrogen bonded to the carbon and the abstracting hydrogen, H_6 . The form of the $f(r_{C-H}, r_{H-H_6})$ function was determined by a nonlinear least squares fit to INDO calculated results as given by (II-7),

$$f(r_{C-H}, r_{H-H_6}) = k_1/k_1^o = A_1 \exp\{-A_2[r_{C-H}-r_e(C-H)]^2\}$$
 (II-7a)

$$A_1 = 1.0 - \exp(-a_1 r_{H-H_6}^2)$$
 (II-7b)

$$A_2 = a_2 + a_3 \exp\{-a_4 [r_{H-H_6} - r_e(H-H)]^2\}$$
 (II-7c)

where the coefficients A_1 , A_2 , a_1 , a_2 , a_3 , and a_4 were all determined by nonlinear least squares procedures and $r_e(C-H)$ in (II-7a) and $r_e(H-H)$ in (II-7c) refer to the equilibrium C-H and H-H bond lengths, respectively.² The equilibrium frontside angles, $\theta_f(f=1,2,3)$, are determined by the functional relationship given by (II-8),

$$\theta_{f}^{\circ} = \tau - a_{5}[r^{+} - r_{e}(C - H)], (r^{+} \le 6.274 \text{ a.u.})$$
 (II-8a)

$$\theta_{\rm f}^{\circ} = 90^{\circ}, \ (r^+ > 6.274 \text{ a.u.})$$
 (II-8b)

where τ is the tetrahedral angle in radians, and a_5 and the value 6.274 were determined from INDO computational results. The longest C-H bond length in the five atom CH₄ methane configuration is designated as r⁺ (in the transition state r⁺ = r₁), and r_e is the equilibrium C-H bond
length. The equilibrium backside angles, θ_b (b=4,5,6), are functions of the frontside angles, see (II-9). The values of the constants used in

$$\theta_{b}^{\circ} = \arccos(1.0 - 1.5 \sin^{2} \theta_{f}^{\circ}) \qquad (II-9)$$

the LMR-PES function calculations are given in Table IV. It should be noted that the energy parameters, D, D_3 , and C, for the C-H' values are 25 percent of the C-H values because the C-H' interaction is counted once in each of the four three-body terms in (II-1).

Reactant and Product Geometries and Coordinates

The general six-atom configuration is given by Figure 1. Table III compares the LMR-PES internal coordinate designations and geometry values for the reactants and products in equations (I-1) and (I-2) to the corresponding internal valence coordinates designations for which force constants are calculated. The two-atom internal valence coordinate designations describe bond stretching vibrational motion and the three-atom designations describe bond bending vibrational motion. It should be noted that in Table III the internal valence coordinates for the reactants and products are direct functions of the corresponding LMR-PES internal coordinates except for the out-of-plane bending valence coordinate which is not defined by the functional form of the LMR-PES. By equation (II-8), the LMR-PES predicts a planar CH₃ geometry. However, by (II-6) and (II-7) when CH_3 is planar then the k_j (j=1,2,3) force constant terms in the LMR-PES which describe the out-of-plane bending motion in CH_3 are effectively zero. For this reason the calculation of the out-of-plane bending force constant value is handled separately from the LMR-PES force constant calculations which follow.

Transition-State Geometry and Coordinates

The transition-state geometry values are given in Table V for the LMR-PES coordinates. Unlike the reactants and products coordinates, all of the transition-state LMR-PES coordinates contribute significantly to the calculated energy. Therefore, since not all the LMR-PES coordinates correspond to a valence coordinate, the valence coordinates were expressed as a function of the appropriate LMR-PES coordinates involved in each internal valence coordinate designation. Force constants were calculated with respect to these designated internal valence coordinates.

The transition-state geometry values in Table V were obtained by scanning the LMR-PES for the top of the barrier along the reaction coordinate. The coordinates r_1 and r_6 were initialized at values greater and less than their corresponding equilibrium values from Table IV, respectively. The r_1 coordinate is then decremented 100 times (or until a minimum energy is found) at each r_6 incremented coordinate value. These minimum energy configurations describe the reaction coordinate for reactions (I-1) and (I-2). The maximum energy along the reaction coordinate corresponds to the top of the barrier. The barrier height energy is obtained by subtracting the reactant CH_4 + H internal energy from the configuration energy at the top of the barrier. Table VI shows the results of a consecutive series of concurrent scans of the LMR-PES to find the top of the barrier.

TABLE V

LMR	-PES Coordina	ates	Vale	nce Coordinates
Atoms in Coordinate	Designation	Equilibrium ^a Value	Atoms in Coordinate	Designation
CH	r ₁	3.0178	CH1	$R_1 = f(r_1, r_5, r_7, r_8, r_9)$
CH ₂	r ₂	2.0673	СH ₂	$R_2 = f(r_2, r_7)$
CH ₃	r ₃	2.0673	CH ₃	$R_3 = f(r_3, r_8)$
CH ₄	r ₄	2.0673	CH ₄	$R_4 = f(r_4, r_9)$
^{СН} 6	r ₅	4.4982	^H 1 ^H 6	$R_5 = f(r_5, r_6, r_7, r_8, r_9)$
^H 1 ^H 6	r ₆	1.4804	H ₁ CH ₂	$\phi_1 = f(\theta_1, r_7)$
^H 2 ^H 6	r ₇	5.4170	H ₁ CH ₃	$\phi_2 = f(\theta_2, r_8)$
^H 3 ^H 6	r ₈	5.4170	H ₁ CH ₄	$\phi_3 = f(\theta_3, r_9)$
^H 4 ^H 6	r ₉	5.4170	H ₂ CH ₃	$\phi_4 = f(\theta_4, r_7, r_8)$
^H 1 ^{CH} 2	θ_{1}	105.0726	^н 2 ^{СН} 4	$\phi_5 = f(\theta_5, r_7, r_9)$
H1CH3	^θ 2	105.0726	^н з ^{сн} 4	$\phi_6 = f(\theta_6, r_8, r_9)$
H ₁ CH ₄	^θ 3	105.0726	$(CH_1H_6)_{xz}^{b}$	$\alpha_{x} = f(r_{5}, r_{7}, r_{8}, r_{9})$
H ₂ CH ₃	θ4	113.4886	$(CH_1H_6)_{yz}^{c}$	$\alpha_{y} = f(r_{5}, r_{7}, r_{8}, r_{9})$
H ₂ CH ₄	^θ 5	113.4886		
^H 3 ^{CH} 4	^θ 6	113.4886		

LMR-PES AND VALENCE INTERNAL COORDINATES DESIGNATIONS AND VALUES FOR THE TRANSITION STATE

^aBond lengths and interatomic distances in atomic units and bond angles in degrees.

^bSpecifies linear bending in the xz plane.

^cSpecifies linear bending in the yz plane.

TABLE VI

Scan Number	r1ª	r ₆ ^a	Increment Size ^a	Barrier Height Energy ^b
Start 1 ^C End 1 ^d	3.5 3.02	1.25 1.49	7.5×10^{-3}	5.60624735710553
Start 2 ^C End 2 ^d	3.0275 3.0179	1.475 1.48055	1.5×10^{-4}	5.59759021152999
Start 3 ^C End 3 ^d	3.0182 3.017804	1.48025 1.480382	6.0×10^{-6}	5.59758731815947
Start 4 ^C End 4 ^d	3.017816 3.0177992	1.48037 1.4803774	2.4×10^{-7}	5.59758731610498
Start 5 ^C End 5 ^d	3.01779968 3.0177991232	1.48037696 1.4803772096	9.6×10^{-9}	5.59758731609884
Start 6 ^C End 6 ^d	3.0177991424 3.017799132032	1.4803771904 1.480377204608	3.84×10^{-10}	5.59758731609884

TRANSITION-STATE SCANNING RESULTS

^aValues in atomic units (a.u.).

 $^{\rm b}{\rm Values}$ in kilocalories per mole for reaction (I-1).

^CValues at the start of the scan.

^dValues at the end of the scan.

Numerical Methods of Force Constant

Determination

Force constants were calculated numerically for each of the internal valence coordinates described in Tables III and V. Additionally, off-diagonal cross term force constants were calculated. These force constants determine the amount of interaction between any two of the valence coordinates in a particular molecular species. These force constants are defined by the value of $(\frac{\partial}{\partial q_i}, \frac{\partial}{\partial q_j})_{q_k} \neq q_i, q_j$, where q_i and q_j are valence coordinates of a molecular species defined in Table III or Table V. If $q_i = q_j$, then the second derivative is a diagonal force constant, but if $q_i \neq q_i$, it is an interaction force constant.

The simplest numerical partial differentiation technique used is the two function-point definition of a derivative,

$$\lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = f_1(x,y) = \frac{\partial f(x,y)}{\partial x}$$
(II-10)

where f(x,y) is a function of variables x and y, and h is the increment size.³⁰ Equation (II-10) was used to generate the three-point second derivative method given by (II-11).³⁰

$$\lim_{h \to 0} \left[\frac{\left(\frac{f(x+h,y)-f(x,y)}{h}\right) - \left(\frac{f(x,y)-f(x-h,y)}{h}\right)}{h} \right] =$$

$$\lim_{h \to 0} \frac{f(x+h,y)+f(x-h,y)-2f(x,y)}{h^2} = f_{1,1}(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2}$$

$$f_{1,1}(x,y) \approx \frac{f(x+h,y)+f(x-h,y)-2f(x,y)}{h^2}$$
(II-11)

The error in (II-11) is equal to

$$E_{d} = -\frac{h^{2}}{12} f^{IV}(\xi)$$
 (II-12)

where h is the increment size and $f^{IV}(\xi)$ is the fourth derivative of the function being differentiated with $|\xi-x| < |h|$.³⁰ This error is referred to as the discretization error due to the method of finite differences and is in addition to any round-off error.³⁰ For double precision accuracy on the IBM 360/65 used for these calculations, the relative round-off error is approximately 1×10^{-16} . An estimate of the error involved in the calculation of (II-11) with f(x,y) = [g(x) + k(y)], where $g(x) = C^2 e^{-2x} - 2Ce^{-x}$, $C = e^2$, x = 2, $h = 1 \times 10^{-4}$ and k(y) = 0 is given by

$$E = (E_{d} + \frac{4E_{r}}{h^{2}}) = \left[\frac{-(1 \times 10^{-4})^{2}}{12}(16C^{2}e^{-2x} - 2Ce^{-x}) + \frac{4E_{r}}{(1 \times 10^{-4})^{2}}\right](II-13)$$

where E_r is the approximate round-off error in each of the four function values in (II-11). If $E_r \approx 1 \times 10^{-16}$ then the relative error in the evaluation of (II-11) for f(x,y) is given by $E_{Rel} = E/f(x,y) \approx$ -1.4×10^{-8} . Although the exact error involved in numerical differentiation of (II-1) is not calculated, the functional form is composed primarily of negative exponential terms with relatively small exponents. Therefore, the relative error involved in applying (II-11) to (II-1) should be close to that for (II-13) within two or three orders of magnitude. The follow ing difference method for cross-terms should have comparably small error.

A computational method was derived for calculation of the offdiagonal (cross term) second derivatives of the form $\frac{\partial}{\partial x} (\frac{\partial f(x,y)}{\partial y})_x = f_{1,2}(x,y)$. For purposes of derivation, a function of the incremented coordinates was defined by

$$Q_{h,k}(\delta) = f(x + \delta h, y + \delta k)$$
 (II-14)

where δ/x and $\delta/y \ll 1$ and h and k are unit directional coefficients of δ having possible values of 1, 0, or -1. By deriving a functional form for the second derivative of $Q_{h,k}(\delta)$ it was possible to obtain a numerical approximation to $f_{1,2}(x,y)$. The first derivative of $Q_{h,k}(\delta)$ is defined by (II-15),

$$Q_{h,k}'(\delta) = \frac{\partial f(x + \delta h, y + \delta k)}{\partial \delta}$$

$$Q_{h,k}'(\delta) = \frac{\partial f(x + \delta h, y + \delta k)}{\partial (x + \delta h)} \cdot \frac{\partial (x + \delta h)}{\partial \delta} + \frac{\partial f(x + \delta h, y + \delta k)}{\partial (y + \delta k)} \cdot \frac{\partial (y + \delta k)}{\partial \delta}$$

$$Q_{h,k}'(\delta) = hf_1(x + \delta h, y + \delta k) + kf_2(x + \delta h, y + \delta k) \quad (II-15)$$

where $f_2(x + \delta h, y + \delta k) = \frac{\partial f(x + \delta h, y + \delta k)}{\partial (y + \delta k)}$, f_1 is defined by (II-10), $h = \frac{\partial (x + \delta h)}{\partial \delta}$ and $k = \frac{\partial (y + \delta k)}{\partial \delta}$. Therefore, the second derivative of $Q_{h,k}(\delta)$ is given by (II-16),

$$Q_{h,k}^{"}(\delta) = h \left[\frac{\partial f_1(x + \delta h, y + \delta k)}{\partial (x + \delta h)} \cdot \frac{\partial (x + \delta h)}{\partial \delta} + \frac{\partial f_1(x + \delta h, y + \delta k)}{\partial (y + \delta k)} \cdot \frac{\partial (y + \delta k)}{\partial \delta} \right]$$
$$+ k \left[\frac{\partial f_2(x + \delta h, y + \delta k)}{\partial (x + \delta h)} \cdot \frac{\partial (x + \delta h)}{\partial \delta} + \frac{\partial f_2(x + \delta h, y + \delta k)}{\partial (y + \delta k)} \cdot \frac{\partial (y + \delta k)}{\partial \delta} \right]$$

$$Q'_{h,k}(\delta) = h^2 f_{1,1}(x + \delta h, y + \delta k) + 2hk f_{1,2}(x + \delta h, y + \delta k) + k^2 f_{2,2}(x + \delta h, y + \delta k)$$

(II-16)

where
$$f_{2,2}(x+\delta h, y+\delta k) = \frac{\partial^2 f(x+\delta h, y+\delta k)}{[\partial (y+\delta k)]^2}$$
 and $f_{1,2}(x+\delta h, y+\delta k) =$

 $f_{2,1}(x+\delta h), y+\delta k)$. Therefore, the second derivative, $Q_{h,k}''(\delta)$, for $\delta = 0$ is given by (II-17).

$$Q_{h,k}''(0) = h^2 f_{1,1}'(x,y) + 2hk f_{1,2}'(x,y) + k^2 f_{2,2}'(x,y)$$
 (II-17)

Using the definition of $Q_{h,k}(\delta)$ in equation (II-14), $Q_{h,k}''(0)$ is also defined by (II-18).

$$Q_{h,k}^{"}(0) = \lim_{\delta \to 0} \frac{Q_{h,k}^{(\delta)} - 2Q_{h,k}^{(0)} + Q_{h,k}^{(-\delta)}}{\delta^2}$$
(II-18)

The difference equations used to calculate the second derivatives of the form of $f_{1,2}(x,y)$ were obtained by combining (II-14), (II-17) and (II-18) for various pairs of (h,k) values. For example, one difference equation is given by substituting h = 1, k = 0 into (II-17), see (II-19a); then equating (II-19a) to (II-18) in (II-19b). The specific form of (II-19b) used to obtain the numerical second derivative is given by substitution of (II-14) with (h,k) = (1,0) into (II-19b), see (II-19c).

$$Q_{h,k}^{"}(0) = Q_{1,0}^{"}(0) = (1)^{2}f_{1,1}(x,y) + 2(1)(0)f_{1,2}(x,y) + (0)^{2}f_{2,2}(x,y)$$
(II-19a)

$$Q_{1,0}^{"}(0) = f_{1,1}(x,y) = \lim_{\delta \to 0} \frac{Q_{1,0}(\delta) - 2Q_{1,0}(0) + Q_{1,0}(-\delta)}{\delta^2}$$
(II-19b)

$$Q_{1,0}^{"}(0) = f_{1,1}^{(x,y)} = \lim_{\delta \to 0} \frac{f(x+\delta,y) - 2f(x,y) + f(x-\delta,y)}{\delta^2} \quad (\text{II-19c})$$

Similarly for (h,k) = (0,1), equations (II-14) and (II-18) lead to equation (II-20) which defines $f_{2,2}(x,y)$.

$$Q_{0,1}''(0) = \lim_{\delta \to 0} \frac{f(x, y + \delta) - 2f(x, y) + f(x, y - \delta)}{\delta^2}$$
(II-20)

Finally, substitution of (h,k) = (1,1) into (II-17), (II-18) and (II-14) produces an expression which includes the desired cross term $f_{1,2}(x,y)$, see (II-21).

$$Q_{1,1}^{"}(0) = (1)^{2} f_{1,1}(x,y) + 2(1)(1) f_{1,2}(x,y) + (1)^{2} f_{2,2}(x,y)$$
$$Q_{1,1}^{"}(0) = f_{1,1}(x,y) + 2 f_{1,2}(x,y) + f_{2,2}(x,y)$$
(II-21a)

$$Q_{1,1}''(0) = \lim_{\delta \to 0} \frac{Q_{1,1}(\delta) - 2Q_{1,1}(0) + Q_{1,1}(-\delta)}{\delta^2}$$

$$Q_{1,1}''(0) = \lim_{\delta \to 0} \frac{f(x+\delta,y+\delta) - 2f(x,y) + f(x-\delta,y-\delta)}{\delta^2} \quad (II-21b)$$

By rearrangement of (II-21a), $f_{1,2}(x,y) = [Q_{1,1}'(0) - f_{1,1}(x,y) - f_{2,2}(x,y)]/2$. This result and the definition of $f_{1,1}(x,y)$ and $f_{2,2}(x,y)$ in (II-19) and (II-20), respectively, led to equation (II-22) which defines the cross term second derivative.

$$f_{1,2}(x,y) = \frac{Q_{1,1}''(0) - Q_{1,0}''(0) - Q_{0,1}''(0)}{2}$$
(II-22)

The general difference method equations are summarized in Table VII. The symbols A, B, C, D and E in Table VII represent second derivatives in the limit as the increment size δ approaches zero. Thus for a given δ , A and B constitute numerical approximations to the diagonal force constants (second derivatives), $(\delta^2 f(x,y)/\delta x^2)y$ and

TABLE VII

SUMMARY OF THREE-POINT CROSS-TERM DIFFERENCE EQUATIONS^a

Unit ^b Increment Pair	Definition of ^C Second Derivative	Difference Method Approximation ^d to the Second Derivative
(h,k) = (1,0)	$f_{1,1}(x,y) = \lim_{\delta \to 0} A$	$A = \frac{f(x + \delta, y) - 2f(x, y) + f(x - \delta, y)}{\delta^2}$
(h,k) = (0,1)	$f_{2,2}(x,y) = \lim_{\delta \to 0} B$	$B = \frac{f(x,y+\delta) - 2f(x,y) + f(x,y-\delta)}{\delta^2}$
(h,k) = (1,1)	$Q''_{1,1}(0) = \lim_{\delta \to 0} D$	$D = \frac{f(x+\delta,y+\delta) - 2f(x,y) + f(x-\delta,y-\delta)}{\delta^2}$
(h,k) = (1,-1)	$Q_{1,-1}'(0) = \lim_{\delta \to 0} E$	$E = \frac{f(x+\delta,y-\delta) - 2f(x,y) + f(x-\delta,y+\delta)}{\delta^2}$
	$f_{1,2}(x,y) = \lim_{\delta \to 0} C$	$C = \frac{D-A-B}{2} = \frac{A+B-E}{2} = \frac{D-E}{4}$

^aSee Reference 31.

 b See Equations (II-19), (II-20), and (II-21).

^CDefinitions based on combination of Equations (II-14), (II-17), and (II-18).

^d Difference methods based on Equations (II-14) and (II-18). Note Equation C is only definable as a combination of other difference methods. Also, the increment size δ should be identical in all equations used for each calculation of C.

 $(\partial^2 f(x,y)/\partial y^2)_x$, respectively. For a given δ , D is the numerical estimate of $\partial^2 Q_{1,1}(0)/\partial \delta^2$. Therefore, given a specific δ the numerical approximation to the off-diagonal force constant, $\partial^2 f(x,y)/\partial x \partial y$, is obtained by substituting A, B, and D into (II-22). The symbol E in Table VII is defined in the same manner as D, except for (h,k) = (1,-1). Thus for a given δ , E is the numerical estimate of $\partial^2 Q_{1,-1}(0)/\partial \delta^2$. By substituting the numerical approximations A, B, and C for the appropriate analytical second derivatives in (II-17) with (h,k) = (1,-1), E is defined as the quantity (A - 2C + B). This definition of E leads to the last two quantities equated to C in Table VII which constitute two additional numerical approximations to the off-diagonal force constant (or cross-term second derivative).

The energy values obtained from six equal increments and decrements about a particular cartesian coordinate were least squares fitted to a quadratic equation, see (II-23).³² A numerical estimate of the

$$V = Kx^2 + Lx + M$$
 (II-23)

cartesian coordinate force constant is then provided by the analytic second derivative of this quadratic equation, $\partial^2 V / \partial x^2 = 2K$.

A seven point difference method based on the differentiation of a Langrangian interpolation function was also used to calculate force constants for comparison to the three-point and polynomial leastsquares methods.³³ As shown in Equation (II-24) the derivative is

$$v_{o}' = \frac{\partial v_{o}}{\partial q_{i}} = \frac{1}{60h} \left[45(v_{1} - v_{-1}) - 9(v_{2} - v_{-2}) + (v_{3} - v_{-3}) \right]$$
(II-24)

calculated at the center (equilibrium) point, $V_0 = f(q_i)$, using

energies $V_{\ell} = f(q_1 + \ell h)$ for three equally incremented and decremented (that is $\ell = \pm 3$, ± 2 , ± 1) points, where h is the increment size and q_1 is the coordinate being incremented. Thus a particular force constant V''_j was evaluated as follows. For a given h, potential energies V_j were computed for j = 0 and ± 1 to ± 6 . Equation (II-24) and these V_j were used to obtain first derivatives V'_j at $j = \pm 3$, ± 2 , ± 1 . Equation (II-24) and these V'_j values were then used to calculate V''_j at j = 0. The error in the seven-point difference method, E, is given by (II-25),

$$E = -\frac{h^{6}}{140} f^{VII}(\xi)$$
 (II-25)

where h is the increment size and $f^{VII}(\xi)$ is the seventh derivative of the function being differentiated for $(q_i - 3h) \leq \xi \leq (q_i + 3h)$. An accurate estimate of this error cannot be made but it can be seen that a sufficiently small increment size, h, will tend to overshadow the $f^{VII}(\xi)$ function. Since $h \leq 1 \ge 10^{-4}$ was used then $f^{VII}(\xi)$ must exceed $1 \ge 10^{22}$ to significantly affect the calculated force constant. In view of the functional form of (II-1) this is unlikely.

Values for the cross-term second derivative force constants were calculated using the seven point difference method. This method requires a seven by seven point grid of energy values. These were obtained by concomitantly incrementing two different coordinates q_i and q_j . Figure 2 displays the grid of coordinate positions for which energy values were calculated. The calculated energy values falling on a line perpendicular to the q_i axis in Figure 2 were substituted into Equation (II-24) to calculate the first derivatives at $V(q_i + \ell h, q_i)$ for $\ell = \pm 1$ to ± 3 on the q_i axis. These $V'(q_i + \ell h, q_j)$ for

Figure 2. Grid of Incremented Coordinate Positions for Which Energies were Calculated

 $\ell = \pm 1$ to ± 3 were then substituted into Equation (II-24) to obtain $\partial^2 \nabla / \partial q_i \partial q_j$ or $\nabla''(q_i + \ell h, q_j)$ for $\ell = 0$. These interaction force constant values obtained by the seven-point difference method are not based on as sound a theoretical background as those determined by the threepoint method summarized in Table VI. For this reason, the three-point method interaction force constants were used to evaluate the isotopic normal mode frequencies for the isotope effect calculations. However, the seven-point method values were very close if not identical to the three-point method values.

Force Constant Calculation

The previously described difference methods were applied to energies obtained from the LMR-PES and its coordinate relationships, see Appendix A, to calculate force constants for the internal valence coordinates described in Tables III and V. The transition-state internal valence coordinate force constants (TS-VFC) were calculated for several increment sizes using both the three-point and seven-point difference methods, see Table VIII. The increment sizes, 1×10^{-4} and 5 x 10^{-5} , were found to give the best agreement between degenerate force constants. Overall, the best agreement between the force constants calculated by the two difference method techniques is given by an increment size of 1×10^{-4} . The force constants in Table VIII show a lack of consistency between degenerate force constants calculated using increment sizes of 5 x 10^{-6} and 5 x 10^{-7} . The validity of both numerical difference methods and the LMR-PES coordinate relationships was established as follows, First, force constants were calculated with respect to the cartesian coordinates of

TABLE VIII

-	•					
	Three Poir	nt Method ^b		Seven Point	t Method ^C	
Valence Coordinate ^q i	$\frac{\partial^2 \mathbf{v}^{\mathbf{d}}}{\partial \mathbf{q}_{\mathbf{i}}^2}$	$\frac{\partial^2 v^e}{\partial q_i^2}$	$\frac{\partial^2 v^e}{\partial q_i^2}$	$\frac{\partial^2 v^d}{\partial q_i^2}$	$\frac{\partial^2 \mathbf{v}^{\mathbf{f}}}{\partial \mathbf{q}_{\mathbf{i}}^2}$	$\frac{\partial^2 v^g}{\partial q_i^2}$
R ₁ ^h	-1.5344	-1.5345	-1.5345	-1.5345	-1.5344	-1.5342
R ₂ ^h	5.0393	5.0395	5.0395	5.0395	5.0394	5.0355
R ₃ ^h	5.0393	5.0395	5.0395	5.0395	5.0394	5.0392
R ₄ ^h	5.0393	5.0395	5.0395	5.0395	5.0394	5.0392
R ₅ ^h	4.4042	4.4043	4.4043	4.4043	4.4043	4.4077
ϕ_{\perp}^{i}	0.1802	0.1802	0.1802	0.1802	0.1802	0.1813
ϕ_2^{i}	0.1802	0.1802	0.1802	0.1802	0.1802	0.1813
ϕ_3^{i}	0.1802	0.1802	0.1802	0.1802	0.1802	0.1813
φ ₄ ¹	0.5517	0.5517	0.5517	0.5517	0.5517	0.5530

TRANSITION-STATE DIAGONAL INTERNAL COORDINATE FORCE CONSTANT VALUES^a

	Three Poin	t Method ^b	S	even Point	Method ^C	<u>`</u>
Valence Coordinate ^q i	$\frac{\partial^2 \mathbf{v}^d}{\partial q_i^2}$	$\frac{\partial^2 v^e}{\partial q_i^2}$	$\frac{\partial^2 v^e}{\partial q_1^2}$	$\frac{\partial^2 v^d}{\partial q_1^2}$	$\frac{\partial^2 \mathbf{v}^{\mathbf{f}}}{\partial \mathbf{q}_{\mathbf{i}}^2}$	$\frac{\partial^2 v^g}{\partial q_i^2}$
ϕ_5^{i}	0.5517	0.5517	0.5517	0.5517	0.5517	0.5530
ϕ_6^{i}	0.5517	0.5517	0.5517	0.5517	0.5517	0.5530
α x	0.0270	0.0270	0.0270	0.0270	0.0269	0.0257
a i y	0.0270	0.0270	0.0270	0.0270	0.0270	0.0256

TABLE VIII (Continued)

^aForce constants calculated for the internal valence coordinates described in Table V.

^bValues calculated by the three point difference method, see (II-11). ^cValues calculated by the seven point difference method, see (II-27). ^dIncrement size h = 5 x 10⁻⁵. ^eIncrement size h = 1 x 10⁻⁴. ^fIncrement size h = 5 x 10⁻⁶. ^gIncrement size h = 5 x 10⁻⁷. ^hStretching force constants in mdyne/Å. ⁱBending force constants in mdyne-Å.

each atom in the transition-state configuration. These cartesian coordinate force constants (CCFC) were compared to the CCFC obtained from conversion of the TS-VFC matrix using the B matrix method described in Appendix B. It can be seen in Table IX that the agreement is reasonably good but not quantitative. Second, transition-state normal mode frequencies were calculated using the VFC, converted CCFC, and directly calculated CCFC. These values are compared in Table X. When the CCFC are used to calculate normal-mode frequencies there are six degrees of freedom in the eigenvalues in addition to those corresponding to the normal-mode frequencies. These six extra degrees of freedom correspond to the translation and rotation of the transitionstate molecular configuration. It can be seen that the directly calculated CCFC generate some small residual values that correspond to rotational and translational degrees of freedom. Theoretically these rotational and translational values should be zero but the directly calculated CCFC were not normalized with respect to the internal coordinates. Due to the form of the ICFC normal mode frequency calculation, the six extra degrees of freedom are not allowed. Also, the method of converting the ICFC to CCFC normalizes the converted CCFC to the internal coordinates. Therefore, only zero or negligibly small values for the translational and rotational degrees of freedom are obtained. Neglecting the rotational and translational degrees of freedom, it can be observed that the various sets of normal-mode frequencies in Table X agree very well; the largest deviation being about 2.5 cm^{-1} . This indicates the validity of the LMR-PES coordinate relationships and the numerical difference methods.

TABLE IX

TRANSITION-STATE DIAGONAL CARTESIAN COORDINATE FORCE CONSTANTS CALCULATED BY DIFFERENT NUMERICAL METHODS^a

Cartesian Coordinate	Seven Point ^C	Three Point ^d	Quadratic ^e	Converted ^f
×1	0.2112	0.2112	0.2112	0.2095
y ₁	0.2112	0.2112	0.2112	0.2095
^z 1	1.2552	1.2552	1.2552	1.2552
×2	0.7680	0.7680	0.7680	0.7665
У ₂	4.7208	4.7208	4.7208	4.7190
^z 2	0.6271	0.6271	0.6271	0.6265
×3	3.7326	3.7326	3.7326	3.7309
У _З	1.7562	1.7562	1.7562	1.7546
^z 3	0.6271	0.6271	0.6271	0.6265
×4	3.7326	3.7326	3.7326	3.7309
y ₄	1.7562	1.7562	1.7562	1.7546
z ₄	0.6271	0.6271	0.6271	0.6265

Cartesian Coordinate	Seven Point ^C	Three Point ^d	Quadratic ^e	Converted ^f
×5	8.7621	8.7621	8.7621	8.7640
y ₅	8.7621	8.7621	8.7621	8.7640
z ₅	0.3412	0.3412	0.3412	0.3394
×6	0.0439	0.0439	0.0439	0.0439
^у б	0.0439	0.0439	0.0439	0.0439
^z 6	4.4043	4.4043	4.4043	4.4043

TABLE IX (Continued)

^aForce constant values in mdyne/Å. All values calculated using an increment size of 5 x 10^{-5} .

^bCoordinate subscript is the atom number, see Figure 1.

^CValues calculated by the seven point difference method, see (II-27).

^dValues calculated by the three point difference method, see (II-11).

^eValues calculated by the quadratic least squares fit method, see (II-23).

 f Values converted from internal coordinate force constant values by the B-matrix conversion method described in Appendix ^B.

TABLE X

TRANSITION-STATE NORMAL MODE FREQUENCIES^a

Normal Mode	Internal ^b	Cartesian ^C	Cartesian ^d	Assignment of the Normal Mode
v1 ^e	3388.5	3388.5	3388.5	Symmetric C-H-H stretching
v2 ^e	2937.7	2937.7	2937.6	Symmetric CH ₃ stretching
v ₃ e	964.7	964.7	967.2	CH ₃ bending deformation
v ₄ e	1479.3i	1479.3i	1479.3i	Antisymmetric C-H-H stretching
ν _{.5} t	3085.7	3085.7	3085.7	Antisymmetric CH ₃ stretching
v ₆ f	1502.9	1502.9	1503.7	Degenerate CH_3 bending deformation
v ₇ f	752.3	752.3	754.5	Linear bending + CH ₃ bending
v ₈ ^f	367.3	367.3	369.8	Linear bending - CH ₃ bending
^R 1 ^g		0	50.8	Rotation about Z-axis
R2 ^g		0	39.4	Rotation about Y-axis

TABLE X (Continued)

Normal Mode	Internal ^b	Cartesian ^C	Cartesian ^d	Assignment of the Normal Mode
R ₃ ^g		0	39.4	Rotation about X-axis
, T ₁ ^h		0	1.5	
T2 ^h		0	.5	
T ₃ ^h		0	2	

^aFrequencies in cm⁻¹. Force constants calculated using an increment size of 5 x 10^{-5} .

^bFrequencies calculated using the internal coordinate force constants in Table VIII plus all off-diagonal interaction force constants.

^CFrequencies calculated using cartesian coordinate force constants converted from the internal coordinate force constants described in footnote b.

d Frequencies calculated using the three point method cartesian coordinate force constants from Table IX plus all off-diagonal interaction force constants.

e_{Non-degenerate} normal mode frequencies.

f Doubly degenerate normal mode frequencies.

^gRotational degree of freedom.

^hTranslational degree of freedom.

The assignments of the normal modes in Table X are based on the eigenvectors given in Table XI. The cartesian coordinate eigenvectors make assigning a normal mode of motion relatively easy, since each eigenvector value represents relative motion along or parallel to the cartesian coordinates for each atom in Figure 1. The rotational assignments are particularly easy. For example, the R_1 eigenvector shows that atom two has motion in the positive x direction, atom three has motion in the negative x and positive y directions, and atom four has motion in the negative x and negative y directions. Thus, R_1 is an eigenvector representing rotation about the Z axis in Figure 1.

Force constants were calculated for the reactant molecular species in reactions (I-1) and (I-2) with respect to the internal valence coordinates described in Table III. Normal-mode frequencies calculated using these force constants are compared with spectroscopic values in Tables XII and XIII. The CH, frequency values from the LMR-PES VFC agree well with those calculated from the diagonal Herzberg VFC matrix in Table XII.³⁴ However, the numerically determined VFC matrix from the LMR-PES is not a diagonal matrix due to strong internal coupling between the CH stretching and HCH bending VFC. The diagonal Herzberg force constants, 34 5.04 mdyne/Å and 0.5517 mdyne-Å for CH stretching and HCH bending, respectively, appear implicitly and explicitly, respectively, in the LMR-PES.² However, the numerically determined CH stretching VFC from the LMR-PES is 5.08 mdyne/A. The agreement between frequencies predicted by the LMR-PES and Herzberg VFC reflects the fact that the C-H stretching modes are coupled, 1) between themselves by a small -0.01 mdyne/Å value and 2) to the HCH bending VFC by a larger ± 0.042 mdyne value (+0.042 coupled to adjacent C-H bonds and

TABLE XI

TRANSITION-STATE CARTESIAN COORDINATE EIGENVECTORS^a

			Transiti	ion-State	e Normal	Modes ^b			F	lotatio	n ^C	[ranslation ^d
Cartesian Coordinate	v 1	^v 2	^v 3	^v 4	^v 5	^v 6	v ₇	^v 8	R ₁	R ₂	^R 3	^T 1
× ₁	0	0	0	0	003	.010	758	.087	0	450	.0 07	.241
y ₁	0	0	0	. 0	0	.015	.087	374	0	007	450	.022
^z 1	.547	018	.117	.787	0	0	0	0	0	0	0	.004
x ₂	0	0	0	0	023	405	080	023	.575	.149	002	.241
У ₂	.018	.550	116	.025	.016	.126	.006	.092	0	.002	.150	.002
z2	013	150	499	.005	004	.152	.052	.507	0	.005	.333	.004
×3	015	476	.144	021	553	.287	060	026	288	.149	002	.241
У _З	009	275	.083	012	306	232	.020	.099	.498	.003	.149	.022
z ₃	013	150	499	.005	173	160	.365	152	0	290	16	2.004
×4	.015	.476	144	.021	567	369	058	018	288	.149	003	.241
У ₄	009	275	.083	012	.314	653	004	.098	498	.001	.149	.022
^z 4	013	150	499	.005	.177	.008	417	355	0	.285	171	.004

			Transit	ion-Stat	e Normal	Modes ^b			I	Rotation	n ^C	Translation ^d
Cartesian Coordinate	v ₁	^v 2	^v 3	^v 4	^v 5	^v 6	^ν 7	v ₈	^R 1	R ₂	R ₃	^T 1
×5	0	0	0	0	.096	.040	.065	.010	0	.060	001	.241
^у 5	0	0	0	0	002	.062	007	004	0	.001	.060	.022
z ₅	.027	.036	.105	108	0	0	0	0	0	0	0	.004
×6	0	0	0	0	.001	.001	.186	140	.001	716	.011	.241
^у 6	0	0	0	0	0	.001	021	.605	0	011	716	.022
^z 6	826	.045	.132	.481	0	0	0	0	0	0	0	.004

TABLE XI (Continued)

^aThe values are relative potential motion vectors along or parallel to the cartesian coordinates for each numbered atom in Figure 1.

^bNormal modes correspond to those in Table X.

^CRepresent nonzero rotational contributions from cartesian force constant frequency calculation, see Table X.

d Typical eigenvector for the negligibly small translational energy contribution from cartesian force constant frequency calculation, see Table X.

TABLE XII

TETRAHEDRAL CH₄ NORMAL MODE FREQUENCIES^a

Normal	Calculated		Shimanouchi ^C	
Mode	LMR-PES Force Constants	Calculated	Spectroscopic	Spectroscopic
v ₁	2917	2914	2914	2917
v_2^d	1527	1527	1526	1534
v ₃ e	3080	3080	3020	3019
v ₄ e	1366	1363	1306	1306

^aAll values in cm^{-1} .

^bSee Reference 34.

^CSee Reference 35.

^dDoubly degenerate.

^eTriply degenerate.

PLANAR CH₃ AND H₂ FREQUENCIES^a

Normal Mode	Snelson ^b	мј ^с	TWP ^d	LMR-PES ^e	Gaussian 70 ^f	Herzberg ^g
v ₁	3044			2914	3251	
^v 2	617	611	607	847	847	
v_3^h	3162			3100	3455	
$v_4^{\rm h}$	1396			1606	1538	
$\operatorname{sum}^{1} \nu(\operatorname{CH}_{3})$	12777			13173	14084	
sum ^j v(CH ₃)	12160			12326	13237	
ν(H ₂)			4	4468		4395

^aAll values in cm^{-1} .

 b See Reference 36. Since ν_1 is infrared inactive, the value corresponds to Snelson's calculated value.

^CSee Reference 37.

^dSee Reference 38.

 $^{\rm e}{\rm Calculated}$ using LMR-PES valence force constants except for the $\nu_2({\rm CH}_3)$ obtained from Gaussian 70, see Reference 39.

 $^{
m f}$ Calculated from Gaussian 70, 6-31G basis set force constants.

^gSee Reference 40.

^hDoubly degenerate frequencies.

ⁱSum includes the v_2 value.

^jSum excludes the v_2 value.

-0.042 coupled to non-adjacent C-H bonds). These interaction VFC values effectively decrease the calculated normal mode frequency values. The diagonal HCH bending VFC from the LMR-PES are identical to the Herzberg values.³⁴ It can be seen in Table XII that the Shimanouchi spectroscopic values³⁵ differ somewhat from the Herzberg³⁴ spectroscopic values and agree somewhat better with the calculated values.

The spectroscopic CH₃ frequencies in Table XIII reported by Snelson for $\boldsymbol{\nu}_1,~\boldsymbol{\nu}_3$ and $\boldsymbol{\nu}_4$ compare reasonably well with the corresponding LMR-PES values. In terms of KIE calculations it should be noted that differences in the $\boldsymbol{\nu}_{\boldsymbol{\lambda}}$ values would tend to be offset by opposing differences in the ν_1 and ν_3 values. 36 Thus, the LMR-PES curvatures governing the symmetric and asymmetric CH stretching are realistic. However, the $\nu^{}_{\Lambda}$ in-plane bending VFC may be somewhat large compared to the spectroscopic value. The frequencies calculated from Gaussian 70 VFC are all greater than the corresponding spectroscopic values by about nine percent on the average. The v_2 out-of-plane bending frequency is about 235 cm^{-1} greater than the corresponding spectroscopic frequencies. 36,37,38 The effect of using either the Gaussian 70 or the spectroscopic isotopic v_2 frequencies in conjunction with the corresponding LMR-PES calculated frequencies to obtain KIEs from (I-3) and (I-4) is discussed in Chapter III. The H, frequency (4468 cm⁻¹) obtained from the LMR-PES VFC (5.924 mdyne/Å) is less than two percent greater than the Herzberg spectroscopic frequency (4395 cm⁻¹) having a VFC of 5.732 mdyne/Å.

The force constants used to calculate the LMR-PES and Gaussian 70 frequencies for CH_3 are compared to the spectroscopically determined

force constants in Table XIV. It can be seen in Table XIV, that the Gaussian 70 in-plane bending VFC agrees well with the LMR-PES value, but the spectroscopic value is somewhat lower. This corresponds to the agreement between v_4 frequencies in Table XIII. However, the two C-H stretching VFC differ considerably. This difference is reflected in disagreement between the v_1 and v_3 values in Table XIII. As discussed earlier in the coordinates section, the LMR-PES predicts no out-ofplane bending force constant. Therefore, the Gaussian 70 ab initio program was used with its 6-31G internal basis set to calculate the value for ${\rm F}_{_{\rm V}}$ in Table XIV. 39 The out-of-plane bending internal coordinate corresponds to bending all three CH bonds out-of-plane simultaneously by the angle $\boldsymbol{\gamma}$ in radians. The numerical methods discussed earlier were applied to the incremented Gaussian 70 energies to obtain the CH_3 VFC in Table XIV. The Gaussian 70 out-of-plane bending VFC is almost twice as large as the spectroscopically determined value. This difference is clearly reflected in the calculated and spectroscopic $\boldsymbol{\nu}_2$ values.

TABLE XIV

Label	LMR-PES ^b	Gaussian 70 ^C	Snelson ^d	мј ^е	TWP ^f
Fr_{1}^{g} (1=2,3,4)	5.040	6.273	5.2		
$F_{\phi_{i}}^{h}$ (i=4,5,6)	0.461	0.422	0.315		
F_{γ}^{1}		0.340	0.179	0.177	0.174
r_i(i=2,3,4)	1.094	1.072	1.079	1.079	1.079

PLANAR CH3 FORCE CONSTANTS AND BONDLENGTHS^a

^aAll force constants are in mdyne/Å and the bondlengths, $r_i(i=2,3,4)$ are in Å.

^bValues calculated from the LMR-PES.

^CValues calculated using (II-11) and (II-23) methods applied to 6-31G basis set energies from Gaussian 70, see Reference 39.

^dSee Reference 36. In-plane force constants are calculated Urey-Bradley force constants.

^eSee Reference 37.

^fSee Reference 38.

^gC-H stretching force constant.

^hHCH in-plane bending force constant.

¹Out-of-plane bending force constant.

CHAPTER III

THEORETICAL KINETIC ISOTOPE EFFECTS FOR THE

REACTION $CH_4 + H \stackrel{2}{\leftarrow} CH_3 + H_2$

Results and Discussion

Comparison of Theoretical Vibrational

Frequencies and Force Constants

The activated complex normal mode frequencies calculated for the LMR-PES and the various BEBO and LEPS models reported by Kurylo, Hollinden, and Timmons¹² and Shapiro and Weston¹⁴ are compared in Table XV. It should be noted that most of these normal mode frequencies are of comparable magnitude except for the symmetric stretching frequency for motion along the reaction coordinate, v_1 , and the linear bending modes, v_7 and v_8 . Also, the imaginary frequency, v_4 , for the LMR-PES is considerably smaller in value, than the corresponding BEBO and LEPS values indicating that the former potential-energy barrier along the reaction coordinate has less curvature than either of the latter two. This lower degree of curvature in the barrier may be at least partially the result of the LMR-PES having a somewhat lower barrier height as can be seen in Table XVI. Table XVI also shows that the imaginary frequency for the BEBO and LEPS models results from a large interaction force constant between the $C-H_1$ and H_1-H_6 stretching force constants. In contrast the imaginary frequency for the LMR-PES

TABLE XV

CH₃-H-H TRANSITION-STATE FREQUENCIES FROM DIFFERENT SOURCES^a

_	Frequencies From											
Normal	LMR-PES ^b	KHT	c	sw ^d								
Mode		BEBO	LEPS	BEB03 ^e	LEPS2 ^e	BEBO3 ^f	LEPS2 ^f	BEBO3 ^g	LEPS2 ^g			
ν ₁	3388	1610	1397	1568	1392	1577	1412	1603	1482			
^v 2	2938	2980	2980	3149	3149	3149	3149	3149	3149			
^۷ 3	965	1179	1147	958	954	1156	1142	1337	1279			
ν ₄	14791	16891	2024i	1691i	1839i	1691i	1838i	1690i	1838i			
ν ₅	3086	3047	3047	3165	3165	3166	3167	3168	3168			
^۷ 6	1503	1459	1458	1473	1472	1480	1480	1527	1535			
7 ^۷	752	1046	1077	623	779	1008	1078	1355	1384			
^۷ 8	367	446	502	14	14	430	500	458	555			

^aAll frequencies in cm^{-1} .

^bCalculated using LMR-PES parameters.

^CCalculated using the BEBO and LEPS parameters in Reference 12.

 d Calculated using the BEBO3 and LEPS2 parameters in Reference 14 with the $\rm HCH_1$ bending force constant value specified in the footnotes.

^eCalculated with $F_{\phi_{i}}^{\dagger}(i=1,2,3) = 0.0001 \text{ mdyne-A}.$ ^fCalculated with $F_{\phi_{i}}^{\dagger}(i=1,2,3) = 0.26 \text{ mdyne-A}.$ ^gCalculated with $F_{\phi_{i}}^{\dagger}(i=1,2,3) = 0.568 \text{ mdyne-A}.$

TABLE XVI

		Valu	es from				
		KHT ^C		sw ^d			
Value Label	LMR-PES ^b	BEBO	LEPS	BEBO3	LEPS2	Units	
F [‡] _{R1}	-1.534	1.157	0.775	1.096	0.930	mdyne/Å	
F [†] R ₅	4.404	1.157	0.565	1.096	0.653	mdyne/Å	
F [†] int	0.807	1.879	1.653	1.818	1.597	mdyne/A	
$\mathbf{F}_{\alpha}^{\dagger}$	0.0270	0.0526	0.0821	0.0486	0.0799	mdyne-A	
$F_{\phi_{i}}^{\ddagger}$ (i=1,2,3)	0.180	0.280	0.260	ⁱ	ⁱ	mdyne-A	
$F_{\phi_{i}}^{\ddagger}$ (i=4,5,6)	0.552	0.568	0.568	0.568	0.568	mdyne/Å	
^F [↓] _{R₁} (i=2,3,4)	5.039	5.040	5.040	5.50	5.50	mdyne/Å	
$F_{R_{i}R_{j}}^{\dagger}$ (i=j=2,3,4)	0.0	0.050	0.050	0.124	0.124	mdyne/Å	

COMPARISON OF TRANSITION-STATE PARAMETERS^a

TABLE XVI (Continued)

		KH	Tc	S	Wq	
Value Label	LMR-PES ^b	BEBO	LEPS	BEBO3	LEPS2	Units
$F_{R_{i}}^{\ddagger}\phi_{i-2}$ (i-2,3,4)	0.0	0.165	0.165	0.165	0.165	mdyne
$F_{R_{i}\phi_{i-2}}^{\ddagger}$ (i=2,3,4)	0.0	165	165	0.0	0.0	mdyne
$F_{R_1R_i}^{\ddagger}$ (i=2,3,4)	-0.0015	0	0	0	0	mdyne/A
$F_{R_{1}\phi_{i}}^{\dagger}$ (i=1,2,3)	0.0268	0	0	0	0	mdyne
$F_{\phi_{i}R_{i+1}}^{\ddagger}$ (i=1,2,3)	0.0007	0	0	0	O ́	mdyne
$F_{R_{5}\phi_{i}}^{\dagger}$ (i=1,2,3)	-0.0014	0	0	0	0	mdyne
r ₁	1.597	1.27	1.29	1.27	1.28	8
r ₆	0.783	0.92	0.96	0.92	0.95	8
r _i (i=2,3,4)	1.094	1.091	1.091	1.09	1.09	Å
$V_{a}(CH_{4} + H)^{f}$	5.60	12.24	12.22			kilocalories/mole

Value Label		Values from						
	1	КНТ	кнт ^с		w ^d			
	LMR-PES ^D	BEBO	LEPS	BEBO3	LEPS2	Units		
$V_a(CH_3 + H_2)^f$	9.42			13.46	10.63	kilocalories/mole		
$E_a(CH_3 + H_2)^g$	11.11	ι.		13.1 ^j	10.9	kilocalories/mole		
$E_a(CH_4 + H)^h$	6.44	11.73	11.53			kilocalories/mole		

^aAll force constants have subscript designations from Table V. The bondlength designations are also from Table V; see Reference 7.

^bValues determined from the LMR-PES.

^CBEBO and LEPS parameters described in Reference 12.

^dBEB03 and LEPS2 parameters described in Reference 14.

^eInteraction force constant between the $C-H_1$ and H_1-H_6 stretching force constants.

f Barrier height in kilocalories/mole.

^gActivation energy calculated at 500°K.

^hActivation energy calculated at 625°K.

ⁱThree different values 0.0001, 0.26, and 0.568 mdyne-A were used; see Reference 14.

^jIncludes a tunneling correction.

activated complex results from a negative $C-H_1$ stretching force constant. This difference in force constants is not unreasonable since the LMR-PES predicts $C-H_1$ and H_1-H_6 bond lengths in the transition state approximately 0.3 $\overset{\text{o}}{\text{A}}$ longer and 0.15 $\overset{\text{o}}{\text{A}}$ shorter, respectively, than the BEBO and LEPS models. For this reason, the LMR-PES activated complex more closely resembles a methyl radical and hydrogen molecule than the BEBO and LEPS models. This geometry and the large $H_1 - H_6$ force constant, $F_{R_r}^{\dagger}$, give rise to the exceptionally large v_1 value for the LMR-PES in Table XV. Although the differences in the ν_7 and ν_8 frequencies reflect the differences in the linear-bending force constant, $\mathbf{F}_{\alpha}^{\dagger}$, differences in these frequencies result primarily from differences in the HCH₁ bending force constants, $F_{\phi_{1-3}}^{\ddagger} = F_{\phi_i}^{\ddagger}$ (i=1,2,3), between the surfaces. The frequency changes associated with the changes in the $F_{\phi_{1-3}}^{\dagger}$ values can be observed in Table XV. The force constants in Table XVI and the frequencies in Table XV considered together show that a BEBO3 and LEPS2 value of $F_{\phi_{1,2}}^{\ddagger} = 0.26 \text{ mdyne} - A^{14}$ gives the best agreement with the LMR-PES and Kurylo, Hollinden, and Timmons (KHT)¹² v_7 and v_8 frequencies. For the KHT BEBO and LEPS surfaces the F_{α}^{\ddagger} values in columns three and four of Table XVI vary by a factor of 1.56 but produce a negligible change in v_7 and v_8 , see columns three and four of Table XV. Thus the magnitude of the linear bending frequencies is not strongly dependent on the magnitude of the bending force constant, F_{\sim}^{\ddagger} .

For purposes of comparison, the values for the LMR-PES activation energies were calculated using the method of Kibby and Weston.⁴¹ The values predicted by the LMR-PES are compared to the BEBO and LEPS E_a reported by KHT¹² and Shapiro and Weston (SW),¹⁴ which were also

reportedly calculated by this method. The method, as given by Kibby and Weston, ⁴¹ follows the approach of Johnston. ⁴² The experimental activation energy, E_a , is treated as a linear function of the rate constant and temperature. ⁴²

$$E_{a} = \frac{-Rd\ln k}{d(T^{-1})}$$
(III-1)

Integration of (III-1) gives the natural log form of the Arrhenius equation.

$$\ln k = \ln A - \frac{E_a}{RT}$$
 (III-2)

Johnston then gives an equation similar to (III-2) derived from transition-state theory,

$$\ln k = \ln(B(T)) - V_a/RT$$
 (III-3)

where V_a is the barrier height along the reaction coordinate in kilocalories per mole, B(T) is a temperature dependent form of the Arrhenius preexponential factor, and R and T are the gas constant and temperature in °K, respectively. The relation between the theoretical B(T) and V_a on the one hand and the A and E_a on the other hand is given by:

$$\Omega = \frac{d\ln B(T)}{d\ln T}$$
(III-4a)

$$A = B(T) \exp(\Omega)$$
 (III-4b)

$$E_{a} = V_{a} + \Omega RT \qquad (III-4c)$$
The expressions in (III-4) assume that the $(\partial \ln k/\partial T)_p$ for (III-2) and (III-3) are identical and that (III-2) and (III-3) may be equated. Kibby and Weston (KW) then define w_i for each vibrational degree of freedom by

$$w_i = (u_i/2) \operatorname{coth}(u_i/2) - 1$$
 (III-5)

where u_i is the same as u_{1i} in (I-6) and (I-7).⁴¹ The temperature dependent factor, Ω , is defined by KW as

$$\Omega = \mathbf{w}^* + \frac{1}{2}(\mathbf{d}^{\ddagger} - \mathbf{d}_r) + \sum_{\substack{i=1 \\ i=1}}^{d^{\ddagger}-1} \mathbf{u}_i^{\ddagger} \mathbf{u}_i^{r} \qquad (\text{III-6})$$

where w^{*} is a tunneling correction factor (if used, zero otherwise); $d^{\frac{1}{4}}$ is the number of vibrational degrees of freedom in the activated complex including the imaginary frequency; d_{r} is the number of vibrational degrees of freedom in the reactants, and $w_{1}^{\frac{1}{4}}$ and w_{1}^{r} have a value for each transition-state and reactant vibrational degree of freedom calculated by (III-5), respectively. As a result of the 3.82 kcalorie/mole (0.1658 eV) difference between the C-H₁ (4.5808 eV) and H₁-H₆ (4.7466 eV) bond energies used in the LMR-PES,² the V_a (9.42 kilocalories/mole) and E_a (11.11 kilocalories/mole) for reaction of CH₃ + H₂ calculated at 500°K are reasonably comparable to the corresponding V_a (13.46 and 10.63 kilocalories/mole for the BEBO3 and LEPS2 models, respectively) and E_a (13.1 and 10.9 kilocalories/mole for the BEBO3 and LEPS2 models, using $F_{\phi_{1}}^{\frac{1}{4}}$ (i=1,2,3) = 0.26 mdyne-Å, respectively) calculated by SW.¹⁴ However, the LMR-PES V_a (5.60 kilocalories/mole) and E_a (6.44 kilocalories/mole) for reaction of

CH, +H calculated at 625°K are about five kilocalories per mole smaller than the corresponding V_a (12.24 and 12.22 kilocalories/mole for the BEBO and LEPS models, respectively) and E_{a} (11.73 and 11.53 kilocalories/mole for the BEBO and LEPS models, respectively) values calculated by KHT.¹² The difference in the relationships between E_a and V_a for the various models is primarily the result of the diversity in the magnitude of the $\begin{array}{c} d^{\ddagger}-1 \\ \Sigma \\ w_{1} \\ i=1 \end{array}$ $\begin{array}{c} d_{r} \\ w_{i} \\ i=1 \end{array}$ $\begin{array}{c} r \\ \omega_{i} \\ i$ by (III-5) using the frequencies in Table XV with no tunneling correction. However, calculation of the $\sum_{i=1}^{d_r} w^r_i$ values requires a full set of reactant frequencies. For the reaction of CH_4 and H it was determined that KHT^{12} used the spectroscopic frequency values for methane that are reported by Herzberg, 34 since their reported E_a could be reproduced using these frequency values. For the reaction of CH_3 and H_2 it is not known what set of reactant frequencies that SW used to calculate their reported ${\tt E}_{\tt c}$ since they do not specify which of the various spectroscopic of calculated sets of CH_a frequency values they used.¹⁴ The LMR-PES E values were calculated using the harmonic methane and CH3 and H2 calculated normal mode frequencies given in Appendix C. Since the $\sum_{i=1}^{r} w_{i}^{r}$ values at 625° K are 13.89 for the LMR-PES harmonic CH₄ frequencies and 13.52 for the Herzberg spectroscopic $\text{CH}_{\underline{\textit{L}}}$ frequencies, it can be seen that the positive deviation between the LMR-PES V and E values and the negative deviation between the KHT-BEBO (or LEPS) V and E values is the result of the $\begin{array}{c} d^{\ddagger}-1_{\ddagger} \\ \Sigma w^{\ddagger} \\ i=1 \end{array}$ values. The $\begin{array}{c} d^{\ddagger}-1_{\ddagger} \\ \Sigma w^{i} \\ i=1 \end{array}$ values calculated i=1 at 625°K are 13.07 for the LMR-PES activated complex, 11.61 for the KHT-BEBO activated complex, and 11.47 for the KHT-LEPS activated complex. By application of equation (III-6), the Ω values 0.68, -0.41, and -0.55 were calculated for the LMR-PES, KHT-BEBO, and

KHT-LEPS $CH_4 + H$ models, respectively. Therefore, the LMR-PES data generate a larger Ω value than any of the BEBO or LEPS models leading to a greater difference in the corresponding V_a and E_a values. The reason for the larger Ω value can be traced to the very large LMR-PES transition-state v_1^{\ddagger} (3388 cm⁻¹) value which is more than twice as large as any of the BEBO and LEPS v_1^{\ddagger} values.

Assuming that the curvature parameter for motion perpendicular to the reaction coordinate are essentially independent of the barrier height, then the inadequacies of the LMR-PES in this regard have a negligible effect on the quantum mechanical contribution to the predicted KIEs. However, the curvature of the barrier for motion parallel to the reaction coordinate is not necessarily independent of the barrier height and clearly effects the magnitude of v_L^{\ddagger} . Consequently, an inaccurate barrier height would affect the classical mechanical contribution to the calculated KIE. The magnitude of the effect should be largest for a primary KIE where isotopic motion is directly considered in the reaction coordinate and much smaller for a secondary KIE.

Since SW report their calculated KIEs only in the form of temperature dependence plots, accurate comparison to the LMR-PES KIEs required recalculation of the SW KIE values. Using the activated complex parameters in Table XVI and tetrahedral geometry for the CH_3 group relative to the linear C-H-H entity, isotopic normal-mode frequencies consistent with the monoisotopic frequencies in Table XV were calculated for the BEBO and LEPS models and are tabulated in Appendix C along with the mass moment of inertia parameters. These frequencies and parameters were combined with the H₂ and D₂ harmonic

frequencies reported by Persky and Klein, that is, 4395.2 and 3109.1 cm⁻¹, respectively, to calculate the SW KIEs.⁴³ Table XVII presents isotope effects determined experimentally and calculated from the various theoretical models. It should be noted that the H₂ and D₂ frequencies are the only reactant-state frequencies which contribute to the calculated KIEs in Table XVII, since all other reactant contributions to the KIEs cancel out. However, SW¹⁴ report that they used the rotationally corrected H₂ and D₂ quantities reported by Persky and Klein (PK)⁴³ to calculate the $k(CH_3,H_2)/k(CH_3,D_2)$ and $k(CD_3,H_2)/k(CD_3,D_2)$ values in their data. The transition-state theory equation used by SW¹⁴ is equivalent to (I-4) plus a rotational correction factor added to the reactant ZPE term. The SW reactant and transition state vibrational partition function ratios, $f(H_2,D_2)$ and f^{\ddagger} , respectively, are defined in (III-7),

$$k_{\rm H}/k_{\rm D} = v_{\rm 1L}^{\ddagger}/v_{\rm 2L}^{\ddagger} \frac{f({\rm H}_{\rm 2}/{\rm D}_{\rm 2})}{f^{\ddagger}} = \frac{({\rm m}_{\rm H}/{\rm m}_{\rm D})^{\frac{1}{2}} \exp\left(\frac{{\rm Z}_{\rm H_{\rm 2}} - {\rm Z}_{\rm D}_{\rm 2}}{{\rm T}}\right)}{11 \, {\rm u}_{\rm 2i}^{\ddagger} \sinh({\rm u}_{\rm 1i}^{\ddagger}/2)}$$
(III-7)

where $m_{\rm H}$ and $m_{\rm D}$ are the isotopic masses of hydrogen, 1.007825 and 2.0141 amu, respectively, T is in °K, the $u_{\rm ji}$ terms are the same as in (I-6) and (I-7), and Z equals $(u_{\rm X_2}/2) - (\sigma_{\rm X_2}/3)$. The $\sigma_{\rm X_2}/3$ value is the rotational correction to the $(u_{\rm X_2}/2) = (hcv_{\rm X_2})/(2kT)$. The combined ZPE exponent, $(Z_{\rm H_2}-Z_{\rm D_2})/T$, can be expanded to $[(u_{\rm H_2}-u_{\rm D_2})(\frac{1}{2}) - (\sigma_{\rm H_2}-\sigma_{\rm D_2})(1/3)]/T$. Since $\sigma_{\rm H_2}$ and $\sigma_{\rm D_2}$ have the values 87.5 and 43.8, respectively, then obviously, the application of the rotational

TABLE XVII

EXPERIMENTAL AND THEORETICAL KINETIC ISOTOPE EFFECTS

Rate			LMR-P	es ^a				Exper	imen	tal					Theoretic	alb			
Constant Ratio	Temp. K	HFC	вт ^d	OF ^e	RCf	KHT ⁹	sw ^h	WS ⁱ	MSj	DB ^k	TW1	$P_{\beta}^{\text{BEBO3}} = 0.0001$	$\frac{BEBO3}{F_{\beta}=0.26}$	$\frac{BEBO3}{F_{\beta}} = 0.568$	LEPS2 F _g =0.0001	LEPS2 F _e =0.26 F	LEPS2 8=0.568	BEBO	LEPS
k (CH4, H)	.500	0.509	0.611			0.834						0.739	0.738	9.738	0.786	0.786	0.786	0.724	0.785
k(CH4,D)	546	0.554	0.639			0. 870						0.773	0.773	0.773	0.818	0.818	0.818	0.763	0.821
k (CH ₃ ,H ₂) k (CH ₃ ,D ₂)	296 399 403 409 426	1.99 1.90 1.90 1.89 1.88	5.04 4.87 4.61 3.98	1.85 1.80 1.80 1.79 1.78	1.67 1.67 1.67 1.67 1.67		4.80	4.79	5.50	5.75	2.12	7.14 4.85 4.79 4.71 4.50	5.40 4.06 4.03 3.98 3.84	4.25 3.44 3.42 3.39 3.30	6.82 4.77 4.72 4.65 4.45	5.26 4.04 4.00 3.96 3.82	4.19 3.44 3.42 3.39 3.31	5.07 3.91 3.87 3.82 3.69	5.32 4.07 4.04 3.99 3.85
	428 482	1.88 1.83	3.93 3.26	1.78 1.75	1.67 1.65		4.45	2.80	3.33			4.47 3.92	3.82 3.45	3.29 3.04	4.42 3.90	3.81 3.45	3.30 3.05	3.67 3.33	3.83 3.47
k(CD ₃ ,H ₂) k(CD ₃ ,D ₂)	296 402 403 468 483	1.98 1.90 1.90 1.84 1.83	4.89 4.85 3.18 3.01	1.83 1.79 1.79 1.76 1.75	1.67 1.67 1.67 1.65 1.65		3.33 3.07	2.98 2.98	4.11 3.48		0.465	7.13 4.81 4.79 4.06 3.92	5.32 4.01 4.01 3.53 3.44	4.08 3.36 3.36 3.07 3.01	6.82 4.73 4.72 4.03 3.90	5.19 3.99 3.98 3.53 3.44	4.04 3.37 3.36 3.08 3.02	4.99 3.89 3.85 3.40 3.32	5.26 4.03 4.02 3.55 3.47
к (Сн ₃ , но) к (Сн ₃ , он)	296 403 467 483 532	2.02 1.73 1.63 1.61 1.55	2.57 2.07 2.00 1.83				2.08 1.92	2.3 3 1.79	-		6.37	2.06 1.77 1.67 1.65 1.60	1.56 1.49 1.46 1.45 1.43	1.23 1.26 1.27 1.28 1.30	1.57 1.47 1.43 1.42 1.40	1.22 1.25 1.26 1.26 1.27	0.972 1.07 1.11 1.12 1.14	1.55 1.48 1.46 1.45 1.43	1.20 1.24 1.25 1.25 1.25
k (CD ₃ , HD) k (CD ₃ , DH)	402 403 468 483	1.73 1.73 1.63 1.61	2.56 2.55 2.06 2.00				1.81 1.71	1.76 1.73		,		1.77 1.77 1.67 1.65	1.48 1.48 1.45 1.45	1.24 1.24 1.26 1.26	1.47 1.47 1.43 1.42	1.24 1.24 1.25 1.26	1.05 1.05 1.10 1.10	1.48 1.47 1.45 1.44	1.23 1.23 1.24 1.25

^aTransition-state theory calculated KIEs using the LMR-PES geometries and force constants (plus Guassian 70 out-of-plane bending force constant) except as noted.

^bTransition-state theory calculated KIE values using the LEPS2 and BEBO3 model parameters from Reference 14 $[F_{\beta}=F_{\phi_{1}}^{\frac{1}{4}}(i=1,2,3)]$ and using the BEBO and LEPS model parameters from Reference 12.

cmransition-state theory calculated using the harmonic calculated LMR-PES normal mode frequencies.

d_{LMR-PES-HF} values including Bell tunneling.

 $e_{\text{IMR-PES KIBS}}$ calculated using the H₂ and D₂ observed frequencies from Reference 40.

 $f_{IMR-PES-HF}$ values corrected to the rotationally corrected H_2 and D_2 values in Reference 43; see text.

^gResults from Reference 12.

h Results from Reference 14.

ⁱResults from Reference 15.

j_{Results} from Reference 16.

^kResults from Reference 17.

¹Results from Reference 13.

correction in (III-7), reduces the KIE value below that produced by the same set of frequencies used in (I-4).⁴³ At about 400°K the amount of this reduction is approximately three percent. The interatomic H₂ distance, $r_{H_2} = 0.742$ Å, was used in both the PK⁴³ and the LMR-PES² calculations. Therefore, use of the PK σ_{H_2} and σ_{D_2} values to apply a rotational correction to the LMR-PES KIEs in Table XVII is valid [since, $\sigma_{x_2} = h^2/(8\pi^2 kTur_{x_2}^2)$, where h, k, T, u, and r_{x_2} are the Planck's constant, Boltzmann's constant, temperature in °K, reduced mass of the diatomic molecule, and the interatomic distance, respectively]. The application of a rotational correction to the LMR-PES $k(CH_3, H_2)/k(CH_3, D_2)$ values in the column labeled HF at 296 and 483°K reduces the values 1.99 and 1.83 to 1.89 and 1.78, respectively. Similarly for $k(CD_3, H_2)/k(CD_3, D_2)$ in the column labeled HF the values at 296 and 483°K are reduced by rotational correction from 1.98 and 1.83 to 1.88 and 1.78, respectively.

Since our transition-state-theory computer routine was not designed to handle a rotational correction in the manner of (III-7) directly, the rotationally corrected frequency values reported by PK were used to obtain a temperature dependent correction factor which could be multiplied times the KIEs obtained by (I-3) or (I-4). One factor value was used to correct the SW values and another factor value was used to obtain LMR-PES values which are directly comparable to the rotationally corrected SW values.¹⁴ The SW correction factor is obtained as follows. The reactant exponent in the ZPE term for (I-3) and (I-4) is given by (III-8),

$$\frac{{}^{u}H_{2}^{-u}D_{2}}{2} = \frac{1.4388(4395.2-3109.1)}{2T} = \frac{925.2}{T}$$
(III-8)

where $u_i = \frac{hcv_i}{kT} = \frac{1.4388v_i}{T}$ is the conversion factor used in the computer code. The rotationally corrected exponent reported by Persky and Klein is $\frac{889.4}{T}$.⁴³ Therefore, the reactant ZPE term using (III-8) is converted to the PK rotationally corrected ZPE term by multiplying by (III-9).

$$\frac{\exp(\frac{889.4}{T})}{\exp(\frac{925.2}{T})} = \exp(\frac{889.4 - 925.2}{T}) = \exp(\frac{-35.8}{T})$$
(III-9)

The rotationally corrected KIE is given by (III-10) since the reactant EXC value is to at least five significant digits unity.

$$k_{\rm H}/k_{\rm D}$$
 (corrected) = $k_{\rm H}/k_{\rm D} \cdot \exp(\frac{-35.8}{\rm T})$ (III-10)

All of the BEBO3, LEPS2, BEBO, and LEPS $k(CH_3, H_2)/k(CH_3, D_2)$ and $k(CD_3, H_2)/k(CD_3, D_2)$ values in Table XVII were calculated by application of (III-10) to those KIEs calculated using (I-3) and the H₂ and D₂ frequencies in (III-8). The same type correction was applied to the LMR-PES KIEs; these rotationally corrected LMR-PES KIEs are given in the column labeled RC in Table XVII. The LMR-PES H₂ and D₂ harmonic frequencies, 4468.1 and 3160.6 cm⁻¹, respectively, were used to calculate this correction factor, and the corrected LMR-PES KIE is given by (III-11c).

$$\frac{{}^{u}_{H_{2}} - {}^{u}_{D_{2}}}{2} (LMR-PES) = \frac{1.4388(4468.1 - 3160.6)}{2T} = \exp(\frac{940.6}{T}) (III-11a)$$

$$\frac{\exp(\frac{889.4}{T})}{\exp(\frac{940.6}{T})} = \exp(\frac{889.4 - 940.6}{T}) = \exp(\frac{-51.2}{T})$$
(III-11b)

$$k_{\rm H}/k_{\rm D}$$
 (corrected LMR-PES) = $k_{\rm H}/k_{\rm D}$ (LMR-PES) exp($\frac{-51.2}{\rm T}$) (III-11c)

Therefore, the values in the column labeled RC in Table XVII are obtained by multiplying the values in the column labeled HF by (III-11b). Obviously, adjusting the LMR-PES reactant ZPE values to the rotationally corrected PK reactant ZPE values does lead to lower calculated KIES and does further increase the disagreement between experiment and theory. However, some of the LEPS2, BEBO3, LEPS, and BEBO KIEs were larger than their corresponding experimental values. Therefore, lowering these theoretical KIEs by application of the rotational correction improved their agreement with experiment. This improvement occurs for the BEBO3 and LEPS2 $k(CH_3, H_2)/k(CH_3, D_2)$ values in columns 13 and 16 only in Table XVII (that is, for the KIEs calculated using $F_{\phi_i}^{\dagger}(i=1,2,3) = 0.0001 \text{ mdyne-A}$. However, for the $k(CD_3, H_2)/k(CD_3, D_2)$ values the rotational correction improves the agreement with most of the experimental values (that is, most all of the values in columns 13 through 19 in Table XVII exceed or are approximately equal to the corresponding experimental value). One exception to the latter statement for the $k(CD_3, H_2)/k(CD_3, D_2)$ values is that the Majury and Steacie experimental values, 4.11 and 3.48,¹⁶

exceed the calculated LEPS2 and BEBO3 KIEs using $F_{\phi_1}^{\dagger}$ (i=1,2,3) = 0.26 and 0.568 mdyne- A^{14} and the LEPS and BEBO¹² KIEs.

Columns five and six of Table XVII show that use of the observed H_2 and D_2 frequencies, 4395.2₄ and 3118.4₆ cm⁻¹, respectively, in place of the LMR-PES harmonic frequencies leads to KIEs which are about five percent lower than those calculated using harmonic frequencies.⁴⁰ Clearly, the agreement between theory and experiment is not as strongly dependent upon the magnitude of the fundamental frequencies for H_2 and D_2 used in the calculation as upon other factors.

Application of Bell tunneling to the LMR-PES KIEs in the column labeled HF produces the values in the column labeled BT.⁴⁴ Bell tunneling treats the potential-energy barrier along the reaction coordinate as being parabolic in shape and is assumably valid for all $u_{L}^{\frac{1}{4}} = \frac{hcv_{L}^{\frac{1}{4}}}{kT} < 2\pi$, where h is Planck's constant, c is the velocity of light, k is Boltzmann's constant, T is in °K and $v_{L}^{\frac{1}{4}}$ is the imaginary frequency representing translational motion along the reaction coordinate for the activated complex.⁴⁴ The Bell tunneling correction factor B_t is calculated for the isotopic $u_{L}^{\frac{1}{4}} < 2\pi$ using equation (III-12).

$$B_{t}(T) = \frac{u_{1L}^{\dagger} \sin(u_{2L}^{\dagger}/2)}{u_{2L}^{\dagger} \sin(u_{1L}^{\dagger}/2)}$$
(III-12)

The condition $u_{L}^{\ddagger} < 2\pi$ is valid for the LMR-PES above 340°K; for the BEBO model above ~390°K; and for the LEPS model above ~465°K. The Bell tunneling correction factor is a function of the absolute temperature and is simply multiplied by the transition-state theory LMR-PES-HF KIE

at the corresponding temperature to obtain the Bell tunneling corrected KIEs in the column labeled BT. It can be seen that the application of Bell tunneling to the LMR-PES KIEs improves the agreement with the corresponding experimental KIEs with the possible exceptions of the $k(CD_3, HD)/k(CD_3, DH)$ and the $k(CD_3, H_2)/k(CD_3, D_2)$ values. This improvement in the agreement between theoretically calculated KIEs and experimental KIEs upon applying a correction for tunneling does not necessarily indicate the presence of tunneling in that reaction. It could also indicate deficiencies in the LMR-PES and/or inaccuracies in the experimentally determined KIE.

The only experimental KIE for reaction of CH_4 + H involves the effect of D atoms versus H atoms on the abstraction rate.¹² The activated complexes principally determine this KIE since the reactants contribution only reflects the momentum of H relative to D along the reaction coordinate. Similarly the intramolecular isotope effects for the reaction of CH_3 and CD_3 with HD are entirely determined by the isotopic properties of the activated complexes. Obviously, the $k(CH_3, HD)/k(CH_3, DH)$ and $k(CD_3, HD)/k(CD_3, DH)$ values predicted by the LMR-PES KIEs with and without tunneling agree reasonably well, although not quantitatively with the experimental KIEs. This amount of agreement between the LMR-PES and experimental KIEs indicates that the force constants governing vibrational motion both parallel and perpendicular to the reaction coordinate at the top of the barrier (or saddle point) are reasonable.

The various BEBO and LEPS models produce values for $k(CH_4,H)/k(CH_4,D)$ in better agreement with experiment than does the LMR-PES. Also, variation of the HCH₁ bending force constant,

 $F_{\phi_1}^{\dagger}(i=1,2,3)$, from 0.0001 to 0.568 mdyne-Å in the SW BEBO3 and LEPS2 models has no effect on the k(CH₄,H)/k(CH₄,D) KIE values. However, the LMR-PES k(CH₃,HD)/k(CH₃,DH) and k(CD₃,HD)/k(CD₃,DH) KIEs agree with experiment much better than the corresponding BEBO and LEPS KIEs except for the BEBO3 model with the unrealistically small HCH₁ bending force constant $F_{\phi_1}^{\dagger}(i=1,2,3) = 0.0001$ mdyne-Å. Comparison of the BEBO3 and LEPS2 k(CH₃,HD)/k(CD₃,DH) and k(CD₃,HD)/k(CD₃,DH) values as a function of the $F_{\phi_1}^{\dagger}(i=1,2,3)$ values shows that as the HCH₁ force constant becomes larger, these intramolecular isotope effects become smaller and hence the agreement between theory and experiment worsens. The LMR-PES predicts a value for the $F_{\phi_1}^{\ddagger}(i=1,2,3)$ of 0.18 mdyne-Å which is comparable to but slightly smaller than both the median value used by SW and the value assumed by KHT, see Table XVI.

In view of the results in Table XVII, the KIEs for the reactions $CH_4 + H(D)$, $CH_3 + H_2(D_2)$ and $CD_3 + H_2(D_2)$ could be construed as indicating inadequacies in the LMR-PES compared to the BEBO and LEPS models relative to experiment. However, the results for the reactions $CH_3 + HD$ and $CD_3 + HD$ in Table XVII could be taken to suggest that the BEBO and LEPS models are inadequate relative to the LMR-PES when compared to experiment. These contradictory results are indicative of one or more of the following. First, both the LMR-PES and the BEBO3, LEPS2, BEBO, and LEPS models contain inadequacies specific to a certain type of calculated KIE. Absolute reaction rate theory requires that the correct potential energy hypersurface reproduce all experimental KIEs assuming that the latter are accurate and precise. Therefore, it seems illogical that a model could reasonably predict results for only one of two related experiments. Second, the

experimental determination of one type of KIE is subject to errors and and the correction of these errors would lead to agreement between only one theoretical model and experiment. Although this is not inconceivable, it is impossible to tell which model (BEBO3, LEPS2, BEBO, LEPS, or the LMR-PES) if any would best fit a set of revised experimental results, provided the present results were found to be in error. Empirical variation of various LMR-PES transition-state force constants was attempted, but no completely self-consistent set of isotopic frequencies could be found to reproduce the experimental differences between the CH₃ and CD₃ reactions with H₂(D₂) and HD. A similar conclusion was reached by Shapiro and Weston.¹⁴

As seen in Table XVII, Ting and Weston observed normal intermolecular and intramolecular isotope effects on the abstraction of hydrogen from H_2 by hot CH_3^* ; that is, $k(CH_3, H_2)/k(CH_3, D_2) = 2.12$ and $k(CH_3, HD)/k(CH_3, DH) = 6.37$ at 296°K.¹³ However, reaction of hot CD_3 with $H_2(D_2)$ produced an inverse isotope effect, $k(CD_3, H_2)/k(CD_3, D_2)$ of 0.465.¹³ As discussed in Chapter I, these results are difficult to interpret either qualitatively or quantitatively. Since a thermal distribution of reactant energies is a prerequisite to the use of absolute-reaction-rate theory, kinetic isotope effects can not be calculated for these reactions by this approach.

For the hot-atom reactions $T^* + CH_4 \rightarrow CH_3 + TD$ and $T^* + CD_4 \rightarrow CD_3 + TD$ the hot atom yield ratios, $[(HT/CH_4)/(DT/CD_4)]$, found experimentally by Chou and Rowland¹⁰ and calculated by Raff² are 1.43 and 1.18, respectively. The calculated yield ratio was obtained using the LMR-PES, an integrated reaction probability equation, and reactant and Br₂ moderator concentrations equivalent to those used by Chou and

Rowland.^{2,10} Both the calculated and experimental yield ratios assumably reflect the reaction of thermalized (or relatively stationary with respect to H and T atoms) CH_{Δ} and CD_{Δ} with tritium atoms possessing translational energies ≤ 65 kilocalories/mole. The temperature equivalent of these translational energies is ≤ 22,000 °K. In terms of equation (I-4) it is important to note that as T in °K approaches infinity VPxEXC approaches ZPE-1. 3a, b, 11 Thus, in the limit of high temperature the isotope effect for a given reaction equals $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$; that is, the observed KIE is classical mechanical in origin. It is thus interesting to note, that for the abstraction reactions of thermalized tritium atoms with CH4 and CD4, the LMR-PES predicts an "infinite"-temperature isotope effect, $v_{11}^{\ddagger}/v_{21}^{\ddagger}$, of 1.19. This value is in good agreement with both the experimental and hot atom yield ratios. Thus, this agreement maybe tentatively taken to suggest that in a reactive collision between T^* and CH_{λ} and T^* and CD_{λ} , the T^{*} atom translational energies are on the average sufficiently large to obscure the differences in quantum mechanical effects for the two reactions.

However, for the reactions $CH_3^* + H_2(D_2)$ and $CD_3^* + H_2(D_2)$ using hot methyl radicals, the isotope effects reported by Ting and Weston, $k_H/k_D = 2.12$ and 0.465, respectively, are not approximated by the $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$ ratios calculated for the corresponding thermal reactions, $v_{1L}^{\ddagger}/v_{2L}^{\ddagger} = 1.327$ and 1.328, respectively. The following comments are thus pertinent. First, the agreement between the hot atom yield ratios and the $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$ ratio is merely fortuitous. Second, the CH_3 and CD_3 excitation energy involves principally internal rather than translational modes of the radicals. It is to be noted that Chapman

and Bunker¹⁸ claim isotope effects of 1.84 and 0.70 on the ratios of reactive cross sections, $\sigma(CH_3, H_2)/\sigma(CH_3, D_2)$ and $\sigma(CD_3, H_2)/\sigma(CD_3, D_2)$, respectively. These results supposedly reproduce the corresponding normal and inverse isotope effects reported by Ting and Weston 12 for $CH_3^* + H_2(D_2)$ and $CD_3^* + H_2(D_2)$. Chapman and Bunker (CB) also claim that these isotope effects do not reflect vibrational excitation in CH₃ and CD_{q} .¹⁸ However, their data does appear to show that vibrational excitation of H_2 (or D_2) does enhance the reaction rate and preserve the unusual isotope effect, as previously mentioned in Chapter I.¹⁸ However, these conclusions could be fortuitous, since each normal mode frequency is assigned an apparently arbitrary dynamic energy which is used to obtain and then adjust the internal coordinates of the molecule to obtain some specified total energy for the molecule. It is not clear whether this adjustment procedure or the method of choosing the initial energies allows for the proper representation of the CB potential energy surface in these calculations. Also, the validity of comparing isotopic reactive cross sections with the experimental isotope effects of Ting and Weston is unclear.

Theoretical and Experimental

Temperature Dependences

The temperature dependences for the experimental KIEs in Table XVII are compared to the temperature dependences of the corresponding LMR-PES, BEBO, BEBO3, LEPS, and LEPS2 theoretically calculated KIEs summarized in Tables XVIII through XXII. The ratio of the preexponential factors, A_H/A_D , and the difference in activation energies for labeled and unlabeled reactions, ΔE , was determined for each isotope

TABLE XVIII

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CH₄,H)/k(CH₄,D)^a

A _H /A _D	∆E (calories/mole)	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.391 ± 0.003	-1000 ± 2	396-969	2	LMR-PES
0.903 ± 0.053	-355 ± 59	396-696	2,44	LMR-PES + Bell Tunneling
1.38	-500 ± 300	500-732	12	KHT experimental result
1.268 ± 0.008	-541 ± 6	396-696	14	BEBO3 F_{ϕ}^{\ddagger} = 0.0001 mdyne-A ^d
1.269 ± 0.008	-541 ± 6	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne-}A^{d}$
1.269 ± 0.008	-541 ± 6	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.658 \text{ mdyne-A}^{d}$
1.263 ± 0.008	-475 ± 6	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne} - A^{d}$
1.264 ± 0.008	-476 ± 6	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne} - A^{d}$
1.265 ± 0.008	-477 ± 6	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne-}A^{d}$

TABLE XVIII (Continued)

A _H /A _D	∆E (calories/mole)	Temperature Range (°K)	Reference ^b Source		Source ^C Label
1.224 ± 0.007	-561 ± 6	396-696	12	BEBO	
1.261 ± 0.008	-469 ± 6	396-696	12	LEPS	

^aAll results except experimental results are from the least squares fits to equation (III-13) for 12 temperatures over the specified range. All deviations are standard deviations.

^bReferences from which the experimental values and/or the force constants and geometries used for the theoretical calculations were obtained.

^CDescribes information obtained from the references.

 $d_{F_{\phi}^{\ddagger}} = F_{\phi_{i}}^{\ddagger}$ (i=1,2,3), see Table XVI.

TABLE XIX

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CH₃,H₂)/k(CH₃,D₂)^a

A _H /A _D	∆E (calories/mole)	T emperature Range (°K)	Reference ^b Source	Source ^C Label
1.483 ± 0.009	201 ± 6	396-696	2	LMR-PES
0.612 ± 0.064	1584 ± 102	396-696	2,44	LMR-PES + Bell Tunneling
0.911 ± 0.020	1327 ± 24	399-645	14	SW experimental
0.194 (0.659) ^d	1760 (707) ^d	403-564	15	WS experimental
0.246 ± 0.134 (0.809 ± 0.673) ^d	2516 ± 613 (1560 ± 1693) ^d	408-571	16	MS experimental
	1100	409-591	17	DB experimental
1.337 ± 0.013	1028 ± 10	396-696	14	BEB03 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne} - A^{e}$
1.455 ± 0.018	822 ± 12	396-696	14	BEB03 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne-A}^{e}$
1.540 ± 0.019	646 ± 13	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne-}A^{e}$

TABLE XIX (Continued)

A _H /A _D	AE (calories/mole)	T empe rature Range (°K)	Reference ^b Source	Source ^C Label
1.379 ± 0.016	993 ± 12	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne} - A^{e}$
1.488 ± 0.020	801 ± 14	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne-A}^{e}$
1.566 ± 0.021	635 ± 14	396-696	14	LEPS2 $F_{\phi}^{\dagger} = 0.568 \text{ mdyne} - A^{e}$
1.533 ± 0.019	777 ± 13	396-696	12	ВЕВО
1.484 ± 0.020	809 ± 14	396-696	12	LEPS

^aAll results except experimental results are from the least squares fits to equation (III-13) for 12 temperatures over the specified range. All deviations are standard deviations.

b References from which the experimental values and/or the force constants and geometries used for the theoretical calculations were obtained.

^CDescribes information obtained from the references.

^d Values in parentheses are calculated by a different method, see text.

$$e_{F_{\phi}^{\ddagger}} = F_{\phi_{i}}^{\ddagger}$$
 (i=1,2,3), see Table XVI.

TABLE XX

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CD₃, H₂)/k(CD₃,D₂)

A _H /A _D	∆E (calories/mole)	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.488 ± 0.010	197 ± 7	396-696	2	LMR-PES
0.616 ± 0.064	1576 ± 101	396-696	2,44	LMR-PES + Bell Tunneling
1.592 ± 0.124	588 ± 70	402-611	14	SW experimental
3.724 (1.702) ^d	-201 (714) ^d	410-572	15	WS experimental
1.727 ± 0.279 $(1.062 \pm 0.699)^{d}$	701 ± 462 (1100 ± 480) ^d	407-570	16	MS experimental
1.339 ± 0.013	1027 ± 10	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne-} A^{e}$
1.466 ± 0.018	813 ± 13	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne-}A^{e}$
1.572 ± 0.021	616 ± 14	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne}^{\circ}A$

TABLE XX (Continued)

A _H /A _D	∆E (calories/mole)	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.380 ± 0.016	992 ± 12	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.001 \text{ mdyne-}A^{e}$
1.497 ± 0.021	792 ± 14	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne} - A^{\Theta}$
1.595 ± 0.023	607 ± 15	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne-}A^{e}$
1.490 ± 0.019	777 ± 13	396-696	12	BEBO
1.493 ± 0.021	800 ± 14	396-696	12	LEPS

^aAll results except experimental results are from the least squares fits to equation (III-13) for 12 temperatures over the specified range. All deviations are standard deviations.

^bReferences from which the experimental values and/or the force constants and geometries used for the theoretical calculations were obtained.

^CDescribes information obtained from the references.

 $^{\rm d}_{\rm Values}$ in parentheses are calculated by a different method, see text.

 $e_{F_{\phi}^{\ddagger}} = F_{\phi_{i}}^{\ddagger}$ (i=1,2,3), see Table XVI.

TABLE XXI

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CH₃, HD)/k(CH₃, DH)^a

A _H /A _D	ΔE (calories/mole)	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.083 ± 0.003	379 ± 3	396-969	2	LMR-PES
0.761 ± 0.027	945 ± 36	396-696	2,44	LMR-PES + Bell Tunneling
0.283 ± 0.258	1929 ± 690	367-651	14	SW experimental
0.452 ^d	1350 ^d	408-569	15	WS experimental
1.170 ± 0.002	330 ± 2	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne-}A^{e}$
1.273 ± 0.001	125 ± 1	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne-}A^{e}$
1.346 ± 0.001	-51 ± 1	396-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne-}A^{e}$
1.213 ± 0.001	154 ± 1	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne-}A^{\circ}$

TABLE XXI (Continued)

A _H /A _D	∆E (calories/mole	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.308 ± 0.002	-362 ± 1	396-696	14	LEPS2 $F_{\phi}^{\dagger} = 0.26 \text{ mdyne-A}^{e}$
1.375 ± 0.002	-201 ± 1	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne } A^{e}$
1.278 ± 0.001	120 ± 1	396-696	12	BEBO
1.309 ± 0.002	-44 ± 1	396-696	12	LEPS

^aAll results except experimental results are from the least squares fits to equation (III-13) for 12 temperatures over the specified range. All deviations are standard deviations.

^bReferences from which the experimental values and/or the force constants and geometries used for the theoretical calculations were obtained.

C Describes information obtained from the references.

d Average of the results at two different reactant pressures.

 $e_{F_{\phi}}^{\dagger} = F_{\phi_{i}}^{\dagger}$ (i=1,2,3), see Table XVI.

TABLE XXII

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CD₃, HD)/k(CD₃, DH)^a

A _H /A _D	∆E (calories/mole)	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.085 ± 0.003	375 ± 3	396-696	2	LMR-PES
0.764 ± 0.027	939 ± 35	396-696	2,44	LMR-PES + Bell Tunneling
0.932 ± 0.133	546 ± 131	402-611	14	SW experimental
1.698	0	410-572	15	WS experimental
1.171 ± 0.002	329 ± 2	396-696	14	BEB03 F_{ϕ}^{\ddagger} = 0.0001 mdyne-A ^d
1.282 ± 0.001	115 ± 1	396-696	14	BEBO3 F_{ϕ}^{\ddagger} = 0.26 mdyne-A ^d
1.374 ± 0.002	-82 ± 2	296-696	14	BEBO3 $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne-}A^{d}$
1.214 ± 0.001	153 ± 1	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.0001 \text{ mdyne-A}^{d}$
1.316 ± 0.002	-46 ± 1	396-696	14	LEPS2 $F_{\phi}^{\ddagger} = 0.26 \text{ mdyne-A}^{d}$

TABLE XXII (Continued)

A _H /A _D	∆E (calories/mole)	Temperature Range (°K)	Reference ^b Source	Source ^C Label
1.401 ± 0.003	-230 ± 2	396-696	14	LEPS $F_{\phi}^{\ddagger} = 0.568 \text{ mdyne-A}^{d}$
1.289 ± 0.001	109 ± 1	396-696	12	BEBO
1.317 ± 0.002	-54 ± 2	396-696	12	LEPS

^aAll results except experimental results are from the least squares fits to equation (III-13) for 12 temperatures over the specified range. All deviations are standard deviations. The atom underlined is being abstracted.

^bReferences from which the experimental values and/or the force constants and geometries used for the theoretical calculations were obtained.

^CDescribes information obtained from the references.

 ${}^{d}F^{\ddagger}_{\phi} = F^{\ddagger}_{\phi_{i}(i=1,2,3)}$, see Table XVI.

effect by applying equation (III-13) to the KIE data using the method of least squares.

$$\ln(k_1/k_2) = \ln(A_1/A_2) + \Delta E/RT \qquad (III-13)$$

In (III-13) the subscripts 1 and 2 refer to the light and heavy isotopes, respectively, and k_1/k_2 is the KIE at a specific temperature T in °K.

For the isotope effect $k(CH_{L},H)/k(CH_{L},D)$, the data in Table XVIII shows that the error in the KHT experimental ΔE value encompasses all but the LMR-PES $\triangle E$ value. The application of Bell tunneling to the LMR-PES KIEs apparently over-corrects the LMR-PES ΔE value, but it does cause the value to fall within the error bounds of the experimental value. However, inclusion of the Bell tunneling correction produces a calculated $A_{\rm H}/A_{\rm D}$ value of 0.903 which is lower than either the experimental value, 1.38, or the values obtained from the various BEBO and LEPS models. As previously mentioned the improvement in the agreement with experiment by application of tunneling may be more indicative of inadequacies in either one or more of the theoretical models or in the experimental results or both than the existence of tunneling. The maximum error in the experimental $A_{\rm H}^{\rm /A_{\rm D}}$ value, 1.38, is estimated by KHT to probably be within ± 0.14.¹² However, due to the experimental problems discussed in Chapter I, this A_{μ}/A_{p} value, 1.38, and the associated error were estimated using simple collision theory.¹² It should be noted that changes in the value of $F_{\phi_i}^{\dagger}(i=1,2,3)$ has no more

effect on the calculated Arrhenius equation parameters than it does on the $k(CH_4,H)/k(CH_4,D)$ values in Table XVII.

As seen in Table XIX, the ΔE for the reaction $CH_3 + H_2(D_2)$ calculated from the experimental KIEs is greater than the values obtained from the isotope effects calculated without inclusion of tunneling; the lowest value being that from the LMR-PES data. For the LMR-PES, inclusion of Bell tunneling into the isotope effects significantly improves the agreement between predicted and experimental ΔE values. However, this result does not necessarily indicate that tunneling is present. Precise comparison between theory and experiment is necessarily precluded by the considerable discrepancies between the experimental ΔE values. The individual experimental ΔE values differ by more than the uncertainties measured for any one reported value. The experimental A_{H}^{A}/A_{D}^{A} values in Table XIX seem too low except for the value reported by SW.¹⁴ The differences in these experimental A_{μ}/A_{D} values may be at least partially due to the experimental technique. Davison and $Burton^{17}$ and SW^{14} determined their KIE values for the reaction of methyl radicals with a mixture of H, and D_2 , whereas Whittle and Steacie¹⁵ and Majury and Steacie¹⁶ reacted methyl radicals with H, or D, separately. Davison and Burton (DB) determined their ΔE value by fitting a line to their KIE values assuming a steric factor ratio of unity. The collision theory equation used by DB is equivalent to the Arrhenius equation used by SW except that the steric factor ratio (S_1/S_2) must be multiplied by a collision number ratio (C_1/C_2) to obtain a value equivalent to the $A_{\rm H}/A_{\rm D}$ values given by fitting data to (III-13). The collision number ratio, C_1/C_2 , is given by

$$C_{1}/C_{2} = \left[\frac{\sigma(CH_{3}, H_{2})}{\sigma(CH_{3}, D_{2})}\right]^{2} \frac{1/M_{CH_{3}} + 1/M_{H_{2}}}{1/M_{CH_{3}} + 1/M_{D_{2}}}$$
(III-14)

where the M values are molecular weights of the species specified in the subscript and the σ values are the collision diameters of the reactant species. $^{17}\,$ Assuming the same collision diameter for ${\rm H}_2$ and D_2 , a C_1/C_2 value of 1.337 is obtained from (III-14) using the masses (in amu): C= 12; H = 1.007825; D = 2.0141. Therefore, the S_1C_1/S_2C_2 value 1.337 could be taken as the ${\rm A}_{\rm H}^{}/{\rm A}_{\rm D}^{}$ associated with the DB ΔE value of 1100 calories/mole and could be compared to the other $A_{\rm H}/A_{\rm D}$ values in Table XIX. The Arrhenius parameters reported by Whittle and Steacie (WS)¹⁵ and by Majury and Steacie (MS)¹⁶ were calculated from rate constants obtained by two methods. These two different methods are only applicable to the determination of the individual rate constants for the reactions $CH_3 + D_2$ and $CD_3 + H_2$ which are used to calculate the Arrhenius parameters in Table XIX and Table XX, respectively. The values obtained by using method I rate constants are given in parentheses in Tables XIX and XX. For method I the rate constants were calculated by subtracting the concentration of methane obtained from photolysis of acetone alone from the total concentration of isotopic methanes obtained from photolysis of acetone or acetone-d₆ in the presence of D_2 or H_2 to obtain the concentration of CH_3D or CD_3H , respectively. These concentrations are needed to determine the individual rate constants for formation of CH3D or $CD_{2}H$, respectively. ^{15,16} For method II, rate constants were obtained from mass spectrometric determination of the ratios $[CH_3D]/[CH_4]$ or

 $[CD_{2}H]/[CD_{4}]$ in the product gases from photolysis of acetone or acetone-d₆ in the presence of either D_2 or H_2 , repectively.^{15,16} The individual $k(CH_3, H_2)/k(CH_3, D_2)$ and $k(CD_3, H_2)/k(CD_3, D_2)$ values that were reported in Table XVII and attributed to MS were calculated by us using the rate constants reported by MS in a summary table and are averages of the method I and method II rate constant values.¹⁶ However, WS considered the method II rate constants to be the more accurate. Therefore, the $k(CH_3, H_2)/k(CH_3, D_2)$ and $k(CD_3, H_2/k(CD_3, D_2))$ values reported in Table XVII in the column labeled WS were calculated using the method II rate constants $k(CH_3, D_2)$ and $k(CD_3, H_2)$.¹⁵ WS did not report individual method I rate constant values in their summary table from which the other WS values in Table XVII were calculated.¹⁵ It should be noted that the rate constants for reaction of $CH_3 + H_2$ and $CD_3 + D_2$ could only be determined by method I. Therefore, the generally better agreement between the method I Arrhenius equation parameters given in parentheses in Tables XIX and XX for MS^{16} and WS^{15} , and the parameter values reported by Shapiro and Weston¹⁴ and by Davison and Burton¹⁷ reflects the probable cancellation of consistent errors in the method I values yielding reasonably accurate KIEs. Although, the method II rate constants determined by ${
m MS}^{16}$ and ${
m WS}^{15}$ may be more accurate, by themselves, the KIEs determined by a ratio of one method I and one method II rate constant may actually compound the error of each rate constant into a greater error in the resultant KIE value.

The data in Tables XIX and XX clearly show that transition state theory predicts only negligible differences between the $k(CH_3, H_2)/k(CH_3, D_2)$ and $k(CD_3, H_2)/k(CD_3, D_2)$ Arrhenius parameters are in serious disagreement with this prediction. Furthermore, for the reactions of CH_3 and CD_3 with H_2 and D_2 the LMR-PES and SW transition-state force constants could not be arbitrarily adjusted to produce a single set that would produce a variation in the KIEs and Arrhenius parameters comparable to the variation in the experimental values. It can be seen that decreasing the $F_{\phi_{i}}^{\dagger}(i=1,2,3)$ force constants from 0.568 to 0.0001 mdyne-Å increases the calculated ΔE values and decreases the A_{μ}/A_{p} values. Therefore, the BEB03 and LEPS2 Arrhenius parameters calculated using $F_{\phi_i}^{\dagger}(i=1,2,3) = 0.0001$ mdyne-A are in much better agreement with the Table XIX experimental results than those using larger $F_{\phi_i}^{\ddagger}$ (i=1,2,3) values. However, a force constant value of $F_{\phi_i}^{\dagger}(i=1,2,3) = 0.568$ mdyne-Å produces BEB03 and LEPS2 theoretically calculated Arrhenius parameters in best agreement with the experimental values in Table XX. Similarly for the LMR-PES, other transition-state force constants including off-diagonal crossterm force constants can be adjusted to produce KIEs and Arrhenius parameters which are in agreement with one but not both of the $CH_3 + H_2(D_2)$ or $CD_3 + H_2(D_2)$ experimental values.

The k(CH₃,HD)/k(CH₃,DH) and k(CD₃,HD)/k(CD₃,DH) Arrhenius parameters are given in Tables XXI and XXII, respectively. The LMR-PES gives k_H/k_D values which lead to A_H/A_D and ΔE values in much better agreement with experiment than are the values predicted by the BEBO3, LEPS2, BEBO and LEPS models. This result is opposite to that observed for the reaction of CH₃ and CD₃ with H₂ and D₂. As can be seen, the reproducibility in the A_H/A_D and ΔE values derived from experiment leaves much to be desired. Also, as in Tables XVIII through XX the addition of Bell tunneling to the LMR-PES values improves the agreement with experiment for reactions involving CH_{L} or CH₂ radicals but tends to over-correct those values obtained for reactions involving CD, radicals. The differences in the values reported by both SW¹⁴ and WS¹⁵ between the experimental ΔE values in Table XXI and the corresponding values in Table XXII are about 1.4 kilocalories/ mole. However, for each isotope effect the ΔE value reported by SW¹⁴ is about 500 calories/mole greater than the ΔE values reported by WS¹⁵. This latter difference is most pronounced in Table XXII where WS report the isotope effect is temperature independent. Since the rate determining step involves transfer of either H or D, the result is clearly incorrect and casts doubt upon the experimental results obtained by Whittle and Steacie¹⁵. For the theoretically calculated Arrhenius parameters, it can be seen that the LEPS2 and BEBO3 models predict increasingly large A_{H}/A_{D} values and decreasing ΔE values which actually become negative as F_{di}^{\ddagger} (i=1,2,3) increases. It should also be noted that the error bounds on the SW ΔE values do not encompass any of the theoretically calculated ΔE values, although the LMR-PES ΔE and $A_{H}^{}/A_{D}^{}$ values are closer to the SW experimental result than any other theoretical result.

Theoretical Primary Carbon Effects

Tables XXIII and XXIV tabulate 13-carbon isotope effects and their temperature dependences based upon the LMR-PES. These tables also present 13-carbon KIEs based upon BEBO¹² and BEBO3¹⁴ models. These latter values are based upon force constants and geometry that were also used to calculate secondary α -deuterium isotope effects (see below). Although k_{12}/k_{13} for both reactions are no where maximal, the k(CH₄,H)/k(¹³CH₄,H) are much larger than k(CH₃,H₂)/k(¹³CH₃,H₂). This result is

TABLE XXIII

COMPARISON OF $k(CH_4, H)/k(^{13}CH_4, H)$ RESULTS^a

	Transition	State 7	Theory	Result	s	Arrhenius Results			
Activated Complex	Temperature					A_1/A_2		Temperature	
Used	<u> </u>	MMI	EXC	ZPE	KIE	± £	ΔE	Range °K	
LMR-PES ^C	296	1.002	0.999	1.034	1.035	F			
	546	1.002	0.998	1.018	1.018	$0.999 \pm 3 \times 10^{-5}$	21.1 ± 0.02	273-546	
BEBO ^d	296	1.003	0.999	1.020	1.022				
	546	1.003	0.998	1.010	1.011	$0.999 \pm 7 \times 10^{-5}$	13.0 ± 0.06	273-546	
BEBO3 ^e	296	1.003	0.993	1.032	1.028	- 5			
	546	1.003	0.993	1.017	1.013	$0.995 \pm 4 \times 10^{-5}$	19.0 ± 0.03	273-546	
BEBO3 ^f	296	1.003	0.999	1.006	1.008	- 5		\setminus	
	546	1.003	0.999	1.003	1.005	$1.001 \pm 3 \times 10^{-5}$	3.9 ± 0.03	273-546	

^aFor purposes of comparison all results were calculated using the LMR-PES reactant data with the activated complex parameters from the specified source.

^bResults obtained by linear least squares fit of $ln(k_{12}/k_{13})$ versus T⁻¹ for 12 values over the specified temperature range. See Appendix D. ΔE is in calories per mole.

^CCalculated using the LMR-PES data.

^dCalculated using the BEBO activated complex data from Reference 12.

^eCalculated using the BEBO3 activated complex data with $F_{\phi_i(i=1,2,3)}^{\ddagger}=0.0001 \text{ mdyne-A from Reference 14.}$ ^fCalculated using the BEBO3 activated complex data with $F_{\phi_i(i=1,2,3)}^{\ddagger}=0.568 \text{ mdyne-A from Reference 14.}$

		TABLE	XXIV		
COMPARISON	OF	k(CH ₃ ,H ₂	$\frac{1}{2})/k(^{1})$	³ CH ₃ ,H ₂)	RESULTS ^a

	Transition	State Theory	y Results	Arrheni	Arrhenius Results			
Activated Complex Used	Temperature °K	MMI EXC	ZPE K	IE A ₁ /A ₂	ΔE	Temperature Range [°] K		
LMR-PES ^C	296	1.008 0.99	9 0.999 1.	006 1.006 ± 4 x 10^{-5}	0.4 ± 0.03	273-546		
	546	1.008 0.99	3 1.000 1.	006				
BEBO ^d	296	1.009 0.99	9 0.985 0.	993 $1.007 \pm 1 \times 10^{-4}$	-7.7 ± 0.09	273-546		
	546	1.009 0.99	3 0.992 0.	999				
BEBO3 ^e	296	1.009 0.99	3 0.997 0.	999 $1.002 \pm 1 \times 10^{-5}$	-1.8 ± 0.01	273-546		
	546	1.009 0.99	3 0.999 1.	001				
BEBO3 ^f	296	1.009 1.00	0 0.972 0.	979 1.008 \pm 9 x 10 ⁻⁵	-16.8 ± 0.07	273-546		
	546	1.009 1.00	0.984 0.	993				

TABLE XXIV (Continued)

	Transition State Theory Results			Arrhenius Results ^b				
Activated Complex Used	Temperature °K	MMI	EXC	ZPE	KIE	A ₁ /A ₂	ΔE	Temperature Range °K
Pimentel ^g	296	1.008	1.000	0.995	1.003	$1.007 \pm 7 \times 10^{-5}$	-2.7 ± 0.05	273-546

546 1.008 1.000 0.997 1.005

^aFor purposes of comparison all results were calculated using the LMR-PES reactant data with the activated complex parameters from the specified source.

^bResults obtained by linear least squares fit $ln(k_{12}/k_{13})$ vs. T⁻¹ for 12 values over the specified temperature range. See Appendix D. ΔE is in calories per mole.

^CCalculated using the LMR-PES data with Gaussian 70 out-of-plane bending frequency values.

^dCalculated using the BEBO activated complex data from Reference 12.

^eCalculated using the BEBO3 activated complex data with $F_{\phi_1(i=1,2,3)}^{\ddagger}=0.0001$ mdyne-Å from Reference 14. ^fCalculated using the BEBO3 activated complex data with $F_{\phi_1(i=1,2,3)}^{\ddagger}=0.568$ mdyne-Å from Reference 14.

^gCalculated using the LMR-PES data with out-of-plane bending frequency values corresponding to the harmonic values from Reference 38.

not unreasonable qualitatively since reaction (I-1) involves almost total breaking of the C-H₁ bond in passing from reactant-state to the transition state (that is, the transition-state configuration for (I-1) is very product-like). However, the small primary carbon effect for H atom abstraction on CH_{L} reflects the fact that the loss in the frequencies associated with the $C-H_1$ bond being broken is compensated to a large extent by the frequencies associated with the H_1-H_6 bond being formed. Conversely, for reaction (I-2) passing from the reactant state to the transition state involves very little of both H_1-H_6 bond breaking and $C-H_1$ bond making (that is the transition state for reaction (I-2) is very reactant-like). Since the 13-carbon KIE is largely dependent on frequency changes associated with the $C-H_1$ bond and reaction (I-2) involves less of a change in the $C-H_1$ bonding in passing from reactant state to transition state than reaction (I-1), then the Table XXIV KIEs for reaction (I-2) tend to be less than the corresponding KIEs for reaction (I-1). Also, the BEBO3 13-carbon effect using $F_{\phi i}^{\dagger}(i=1,2,3) = 0.568$ mdyne-A gives an inverse KIE for reaction (I-2) and a very small KIE for reaction (I-1). Comparison of the BEBO and BEBO3 13-carbon KIEs shows that all the KIEs values become lower or more inverse as the value of $F_{\phi i}$ (i=1,2,3) is increased. This is the result of the effect of the F (i=1,2,3) values on the frequencies most strongly associated ϕ . with the $C-H_1$ bond in the transition state. Specifically, the carbon effect is the result of differences in the CH₃ asymmetric stretching, ν_5 , and degenerate bending, ν_6 , frequencies in the activated complex and their corresponding reactant state values. The $\nu^{}_1$ and $\nu^{}_{\Delta}$ activated complex frequencies for the symmetric and asymmetric motion along the reaction coordinate, respectively, also contribute to the carbon effect.

However, the v_7 and v_8 linear bending frequencies are virtually unaffected by isotopic carbon substitution. It should be noted that the values labeled "Pimentel" in Table XXIV are calculated with all LMR-PES harmonic frequencies except the isotopic out-of-plane bending frequencies which are calculated using a harmonic force constant adjusted to produce a CH₃ out-of-plane bending frequency of 607 cm⁻¹ which corresponds to the spectroscopic frequency reported by Tan, Winer and Pimentel (also, see discussion of this force constant in the secondary α -deuterium KIE section).³⁸ The 13-carbon KIE calculated using this frequency is normal but exhibits an inverse temperature dependence. The LMR-PES 13-carbon KIE using the Gaussian 70 out-of-plane bending frequence is the result of the smaller isotopic change in the "Pimentel" calculated, 607 cm⁻¹, than the Gaussian 70 calculated, 847 cm⁻¹, CH₃ out-of-plane bending frequencies.³⁸

Precise experimental determinations of carbon isotope effects for reaction (I-1) and/or (I-2) would allow some additional insight into which one if any of the LMR-PES, BEBO and BEBO3 theoretical models have any validity. Also, carbon effects could be intepreted and contrasted with the primary effects already discussed to give a more quantitative description of the bonding that occurs in the transition state for the abstraction reaction. This information could possible be used to construct a better theoretical model of the reaction hypersurface.

Theoretical Secondary α -Deuterium Effects

"Exact" calculations for model reactions within the framework of absolute rate theory show that secondary α -deuterium isotope effects are

96.

TABLE XXV

COMPARISON OF SECONDARY α -DEUTERIUM k(CH₄,H)/k(CD₃H,H) RESULTS^a

	Transition State Theory Results					Arrhenius Results ^b		
Activated Complex Used	Temperature °K	MMI	EXC	ZPE	KIE	A ₁ /A ₂	ΔE	Temperature Range °K
LMR-PES ^C	296	1.319	0.858	1.395	1.579			
د	546	1.319	0.771	1.198	1.218	0.889 ± 0.002	332 ± 2	273-546
BEBOa	296	1.274	0.903	1.123	1.293			
	546	1.274	0.830	1.065	1.127	0.962 ± 0.003	175 ± 2	273-546
BEBO3 ^e	296	1.275	0.645	1.832	1.507			
	546	1.275	0.642	1.389	1.136	0.807 ± 0.003	367 ± 2	273-546
BEBO3 ^f	296	1.275	0.930	0.601	0.712			
	546	1.275	0.879	0.759	0.850	1.052 ± 0.002	-229 ± 1	273-546

^aFor purposes of comparison all results were calculated using the LMR-PES reactant data with the activated complex parameters from the specified source.

^bResults obtained by linear least squares fit of $\ln(k_H/k_D)$ vs. T⁻¹ for 12 values over the specified temperature range. ΔE is in calories per mole. Deviations are standard deviations.

^CCalculated using the LMR-PES data.

^dCalculated using the BEBO activated complex data from Reference 12.

^eCalculated using the BEBO3 activated complex data with $F_{\phi_i(i=1,2,3)}^{\ddagger} = 0.0001 \text{ mdyne-A}$ from Reference 14. ^fCalculated using the BEBO3 activated complex data with $F_{\phi_i(i=1,2,3)}^{\ddagger} = 0.568 \text{ mdyne-A}$ from Reference 14.
principally determined by the change in the α -hydrogen to carbon to leaving (entering) group bending force constants $[F_{+}^{\ddagger}$ (i=1,2,3)] in passing from the reactant state to the transition state. $\overline{{}^{3}b}-d$ Since SW varied F_{ϕ}^{\dagger} (i=1,2,3) in their BEB03 activated-complex models, the smallest and largest values of these force constants were used with the other reported BEBO3 parameters in Table XVI to calculate secondary α -deuterium KIEs.¹⁴ The BEBO parameters reported by KHT¹² were also used to calculate secondary α -deuterium KIEs since their reported F_{ϕ}^{\dagger} (i=1,2,3) value is almost the same as the median value used by SW¹⁴, see Table XVI. For purposes of comparison, the LMR-PES reactant-state frequencies and parameters were used in all the secondary α -deuterium KIE calculations. The secondary α -deuterium KIEs for reaction (I-1) are presented in Table XXV. Obviously, using the very large F_{ϕ}^{\dagger} (i=1,2,3) value of 0.568 mdyne-A in the BEBO3 model¹⁴ has a dramatic effect on the secondary α -deuterium KIEs; it produces inverse KIEs while the LMR-PES², BEBO¹² and the BEBO3 with $F_{\phi_i}^{\ddagger}$ (i=1,2,3) = 0.0001 mdyne-A all predict normal KIEs. This change to an inverse KIE for large values of F_{ϕ}^{\ddagger} (i=1,2,3) occurs because the differences in the isotopic activated-complex frequencies exceeds the differences in the isotopic reactant frequencies as is evidenced by the ZPE values in Table XXV. The differences in the MMI terms are the result of the differences in the activated complex geometries which produce different moments of inertia about the cartesian coordinate axes. The method of calculating these moments of inertia about the cartesian coordinate axes is given in Appendix B. The Arrhenius activation-energy differences, ΔE , and preexponential factors (A_1/A_2) for the LMR-PES and BEBO3 $[F_{\phi_1}^{\dagger}(i=1,2,3) = 0.0001$ mdyne-A] appear to show the best agreement in both Table XXV and Table

However, this agreement is apparently due to a fortuitous set of XXVI. compensating factors. As seen in Table XXVI all secondary a-deuterium isotope effects for reaction (I-2) are inverse. The large F_{ϕ}^{\ddagger} (i=1,2,3) = 0.568 mdyne-A for BEBO3 merely causes the secondary KIE to become more inverse. The more inverse KIEs for larger $F_{\phi_{i}}^{\dagger}$ (i=1,2,3), as expected, show a larger negative ΔE compared to the other ΔE values in Table XXVI. It should be noted that the LMR-PES isotopic CH_3 normal-mode frequencies are used in all the secondary KIEs in Table XXVI and include the isotopic out-of-plane bending frequencies calculated using the Gaussian 70 out-of-plane bending force constant given in Chapter II, except for the KIEs labeled Pimentel. The α effects labeled as Pimentel are based on the use of the out-of-plane bending normal mode frequency calculated using the out-of-plane bending force constant of Tan, Winer and Pimentel (TWP). 38 These authors obtained this force constant from their spectroscopic frequencies.³⁸ It should be noted that their reported force constant could not be weighted or adjusted in such a way as to exactly reproduce the harmonic frequencies that TWP report having calculated.³⁸ However, the difference is negligible, both our calculation and TWP give 607.0 cm^{-1} for CH₃, but TWP gives 470.2 cm^{-1} for CD₃ compared to our 470.5 cm⁻¹ for CD₃. The various isotopic CH₃ harmonic normal-mode frequencies that were calculated using this force constant are tabulated in Appendix C. Harmonic normal-mode frequencies were used instead of spectroscopic methyl radical frequencies for three reasons: First, TWP did not report spectroscopic frequencies for all the isotopic methyl radicals needed. Second, for the purpose of consistency, all other frequencies used to calculate the KIEs are harmonic normalmode frequencies. Third, the use of spectroscopic frequencies for the

TABLE XXVI

COMPARISON OF SECONDARY α -DEUTERIUM k(CH₃,H₂)/k(CD₃,H₂) RESULTS^a

	State '	Theory	Resul:	ts	Arrhe	nius Results ^b		
Activated Complex Used	Temperature °K	MMI	EXC	ZPE	KIE	A ₁ /A ₂	ΔE	Temperature Range [°] K
LMR-PES ^C	296	1.669	0.871	0.577	0.838	1.138 ± 0.008	-179 ± 5	273-546
	546	1.669	0.773	0.742	0.958			
Pimentel ^d	296	1.669	0.895	0.506	0.756	1.190 ± 0.010	-266 ± 3	273-546
	546	1.669	0.800	0.691	0.923			
bebo3 ^f	296	1.613	0.917	0.464	0.686	1.217 ± 0.001	-336 ± 6	273-546
	546	1.613	0.833	0.660	0.886			
BEBO3 ^f	296	1.613	0.655	0.757	0.800	1.021 ± 0.002	-144 ± 1	273-546
	546	1.613	0.644	0.860	0.894			

TABLE XXVI (Continued)

	Transition	State 2	Theory	Result	ts	Arrhei	nius Results ^b	
Activated Complex Used	Temperature °K	MMI	EXC	ZPE	KIE	A ₁ /A ₂	$\Delta \mathbf{E}$	Temperature Range °K
BEBO3 ^g	296	1.613	0.943	0.248	0.377	1.331 ± 0.009	-739 ± 5	273-546
	546	1.613	0.882	0.470	0.668			

^aFor purposes of comparison all results were calculated using the LMR-PES reactant data with Gaussian-70 out-of-plane bending frequencies (unless specified otherwise) with the activated complex parameters from the specified source.

^bResults obtained by linear least squares fit of $\ln(k_{\rm H}/k_{\rm D})$ vs. T⁻¹ for 12 values over the specified temperature range. See Appendix D. ΔE is calories per mole.

^CCalculated using the LMR-PES data with Gaussian-70 out-of-plane bending frequencies.

^dCalculated using the LMR-PES data with the methyl radical out-of-plane bending frequencies corresponding to the calculated harmonic values in Reference 38.

e Calculated using the BEBO activated complex data from Reference 12.

^fCalculated using the BEB03 activated complex data with $F_{\phi_i}^{\dagger}$ (i=1,2,3) = 0.0001 mdyne-Å from Reference 14. ^gCalculated using the BEB03 activated complex data with $F_{\phi_i}^{\dagger}$ (i=1,2,3) = 0.568 mdyne-Å from Reference 14. out-of-plane bending mode in the transition-state-theory calculation would only raise the KIE by about 2-5 percent over the KIE calculated using harmonic frequencies. The Pimentel KIEs in Table XXVI have a slightly greater more inverse temperature dependence than the corresponding KIE calculated using the Gaussian 70 force constant. However, this difference is smaller than the differences in the transition-state theory KIEs obtained using the BEBO and BEBO3 models.

Careful experimental determination of the KIEs in Tables XXV and XXVI might help distinguish which model if any adequately describes the real reaction hypersurface. The experimental rate constants reported by Majury and Steacie $(MS)^{16}$ and Whittle and Steacie $(WS)^{15}$ can be used to calculate secondary α -deuterium isotope effects. The values for $k(CH_3, H_2)/k(CD_3, H_2)$ are 0.91, 0.80, and 0.72 for MS¹⁶, and 0.85, 0.69, and 0.60 for WS 15 at the temperatures 403, 483 and 563 $^{\rm o}$ K, respectively, using the method I rate constants for $k(CD_3, H_2)$. For the method II $k(CD_3, H_2)$ values, the experimental $k(CH_3, H_2)/k(CD_3, H_2)$ isotope effects are 0.89, 0.71, and 0.62 for MS, 16 and 1.23, 0.83, and 0.64 for WS 15 at 403, 483, and 563 ^OK, respectively. Obviously, these experimental secondary α -deuterium KIEs become more inverse with increasing tempera-This experimental result defies both logical and theoretical ture. predictions, since isotopic substitution should become less important at higher temperatures, especially at temperatures well above room temperature, and the KIEs should approach unity (or $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$) as the temperature increases. Nevertheless, the individual experimental KIEs are all inverse, except for one WS value at 403 ^OK, as are all of the theoretical KIEs, and the magnitudes of the experimental and theoretical KIEs are not greatly different. Therefore, one can conclude that the

true secondary α -deuterium KIE for the reaction $CH_3(CD_3) + H_2$ is most likely inverse. However, the experimental temperature dependence for this reaction is questionable. The transition-state theory calculated KIEs in Table XXVI have more reasonable temperature dependences than experiment. Therefore, a more accurate determination of the experimental secondary α -deuterium KIE for this reaction would be very helpful in quantifying the theoretical results. Quantitative comparison of the present theoretical and experimental KIEs is virtually impossible or at best meaningless due to the opposing trends of their temperature dependences.

The fact that the transition-state theory secondary α -deuterium KIEs for reaction (I-1) of $CH_{1}(CD_{3}H)$ + H in Table XXV produces normal KIEs and for reaction (I-2) of $CH_3(CD_3) + H_2$ in Table XXVI produces inverse KIEs is explained by the change in bonding between reactants and activated complex. For reaction (I-1) the HCH, bending force constant, F_{ϕ_i} (i=1,2,3), is usually reduced to a smaller $F_{\phi_i}^{\ddagger}$ (i=1,2,3) in the activated complex. This means that α -deuterium substitution produces less change in the normal-mode frequencies in the activated complex than in reactants. This produces a normal KIE. However, if $F_{\phi_i}(i=1,2,3) \leq F_{\phi_i}^{\dagger}(i=1,2,3)$, as is the case with one BEB03 value in Table XXV and all the KIEs in Table XXVI, then inverse KIEs are pro-The inverse BEBO3 KIE in Table XXV is the result of the unrealduced. istic assumption that $F_{\phi_i}(i=1,2,3) = F_{\phi_i}^{\dagger}(i=1,2,3)$. However, the inverse KIEs in Table XXVI for reaction (I-2) are the result of more bonds being associated with the α -deuteriums in the activated complex than in the reactants (that is, there is no F_{ϕ_i} (i=1,2,3) value in the

reactants, since there is no $C-H_1$ bond). Therefore, the α -deuterium substitution in reaction (I-2) causes a greater change in the normal mode frequencies in the activated complex than in the reactants. Observing the form of the equations (I-3) and (I-4), it is then reasonable that the secondary α -deuterium KIEs in Table XXVI should be inverse and the corresponding KIEs for reaction (I-1) in Table XXV should be normal.

A comparison of the magnitude of the MMI terms in Tables XXIII and XXIV show that the BEBO and BEBO3 models have somewhat larger MMI values than the LMR-PES. However, in Tables XXV and XXVI for the secondary α -deuterium KIEs the MMI terms using the BEBO and BEBO3 models are smaller than the corresponding MMI values for the LMR-PES. The difference in these MMI relationships is directly related to the differences in the activated complex geometries. The LMR-PES has longer non-reacting C-H bond lengths than does either the BEBO or BEBO3 models. Therefore, the α -deuterium atom substitution causes a greater change in the moments of inertia for the LMR-PES isotopic configurations than in the BEBO and BEBO3 models. Similarly, differences in the C-H, reacting bondlength create slightly greater differences in the 13-carbon MMI terms for BEBO and BEBO3 models than for the LMR-PES.

The Effect of Transition-State Geometry on the

Isotope Effects

Shapiro and Weston (SW) report that a change in the geometry of the CH_3 group relative to the C-H-H entity in the activated complex from tetrahedral to planar produced significant changes in the activatedcomplex normal-mode frequencies.¹⁴ However, these authors found for the reaction $CH_3 + H_2$ that this geometry change altered the primary

KIEs by less than one percent.¹⁴ The effect of CH₃ geometry in the activated complex was extensively tested by calculating various KIEs based upon the LMR-PES. The results are presented in Tables XXVII and XXVIII. The frequencies used to calculate these KIEs are tabulated in Appendix C. It can be seen in Table XXVII that the primary deuterium and ¹⁴C KIEs all show a maximum percentage deviation between the highest and lowest values for the three KIEs in each row of less than one percent. This is in agreement with the findings of SW for primary effects.¹⁴ However, the secondary deuterium KIEs for reactions (I-1) and (I-2) at 296 ^OK differ by a maximum of 10 percent. This somewhat larger effect on the secondary deuterium KIEs is expected, since changing the CH_{2} geometry affects the positions of the isotopic atoms in the activated complex. Wolfsberg and Stern have shown for a similar reaction involving elimination of χ from CH₃ χ or CD₃ χ that at 300 O K a change from tetrahedral CH_3 or CD_3 to planar CH_3 or CD_3 geometry produces a 5.3% change in the secondary α -deuterium isotope effect.^{3c} They also state that this change is directly related to the MMI factor, but that information about the MMI factor and the corresponding geometry of the activated complex seem impossible to obtain directly from an experimental set of KIEs.^{3c} However, Wolfsberg and Stern also state that the secondary α -deuterium isotope effects are primarily the result of force constant changes between reactants and activated complex.^{3c} In summary, since secondary deuterium KIEs are more strongly affected by such geometry changes than primary KIEs, then more uncertainty can be expected in the force constants deduced from experimental secondary deuterium KIEs. The values in Table XXVIII are the Arrhenius parameters obtained by fitting the KIEs in Table XXVII over the specified

TABLE XXVII

THE EFFECT OF CH_3 GEOMETRY IN THE ACTIVATED COMPLEX

		Calculated	Isotope Ef	fects ^a	•	· · · · · · · · · · · · · · · · · · ·
Rate Constant Ratios	Temperature °K	Tetrahedral ^b	LMR-PES ^C	Planar ^d	Standard ^e Deviation	Maximum ^f Percent Deviation
k(CH ₄ + H)	296	1.549	1.579	1.704	± 0.082	10.0
$\frac{1}{k(CD_{3^{-}}H + H)}$	546	1.213	1.218	1.236	± 0.012	1.9
$k(CH_4 + H)$	296	1.067	1.066	1.068	± 0.0009	0.2
$k(^{14}CH_4 + H)$	546	1.035	1.034	1.034	± 0.0004	0.1
$k(CH_{A} + H)$	296	0.251	0.251	0.252	± 0.0007	0.4
$\frac{4}{k(CH_4 + D)}$	546	0.554	0.554	0.555	± 0.0006	0.2
$k(CH_{4} + H)$	296	5.593	5.590	5.618	± 0.015	0.5
$\frac{1}{k(CH_{3^{\sim}}^{D} + H)}$	546	2.422	2.421	2.426	± 0.003	0.2
$k(CH_3 + H_2)$	296	0.822	0.838	0.904	± 0.044	10.0
$\frac{1}{k(CD_3 + H_2)}$	546	0.954	0.958	0.972	± 0.010	1.9
$k(CH_3 + H_2)$	296	1.013	1.012	1.014	± 0.0009	0.2
$k(^{14}CH_3 + H_2)$	546	1.012	1.011	1.011	± 0.0004	0.1

TABLE XXVII (Continued)

		Calculated	Isotope Ef	fects ^a		
Rate Constant Ratios	Temperature °K	Tetrahedral ^b	LMR-PES ^C	Planar ^d	Standard ^e Deviation	Maximum ^f Percent Deviation
$k(CH_3 + H_2)$	296	0.929	0.930	0.934	± 0.003	0.5
$\frac{1}{k(CH_3 + HD)}$	546	1.055	1.055	1.057	± 0.001	0.2
$k(CH_3 + H_2)$	296	1.875	1.874	1.883	± 0.005	0.5
$\frac{1}{k(CH_3 + DH)}$	546	1.622	1.621	1.625	± 0.002	0.2

^aKinetic isotope effects calculated using the harmonic LMR-PES reactant frequencies.

 $^{\mathrm{b}}$ Calculated using tetrahedral CH $_3$ geometry in the activated complex.

 $^{\rm C}$ Calculated using the LMR-PES CH $_3$ geometry in the activated complex.

 $^{\rm d}$ Calculated using the planar CH $_{3}$ geometry in the activated complex.

^eStandard deviation in the three KIEs in the row.

 ${}^{\rm f}{}_{\rm Largest}$ difference relative to the smallest KIE in the row.

8.81

TABLE XXVIII

THE EFFECT OF CH_3 GEOMETRY ON THE TEMPERATURE DEPENDENCES^a

		A ₁ /A ₂ ^b		 σ
Rate Constant Ratios	Tetrahedra1 ^d	LMR-PES ^e	Planar ^f	Std. ⁵ Dev.
$\frac{k(CH_4 + H)}{k(CD_3\tilde{H} + H)}$	$0.901 \pm 6 \times 10^{-4}$	$0.889 \pm 3 \times 10^{-4}$	0.846 ± 0.002	±.029
$\frac{k(CH_4 + H)}{k(^{14}CH_4 + H)}$	$0.997 \pm 8 \times 10^{-5}$	$0.998 \pm 9 \times 10^{-5}$	$0.995 \pm 2 \times 10^{-1}$	⁴ ±.002
$\frac{k(CH_4 + H)}{k(CH_4 + D)}$	1.407 ± 0.002	1.406 ± 0.002	1.404 ± 0.002	±.002
$\frac{k(CH_4 + H)}{k(CH_3^{D} + H)}$	0.896 ± 0.001	0.895 ± 0.001	0.894 ± 0.001	±.001
$\frac{k(CH_3 + H_2)}{k(CD_3 + H_2)}$	1.115 ± 0.005	1.101 ± 0.005	1.047 ± 0.002	±.036
$\frac{k(CH_{3} + H_{2})}{k(^{14}CH_{3} + H_{2})}$	$1.010 \pm 5 \times 10^{-5}$	$1.010 \pm 4 \times 10^{-5}$	$1.008 \pm 7 \times 10^{-7}$	⁵ ±.001
$\frac{k(CH_3 + H_2)}{k(CH_3 + HD)}$	1.219 ± 0.002	1.218 ± 0.002	1.216 ± 0.002	±.002
$\frac{k(CH_3 + H_2)}{k(CH_3 + DH)}$	1.341 ± 0.006	1.340 ± 0.006	1.338 ± 0.006	±.002

	∆EŬ	(calories/mole)		
Rate Constant Ratios	Tetrahedral ^d	LMR-PES ^e	Planar ^f	Std. ^g Dev.
$\frac{k(CH_4 + H)}{k(CD_3H + H)}$	323 ± 0.6	341 ± 0.3	410 ± 1.9	±46
$\frac{k(CH_4 + H)}{k(^{14}CH_4 + H)}$	40 ± 0.1	39 ± 0.1	41 ± 0.2	±1

	ΔΕ	ole)	· ~	
Rate Constant Ratios	Tetrahedra1 ^d	LMR-PES ^e	Planar ^f	Std. ^g Dev.
$\frac{k(CH_4 + H)}{k(CH_4 + D)}$	-1011 ± 1	-1010 ± 1	-1006 ± 1	±2
$\frac{k(CH_4 + H)}{k(CH_3^{D} + H)}$	1079 ± 1	1079 ± 1	1083 ± 1	±2
$\frac{k(CH_3 + H_2)}{k(CD_3 + H_2)}$	-166 ± 4	-149 ± 4	-79 ± 2	±46
$\frac{k(CH_3 + H_2)}{k(^{14}CH_3 + H_2)}$	1.7 ± 0.05	1.0 ± 0.04	3.2 ± 0.05	±1.1
$\frac{k(CH_3 + H_2)}{k(CH_3 + HD)}$	-156 ± 1	-155 ± 1	-151 ± 1 -	±2
$\frac{k(CH_3 + H_2)}{k(CH_2 + DH)}$	209 ± 4	209 ± 4	213 ± 4	±2

TABLE XXVIII (Continued)

^aAll deviations are standard deviations in the Arrhenius equation parameters from a least squares fit to $\ln(k_1/k_2) = \ln(A_1/A_2) + (\Delta E/R)$ (1/T) using LMR-PES reactant frequencies over the temperature range 371-546°K.

^bIsotopic ratio of Arrhenius preexponential factors.

^cIsotopic difference in Arrhenius activation energies in kcal/mole. ^dCalculated using tetrahedral CH₃ geometry in the activated complex. ^eCalculated using the LMR-PES CH₃ geometry in the activated complex. ^fCalculated using the planar CH₃ geometry in the activated complex. ^gStandard deviation in the preceding three values in the row. range of temperatures to equation (III-13). As expected from Table XXVII the largest deviations in Table XXVIII are for the secondary deuterium KIEs. The geometry caused deviations in the primary carbon and deuterium effects are negligible.

Contributions of the Bending and Stretching

Frequencies to the Primary KIE

At reasonably low temperatures ($\leq 100^{\circ}$ C), primary deuterium isotope effects primarily reflect the magnitude of ZPE. Therefore, an estimate of the degree to which the KIE is influenced by normal mode bending frequencies can be made by calculating the ZPE contributions to the KIE using stretching and bending normal-mode frequency values in separate calculations. The isotopic reactant and transition-state frequencies used for these calculations are given in Tables XXIX and XXX respectively, along with the summations over the separate sets of stretching and bending normal modes. The isotopic differences between these summations are used in equation (I-7) to obtain the contributions to the ZPE term tabulated in Table XXXI. For the CH,+H reaction, ZPE values calculated using only the stretching normal-mode frequencies are in better agreement with the "total ZPE" values than those ZPE contributions calculated with either the bending normal mode frequencies alone or the stretching plus linear bending frequencies. However, for the reaction of CH_3 with H_2 and D_2 or HD, the addition of the isotopic linear bending frequency values to the corresponding isotopic stretching frequency values produced two ZPE contributions within three percent of the corresponding "Total ZPE" values in Table XXXI. The ZPE contributions involving abstraction of D from HD differ considerably

TABLE XXIX

Normal	Meth	ane	Methy	yl and Molecular Hydrogen			
Modes	CH ₄	CH ₃ D	CH ₃	Н2	D ₂	HD	
ν ₁	2917.0	2224.1	2914.2	4468.1	3160.6	3870.0	
v^2 a	1526.6	1476.3	847.1				
ν ₂ μ	1526.6	1476.3					
^v 3а	3080.1	3080.1	3099.6				
^v 3b	3080.1	3080.1	3099.6				
v ³ c	3080.1	2966.4					
v v 4a	1366.1	1356.7	1605.9				
ν ^ν 4Ъ	1366.1	1197.9	1605.9				
vuc	1366.1	1197.9					
40							
	CH ₄	CH ₃ D	$\frac{CH_3 + H_2}{2}$	CH ₃	+ D ₂	$\frac{CH_3 + HD}{2}$	
3n-6 Σv_i i=1	19308.8	18055.8	17640.4	16332	2.9	17042.3	
$\operatorname{Sum}(v_2 + v_4)^{c}$	7151.5	6705.1	4058.9	4058	.9	4058.9	
$\operatorname{Sum}(v_1+v_3)^d$	12157.3	11350.7	13581.5	12274.	. 0	12983.4	

REACTANT ISOTOPIC FREQUENCIES^a

^aAll values in cm⁻¹. All values calculated using LMR-PES force constants and geometry except v_2 under CH₃ determined from Gaussian-70 force constant and geometry.

^bSum of all isotopic frequencies for a particular reactant or reactants.

^CSum of all isotopic bending frequencies for a particular reactant or reactants.

^dSum of all isotopic stretching frequencies for a particular reactant or reactants.

TABLE XXX

	<u> </u>			
Normal Modes	сн ₃ -н-н	CH ₃ -D-D	сн ₃ -д-н	CH ₃ -H-D
v ₁	3388.4	2405.0	3106.0	2720.9
v_2	2937.7	2939.3	2937.0	2941.2
v _a	964.7	953.6	959.3	956.9
v,	1479.3i	1115.0i	1181.7i	1350.41
4 ν_b	3085.6	3085.7	3085.7	3085.7
ν _c b	1502.9	1502.9	1502.9	1502.9
ν_b	752.3	632.6	636.6	746.1
ν ₈ b	367.3	296.0	345.7	327.5
3n-7 c $\sum_{i=1}^{\Sigma v} i$	18707.0	17332.3	18144.1	17943.4
$Sum(v_3+v_6)$	3970.5	3959.4	3965.1	3962.7
$Sum(v_7+v_8)^d$	2239.2	1857.2	1964.6	2147.2
Bending sum ν ^e	6209.7	5816.6	5929.7	6109.9
Stretching sum v^{f}	12497.3	11515.7	12214.4	11833.5

TRANSITION-STATE ISOTOPIC FREQUENCIES^a

^aAll values in cm^{-1} . Based upon the LMR-PES.

^bDoubly degenerate normal mode frequencies.

 ^{c}Sum of all real frequencies omitting $\nu_{4}^{}$ the imaginary frequency.

^dSum of the associated linear bending frequencies v_7 and v_8 .

- ^eSum of all the bending frequencies v_3 , v_6 , v_7 and v_8 .
- $^{\rm f}$ Sum of all the real stretching frequency values $\nu_1^{}, \ \nu_2^{}$ and $\nu_5^{}.$

TABLE XXXI

Isotopic Ratio	Ben	ling ^b	Stret	ching ^C	Linear + Stre	Bending ^d tching	Total ^e
of Reactants	ZPE	% Dev.	ZPE	% Dev.	ZPE	% Dev.	ZPE
$\frac{CH_4 + H}{CH_3D + D}$	1.138	53.0	0.654	-12.1	0.258	-65.3	0.744
$\frac{CH_4 + H}{CH_3^{D} + H}$	1.499	-72.0	3.571	-33.2	1.832	-65.8	5.349
$\frac{CH_4 + H}{CH_4 + D}$	0.785	403.2	0.199	27.6	0.249	59.6	0.156
$\frac{CH_3 + H_2}{CH_3 + D_2}$	0.385	-54.6	2.206	160.1	0.872	2.7	0.849
$\frac{CH_3 + H_2}{CH_3 + DH}$	0.506	-53.5	2.151	97.5	1.558	43.1	1.089
$\frac{CH_3 + H_2}{CH_2 + HD}$	0.785	17.3	0.852	27.4	0.681	1.8	0.669

BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE ZPE^a

^aFrequency contributions to the vibrational zero point energy term (ZPE) calculated at 296°K, see (I-7).

^bCalculated using only the bending frequencies from the LMR-PES reactant and transition-state species.

^CCalculated using only the stretching frequencies from the LMR-PES reactant and transition-state species.

^dCalculated using only the linear bending and stretching frequencies from the isotopic LMR-PES reactant and transition-state species.

^eCalculated using all the isotopic LMR-PES frequencies.

^fPercent deviation from the total ZPE.

from the "Total ZPE" value, but the linear bending plus stretching frequencies still produce a ZPE contribution in better agreement with the "Total ZPE" value than either the bending or stretching ZPE contribution alone. Clearly, the addition of linear bending frequency values to the stretching frequencies improves the agreement of the calculated ZPE contributions with the "Total ZPE" values for reaction (I-2) [that is, CH_3 + isotopic H_2]. However, combination of linear bending and stretching frequencies produces ZPE contributions in worse agreement with the "Total ZPE" values for reaction (I-1) [that is, isotopic $CH_{L} + H(D)$] than obtained from use of stretching frequencies alone. The origin of this difference between the ZPE contributions for reactions (I-1) and (I-2) is the relative magnitude of the differences between the reactant and transition-state bending frequencies. For reaction (I-2), the transition-state linear bending frequencies have a dominate effect on the ZPE contributions. However, for reaction (I-1) the reactant bending frequencies contribute approximately as much as the transition-state linear-bending frequencies to the ZPE value. Therefore, the addition of only the transition-state linear-bending frequencies to the stretching frequencies in reaction (I-1) without the compensating effect of the reactant bending frequencies actually decreases the agreement of the calculated ZPE contributions with the "Total ZPE" values in Table XXXI.

The separate bending, stretching and linear-bending plus stretching frequency contributions to the EXC values are given in Table XXXII. Due to the function form of the equation for calculating the EXC values, (that is, $1-e^{-u}i$), see (I-6), the largest frequency values have the least effect on the calculated

TABLE XXXII

·							
Isotopic Ratio	Bending		Stret	ching ^C	Linear + Stre	Total ^e	
of Reactants	EXC	% Dev. ^f	EXC	% Dev. ^f	EXC	% Dev. ^f	EXC
$\frac{CH_4 + H}{CH_3^{D} + D}$	0.808	0	1.000	23.8	0.805	-0.4	0.808
$\frac{CH_4 + H}{CH_3 D + H}$	0.921	0	1.000	8.6	0.918	-0.3	0.921
$\frac{CH_4 + H}{CH_4 + D}$	0.914	0	1.000	9.4	0.914	0	0.914
$\frac{\text{CH}_3 + \text{H}_2}{\text{CH}_3 + \text{D}_2}$	0.805	0	1.000	24.2	0.805	0	0.805
$\frac{CH_3 + H_2}{CH_3 + \tilde{D}H}$	0.918	0	1.000	8.9	0.918	0	0.918
$\frac{CH_3 + H_2}{CH_3 + HD}$	0.914	0	1.000	9.4	0.914	0	0.914

BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE EXC^a

^aFrequency contributions to the vibrational excitation factor (EXC), see (I-6). All values calculated at 296°K.

^bCalculated using only the bending frequencies from the isotopic LMR-PES reactant and transition-state species.

^CCalculated using only the stretching frequencies from the isotopic LMR-PES reactant and transition-state species.

^d Calculated using only the linear bending and stretching frequencies from the isotopic LMR-PES reactant and transition-state species.

 $^{\rm e}{\rm Calculated}$ using all the isotopic LMR-PES frequencies.

 $^{\rm f}{\rm Percent}$ deviation from the total EXC.

EXC values. For this reason, the relatively large stretching frequencies produce negligibly small EXC contributions. Since the transition-state linear-bending frequencies are the smallest in magnitude, then the combinations of the stretching and linearbending frequencies produce EXC contributions almost identical to the "Total EXC" values in Table XXXII. The bending frequencies alone produce EXC contributions identical to the "Total EXC" values to the accuracy expressed in Table XXXII.

The separate frequency contributions to the VP values are given in Table XXXIII. The stretching frequencies alone do not produce VP contributions in good agreement with the "Total VP" values. Use of the linear-bending frequencies plus the stretching frequencies produces VP contributions in excellent agreement with the "Total VP" values except for the first two cases in Table XXXIII. For these two cases the reactant H_iCH_1 (i=2,3,4) bending frequencies exert a considerable influence on the magnitude of VP. The bending frequencies alone produce VP values that are very close to the total VP values in the first and fourth rows in Table XXXIII. This excellent agreement can be interpreted as the complimentary effect of the isotopic reactant HCH bending and activated complex linear bending frequencies on the former VP, and the dominate influence of the isotopic activated complex linear bending frequencies over the latter VP in row four. The VP values involving the CH_3-H-D and CH₂-D-H frequencies require more compensating effects between the bending and stretching isotopic frequencies to obtain the total VP value.

The contributions of the bending, stretching and linear-bending plus stretching frequencies to the ZPE, EXC and VP values tabulated in Tables XXXI through XXXIII are combined in Table XXXIV with the $v_{11}^{\ddagger}/v_{21}^{\ddagger}$

TABLE XXXIII

Isotopic Ratio	Bend	b ing	Stret	ching ^C	Linear H + Stret	Bending ^d cching	Total ^e
of Reactants	VP	% Dev. ^f	VP	% Dev.f	VP 💈	2 Dev. ^f	VP
$\frac{CH_4 + H}{CH_3 D + D}$	1.573	-3.3	1.034	-36.4	2.252	38.4	1.627
$\frac{CH_4 + H}{CH_3 D + H}$	1.132	24.8	0.801	-11.7	1.263	39.3	0.907
$\frac{CH_4 + H}{CH_4 + D}$	1.289	-19.6	1.244	-22.4	1.591	-0.8	1.604
$\frac{CH_3 + H_2}{CH_3 + D_2}$	2.203	-0.4	0.996	-54.6	2.169	-1.1	2.194
$\frac{CH_3 + H_2}{CH_3 + DH}$	1.585	-5.7	0.945	-37.0	1.490	-0.6	1.499
$\frac{CH_3 + H_2}{CH_3 + HD}$	1.289	-7.2	1.077	-22.5	1.378	-0.8	1.389

BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE VP^a

^aFrequency contributions to the vibrational product (VP) factor, see (1-8). All values calculated at 296°K.

 $^{\rm b}{\rm Calculated}$ using only the bending frequencies from the isotopic LMR-PES reactant and transition-state species.

^CCalculated using only the stretching frequencies from the isotopic LMR-PES reactant and transition-state species.

^dCalculated using only the stretching and linear bending frequencies from the LMR-PES reactant and transition-state species.

^eCalculated using all the isotopic LMR-PES frequencies.

^fPercent deviation from the total VP.

TABLE XXXIV

BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE KIE^a

Isotopic	Ben	dingb	Stretching ^C		Linear Bending ^d		······································	
Ratio of <u>Reactants</u>	KIE	% Dev. ^f	KIE	% Dev.f	KIE	% Dev. ^f	$v_{1L}^{\dagger}/v_{2L}^{\dagger}$	Total ^e KIE
$\frac{CH_4 + H}{CH_3 D + D}$	1.919	48.1	0.897	-30.8	0.621	-52.1	1.3267	1.296
$\frac{CH_4 + H}{CH_3 \tilde{D} + H}$	1.956	-65.0	3.581	-35.9	2.659	-52.4	1.2518	5.590
$\frac{CH_4 + H}{CH_4 + D}$	1.013	304.6	0.271	8.0	0.397	58.2	1.0955	0.251
$\frac{CH_3 + H_2}{CH_3 + D_2}$	0.906	-54.4	2.915	46.6	2.020	1.6	1.3267	1.988
$\frac{CH_3 + H_2}{CH_3 + \tilde{D}H}$	0.922	-50.8	2.545	35.8	2.668	42.4	1.2518	1.874
$\frac{CH_3 + H_2}{CH_3 + HD}$	1.013	-8.9	1.005	8.1	0.940	1.1	1.0955	0.930

^aBending and stretching KIE values calculated using the VP, EXC, and ZPE quantities in the accompanying tables, see (I-4). All values calculated at 296°K.

^bCalculated using only the bending frequencies from the isotopic LMR-PES reactant and transition-state species times $v_{1L}^{\dagger}/v_{2L}^{\dagger}$.

^cCalculated using only the stretching frequencies from the isotopic LMR-PES reactant and transition-state species times $v_{11}^{\ddagger}/v_{21}^{\ddagger}$.

^dCalculated using only the linear bending plus the stretching frequencies from the isotopic LMR-PES reactant and transition-state species times $v_{1L}^{\ddagger}/v_{2L}^{\ddagger}$.

^eCalculated using all the isotopic LMR-PES frequencies.

^fPercent deviation from the total KIE.

values to give the corresponding comparisons for the calculated KIE values. It can be seen that few of the individual contributions to the total KIE come close to agreeing with the total KIE values. Two notable exceptions are the contributions due to the linear bending plus stretching frequencies in rows four and six of Table XXXIV. These differ from the total KIE value by 1.6% and 1.1%, respectively. The other values differ by about 8 percent to as much as 304.6 percent. The data in Table XXXIV show that the stretching frequencies alone tend to reproduce the KIE values as well or better than all the other bending or linear-bending plus stretching frequency sets, except for the two cases previously mentioned. However, except for these two exceptions, the error due to using an incomplete vibrational frequency data set, as discussed in Chapter I, can lead to very large errors in the calculated KIEs.

Relating Primary Deuterium and Tritium Isotope

Effects

The relationship between tritium and deuterium primary KIEs is commonly referred to as the Swain-Schaad relation.²³ This relationship was tested for its applicability to the CH₄+H and CH₃+H₂ reactions by using the LMR-PES isotopic frequencies to obtain transition-state theory calculated KIEs which are compared using Bigeleisen's definition of r (see footnote a in Table XXXV).²⁴ The results are given in Table XXXV. The isotopic reactions compared in Table XXXV were chosen based upon the feasibility of their experimental determination rather than their being pure primary isotope effects. As discussed in Chapter I, the Swain-Schaad relation is only supposed to be applicable to reac-

TABLE XXXV

Ratio of Rate Constants	e k _H /k _D	k _H /k _T	r ^a	b مr ss	Temperature °K
k(CH.,H) ^C	2.311×10^4	1.640×10^{6}	1.424	018	50
4, ,	1.614×10^2	1.407×10^3	1.426	016	100
k(CH ₃ [×] ,H	5.4573	11.230	1.425	017	300
	2.4207	3.5396	1.430	012	546
	1.2518	1.4324	1.600	0.158	8
k(CH,,H) ^c	2.970×10^{-5}	4.103 x 10 ⁻⁷	1.411	031	50
$\frac{4'}{1}$	7.165×10^{-3}	9.610×10^{-4}	1.407	035	100
$k(CH_4, X)$	0.2569	0.1517	1.388	054	300
	0.5539	0.4501	1.351	-0.091	546
	1.0955	1.1641	1.666	0.224	∞
k(CH,HX) ^c	22.085	96.327	1.476	0.034	50
<u> </u>	5.2396	11.607	1.480	0.038	100
$k(CH_3, \tilde{XH})$	2.0011	2.7751	1.471	0.029	300
	1.5370	1.8741	1.461	0.019	546
	1.1428	1.2306	1.554	0.112	ø
$k(CH_{a}, H_{a})^{c}$	1.0995	1.4199	3.696	2.254	50
$\frac{3}{1}$	1.7567	2.6103	1.703	0.261	100
$\kappa(0H_3, X_2)$	1.9847	2.8476	1.527	0.085	300
	1.7908	2.3950	1.499	0.057	546
	1.3267	1.5394	1.526	0.084	8

RELATIONSHIPS OF TRITIUM AND DEUTERIUM ISOTOPE EFFECTS

$a_{r} = \ln(k_{u}/k_{r})/\ln(k_{u}/k_{n})$, se	e Reference 24.	
$b_{\Lambda r} = r - r$, where $r =$	$(1/m_{\rm H})^{.5} - (1/m_{\rm T})^{.5}$	= 1 442
ss ss ss ss	$(1/m_{\rm H})^{.5} - (1/m_{\rm D})^{.5}$	- 1.442.

 $^{C}X = D$ or T. The underlined element represents the atom being abstracted if there is more than one possibility.

tions involving transfer of the isotopic hydrogen at rather low temperatures (< 100°C). It can be seen that the only pure primary isotope effect in Table XXXV is $k(CH_{4},H)/k(CH_{3}\chi,H)$. Over the temperature range considered, the calculated value of $k(CH_{1,},H)/k(CH_{3,},H)$ agrees quite well with the theoretical r = 1.442 determined only from the H, D, and T atomic weights (as shown in footnote b of Table XXXV). The KIEs and r values reported for infinite temperature are obtained from the high temperature limits to the KIEs (that is, $v_{11}^{\ddagger}/v_{21}^{\ddagger}$). The other extreme is represented by the $k(CH_4, H)/k(CH_4, X)$ values which are pure end atom effects. It can be seen that these KIE values are inverse (that is, the heavier isotopic reactants react faster) and that the KIE values go past (or crossover) unity at some temperature above 546°K (approximately 1500 to 2000° K). It has been noted by Stern and Vogel that when the KIEs are very near unity, the r values become anomalous and useless as a method of approximately tritium KIEs from deuterium KIEs or vice versa.²⁵ The other two KIEs for which r values were determined in Table XXXV are combined end atom plus normal primary KIEs. Their calculated r values decrease toward $r_{ss} = 1.442$ until between 600 and 1000°K, and then increase until the infinite temperature value is reached. The $k(CH_3, HX)/k(CH_3, XH)$ values show better overall agreement with the r = 1.442 since each individual D or T KIE increases monotonically with lowering temperature. The $k(CH_3, H_2)/k(CH_3, X_2)$ values have an inflection point at approximately $200^{\circ}K$ and decrease in value at lower temperature. Since the D and T inflection points do not occur at exactly the same temperature the calculated r values decrease in their agreement with r at lower temperatures. These results in Table XXXV seem to indicate that this simple Swain-Schaad relationship can

be used to give a reasonable estimate of the expected $k_{\rm H}^{}/k_{\rm T}^{}$ value given an accurate value for $k_{\rm H}^{}/k_{\rm D}^{}$ and raising it to the r s = 1.442 power. The values for the first three KIEs in Table XXXV indicate that such a relationship would be reasonably correct over a very broad range of temperature. However, the $k(CH_3, H_2)/k(CH_3, X_2)$ values show that the Swain-Schaad relationship will yield only fair results at the supposedly most optimum temperature and worse results at lower temperatures.

Relating ¹³C and ¹⁴C Isotope Effects

Since the Swain-Schaad relationship in its most abbreviated form appears to work for the $CH_4 + H \stackrel{\rightarrow}{\leftarrow} CH_3 + H_2$ reaction system even at higher temperatures (> 100° C) than it is supposed to be valid, and since reasonable values were obtained for isotopic configurations other than the strictly primary D(or T) effects, it was reasoned that possibly a similar relation might be applicable to 13-carbon and 14-carbon KIEs. The results obtained from the extension to carbon isotope effects using the LMR-PES predicted 13-carbon and 14-carbon effects are shown in Table XXXVI. To estimate the magnitude of a 14-carbon KIE at a particular temperature, the 13-carbon KIE at that temperature is raised to the r = 1.888 power (see footnote b in Table XXXVI). The estimated accuracy of this relation is given by calculating the r values (see footnote (a) in Table XXXVI) and determining the differences between these r_c values and the theoretical r = 1.888. It can be seen in Table XXXVI that the CH_{h} +H carbon effects fit the theoretical r = 1.888 very well over the entire temperature range. However, the CH_3+H_2 carbon effects tend to fall off rather rapidly at low temperature and the relationship is not very accurate below room temperature (~ 300° K). This

Ratio of Rate Constants	^k 12 ^{/k} 13	k ₁₂ /k ₁₄	r a c	∆r _c ^b	Temperature °K
k(CH ₄ ,H)	1.2241	1.4566	1.860	028	50
$\overline{k(*CH_4,H)}$	1.1074	1.2089	1.860	028	100
	1.03513	1.06633	1.860	028	296
с. К.	1.01825	1.03422	1.860	028	546
	1.00544	1.01024	1.878	-0.10	ω
k(CH ₃ ,H ₂)	1.00396	1.00639	1.614	274	50
k(*CH ₃ ,H ₂	1.00584	1.01048	1.792	096	100
	1.00637	1.01186	1.857	031	296
	1.00601	1.01123	1.864	024	546
	1.00544	1.01024	1.878	010	ω

TABLE XXXVI

RELATIONSHIPS OF ¹³C and ¹⁴C ISOTOPE EFFECTS

 ${}^{a}r_{c} = \ln(k_{12}/k_{14})/\ln(k_{12}/k_{13}).$ ${}^{b}\Delta r_{c} = r_{c} - r, \text{ where } r = \frac{(1/m_{12})^{\cdot 5} - (1/m_{14})^{\cdot 5}}{(1/m_{12})^{\cdot 5} - (1/m_{13})^{\cdot 5}} = 1.888.$

relationship was also tested with some fractionation factor equilibria values reported by Hartshorn and Shiner that were calculated at 298° K. The reactions used are given by equations (III-14) and (III-15).

$${}^{13}\text{co}_2 + \text{co}_3^{=} \rightarrow \text{co}_2 + {}^{13}\text{co}_3^{=}$$
 (III-14)

$${}^{13}\text{CO}_2 + \text{CH}_4 \rightarrow \text{CO}_2 + {}^{13}\text{CH}_4$$
 (III-15)

Hartshorn and Shiner (HS) report a value of 1.0066 for the 13-carbon effect in (III-14). By raising this value to the 1.888 power, a value of 1.0125 was obtained which compares favorably with 14-carbon effect value of 1.0122 reported by HS.⁴⁵ Similarly, the relation for the 14-carbon effect in (III-15) is given by

$$(0.9429)^{1.888} = 0.8949$$
 (III-16)

The 14-carbon effect value reported by HS is 0.8948.⁴⁵ The fact that these calculated values agree within 0.03% of the absolute rate theory calculated values reported by HS supports the validity of the relationship expressed in Table XXXVI.

Rule of the Geometric Mean Relationships

As discussed in Chapter I, the rule of the geometric mean is based on the applicability of vibrational frequency sum rules to the calculation of transition-state theory isotope effects. Table XXXVII shows the relationship between the various secondary α -deuterium KIEs for both the CH₄ + H and the CH₃ + H₂ reactions. It can be seen that the k(H/D) and F(H/D) (see footnote a in Table XXXVII) values for one

TABLE XXXVII

RULE OF THE GEOMETRIC MEAN RELATIONSHIPS FOR SECONDARY ISOTOPE EFFECTS

		Temper	ature of	Isotope	Effect		
Isotope Effect Relationship ^{a,b}	50°К	273°K	546°K	746°K	1046°K	2246°K	
k(CH ₁ ,H/CD ₃ H,H)	9.4826	1.6502	1.2182	1.1251	1.06675	1.01563	
$F(CH_4, H/CD_3H, H)$	9.4755	1.6490	1.2173	1.1243	1.06595	1.01487	
$[k(CH_{1},H/CH_{2}DH,H)]^{3}$	8.6101	1.6430	1.2176	1.1249	1.06668	1.01559	
$[F(CH_4, H/CH_2^2DH, H)]^3$	8.6038	1.6418	1.2167	1.1241	1.06590	1.01486	
k(CH ₄ ,H/CHD ₂ H,H)	4.3250	1.3942	1.1404	1.08171	1.04399	1.01038	
$F(CH_4, H/CHD_{2^{\sim}}^2, H)$	4.3229	1.3935	1.1399	1.08117	1.04348	1.00989	
[k(CH,,H/CH,DH,H)] ²	4.2009	1.3924	1.1403	1.08164	1.04397	1.01037	
$[F(CH_4, H/CH_2^2DH, H)]^2$	4.1988	1.3917	1.1397	1.08112	1.04346	1.00988	
k(CH ₄ ,H/CH ₂ DH,H)	2.0496	1.1800	1.06783	1.04002	1.02175	1.00517	
$F(CH_4, H/CH_2DH, H)$	2.0491	1.1797	1.06757	1.03977	1.02150	1.00493	
k(CH ₃ ,H ₂ /CD ₃ ,H ₂)	.06413	.8115	.9579	.9804	.9915	.99902	
$F(CH_3, H_2/CD_3, H_2)$.06408	.8109	.9572	.9796	.9908	.99827	
$[k(CH_{3},H_{2}/CH_{2}D,H_{2})]^{3}$.05756	.8093	.9574	.9800	.9913	.99898	
$[F(CH_3, H_2/CH_2D, H_2)]^3$.05751	.8088	.9568	.9794	.9907	.99826	
k(CH ₃ ,H ₂ /CHD ₂ ,H ₂)	.1548	.8697	.9717	.9868	.9943	.99934	
$F(CH_3, H_2/CHD_2, H_2)$.1547	.8692	.9712	.9863	.9938	.99884	
$\left[k(CH_3, H_2/CH_2D, H_2)\right]^2$.1491	.8684	.9714	.9866	.9942	•9 9 932	
$[F(CH_3, H_2/CH_2D, H_2)]^2$.1490	.8681	.9710	.9862	.9938	.99884	
k(CH ₃ ,H ₂ /CH ₂ D,H ₂)	.3861	.9319	.9856	.9933	.9971	.99966	
$F(CH_3, H_2/CH_2D, H_2)$.3860	.9317	.9854	.9931	.9969	.99942	
$a_{k(1/2)} = (\sqrt{\frac{1}{2}})F(1/2)$ where 1 and 2 represent the light and heavy							

 ${}^{a}k(1/2) = (v_{1L}^{\dagger}/v_{2L}^{\dagger})F(1/2)$, where 1 and 2 represent the light and heavy isotope species respectively and $F(1/2) = \frac{s_2/s_1f(2/1)}{s_2^{\dagger}/s_1^{\dagger}f^{\dagger}(2/1)} = VP \cdot EXC \cdot ZPE$, see (I-29).

^bWhere applicable the atom being abstracted is underlined.

 α -deuterium when squared and cubed give reasonable approximations to the transition-state theory calculated k(H/D) and F(H/D) values having two and three α -deuteriums, respectively. This relationship produces better results at higher temperature, since the sum rules upon which this relationship is based apply to the high temperature approximation to the transition-state theory calculated KIEs which is only valid at elevated temperatures, see (I-23) and (III-17).⁴⁶

$$\ln(k_{\rm H}/k_{\rm D}) = \ln(v_{\rm 1L}^{\ddagger}/v_{\rm 2L}^{\ddagger}) + \frac{1}{24} \begin{bmatrix} 3n-6\\ {\scriptstyle \Sigma}\\ {\scriptstyle \Xi1} \end{bmatrix} (u_{\rm 11}^2 - u_{\rm 12}^2) - \frac{3n-7}{{\scriptstyle \Sigma1}} (u_{\rm 11}^{\ddagger2} - u_{\rm 12}^{\ddagger2}) \end{bmatrix} (III-17)$$

An indepth study of the deviations from the rule of the mean as it is related to the method of finite orthogonal polynomial expansions has been recently given by Ishida and Bigeleisen, see (I-25).^{27,47} However, the simple relationships expressed in Chapter I satisfy the comparisons made in Table XXXVII.

A SELECTED BIBLIOGRAPHY

- 1. S. Glasstone, K. J. Laidler, and H. Eyring, "Theory of Rate Processes", McGraw-Hill Book Co., Inc., New York, N.Y., 1941.
- L. M. Raff, J. Chem. Phys., 60, 2220 (1974). We are indebted to Dr. Raff for making available to us his potential energy surface computer programs.
- 3. a) J. Bigeleisen and M. Wolfsberg, <u>Advan. Chem. Phys.</u>, 1, 15 (1958); b) M. Wolfsberg and M. J. Stern, <u>Pure Appl. Chem.</u>, 8, 225 (1964); c) M. Wolfsberg and M. J. Stern, <u>Pure Appl. Chem.</u>, 8, 325 (1964); d) M. J. Stern and M. Wolfsberg, <u>J. Pharm.</u> <u>Sci.</u>, 54, 849 (1965); e) M. J. Stern and M. Wolfsberg, <u>J. Chem.</u>, <u>54</u>, 849 (1965); e) M. J. Stern and M. Wolfsberg, J. <u>Chem. Phys.</u>, 45, 2618 (1966); f) A. V. Willi, <u>Can. J. Chem.</u>, 44, 1889 (1966); g) S. Seltzer and E. J. Hamilton, Jr., <u>J. Am. Chem.</u> <u>Soc.</u>, 88, 3775 (1966); h) S. Seltzer and S. G. Mylonakis, <u>J. Am. Chem. Soc.</u>, 89, 6584 (1967); i) R. E. Weston, Jr., <u>Science</u>, <u>158</u>, 332 (1967); j) M. E. Schneider and M. J. Stern, J. Am. Chem. Soc., 95, 1355 (1973).
- 4. a) S. Seltzer, J. <u>Am. Chem. Soc.</u>, <u>83</u>, 1861 (1961); b) A. A. Zavitsas and S. Seltzer, <u>ibid.</u>, <u>86</u>, 3836 (1964); c) C. Y. Wu and P. E. Robertson, <u>Chem. Ind.</u> (London), 195 (1966);
 d) C. M. Won and A. V. Willi, J. Phys. Chem., <u>76</u>, 427 (1972).
- 5. F. S. Klein, Am. Rev. Phys. Chem., 26, 191 (1975).
- 6. For an excellent review of the theory of kinetic isotope effects see, W. A. VanHook, "Isotope Effects in Chemical Reactions", ACS Monograph 167, Ed. by C. J. Collins and N. S. Bowman, Van Nostrand-Reinhold Company, New York, N. Y., 1970, Chapter 1.
- 7. a) All notations having the superscript + refers to the transition-state configuration (no superscript refers to the reactants);
 b) The subscripts 1 and 2 refer to the light and heavy isotopic species respectively.
- 8. a) O. Redlich, Z. Physik. Chem., <u>B28</u>, 371 (1935); b) E. Teller, quoted in W. R. Angus and others, J. Chem. Soc., 1936, 971.
- J. H. Schachtschneider and R. G. Snyder, <u>Spectrochim</u>. <u>Acta</u>, <u>19</u>, 117 (1973). We gratefully acknowledge Dr. Max Wolfsberg for making available to us his modification of this program.

- 10. a) C. C. Chou and F. S. Rowland, J. Phys. Chem., 75, 1283 (1971). Chou and Rowland added small amounts of Br₂ to their reaction mixtures to scavenge moderated product free radicals;
 b) C. C. Chou and F. S. Rowland, J. Chem. Phys., 50, 5133 (1969) and references cited therein.
- 11. See Reference 6, page 36.
- 12. M. J. Kurylo, G. A. Hollinden, and R. B. Timmons, <u>J. Chem. Phys.</u>, 52, 1773 (1970).
- 13. a) C. Ting and R. E. Weston, Jr., J. Phys. Chem., 77, 2257 (1973);
 b) Ting and Weston photolyzed CH₃Br with 185 nm radiation to generate hot methyl radicals with 86-88 kcal/mole distributed between CH₃ and Br.
- 14. J. S. Shapiro and R. E. Weston, Jr., <u>J. Phys. Chem.</u>, <u>76</u>, 1669 (1972).
- 15. E. Whittle and E. W. R. Steacie, J. Chem. Phys., 21, 993 (1953).
- 16. a) T. G. Majury and E. W. R. Steacie, <u>Can. J. Chem.</u>, <u>30</u>, 800 (1952); b) T. G. Majury and E. W. R. Steacie, <u>Disc</u>. Faraday <u>Soc</u>., <u>14</u>, 45 (1952).
- 17. S. Davison and M. Burton, J. Am. Chem. Soc., 74, 2307 (1952).
- 18. S. Chapman and D. L. Bunker, <u>J. Chem. Phys.</u>, 62, 2890 (1975).
- 19. L. B. Sims, L. R. Dosser, and P. S. Wilson, <u>Chem. Phys. Lett.</u>, 32, 150 (1975).
- 20. J. Bigeleisen, Pure Appl. Chem., 8, 217 (1964).
- 21. A. V. Willi and M. Wolfsberg, Chem. Ind. (London), 2097 (1964).
- 22. A. J. Kresge and Y. Chiang, J. Am. Chem. Soc., 91, 1026 (1969).
- 23. C. G. Swain, E. C. Stivers, J. F. Reuwer, Jr., and L. J. Schaad, J. <u>Am. Chem. Soc.</u>, 80, 5885 (1958).
- 24. J. Bigeleisen, "Tritium in the Physical and Biological Sciences", I.A.E.A., Vienna, 1, 161 (1962).
- 25. M. J. Stern and P. C. Vogel, J. Am. Chem. Soc., 93, 4664 (1971).
- 26. M. J. Stern and R. E. Weston, Jr., <u>J. Chem. Phys.</u>, <u>60</u>, 2815 (1974).
- 27. a) J. Bigeleisen, J. Chem. Phys., 23, 2264 (1955); b) J.
 Bigeleisen, J. Chem. Phys., 28, 694 (1958); c) J. C. Decius and E. Bright Wilson, Jr., J. Chem. Phys., 19, 1409 (1951).

- E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations", McGraw-Hill Book Co., New York, N. Y., 1955, pages 29-30.
- 29. L. M. Raff, L. Stivers, R. N. Porter, D. L. Thompson, and L. B. Sims, J. Chem. Phys., 52, 3449 (1970).
- 30. S. D. Conte and Carl de Boor, "Elementary Numerical Analysis", McGraw-Hill Cook Co., Inc., New York, N. Y., 1972, pages 278-280.
- 31. We gratefully acknowledge Dr. H. Burchard of the Oklahoma State University Mathematics Department for his help in deriving this numerical method.
- 32. The polynomial least squares program used is a double precision version of the one given in D. D. McCracken and W. S. Dorn, "Numerical Methods and Fortran Programming", John Wiley and Sons, Inc., New York, N. Y., 1964, pages 262-275.
- 33. F. B. Hildebrand, "Introduction to Numerical Analysis", McGraw-Hill, Inc., New York, N. Y., 1974, page 112.
- 34. G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules",D. Van Nostrand, New York, N. Y., 1945, page 40.
- 35. T. Shimanouchi, "Tables of Molecular Vibrational Frequencies, Consolidated Volume I," <u>Nat. Stand. Ref. Data Ser., Nat.</u> <u>Bur. Stand. No. 39</u>, 45 (1972).
- 36. A. Snelson, J. Chem. Phys., 74, 537 (1970).
- 37. D. E. Milligan and M. E. Jacox, J. Chem. Phys., 47, 5146 (1967).
- 38. L. Y. Tan, A. M. Winer, and G. C. Pimentel, <u>J. Chem. Phys.</u>, <u>57</u>, 4028 (1972).
- 39. a) See: Indiana University, Quantum Chemistry Program Exchange, Catalog and Procedures, Vol. X (1974), program No. 236;
 b) W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, <u>J. Amer. Chem. Soc</u>., 93, 6377 (1971).
- 40. G. Herzberg, "Molecular Spectra and Molecular Structure, Vol. I," D. Van Nostrand Co., Inc., New York, N. Y., 1950, page 532.
- 41. C. L. Kibby and R. E. Weston, Jr., <u>J. Chem. Phys.</u>, <u>49</u>, 4825 (1968).
- 42. H. S. Johnston, "Gas Phase Reaction Rate Theory", Ronald Press Co., New York, N. Y., 1966, page 169.
- 43. A. Persky and F. S. Klein, <u>J. Chem. Phys.</u>, 44, 3617 (1966).

- 44. R. P. Bell, Trans. Faraday. Soc., 55, 1 (1959).
- 45. S. R. Hartshorn and V. J. Shiner, Jr., <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 9002 (1972).
- 46. See Reference 6, page 17.
- 47. T. Ishida and J. Bigeleisen, J. Chem. Phys., 64, 4775 (1976).
- 48. See Reference 28, page 55.
- 49. a) E. B. Wilson, Jr., <u>J. Chem. Phys.</u>, 9, 76 (1941); b) See Reference 28, page 61.
- 50. See Reference 28, page 309.
- 51. a) W. D. Gwinn, <u>J. Chem. Phys.</u>, 55, 477 (1971); b) M. A. Pariseau, I. Suzuki, and J. Overend, <u>J. Chem. Phys.</u>, 42, 2335 (1965);
 c) L. B. Sims, private communication.
- 52. Computer program FXGEN in Appendix E, page 223, was used to perform this calculation on the activated complex internal coordinate force constants.
- 53. See Reference 28, page 284.

APPENDIX A

LMR-PES COORDINATE RELATIONSHIPS

The relationship between cartesian coordinates and the LMR-PES internal coordinates is controlled by three sets of equations in the computer code. The first set, shown in Equation (A-1) initializes the cartesian coordinates for each numbered atom in Figure 1 given values for Z_1 and Z_6 equal to r_1 and $(r_1 + r_6)$, respectively, in Table III or Table V,

$$y_{2} = r_{e} \sin\theta$$

$$z_{2} = r_{e} \cos\theta$$

$$x_{3} = r_{e} \sin\theta \cos(11\pi/6)$$

$$y_{3} = r_{e} \sin\theta \sin(11\pi/6)$$

$$z_{3} = r_{e} \cos\theta$$

$$x_{4} = r_{e} \sin\theta \cos(7\pi/6)$$

$$y_{4} = r_{e} \sin\theta \sin(7\pi/6)$$

$$z_{4} = r_{e} \cos\theta$$

with θ defined by

$$\theta = 90^{\circ}, (r_{1} > 6.274)$$

$$\theta = \tau , (r_{1} \le r_{e})$$

$$\theta = \tau - a_{5}(r_{1} - r_{e}), (r_{e} < r_{1} \le 6.274)$$
(A-2)

(A-1)

where r_{e} has the value 2.0673 atomic units, a_{5} is defined in Table IV,

 τ is the tetrahedral angle and x_1 , y_1 , x_2 , x_5 , y_5 , z_5 , x_6 , and y_6 are set equal to zero. These cartesian coordinates are converted to the 15 possible interatomic distances by the DIST routine defined by (A-3),

$$D_{ij} = [(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2]^{1/2}$$
(A-3)

where i and j are the atom numbers 1 through 6 with $i \neq j$. The corresponding interatomic distances defined in Tables III and V are given by (A-4).

$$r_{1} = D_{1,5}$$

$$r_{2} = D_{2,5}$$

$$r_{3} = D_{3,5}$$

$$r_{4} = D_{4,5}$$

$$r_{5} = D_{6,5}$$

$$r_{6} = D_{1,6}$$

$$r_{7} = D_{2,6}$$

$$r_{8} = D_{3,6}$$

$$r_{9} = D_{4,6}$$

$$r_{10} = D_{1,2}$$

$$r_{11} = D_{1,3}$$

$$r_{12} = D_{1,4}$$

$$r_{13} = D_{2,3}$$

$$r_{14} = D_{2,4}$$

$$r_{15} = D_{3,4}$$

(A-4)

The last six interatomic distances (r_{10} through r_{15}) are used to calculate the six angles θ_1 through θ_6 . The ANGLE routine uses the

law of cosines and the interatomic distances in (A-4) to calculate θ_{i} (i=1,2,3,4,5,6), see (A-5).

$$\theta_{i} = \arccos[(r_{1}^{2} + r_{i+1}^{2} - r_{i+9}^{2})/(2r_{1}r_{i+1})], (i=1,2,3)$$

$$\theta_{j+3} = \arccos[(r_{2}^{2} + r_{j+2}^{2} - r_{j+12}^{2})/(2r_{2}r_{j+2}), (i=1,2)]$$

$$\theta_{6} = \arccos[(r_{3}^{2} + r_{4}^{2} - r_{15}^{2})/(2r_{3}r_{4})]$$
(A-5)

Therefore, when a cartesian coordinate is incremented the DIST and ANGLE routines convert that change to LMR-PES coordinates before the energy is calculated.

The relationships between the internal valence coordinates designations (given in Table V) and the corresponding LMR-PES coordinates was established by equations relating the valence coordinates designations to the proper cartesian coordinate representations. The cartesian coordinate values calculated using these equations were then used in subroutine DIST to obtain the proper values for the LMR-PES coordinates designations. Each valence coordinate in the last column of Table V has a discrete functional cartesian coordinate representation programmed into the routine QRESET or ALBEND. For example, when R_1 is incremented by h the QRESET function is given by (A-6),

$$r_{1} = r_{C1} + h$$

 $Z_{6} = (r_{1} - Z_{C1}) + Z_{C6}$
 $Z_{1} = r_{1}$ (A-6)

where r_{C1} and Z_{C1} and Z_{C6} are the equilibrium LMR-PES and cartesian coordinate values, respectively, for the molecular configuration for
which force constants are being determined. The Z_1 and Z_6 values are then used in the DIST routine to obtain the corresponding LMR-PES coordinates changes relative to $R_1 = f(r_1, r_5, r_7, r_8, r_9)$. The same notation is used for each of the following valence coordinate relationships. The non-reacting C-H bond stretching relationships from incrementation of R_i (i=2,3,4) by h is given by (A-7),

$$r_{i} = r_{Ci} + h$$

$$A = \phi_{i-1} - (\frac{\pi}{2})$$

$$r_{pi} = r_{i} \cos(A)$$

$$T = \arctan(x_{Ci}/y_{Ci})$$

$$x_{i} = r_{pi} \sin(T)$$

$$y_{i} = r_{pi} \cos(T)$$

$$z_{i} = -r_{i} \sin(A)$$
(A-7)

where i=2,3,4, r_{pi} is r_{i} projected into the xy plane, see Figure 1, and A is the angle of r_{i} out of the xy plane. DIST then converts x_{i} , y_{i} and z_{i} , (i=2,3,4) to the corresponding LMR-PES coordinates.

The H-H bond stretching relationship for incrementation of R_5 by h is geometrically related to the linear-bending valence coordinates α_x and α_y . Therefore, R_5 , α_x and α_y relationships are all handled by the same set of equations programmed in the ALBEND routine. These equations relating the incremented coordinates $r_6 = r_{C6} + h$, $\alpha_x = \alpha_x + h$, or $\alpha_y = \alpha_y + h$ to the LMR-PES coordinates are given in (A-8),

$$\Delta \alpha_{\mathbf{x}} = \pi - \alpha_{\mathbf{x}}$$
$$\Delta \alpha_{\mathbf{y}} = \pi - \alpha_{\mathbf{y}}$$
$$\mathbf{S} = 1 - \sin^{2}(\Delta \alpha_{\mathbf{x}}) \sin^{2}(\Delta \alpha_{\mathbf{y}})$$

è

$$R_{x_{6}} = r_{6} \cos^{2}(\Delta \alpha_{y})/S$$

$$R_{y_{6}} = r_{6} \cos^{2}(\Delta \alpha_{x})/S$$

$$x_{6} = R_{x_{6}} \sin(\Delta \alpha_{x})$$

$$y_{6} = R_{x_{6}} \sin(\Delta \alpha_{y})$$

$$z_{6} = [R_{x_{6}} \cos(\Delta \alpha_{x})] + r_{1}$$
(A-8)

where R_5 and r_6 correspond to the same interatomic distance, but R_5 is also a function of the LMR-PES coordinates r_5 , r_7 , r_8 and r_9 as are the α_x and α_y valence coordinates from Table V. Application of the DIST equations complete the transformation of the incremented R_5 , α_x or α_y coordinates to the corresponding set of LMR-PES coordinates.

The incremented ϕ_i (i=1,2,3) valence angle coordinates are transformed into LMR-PES coordinates by (A-9),

$$\theta_{i} = \phi_{i} + h$$

$$A = \theta_{i} - (\pi/2)$$

$$r_{pi+1} = r_{i+1}\cos A$$

$$T = \arctan(x_{i+1}/y_{i+1})$$

$$x_{i+1} = r_{pi+1}\sin(T)$$

$$y_{i+1} = r_{pi+1}\cos(T)$$

$$z_{i+1} = r_{i+1}\sin(A)$$
(A-9)

where x_{i+1} , y_{i+1} and z_{i+1} (i=1,2,3) correspond to the cartesian coordinates of the non-reacting hydrogens in Figure 1. The corresponding change in the r_{i+6} (i=1,2,3) values during incrementation of $\phi_i = f(\theta_i, r_{i+6})$, (i=1,2,3) is calculated by application of the DIST equations.

Equation (A-10) interrelates valence angle coordinates ϕ_i (i=4,5,6) and the LMR-PES coordinates for the HCH angles associated with the nonreacting C-H bonds.

$$\theta_{i} = \phi_{i} + h$$

$$A_{1} = \phi_{1} - (\pi/2)$$

$$A_{2} = \phi_{i-2} - (\pi/2)$$

$$r_{p1} = r_{2}\cos(A_{1})$$

$$r_{p2} = r_{i-1}\cos(A_{2})$$

$$r_{\theta_{i}} = [r_{2}^{2} + r_{i-1}^{2} - 2r_{2}r_{i-1}\cos\theta_{i}]^{1/2}$$

$$pr_{\theta_{i}} = r_{\theta_{i}} \cos[\arcsin(\frac{|z_{2} - z_{i-1}|}{r_{\theta_{i}}})]$$

$$p_{\theta_{i}} = \arccos[(r_{p1}^{2} + r_{p2}^{2} - pr_{\theta_{i}}^{2})/(2r_{p1}r_{p2})]$$

$${}^{D}\theta_{i} = 1/2[(2\pi/3) - p_{\theta_{i}}]$$

$${}^{\theta_{x_{2}}} = D_{\theta_{i}} + \arcsin(x_{2}/r_{p1})$$

$${}^{x_{2}} = r_{p1}\sin(\theta_{x_{2}})$$

$${}^{y_{2}} = r_{p1}\cos(\theta_{x_{2}})$$

$${}^{z_{2}} = -r_{2}\sin(A_{1})$$

$$\theta_{y_i} = D_{\theta_i} - (\pi/6) + \arcsin(x_2/r_{p1})$$

$$x_{i-1} = r_{p2} \cos(\theta_{y_i})$$

$$y_{i-1} = r_{p2} \sin(\theta_{y_i})$$

$$z_{i-1} = -r_{i-1} \sin(A_2)$$
(A-10)

For i=4 or 5 in equation (II-35) r_{p1} and r_{p2} are the r_2 and r_{i-1} bondlengths projected into the xy plane, respectively, and the cartesian coordinates x_2 , y_2 , z_2 , x_{i-1} , y_{i-1} , and z_{i-1} convert the incremented ϕ_4 and ϕ_5 coordinates into the properly changed LMR-PES coordinate values through application of (A-3) and (A-4). The valence coordinate transformation for incrementation of ϕ_6 by h is given by (A-11),

$$\theta_{6} = \phi_{6} + h$$

$$A_{3} = \phi_{2} - (\pi/2)$$

$$A_{4} = \phi_{3} - (\pi/2)$$

$$r_{p3} = r_{3}\cos(A_{3})$$

$$r_{p4} = r_{4}\cos(A_{4})$$

$$r_{\theta_{6}} = [r_{3}^{2} + r_{4}^{2} - 2r_{3}r_{4}\cos\theta]^{1/2}$$

$$pr_{\theta_{6}} = r_{\theta_{6}}\cos[\arcsin(\frac{z_{2} - z_{3}}{r_{\theta_{6}}})]$$

$$p_{\theta_{6}} = \arccos[(r_{p3}^{2} + r_{p4}^{2} - pr_{\theta_{6}}^{2})/(2r_{p3}r_{p4})]$$

$$D_{\theta_{6}} = 1/2[(2\pi/3) - P_{\theta_{6}}]$$

$$\theta_{y_{3}} = -\frac{\pi}{6} - D_{\theta_{6}}$$

 $\theta_{y_4} = \theta_{y_3}$ $x_3 = r_{p3} \cos(\theta_{y_3})$ $y_3 = r_{p3} \sin(\theta_{y_3})$ $z_3 = -r_3 \sin(\theta_{y_3})$ $x_4 = -r_{p4} \cos(\theta_{y_4})$ $y_4 = r_{p4} \sin(\theta_{y_4})$ $z_4 = -r_4 \sin(\theta_{y_4})$

where r_{p3} and r_{p4} are the r_3 and r_4 bondlengths projected into the xy plane, respectively, and the cartesian coordinates x_3 , y_3 , z_3 , x_4 , y_4 and z_4 transform the incremented ϕ_6 coordinate into the proportionally changed LMR-PES coordinates through application of (A-3) and (A-4). It should be noted that the ANGLE transformation routine was not used in incrementing a valence angle coordinate(s) since the internal valence coordinates not being used to obtain a particular derivative must be held constant while the energy values are computed as a function of a particular coordinate's values. Use of the ANGLE routine equations would not allow this to be done.

(A-11)

APPENDIX B

CALCULATION OF NORMAL MODE FREQUENCIES

Calculation of Normal Mode Frequencies

The normal mode frequencies for the various isotopic configurations were calculated using the Wilson FG matrix method which has been programmed in the Wolfsberg modification of the Schachtschneider program (WMS).⁹ The purpose of this appendix is to describe the relationship between the cartesian coordinate force constant matrices and the internal coordinate force constant matrices used in the FXGEN ROUTINE in addition to describing the calculational methods generally associated with the Wilson FG matrix calculations used in the Schachtschneider program.⁹

The usual input procedures requires the masses and cartesian coordinates associated with each atom and an internal coordinate code for each internal coordinate in the molecule.^{9,48} The LMR-PES cartesian coordinates are easily obtained from Tables III and V and the equations (A-1) and (A-2) in Appendix A. The internal coordinate specifications are also obtained from Tables III and V. These specifications are combined with the cartesian coordinates of each atom to generate the transformation matrix, B, having I rows and 3N columns where I is the number of internal coordinates and N is the

139

number of atoms.⁴⁹ The B matrix transforms the cartesian coordinate column vector X, where $X^{t} = [x_1, y_1, z_1, x_2, \dots, Z_N]$, into the column vector of internal coordinates R, where $R^{t} = [R_1, R_2, \dots, R_I]$, by (B-1),

$$R = Bx (B-1)$$

where the superscript t indicates transposition of the column vector to the corresponding row vector.^{9,48} The inverse kinetic energy matrix, G, is calculated by (B-2),

$$G = BM^{-1}B^{t}$$
 (B-2)

where M^{-1} is the diagonal inverse mass matrix in which m_{ix} , m_{iy} , and m_{iz} are the masses associated with each atom i from one to N for each cartesian coordinate in (B-3).⁴⁹

The resultant G matrix is an I by I square matrix. Frequencies are obtained by solution of the corresponding GF product matrix secular equation, (B-4),

$$GFL = L\Lambda$$
 (B-4)

where F is the I by I internal coordinate force constant matrix, L is the transformation matrix which must be normalized to properly remove any redundant internal coordinates from the diagonal eigenvalue matrix Λ .⁵⁰ The Λ matrix values are related to the vibrational frequency values v_i (cm⁻¹) by (B-5),

$$\Lambda_{ii} = \frac{4\pi^2 c^2 v_i^2}{N} = (5.88852 \times 10^{-7}) v_i^2 \qquad (B-5)$$

The numerical constant in (B-5) is that used in the Schachtschneider program.⁹

The vibrational potential energy, V, is defined by (B-6).^{9,50}

$$2V = R^{t} F R \qquad (B-6)$$

Substitution of (B-1) into (B-6) gives (B-7).

$$2V = (Bx)^{t}F(Bx) = x^{t}B^{t}FBx \qquad (B-7)$$

Since the vibrational potential energy is defined as the scalar product of a force constant matrix and its associated coordinate vectors as in (B-6) then the 3N by 3N cartesian coordinate force constant matrix F_x in equation (B-8) is equivalent to B^TFB in equation (B-7).⁵¹

$$2V = x^{t}F_{x}$$
(B-8)

Combining (B-7) and (B-8) produces a method of transforming internal coordinate force constant matrices into their corresponding cartesian coordinate force constant matrices.^{51,52}

$$F_{x} = B^{t}FB$$
 (B-9)

If a cartesian coordinate force constant matrix is used in the frequency calculation then the G matrix equals M^{-1} and the secular equation reduces from (B-4) to (B-10).⁵¹

$$M^{-1}F_{x}L = L\Lambda$$
 (B-10)

The functional form of the secular equation (B-10) with the symmetric $M^{-1}F_x$ product matrix allows it to be solved more easily than the unsymmetric GF product matrix. Also, if F_x is obtained from (B-9) it is properly normalized and all eigenvalues except the normal mode frequencies will be zero upon solution of (B-10).^{9,51} If F_x is calculated directly from a potential energy surface the eigenvalue solution to (B-10) may exhibit some small residual rotational-translational character unless special care is taken in the calculation of F_x .

The more involved solution of the internal coordinate GF secular equation used in the WMS program as described by Schachtschneider follows.⁹ The solution of an unsymmetric GF matrix is avoided by solving two symmetric secular equations. The G matrix is factored into conjugate W matrices by an eigenvalue-eigenvector diagonalization procedure to solve (B-11),

$$GD = D\Gamma \tag{B-11}$$

where D is the eigenvector matrix of G and Γ is the diagonal eigenvalue matrix of G. Since G is a symmetric matrix of real values, D must be orthogonal and the Γ_i roots must be real. Therefore, (B-12) is

correct and the W matrix is defined by (B-13),

$$G = D\Gamma D^{\mathsf{t}} = (D\Gamma^{\frac{1}{2}})(\Gamma^{\frac{1}{2}}D^{\mathsf{t}})$$
(B-12)

$$W = D\Gamma^{\frac{1}{2}}$$
(B-13)

where $\Gamma^{\frac{1}{2}}$ is the diagonal matrix of square roots of the Γ_{i} eigenvalues.⁹ The G matrix is then defined by (B-14).

$$G = WW^{t}$$
 (B-14)

A real symmetric H matrix which is equivalent to the corresponding GF product matrix is defined by (B-15).

$$H = W^{T}FW$$
 (B-15)

The solution of the secular equation (B-16) by diagonalization of H

$$HC = C\Lambda \tag{B-16}$$

produces the eigenvector matrix C and the diagonal eigenvalue matrix Λ which is the same as the Λ in (B-4) and (B-5). The major difference between (B-4) and (B-16) is that in (B-4) L must be properly normalized to remove the redundant normal coordinate representations in the GF matrix (that is those over the 3N-6 limit). However, the symmetric form of H causes these redundancies to be automatically removed during the solution of (B-16).⁹

Calculation of Moments of Inertia

The first step in the calculation of the mass moments of inertia, I, I, and I for a particular molecular species is the calculation x of the cartesian coordinates of the center of mass, C_x , C_y , and C_z , for that molecular species using equation (B-17),

$$C_{x} = -\frac{1}{M} \sum_{i=1}^{N} m_{i}x_{i}$$

$$C_{y} = -\frac{1}{M} \sum_{i=1}^{N} m_{i}y_{i}$$

$$C_{z} = -\frac{1}{M} \sum_{i=1}^{N} m_{i}z_{i}$$
(B-17)

where M is the molecular weight, N is the number of atoms, m_i is the atomic weight of atom i (H = 1.007825 amu, D = 2.0141 amu, T = 3.01605 amu, ${}^{12}C = 12.000$ amu, ${}^{13}C = 13.00335$ amu, and ${}^{14}C =$ 14.0032 amu), and x_i , y_i , and z_i are the cartesian coordinates of atom i. The next step involves the calculation of the elements of the moment of inertia tensor matrix. The diagonal elements of the moment of the tensor matrix require the distance, r_i , of each atom i from the center of mass.

$$r_{i} = [(x_{i} + C_{x})^{2} + (y_{i} + C_{y})^{2} + (Z_{i} + C_{z})^{2}]^{\frac{1}{2}}$$
 (B-18)

The individual elements of the moment of inertia tensor matrix are given by (B-19)

$$I_{xx} = \sum_{i=1}^{N} m_{i} [r_{i}^{2} - (x_{i} + C_{x})^{2}]$$
$$I_{yy} = \sum_{i=1}^{N} m_{i} [r_{i}^{2} - (y_{i} + C_{y})^{2}]$$

$$I_{zz} = \sum_{i=1}^{N} m_{i} [r_{i}^{2} - (z_{i} + C_{z})^{2}]$$

$$I_{xy} = I_{yx} = \sum_{i=1}^{N} m_{i} (x_{i} + C_{x}) (y_{i} + C_{y})$$

$$I_{xz} = I_{zx} = \sum_{i=1}^{N} m_{i} (x_{i} + C_{x}) (Z_{i} + C_{z})$$

$$I_{yz} = I_{zy} = \sum_{i=1}^{N} m_{i} (y_{i} + C_{y}) (z_{i} + C_{z})$$
(B-19)

The moment of inertia tensor T in (B-20) is

$$T = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$
(B-20)

then diagonalized to obtain the eigenvalues I_x , I_y , and I_z which are the principal moments of inertia for a particular molecular species about each of the center of mass cartesian coordinate axes.⁵³

APPENDIX C

TABULATION OF ISOTOPIC NORMAL MODE FREQUENCIES AND PARAMETERS USED IN TRANSITION-STATE THEORY ISOTOPE EFFECT CALCULATIONS

All normal mode frequencies, that are tabulated in this Appendix and are specified as being calculated using data from the LMR-PES, were calculated using internal coordinate force constants determined from the LMR-PES by the three-point difference method with an increment size of 1 x 10⁻⁴. The other tabulated frequencies and parameters were calculated using the internal coordinate force constants and geometry from the specified source. The symbol F_{β}^{\ddagger} used in the latter tables refers to the HCH valence angle bending force constant $F_{\phi}^{\ddagger}_{1-3}$, see Table V.

TABLE XXXVIII

LMR-PES DATA FOR ISOTOPIC HYDROGEN

	Molecular Hydrogen Isotopic Configurations Data									
	 ^Н 2	HD	D ₂	^т 2	НТ	DT				
v ^a 1	4468.1	3870.0	3160.6	2582.8	3649.3	2886.2				
I_x ^b	0.0	0.0	0.0	0.0	0.0	0.0				
Iy ^b	0.27736	0.36972	0.54429	0.83004	0.41578	0.66470				
I _z b	0.27736	0.36972	0.55429	0.83004	0.41578	0.66470				
Molecular ^C Weight	2.01565	3.02193	4.02820	6.03210	4.02388	5.03015				
2	1									

^aFrequencies are in cm⁻¹. Date from LMR-PES.

 $^{\rm b}$ The principal moment of inertia about the respective cartesian coordinate axis in units of amu $\mathbb{R}^2.$

^CMolecular weight in amu.

TABLE XXXIX

		Methyl Ra	dical Isoto	opic Config	urations ^a	
	CH ₃	CD ₃	CHD ₂	CH ₂ D	13 _{CH} 3	¹⁴ CH ₃
ν ₁ ^b	2914.2	2061.5	2138.9	2229.4	2914.2	2914.2
v ₂ ^{b,c}	847.1	656.7	725.7	788.8	840.5	834.8
v ^{b,d}	607.0	470.5	520.0	565.2	602.3	598.2
v ₃ e	3099.6 3099.6	2323.6 2323.6	2327.7 3048.2	2989.4 3098.9	3085.2 3085.2	3073.0 3073.0
ν 4	1605.9 1605.9	1174.7 1174.7	1461.9 1185.6	1344.4 1590.4	1600.8 1600.8	1596.4 1596.4
I _x f	1.8092	3.6155	3.6155	2.9378	1.8092	1.8092
I f y	1.8092	3.6155	2.3402	1.8092	1.8092	1.8092
$\mathbf{I}_{\mathbf{z}}^{\mathbf{f}}$	3.6183	7.2311	5.9557	4.7470	3.6183	3.6183
Molecular ^g Weight	15.0235	18.0423	17.0360	16.0298	16.0268	17.0267

LMR-PES DATA FOR ISOTOPIC METHYL RADICAL

^aFrequencies are in cm^{-1} . Data calculated from the LMR-PES except as stated.

^bNon-degenerate normal mode frequencies.

^COut-of-plane bending frequency calculated using Gaussian 70 force constant weighted by LMR-PES bond length.

^dOut-of-plane bending frequencies calculated using the adjusted Tan, Winer and Pimental force constant weighted by the LMR-PES bond length. See Reference 38.

^eDoubly degenerate frequencies for symmetric species.

 $^{\rm f}$ The principal moments of inertia about the respective cartesian coordinate axis in amu-A^2.

^gMolecular weight in amu.

TABLE XL

				Methane Is	otopic Con	figuration	sa		
	CH4	CH3D	CH2D2	CHD ₃	CD4	¹³ CH ₄	¹⁴ сн ₄	CH ₃ T	CD ₃ T
νı ^b	2917.0	2224.1	2166.4	2113.2	2063.4	2917.0	2917.0	1890.2	1850.5
v2 ^c	1526.6	1476.3	1449.3	1303.5	1079.9	1526.6	1526.6	1470.5	1061.4
	1526.6	1476.3	1322.2	1303.5	1079.9	1526.6	1526.6	1470.5	1061.4
_									
$^{\nu}3^{d}$	3080.1	2966.4	3080.1	3046.2	2287.8	3068.3	3058.3	2964.3	2160.7
	3080.1	3080.1	3008.7	2287.9	2287.8	3068.3	3058.3	3080.1	2287.7
	3080.1	3080.1	2288.1	2287.9	2287.8	3068.3	3058.3	3080.1	2287.7
							-		
$^{\rm v}_4$	1366.1	1356.7	1280.7	1040.0	1029.4	1358.0	1350.9	1343.3	1017.7
	1366.1	1197.9	1133.2	1052.6	1029.4	1358.0	1350.9	1121.8	951.7
	1366.1	1197.9	1052.9	1052.6	1029.4	1358.0	1350.9	1121.8	951.7

LMR-PES DATA FOR ISOTOPIC METHANE

149

		Methane Isotopic Configurations ^a												
	CH4	CH3D	CH2D2	CHD3	CD4	13 _{CH} 4	¹⁴ CH ₄	CH3T	CD ₃ T					
I e x	3.2163	4.3494	5.5352	6.4276	6.4276	3.2163	3.2163	5.3520	7.5696					
I e y	3.2163	4.3494	4.8219	5.1597	6.4276	3.2163	3.2163	5.3520	7.5696					
Ie	3.2163	3.2163	3.9296	5.1597	6.4276	3.2163	3.2163	3.2163	6.4276					
Molecular ^f Weight	16.0313	17.0376	18.0438	19.0501	20.0564	17.0346	18.0345	18.0395	21.0584					

TABLE XL (Continued)

^aFrequencies are in cm⁻¹. Data calculated from the LMR-PES.

^bNon-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies for symmetric species.

^d Triply degenerate normal mode frequencies for symmetric species.

 $^{\rm e}$ The principal moment of inertia about the respective cartesian coordinate axis in amu- $^{\rm Q2}$. $^{\rm f}$ Molecular weight in amu.

TABLE XLI

			······			
	Ac	tivated Co	mplex Isot	opic Confi	gurations ^a	
	сн3-н-н	Сн ₂ D-н-н	CHD ₂ -н-н	ср ₃ -н-н	CD ₃ -H-D	ср ₃ -р-н
v ^b	3388.4	3388.3	3388.1	3387.8	2724.7	3104.8
v b v 2	2937.7	2228.7	2158.0	2095.3	2093.7	2095.2
ν ^b 3	964.7	906.6	836.4	735.0	726.4	728.0
ν ₄ υ	1479.3i	1478.9i	1478.6i	1478.2i	1349.li	1180.5i
د ب 5	3085.6 3085.6	3085.3 2995.4	3043.1 2305.3	2303.2 2303.2	2303.2 2303.2	2303.2 2303.2
ν ₆ ^c	1502.9 1502.9	1478.9 1272.6	1353.4 1130.2	1093.8 1093.8	1093.8 1093.8	1093.8 1093.8
v ₇ °	752.3 752.3	750.5 696.4	703.9 692.0	691.9 691.9	681.8 681.8	552.8 552.8
v_8^c	367.3 367.3	365.9 328.5	344.2 314.0	313.6 313.6	274.3 274.3	308.7 308.7
$\mathbf{I}_{\mathbf{x}}^{\mathbf{d}}$	9.6301	10.8995	11.7429	11.8790	16.7999	13.9858
$\mathbf{I}_{\mathbf{y}}^{\mathbf{d}}$	9.6301	9.8801	10.5286	11.8790	16.7999	13.9858
I d	3.3736	4.3931	5.5278	6.7427	6.7421	6.7421
Molecular ^e Weight	17.0391	18.0454	19.0517	20.0580	21.0642	21.0642

LMR-PES ACTIVATED COMPLEX DATA

.

 Activated Complex Isotopic Configurations ^a										
	Сн ₃ -н-d	СН ₃ -D-Н	CH ₃ -D-D	^{CD} 3 ^{-D-D}	¹³ _{СН3} -н-н	¹⁴ СН ₃ -Н-Н				
v1 ^b	2720.9	3106.0	2405.0	2407.6	3387.3	3386.4				
ν ^b 2	2941.2	2937.0	2939.3	2093.2	2936.0	2934.5				
v3 ^b	956.9	959.3	953.6	721.4	959.7	955.3				
ν ₄ υ	1350.4i	1181.7i	1115.01	1113.5i	1471.3i	1464.3i				

	Ac	ctivated Co	mplex Isot	opic Confi	gurations ^a	l i			
	CH ₃ -H-D	СН ₃ -D-Н	CH3-D-D	CD ₃ -D-D	¹³ сн ₃ -н-н	¹⁴ сн ₃ -н-н			
ν ₅ ν ₅	3085.7	3085.7	3085.7	2303.2	3072.4	3061.1			
v ^c 6	1502.9	1502.9	1502.9	1093.8	1499.0	1495.7			
v7 ^c	746.1	636.6	632.6	543.2	750.8	749.5			
v ₈ c	327.5	345.7	296.0	262.4	367.0	365.6			
$\mathbf{I}_{\mathbf{x}}^{\mathbf{d}}$	14.2103	11.5250	15.7957	18.6144	9.6625	9.6913			
I d	14.2103	11.5250	15.7957	18.6144	9.6625	9.6913			
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.3736	3.3736	3.3736	6.7421	3.3736	3.3736			
Molecular ^e Weight	18.0454	18.0454	19.0517	22.0705	18.0425	19.0423			

	Ac	Activated Complex Isotopic Configurations ^a									
	^{СН} 3 ^{-Н-Т}	ср ³ -н-т	Сн ₃ -т-н	сd ₃ -т-н	^{Сн} 3-т-т	CD ₃ -T-T					
v ₁ ^b	2445.6	2449.9	2997.5	2994.2	1973.3	1967.1					
ν ₂ ^b	2939.9	2091.2	2934.9	2095.2	2938.9	2101.2					
ν ^b ν3	950.2	719.0	955.6	722.8	946.8	712.5					
^ь v4	1270.8i	1269.3i	1032.7i	1031.1i	961.0i	958.7i					
^v 5	3085.7	2303.2	3085.7	2303.2	3085.7	2303.2					
v6 ^c	1502.9	1093.8	1502.8	1093.8	1502.9	1093.8					
v7 ^c	744.1	678.7	596.9	499.5	593 .5	489.1					
v8 ^c	312.8	259.3	331.4	304.6	254.3	232.1					
I d	18.2899	21.2536	13.2127	15.8926	20.8221	25.2528					
I d	18.2899	21.2536	13.2127	15.8926	20.8221	25.2528					

TABLE XLI (Continued)

	Ac	tivated Co	mplex Isot	opic Confi	gurations ^a	
	сн ₃ -н-т	ср ₃ -н-т	сн ₃ -т-н	CD ₃ -T-H	CH ₃ -T-T	^{CD} 3 ^{-T-T}
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.3736	6.7421	3.3736	6.7421	3.3736	6.7421
Molecular ^e Weight	19.0474	22.0662	19.0474	22.0662	21.0556	24.0744
	Ac	tivated Co	mplex Isot	opic Confi	gurations ^a	
	CH ₃ -D-T	CH ₃ -T-D	CD ₃ -D-T	CD ₃ -T-D		
b v1	2112.7	2275.3	2135.7	2278.5		
ν_2^{b}	2939.1	2939.0	2071.9	2092.4		
v_3^{b}	948.3	951.1	715.4	717.5		
$\nu_4^{\ b}$	1070.21	990.8i	1068.4i	988.8i		
v ₅ ^c	3085.7	3085.7	2303.2	2303.2		
v ^c 6	1502.9	1502.8	1093.8	1093.8		
v ₇ ^c	631.4	594.2	540.5	491.3		
v ₈ ^c	277.1	275.8	244.0	253.0		
I, d	19.6223	17.2163	22.8219	20.2638		

TABLE XLI (Continued)

	Ac	tivated Co	mplex Isot	opic Configurations ^a
	CH ₃ -D-T	CH ₃ -T-D	CD ₃ -D-T	CD ₃ -T-D
I y d	19.6223	17.2163	22.8219	20.2638
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.3736	3.3736	6.7421	6.7421
folecular Weight	20.0536	20.0536	23.0724	23.0724

constants and geometry.

^bNon-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

 d The principal moment of inertia about the respective cartesian coordinate axis in amu- $^{A^{2}}$.

e Molecular weight in amu.

TABLE XLII

LMR-PES ACTIVATED COMPLEX DATA ϕ_i (i=1,2,3) = 90° AND ϕ_i (i=4,5,6) = 120°

			Planar	CH ₃ Activate	ed Complex Is	otopic Conf	igurations ^a	
		^{СН} 3-Н-Н	CH ₃ -D-D	ср ₃ -н-н	СН ₃ -D-Н	CH ₃ -H-D	¹³ сн ₃ -н-н	14 _{СН3} -н-н
2	v_1^b	3386.3	2403.8	3386.3	3103.8	2720.6	3385.4	3384.6
	v2 ^b	2914.0	2914.0	2061.3	2914.0	2914.0	2914.0	2914.0
	ν ₃ ^b	555.2	548.9	426.1	551.9	551.5	552.0	549.2
	ν ₄ ^b	1469.5i	1108.1i	1469.5i	1174 . 1i	1340.7i	1461.61	1454.7i
	ν ₅ ^c	3099.8	3099.8	2324.4	3099.7	3099.8	3085.3	3073.0
	v ₆ c	1606.7	1606.6	1176.2	1606.6	1606.7	1601.5	1597.0
	v ₇ c	746.8	625.9	683.7	629.9	740.5	746.3	745.9
	vec	368.3	297.7	310.0	347.1	328.7	368.2	368.2

		Planar CH ₃ Activated Complex Isotopic Configurations ^a										
	СН3-Н-Н	CH ₃ -D-D	^{СD} 3 ^{-Н-Н}	^{СН} 3 ^{-D-Н}	^{СН} 3 ^{-Н-D}	¹³ сн ₃ -н-н	¹⁴ сн ₃ -н-н					
I d	9.1465	14.9889	11.0948	10.9083	13.5185	9.1990	9.2457					
I d	9.1465	14.9889	11.0948	10.9083	13.5185	9.1990	9.2457					
I z d	3.6183	3.6183	7.2311	3.6183	3.6183	3.6183	3.6183					
Molecular ^e Weight	17.0391	19.0517	20.0580	18.0454	18.0454	18.0425	19.0423					

^a Frequencies in cm⁻¹. Data calculated using the LMR-PES force constants with the isotopic CH_3 group planar and perpendicular to r_1 .

^bNon-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

 d The principal moment of inertia about the respective cartesian coordinate axis in amu- $^{A^{2}}$.

e Molecular weight in amu.

TABLE XLIII

LMR-PES ACTIVATED COMPLEX DATA FOR $\phi_i(i=1-6) = 109^{\circ}28'$

			Tetrahedra	1 CH ₃ Activa	ted Complex	Isotopic Cor	nfigurations ^a	
		СН ₃ -Н-Н	CH ₃ -D-D	ср ₃ -н-н	СН ₃ -D-Н	CH ₃ -H-D	¹³ _{СН3} -н-н	¹⁴ сн ₃ -н-н
-	v ₁ ^b	3389.3	2405.2	3388.3	3107.4	2720.1	3388.1	3387.1
	v2 ^b	2952.9	2955.5	2117.4	2951.6	2958.6	2950.1	2947.6
	v ₃ ^b	1104.6	1093.2	837.5	1099.4	1096.0	1099.2	1094.5
	ν ₄ υ	1478.9i	1113 . 2i	147¦7.3i	1180.4i	1349.4i	1471.1i	1464.3i
	v5 ^c	3077.1	3077.1	2290.6	3077.1	3077.1	3064.5	3053.8
	v ₆ c	1451.9	1451.8	1053.1	1451.7	1451.9	1448.7	1440.9
	v ₇ c	751.1	631.1	693.2	635.2	744.8	749.3	747.6
	v ₈ ^c	365.8	295.0	313.8	344.6	326.0	365.3	364.9

TABLE XLIII (Continued)

				, tak				
		Tetrahed	ral CH ₃ Activ	vated Complex	x Isotopic C	onfigurations	a	
	^{СН} 3 ^{-Н-Н}	CH ₃ -D-D	ср ₃ -н-н	СН ₃ -D-Н	CH ₃ -H-D	¹³ _{СН3} -н-н	¹⁴ СН ₃ -Н-Н	
I d x	9.7949	16.0533	12.1351	11.7281	14.4346	9.8225	9.8471	
I y d	9.7949	16.0533	12.1351	11.7281	14.4346	9.8225	9.8471	
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.2163	3.2163	6.4276	3.2163	3.2163	3.2163	3.2163	
Molecular ^e Weight	17.0391	19.0517	20.0580	18.0454	18.0454	18.0425	19.0423	

^a Frequencies in cm⁻¹. Date calculated using the LMR-PES force constants with the isotopic CH_3 group tetrahedral relative to r_1 .

^bNon-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

^d The principal moment of inertia about the respective cartesian coordinate axis in $amu-A^2$.

^eMolecular weight in amu.

TABLE XLIV

BEBO ACTIVATED COMPLEX DATA^a

	BEBO Activated Complex Isotopic Configurations										
	сн ₃ -н-н	CH ₃ -D-D	ср ₃ -н-н	CD3-D-D	CH ₃ -H-D	сн ₃ -d-н	сd ₃ -н-d	ср ₃ -р-н	¹³ CH ₃ -H-H	¹⁴ СН ₃ -н-н	
v1 ^b	1610.3	1297.8	1596.6	1218.5	1300.2	1591.5	1226.4	1576.1	1601.7	1594.3	
ν ₂ ^b	2980.3	2980.0	2139.6	2136.8	2980.0	2980.3	2136.8	2139.6	2977.4	2974.9	
v ₃ ^b	1178.9	1077.7	899.5	863.1	1089.0	1173.1	870.7	893.3	1174.3	1170.2	
ν ₄ υ	1688.9i	1213.1i	1688.3i	1211.8i	1648.7i	1250.2i	1648.2i	1248.4i	1686.8i	1685 . 0i	
ν ₅ ^с	3046.9	3046.8	2249.1	2248.8	3046.9	3046.8	2249.1	2248.8	3036.7	3028.1	
v ₆	1459.0	1457.7	1065.9	1065.4	1459.0	1457.7	1065.9	1065.4	1455.1	1451.8	
v ₇ c	1046.1	858.3	980.2	761.8	1040.2	862.6	971.6	770.2	1043.1	1040.4	
v8 ^c	446.4	365.9	383.3	320.5	399.1	422.9	333.7	376.8	445.7	445.1	

TABLE XLIV (Continued)

	BEBO Activated Complex Isotopic Configurations											
	^{СН} 3 ^{-Н-Н}	CH ₃ -D-D	ср ₃ -н-н	CD3-D-D	сн ₃ -н-D	сн ₃ -д-н	^{CD} 3 ^{-H-D}	ср ₃ -р-н	¹³ CH ₃ -H-H	¹⁴ сн ₃ -н-н		
I d	8.1239	13.0996	10.3718	15.8724	12.1165	9.3369	14.7016	11.7648	8.1425	8.1591		
I d 8.1239 13.0996 10.3718 15.8724 12.1165 9.3369 14.7016 11.7648 8.1425 8.1591												
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.1989	3.1989	6.3929	6.3929	3.1989	3.1989	6.3929	6.3929	3.1989	3.1989		
Molecular ^e Weight	17.0391	19.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642	18.0425	19.0423		
^a Frequencies	a Frequencies in cm ⁻¹ . Data calculated using the BEBO force constants and geometry from Reference 12.											
^b Non-degener	Non-degenerate normal mode frequencies.											

c_{Doubly} degenerate normal mode frequencies.

 d The principal moment of inertia about the respective cartesian coordinate axis in amu- $^{0}A^{2}$. e Molecular weight in amu.

160

TABLE XLV

		LEPS	Activated	Complex Is	otopic Con	figuration	S	
	сн ₃ -н-н	CH ₃ -D-D	CD ₃ -H-H	CD ₃ -D-D	CH ₃ -H-D	СН ₃ -D-Н	CD ₃ -H-D	сd ₃ -d-н
v_b 1	1396.6	1234.3	1372.8	1080.7	1235.1	1368.6	1090.4	1336.2
v ₂ ^b	2979.9	2979.7	2136.8	2135.6	2979.7	2979.9	2135.6	2136.8
v ₃ ^b	1146.6	959.7	883.3	824.2	980.9	1130.1	838.2	873.2
ν ₄ ^b	2024.4i	1448.li	2024.0i	1447.2i	1948.li	1525.81	1947.8i	1524.8i
v ₅ ^c	3046.8	3046.7	2248.9	2248.6	3046.8	3046.7	2248.9	2248.6
v ₆ ^c	1458.1	1457.1	1065.6	1065.4	1458.1	1457.2	1065.6	1065.4
v ₇ ^c	1076.7	856.1	1029.9	779.7	1063.5	867.4	1012.7	799.2
v ₈ ^c	501.8	425.3	420.6	362.0	453.0	486.2	370.5	418.6

LEPS ACTIVATED COMPLEX DATA^a

161

TABLE XLV (Continued)

		LEPS Activated Complex Isotopic Configurations							
	СН3-Н-Н	CH ₃ -D-D	CD3-H-H	CD ₃ -D-D	CH ₃ -H-D	CH3-D-H	CD ₃ -H-D	ср3-р-н	
I d	8.4210	13.6386	10.6812	16.4413	12.6318	9.6671	15.2420	12.1113	
$\mathbf{I}_{\mathbf{y}}^{\mathbf{d}}$	8.4210	13.6386	10.6812	16.4413	12.6318	9.6671	15.2420	12.1113	
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.1989	3.1989	6.3929	6.3929	3.1989	3.1989	6.3929	6.3929	
Molecular ^e Weight	17.0391	19.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642	
	1								

^aFrequencies in cm⁻¹. Data calculated using the LEPS force constants from Reference 12.

^bNon-degenerate normal mode frequencies.

^cDoubly degenerate normal mode frequencies.

d The principal moment of inertia about the respective cartesian coordinate axis in amu- A^2 . ^eMolecular weight in amu.

TABLE XLVI BEBO3 ACTIVATED COMPLEX DATA FOR F_{β}^{\ddagger} = 0.0001 mdyne- A^{a}

	BEBO3 Activated Complex Isotopic Configurations										
	^{СН} 3-н-н	CH3-D-D	ср3-н-н	CD3-D-D	CH3-H-D	сн ₃ −D−н	CD ₃ -H-D	CD ₃ -D-H	¹³ СН ₃ -н-н	¹⁴ сн ₃ -н-н	
v1 ^b	1567.6	1195.9	1561.1	1175.7	1203.6	1546.7	1185.4	1539.5	1560.2	1553.9	
v_2^{b}	3148.7	3148.5	2253.2	2251.7	3148.5	3148.7	2251.7	2253.2	3146.1	3144.0	
v_b v_3	938.4	925.3	730.3	709.4	931.5	954.1	715.1	724.9	953.8	949.8	
v4	1691.0i	1214.8i	1690.6i	1213.8i	1649.7i	1253.2i	1649.3i	1252.0i	1688.8i	1687.0i	
v5 ^c	3165.2	3165.2	2345.4	2345.4	3165.2	3165.2	2345.4	2345.4	3153.5	3143.5	
v6 ^c	1472.8	1472.7	1074.9	1074.8	1472.8	1472.7	1074.9	1074.8	1468.6	1465.0	
v ₇ ^c	622.9	442.7	622.4	442.0	582.9	494.2	582.3	493.6	622.8	622.6	
v ₈ c	13.7	13.0	11.0	10.1	13.0	13.5	10.2	10.7	13.7	13.6	

TABLE XLVI (Continued)

	BEBO3 Activated Complex Isotopic Configurations											
	^{СН} 3 ^{-Н-Н}	CH ₃ -D-D	^{CD} 3 ^{-H-H}	CD ₃ -D-D	CH ₃ -H-D	^{СН} 3 ^{-D-Н}	^{CD} 3 ^{-H-D}	^{CD} 3 ^{-D-H}	¹³ сн ₃ -н-н	¹⁴ сн ₃ -н-н		
I _x d	8.1200	13.0953	10.3642	15.8642	12.1123	9.3329	14.6936	11.7659	8.1386	8.1552		
$\mathbf{I}_{\mathbf{y}}^{\mathbf{d}}$	8.1200	13.0953	10.3642	15.8642	12.1123	9.3329	14.6936	11.7569	8.1386	8.1552		
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931		
Molecular ^e Weight 17.0391 19.0517 20.0580 22.0705 18.0454 18.0454 21.0642 21.0642 18.0425 19.0423												
a Frequencies equal to 0.	Frequencies in cm ⁻¹ . Data calculated using the BEBO3 force constants from Reference 14 with $F_{\phi 1-3}^{\dagger}$											

^bNone-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

 d The principal moment of inertia about the respective cartesian coordinate axis in amu- O2 .

e Molecular weight in amu.

TABLE XLVII

						1			
LEPSZ ACTIVATED COMPLEX DATA FOR $F_{g}^{*} = 0.0001$ mdyne-A	LEPS2	ACTIVATED	COMPLEX	DATA	FOR	F [‡]	=	0.0001	mdyne-A

		LEPS2	2 Activated	Complex I	sotopic Co	nfiguratio	ns	
	сн ₃ -н-н	CH ₃ -D-D	CD ₃ -H-H	CD ₃ -D-D	CH ₃ -H-D	сн ₃ -д-н	CD ₃ -H-D	CD ₃ -D-H
ν ^b 1	1391.6	1096.9	1384.1	1055.7	1106.1	1356.2	1071.3	1346.8
 v ₂ ^b	3148.5	3148.4	2252.0	2251.2	3148.4	3148.5	2251.2	2252.0
ν_3^{b}	954.2	895.2	728.3	701.0	908.2	947.3	709.1	721.4
v_4^{b}	1838.7i	1315.7i	1838.4i	1315.0i	1769 . 5i	1383.51	1769 . 2i	1382.7i
v ₅ ^c	3165.2	3165.2	2345.5	2345.5	3165.2	3165.2	2345.5	2345.5
v ₆	1472.9	1472.8	1075.3	1075.0	1472.9	1472.8	1075.2	1075.1
v ₇ c	779.5	554.0	778.5	553.1	730.2	617.6	729.2	616.7
v ^c 8	13.6	12.9	10.9	10.0	13.0	13.4	10.1	10.7

165

TABLE XLVII (Continued)

		LEPS	2 Activated	l Complex 1	Isotopic Co	onfiguratio	ons	,
	сн3-н-н	CH ₃ -D-D	сd ₃ -н-н	CD ₃ -D-D	CH ₃ -H-D	сн ₃ -д-н	CD3-H-D	^{CD} 3 ^{-D-H}
I _x ^d	8.3096	13.4401	10.5615	16.2277	12.4475	9.5376	15.0449	11.9716
I d y	8.3096	13.4401	10.5615	16.2277	12.4475	9.5376	15.0449	11.9716
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931	6.3812	6.3812
Molecular ^e Weight	17.0391	19.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642

^aFrequencies in cm⁻¹. Data calculated using the LEPS2 force constants and geometry from Reference 14 with F[†] equal to 0.0001 mdyne-A. ϕ_{1-3}

Non-degenerate normal mode frequencies.

^cDoubly degenerate normal mode frequencies.

^d The principal moment of inertia about the respective cartesian coordinate axis in $amu-A^2$.

e_{Molecular weight} in amu.

TABLE XLVIII BEBO3 ACTIVATED COMPLEX DATA FOR $F_{\beta}^{\ddagger} = 0.26 \text{ mdyne}-A^{a}$

		ns						
	сн ₃ -н-н	CH ₃ -D-D	CD ₃ -H-H	CD ₃ -D-D	CH ₃ -H-D	СН ₃ -D-Н	CD ₃ -H-D	CD ₃ -D-H
v ₁ ^b	1577.5	1273.8	1566.0	1196.3	1276.2	1558.3	1204.1	1545.2
v2 ^b	3148.7	3148.5	2253.6	2252.1	3148.5	3148.7	2252.1	2253.6
v ₃ ^b	1156.3	1055.0	883.8	846.8	1066.6	1150.3	854.6	877.4
v ₄ ^b	1690.5i	1214 . 1i	1690.0i	1212.81	1649.3i	1252.3i	1648.8i	1250.7i
ν ₅ ^c	3166.5	3166.4	2348.4	2348.2	3166.5	3166.4	2348.4	2348.2
v ₆ ^c	1479.9	1478.9	1076.6	1076.0	1479.9	1478.9	1076.5	1076.0
v ₇ ^c	1008.1	827.4	944.0	733.9	1002.5	831.4	935.8	741.9
v ₈ c	429.6	351.9	368.9	308.3	384.1	406.8	321.2	362.6

TABLE XLVIII (Continued)

		BEBO3 Activated Complex Isotopic Configurations							
	СН3-Н-Н	CH3-D-D	СD ₃ -н-н	CD ₃ -D-D	CH ₃ -H-D	сн ₃ -д-н	CD ₃ -H-D	ср ₃ -р-н	
I _x ^d	8.1200	13.0953	10.3642	15.8642	12.1123	9.3329	14.6936	11.7569	
$\mathbf{I}_{\mathbf{y}}^{\mathbf{d}}$	8.1200	13.0953	10.3642	15.8642	12.1123	9.3329	14.6936	11.7569	
I z d	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931	6.3812	6.3812	
Molecular ^e Weight	17.0391	19.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642	
a	-1 -1						. C P	c	

^aFrequencies in cm⁻¹. Data calculated using the BEB03 force constants and geometry from Reference 14 with F[‡] equal to 0.26 mdyne-A. ϕ_{1-3}

Non-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

^d The principal moment of inertia about the respective cartesian coordinate axis in amu- A^2 .

e_{Molecular} weight in amu.

TABLE XLIX						
LEPS2 ACTIVATED	COMPLEX D	DATA FOR	$F_{\beta}^{\ddagger} =$	0.26	mdyne	oa A

_ .

		LEPS2 Activated Complex Isotopic Configurations							
		^{СН} 3 ^{-Н-Н}	CH ₃ -D-D	^{ср} з-н-н	CD ₃ -D-D	CH ₃ -H-D	CH ₃ -D-H	CD ₃ -H-D	^{CD} 3 ^{-D-H}
	v ₁ ^b	1411.8	1231.6	1391.6	1091.4	1232.9	1383.4	1102.1	1356.5
	ν ^b 2	3148.5	3148.5	2252.4	2251.6	3148.4	3148.5	2251.6	2252.4
	v ₃ ^b	1141.9	968.1	879.3	823.3	989.1	1127.7	836.6	869.8
	ν ₄	1838.4i	1315.1i	1838.0i	1314.2i	1769.2i	1382.8i	1768.9i	1381.7i
•	v ₅ ^c	3166.5	3166.5	2348.6	2348.3	3166.5	3166.5	2348.6	2348.3
	v ₆ ^c	1480.0	1479.0	1076.8	1076.1	1380.0	1479.0	1076.7	1076.1
	v ₇ ^c	1078.4	858.0	1030.8	781.2	1065.5	869.1	1014.0	800.2
	v ₈ c	500.4	423.5	420.0	360.9	451.3	484.7	369.5	417.9
TABLE XLIX (Continued)

		LEPS	2 Activated	d Complex	Isotopic C	onfigurati	ons	
	сн ₃ -н-н	CH ₃ -D-D	сd ₃ -н-н	^{CD} 3 ^{-D-D}	^{CD} 3-H-D	CH ₃ -D-H	CD ₃ -H-D	CD ₃ -D-H
I x d	8.3096	13.4401	10.5615	16.2277	12.4475	9.5376	15.0449	11.9716
I d y	8.3096	13.4401	10.5615	16.2277	12.4475	9.5376	15.0449	11.9716
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931	6.3812	6.3812
Molecular ^e Weight	17.0391	10.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642

^aFrequencies in cm⁻¹. Data calculated using the LEPS2 force constants and geometry from Reference 14 with F[†] equal to 0.26 mdyne-Å. ϕ_{1-3}

b Non-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

^d The principal moment of inertia about the respective cartesian coordinate axis in $amu-A^{\circ 2}$.

e_{Molecular} weight in amu.

		r	FABLE	L			
BEBO3	ACTIVATED	COMPLEX	DATA	FOR	$F_{\beta}^{\ddagger} =$	0.568	mdyne-A

		BEBO3 Activated Complex Isotopic Configurations										
		сн ₃ -н-н	CH ₃ -D-D	сd ₃ -н-н	CD ₃ -D-D	CH ₃ -H-D	сн ₃ -d-н	CD ₃ -H-D	CD ₃ -D-H	¹³ CH ₃ -H-H	¹⁴ сн ₃ -н-н	
	v ₁ ^b	1603.4	1432.8	1574.0	1239.7	1432.9	1589.1	1244.2	1554.4	1591.7	1581.8	
	ν ^b 2	3148.7	3148.6	2254.3	2252.7	3148.6	3148.7	2252.7	2254.3	3146.2	3144.0	
	ν ₃ ^b	1337.1	1102.7	1033.3	960.6	1116.4	1326.2	971.8	1025.5	1334.1	1331.3	
· .	ν ₄ ^b	1690 . 1i	1213.5i	1689.4i	1211.9i	1469.0i	1251 . 5i	1648.4i	1249 .5 i	1688.li	1686.3i	
	ν ₅ ^c	3168.3	3168.1	2353.3	2352.4	3168.3	3168.1	2353.3	2352.4	3156.3	3146.0	
	v_6^{c}	1526.9	1497.7	1276.1	1086.8	1526.6	1497.7	1273.4	1087.0	1526.4	1526.0	
	v ₇ c	1355.1	1168.9	1072.8	1011.1	1353.6	1170.0	1072.7	1013.3	1348.0	1341.8	
	v ₈ c	457.5	363.4	403.9	326.9	407.3	421.7	349.4	387.8	457.1	456.7	

			BE	BO3 Activ	ated Comp	lex Isoto	pic Confi	gurations	6	· · · · · · · · · · · · · · · · · · ·
	сн3-н-н	CH ₃ -D-D	^{CD} 3 ^{-H-H}	^{CD} 3 ^{-D-D}	^{CH} 3 ^{-H-D}	^{СН} 3 ^{-D-Н}	^{CD} 3 ^{-H-D}	ср ₃ -р-н	¹³ сн ₃ -н-н	¹⁴ СН ₃ -Н-Н
$\mathbf{I}_{\mathbf{x}}^{d}$	8.1200	13.0953	10.3642	15.8642	12.1123	9.3329	14.6936	11.7569	8.1386	8.1552
$\mathbf{I}_{\mathbf{y}}^{\mathbf{d}}$	8.1200	13.0953	10.3642	15.8642	12.1123	9.3329	14.6936	11.7569	8.1386	8.1552
$\mathbf{I}_{\mathbf{z}}^{\mathbf{d}}$	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931
Molecular ^e Weight	17.0391	19.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642	18.0425	19.0423

^aFrequencies in cm⁻¹. Data calculated using the BEB03 force constants and geometry from Reference 14 with $F^{+}_{\phi 1-3}$ equal to 0.568 mdyne-A.

^bNon-degenerate normal mode frequencies.

^CDoubly degenerate normal mode frequencies.

 d The principal moment of inertia about the respective cartesian coordinate axis in amu- $^{A^{2}}$.

e Molecular weight in amu.

		TA	ABLE L	I						
LEPS2	ACTIVATED	COMPLEX	DATA	FOR F_{β}^{\ddagger}	= 0.568	8 mdyne-	-A A			

		LEPS	2 Activated	Complex 1	Isotopic Co	onfiguratio	ns	
	сн ₃ -н-н	CH ₃ -D-D	CD ₃ -H-H	CD ₃ -D-D	CH ₃ -H-D	СН ₃ -D-Н	CD ₃ -H-D	CD ₃ -D-H
ν ^b 1	1481.7	1417.8	1405.6	1167.0	1417.9	1471.1	1171.1	1374.7
v_2^{b}	3148.6	3148.4	2253.0	2252.1	3148.4	3148.6	2252.1	2253.0
v ₃ ^b	1278.6	988.5	1022.9	905.0	1010.7	1246.7	925.0	1009.0
v_4^{b}	1838.1i	1314.6i	1837.6i	1313.5i	1768.9i	1382.2i	1768.6i	1380.7 1
v ₅ c	3168.4	3168.2	2353.6	2352.5	3168.4	3168.2	2353.6	2352.5
v ₆ ^c	1535.4	1497.9	1325.9	1089.5	1534.3	1497.9	1319.4	1090.4
v ₇ c	1384.1	1183.1	1074.8	1033.3	1380.7	1186.0	1074.5	1038.4

		LEPS2 Activated Isotopic Configurations										
	- СН ₃ -Н-Н	CH ₃ -D-D	сd ₃ -н-н	^{CD} 3 ^{-D-D}	CH ₃ -H-D	^{Сн} 3-D-н	CD ₃ -H-D	ср ₃ -р-н				
$\mathbf{I}_{\mathbf{x}}^{\mathbf{d}}$	8.3096	13.4401	10.5615	16.2277	12.4475	9.5376	15.0449	11.9716				
Iyd	8.3096	13.4401	10.5615	16.2277	12.4475	9.5376	15.0449	11.9716				
I _z d	3.1931	3.1931	6.3812	6.3812	3.1931	3.1931	6.3812	6.3812				
Molecular ^e Weight	17.0391	19.0517	20.0580	22.0705	18.0454	18.0454	21.0642	21.0642				

^bNon-degenerate normal mode frequencies.

Doubly degenerate normal mode frequencies.

d The principal moment of inertia about the respective cartesian coordinate axis in amu- A^2 .

e Molecular weight in amu.

APPENDIX D

TABULATION OF THE KIES USED TO OBTAIN TEMPERATURE DEPENDENCE PARAMETERS

This Appendix presents tables of kinetic isotope effects calculated as a function of temperature. These data were used to calculate the temperature dependence for each kinetic isotope effect.

TABLE LII

			КНТ	,b			SWC			
Temperature °K	LMR-PES	LMR-PES ^a + Bell Tunneling	BEBO	LEPS	BEBO3 $F_{\beta} = 0.0001$	$BEBO3 F_{\beta} = 0.26$	BEBO3 F _β = 0.568	LEPS2 $F_{\beta} = 0.0001$	LEPS2 $F_{\beta} = 0.26$	LEPS2 $F_{\beta} = 0.568$
396	0.390	0.618	0.597	0.691	0.634	0.634	0.634	0.687	0.686	0.685
421	0.421	0.592	0.625	0.719	0.663	0.663	0.663	0.715	0.714	0.714
446	0.450	0.590	0.650	0.744	0.690	0.690	0.689	0.740	0.739	0.739
471	0.478	0.598	0.674	0.766	0.713	0.713	0.713	0.762	0.762	0.762
496	0.505	0.610	0.695	0.786	0.735	0.735	0.735	0.783	0.782	0.782
521	0.530	0.624	0.714	0.805	0.755	0.755	0.744	0.801	0.801	0.800
546	0.554	0.639	0.732	0.821	0.773	0.773	0.773	0.818	0.818	0.818
571	0.576	0.654	0.748	0.836	0.789	0.789	0.789	0.388	0.833	0.833
596	0.598	0.669	0.763	0.850	0.804	0.804	0.804	0.846	0.846	0.846
621	0.618	0.684	0.776	0.862	0.818	0.818	0.818	0.859	0.859	0.859
646	0.638	0.699	0.78 9	0.873	0.830	0.830	0.830	0.870	0.870	0.870
696	0.674	0.727	0.811	0.893	0.853	0.853	0.853	0.890	0.890	0.890

VALUES FOR $k(CH_4, H)/k(CH_4, D)$

^aValues include a Bell tunneling correction, see (III-12).

 $^{\rm b}{\rm Values}$ calculated using force constants and geometry from Reference 12.

^cValues calculated using force constants and geometry from Reference 14. $F_{\beta} = F_{\phi_i}^{\dagger}(i=1,2,3)$ in mdyne-Å.

TABLE LIII

			KHT ^C	,d			sw ^d ,€)		
Temperature <u>°K</u>	LMR-PES ⁶	¹ LMR-PES ^b + Bell Tunneling	BEBO	LEPS	$BEBO3$ $F_{\beta} = 0.0001$	$BEBO3 F_{\beta} = 0.26$	$BEBO3 F_{\beta} = 0.568$	$LEPS2$ $F_{\beta} = 0.0001$	$LEPS2 F_{\beta} = 0.26$	LEPS2 $F_{\beta} = 0.568$
396	1.904	5.171	4.068	4.098	4.894	4.092	3.460	4.814	4.065	3.463
421	1.883	4.097	3.868	3.890	4.558	3.877	3.321	4.502	3.861	3.331
446	1.863	3.512	3.692	3.707	4.273	3.689	3.198	4.234	3.681	3.211
471	1.844	3.140	3.536	3.544	4.028	3.523	3.087	4.002	3.522	3.102
496	1.825	2.882	3.396	3.399	3.815	3.375	2.986	3.799	3.379	3.003
521	1.808	2.691	3.271	3.268	3.630	3.243	2.895	3.620	3.250	2.913
546	1.791	2.543	3.157	3.150	3.466	3.125	2.811	3.461	3.134	2.829
571	1.775	2.426	3.054	3.043	3.320	3.017	2.734	3.320	3.038	2.752
596	1.759	2,329	2.960	2.945	3.190	2.920	2.662	3.193	2.932	2.681
621	1.745	2.248	2.874	2.856	3.073	2.831	2.597	3.078	2.844	2.615
646	1.731	2.179	2.796	2.774	2.968	2.750	2.536	2.975	2.763	2.554
696	1.704	2.068	2.656	2.629	2.786	2.606	2.426	2.795	2.620	2.444

VALUES FOR k(CH₃,H₂)/k(CH₃,D₂)

^aValues calculated using the LMR-PES H_2 and D_2 frequencies.

^bLMR-PES values corrected for Bell tunneling, see (III-12).

^CValues calculated using the force constants and geometry in Reference 12.

^dValues adjusted to the rotationally corrected reactant H₂ and D₂ frequencies of Persky and Klein, see Chapter III and Reference 43.

^eValues calculated using the force constants and geometry in Reference 14. $F_{\beta} = F_{\phi_1}^{\ddagger}(i=1,2,3)$ in mdyne Å.

TABLE LIV

			кнт ^с	,d			sw ^d ,€	<u>.</u>		
Temperature °K	LMR-PES ^a	LMR-PES ^b + Bell Tunneling	BEBO	LEPS	BEBO3 $F_{\beta} = 0.0001$	$BEBO3 F_{\beta} = 0.26$	$BEBO3 F_{\beta} = 0.568$	LEPS2 $F_{\beta} =$ 0.0001	LEPS2 Fβ = 0.26	LEPS2 Fβ = 0.568
396	1.900	5.149	3.900	4.076	4.893	4.068	3.394	3.813	4.043	3.401
421	1.880	4.085	3.713	3.873	4.558	3.859	3.268	4.501	3.844	3.280
446	1.861	3.505	3.547	3.693	4.273	3.675	3.155	4.234	3.668	3.169
471	1.842	3.136	3.400	3.533	4.028	3.512	3.052	4.002	3.511	3.068
496	1.824	2.879	3.268	3.390	3.816	3.367	2.958	3.799	3.370	2.975
521	1.807	2.689	3.148	3.261	3.630	3.237	2.871	3.620	3.243	2.889
546	1.790	2.542	3.041	3.144	3.467	3.120	2.791	3.462	3.128	2.810
571	1.775	2.425	2.942	3.038	3.321	3.014	2.717	3.320	3.024	2.736
596	1.759	2.329	2.853	2.944	3.191	2.917	2.649	3.193	2.928	2.668
621	1.745	2.248	2.771	2.853	3.074	2.829	2.585	3.079	2.841	2.604
646	1.731	2.179	2.695	2.772	2.969	2.748	2.526	2.975	2.761	2.545
696	1.705	2.068	2.561	2.628	2.787	2.605	2.420	2.795	2.619	2.437

VALUES FOR $k(CD_3, H_2)/k(CD_3, D_2)$

^aValues calculated using the LMR-PES H_2 and D_2 frequencies.

^bLMR-PES values corrected for Bell tunneling, see (III-12).

^CValues calculated using the force constants and geometry in Reference 12.

^dValues adjusted to the rotationally corrected H₂ and D₂ frequencies of Persky and Klein, see Chapter III and Reference 43.

^eValues calculated using the force constants and geometry in Reference 14. $F_{\beta} = F_{\phi_{i}(i=1,2,3)}^{\dagger}$ in mdyne A.

TABLE LV

			КНТ	b			SWC	<u>.</u>		
Temperature °K	LMR-PES	LMR-PES ^a + Bell Tunneling	BEBO	LEPS	BEBO3 $F_{\beta} = 0.0001$	$BEBO3 F_{\beta} = 0.26$	BEBO3 F _β = 0.568	LEPS2 F _β = 0.0001	LEPS2 $F_{\beta} = 0.26$	LEPS2 F _β = 0.568
396	1.748	2.637	1.488	1.235	1.782	1.491	1.261	1.476	1.247	1.063
421	1.702	2.366	1.476	1.240	1.737	1.477	1.266	1.459	1.252	1.080
446	1.661	2.183	1.464	1.245	1.697	1.466	1.271	1.443	1.256	1.095
471	1.625	2.049	1.454	1.249	1.663	1.455	1.275	1.430	1.259	1.109
496	1.593	1.946	1.445	1.252	1.633	1.445	1.278	1.418	1.261	1.121
521	1.563	1.863	1.436	1.255	1.607	1.436	1.282	1.407	1.264	1.133
546	1.537	1.795	1.428	1.257	1.584	1.428	1.285	1.398	1.265	1.143
571	1.573	1.738	1.421	1.259	1.563	1.421	1.287	1.389	1.267	1.152
596	1.491	1.689	1.415	1.261	1.545	1.414	1.289	1.381	1.268	1.160
621	1.471	1.647	1.409	1.262	1.528	1.408	1.292	1.374	1.270	1.168
646	1.453	1.610	1.403	1.263	1.514	1.402	1.293	1.368	1.271	1.175
696	1.421	1.549	1.394	1.266	1.488	1.393	1.297	1.357	1.272	1.187

VALUES FOR k(CH₃, HD)/k(CH₃, DH)

^aValues corrected for Bell tunneling, see (III-12).

 $^{\mathrm{b}}\mathrm{Values}$ calculated using force constants and geometries in Reference 12.

^cValues calculated using force constants and geometry in Reference 14. $F_{\beta} = F_{\phi_i}^{\ddagger}(i=1,2,3)$ in mdyne-Å.

TABLE LVI

			b		C						
			<u> </u>	,D	·····		SW	•			
Temperature °K	LMR-PES	LMR-PES ^a + Bell Tunneling	BEBO	LEPS	BEBO3 F _β = 0.0001	BEBO3 F _β = 0.26	BEBO3 F _β = 0.568	LEPS2 $F_{\beta} = 0.0001$	LEPS2 $F_{\beta} = 0.26$	LEPS2 $F_{\beta} =$ 0.568	
396	1.744	2.628	1.478	1.228	1.782	1.482	1.237	1.475	1.240	1.044	
421	1.699	2.360	1.468	1.234	1.736	1.470	1.246	1.458	1.246	1.063	
446	1.659	2.179	1.458	1.240	1.697	1.460	1.254	1.443	1.251	1.081	
471	1.623	2.046	1.449	1.245	1.663	1.450	1.260	1.430	1.255	1.097	
496	1.591	1.943	1.440	1.248	1.633	1.441	1.266	1.418	1.258	1.111	
521	1.562	1.861	1.433	1.252	1.607	1.433	1.271	1.407	1.261	1.123	
546	1.536	1.794	1.426	1.254	1.584	1.426	1.276	1.398	1.263	1.135	
571	1.512	1.737	1.419	1.257	1.564	1.419	1.28-	1.389	1.265	1.145	
596	1.491	1.688	1.413	1.259	1.545	1.413	1.283	1.381	1.267	1.154	
621	1.471	1.646	1.407	1.261	1.529	1.407	1.286	1.374	1.268	1.163	
646	1.453	1.610	1.402	1.262	1.514	1.402	1.289	1.368	1.270	1.170	
696	1.420	1.549	1.393	1.265	1.489	1.392	1.293	1.357	1.272	1.183	

VALUES FOR $k(CD_3, HD)/k(CD_3, DH)$

^aValues corrected for Bell tunneling, see (III-12).

 $^{\rm b}{\rm Values}$ calculated using force constants and geometry in Reference 12.

^cValues calculated using force constants and geometry in Reference 14. $F_{\beta} = F_{\phi_i}^{\ddagger}(i=1,2,3)$ in mdyne-Å.

Temperature °K	LMR-PES	BEBO ^a	BEB03b F _β = 0.0001	$BEB03^{b}$ $F_{\beta} = 0.568$
273	1.038	1.024	1.031	1.0086
296	1.035	1.022	1.028	1.0080
321	1.032	1.020	1.025	1.0075
346	1.030	1.019	1.023	1.0071
371	1.028	1.017	1.021	1.0067
396	1.026	1.016	1.020	1.0064
421	1.024	1.015	1.018	1.0061
446	1.023	1.014	1.017	1.0058
471	1.021	1.013	1.016	1.0056
496	1.020	1.013	1.015	1.0053
521	1.019	1.012	1.014	1.0051
546	1.018	1.011	1.013	1.0049

TABLE LVII VALUES FOR $k(CH_4, H)/k(^{13}CH_4, H)$

^aValues calculated using the force constants and geometry in Reference 12.

^bValues calculated using the force constants and geometry in Reference 14.

TABLE LVIII

Temperature °K	LMR-PES ^a	LMR-PES ^b + Pimentel	BEBO ^C	$BEB03^{d}$ $F_{\beta} = 0.0001$	$BEB03^{d}$ $F_{\beta} = 0.586$
273	1.0064	1.0021	0.9923	0.9993	0.978
296	1.0064	1.0026	0.9935	0.9995	0.980
321	1.0063	1.0030	0.9945	0.9997	0.982
346	1.0063	1.0033	0.9954	0.9999	0.984
371	1.0063	1.0036	0.9962	1.0001	0.986
396	1.0062	1.0038	0.9969	1.0003	0.987
421	1.0062	1.0040	0.9974	1.0004	0.988
446	1.0061	1.0041	0.9979	1.0005	0.990
471	1.0061	1.0043	0.9984	1.0006	0.991
496	1.0061	1.0044	0.9987	1.0007	0.991
521	1.0060	1.0045	0.9990	1.0008	0.992
546	1.0060	1.0046	0.9993	1.0009	0.993

VALUE FOR $k(CH_3, H_2)/k(^{13}CH_3, H_2)$

^aValues calculated using the LMR-PES force constants and geometry plus the Gaussian 70 CH3 out-of-plane bending force constant, see Chapter II.

^bValues calculated using the LMR-PES force constants and geometry plus the Tan, Winer, and Pimentel harmonic CH₃ out-of-plane bending frequency, see Appendix C.

^cValues calculated using the BEBO data in Reference 12.

^dValues calculated using the BEBO3 data in Reference 14. $F_{\beta} = F^{\dagger}_{\phi_1}(i=1,2,3)$ in mdyne-A.

Temperature °K	LMR-PES	BEBO ^a	$BEB03^{b}$ $F_{o} = 0.0001$	BEBO3b F _o = 0.568
273	1.650	1.321	1.591	0.687
296	1.579	1.293	1.507	0.712
321	1.514	1.266	1.434	0.735
346	1.460	1.242	1.374	0.755
371	1.413	1.222	1.324	0.772
396	1.372	1.203	1.283	0.787
421	1.338	1.186	1.248	0.800
446	1.307	1.172	1.219	0.812
471	1.281	1.159	1.193	0.823
496	1.257	1.147	1.172	0.833
521	1.237	1.136	1.153	0.842
546	1.218	1.127	1.136	0.850

VALUES FOR $k(CH_4, H)/k(CD_3H_{\widetilde{L}}, H)$

^aValues calculated using the BEBO data in Reference 12.

^bValues calculated using the BEB03 data in Reference 14. $F_{\beta} = F_{\phi_{1}}^{\dagger}$ (1=1,2,3) in mdyne-A.

TABLE LX

Temperature °K	LMR-PES ^a	LMR-PES ^b + Pimentel	BEBO ^C	$BEB03^{d}$ $F_{\beta} = 0.0001$	$BEBO3^{d}$ $F_{\beta} = 0.568$
273	0.811	0.722	0.650	0.782	0.338
296	0.838	0.756	0.686	0.800	0.378
321	0.862	0.787	0.721	0.816	0.418
346	0.882	0.813	0.751	0.830	0.456
371	0.898	0.835	0.776	0.842	0.491
396	0.911	0.854	0.799	0.852	0.523
421	0.923	0.871	0.819	0.861	0.552
446	0.932	0.884	0.836	0.869	0.579
471	0.940	0.896	0.851	0.876	0.604
496	0.947	0.907	0.864	0.883	0.627
521	0.953	0.916	0.876	0.888	0.649
546	0.958	0.923	0.886	0.894	0.668

VALUES FOR $k(CH_3, H_2)/k(CD_3, H_2)$

^aValues calculated using the LMR-PES force constants and geometry plus the Gaussian 70 CH₃ out-of-plane bending force constant, see Chapter II, and Appendix C.

^bValues calculated using the LMR-PES force constants and geometry plus the Tan, Winer, and Pimentel harmonic CH₃ out-of-plane bending frequency, see Appendix C.

^CValues calculated using the BEBO data in Reference 12.

^dValues calculated using the BEBO3 data in Reference 14. $F_{\beta} = F^{\dagger}_{\beta}$ in mdyne-A. ϕ_{i} (i=1,2,3)

TABLE LXI

	k(CH ₄	,H)/k(¹⁴ CH ₄ ,H))	$k(CH_3, H_2)/k(^{14}CH_3, H_2)$		
Temperature °K	Tetrahedral ^a CH ₃	LMR-PES	Planar ^b CH ₃	Tetrahedral ^a CH ₃	LMR-PES	Planar ^b CH ₃
371	1.0527	1.0520	1.0526	1.0124	1.0117	1.0123
396	1.0491	1.0484	1.0488	1.0123	1.0116	1.0120
421	1.0459	1.0453	1.0455	1.0122	1.0115	1.0117
446	1.0431	1.0425	1.0426	1.0121	1.0115	1.0115
471	1.0407	1.0401	1.0400	1.0119	1.0114	1.0113
496	1.0384	0.0379	0.0377	1.0118	1.0113	1.0112
521	1.0365	1.0360	1.0357	1.0117	1.0113	1.0110
546	1.0347	1.0342	1.0339	1.0117	1.0112	1.0109
$a_{\phi_{i}(i=1-6)} = 1$	109°28'16".					

*

1

LMR-PES KIES USING DIFFERENT TRANSITION-STATE GEOMETRIES

 $b_{\phi_{i}}(i=1,2,3) = 90^{\circ}, \phi_{i}(i=4,5,6) = 120^{\circ}.$

TABLE LXII

	k(CH ₄	,H)/k(CH ₄ ,D)		$k(CH_3, H_2)/k(CH_3, HD)$			
Temperature °K	Tetrahedral ^a CH ₃	LMR-PES	Planar ^b CH ₃	Tetrahedral ^a ^{CH} 3	LMR-PES	Planar ^b CH ₃	
371	0.357	0.357	0.358	0.986	0.986	0.989	
396	0.389	0.390	0.391	1.000	1.000	1.003	
421	0.420	0.421	0.422	1.012	1.012	1.014	
446	0.450	0.450	0.451	1.023	1.023	1.025	
471	0.478	0.478	0.479	1.032	1.032	1.035	
496	0.505	0.505	0.506	1.041	1.041	1.043	
521	0.530	0.530	0.531	1.048	1.048	1.050	
546	0.554	0.554	0.555	1.055	1.055	1.057	

LMR-PES KIES USING DIFFERENT TRANSITION-STATE GEOMETRIES

 $b_{\phi_{i}}(i=1,2,3) = 90^{\circ}, \phi_{i}(i=4,5,6) = 120^{\circ}.$

TABLE LXIII

LMR-PES KIES USING DIFFERENT TRANSITION-STATE GEOMETRIES

	k(CH ₄	,H)/k(CH ₃ D,H)		$k(CH_3, H_2)/k(CH_3, \tilde{D}H)$			
Temperature °K	Tetrahedral ^a CH ₃	LMR-PES	Planar ^b CH ₃	Tetrahedral ^a ^{CH} 3	LMR-PES	Planar ^b CH ₃	
371	3.871	3.869	3.883	1.777	1.776	1.782	
396	3.529	3.527	3.539	1.749	1.748	1.754	
421	3.252	3.250	3.260	1.724	1.723	1.728	
446	3.024	3.023	3.031	1.700	1.699	1.704	
471	2.835	2.834	2.841	1.679	1.678	1.682	
496	2.676	2.674	2.680	1.658	1.658	1.661	
521	2.540	2.538	2.544	1.640	1.639	1.642	
546	2.423	2.421	2.426	1.622	1.621	1.625	
$a_{\phi_{i}}(i=1-6) = 1$ $b_{\phi_{i}}(i=1,2,3) = 1$	L09°28'16". = 90°. ø.(i=4.5.6)	= 120°.		·····			

TABLE LXIV

	k(CH ₂	,H)/k(CD ₃ H,H)		$k(CH_3, H_2)/k(CD_3, H_2)$			
Temperature °K	Tetrahedral ^a ^{CH} 3	LMR-PES	Planar ^b CH ₃	Tetrahedral ^a CH ₃	LMR-PES	Planar ^b CH ₃	
371	1.396	1.413	1.478	0.887	0.898	0.939	
396	1.359	1.372	1.426	0.902	0.911	0.947	
421	1.326	1.338	1.381	0.915	0.923	0.953	
446	1.298	1.307	1.344	0.925	0.932	0.958	
471	1.273	1.281	1.311	0.934	0.940	0.963	
496	1.250	1.257	1.283	0.942	0.947	0.966	
521	1.231	1.237	1.258	0.948	0.953	0.970	
	1,213	1.218	1.237	0.954	0.958	0.972	

LMR-PES KIES USING DIFFERENT TRANSITION-STATE GEOMETRIES

APPENDIX E

LISTING OF COMPUTER PROGRAMS

The following computer programs are arranged in the relative order of usage to calculate transition-state theory kinetic isotope effects. The first program is the SCANNING ROUTINE used to search out and define the LMR-PES activated complex geometric configuration, CH2-H-H, for the axial hydrogen abstraction reaction. This is followed by the subroutines describing the LMR-PES, that is, POT6, TRI, PLACE, DIST, ANGLE and READ.² Subroutine TETRAH contains equations describing a geometric derivation of the tetrahedral angle and is called no more than once in any one program. The next program is the INTERNAL COORDINATE FORCE CONSTANT ROUTINE which uses the subroutines describing the LMR-PES 2 in addition to CPUNCH for punching the force constants in the proper form for use with the Schachtschneider normal mode frequency program,⁹ and ALBEND and QRESET whose functional forms are described in Appendix A. The third program, FXGEN ROUTINE, was used to convert internal coordinate force constants to cartesian coordinate force constants by the matrix methods described in Appendix B. The fourth program is the CARTESIAN COORDINATE FORCE CONSTANT ROUTINE which uses the subroutine describing the LMR-PES² in addition to the polynomial least squares subroutine LESQ. ³² The fifth program is the ABSOLUTE RATE THEORY ROUTINE which controls the input to the subroutine THERMO. Then THERMO calculates

the transition-state theory kinetic isotope effect ratios and their temperature dependence using subroutine LESQ.³² THERMO has also been modified to use a temperature dependent exponential factor like those in (III-10) and (III-11).

PLEASE NOTE:

Computer print-out on pages 191-244 has very small type. Filmed as received.

UNIVERSITY MICROFILMS.

FERTRAN IV GI	A RELEASE 2.0	MAIN	DATE =	16302	10/03/48	
	C # # # # # # # # # # # # # # # # # # #	*****	******		******	****
	C	LMR-PE	S SCANNING RU	UTINE		
	C THE LMR-P	ES OR L. M. RAFF PO	ITENTIAL ENERG	Y SURFACE IS	5 PROGRAMMED IN	THE
	C SUBROUTIN	ES PUT6, TRI, PLACE	, DIST AND AN	GLE.		
		******	****	*****	********	#########
0001	IMPLICIT	KEAL*8 (A-H,G-∠)				
0002	DIMENSIO	N P(61,100),XMAX(5)	,YMAX(6),ZMAX	(0), RMAX (15)), AMAX (6)	
0003	DIMENSIÓ	N X(6),Y(6),Z(6),K(151, DEP (15), A	6(6),R2(15)	,D1(3),D3(3),	
	L ALPH(3)	,RE(3),BEFA(3),CC(3	1, AA(3), S IG(3), RSTR (3), AC	S(6), DK(6),	
	2 Y1(6),Y	2(6),ASS(6),F(4),GF	(4),RX(0),PX(6), PY (6), PZ ((6),DX(6),	
	3 DY (6), D	Z(6),UPX(6),UPY(3),	UP2(6),UF(15,	3)		
6004	DIMENSIU	N APARMISI				
0005	COMMON X	, Y . Z . R . DER . AG . R 2 . U I	ALPH AL DIS B	ETA,CC,AA,SI	IG, RSTR, TAU,	
	I RV, DIJ,	CP, LE, ACS, ASS, RX, XI	1,	V1, \	72, V3, V4, BMAX,	
	2 RSS, VR,	PER, H, PX, PY, PZ, WH, P	IC WOR WOLL OLA	, DY, DZ, DPX, I	JPY , UP 2 , I , UF ,	
	31 EMP . KKI	SIAKI APARMAPI I JA	I SULOPI SOPI	i.		
00.0	• • • • • • • • • • • • • • • • • • • •	KKK1LLL1 NV11NV21NV3	9 9 10 4 9 JJ 9 10 1 9 K C	c		
0///10	KEAL **	8 8 8 1 8 1 8 1 8 1 8 1 8 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				3333333
		INE SCANS A REGION	DE THE POTENT	IAL ENERGY	NURFACE DESCRIBE	D BY
		ES IN SEARCH DE THE	ENERGY AND C	H5 STRUCTURE	FOR THE AXIA	0 01
	C BYDRUGEN	ABSTRACTION REACTI	UN AT THE TOP	UF THE BARE	RIFR ALONG THE	
	(NEACTION	CODROINATE BY INCRE	MENTING THE C	-H DISTANCE	VERSUS THE H-H	
	C DISTANCE	SYSTEMATICALLY.				
	6 6666666666666666666666666666666666666	3333333333333333333333333333	333333444444433333	1333333333333	333333333333333333333	2444333
C001	ABS(X)=0	ABS(X)				
0008	READ(5.1	00) A.B.C.D.E				
0009	LUO FURMAT(5	A1)				
0010	300 00 5 1=1	,61				
0011	00 5 J=1	,100				
0012	5 P(I,J)=E					
0013	Du i I≖i	,100				
0014	P(1, I) = A					
0015	1 P(61+1)=	Α				
0016	DU 2 1=2	,61				
0.017	P(1+1)=0					
0018	2 P(1,100)	= d				
0019		100				
0020	6 D(1,1)=B	. 100				
0071	3 CONTINUE					
1023	WRITE (6-	1014				
0024		41.)				
0025	LALL REAL)				
0026	[MAX = 0 . 0]	00				
CU27	XX=2.642	500				
	C ////////////////////////////////////		111111111111	///////////////////////////////////////		//////
	L LALCULATE	PI AND FRACTIONS C	FPI			
00.28	P1=2.0D0:	*DARSIN(1.0D0)				
0029	T 3P I = (2+	000*P11/3.000				
0 + 05	EL6P1=11	1.0D0*P1)/6.0D0				
00.31	S6PI=(7.	0D0*P[]/6.0D0				
0032	CALL TET	RAH(TAU,PI)				
0031	PPP=2.40					
00.34	K=1					
0039	2(1)=3.2	JU				
		2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				,,,,,,,
	C START INCI	VERENTALIUN.				

ELPENNY	18-51	di Li Asc	0	M C De		04TE = 10302		10/03/40
2.11			1:50 1=17101					
1605			1-1-100					
CON			20-Χλ					
00.39			((1+1=) انا، ا					
0140			210)=2(1)+20					
		c ///	,,,,,,,,,,,,,,,,,,,,,,,	11111111	11111111		/////////	///////////////////////////////////////
		τ.	CALGULATE LAERUY	AFTER SE	111 10 681	JAETEY 45 A FU	NOTION OF	JOND LENGTH UF
		с. Г	REAUTING U-H SIN	h).				
6641			CALL PLACE(2(1)	1				
3746			CALL OIST					
6343			CALL ANGLE					
0.044			CALL FCTG					
6043			11-12+12.723200) .				
		C///		111111111	11111111		/////////	///////////////////////////////////////
		L	TEST FOR MINIMUM	ENERGY	IREACTION	N CLUPCINATE P	US IT IGN)	ACONG THE H-H INCRE
		Ĺ	MEATATION SLAN.					
1.)40		1///	(1H([-(L) 20+21+	21				
0047		-1	Ť-11					
0043			5. Tu 22					
2049		23	- LU+ LU - LU - LU - LU -	60.001				
2050			1111-611 70.70.	71				
0351		71	1=01					
LJ52		7.)	CONTINUE					
0253			P(L+N)=)					
UJ.54			N = N + 1					
じょうち			LE (E -T MAX) 400	,400,401				
		1. 444		131333333	66233333333		3333333443	
		ι,	STOKE SEGMETRY O	F MAXIMUM	ENERGY U	ONFIGURATION.		
C055		+01	1 * AX = EE					
0057			DC 402 1x=1.0					
しょうちゃ			$XM \rightarrow X(IK) = X(IK)$					
0059			$Y = A \times [IK] = Y (IK)$					
0360			2MAX(IK) = Z(IK)					
0001		402	- AMAX ([K] = AU([K)	+100.000/	P 1			
2062			U ! 405 [K=1,15					
0063		413	RNAXLIK)=K(IK)					
0004		400	CONFINUE					
0065			GU TU 50		* · · ·			
		C δδ δ			6666666666		6466666666	LL 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		L	INCREMENT H-H DI	STANCE.				
0066		22	26=26+3.00-4					
0061		51	CUNTINUE					
		ւ շտե			444444468		666666666666666666666666666666666666666	
		L	INCREMENT CHH DI	STANCE	•			
3063		50	2(1)=2(1)-3.00-	4				
0065			JU 00 [=1.12					
1010			M= 5*(1-1)+1			,		
0071			WEITE(0,1J2) PP	P. (PLM.N)	.N=1,1001			
CU12			PPP=PPP-0.20					
0373		LJ2	FURMAT(1X,F5.2.	5x,100711				
CU14		103	FURMAT (8X, 100AL	}				
CC 15			1) 01 J=1.4					
0076			A=5*(1-1)+J+1	r				
3011		01		(M,N),N=1	,103)			
0076		6)	CONTINUE					
0079			PPP=0.0					
CUSU			ARITE(6,102) PP	P. (P(61.N	1.N=1.100	13		
0031			wRIIE(6,105)					

FERTRAN IV GL	RELEASE	2.0	MAIN	oAlc ≃	76302	10/03/48
0042	1.15	FURMAT(40X.19H)	REACTION COORDIN	AFE		
6600	111	CUNTINUE				
CU84		WRITE(6,101)				
0085		WRITELD.4041				
0086		FURMAT (20X. 3911.	INERGY AND GEOME	1RY UP THE	SADDLE-POIN	NT / /
	1	LOX, BHATOM 1.1	5X. OHATOM 2.15X	,6HATUM 3,1	5X. GHATOM 4	15X,6HATUM 5,
	4	15X CHATUM 6/	/)		,	
0001		WK[IE(0,405) XM	MAX,YMAX,ZMAX			
0099	405	FURMAT(1X,1HX,2	2×+6(12021-14)/1	x,1HY,2X,6(19021-141/1	X,1HZ,2X,6(1PD
	1	21.14)/)				
C089		JU 406 l≈1,15				
6050	4110	hRITE(0+407) 1	KMAX(L)			
C0.91	407	FURMAT(15X,1HR)	12.1H=,1X,1PU22	.15)		
2600		WRITEIO, 4081 AM	1A X			
C093	406	ECRMAT(//20X+6)	ANGLES//10X, JHT	1=,3P015.6,	2X, 3HT2=, 3f	015.6,2X,
	2	//)	224 311 4-4360 131	012213113-1	51013.012.	JAT 0- , 7 P 01 5 - 0 ;
0054		1 "AX = (TMAX-0.40	0001*23.000500			
0095		WRITE(6,405) IN	1A X			
0340	409	FORMAT(10X,23HL	ARRIER HEIGHT 1	N KCAL/MULE	=,2PD25.151	1
0097		00 c UT-UU				
0098		END				

0001 SUBBLUTTE PTTS C SEE REFFERENCE: L. M. RAFF, J. CHEM. PHYS., VOL. 50, 2220(1974) C SUBRUTTE TO CALCULATE THE CHA-H SUPPACE C AREUTRES SUBRUTTINES DIST.ANLEG.AND THI C ALSO COMPUTES DEPORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEPORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEK D THE COMPUTES DEFORE ALL R AND STAKES RESULTS IN ARRAY DEX D THE COMPUTES DEFORE ALL RANGES	FORTRAN I	V G LEVEL 21	POT6	DATE = 76044	14/04/41
C SSE REFERENCE: L. M. RAFF. J. CHEM. PHYS., VOL. 50, 2220107.1 C SUBR JUTINE TO CALCULATE THE CHA-H SUPPACE C RECUIRES SUBMUTINES OISTANDEG.AUC THE C ALSO COMUTES DEFOR FAR FLL # AND STOKES RESULTS IN ARRAY DER C C STORE DEFORMENT OF THE CHA-H SUPPACE C C SUBRISTINE SUPPACE AND STOKE SESULTS IN ARRAY DER C C SUBRISTINE FALS, DEFORMENT OF THE CHA-H SUPPACE C C SUBRISTINE SUPPACE SUPPACE C C SUBRISTINE SUPPACE SUPPACE C C SUBRISTINE SUPPACE SUPPACE SUPPACE C C SUBRISTINE SUPPACE SUPPACE SUPPACE C SUBRISTINE SUPPACE SUPPACE SUPPACE SUPPACE C SUBRISTINE SUPPACE SUPPACE SUPPACE SUPPACE SUPPACE SUPPACE C SUBRISTINE SUPPACE SUPPACE SUPPACE SUPPACE SUPPACE SUPPACE SUPPACE C SUBRISTINE SUPPACE SU	0001	SUBROUTINE	ΡΩΤό		
C 0000 C 0000 C 00000 IMPLICIT REALS (A+H,D-2) 0000 IMPLICIT REALS (A+H,D-2) 0000 OIMPNSION FR(3),DFR(4), 0000 IMPLICIT REALS (A+H,D-2) 0000 OIMPNSION X(6),Y(6),2(15),DFR(15),AG(6),R2(15),DT(3),D2(3), 1 ALPH(3),FR(3),DFT(3),DFT(3),DF(4),RX(6),PX(6),PX(6),PZ(6),DX(6), 2 Y1(6),Y2(6),DX(6),DY(6),DY(6),DY(6),DY(6),PX(6),PX(6),PZ(6),DX(6), 2 Y1(6),Y2(6),DX(6),DY(6),DY(6),DY(6),DY(6),DY(6),PX(6),PX(6),PZ(6),DX(6), 2 Y1(6),Y2(6),DX(6),DY(6),DY(6),DY(6),DY(6),DY(6),PX(6),PX(6),PX(6),PX(6), 2 Y1(6),Y2(6),DX(6),DY(6)			*****	***************************************	******
C PEULIRES SUBBOUT MES DIST.ANLOG.AND THI C ALSO COMPUTES DEVOR FOR ALL R AND STARSS RESULTS IN ARRAY DEK C AUSO COMPUTES DEVOR FOR ALL R AND STARSS RESULTS IN ARRAY DEK C IMPLICIT REAL&R (A-H,D-Z) 0003 DIMENSION FR(4),DFR(4) 004 DIMENSION FR(4),DFR(4) 1 ALPH(3),HF(3),BETA(3),CC(3),AAL(3),SIG(3),R2(15),DL(3),D2(3), 1 ALPH(3),HF(3),BETA(3),CC(3),AAL(3),SIG(3),R2(15),DL(A), 2 Y1(C),Y2(C),ASS(6),DY(C),TZ(C),GC(15,A),CC(,AA,SIG,PSTP,TAU, 1 DEKSITN,APAPM(5) 0006 C TOMENSIAN APAPM(5) 0006 C TOMENSIAN APAPM(5) 0007 E SA(X),DZ(6),DPX(6),DPX(6),TZ(C),GC(,AA,SIG,PSTP,TAU, 1 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AA,SIG,PSTP,TAU, 1 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AA,SIG,PSTP,TAU, 1 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AA,SIG,PSTP,TAU, 1 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AA,SIG,PSTP,TAU, 1 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AA,SIG,PSTP,TAU, 1 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AV,V,ZV,VY,VY,WAXA, 2 PSS,VW,PECHIPSX,P2,FH,HKX,PPX,SIG,FK,CV,AV,ZV,VY,ZV,SV,VMAXA, 2 PSS,VW,PECHIPSX,P1,FH,AX,PNX,PNX,PNX,PJ,FL,FLQPI,SOPI, 4 (11,JJ,KK,LLL,NVI,NV2,NV3,NV4,JJ,NI,KKE 0007 E SX(X)=DCS(X) 0010 SIN(X)=DSN(X) 0011 ACCOS(X)=DARCOS(X) 0011 ACCOS(X)=DARCOS(X) 0012 C AVSIN(X)=DARCOS(X) 0013 C AVSIN(X)=DARCOS(X) 0014 C C COMPUTE THE INTERPARTICLE DISTANCES P C C CALL DIST C CHECK FOP THE FIFTH ATUM1.5CH4(H) C C ALL ANSIN(X) 0013 RHMAX=R(1) 0014 KMAX=1 0015 IF(R(3),LT,FHMAX) GO TO 1100 0016 RHMAX=R(2) 0017 KMAX=2 0015 IF(R(3),LT,FHMAX) GO TO 1102 1103 IF(R(3),LT,FHMAX) GO TO 1102 0017 KMAX=2 0017 KMAX=2 0015 IF(R(5),LT,FHMAX) GO TO 1103 0026 KMAX=2 0027 INV3 COMTINUF C CALL ANJEC 0027 C CALL ANJEC 0028 DI 50 1F(13,CO,FTR,C),DER(1),DER(5),DER(A),1,3,2,EF) 0031 C CALL ANJEC 0031 C CAL			CALCHEATE THE CH4-H SH	PEACE	220(1974)
C ALSO COMPUTES DEZOR FOR ALL P AND STARS RESULTS IN ARRAY PER Common Stars and Stars		C REDUIRES SUBRO	UT IN ES DIST ANL GE AND	TRI	
C		C ALSO COMPUTES	DEZDR FOR ALL R AND ST	ORES RESULTS IN ARRAY	DER
0002 IMPLICIT REA(%) (A+H,O-Z) 0003 DIMENSION FR(4), PR(4) 0004 DIMENSION FR(4), PR(4) 0005 DIMENSION K(6), Y(6), Z(6), R(15), DEK(15), AG(6), RZ(15), D1(3), D2(3), 2 Y1(6), U(6), D2X(6), D2X(6), DF(4), DF(4), PX(6), PX(6), PZ(6), DX(6), 3 DY(6), DZ(6), D2X(6), DDY(6), DZ(6), DETA,CC,AA,SIG,PSTP,TAU, 1 R.V.DIJ,CP,EF,ACS,ASS,FX,XII, 2 PSS, WP, PES, HHP, XP, YP, Z, HH, KC, HNB, HW, UT, DX, DY, DZ, DPX, DPY, DPZ, T, GF, 3 TEMP, RRT, START, APARM, PI, T3PI, FL6PI, SOPI, 4 HIT, JJJ,KKK, LLL, NV, NV3, NV3, NV4, JJ, NI, KEE 0007 EXP[X] = DEXP[X] 0010 SIN(X) = DSURT[X] 0011 AFSIN(X) = DARSIN(X) 0012 CASIX = HICDSIXI 0013 CHECK FOR THE FIFTH ATOM = 1.ECH4 = (H) C CHECK FOR THE FIFTH ATOM = 1.ECH4 = (H) C CHECK FOR THE FIFTH ATOM = 1.ECH4 = (H) C HICK FOR THE FIFTH ATOM = 1.ECH4 = (H) C HICK FOR THE FIFTH ATOM = 1.ECH4 = (H) C HICK FOR THE FIFTH ATOM = 1.ECH4 = (H) C HICK FOR THE FIFTH ATOM = 1.ECH4 = (H) C HICK FOR THE FIFTH ATOM = 1.ECH4 = (H) C HICK FOR THE FIFTH ATOM = 1.ECH4 = (H) <		C **************	*****	****	** *******
0003 DIMENSION FR(4), DFR(4) 0004 DIMENSION FR(4), DFR(4), NETA(3), CC(3), AA(3), SIG(3), AZ(15), 01(3), AC(5), DF(6), C(3), AA(3), SIG(3), AZ(15), AC(5), DF(6), C(3), AA(3), SIG(3), AC(5), DF(6), C(3), AA(3), SIG(3), AC(5), DF(6), C(3), AA(3), SIG(3), AC(5), DF(6), C(3), AC(5), DF(6), C(3), AC(5), DF(6), C(3), AC(5), DF(6), C(3), AC(5), DF(6), DF(6), C(3), AC(5), DF(6), DF(6), DF(6), DF(6), DF(6), DF(7), DF(7	0005	IMPLICIT R	EAL*8 (A-H,D-Z)		
004 DIMENSIN X(SIVE)/2(S)/V(S)/V(S)/V(S)/V(S)/V(S)/V(S)/V(S)/V	0003	DIMENSION	FR(4), DFR(4)		(5) 02/21
<pre>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	0004		X(6), Y(6), Z(6), R(15), U	ERIID/,AG(6),R2(15),03	(3) (0) (3)
<pre>G 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0</pre>		2 Y1(6) Y2(6).ASS(6).E(4).DE(4).R	X(6), PX(6), PY(6), P7(6	ο, μκτο,
CO05 CO06 COMMON A.Y.Z.K.JDEP, AG.P2, D1.ALPH.RE.D3.BETA.CC.AA.SIG.PSTP.TAU. COMMON A.Y.Z.K.JDEP, AG.P2, D1.ALPH.RE.D3.BETA.CC.AA.SIG.PSTP.TAU. 2 PSS.W.PEF.HH.PX.WC.WRR.W.C.UT.OX.OY.D2.9PX.DPY.DP2.T.GF. 3 TEMP.RBT.SIART.APAR.PT.T3P1.FL6P1.S6P1. 4 E11.JJY.KKK.LLL.WUI.NV2.NV3.NV4.JJ.N1.KE5 CO07 C SIK1P-COS(X) C SIK1P-COS(X) C SIK1P-COS(X) C SIK1P-COS(X) C SIK1P-COS(X) C CALL SIN(X)-COARCS(X) C CALL SIN(X)-COARCS(X)-COARC		3 DY (6) • DZ (6), DPX(6), DPY(6), DPZ(6).GF(15.3)	
0006 C:DMMIN X,Y,Z,H,DEP,AG,P2,DIALPHRE,D3,BETA,CC,AA,SIG,PSTP,TAU, I R V.DIU,CP,EF.ACG,ASS,FXX,XII, V12V3Y,V0,AMAX, 2PSS,VK,PEF,HH,PX,PY,PZ,WH,WC,WRR,WH,UT,UX,OY,DZ,DPX,DPY,DP2,T,GF, 3TEMP,RRT,STATATAPAR,PT,T3D1FL6D1S,SOFI, 011 AIDORATISTATATAPAR,PT,T3D1FL6D1S,SOFI, 011 ASIN(X)=DARDS(X) 0010 SIN(X)=DSIN(X) 0011 ARCDS(X)=DARDS(X) 0012 CIMPUTE THE INTERPATICLE DISTANCES P C CALL DIST C CALL DIST C CALL DIST C CHECK FOP THE FIFTH ATDMI.SCH4(H) C CHECK FOP THE FIFTH ATDMI.SCH4	C005	DIMENSION	APAPM(5)		
<pre>1 R V, D1 J, CP, EE, ACS, ASS, FX, X11, V, V, V2, V3, V4, MAX, 2 PSS, VV, PEE, HH, PX, PY, PY, TH, HK, VHR, HV, D7, D7, D7, D7, D7, D7, D7, D7, D7, D7</pre>	0006	COMMON X,Y	.Z.R.DEP.AG.P2.D1.ALPH	,RE,D3,BETA,CC,AA,SIG	FSTP,TAU,
<pre>2PSS.VW.PEF.HH.PX.PY.PZ.WH.WC.WBR.WH.UT.OZ.09V.DY.DPX.DPY.DPZ.T.GF. 3TSMP.MPRT.SIAT.JPJ.FC.DPI.SOPI. 411.JJJ.KKK.LLL.VVI.NV2.NV3.NV4.JJ.NI.KEE 0007 EXP(X)=DSXRT(X) 0009 C3S(X)=DCS(X) 0010 SIN(X)=DSIN(X) 0010 C100000000000000000000000000000000</pre>		1.RV,DIJ,CP	, EE, ACS, ASS; RX, XII,	V1.+V2.	V3,V4,BMAX,
<pre>31EMP.RRT.START.APARM.PI.T3PI.FL6PI.S6PI. 41EL.SUJ.KKK.LLL.WVI.NV2.NV3.NV4.JJ.NI.KE 0007 EXPIXI=0ESPIXI 0009 C.251X1=DESURT(X) 0010 SIN(X)=DSIX(X) 0011 ARCOS(X)=DARCOS(X) 0011 ARCOS(X)=DARCOS(X) 0012 C.////////////////////////////////////</pre>		2RSS VR PEP	HH, PX, PY, PZ, WH, WC, WBR	WW, DT, DX, DY, DZ, DPX, DI	PY, DPZ, T, GF,
<pre>4 111,33,KK,LLL,NV1,NV2,NV3,NV4,J3,N1,KL5 0007 EXP[X]=0EX[X] 0009 C.35(X]=0CG(X] 0010 SIN(X)=0SIN(X) 0011 A ACOS(X)=DARCOS(X) 0012 APSIN(X)=0ARSIN(X) C ////////////////////////////////////</pre>		3TEMP RRT S	TART, APARM, PI, T3PI, FL6	PI,S6PI,	
0007 EAPLATEDEDINTATION 0009 EAPLATEDEDINTATION 0009 CSIX1=DCGIX 0010 SIN(X)=DARCOS(X) 0011 APCIS(X)=DARCOS(X) 0012 APSIN(X)=DARCOS(X) 0013 APCIS(X)=DARCOS(X) 0014 APSIN(X)=DARCOS(X) 0015 C(MPUTE THE INTERPARTICLE DISTANCES R C CALL DIST C************************************	0007	4111,JJJ,KK	K, LLL, NVI, NVZ, NV3, NV4,	JJ•NI•KE -	
0000 C:S:(X)=DCOS(X) 0010 SIN(X)=DCOS(X) 0011 ARCOS(X)=DARCOS(X) 0012 ARSIN(X)=DARSIN(X) 011 C////////////////////////////////////	0007				
0010 STN(X)=DSTN(X) 0011 ARCDS(X)=DARCDS(X) 0012 ARSIN(X)=DARCDS(X) 0012 ARSIN(X)=DARCDS(X) 0012 C(////////////////////////////////////	0009	COS(X)=00	5(X)		
0011 AFC05(X)=DARC05(X) 0012 AFSIN(X)=DARC05(X) C ////////////////////////////////////	0010	SIN(X) = 0 SI	N(X)		
0012 ARSIN(X)=DARSIN(X) C ////////////////////////////////////	0011	ARCOS(X)=D	ARCOS(X)		
C ////////////////////////////////////	0012	ARSIN(X) = 0	ARSIN(X)		
C COMPUTE THE INTERPARTICLE DISTANCES P C CALL DIST C************************************		с ////////////////////////////////////	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,
C CALL DIST C************************************		C COMPUTE THE IN	TERPARTICLE DISTANCES		
C CHECK FOP THE FIFTH ATOMI.ECH4(H) C CHECK FOP THE FIFTH ATOM IS THE ONE WHOSE C-H DISTANCE IS MAXIMUM C ////////////////////////////////////			****	*****	****
C BY DEFINITION THE FIFTH H ATOM IS THE ONE WHOSE C-H DISTANCE IS MAXIMUM C ////////////////////////////////////		С СНЕСК ЕОР ТНЕ	EIETH ATOMI E		** ** * * * * * * * * * * * * * * * * *
C ////////////////////////////////////			THE ELETH H ATOM IS T	HE ONE WHOSE C-H DISTA	ANCE IS MAXIMUM
0013 RHMAX=R(1) 0014 KMAX=1 0015 IF(R(2).LT.PHMAX) GD TO 1100 0016 RHMAX=P(2) 0017 KMAX=2 0018 1100 IF(R(3).LT.RHMAX) GD TO 1101 0019 RHMAX=R(2) 0020 KMAX=3 0021 1101 IF(R(4).LT.RHMAX) GD TO 1102 0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=R(5) 0026 KMAX=5 0027 1'03 CONTINUT C CALL SWITCH(KMAX,1) C CALL ANGLE C************************************		c ////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
0014 KMAX=1 0015 IF(R(2)_LT_PHMAX) GD TO 1100 0016 RHMAX=P(2) 0017 KMAX=2 0017 KMAX=2 0019 RHMAX=K(3) 0020 KMAX=3 0021 1101 IF(R(4)_LT_RHMAX) GD TO 1102 0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 IF(R(5)_LT_RHMAX) GD TO 1103 0025 RHMAX=P(5) 0026 KMAX=5 0027 1103 CONTINUF C CALL SWITCH(KMAX,1) C ************************************	0013	RHMAX=R(1)			
0015 IF(R(2).LT.P.HMAX) GD TO 1100 0016 RHMAX=P(2) 0017 KMA x=2 9018 1100 IF(R(3).LT.RHMAX) GD TO 1101 0019 RHMAX=R(3) 0020 KMA x=3 0021 1101 IF(R(4).LT.RHMAX) GD TO 1102 0022 RHMAX=R(4) 0023 KMA x=4 0024 1102 IF(R(5).LT.RHMAX) GD TO 1103 0025 RHMAX=R(5) 0026 KMA x=4 0027 1102 IF(R(5).LT.RHMAX) GD TO 1103 0028 RHMAX=R(5) 0029 RHMAX=R(5) 0020 KMA X=5 0021 IF(R(5).LT.RHMAX) GD TO 1103 0025 RHMAX=R(5) 0026 KMA X=5 0027 IFO2 CFF(5).LT.RHMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL ANGLE C CALL ANGLE C CALL ANGLE C SO DER(1)=0.00D C CALL TPI(P(1),R(5),R(6),DER(1),DER(6),1,3,2,EF)<	0014	KMA X=1			
0016 PHMAX=P(2) 0017 KMAX=2 0019 KMAX=2 0019 RHMAX=k(3) 0020 KMAX=3 0021 1101 IF(R(4).LT.RHMAX) GO TO 1102 0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=F(5) KMAX=5 0027 1103 CONTINUC C CALL SWITCH(KMAX,1) C ************************************	0015	IF(R(2).LT	•PHMAX) GO TO 1100		
0017 KMAX=2 9018 1100 IF(R(3).LT.RHMAX) GO TO 1101 0019 RHMAX=R(3) 0020 KMAX=3 0021 1101 IF(R(4).LT.RHMAX) GO TO 1102 0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=F(5) 0026 KMAX=5 0027 1103 CONTINUF C CALL SWITCH(KMAX,1) C ************************************	0016	RHMAX=R(2)			
0019 RHMAX=R(3) 0020 RHMAX=R(3) 0021 1101 1101 IF(R(4).LT.RHMAX) G0 TO 1102 0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 0025 RHMAX=F(5) 0026 KMAX=5 0027 1'03 CONTINUF C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL ANGLE C CALL ANGLE C CALL ANGLE 0029 50 DER(1)=0.0D0 C COMPUTE THE FOUR TRIATOMIC TERMS 0030 CALL TPI(P(1),R(5),R(6),DER(1),DER(5),DER(6),1,3,2,EE) 0031 CALL TRI(R(2),R(5),P(7),DEP(2),CR2,DEP(7),1,3,2,E) 0032 FE=EEFF	0017	KM4 X#2	0.00 AX 1 CO TO 1101		
00170 KMAX=3 0021 1191 IF(R(4).LT.RHMAX) G0 TO 1102 0022 RHMAX=R(4) 0023 KMAX=R(4) 0024 1192 IF(R(5).LT.RHMAX) G0 TO 1103 0025 RHMAX=P(5) 0026 KMAX=S 0027 1'03 CONTINUT C CALL SWITCH(KMAX,1) C CALL TRICO D030	0019		- RHMANI GU TO ILUI		
0021 1101 IF(R(4).LT.RHMAX) GO TO 1102 0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=P(5) 0026 KMAX=5 0027 1103 CONTINUF C CALL SWITCH(KMAX,1) C C C CALL SWITCH(KMAX,1) C C C CALL SWITCH(KMAX,1) C C C C C C C C C C C C C C C C C C C	0020	КМАХ=3			
0022 RHMAX=R(4) 0023 KMAX=4 0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=R(5) 0026 KMAX=5 0027 1103 CONTINUF C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL ANGLES AND STORE RESULTS IN ARRAY AG C CALL ANGLE C************************************	0021	1101 IF(R(4).LT	.RHMAX) GO TO 1102		
0023 KMA X=4 0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=P(5) 0026 KMA X=5 0027 J'03 CONTINUE C CALL SWITCH(KMAX,1) C ************************************	0022	RHMAX = R(4)			
0024 1102 IF(R(5).LT.RHMAX) GO TO 1103 0025 RHMAX=P(5) 0026 KMAX=5 0027 1103 CONTINUF C CALL SWITCH(KMAX,1) C ************************************	0023	κma x=4			
0025 RHMAX=P(5) 0026 KMAX=5 0027 I'03 CONTINUT C CALL SWITCH(KMAX,1) C ************************************	0024	1102 IF(R(5).LT	•RHMAX) GO TO 1103		
0026 KMAX=5 0027 I'03 CONTINUF C CALL SWITCH(KMAX,1) C ************************************	0025	RHMAX=R(5)			
0027 1193 CDNTINU* C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL SWITCH(KMAX,1) C CALL ANGLES AND STORE RESULTS IN ARRAY AG C CALL ANGLE C************************************	0076	KMAX≠5			
0.1 0	0027	CALL SUITS			
C COMPUTE THE HCH ANGLES AND STORE RESULTS IN APRAY AG C CALL ANGLE C************************************			П (П П АА 9 L) Х		** * * * * * * * * * * * * * * * * * * *
C CALL ANGLE C CALL ANGLE C************************************	- E	C COMPUTE THE HC	H ANGLES AND STORE RES	ULTS IN ARRAY AG	
C*************************************		C CALL ANGLE			
U028 DD 50 I=1,15 C029 50 DER(I)=0.0D0 C COMPUTE THE FOUR TPIATOMIC TERMS 0030 CALL TPI(P(1),R(5),R(6),DER(1),DER(5),DER(6),1,3,2,EE) 0031 CALL TRI(R(2),R(5),P(7),DER(2),CR2,DER(7),1,3,2,E) 0032 FE=EEFE		C *********	*****	* * * * * * * * * * * * * * * * * * * *	** * * * * * * * * * * * * * * * * * * *
G029 50 DER(I)=0.0D0 C COMPUTE THE FOUR TPIATOMIC TERMS 0030 CALL TPI(P(1),R(5),R(6),DER(1),DER(5),DER(6),1,3,2,EE) 0031 CALL TRI(R(2),R(5),P(7),DER(2),CR2,DER(7),1,3,2,E) 0032 FE #EE #E	0028	DJ 50 I=1,	15		
C COMPUTE THE FOUR IFTATOMIC TERMS 0030 CALL TPI(P(1),R(5),R(6),DER(1),DER(5),DER(6),1,3,2,EE) 0031 CALL TRI(R(2),R(5),P(7),DER(2),CR2,DER(7),1,3,2,E) 0032 FE #EE #E	CO2 9	50 DER(I)=0.0	DO		
0030 CALL TRI(R(2),R(5),DER(1),DER(5),DER(6),L(5),2,E) 0031 CALL TRI(R(2),R(5),P(7),DER(2),CR2,DER(7),1,3,2,E) 0032 FE #EE #E	0030	L COMPUTE THE FO	UK TELATUMIC TERMS		
002 FEFEFF	0030		121,R(5),R(0),USK(1),U (2),R(5),R(7),DEP(2) P	CKA 211UEKL 011L13121EE) 02.0E0(7).1.3.2.5.	1
	0032	FE=EE+F	127981079811790ER12796	N2 + 0 C 4 + 1 + 1 + 1 + 1 + 2 + C + C +	

FORTPAN	IV G LEVEL	21	Pri T 6	DATE = 76044	14/04/41
0033		JER (5) = DEP (5)+0	R 2		
0034		CALL THI(R(3) .R	(5).R(8).DER(3).	DR2 + DER(8) + 1 + 3 + 2 + 5)	
0035		FF=FF+F			
0036		DER (5)=0ER (5)+D	IR2		
0037		CALL TEI(R(4).P	(5). P.(0). DER(4).	DR2 + DER (9) + 1 + 3 + 2 + E)	
0038		FF# FF+F			
0039		1)ER (5) #UER (5)+D	18.2		
	C****	****	*****	*****	* * ** * * * * * * * * * * * * * * * * *
	C COM	PUTE FORCE CONST	ANTS		
	C COM	PUTE ATTENUATION	TERMS		
0040		XA=R(1)-RE(1)			
0041		X8=R(2)-RE(1)			
0042		XC=R(3)-RE(1)			
0043		XD=R(4)-RE(1)			
0044		X A 2 = X A *X A			
0045		XB2=X8*XB			
0046		XC 2=XC #XC			
0047		XD2 = XU * XD			
0048		XXA=R(6)-RE(2)			
0049		XXB=R(7)-RE(2)			
0050		XXC=R(8)-RE(2)			
0051		XXD=R(9)-RE(2)			
0052		EXA11=EXP(-APAR	M(2)*R2(6))		
0053		EXA12 = EX P(-APAR	M(2)*R2(7))		
0054		EXA13=EXP(-APAR	M(2)*R2(8))		
0055		EX A] 4 = EX P (- AP Ak	M(2)*R2(9))		
0056		EXA21 = EXP(-APAP	M [5] * XX A* XX A]		
0057		E XA 22 = E X P (-A P A R)	M(5)*XXB*XXB)		
0058		EXA23 = EXP(-APAP)	M(5)*XXC*XXC)		
0059		EXA24=EXP(-APAP	M (5) * X X C * X X C)		
0060		A 1 1 # 1. 00 0- E XA 1.1			
0061		A12=1.000-EXA12			
0052		ALSEL. UD U-EXALS			
0063		A14=1.00 U-EXAL4			
0084		A21 = AP AK M(2) = AP	AFM (4] * EXA21		
0005		422=AP AR M(31+AP	ARM14/*CAA44		
0000		A23* AP AND 131 TAP	ACM (4) * EXA 23		
0067		6 461 -6 401 - A31 # 4	A 2)		
0069		EXE2#EXP(=A22*X	82)		
0070		EXE3=EXP(=023*X	(2)		
0071		FXF4=F XP(-424*X	02)		
4072		F(1)=A11*EXE1			
0073		F(2)=A12*EXF2			
0074		F(3)=A13*EXF3			
0075		F(4)=A14*EXF4			
	C 0K+1	ARE THE FORCE	CONSTANTS		
0076		")K(1)= AP ARM(1)*	F(1)*F(2)		
0077		DK(2)=APAPM(1)*	F(1)*F(3)		
0078		DK(3)=APARM(1)*	F(1)*F(4)		
0079		DK(4)=APARM())*	F(2)*F(3)		
0080		DK(5)=APARM(1)*	F(2)*F(4)		
0081		DK(6)=APARM(1)*	F(3)*F(4)		
	C****	******	*****	****	* * * * * * * * * * * * * * * * * * * *
	C COMP	PUTE THE EQUILIB	RIUM ANGLES		
	C FIN) THE LARGEST C-	H DISTANCE		
0082		RGR = R (1)			
0083		KLM#1			
			1		

FORTRAN	IV G	LEVEL	21	PUT 6	DATE = 76044	14/04/41
C084			IF (P (2) . LT. PG	RJ GO TO 800		
0085			RGP = R(2)	1 A.		
0086			KLM=2			
C087		800	IF(R(3).LT.RG	R) GO TO 301		
0088			R GP = R (3)			1
0089			KLM=3	() () TO ())		
090		801	1F (4 (4) • L) • KG	P) GU 10 802		
0091		· .				
0092		902	- FOR-R(4) - DCH-CIDT(62/K	LM1+02151-2.001#018	1 M1#0(5)*005(TAU))	
0095		002	TEIRIKIM+S1.G	T-8CH) GD TD 4000	L 11 - 7 - 0 1 - C 0 3 (1 A0 7 7	
0095			UTHE =DTH			
0096			CPE =CP			
0097			DAA = 0.000			
0098			GO TO 400!			
C U 9 9		4000	IF(R(5).GT.DI	J) GU TC 4002		
0100			CPF=0.339757D	0/(R(5)-RE(1))		
01 01			DİJF=8(5)			
0102			74A =+C FF / (P (5)-RE(1))		
0103			DAA=-DAA*(PGR	-RE(1))		
01 04			GO TO 4001	÷.		
0105		400?	CPF=CP			
0106			DAA=0.000			
0107			DIJE = DIJ	51 00 TO 000		
0108		40.01	10 (RGK+01+D1J			
.1.04		C COM	IFINGRELIEFEL DUTE COUTIINDT	THE GUILO 504		
0110		C COM	ASE=TAU=CPE+1	RG8-RE(11)		
0110		C COM	PUTE HACKSTDE	FOUTLIBRIUM ANGLE		
C1 1 1			XYZ=SIN(ASF)			
0112			ASB=ARCOS(1.0	D0-1.5D0*XYZ*XYZ)		
		C COMI	PUTE DERIVATIV	ES OF EQUILIBRIUM A	NGLE WITH RESPECT TO	PGF
0113			DASF =-CPF			
0114			DASS=+ 3.000*C	PF*XYZ*COS(ASF)/SIN	I(ASB)	
0115			GU TH 835			
C116		803	A SF = PI /? • 000			
0117			ASR=T3PI			
0118			DASF=0.000			
0119						
0120		907				
(122		304	ASH =TAU			
0123			04 SE = 0+ 000			
0124			DASB=0.000			
		C * * * *	****	*****	****	* * * * * * * * * * * * * * * * * * * *
		C C GM	PUTE CONTRIBUT	ION TO THE TOTAL EN	EPGY FROM THE ANGLE "	TERMS
0125		805	GN TO (906,90	7,808,809) ,KLM		
0120		800	SUM≈0. 000			
0127			IF3=1			
0128			I F 2 = 2			
0129			IF 3=3			
0130			181=4			
0131			107=5		•	
0132			19 5=6			
0133			00 810 1=1+3			
0125			V1(1)=0			
0136			Y2([)=0×0			
0.00			· · · · · · · · · · · · · · · · · · ·			

FORTRAN	I۷	G	LEVEL	21	POT6	DATE = 76044	14/04/41
0137			810	SUM=SUM+DK(T)*Y2(T)			
0138			010	DO 330 1=4.6			
0139				$Y_1(I) = AG(I) - ASB$			
0140				$v_2(1) - v_1(1) + v_1(1)$			
0141			830				
0142			050				
0142			<i>сиции</i> .				
01 (3			し 井 岸 杵 杵 戸)	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	*****	* * * * * * * * * * * * * * * * * * * *	*******
0145			<i>с ц ц ц ц</i> ,	1-1.NECE.W.=1.7.KEIUKN			
				*****	****	*******	*********
0144			no 7	GU TU 820			
0145			00 I	SUM=0.000			
0140							
0147				1F2=4			
0148				183=3			
0149				181=2			
0150				182=3			
0151							
01.52				U=AGLIJ=ASP			
01 55				Y1(1)=0+0			
0154				1211)=0+0 504-504-02711+92711			
0155				SUM=SUM+DK(1)+12(1)			
0150							
0157				U=AG(IJ=ASF			
0158				Y1(1)=U V2(1)=C#C			
0154							
0160			871	SUM=SUM+0K(1]+Y2(1)			
0163							
0167				$\mathbf{T} [\mathbf{T}] = \mathbf{A} \mathbf{G} (\mathbf{T}) = \mathbf{A} \mathbf{S} \mathbf{G}$			
0165			031	$T_2(1) = T_1(1) + T_1(1)$			
0164			0.21				
0165				11 (0) = AG(0) = A SD			
0166							
0166			сници.				
01 6 9			04744	16 (VEE.E.C 1) 0 ETHDN	* * * * * * * * * * * * * *		*****
0103			с н н н н.		*****	****	******
01 70			0 *** **	GO TO 920	*********	*******************************	
0171			80.8	SUM=0-000			
0172			000	IE1=2			
0173				162=4			
0174				1 = 3 = 6			
0175				181=1			
01 76				182=3			
0177				183=4			
0178				00 812 T=2.6.2			
0179				$Y_1(I) = AG(I) - ASE$			
01.80				$Y_2(I) = Y_1(I) * Y_1(I)$			
0181			812	SUM = SUM + DK(T) + Y2(T)			
0182				DO 832 1=1.5.2			
0183				Y1(I) = AG(I) - ASB			
01.84				Y2(I)=Y1(I)*Y1(I)			
01.85			832	SUM=SUM+DK(1)*Y2(1)			
0186				EE=EE+0.5D0*SUM			
			C####	****	***	***	****
0187			30 A 9 A 9	IE(KEE_EW1)RETURN			
			C ####	***	***	***	****
0188				GO TO 820			

01 89	809 SUM=0.0D0
C1 90	[F1 = 3
01 91	16.2=5
0102	163.#4
01 01	
01 04	
01 74	
01 97	
01.90	
0197	
0198	SUM = UK (3) = YZ (3)
0199	
0200	Y1(1)=AG(1)-ASF
0201	Y2([)=Y1(])+Y1(])
0202	R13 SUM=SUM+DK(I)+Y2(I)
0203	DO 833 I=1,2
02 04	Y1(1) = AG(1) - ASB
0205	Y2(1)=Y1(1)+Y1(1)
0206	833 SUM=SUM+DK(I)+Y2(I)
0207	Y1(4)=AG(4)-ASB
0208	Y2(4)=Y1(4)+Y1(4)
02.09	SUM=SUM+DK(4)=Y2(4)
021.0	
0211	16 (K EE - 601 19 ET IIDN
V4.1.L	
	C плитителя на полатите по раля вся вака стала ва средение и техно на по br>С и дерение и верение се ве на
	C COMPOLE DERIVATIVES OF THE ANGLE ATTENUATION TERMS WITH RESPECT TO ROTRING,
0212	820 DFK117=2.0D0#AFARM(2)#K(67#EXA1(#EXF1#A11#EXF1#XA2#2.0D0#AFARM(4)#
	1 APARM (5) #XXA# EXA21
0213	DFR(2)=2.0D0=APARM(2)=R(7)=EXA12=EXF2=A12=EXF2=XB2=2.0D0=APARM(4)=
	1 APARM(5)*XXB*EXA22
0214	DFR(3)=2.0D0*APARM(2)*R(8)*EXA13*EXF3+A13*EXF3+XC2*2.0D0*APARM(4)*
	1. APARM(5)*XXC*EXA23
0215	DFR(4)=2.0D0+APARM(2)+R(9)+EXA14 +EXF4+A14+EXF4+XD2+2.0D0+APARM(4)+
	1 APARM(5)*XXD*EXA24
	C COMPUTE DERIVATIVES OF ATTENUATION TERMS WITH RESPECT TO R1,R2,R3, AND R4
021 6	DF(1)=-2.0D0*A21*XA*F(1)
0217	DF(2)=-2.0D0*A22*XB*F(2)
0218	DF(3)=-2.0D0*A23*XC*F(3)
0219	DF(4)=-2.0D0*A24*XD*F(4)
	C * * * * * * * * * * * * * * * * * * *
	C ADD IN CONTRIBUTION TO DER FROM DK/DR ANGLE TERMS AND D(THETA)/DR TERMS
	C FIRST THREE ANGLE TERMS
0220	00 900 1=1-3
0221	ST D=0.510#0K(1)#V2(1)
0223	
0222	
0223	
0224	DEK(1+1)=DEK(1+1)+5\P+D+(1+1)/P(1+1)+W*(=1+000/(K(1)*A55(1))+
C225	DER(6)=DER(6)=S1P=DER(3)/E(1)
0226	UER(1+6)=DER(1+6)+STP=DFR(1+1)/F(1+1)
0227	900 DER(1+9)=DER(1+9)+W*R(1+9)/(R(1)*R(1+1)*ASS(1))
	C ************************************
	C FOURTH AND FIFTH ANGLE TERMS
0228	DO 901 1=4,5
0229	STP=0.5D0*DK(1)*Y2(1)

POT6

FORTRAN IV G LEVEL 21

÷

FCRTRAN	VGLVFL 21	PITA	DATE = 76044	14/04/41
0230	W=DK([)*Y]())		
0231	DER (2) = DEF (2)+STP*DF(')/F(2)+W*	<pre>(-1.000/(ASS(I)*P(I-1)))</pre>	+
	1 ACS (1)/ (ASS	(1)**(2))		
0232	DER(7)=05+(7	')+STP*DFR(?)/F(?)		
0233	DER (1-1) = DEF	(I-l)+STP*0F(I-l)/F	(I-1)+W*(-1.000/(ASS(I))	¥⊧(2))+
	1 ACS(1)/(A55	(I)*R(I-1)))		
0234	UEP (1+4)=DEP	(1+4)+STP*OFP(I-1)/	(F(I-1))	
0235	901 DER(I+9)=PE	(I+9)+W*R(I+9)/(R(2	2)*R(I-1)*ASS(I))	
	C CONTRIBUTION FPE	M SIXTH ANGLE TERM		
0236	STP=0, 5) 0*DH	((6)*Y?(6)		
0237	W=17K(6)*Y1(6	·)		
0238	0ER(3)=DER(3	3) + ST P # DF (3) / F (3) + #*	<pre>(-1.0D0/(ASS(b)*P(4))+</pre>	
	1 465(6)/(455	(6)*R(3)))		
0239	DER(8) = DER(8)	1)+STP*DFR(3)/F(3)		
0240	DEP(4)=DEP(4)+STP*DF(4)/F(4)+W*	<pre>(-3.0D0/(ASS(6)##(3))+</pre>	
	1 ACS(5)/(ASS	(6) *D (4)))		
0241	DER (9) = DER (9)+STP *DFP (4)/F(4)	3	
0242	DER (1.5) = DER (15)+W#R(15)/(ASS(6)	*8(3)*5(4))	
	C 水電売お客事業券店市市市市市市市市市市市	*****	*****	* * * * * * * * * * * * * * * * * * * *
	C CONTRIBUTION FRO	IM EQ. ANGLE VARIATI	ON TO D(ANGLE)/DR ******	
0243	DER (KLM) =DER	(KLM)-(ÚK(IF1)*Y1(I	F1)+UK(IF2)*Y1(IF2)+UK(IF3)*Y1(IF3)
	1)*DASE ≁(D	K(IB1)*Y1(IB1)+DK(I	B2)*Y1(IB2)+	
	5 DK(133) + A1	(IB3))*DAS0		
0244	DER (5) = DER (5	6)-(DK(IE1)*Y1(IE1)+	-DK(IF2)*Y](IF2)+DK(IF3)	*Y1(IF3))*
	1. DAA - (DK(I)	1)*Y1(181)+DK(182)#	Y1(IB2)+DK(IB3)*Y1(IB3))
	2 *? . UD C* SIN	ASF)*CO3(ASF)*DAA/S	IN(ASB)	
	(************************************	*****	******	*****
	C CÁLL SWITCH	(KMAX,2)		
0245	RETURN			
0246	END			

FORTRAN	IV G	LE V ^e L	21	TR	I		DATE	= 7	6044		14/04/41	
0001			SUBROUTIN	E TRI (RRT , RR2	.RR3.DQ1	, DR 2 , DR 3	, I , J	,K,E	•)			
		C * * * * *	****	*****	******	*****	****	* * * *	******	* * * * * *	*****	*
		C 5	SEE REFERE	NCE: L. M. R	AFF, J. (СНЕМ. РН	YS	VOL	• 60, 22	20(10	74)	
		C ROUT	TINE TO CA	LCULATE THREE	-RODA EN	RGY FOR	ABC	SYS	STEM			
		C RR1	,RH2,RH3 A	RE THE THREE	INT ERPAR	TICLE DI	STAN	CFS				
		C DR1	JDK2, DK 7 A	RE THE THREE	DERIVATI	VES WITH	RES	P E C I	TO RR1,	PP2.	AND RR3	
		C I.J.	, AND K GI	VE THE ARRAY	NUMBER F	OR THE A	PPRUI	P₽ [/	ATE POIEN	TIAL	PARAMETERS	
		CEIS	S THE FINA	L THREE-BODY	ENERGY							
		C * * * * *	*********	*****	******	*****	*****	***	******	******	*****	π
0002			TMPLICIT	REALTS (A-H,U	-2)							
0003			DIMENSIUM	(APAKMI))		000 (15)		<u>د ۲</u>		121 0	2/21	
0004				0 2 4 0 1 1 1 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1	61,K(1)1	1058 (15) 1058 (15)	+AG(1	0111	2110100 9131 3001	1 2 1 9 1	121211	
			1 ALPHI3/1	KE()//DE/4()/	AL CE/AL	07(") D	Y 1 6 1	511 DV	(13) (AUS) (4) 07/41			
		2	- TILOJITZ	101 A 33101 PT	4/ 10-14/ V/ 61 .007	161.05/1	5.31	1 1 1	101112101	10410		
0005			COMMON X.	Y. 7. 8. DER. AG.	P2 - D1 - AL	PH. 85.03	ARET	1.0	- AA - STG.	R STR.	TAU.	
0002		,		P.EE.ACS.ASS.	FX.XII.		, DCI		v1.v2.	V - V4	-BMAX -	
		-	RSS VP P	FK . H. PX . PY . P7	WH WC W	BR.W.DT.	0X • D'	Y • D2	DPX DPY	-DPZ	T.0F.	
			TEMP RET.	START APARM P	I.T3PI.F	LOPI S6P	Ι.					
		4	III.JJJ.K	KK . LLL . NV 1 . NV	2.NV3.NV	4.JJ.NI.	KFF					
0006			SURT(X)=C	SORT (X)								
0007			EXP(X)=DE	XP(X)								
0008			A=RR1-RE([]								
0009			B=RR2-RE((L								
0010			C=RR3-RE (к)								
0011			Al= FXP(-	ALPH(!)*A)								
0012			b1 = EXP(-	ALPH(J)*B)								
0017			C1= EXP(-	ALPH(K) *C)								
0014			A 2= A1 * A1									
0015			82=81*81									
0016			C2=C1*C1									
0017			ELAB=D'(I)*(A2-2.0DU*A	1)							
0018			F1AC=D1(J)*(B2-2.0D0*B	1)							
0019			ELBC=D1(K	J*(C2-2.000*C	1)							
0020			DLIAB=2.0		$(1) \neq (\Delta I = 0$	A 21						
0021			DELAC=2.0		(J)*(81-	821						
0022				100#ALPHIKJ#UL TO/INN 2 2	(K)*(C1-)	L 21						
0025		,	IFURELEPS									
0024		L	AA2= CAPI	TOEIALIJYAJ								
0026			53A4+03(1	1*///2+2 000#								
0027			DE348=-2.	0D0+8FTA(1)+3	3(1)*(ΔΔ	1+4421						
0028			GO TO 3	000 0 0001		• • • • • • • • • •						
0029		2	AA1 = EXP(-SIG(1)*RR1)								
0030		-	E 3A B=CC(I)*(RE1+AA(I))	*AA1							
20.31			DF3 AB= CC ([] *AA1*(1.0D0	-SIG(1)*	RR1-SIG([) * A /	A(I))			
CO32		3	IF (RR2-RS	TR(J))4,5,5								
0033		4	681 = 5 XP (-BETA(J)*B)								
0034			882=881*8	81								
0035			E3AC=03(J)*(BB2+2.0D0*	8 81)							
0036			DE3AC=-2.	OD 0*BETA(J)*0	3(J)*(BB	1+BE2)						
0037			GÚ TH 6									
0038		5	BB1 = EXP(-SIG(J)*RR2)								
00 39			EBAC=CC(J)*(RF 2+AA(J))	*881							
0040			DE3AC=CC(J)*BE1*(1.JD0	-SIG(J)*	RR2-SIG(J)*∆/	A(J)	11			
0041		6	TF (RA3-RS	IR(K)] 7,8,8								
0042		7	CC1= EXP(-BEIA(K)*C)								
0043			CC2=CC3+C	C1								

FURTRAN	I۷	Ó L'ÉVEL	21	ן מד	DATE = 76044	14/04/41
0044			E38C=D3(K)*(CC2+2.000*CC1)		
0045			0F38C=-2.	000*8FTA(K)*03(K)*(CC]	+CC21	
0046			GU TO 9			
0047		8	CC1 = FXPI	-SIG(K)*RR3)		
0048			E38C=UC(K	()*(PP3+A4(K))*CCl		
0049			DE3BC=CC	K)*CC1*(1.0D0-SIG(K)*P	R3-SIG(K)*AA(K))	
0050		9	QAB=(E1AE	3+E3AB1/2.000		
0051			WAC=(E1AC	+53AC)/2.000		
0052			QHC= (E100	+E3BC)/2.0D0		
0053			ALAB=[114	B-E3AB1/2.000		
0054			ALAC=(E1A	C-E3AC1/2.000		
0055			AL8C=(E16	3C-E3BC)/2.0D0		
C056			XX =ALAB-A	LBC		
0057			YY=ALBC-A	LAC		
0058			ZZ=ALAC-A	AL AB		
0059			U=(XX*XX+	YY *YY+ZZ*ZZ)/2.0D0		
0060			U= SQRT (U)			
0061			E=QAB+Q80	C+QAC-U		
0062			BB=4.0004	٥U		
0063			DR1=(DELA	B+DE3AB)/2.000-(2.000*	ALAB-ALBC-ALAC)*(DE1AB-D	E3ABJ/BE
0064			DR2=10E14	C+DE3AC)/2.0D0-(2.0D0*	ALAC-ALAB-ALBC)*(DE14C-D	E3AC)/BB
0065			DR 3 = (DE) E	C+DE3BC1/2.000-(2.000*	ALBC-ALAC-ALAB)*(DE1BC-C	E3BC1/38
0066			RETURN	7		
0067			FND			

FORTRAN IN	V G LEVEL	2.	PLACE	DATE = 76044	14/04/41
0001		SUBROUTIN	F PLACE (R1)		
	(* * * * *	****	*******	******	* * * * * * * * * * * * * * * * * * * *
	C., 1	SFE REFRE	NCS: L. M. PAFF, J. CH	IEM. PHYS., VOL. 60, 22	20(1974)
	C ROU	TINE TO PL	ACE H2, H3, AND H4 IN EQU	ILIBRIUM POSITIONS FOR	A GIVEN
	СН	DISTANCE E	QUAL TO RI		
22.2	Cuxex	******	**********	*****	* * * * * * * * * * * * * * * * * * * *
0002			ADADM(5)		
0003		DIMENSION DIMENSION	X(A) - Y(A) - Z(A) - P(15) - I	FR(15), AG(6), R2(15), D1	(2),02(3),
		1 ALPH(3).	BE(3).8ETA(3).CC(3).AA	31.5 IG(3).85TR(3).4CS(6).DK(6).
		2 Y1(0),Y2	(6),ASS(6),F(4),GF(4),F	X(6),PX(6),PY(6),PZ(6)	,DX(6),
		3 OY (6),02	(6),DPX(6),DPY(6),DPZ(6	.),DF(15,3)	
0005		COMMON X .	Y,Z,R,DEP,AG,R?,C1,ALPH	RE+D3+BETA,CC+AA,SIG+	RSTR,TAU,
		1 80.013.0	P,EE,ACS,ASS,RX,XII,	V1 • V2 •	V 3, V 4 , BMAX ,
		2 RSS,VR,P	FP, H, PX, PY, PZ, WH, WC, WBF	W, DT, DX, DY, DZ, DPX, DPY	, DPZ, T, DF,
		31EMP,PPT,	START, APARM, PI, T3PI, ELC		
00.06		7+LLL+LL+	KK # LL L # NV L # NV Z # N	JJ+NI+KE	
0007		$\Delta E C O S (X) = 0$	DARCHS(X)		
0008		CUS (X) = DU	DS(X)		
CU09		SURT(X)=D	SURT(X)		
	C////	///////////////////////////////////////	///////////////////////////////////////		///////////////////////////////////////
	C	SFT ANGLE	CUT OF THE XY PLANE DES	CRIBED BY THE C-H BOND	S IN THE CH3 GROUP.
	С, П	BASED ON T	HE RI DISTANCE FED TO I	HIS ROUTINE.	
0010		TE CRIALSA	DIJIGU NJ 9		
0012		GD TO 10			
0013	Ģ	IF(P) IT -	RF(1))GO TO 11		
0014		TS=TAU-CP	*(R1-RE(1))		
0015	10	CONTINUE			
0016		GO TO 12	47		
C017	11	TS=TAU			
0018	12	CONTINUE			
	C////	//////////////////////////////////////		TE ATOM POSITIONS EXCED	T 7(1) AND 7(6)
	c	WHICH ARE	SET IN THE MAIN PROGRAM	L ATON FOSTITIONS EXCEP	21.1 410 2101
0019	0	S=SIN(TS)		-	
C 0 2 0		C =C OS (TS)			
0021		X(1)=).0D	0		
0022		Y(1)=0.000	0 .		
0023		X(2)=0.000	U 1 * 5		
0025		7(7)=85(1	/ - 3		
0026		X(3) = K [(1)])*S*COS(F16PI)		
0027		Y(3) =RE(1)*S*SIN(EL6PI)		
0028		Z(3)=RE(1) * C		
0029		X(4)=RE(1)*S*COS(S6PI)		
2230		Y(4) = RE(1))*S*SIN(S6PI)		
0031		Z(4)=RE(1)*C		
0032		X(5)=J.000			
0034		7(5)=0.00	0		
0035		X(6) = 0.000	o l		
00 36		Y(6)=0.000	- 0		
C037		F FTURN			
0038		END			

.

NOTRAN IV	G L VIL	71		0151		UATE	= /01)44	1470	4/4:
0001		SUBROUTINE	DIST						
	() 本本本本:	* * * * * * * * * * * * * * * * * * * *	****	******	*****	*****	******	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
	C :	SEL REFERENC	06: L.M	A. PAFF.	J. CHEM.	PHYS.,	VOL. 60,	2220(1974)	
	C bun	FINE TH COMM	PUTE THE	INTERPA	RTICLS D	ISTANCES	FROM THE	CAPTESIAN	
	С	CORDINATES	5 ОЕ ТНЕ	ATOMS					
	C * * * *	* * * * * * * * * * * * * * * *	** *****	*****	******	** *****	*****	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * *
0002		IMPLICIT RE	*AL*8 (A·	-H, ()-Z)					
0003		DIMENSIJN 4	PARM(5)						
0004		DIMENSION >	((6),Y(6)	1,2(6),R	(15), DER (15),AG(6	5),R2(15)	, D1(3), O3(3)	•
		L ALPH(3), FE	E(3), BET	4(3),000	3).44(3).	SIG(3), F	ST R(3),Δ	CS(6),DK(6),	
		2 Y1(6),Y2(4	5),ASS(6),F(4),GI	=(4),PX(d	5),PX(6)	,PY(6),PZ	(6),DX(6),	
A 1 A 1		4 UY(6),0Z(6	:),DPX(6)), DPY (6)	DPZ(6),0)F(15,3)			
0005		COMMON X,Y	Z R DER	AG,RZ,D	I,ALPH,Pt	., D3, BEI/	4,00,04,5	IG, FSTR, 'AU,	
		KV.01J.CP.	1 E E , AC S , /	455.KX.X		OT 04 01	V1,	V2,V3,V4,BM4	X •
		2 855,00,000	•H•PX•P	PZ,WH,	NC . WBE . WI		r.UZ.DPX.	DPY, DPZ, 1, 0F	•
		315MP+K51+51	ART (APA)			SOPI			
0004		+ 1 1 1 + JJ J + KKP			3 • NV 4 • J J •	NIFREE			
0000									
0008			1)-7(5)						
0000		OF(1) = X(1)	1 - x(5)						
0010		DE(1,3)=//1	1-1151						
0011		B2(1)=DE(1.	1)*DE(1	1)+DE(1.	2)*DE(1.	2)+DE(I.	3) *DE(1.	2)	
0012	1	R(1) = SORT(R2(1))			21.0111		- •	
0013		DF (5.1)=X(5	(-x(6))						
0014		0F(5,2)=Y(5)) →Y (5)						
0015		0+(5,3)=Z(5	() - 2(5)						
0016		P2(5)=DF(5,	1)*DF(5	1)+DE(5)	2) *DF(5,	2)+DF(5)	3)*DF(5,	3)	
CO1 7		P(5) = SURT ((P?(5))						
0018		DO 2 I=1,4							
0019		J≍[+5							
0020		DF(J,1)=X(I)-X(6)						
0021		DF(J,2)=Y(I)-Y(6)						
0022		DF(J,3)=Z(1)-Z(6)						
0023		R2(J) = DF(J)	,1)*DF(j,	1)+DF(J	2)*DF(J	21+DF(J	3) #DF (J,	3)	
00 <u>2</u> 4	2	R(J)= SWRT(55(J))						
0025		00 3 [=1,3					•		
0026		J=[+1							
0027		K=I+9							
0028		DF(K, []=X()-X(J)						
0029		DF(K,2) = Y(1)	1-Y(J)						
0030		DP(K) = DP(V)		1.1.05/8	31+DE/K	21+05/2	31+0114	2 1	
0033	3	DIVI- CODTI	0 7 1 4 UF (N)	I I FUFIK	CITURIN,	ZITUPIN	SITUPIN,	21	
0032	5		~21 8/7						
0034		1=1+2							
0034		S=1+2							
0036		DE(K,1)=X(2))-X(.))						
0037		$DF(K_{2})=Y(2)$	-Y(J)						
00 38		DF(K,3)=2(2)	2)-2(J)						
0039		R?(K)=DF(K.	1) * DF (K	1)+DF(K)	2) *DF(K	2)+DF(K,	3)*DF(K.	3)	
0040	4	R(K) = SURT (R2(K))						
0041		DF(15,1)=X(3) - X(4)						
0042		DF(15,2)=Y(3)-Y(4)						
0043		DF(15,3)=7(3)-Z(4)						
1044		R2(15)=0P(1	15,1)*DF	15,1)+Df	(15,2)*0	F(15,2)+	DF(15,3)	*DF(15,3)	
0045		R(15) = SQRT	(R2(1,5))	l .					
0046		RETURN							
CU47		E ND							

FORTRAN	IV G LEVEL	. 21	ANGUE	DATE	= 76.744	14/94/41
0001		SUBROUTT	NELANGLE			
	C * * * *	****	****	*****	******	** *******
	С	SEE PEFER	ENCE: L. M. RAFF, J. C	HEM. PHYS.,	ACT - 90 - 5	220(1974)
	C RCI	JTINE TO C	OMPUTE CH4 ANGLES FROM	THE INTEPPAR	TICLE DIST	ANCES
	C * * * *	****	****	** ***	******	*******
0005		IMPLICIT	REAL*8 (A-H, 0-Z)			
C003		DIMENSIC	N APARM(5)			
0004		014ENST0	NXX(6), Y(6), Z(6), P(15),	DE#(15),AG(6) , R2 (15), D	1(3), D2(3),
		I ALPH(3)	PE(3), BETA(2), CC (3), AA	(3) • 516(3) • 8	STR(3),ACS	(6),DK(6),
		2 Y1(6)+Y	2(6)+A35(5)+F(4)+GF(4)+	SX (6), PX (6),	PY(5), PZ(6	J, UX (6),
0005		1 01(6).0		01,9F(19,3) 1 15 D3 D5T4		
0009			TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	M, 4 2 , U 2 , BE A	, CC , AA , SI C	17 51F 1 1 4U 1
			DED 14 DV 11 D7 141 40 10	עם אם דה מ	V19V2	
		3 K33+VK+	START ADADM DT TART SI	698991988901 601 6401	UZ UPA UP	X • 01* Z • 1 • 0 F •
		ATT. III.	TARTTARTARARMTPITTTEL	ULINI KEE		
00.04		SUPT(X)=		↓ J J ↓ N1 ↓ N1 ∈		
0007						
0008		00 2 T=1	-3			
0000		$x = (R_2(1))$	+82(I+1)-82(I+91)/(2.00	0*2(1)*2(1+1		
0010		$\Delta CS(T) = X$				
0011		ASS(1)=S	WRT(1,000-X*X)			
0012	2	AG(I) = A	RCOS(X)			
CO1 3	-	00 3 1=1	•2			
0014		$X = (R_2(2))$	+R2(I+2)-R2(I+12))/(2.0)	DO#R(2) #R(I+	-211	
0015		ACS(1+3)	=X			
0016		ASS(1+3)	=SOPT(1.000-X*X)			
0017	3	AG(1+3)=	ARCOS(X)			
0018		X=(R2(3)	+R2(4)-R2(15))/(2.0D0*R	(3)*R(4))		
0019		ACS(6)=X				
0020		ASS(6)=5	QRT(1.070-X*X)			
0021		AG(6)= A	RCOS(X)			
0022		RETURN				
0023		END				
FORTRAN	IV G LEVEL	21	READ	DATE = 76044	14/04/41	
---------	------------	--	----------------------------------	---	---	
0001		SUBEDUTINE READ				
	C S	SEF REFERENCE: L	. M. RAFF, J.	CHEM. PHYS., VOL. 60,	2220(1974)	
	רטריי C	TINE TO READ IN I	NITIAL POTENTI	AL SURFACE PARAMETERS		
1.1	C KOUT	TINE ALSO READS I	N INITIAL DYN	AMIC VARIABLES		
0002		IMPLICIT REAL*8	(A-H,C-Z)			
00.2.3		DIMENSIUN X(6),Y	(6),2(6),8(15)	, DEF(15), AG(6), R2(15),		
		- ALPH(S);FE(S);B: 7 V)(5);V2(6);ACC	(1411),UU(3/)4 (41.E(4).CE(4)	- PY(6) - PY(6) - PY(6) - P7	(6), DY(6),	
		DY (6) - DZ (6) - DPX	(6).DPY(6).DP7	(6).DE(15.3)		
0004	-	DIMENSION APARM(5)			
0005		COMMON X,Y,Z,R,DI	ER, AG, 22, D1, AL	PH,RE,DR,BETA,CC,AA,SI	G,RSTP,TAU,	
	1	PV,DIJ,CP,EE,AC	S,ASS,RX,XII,	V1.V	/2,V3,V4,BMAX,	
	2	PSS,VP,PPR,H,PX	, PY , P Z , WH , W C , W	IBR .W . DT . DX . DY . DZ. DPX .	DPY, DPZ, T, DF,	
		STEMP, RRT, START, A	РАРИ, РІ, ТЗРІ, Е	L 6PI, S6PI,		
0004	. 4	FILL, JJJ, KKK, LLL,	NV 1 • NV 2 • NV 3 • NV	(4,JJ,NI,Ktt		
0008	100	REAULOTUUT DITU	S + ALPH + KE + DE 17	I CU FAA IS IGI KSI K		
0007	00	READ(5.101) TAU.	ΩV.			
0009		READ(2.101) DIJ.	CP			
0010	101	FUP MAT (2015.8)				
0011	102	FORMAT('H!)				
0012		WH I TE (0,102)				
6 100		WRITE(6,103)				
0014	103	FURMAL (SBX, SURE	ACE PARAMETERS	•••///)		
0015	104	NEIL1101(194)	. 237. 14-21. 23)		STATE DARAWETERS	
0010	5~1	251.//)		a c a missar since i	Statt Facaterect 1777	
0017		WRITE(6,105) D1,	ALPH,RE			
0018	1.)5	FOR MAT (5X, 2HD1, 3)	X,3(1PD20.8),/	,3X,4HALPH,3X,3(1P920.	8),/,	
	1	L 5X,2HRE,3X,3(1P)	020.81,//1			
0019		WRITE(6,106)				
0020	106	FORMAT(33X, TRIP	LET-STATE PARA			
0021	1.07	WELFED LUTT UST	951A,00,44,310 Y.3(10020 8).	, KOIK . 38.448514.38.3/10020	81.7.	
0072	1.07	- скина (JX (2003)) с 6X -1dC - 3X - 3 (1 РО)	20.81./.6X.1H4	$3X \cdot 3(1PD20 \cdot 8) \cdot / \cdot$		
	2	2 4X, 3HSIG, 3X, 3(1)	P020.91./.3X.4	HRSTR . 3X . 3 (1 PD2 0.8) .//	(/)	
0023		WRITE(6.108) TAU	, KV			
0024	108	FORMAT (25X, 28HEQ	UILIBRIUM ANGL	E PARAMETERS,/,15X,4HT	AU=, 1 P D 20.12,	
	,	5X, 3HFV=, 1PD20.	12,///)			
0025		WRITE(6,109) DIJ	• C P			
0025	1.017	STR MATERSX,28HEQ1	UILIBRIUM ANGE	E PAKAMELEKS,/115X,	(15)	
	7	AZHSLEPE DARAME	TER-ERONTS TOP	ANGLE=, 1PD20, 12, / 1	· · • · · · · · · · · · · · · · · · · ·	
	C READ	D IN INITIAL RAND	CM NUMBER7 (ECIMAL DIGITS.O		
0027		PCAD(5,101) BX(1)			
	C READ) CH4 FUNDAMENTAL	FREQUENCIES			
00.58		READ(5,110) V1,V	?,V3,V4			
0029	110	FURMAT (4015.8)				
0020	C SEAL	N IN MASSES				
1.500	r ===	MITALIA LUTATIN AND AND AND AND AND AND AND AND AND AN	C • WDF			
0031	C 6.7	FEAD(5.101) BMAX	.RSS			
	C REAL) IN INITIAL VIBR	ATIONAL QUANTL	M NUMBERS		
0032		READ(5,111) NV1,	NV2 . NV 3 . NV4			
0033	יוו	FUP MAT(4112)				
	C REAT	D INTEGRATION STEP	PSIZE			
0034		READ(5,101) DT				
	C PEAD) INITIAL RELATIV	E VELOCITY			

CONTRACT	1 1 0			R . 40	0415	10011	
0035			9EAD (5-1 01	1) VR			
0015		С	READ TEMPERATI	UPE FOR POTATIONAL AV	ERAGING		
0036		Ŭ	READ(5.10)	I) TEMP			
0037			WRITE(6.1)	12) PX(1)			
0038			112 EURMAT(15)	X.22HINITIAL RANDOM N	UMB53=.10020.1	2.1)	
0.039	•		WRITE(6.1)	131 V1.V2.V3.V4			
0040			113 EDEMAT(15)	X. METHANE FUNDAMENTA		(IN EV.):	./.?)X.3HV1=.
0040			1 . 020.10.5	5X. 3HV2=.020.10.5X.3H	V 3=.D?0.10.5X.	3HV4= D20.1	0./)
0.041			WOITE/6.11	14) WH.WC.WBP		51101 - 002 001	
0041			114 EOEMAT(15)	X.6HMASSES.5X.2HH=.1H	9020-10-5X-2HC=	- 2PD20-10-	5 X . 2 HX = . 1 PD2
0042			10.10./1		0 C 2 C C C C C C C C C C C C C C C C C	12102002.79	
0043				IST BMAX.855			
0044			115 EDD MAT(15)	X. 25HMAXIMUM IMPACT C	ARAMETER = .1 PD2	0.8.5X.4HE	SS= 1 PD20 . 8./)
0044			1 /1		, , , , , , , , , , , , , , , , , , ,	5.0728710	
CC45			WRITE(A.11	16) NV1 NV2 NV3 NV4			
0046			116 FORMAT(15)	X. 32HINITIAL VIBRATI	N STATES DE CH	4 5 X . 4 HNV	1=.13.5%
0040			1 AHNV 2= 13	3.5X.4HNV3=.13.5X.4H	IV 4= . 13 . /)		1121201
0.04.7			WRITE(6.11	171 VR. DT. TEMP			
0048			117 FORMAT(15)	X.19HRELATIVE VELOCI	Y=.10020-8.5X.	INTEGRATIO	ON STEP STZE=
7040			1 =1.1PD20	8. /.15X. POTATIONAL	TEMPERATURE=!.	10020.8./1	5 5 CT 5 1 2 C
		c	READ CONTROL A	DAR AMETERS	, and the one of		
004.9		Ċ.	READ(5.11)	1) TTT. LLI.KKK.LII			
0050			9EAD(5.101	I) PPT.STAPT			
00.00		r	PEAN IN ANGULA	AR DARAMETERS			
0051		C	PEAD (5.12)				
0052			120 FURMATISE	5.8)			
0053			WALLET 100 100 100	211(1.ADARM(1).1=1.5)			
0055			121 COUNT (15)	Y. FANGUEAR ATTENUATIO		. / . 1 0 X .	
50574			1 316Y 1AD	APM (1.12.1) -1.10013.1	01.7.108.2158.	IADADM(I.T	2.1)=1.10018
			* 101./)	ANN 121 1- 111000	0 111 1 2011 21 211		
0055			JUTE/6.1	221 DRT. START			
0055			1 72 EUDMAT/15	Y INTETANCE DADAMETER	S 208 . LETNA		TANCE = !.
0000			1 10020 10		E-1.10020 10./	1	
0.057			UDITE/4 1/	1211 - 180-0001 DISTANC	L - , IFU20+10 ;/	•	
0097			DETHDN	U 1 # -			
0050							
1124			C.ND				

FORTRAN IV G LEVEL 21 READ

DATE = 76044

14/04/41

FORTRAN	IV G LEVE	- 21	TETRAH	DATE =	76044	14/04/41
0001	.*	SUBROUTI	NE TETRAH(TAU,PI)			
	C	A DOUBLE	PRECISION VALUE FOR PI MU	IST BE SUPPLE	I S D	
	С	THIS ROUT	INE CALCULATES THE TETRAH	EDPAL ANGLE	TO DOUBLE	PRECISION ACCURACY.
	C#4#	*****	***	# # # # # # # # # # # # # # # # # # # #	* # # # # # # # # # # # # # # #	医脊髓脊髓脊髓脊髓脊髓脊髓脊髓脊髓脊髓 化合金
	С	X=HfIGHT	OF EQUILATERAL TRIANGLE F	ACE OF REGUL	AR TETRAHE	DPON (EDGE=1).
	С	THE TA = I NT	ERNAL ANGLE BETWEEN EACES	•		
	C	PHI=INTER	NAL ANGLE BETWEEN FACE AN	ID AN EDGE OF	TETRAHEDR	• V 4
	C	н=не IGнт	OF PYRAMID (REGULAR TETR	AHEDRON).		
	С	Y=LENG™H	BETWEEN ANY CORNER AND CE	NTER OF ANY	FACE.	
	C	GAMMA=ANG	LR BETWEEN LINE H AND COR	RESPONDING E	DGE.	·
	C.	TAU=TETPA	HEDRAL ANGLE.			
	C###	4###########	*************	*******	****	*****
0002		IMPLIC IT	REAL*8(A-H, D-Z)			
0003		X≂DSIN(P	1/3.000)			
0004		010.21=0	*(X*X)-1.000)/(2.000*(X*X))		
0005		THETA =	DARCOS (C)			
0006		PHI=(PI-	THE TAL /2.000			
0007		/ons.ov و Y=	X			
0008		D=(X * Y)+	1.0U0-(2.0D0*Y*DC05(PHI))			
0009		H≃D SOP T(0)			
0010		F=((H*H)	+l.0n0-(Y*Y))/(2.0n0*H)			
0011		GAMMA=DA	RC DS (F)			
0012		TA U=P I-(2 • 0D 0*GA MMA)			
001,3		TAUD=(TA	U/PI)*13U.0D0			
0014		WRITE(6.	1)TAU,TAUD			
0015	·	E FORMAT(/	<pre>,1X, TETRAHEDRAL ANGLE =!</pre>	,1PD24.16,	RADIANS OF	• •
		13PD24.14	, DEGREES!,//)			
COL 6		RETURN				
0017		END				

,

λ.

FORTRAN IV	ULEVEL 21	1A I N	DATE = 76148	11/58/59
	(¥####################################	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	******
	C INTERNAL CHURDINATE F	RUL CONSTANT ROU	TINE	
	L ********	*****	****	*****
0001	IMPLICII REAL#8 (A-H	0-2)		
	C SPECIFIC DIMENSION FU	MAIN PRUGRAM		i -
0002	DIMENSION £(15,15,7,	(),0(15,15,7),00(15,15), KK(15), AGK(6),XK(6),YK
	1(6),ZK(6),XK((6),YK(S),ZKL[U],AGKC[U	1	
	2 ,003(15,15)			
	C THE VARIABLES E. D. E.	UD REQUIRE 102.6	OU BYTES OF CORE E	BY THEMSELVES
0003	REAL#8 DELV(2,15,15)	RKC(15)		
0004	DIMENSIUN APARM(5)	· · · · · · · · · · · · · · · · · · ·		
0005	UIMENSIUN X(0),Y(0),	(6),R(15),DER(15	1,AG(6),R2(15),D1(31,03(3),
	1 ALPH(3),RE(3),3ETA(3),CC(3),AA(3),SI	G(3), KSTR(3), ACSIE	5),UK(6),
	2 Y1(6),Y2(6),AS5(6),	(4),GF(4),RX(6),	PX(6), PY(6), PZ(6);	DX(6),
	3 UY(6), UZ(6), UPx(6),	JPY(6), UPZ(6), UF(15,3)	
0006	LUMMUN X,Y,Z,R,JLR,A	,R2,U1,ALPH,RE,U	3. BETA, CC, AA, SIG, H	KSTR, TAU,
	I RV.DIJ.CP.EE.ALS.AS	S, KX, XII,	V1.V2.V	/3, V4, BMAX,
	2 RSS, VR, PEK, H, PX, PY,	Z, WH, NC, WER, WODT	DX, DY, DZ, UPX, DPY	OPZ,T,DF,
	JIEMP, KRT, START, APARM	PI,T3PI,EL6PI,S6	ΡΙ.	
	4111, JJJ, KKK, LLL, NV1,	IV2.NV3.NV4.JJ.NI	, KEE	
	- c >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	· · · · · · · · · · · · · · · · · · ·
	L THIS PRUGRAM CALCULAT	S SECOND DERIVAT	IVES WITH RESPECT	TO THE INTERNAL
	C COUKUINATES OF THE CH	HATUM ABSTRAC	TION REACTION SY	STEM WHICH ARE
	C RELATED TO THE PUTS P	DIENTIAL ENERGY S	URFACE COURDINATE	SYSTEM
		<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
	C READ IN SET OF PUTENT	IAL SURFACE PARAM	ETERS	
C U C 7	LALL READ			
	C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	››› ›››››››››››››››› ›››››››››››››››››	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	· · · · · · · · · · · · · · · · · · ·
	C THE INTEGER "IRC" TEL	S THE PROGRAM WH	ETHER IT IS TO REA	AD IN THE INTER-
	C ATOMIC DISTANCES (IF	IRC IS GREATER TH	AN OR EQUAL TO ZEP	CU) OR
	C IF THE PRUGRAM IS TO	READ IN THE CART	ESIAN COORDINATES	OF THE ATUMS,
	U LIF IRU IS LESS THAN	ZERO).		
	(>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	· >>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
6003	READ(5,770)1KC,RINK			
CUOS	770 FORMAT(12,010.3)			
	CHHHHHHHHHHHHHHHHHHHHH	* # # # # # # # # # # # # # # # # # # #	****	*####################
	C			
0010	KEE=-1			
	L IF KEL EQUALS "-1" THE	N POT6 WILL NET C	OMPUTE ITS INTERNA	AL DERIVATIVES.
	L	,		
	C#####################################	*****	****	******
CO11	DO = 1 = 1, 15			
C012	R(1)=0.000			
0013	RK(1) = 0.000			
0014	$R2(1) = C \cdot OD O$			
0015	I CUNTINUE			
016	DU = 2 I = 1, 6			
0017	X(1)=0.000			
0018	Y([]=0.000			
0019				
0020				
0021	YK(1)=0.000			
0022				
0023	AGT11=0.000			
0024				
0020				
0020	L RAKSESSSSSSSSSSSSSSSSSSSSSS T— T	とて て て て て て て て て て て て マ マ マ マ マ マ	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	******
	<u></u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

FCRIKAN	17.0	ueVéL	21	MAIN	UATE =	76148	11/58/59
		, в	a An IN CH	NELGURATION GETMETRY			
		666666	******	68564866688866666666688866	36881368 88 8	******	3X X & X & X X X X X X X X X X X X X X X
JU27		سېر د د س	1F(IRC)4,	יגיעיע, ציעי גיע ער פרט פרט שי שי שי ער ער ער ער ער פרע פרע איז ער ער פרע ער ע	<i></i>	הערוס הבערות הבית בניה	ע גרורי בער מיט בעיעו בעי בער בער מאור וויעט בעי ב
		66666	346466666666	14444444444444444444444444444444444444	- ላ 6 4 4 4 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5	6666666666	0 & & & o & & & & & & & & & & & & & & &
		с к	LAD IN IN STATE NADO	D 130 FORMAT.	663		
		1 2 2 2 7 2	13 ANG - 402 27 2 2 2 2 2 2 2 2	· A & F & X & X & X & X & X & X & X & X & X	************	****	***********
028		ა ა ი ი ი ი ი ქ	κi μ Δ ι) (5 . 7 7	1)(R(I)•1=1•15)		10000000000000	, , , , , , , , , , , , , , , , , , ,
0029		771	FORMAT (40	20.13)			
CU 30			CR1=R(1)				
0031			WRITELG,7	72)(1,R(1),1=1,15)			
0032		112	FURMATI//	, 5X, 'INITIAL INTERATUMIC	DISTANCES	,/,15(7X,	R",[2,"=",1P
		¥	020.10./)	1			
6603			GU TO 5				
		しられなおる	******	*************************	*****	2229999	こうちょくちょうちょう ひちょうちょう ひちょうちょう ひちょうちょう
		C R	EAD IN CA	RTESIAN COURD. OF THE AT	UMS IN ORDE	R UF THEIR	ATUM NUMBER
		C U	NE ATOM P	ER CARD USING "3D20.13"	FURMAT.		
		しいじちちる	646666666		366666666666	****	562666866666666666666666666666666666666
0034		174	REAULS #11	3) (X(1),Y(1),Z(1),(=1,0)			
0035		115	PURMALLOU	20•131 761(1-2(1)-2(1)-7(1)-1=1	- 61		
CO 17		174	HORMATI//	-18.401004-98.484.198.49	1.198.171.7		020.12.711
0031		1 1	ALCULATE	INTERATOMIC DISTANCES IF	CARTESIAN	COURDINATE	S WERE READ IN.
603a		· ·	CALL DIST		o nit E o I Alt	0000010010	S WERE READ THE
C039			0R1=R(1)				
0040			WRITE(6.7	72)(I,R(I),I=1,15)			
C041		5	CONTINUE				
0042			WRITE(6.7	75)			
0043		775	FORMAT(1	*)			
		C ////	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	,,,,,,,,,,,,	
		c c	ALCULATE	DOUBLE PRECISION PI AND	FRACTIONS U	F PI.	
0044			P1=2.000*	DARSIN(1.000)			
0045			1391=12.0				
0046			CLOPI=111	-000+P17/6-000			
0047		<i>с 1111</i>	1//////////////////////////////////////		, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,	
		L C	ALCULATE	DOUBLE PRECISION TETRAHE	URAL ANGLE	NECESSARY	EDR GEOMETRY CALCULA
		ι -	TIENS.				T BR GEORETRE GREGGER
0048		-	LALL TETR	AH(TAU,PI)			
0049			IF(IRC)7.	6,6			
		C ////	/////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	111111111	
		ιI	F INTERAT	UMIC DISTANCES WERE READ	IN , CALCU	LATE THE C	H3 CARTESIAN COURDIN
		с –	ATE ATOM	POSITIONS BASED ON H1 AT	OM ABSTRACT	ION DIATAN	ICE R(1).
0050		6	CALL PLAC	ELORI I			
0051			Z(1)=0R1				
0052			2(6)=R(5)				
		6 1111		//////////////////////////////////////	ON CAUTESIA		1/////////////////////////////////////
0067		ι ·	ALCOLATE	INTERALOPTIC DISTANCES FR	UM CARTESTA	N COURDINA	123.
0055		,	CHEL DIST				
0055		'	00 8 1=1-	16			
0056		ы	RK([)=R(1)			
		i 1111	11111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,	///////////////////////////////////////	
		C C	ALCULATE	HCH ANGLES BASED UN INTE	RATUMIC DIS	TANCES.	
0057			CALL ANGL	c			
C058			00 9 I=1.	υ			
0059			XK([]=X(])			
0060			YK(I)=Y(I	J			

FURTRAN	1V G I	L I. V L L	21	MAIN	DATE = 10148	11/58/59
JJ061			2K(1)=2(1	1		
6062		9	AGK(1)=AG	(1)		
6073			WRITE(0.7	76)PI		
0064		110	FURMATI//	•1X•PI=••1P024•15)		
C065			WRITE(6./	76)(I,R(I),I=1,15)		
6006		116	FORMAT(//	15X. INTERATUMIC DIST	ANCES',/,15(/X,'R',12,'	= ,19020.12,/1
C04.7			ыртты <i>17</i> 7	77)(1, AG(1), 1=1, 5)		
0068		111	FORMATISX	. HCH ANGLES THETA!./	• 1X•0 (*T*• 11•*=*• 18017-	10.1×1/)
0000			(//////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
	(ι. ί	CALCULATE	EQUILIBRIUM GEOMETRY	ENERGY.	
6669			CALL PUT6			
		c ///	111111111	///////////////////////////////////////	, , , , , , , , , , , , , , , , , , , ,	///////////////////////////////////////
	(ີ່	ALCULATE	FURCE CONSTANT CONVER	SION FACTORS	
	1	ί I	FACIOR 10	CUNVERT EV / (BOHR RA	DIUS)**2 TO MDYNE/ANGST	RÚM
0010			FACT=0.16	021000/ (0.52916700*0.	529167001	
	i	ີ I	FACTOR TO	CONVERT EV TERMS TO M	DYNE-ANGSTROM (ANGLE TE	RMS)
OU 71			TFACT=0.1	6021060		•
		L 1	FACIERTO	CONVERT EV / (RADIAN*	BOHK RADIUS) TO MDYNE/K	AD IAN
	(C I	ANGLE-STR	ETCH CROSS TERMS)		
0072			CFACI=0.1	6021000/0.52916700		
1073			WRITE(6,7	74)(I•XK(I)•YK(I)•2K([],1=1,6]	
074			WRIIE(6,7	(5)		
0075			1=1	121200		
0076			CCC-CL - 10		*****	****
			- = (ALALA	ATED ENERGY MATRIX CA	PARIE DE STOUINC 49 INC	REMENTAL ENERGIES
	, i			FOR CALCULATING FACH	INTERNAL CHORDINATE ED	RCE CONSTANT IN THE
		c.	13X13	MATRIX	Intenne coordinate to	Ree constraint in the
		či	J = FIRST	UERIVATIVE MATRIX BY	SEVEN POINT METHOD	
	(Č i	JD = SECUN	D DERIVATIVE MATRIX B	Y SEVEN POINT METHOD	
		ι i	DU3 = SELU	ND DERIVATIVE MATRIX	BY 3 POINT METHOD	
	(د ن	(K. YK. ZK	. XKC. YKC. AND ZKC =	CARTESIAN COURDINATE C	UNSTANTS FOR RESETTIN
	i.) ئ	SATUM POS	ITIONS TO THE URIGINA	L UR AN INTERMEDIATE CU	NF IGURATION
	(í I	RK, AGK, A	ND AGKC = INTERATOMIC	DISTANCE AND HCH ANGLE	CONSTANTS FOR RESETT
	(i.		ING INCREME	NTED COORDINATES	
	(ا ما -	A. U. ANU	C = COEFFICIENTS OF T	HE SEVEN POINT DIFFEREN	TIATION METHOD
	(C • •••••		EQUATION	* * * * * * * * * * * * * * * * * * * *	****
0077	, i		00 10 1-1	15	* * * * * * * * * * * * * * * * * * * *	***********
C078			00 10 10=	1.15		
079			DD(1,1C) =	0.000		
0080			UD3(1.16)	=0.000		
C081			DU 10 IN=	1.7		
C082			DEL.IC.IN)=0.0D0		
0083			DU 10 INC	=1,7		
СОЬ4			KE=IN+INC			
0085			IF(KE.EQ.	8)GO TO 12		
0086			E{1,1C,1N	• INC)=0.000		
C081			GO TO IV			
088		12	ELI, IC, IN	•INCJ=EEE		
0084	,	. 10	CUNIINUE	CALMENTING LOD CHEDOM S	C T C	
0000	(AND THE	EMENTING FUR ENERGY S	E13	
0090			A-0.1000			
0091			C=0.15004	9-000		
0093			KFY=1			
0094			K0=1			

055						
		UAX =0.000				
307		DAY = 0.000	b			
J97	6/11		> ////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	C	NU INTERNAL	COURDINATES CORRESP	UND TO PUTS COURD	DINATES 5.	7, 3, AND 9.
199		1F(1.20.5.U	K.I.EQ.9JGU TO 21			
	6 777	INTERNAL COU	KDINATE LINEAR BEND	S ARE KEYED BY LA	ABELS FOR P	PUT6 COORDINATES
	ù j	7 6 0.				
095		1F(1.E0.7.0	R.I.EQ.8)KEY=1-6			
100		1E(10,E0,5%	15 0K.EC.E0.9)60 10 20			
102		IFIIC.EU.7.	0R.IC.EQ.8)KU=IC-6			
103		DU 19 IN=14	1			
104		1F(1	-4)			
106		GO TO 81				
107	80	IF(IN.GT.I.	AND.IN.LT./)GU TO 1	9		
108	81	CONTINUE				
110	•-	K(1)=KK(1)+	вH			
111		IF(1.0E.10)	AG(I-9)=AGK(I-9)+Bit			
112		GO IO 64	K.I.EQ.8760 10 60			
11-4	60	CUNTINUE				
115		GO TJ (61.6	2),KEY			
110	61		H A X			
117	C	UAX=-1.0U0*	BH			
110		WRITE (0, 785	YAG, XAG			
120	62	GU IU 63 ∆IPHAY≓PI+B	н			
	C	UAY=PI-ALPH	AY			
121		DAY=-1.000*	BH			
123	63	LALL ALBEND	1 UAX • UAY (DAX • DAY)			
124	•••	WRITE (0.784	IKEY			
125	785	FURMAT(1X,	DAX= ,1PD20.12,10X,	• DAY=•,1PD20.12)		
126	184	CUNTINUE	KLY=••131			
	c ///	///////////////////////////////////////	///////////////////////////////////////	, , , , , , , , , , , , , , , , , , , ,		
	C	SET PUTO CUU	RDINATES 5,7,8, & 9	TO CORRESPOND TO	3 THE INTER	INAL COURDNATE IN
128	L	IF(1.FO.1)C	HE I TH COURDINATE	•		
29		IF(1.EQ.6)C	ALL JO(DAX, DAY)			
130		1F(1.G[.1.A	ND.I.LT.5)CALL ORES	ET(I,RK,XK,YK,ZK,	AGK)	
131	641	CONTINUE	ALL WANSETTII, KK, XK,	YK,ZK,AGKJ		
133		DG 16 KK=1,	6			
134	•	XKC (KK)=X(K)	к)			
136		7.KU(KK)=Y(K)	K) K)			
137	16	AGKC(KK)=AG	(KK)			
ประ		DO 161 KK=1	,15			
לנ 140	161	- KKUIKKJ=R(Ki - DD 18 INC=1	•7			
141		IF(I.EC.IC)	GO TO 85			
142		CH=RINK*(IN	C-4)			

FCRTRAN	LV G I	LLVIL	21	MAIN		UAIE = 76140	11/50/59
0143			GO TU 86				
0144		35	IF(LIN+IN	().EQ.8)GO TO 18			
0145			CH=RlinK#1	IN+INC-8)			
0146			CONTINUE				
0140		00	RUTITERRU	10)+CH			
0147				10)AG(1(-9)=AGK(1C-9)+CH		
0148							
6144				7 HR 10 E0 B)60	10.65		
6149			CO TO AO	1.00.10.00.00000	10 07		
0150							
C151		60	CUNTINUE	(7) ()			
0152				• 0 /) • N·J			
C153		60	ALPHAX=P1	+CH		-	
	(6	DAX=PI-AL	PHAX			
0154			UAX=-1.00				
0155			WRITE(6.7	85 JUAX . UAY			
0156			60 10 68				
0157		61	ALPHAY=PI	+CH			
		6	DAY=PI-AL	PHAY			
C158			UAY=-1.0U	О¥СН			
0159			WR1TE(6,7	05)DAX,DAY			
C160		60	CALL ALBE	ND (DAX , DAY)			
0101			WRITE(6,7	66)KU			
0162		786	FURMAI(1X	, KU= 13)			
0163		69	LUNTINUE				
		C ///	///////////////////////////////////////	///////////////////////////////////////	·/ / //////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
		C	SET POTO C	OURDINATES 5.1.8	1, ά 9 TO CUR	RESPOND TO THE	INTERNAL COORDNATE INC.
		C	REMENT FOR	THE IC TH COORD	INATE.		
0164			IF(IL.EQ.	IJCALL QI(UAX, DA	(Y)		
6165			IFCIC.EW.	GICALL GG (DAX, DA	Y)		
0166			IF(IC.GT.	I.AND.IC.LT.5)CA	LL QRESETLIC	,RKC,XKC,YKC,ZK	C,AGKC)
0167			IFILL.GT.	9)CALL QANSET(IC	,RKC ,XKC ,YKC	,ZKC,AGKC)	
6168		357	CUNTINUE				
		c 111	111111111	///////////////////////////////////////		///////////////////////////////////////	///////////////////////////////////////
		C.	CALCULATE	AND STURE INCREM	IENTED INTERN	AL COURDINATE P	UT6 ENERGY
0165		-	CALL PULG				
0170			E(1.16.1N	•INC)=EE+18.3232	200		
0171			DO 17 KK=	1.6			
(172			X (K K) = X K ((KK)			
0173			Y(KK) = YKC	(KK)			
1174			/(KK)=/K((KK)			
0175		°1 7	$\Delta(1KK) = \Delta($	KÜ (KK)			
0176		- '	CALL DIST				
0177		1.4	INTINUE				
0111			///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			///////////////////////////////////////
			DECET ALL	PARAMETERS TO DE	LIGINAL CONFI	GURATIUN	
		L	NCJEL MEE	-1 6			
C179							
0180			11821-181				
CIPI		101					
6102			CALL DIST				
0183			LALL ANGL	C .			
C184			UAX=0.000				
6185			0 4 Y = 0 . CÚ C				
0186		19	CONTINUE				
0107			IF(1.N.E.1	CIGO TO 851			CHENT CALCULATION
		ü	STORE DUPL	ICATE ENERGY VAL	LUES FOR DIAC	JUNAL MATRIX EL	EMENT CALCULATION.
0188			DU 95 IN=	1.7			
0189			UO 95 INC	.=1,7			

FCRIRAN IV	. LÉVEL	21		MAIN	UATE = /6148	11/58/59
6190	70	KU=LNH	INC			
0191		IF (KU	Eu.d)GU TU S	15		
0192		GG 10	(11,72,73,74	175.70.77	/8,/9,90,91,92,93,941,KD	
C193	71	CUNTIN	NUE			
6154		Gi IU	95			
C195	12	E(1.1)		(,1(,1,1)		
0196		GUID	55			
0147	7.4	1 (1.1)				
C148		60 10	96			
0199	74	F(1.10	. [N. IN() = F()			
0200		- CO TO	05	11011157		
6260	76		. IN INCLACIÓ	1.0.1.41		
0201			65 CE	111011147		
0202	1.		・ チン・・ エハビ トージ ()	1 1 (1 5)		
0203	70			1101100		
0204			- 70 - 75, 75(C)=C()			
0205	11			.,,		
0206	9		190 1. IN INCLACIO	1 1 1 3 31		
0207	10	- E [] + E	, IN, INC/-EI			
0208		60 10	95			
0209	19	- E. C. L. g. L. C.	, 1N, 1NC = EC	1,1(,7,2)		
0210		60 10	45			
0211	90	E(1,10	C,IN,INC)=E()	[,1C,7,3]		
0212		GO TO	95			
0213	41	£(1,1)	C, IN, INC)=E([,1(,7,4)		
C214		60 10	95			
0215	92	E(1.10	.IN,INC)=E(]	1,10,7,5)		
C216		GU TO	95			
C211	93	e(1,1(:,IN,INC)=E()	[,[C,7,6]		
C218		GU 1U	95			
6219	94	E(1.10	:.IN.INC)=E(]	[,[C,7,7]		
0220	95	CUNTI	NUE			
C221	851	LONTI	NUE			-
	6 1/11	//////		///////////////////////////////////////		
	C (LALCUL	ATE 7 POINT H	IRST DERIV	ATIVES.	
C222		DO 96	IN=1.7			
0223 1		AU=E(1, IC, IN, 5)-E	1, IC, IN, 3	1	
C224		0U=E(. IC. IN.6)-E	1, IC, IN, 2.		
C225		CD=E()		I, IC, IN, 1;	H	
0226		0(1.10	.1N)=((A*AD)	+(B*BD)+((*CD))/RINK	
C221	96	CUNTI	NUE			
	U >>>	>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·····	······	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	c c	CALLUL	TE SEVEN POL	NT SECOND	DER IVATIVES.	
0226	•	ADD=0	1.1(.5)-D(I	10.3)		
0229		800=01	1.10.6)-0(1	1(.2)		
0230		000=0	(1, 1), 7) = 0(1)	16.11		
0231				(8*800)+()	*CDD))/RINK	
0232		EAC=E				
0238		16(1)	361/.UK.I(.G	-7) FAC = C F	AC T	
0234		16/1 /	34.7.AND 10 0	1 . 7 1 E AC = T		
0234		16(1 4	SCOTOMIQUOLUOU Sii 6 Anni II I			
222		11 1 1 1 1				
0247				T AG		
0221	20.0	- WIST FE	0919011916 (1111 1V 1000			TO STUST DE
0238	190		INCO AND THE		CECOND DEDIVATIVE FOOL (1)	LU FIRSI UE
	-		LVES AND THE	RESULTANT	SECOND DERIVATIVE PUR' / 1	.,
0.220		IAND IC				
0239		WRITE	OF FOOTS LINK			
C240	196	FUKMA	IDX RINK =	••1PD15•8	7.1	
0241		UU 87	LIN#L+/			

FCRIRAN	IV O LEVEL 21	. 1	1A I N	DATE = 7	6148	11/58/59
0242	1.00)=1N-4				
0243	MK1	ITE(6,791)				
0244	: 791 FUF	(MAT (18X, "1*RINK", 2	4X, *2*R[NK *, 24X, *	3*R INK * 1		
6245	4K]	TE(6,792)E(1,1C,1N	N. 5) . E(I. IC . IN. 0) .	E(I,IC,I	N, /)	
0240	792 FOA	LMAT(2X, "E+",2X,3()	LPD30.15))	1 · · ·		
(241	WK I	TE(6,793)E(1,1C,11	0,3),E(1,IC,IN,2),	E(1,1C,1	N • 1 3	
0248	793 FUR	MAT(2X, "E-",2X,3()	PD30-151)			
0249	WR1	TE(6,794)IQD,D(1,	(C,IN)			
0250	794 HUP	MAT(2X, 'DV/D(Q',[2	(,!)=!,1PD25.15;/)			
0251	87 LUN	ITINUÉ				
0252	WR	TE(6,795)1,1C,DD()				
0253	795 FUR	MAT(2X. SECOND DEP	RIVATIVE FOR I='.I	3.1 10=1	.13. DDV/(D)	1) (DOIC) = • 1PD2
	1)=	.1PU25.15.///)				
	0				aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
	C C 41 C	ULATE & POINT SECO	IND DERIVATIVES.			
0254		(=+(1,1C,4,4)				
0255		$P = F \{1, 1, 1, 2, 5, 5\}$				
0255	E M N					
0257	L 11-					
0251	L F 1 6 M L					
0250	L 11F					
0209	0/12		YVII /OUE			
0200	1.01					
0201	C C L					
0202	נטע					
0203	200		AL			
6264	AKI	1616+1911		-		
0265	797 FUR	MAILIX, SECUND DEP	LIVALIVE BY 3 PULL	II METHUD	FULLUWS'	
0266	WRI	1E(0,795)1,10,0030	1,10)			
C267	20 LUN	IIINUL				
0268	21 CUN	TINUL				
6562	WRI	TE(6,198)				
0270	748 FJH	MAT('1',2X, SECUNE	DERIVATIVES BY 3	POINT M	ETHOD',/)	
0271	DO	999 N=1,15				
0272	M K I	TE16,7991N				
0213	799 FUR	(MAI(//, 'RUw', 13)				
0274	WRI	TE(6,800)(DD3(N,L)	+L=1,15)			
0275	800 FDR	MAT(/(1PD18.10))				
0216	NCJ 646	ITINUE				
L277	່ນມ	1000 N=1.15				
C218	ŬŬ	1000 L=1.15				
6214	- DDE	V(1,N,L)=DU(N,L)				
6280	1000 DDE	V(2,N,L)=003(N,L)				
	0 11/1/11	111111111111111111111111111111111111111		1111111	///////////////////////////////////////	///////////////////////////////////////
0281	CAL	L CPUNCH(DDEV)				
C282	1111 STC	P				
0283	END	I				

I.

FOPTPAN	IV 25	L¤νει	21	C PUN C H	PATE -	76944	14/06/51
0001			SUBROUTINE	CPUNCH(DUTV)			
		(SUBBOUTINE	CPUNCH			
		1 111	///////////////////////////////////////		mm	···········	
					CONDUTNATE		
		C ,	CH15 COULD	E PURCHES FAR INTERNAL	CO FOLNATE	FURCE CUNSTANT	SET IN A
		(PROPER FORM	AT FOR USE WITH THE SU	HACHISCHNEIC	DER NUFMAL MUDE	FREQUENCY
	·	C	PROGRAM MOL	IFIED BY M. WOLFSBEPG.			
		6 111	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	`//////////////////////////////////////	///////////////////////////////////////
0002			IMPLICIT R	EAL*8 (A-H,D-Z)			
1003			DIMENSION	NR?(91),NC2(97),NRV(91),NCV(91)		
0004			REAL*8 002	(91).DDV(91).F7			
0005			PEAL *8 10E	V(2.15.15) .DOE2(2.15.1	5)		
0006			00 1 1 1 1	5			
0007				5			
0004			0011 1-1 3	, ,			
0000			DUE2/ 1 N 1	- ODEV(L. N. L.)			
0004			CUNTINUC				
0020		,	CONTINUE UDITELA AF				
0011			WK 1 15 1 6,45				
0012		45	HUF MALL !!	IX, TINIERNAL CODEDINA	TE FURCE CON	ISTANT MATRIX G	ENERATED BY THE
		1	BY THE SE	VEN POINT DERIVATIVE A	PPRUXIMATION	METHOD',//)	
0013			00 35 N=1,	15			
0014			WRITE(6,47) N			
0015			WRITE(6,46)(DDEV(1,N,L),L=1,15)			
2016		35	CONTINUE				
0017		47	FORMAT(/,1	X, ROW', I3)			
001 A		46	EPRMAT(7(1	PD18.10))			
0019			00 29 IZ=1	, 01			
0020			0D2(IZ)=0.	000			
0021		29	00V(1Z)=0.	0.00			
0022			F7=1.00000	0000000			
0023			12=0				
0024							
0025			00 31 1/=1	. 1.5			
0026			LE(17.E) 5	- DR - 17 - FO- 9100 TO 31			
0027			1/1124:00/	• GR • 12 • C @ • 7 9 0 7 + 0 - 5 2			
00.29			TELL CT O	11 7-1 7-4			
0020							
0029			18112.00000	• UM • 1 2 • 1 W• 0 / L 2 - L 2 + J			
00.50			1F112+00+0				
0031			00 30 IM=1				
C032			1F(18+E4+5	• CR• IF• EG•9) GD 10 30			
0033			LR=IR				
0034			IF(IP.GT.o)LR=LR-4			
0035			IF(IR+EW+7	• 08•18•50•81LR=LR+5			
0036			IF(IR.E0.6)LR=LR-1			
0037			IF(LR.GT.L	ZIGO TO 30			
0038			IF(5.0D-7.	G5.DABS(DDE2(2,IR,IZ))	160 TO 28		
1739	•		L2≃L2+1				
CU40			NP2(L2)=LP				
0041			NC2(L2)=L2	· · · ·			
0942			002(L2)= 30	52(2,IR,IZ)			
C043			WR IT -16.49	119.LR.IZ.LZ.L2.CD2(L2). DUE2 (2. IR.	12)	
0044		47	FTEALT(1X.	514.E12.8.1PD20.12. 0	021)		
0045		23	1E(5.00-7.	GE_CABS(DDEV(1.TR.T7))			
C046			LV=LV+1				
0047			NAV(IV)=IP				
0048			NCV(1V)=17				
2040				EV (1. T.R. T.Z.)			
0050				\ TQ_[Q_T7]] / . LV . DOV/LV	1.00EV/1.19	17)	
0051		6.0	EDDMATIEDY	, , , , , , , , , , , , , , , , , , ,	7700CV127137 00V/11		
JUPT		9 0	FURMAL (DUA	* > * + * * * * * * * * * * * * * * * *	DLY Y T J		

FORTMAN	1 V	G	Ľ	VEL	~1		CPUNCH		DATE	= 76044		14/06/51	
0052				ز لا	G INT 11	US							
C053				- 11	CONTIN	UF							
0054					WE I TEL	6+7721							
0095				772	FIF MAT	(11,1)							
			C	<<<	<<<<<<		< < <<<<	<<<<<<<	<<<<<	<<<<<<	.<<<<<<	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	<<
			0		CONSTRU	CT AND PUNCH .	LABELED	INTERNAL C.	INFDIN	NATE FURC	E CONSTA	NT MATRIX BY	
			С		7 POINT	METHJD.							
0056					WPITEO	0,421LV							
0057					WRITE	7.421LV							
005 8				42	F.DR.MAT	(1X+ INTERNAL	CODED.	F.C. MATPIX	(3Y 7	7 PT. MET	HOD CONT	AINS .	
					1 13.1	ELEMENTS!						•	
0354					WATTE	4.43) (NRV(M).	NCV(M) . M	. F2 . M= 1 . LV)					
0060					WHITH (6.51) (DUV(M) .	4=1.LV)						
0061				51	E UR MAIT	(UF12.9)							
0062					WHITE	7.43) (NEV(M).	VCV (M) . M	. F2 . M= 1 . LV)					
0063					WATTE	7.511(DDV.(M).	M=1.LV1						
0064				43	FORMA T	(4(313.F9.61)							
-			С	<<<	<<<<<<		~~~~~	~~~~~~~~			~~~~~		< <
			Ĉ		CONSTRU	CT AND PUNCH	LABELFO	INTERNAL C	DORDI	NATE FOR	CE CONST	ANT MATPIX BY	• •
			C		3 POINT	METHOD.							
0065			-		WRITER	6.772)							
0065					WRITE	6.441L2							
0067					WRITE	7.44112							
0064				44	FOPMAT	(1X. INTERNAL	COOF U.F.	. C. MATRIX	BY 7	PT. MET	HOD CONT	ATNS	L C
					#13.1 .P	EMENTS!)							
0069					WRITE	6.431(NR2(M).	C2 (M) .M	. F7 . M=1.12)					
0070					WPITEL	6.511(DD2(M).	4=1.1.21			,			
0071					WHITEL	7.43) (NE2(M) .	102 (M) .M	. F2 . M=1 . L2)					
0072					WRITE	7.511(002(4).	1=1.1.2)						
073					FETUEN								
0074					END								

FOP TEAN	IV G LEVEL 21	AL REV D	DATE = 76044	14/06/51
0001	SUBPOUTINE ALE	END(DAX,DAY)		
0002	IMPLICIT REAL*	8 (A-H,O-Z)		
0003	DIMENSION APAR	M(5)		
0004	DIMENSION X(5)	,Y(5),Z(A),R(15),D	EP(15),AG(5),P2(15),	D1(3),D3(3),
	1 ALPH(?),8F(3)	,BETA(3),CC(3),AA(3)+5 [G(3)+RSTR(3)+AC	S(5), DK(6),
	2 Y1(6),Y2(6),A	SS(c) + F(4) + GF(4) + B	X(6),PX(6),PY(6),PZ(0	5), (X(6),
	3 DY(6),UZ(6),D	PX(6),DPY(6),DPZ(6),DF(15,3)	
0005	COMMON X .Y .Z.F	,DER,AG,R?,C1,ALPH	, RE, D3, BETA, CC, AA, SI	G,FSTP,TAU,
	1 RV,DIJ,CP,EE,	AC S,ASS,RX,XII,	V1,V	12, V3, V4, BMAX,
	2 RSS , VF , PFR , H	PX, PY, PZ, WH, WC, WER	,W,DT,CX,DY,DZ,DPX,D	PY, DPZ, T, DF,
	3TEMP, RET, START	APARM, PI, 13 PI, ELS	P1,55P1,	
	4111,JJJ,KKK,LL		JJ+N1+K ⁺ E	
		NOTES THE DOTE COR		FRUT OUE TO INCREMENTS
		NOLES THE POLO COU	HUIMA.CS D+7+0+6 9 KI	ESET DUE TO INCREMENTS
0006	ENTRY OLICAY.	NAA) NAA)		
0008				
0001	C/////////////////////////////////////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,
	C THIS SUBROUTING	CALCULATES THE LI	NEAR BEND POSITION OF	F ATOM 6 (BR DR H)
	C HOLDING ATOM 1	(H1) AND ATCM 5 (C) UNTHE Z-AXIS. THI	SPECOUCES IDENTICAL
	C INTERNAL COORDI	NATE GEOMETRY CHAN	GES AS HOLDING ATOM	5 AND ATOM 5 ON THE Z-
	C AXIS (CAT THE	TRIGIN) AND MOVIN	G H1 CEE THE Z-AXIS :	WITH COFRESPONDING BUT
	C ATION OF H2, H3	4 & H4 TO PRODUCE	NO CHANGE IN THE HCH	THETA ANGLES.
	C DAX = ALPHAX - \dot{P}	1 C		
	$C DAY = \Lambda LPHAY -$	PI		
	C ALPHAX AND ALPH	AY ARE THE LINEAR	BENDING ANGLES IN TH	E X-Z Y-Z PLANES
	C RESPECTIVELY.			
	C \$\$\$\$\$\$\$\$\$\$\$\$	\$\$\$ 5 \$\$\$555555555555555555555555555555	555555555555555555555555555555555555555	\$\$\$\$\$555159\$\$\$\$\$\$\$\$
0008				
0009				
0010				
0012	1 DSX=0.0D0			
0013	0C X = 1 - CD O			
0214	2 IF (DAY - EQ-0.00	0)GO TO 3		
0015	DSY=DSIN(DAY)			
0016	DC Y=DC OS(DAY)			
0017	GO TO 4			
0018	3 DSY=0.0D0			
0019	DC Y = 1. 00 0			
0020	· 4 CONTINUE			
0021	DC X 2 = DC X * DC X			
0022	I)C Y 2= DCY *DCY			
0023	SSDD=1 .0 D0- (DS	X*DSX*DSY*DSY)		
0024	RX6=R(6)*DSQR1	(DCY?/SSDD)		
0025	RY6=R(6)*DSQRI	(DCX2/SS00)		
1100				
0020	11 01=K 10#U SY 7/4 1=/574+0721	42 (1)		
0020		+P(1) THTS STEL	GIVE SAME RESULT AS	EGTN. ABOVE
0029	/(1) = P(1)	STATE STATE ALL	OTTO DA L REDUEL AD	
0030				
0031	RETURN			
0032	END			

FORTRAN IV	G LEVEL 21	QRESET	DATE = 76044	14/06/51
0001	SUBROUTINE Q	RFSET(I,RK,XK,YK,7K,AG	()	
	C ####################################	弗提弗莱恩拉有得弗拉拉弗拉弗拉弗拉弗拉鲁斯弗拉希 CALCULATES CLANEES IN T	医垂体体体的 医生物体的 化化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合	化异苯基苯基苯基基基基基基基基基基基基基基基
		NEEDED IN THE ENERGY (ALCH ATTON BUT ADE I	VET DIDECTIV SELATED
		- NEEDED IN THE INFORMATION OF THE	UNDITINATE EORCE CONS	TANTS
	C OF THE 13 PAR	AMETERS USEFUL FOR FRE	JUENCY CALCULATION .	ONLY THE
	C INCREMENTED P.	ARAMETER MUST VARY THE	THER 12 (1) FOR DE	E DIAGONAL TERMS)
	C MUST REMAIN C	ONSTANT DURING THE DEAL	VATIVE APPROXIMATIC	N PROCEDUS 5.
	C THIS ROUTINES	PERFURMANCE WAS VERIFI	FD BY PLACING GEDME	TEY WEITE STATEMENTS
	C IN THE MAIN R	OUTINE AFTER EACH INCRE	MENTATION AND BEFOR	E EACH ENERGY CALCUL
	C -ATION.			
	C######################	*****	*****	*****
0002	IMPLICIT REA	L*8 (A-H,O-Z)		
	C SPECIFIC DIME	NSION FOR QRESET		
0003	DIMENSION RK	(1.5), AGK(6), XK(5), YK(5)	,ZK(6)	
0004	57455555555555555555555555555555555555	ති කි	5044455460566666666666666666	* ************************
0004		ARM()) 61-9(6)-7(6)-8(15)-866	(15) - 16(6) - 82(15) - D1	(3).03(3).
0005	1 AL PH(2) - RE(3), HETA(3), CC(3), AA(3),	SIG(3).RSTR(3).ACS(6).0K(6).
	2 11(6) 12(6)	• ASS (6) • F (4) • GF (4) • SX [6	5)•PX(6)•PY(6)•P7(6)	• DX(6).
	3 DY(6)	.DPX(6).DPY(6).OP7(6).D	DE(15.3)	
CU 06.	CUMMON X.Y.Z	.P.DER.AG.P2.D1.ALPH.RE	D3.BETA.CC.AA.SIG.	STR.TAU.
	1 RV,DIJ,CP,5	E,ACS,ASS,FX,XII,	V1,V2,V	3, V4, BMAX,
	2 KSS, VR, PER,	H, PX, PY, PZ, WH, WC, WBR, W	DT, DX, DY, DZ, DPX, OPY	, DPZ, T, CF,
	STEMP, RET, STA	RT,APARM,PI,T3PI,EL6PI,	S6PI,	
	4III.JJJ,KKK,	LLL, NV1, NV2, NV3, NV4, JJ,	NI,KFE	
	088888888888888888888888888888888888888	444887688638888888888888888888	58288 2838388 8888888888 888	化乙基乙基苯基乙基乙基乙基乙基乙基乙基乙基
0007	K=I			
0008				
0009		AT PRIVEZY ACKA		
0010	K=T-8	II FRUXENTER ZELIGIORI		
0011	3 CONTINUE			
0012	$SX = PI/3 \cdot 0D0$			
0013	SY=PI/6.000			
001.4	GO TO (10,20	,30,40,50,60,70),K		
00' 5	10 Z(6)=(F(1)−Z	K(1))+Z(6)		
0016	Z(1)=R(1)			
0017	GO TO 80			
0030	C P(Z) RESET			
0014	20 PZ= AG(1)-(P1			
0010		• 100100 FF 21		
6021		55 (F 27		
00.22	21 BP2=B(2)*DCD	S(P 2)		
0023	$T_2 = X(2)/Y(2)$			
0024	ATZ =DA TAN(TZ)		
0025	X(2)=KP2*DSI	N(AT2)		
<u>0026</u>	Y(2)=RP2*DCD	S(AT2)		
0027	23 CONTINUE			
0028	2(2)=-R(7)*D	SIN(P2)		
002 9	G0 T0 80			
0.000	C REST	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	.<<<<<<<	
0030	30 P3=AG(2)-(PI			
0031	KK2=K(3)*DCO	51251 V(3) 05 V2(3) NG V(3)3	. To 21	
00.12	1014K1 J. Nt.	∧ (; ; = ; ; ; = YN (; ; =)) ± = Y (; ; ; ; ; ; N/ C Y)	10 10 10	
00.24	Y(3)=	IN (SY)		
••••				

FOP TP AN	IV G LEVEL	21	OP # SF T	DATE = 76044	14/06/51
0025		(°) T .) 24			
0036	21	15/ACK14	NE ACTALICA TO 32		
0017		TELACKIN	NE.AG(6)100 TO:33		
0039		1616131 1	6 0K(3)101 TN 34		
0035		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	NE NE ACCOLOGI TO 14		
0039		CO TO OG	114(1A0(1)/0) // /4		
00,40	<i>c</i>	GU 113 79 CT 013 15	AN EDDOR NEWT WRITE ST		
00/1	ر ن روز	514 99 13 514 99 13	AN EFRIR ALIVA HEIVA DI.		
004	38	- PPJ 3=4 NU	- (0 1 / 2 10(1)		
0042		P = 40(1)			
0045		- RPZ=R121*	*DUUSTPET		
0044		- FR3=43K(2	1 * () C () C (() C ()		
0043		C T D & = 1 / 0 /)/*///////////////////////////////////	4001211//2 000+002+002	
0040		T04-04600	-2*RE277 (* RE)*ERE17 -(RE1) S(C TOZ)	- KF 13 / // (2 000 + KF 2 / KKF 3/	
0047		0T04-04-00	JJU (F 47		
0046		CC2 - (01/4			
0049		V/21-502	50001-01P4		
0051		V(2)~~603			
0051		CC TO 2.	5+0314(30)/	1	
0057	. 1	0015-0V/1	51		
0051		0 K 1 D - K ()	1997 1 - (D 1 / 2 - O D())		
0054		- KD - AUF 12			
0055		004-0(4)	*DCDS1/K31 *DCDS1/K31~(D1/2 3301)		
0070		FP4=F141	*DCUSTAGTS/=(P1/2+0)0//	**************************************	
0059		T04-0400	\F3*KKF3/+(KF4+KF4)-(KF)/*	-RP1311712.000+RRP3+RP41	
0050		0100-04660	JSLUPPDI JI-T041/2 000		
0059		- 507 - 017 (- 51			
0000		303=19170			
0061		X(3)=+P34	*/////////////////////////////////////		
0067	14	CONTINUE	0+021012031		
0063	50	- Z (3) = - E (3	1) # D S TN / D S 1	×	
0065			57+031N(F 57		
0007	r 1	241 8655			
0066	40	P4=AG(3)-	(P1/2.000)		
0067	40	RP4=4(4)*	*0CDS (P4)		
0068		TELXKIG).	NF . X(4) . PR. YK(4) . NE. Y(4)	160 TO 41	
0069	44	x (4) = - 8P4	The second se		
0070		V141=- 8P4	*051N120		
0071		60 TO 45			
0072	41	TELAGEISI	-NE-AG(5))00 TO 42		
0073	**	TELAGKIO	NE-AG(6)160 TO 43		
0074		IF(RK(4)	NE-B(4)167 T7 44		
0075		TELAGKIN	ANE-AG(3))60 TO 44		
0076		60 11 49			
0077	47	3P14=8K(1	4)		
0078		PK4=AGK12	()-(PI/2.000)		
0079		KR4=RK(4	+) +DC(15(PK4)		
0080		8P2 = R (2)	+0COS (AG (1) - (P 1/2 + 000) 1		
0081		CTP5=((9)	2 * R P2) + (RKP4 * RK P4) - (RP14*	*RP14))/(2.0D0*RP2*RKP4)	
0082		TP 5=DARCO	S(CTP5)		
0083		DTP5=1T4P	PI-TP51/2.000		
0084		SG4=(PT/6	. 0001-0TP5		
0085		X(4)=-RP4	**DC0.S(SG4)		
0086		Y(4) = -RP4	*05IN(SG4)		
0087		GG TO 45			
0088	42	- 2P15= 9K (1	5)		
0089		PK4=AGK1	1)-(PI/2.000)		
0090		PKP4=RKI4	1*DC05(PK4)		

FORTRAN	ΙV	G	r e n è	L	21	QRESET	DATE = 76044	14/06/51
0091				R	P 3=R (3	1*DCDS(AG(2)-(P1/2.000)		
0092				С	TP6=((RP3*RP3)+(RKP4*RKP4)-(F	RP15*RP15))/(2.0D0*RP3*RKP4)	1
093				T	P6=DAR	COS(CTP6)		
0094				D	TP o=(T	3PI-TP61/2.000		
00.95				ŝ	G4= (PT	/6.0D0)+DTP6		
0.096				x	(4) =- H	P4*DCCS(SG4)		
0097				Ŷ	(4)=+6	P4*DSIN(SG4)		
0091			4	ь с -		E		
0098			'4	·o u		C / 4 1 # 0 \$ 1 N / 9 4 1		
0099				2	0 70 0	(4)+USIN(F4)		
0100			<u> </u>			CON THETAL INCREMENT D		
			ر د	, кu		FUR THETA4 INCREMENT RE	15 E1	
0101			5	90 P	22 = AG []	1-(P1/2.000)		
0102				P	3=AG(2	J=(P1/2.000)		
0103				4	P2=R(2) *OCUS(P2)		
01.04				R	P3=R(3] #DCUS(P3)		
0105				R	0.3 = 1RL	2)*R(2))+(R(3)*R(3))-(2.000*R(2)*R(3)*DC05(AG(4))	,
C1 06				P	()3)≖()	SOPT(R13)		
0107				1	F(Z(2))	• NF•Z(3))GO TO 51		
0108				R	P1,3≠R (13)		
0109				G	O TC 5	2		
0110			5	i! S	513=DAB	S(Z(3)-Z(2))/R(13)		
0111				R	P13=R(13)*DCOS(DARSIN(S13))		
0112			5	2 C	ONTINU	۲ ۲		
0113				С	TP4=((RP 2*RP2)+(RP3*RP3)-(RP	L3*RP13))/(2.0D0*RP2*RP3)	
0114				Т	P4=DAE	COS(CTP4)		
C115				D	TP4=(T	3 PI -T P4)/2.000		
0116				I	F(X(2)	.EQ. 0. 0D0) GD TO 54		
0117			- 5	3 5	2 = X(2)	/RP2		
0118				Ā	X2 = DAR	SIN(S2)		
2119				T	$\Delta X 2 = \Delta X$	2+DTP4		
0120				G	a To S	5		
0121			6	34 Č	ONTINU	15 15		
0122			-	τ	AY 2= 11T	D.4		
0122			5	is r	TOMTINU			
0125				·	(1 2 1 - 0 0			
0124				- 0	(12)-00	2*0314(14X2) 2*0314(14X2)		
0126				÷	CIVELS	1.NE.Y(3). 38.YK(3).NE.Y	((3))CO TO 57	
0120			c	т. Т.		S BS MIST DE CORSSED W	THE THETAG IS TRANSFER TO ST	L 57 DCCURS
			c c	- T	12 14 0 U	NE THAT TAY 2-DTDA DARY	TE NO TRANSERD OCCUDE	• 57 00000
			L r	11	115 MCA 1497-40	AND TAKE ADD - DTD4	IT NO TRANSLER DECORD.	
6127			2	, סי	1 A A 3 = 1 P			
0128					())=KP			
0129				Ŷ	(//=-K	P 3*US IN(1 4X 1)		
0130				G	10 TO 5	9		
0131			5	57 I	FCAGKC	6) NF AG(5) IGD 10 58		
0132				I	F (RK(3).NE.R(3))GU TO 56		
0133				1	FLAGKL	2)•NE•AG(2))GO TO 56		
0134				G	ю то ч	9		
0'35			5	SB R	1915=RK	(15)		
0136				9	P4=R (4)*0CDS(AG(3)-(PI/2.000		
0137				C	CT P6 = ((RP3*RP3)+(RP4*RP4)-(RP	15*RP15))/(2.0D0*RP3*RP4)	
C1 38				Т	TP6=1)AR	CCS(CTP6)		
0139				0)TP 6=(T	3PI-TP6)/2.000		
0140				S	G3=(PI	/6.0D0)+DTP6-DTP4		
01.41				х	((3)=PP	3*DCOS(SG3)		
0142				Ý	(3)=-1	P 3*DS IN (SG3)		
01 4 3			5	9 r	ONT INU	18		
0144				1	(2) =- P	(2)*DSIN(P2)		
0145				Z	(3)=-P	(3)*DSIN(P3)		

°ORTRAN	IV G	LS	VEL	21	ORESET	DATE	= 75044	14/06/51
0146				60 TH 80				
		С	le le	OUTINE FO	R THETAS INCREMENT RESET	(SHOULD	RESEMBLE	THE TAG PESET)
0147			с ()	P2=AG(1)-	(PI/2.000)			
0148				P4=AG(?)-	(P1/2.000)			
0149				RP2=R(2)*	COS(P2)			
0150				PP4=P(4)#i	COS(P4)			
0151				R14 = ((R) 2)*R(2))+(R(4)*F(4))-(2.00)0*P(2)*F	(4)*DChS(AG(51))1 "
01 52				P(14)=DSQ	RT (R1 4)			
0153				1F(Z(2).N	E-Z(4))GD TO 61			
0154				RP14=R(14)			
C1 5 5				GU TO 62				
0156			5	ST4=DABSL	((4)-2(2))/R(14)			
0157				KP14=P(14	#DCUSTDARSINTS1477			
01.58			62	CUNTINUS CTDC ((S))			000+003+0	
0154				THE DARGE	2*** P 2) + (* P 4** * P4) - (* P 14 * * P	1411/(2+	0.004 K b 7 k B	P41
0150				1P5=04900				
0161				012541132	L-1 P5172+000			
0107				181X1210EV				
01.63			د ه	52=X(2)/R	"2 			
0164								
0165				14A 244 AZ-1	1123			
0167			- 4	10 10 00 TAY2				
0167			64)			
0140			0.5	VINI INCE				
01 69				V(2)=+P2*1				
0171				TELYVIAL I	NE VIAN OF VEIAN NE VIAN	CO TO 67		
0172					NE•A(4)•UK•IK(4/•N=+(4/) 5 000)=DTR5	0.10.01		
0172			00	V (A) = = ED 4				
01 74				X(4) = -804			1	
01 74					PUSINTIAN41			
0175			47	GU TO CH	NE ACIANCO TO AR			
0170			51	IFINGKIDJ	NE DIALLOC TO 44			
0179				1F(ACK(4)4)	NE AC(3)1CO TO 66			
0178				CO TO DO	ME . ACT 57 100 10 90			
01 80			6.9	0116-97	51			
0180			00	- NFLO-NNLL:	005166121-19172.00011			
0182				CT04-(100	3 ± 0 02) ± / 0 0 4 ± 0 0 4) = (0 0 1 5 ± 0 0	1511/12	000*003*8	P 4 1
0102				T04=DAUCO	5*KF5/*(*F9*KF4/~(KF1)*KF 5/C TD4/	13/// 2.		1
0182				DTDA-(T3D				
01.05				SCA-(DT/6				
0185				- 304-1P175				
0187				V(4)==RP4				
01.07			40		0314(304)			
0190			07	1121	*D \$1 N/ D 2)			
0100				7(4)==P(4				
01 90					10311114			
01 71		c	5	INITINE EN	THETAS INCREMENT RESET			
0192		C	7.0	P3=AG(2)-	(PT/2-000)			
C1 Q3			10	P4=AG(3) -				
0104				2 D 3 = 21 31 ±1	00000			
0195				004=01414				
0196				815=((8/3) * P (3)) + (P (4) * P (4)) - (2 - 0 P))*8(3)*P	(4)*0CDS(AG((())))
1197				R(151=000	RT(R15)			
0190				TE(7(3).N	-7(4))GO TO 71			
0100				0015-0(15				
0199				CO TO 72				
0200			71	515-DAPS4	7/41-7/311/0/15)			
0201			11	212-04031	LIMI-LIDII/KIIDI			

FORTRAN	IV G	LEVEL	?1	QR I	ESET	DAT	F = 76044	14/06/51
0202			8 P1 5=P (15) * DCC S (DAR S IN	(\$15))			
0207		. 72	CONTINUE					
0204			CT P6 = ((RP	3*RP?)+(FP4*?)	94) <mark>- (</mark> 94	15 #EP15))/(2	•000*FP3*PP4)	
C2 05			TP6=DARCC	S(CTP6)				
0206			1) TP 0 = (T3P	I-TP6)/2.000				
0207			IF(XK(3).	HE.X(3).OR.YK	(3).NE.	Y(3))GO TO 7	5	
02.08			IF (XK(4).	NE.X(4).OR.YK	(4) .NE	Y(4) GO TO 7	7	
0209		73	TX34=(PI/	6.000)+DTP6				
0210			X(3)=PP3*	DCDS(TX34)				
0211			Y(3)=-RP3	*DSIN(TX34)				
0212			X(4)=-9P4	*DCOS(TX34)				
0213			Y(4) = -RP4	*DSIN(TX34)				
0214			GU TO 79					
0215		75	IF(AGK(4)	•NF•AG(4))60	TD 76			
0216			IF(RK(?).	NE.R(3))GO TO	73			
0217			GU TU 99					
0218		76	RP13=RK(1	3)				
0219			P2=AG(1)-	(PI/2.000)				
0220			RP2=R(2)*	DCOS(P2)				
0221			CTP4=((RP	2*RP2)+(PP3*R	P3)-(RF	213*RP13))/(2	• 0D 0*RP2*FP 3)	
0222			TP4 = DARC 0	S(CTP4)				
0223			DTP 4=(T3P	I-TP4)/?•000			÷	
0224			TX4 = (PI/6)	.000)-DTP4+DTI	P6			
0225			X(3) = RP3*	DCUS(TX4)				
0226			Y(3)=-PP3	*DSIN(TX4)				
0227			TX6 = (P)/6	•000)+DTP6				
0228			X(4) = -RP4	*DCUS(1X6)				
0229			Y(4)=-RP4	*USIN(1X6)				
0230		77	10 10 19	NE ACCENCE	70 70			
0233			IP(AGK())	•NE•AU(5)/GU	7.2			
0232				NE . K (4 / / G) / / G				
0234		78	0014=0K/1	4)				
0235		70	P2 = AG(1) =					
0236			PP2=P(2) *					
0237			CTP5=((PP	2*8P2)+(8P4*8)	94)-(RF	P14 ★E P14))/(2	• 0D()*EP2*EP4)	
C2 3 8			TP5=DAPCG	S(CTP5)				
0239			DTP 5= (T3P	I-TP5)/2.000				
0240			TX5=(P1/6	.000)-0TP5+DTI	⊃6			
0241			X(4) = -RP4	*DCOS(TX5)				
0242			Y(4)=- PP4	*DSIN(TX5)				
0243			TX6=(PI/6	.0DJ)+DTP6				
0244			X(3)=RP3*	DCOS(TXo)				
0245			Y(3)=-RP3	*DSIN(TX6)				
0246		79	CONTINUE				/	
0247			Z(3)=-R(3)*DSIN(P3)				
0248			Z(4) = -R(4))*USIN(P4)				
0249		80	CONTINUE					
0250			CALL DIST					
0251			RETURN				ir.	
0252		99	WRITE(6,'	00)1				
0 2 53		100	FURMAT(1X 13+/)	,'SUBROUTINE (DRESET	INDICATES NO	RESET POSSIBLE	FCP I=',I3,/)
0.25.4			RETURN					
0255			END		1			

FORTRAN IV	G LEVEL	21	MAIN	DATE = 75044	22/42/20
	. L ***	*****	ενζει ο τητιν	****	*******
	Č	INTERNAL CO	ORDINATE TO CARTESIAN COL	BRDINATE EURCE CONSTA	NT CREVERSTOR
	 ⊖***	****	****	***	****
0001	-	IMPLICIT R	EAL*8 (A-H,J-Z)		
0002		DIMENSION	F(18,18),B(13,18),NP(3),P	C(3), DAT(3), wKAPLA(4	(00)
		1,NRO(91),N	CO(91),NFD(91),Z(91),FO(4	1)	
		2,KFR(4),KF	C(4), DATINE(4), D(18,18), U	0(18,18),4(18,18)	
0003	~	REAL*8 SUM	B,SUMA,BF(18,18),FX(19,19	• • • • • • • • • • • • • • • • • • • •	
	<i>c</i> ///				
	ć	THEN TOCETH	M READS IN SINGLE PRECISI	UN F AND B-MAIRIX85	AND MULTIPLIES
	č	FX(18X18) =	B (18X13) E (13X13) B (13)	(18)	
	c	THE FX MATR	IX GENERATED IS A CARTESI	AN COORDINATE REPRES	ENTATION OF THE
	Ċ	INTERNAL CO	TRDINATE FORCE CONSTANT #	ATRIX F.	
	С	THE B MATRI	K USED IS OBTAINED FROM T	HE G-MATPIX FORMULAT	TON PART OF THE
	С	SCHACHT SCHN	EIDER PROGRAM FOR THE CAL	CULATION OF NORMAL M	CDE FREQUENCIES.
	C	THE FX MATR	IX IS PUNCHED ON CARDS PE	ADY TO BE READ INTO	THE SCHACHTSCHMEIDE
	C (I)	P NORMAL MO	DE FREQUENCY CALCULATION	PRUGRAM.	
0004	L ///	PEADIS 121			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0005	12	EORMATISTS			
0003	c ///	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	c	NF = SIZE D	F SQUARE F-MATRIX		
	С	NATOM = # 0	FATCMS		
	С	NZ = # OF Z	-MATRIX ENTRIES		
	C	NFZ = # OF	FURCE CONSTANTS USED IN F	-MATRIX SET-UP	
2004	ι ///			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////
0006	2	1F(NA UM+N	-/2/1/2		
0008	3				
0009	-	DO 8 I=1.N	F		
0010		00 8 J=1,N	Δ		
0011		D(I,J)=0.0	00		
0012		DD(I,J)=0.	00		
0013	7	F(I,J)=0.0	20		
0014	8	B(1,J)=0.0	JU (ND(T) NC(T) DAT(T) T=1 -2		
0016	10		-F18-9-213-F18-9-213-F18-	9) 9)	
0017	. 0	DO 20 I=1.	3	, ,	
0018		[F(5+NR(1)	121,22,20		
0019	20	B(NR(I),NC	(I) = DAT(I)		
0020		GO TO 9			
0021	21	WRITE(6,1))		
0022	11	HURMAL(//	LX, ERRUR IN B MATRIX CAR	D FULLOWS (,/)	
0024	22	WRITE (0, LJ	\ \	~ I	
0025	16	EORMAT(11	(BMATRIX)		
0026		DO 23 I=1.	NF		
0027	23	WRITE (6.14)I,(B(I,J),J=1,NA)		
0028	1,4	FORMAT(/,)	K, ROW # 1,13,/,8(1PE15.7	3.3	
0029		READ(5,13)	(NR3(1), NCO(1), NF3(1), Z(1	$\mathbf{J} \cdot \mathbf{I} = 1 \cdot \mathbf{N} \mathbf{Z}$	
0030		WRITE(6,13	(NRC(I),NCC(I),NFC(I),Z(I), I=1, NZ)	
0031		READ(5,15)	(FULI),I=l,NFZ)		
0033	1 3	WKIIELO,15	//FUI1/01=10NF2) (3.60.6))		
0034	15	FORMAT (AF)	2.8)		
0035	L /	DO 30 1=1.	NZ		

FOPTRAN	IV	G LEVEL	21	WAT A	DATE - 76044
0036			F(NRO(<pre>I).NCO(I))=Z(I)*F(((NF)(I))</pre>	
0037		30	FINCOL	<pre>I) .NPO(I)) = F(NPB(I), NCD(I))</pre>	
0038			WRITE	6, 17)	· ·
0039		17	FORMAT	('1','F-MATRIX')	
0040			DO 24	I=1,NF	
0041		24	WRITE	6,14)1,(F(I,J),J=1,"F)	
0042			DD 26	I=1,NA	
0047			07 26	K=1.NF	
0044			SUMA=J	•0.00	
0045			00 25	J=1,NF	
0046		25	SUMA=S	UMA+B(J,I)*F(J,K)	
0047		?6	BF(I,K) = SUMA	
0048			00 28	I = 1 • NA	
0049			DO 28	K=1,NA	
0050			SUM B=0	-0 D0	
0051			UD 27	J=1,NF	
0052		27	SUMB = S	UMB+8F(I,J)*8(J,K)	
0053		28	FX(I,K)=SUMB	
0054			WRITE(6+18)	
0055		18	F OR MA T	('1','CARTESIAN COOPDINATE EX	-MATRIX!)
0056			DD 29	I=1,NA	
0057		29	WRITEG	6,14)1,(FX(I,J),J⊇1,NA)	
0058			WRITE(7,19)((I,J,FX(I,J),J=l,NA),!=	1,NA)
C059			1=-2		
0060			WRITEL	7,19)[
0061		19	FORMAT	(4(213,1PD14.7))	
C062			GO TO	1	
0063		1111	CALL E	XIT	
0064			FND		

. All

22/42/?)

ECRIKAN I	V G LEVEL	21	MAIN		DATE =	16149	21/49/59
	ر *****	******	****	*** ** ***	*****	******	*****
	L L	ARTESIAN CJURDIN	ATE FORCE CU	NSTANT R	OUTINE		
	🏷 杂香香蜜	*****	****	* * * * * * * * *	****	****	*****
0001		IMPLICIT REAL*8	(A-H,U-Z)				
0002		RUAL*8 DU3(3.6.3	,6),BC(4),BC	3(4)			
0003		KLAL*8 LL((7.3.0	.7.3.6).D(7.	3.6.3.61	UD(3,6,3	3.6).XK(6)	•YK(6)•ZK(6)•XKC(6)•
0000	*	• XKC(6) • YKC(u) • 7	NL(6)			• • • • • • • • •	
0.006		DIMENSION X(6).Y	(6).7(6).8(1)	5) . DER (1	5).46(6).	R2(15).D1	(3).03(3).
0001	,	AL PH(3) - RE(3) - H	FTA(3) - CC (3)	. 44 (3).5	16(3).851	R (3) . AC S (6).DK(6).
			161 5141 CEL	41. 2X(6)	- PY((.) - P)	((6) . 07/6)	
		-11(0) + 2(0) + 33 -02(4) - 07(4) - 002	(6), DPV(6), D	D7(6).0E	(15.3)	107 11 2101	
			107901 110790	KI 13.61	.KCP(4).K	CCLAN .	
NO 191	-4		61		11011477		
0005		COMMON V V Z D D	יני אר שיש וו כע אר שיש	ALDE DE.		C . A A . SI C	D STD. TAH.
LUUN		COMMON ATTIZIKID	C ACC OV VII	ALPRIKEI	US, DE TAIL		
	1	KV, DIJ, CP, EE, AC	5,455,KX,X11	• 			
	2	KSSIVKIPERIHIPA	PT PL WHING	WDR W U	19089019L 401	JZ . UPX . UP1	JUPZ I I JUF I
	د	IEMP , KRI , STAKI , A	PARMIPLIIOPI	ELOPIS			
	4	ILI, JJJ, KKK, LLL,	NV1, NV2, NV3,	NV4 .JJ.N	I, KEE		~
0007		DATA XYZZ X(•,•Y					
	<i>c/////</i>	///////////////////////////////////////					
	ι I:	IS PRUGRAM LALL	ULATES THE C	ARTESTAN	CUURDINA	ALE FURCE	CUNSTANTS
	ų (THE SECOND DERIV	ATIVE OF A P	UTENTIAL	ENERGY	SURFACE NA	MED "POIG" WITH
	СК	ESPECT TO THE CA	RTESIAN CUCR	DINALE C	OURDINAT	S OF THE	CH5 SYSTEM) USING
	C N	UMERICAL PARTIAL	DIFFERENTIA	TION TEC	HNIQUES.		
	C/////	, , , , , , , , , , , , , , , , , , , ,	1//////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	
	C#####	# ^ # # # # # # # # # # # # # # # # # #	***	****	****	*########	****
	C						
	ί r.	CC = CALCULATED	ENERGY MATRI	X, CAPAU	LE OF STO	JRING 49 I	NCREMENTAL ENERGIES
	C	NEEDED FOR	CALCULATION	OF EACH	FORCE CO	DNSTANT IN	I THE 18X18 MATRIX.
	. (ມ	= FIRST DERIVAT	IVE MATRIX				
	C U	D = SECOND DERIV	ATIVE MATRIX	BY SEVE	N POINT N	1E THUD	
	じ い	D3 = SECOND DERI	VATIVE MATRI.	хвүзр	OINT METH	100	
	C X	K∎ YK, ANÜ ∠K =	GEUMETRY COU	RDINATE	CONSTANTS	S FOR RESE	TTING GEDMETRY
	C		AFTER INCREM	ENT AT I JN	•		
	Cλ	KL, YKC, AND ZKC	= CUURDINAT	E FOR RE	SETTING (GECMETRY 1	U A PREVIOUSLY
	C		INCREMENT	ED GEUME	TRY.		
	C						
	6#####	HN###################	****	########	******	*########	*****
6008		A=0.7500					
COUS		3=-0.1500					
0010		C≠0.15D0/9.0D0					
0011		KEE≠-1					
	6 ////	,,,,,,,,,,,,,,,,,,,,,	11111111111	////////	///////////////////////////////////////		
	СК	EAD IN PUTS DATA					
0012		CALL READ					
0013		21=2.000*0AKSIN(1.000)				
8014		$I = (2 \cdot 0 \cup 0 \times P1)/$	3.000	-			
0015		FI6PI=(11.000*PI	1/6.000				
0016		$S6PI = (7, C_0) (*PI) /$	6.000				
0010	(1111		1111111111111	,,,,,,,,,	11111111		
	- C - C	ALCHLATE DOUBLE	PRECISION T	ETRAHEDR	AL ANGLE	NEEDED FO	R GEOMETRY CALCULA-
	(T	INNS.	. ACCIDICA I	FILDR		HELDED IL	Sector Cheover
0017	U I	CALL TETRAH(TAUL	P1)				
0011	<i>с</i> ,	SEC TELEMATRICES	• • •				
0019	· · · · ·	NO 1 KAHLA					
0010		JU I NA-190					
0019		XXXXXXX -0.000					
0020							
0021		ANINAJ = U. UDU					

FURTKAN I	νοιένε ς 21	MAIN	UATE = 16149	21/49/59
0022	XKL(KA)=U.	0.00		
0023	YKC (KA)=0.	.000		
C024	2KC(KA)=0.	000		
0025	0.) 1 KX=1	3		
0026	00 1 1X=1	3		
0027	UU 1 1C=1	. 6		
0028	UDIKX,KA,	[X, IC)=0.000		
0025	UU3(KX .KA	IX,1C)=0.0D0		
0030	DO 1 1J=1	,7		
0031	U(IJ+KX+K/	A,1X,1C)=0.0D0		
CU32	00 1 IJC=1	.,/		
0033	+CC(IJ,KX)	•KA•1JC•1X•1C)=0•000		
0034	1 CUNTINUE			
	C/////////////////////////////////////	· / / / / / / / / / / / / / / / / / / /	///////// / //////////////////////////	///////////////////////////////////////
	L			
	L THE INTEGED	R "IRC" TELLS THE PROG	RAM WHETHER IT IS TO RE	AD IN THE
	C INTERATIONIC	DISTANCES (IF IRC IS	GREATER THAN OR EQUAL	ZERU)
	C UK LE THE P	PRUGRAM IS TO READ IN	THE CARTESIAN COURDINAT	ES OF THE ATUMS (IF
	L IRC IS LESS	S THAN ZERU).		
	C "KINK" IS 3	THE INCREMENT SIZE.		
	6			
00.0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0035	READIS //			
0036	TTU FURMATTIZ	010-31		
0037	1FL1RG73+2			
0038	2 REAULD 111	2		
0039	COL-0(1)	20.131		
0040		721/1 8/11 1-1 151		
0041	27. ED2MAT(//	. 6 Y . TTN TEDA TOMIC DISTA	NCEST. /. 15/78. 101. 12. 1-	1.10020 10.711
0042	*))	5X; INTERATORIC DISTA	NCL3. 11 11 1 1 1 1 1 1 1 2 1 -	· ,1 · D20 • 10 • / / /
6643	GD TC 4			
(1)44	3 READ(5,77	3) (X + 1) - Y (1) - 7 (4) - 1 = 1 -	6)	
0044	773 EDRMAT (303	20.131		
0046	WRITELO.7	74) (I • X (I) • Y (I) • 7 (I) • I	=1.6)	
0047	114 FURMATCIX	*ATUM* 9X *X* 19X *Y*	-19X. 7. 7. 6(14.2X. 3020	.12./).//)
CU4e	CALL DIST			
0045	UR1=R(1)			
0050	WRITE(6.77	(2)(1,R(1),I=1,15)		
0051	4 CONTINUE			
0052	WRITE(6,7)	75)		
0053	115 FURMAT(*1)	•)		
C054	IFTIRC16.5	i•5		
0055	5 CALL PLACE	(UKI)		
0050	2(1)=UR1			
6057	2(6)=R(5)			
0052	GALL DIST			
0022	WR1TE(6,7)	72)(I,R(1),[=1,15)		
0060	6 CUNTINUE			
0061	CALL ANGLE	<u>.</u>		
0062	WRITE(0,77	7)(1,AG(1),I=1,6)		
0063	777 FURMAT(5X)	HCH ANGLES THETA ,/,	1X,6('T',11,'=',1PD17.1	0,1X1/)
0064	DO / I=1.6			
CC65	XK(I)=X(I)			
0066	Y K (1) = Y (1)			
0067	$2\kappa(1) = 2(1)$			
8900	7 CUNTINUE			
0.06.2	WRIIE(6,7)	14) (1 + X K (1) + Y K (1) + Z K (1	1,1=1,01	

FERTRAN IV 6	LIVEL 21	MAIN	DATE = 76149	21/49/59
C0 7 0	CALL PUT6			, , , , , , , , , , , , , , , , , , , ,
	ις ////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	C FACTOR TU	CUNVERT EV/(BOHR RADIU:	S)**2 TO MDYNE/ANGSTROM	
0071	FALT=0.10	021000/(0.52916700*0.5	2916700)	
0372	WRITE(6,7	751		
0073	c=EE+18.3	23200		
	· · · >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	********************
	L LJ≖LABEL	FUR SETTING INCREMENT	FOR KX,KA COORDINATE F	ROM -3 TO +3 *
	L INLREMENT	SIZE.		
	U KX = 1, 2,	OR 3 INDICATES THE X.	Y, OR Z COURDINATE, RE.	SPECTIVELY FOR
		NUMBER NA = 1 TU D.	TEAR IN. TO COMPOINATE :	600M -3 TO +3 #
	C IJC = LADE	L FUR SETTING INCREMEN	I FOR INFIC COORDINATE	FRUM -5 10 +5 +
	$C = IX = 1 \cdot 2 \cdot$	UR 3 INDICATES THE X.	Y, UR Z COORDINATE, RE	SPECTIVELY FOR
	C ATOM	NUMBER IC = 1 TO 6.		
	C			
	C <<<<<<<	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
0074	DG 311 KI	= 5,6		
015		-1 4		
3076	10 300 LC	=1.0		
0073	ELL 4 . KX .	KI.4.IX.IC)=E		
0079	UU 31 1J=	1,7		
CააC	HX=RINK*(11-4)		
0091	IF (KI.EQ.	IC.AND.KX.EQ.IX)GO TO	301	
0082	GO TU (21	,23,25),KX		
0063		K11+HX		
0004	23 Y (K11=YK1	кт)+нх		
0086	64 TO 26			
0087	25 Z(K1)=2K(KI)+HX		
0088	26 CONTINUE			
COES	301 LUNTINUE			
0090	DU 302 IA			
C091				
0092	7KC([A)=7			
0094	302 CUNTINUE	•		
CU95	00 30 IJC	=1,7		
0056	HC=RINK#(1J(-4)		
C097	IF(KI.EQ.	IC.AND.KX.EQ.IX)GG TO	303	
0098	60 10 304	ANU LA 11 7100 TO 30		
0099	JUJ 17(1J.0).	[+ 1 (- 3]		
C101	304 CUNTINUE			
0102	GO TO 430	5,300,307),IX		
0103	305 X(1C)=XKC	(IC)+HC		
0104	00 TO 308			
0105	306 Y(IC)=YKC	(IC)+HC		
0106	60 TU 308			
0101				
UL UA	C ////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , , , , , , , , , , , , , , , ,
	L CUNVERT FRI	UM CARIESIAN COURDINAT	ES TO PUTO COURUINATES	
0105	CALL DIST			
CIIC	CALL ANGL	È		

	C ////////////////////////////////////
	C CALCULATE THE PUTENTIAL ENERGY CORRESPONDING TO THE MOLECULAR GEOMETRY.
0111	CALL POTO
0112	ECC(1J+KX+KI+IJC+IX+IC) = EE+18+323200
0115	
0114	X (I A) = XK C (I A)
0115	$Y(1\Delta) = YKC(1\Delta)$
	(1,1,2) = (1,1,2)
0119	
UIZU	
0121	Y(TA) = YK(TA)
0122	$\mathcal{L}(\mathbf{IA}) = \mathcal{L} \mathbf{K}(\mathbf{IA})$
C123	310 CUNTINCE
0124	31 CUNTINUE
6125	IF(IX.NE.KX.UE.IC.NE.KI)GU TU 71
	U STORE DUPLICATE ENERGY VALUES FOR DIAGONAL ELEMENT FORCE CONSTANT CALCULA-
0126	DO /0 JJ=1,7
0127	υμ 70 IJC=1,7
0128	KEC=IJ+IJC
0125	1F(IJ.EJ.1.UR.IJ.EQ.7)60 TO 70
0130	GI) TD (52,52,55,54,55,56,57,58,59,60,61,62,63,64),KEC
لفلان	52 ECC(IJ,KX,KI,IJC,IX,IC)=ECC(I,KX,KI,I,IX,IC)
6132	GO TC 70
C133	53 } (C(1].KX.K].]JC.IX.IC)=ECC(1.KX.KI.2.IX.IC)
0134	GU TU ZU
(1.4.5	54 F(C(L),KX,KI,L)C,IX,IC)=FCC(1,KX,KI,3,IX,IC)
0136	
0137	50 10 10 10 10 10 10 10 10 10 10 10 10 10
0134	
(156	
0160	
C141	60 10 10 10 10 10 11 11 11 11 11 11 11 11
0141	
0142	
0143	
01.44	
0140	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
0146	
0147	
6148	
6145	01 = UU(1) + X + K1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
0150	
6151	02 ECC(1), KX, K1, 1), 1X, 1C) = ECC(7, KX, K1, 5, 1X, 1C)
C152	GD 10 70
0153	(3) = E(C(1),KX,K),1C(1),1X,1C) = E(C(7,KX,K1,6,1X,1C))
01:04	GU TO 70
CL'5	64 ±CC(IJ,KX,KI,JJC,IX,IC)≠ECC(7,KX,KI,7,IX,IC)
0120	75 CUNTINUE
0157	/1 CONTINUE
	c ////////////////////////////////////
	L CALCULATE SEVEN PUINT FIRST DERIVATIVES
Cloc	DO 75 IJ=1,7
0159	DEA=ECC(IJ,KX,K[,5,IX,IC)-ECC(IJ,KX,KI,3,IX,IC)
CLOU	UEB=ECC(IJ+KX+KI+6+IX,IC)-ECC(IJ+KX+KI+2+IX+IC)
0101	DEC=ECC(IJ,KX,KI,7,IX,IC)-ECC(IJ,KX,K1,1,IX,IC)
0102	D(IJ,KX,KI,IX,IC)=(A*DEA+B*[E3+C*DEC)/RINK

MAIN

, FORTRAN IV G LEVEL 21

DATE = 70149

21/49/59

•

1000 - 10

FURTRAN	IV G LEVEL 21	MAIN	DATE = 76149	21/49/59
0163	75 CONTINUE	:		
	C ////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	
	G CALCULATI	E SEVEN PLINI SECOND DER	IVALIVES	
0164	DDEA=D(5,KX,KI,IX,IC)-D(3,KX,KI	+1X+1U	
0105	ODER=010	5 • KX • KI • IX • IC J-DI 2 • KX • KI		
C166	DDEC=D(7 • KX • KI • I X • I C J - D I L • KX • K I	• 1X • 1C J	
0167	DDUKX • KI		+L*DUECJ/KINKJ*FACI	
0168	WRITELO	, / 8UJ XY Z [KX] , K] , X Y Z [] X J ,	IG RUNK	HERE TO CALCH
0109	ILATE TH	E SECOND DERIVATIVE WITH	RESPECT TO: ,//,1X,A2	2,12,1) AND 4,A2,12
	242,12,") USING AN INCREMENT OF	RINK = • • 1PD22 • 13• / / /)	
0170	DU 76 I.	J=1,7		
C171	1XD=IJ-4	4		
0172	WRITE16	,791)		
C173	791 FURMAT()	18X, "1*RINK", 24X, "2*R1NK	",24X,"3*RINK")	
0174	WRITEI6	,792)(ECC(IJ,KX,KI,IA,IX	,IC),IA=5,7)	
CI 75	792 FORMAT(2	2X, L+ , 2X, 3(1PD30, 15))		
0176	WRITELO	,793)ECC([J,KX,KI,3,IX,I	C),ECC(IJ,KX,KI,2,IX,I	C),ECC(IJ,KX,KI
	1KI,1,IX	, 10)		
C177	793 FORMATI2	2X, E-1, 2X, 3(1PD30.15))	-	
017B	WRITE(6	,794)XYZ(IX),IC,XYZ(KX),	K [,IXD,D[[],KX,K[,IX,I	C)
0179	794 FURMAT(6 1/)	5X,'UV/D(',A2,I2,')) AT	(*,A2,12,*)*,I2,**R1NK	()=',1PD25.15,
6180	76 CUNTINUE	E		
C181	WRITE(6	795)XYZ(KX),KI,XYZ(IX),	IC, JULKX, KI, IX, IC)	
0102	795 FORMAT(2	2X, '00V/0(',A2,I2,')0(',	A2,12,")=",1PD25.15,//	71
	C ////////////////////////////////////		///////////////////////////////////////	
	C CALCULATI	E 3 POINT SECOND DERIVAT	IVES	
0183	EXY=ECCI	(4. KX,KI,4,IX,IC)		
0184	EPP=ECC	(5,KX,K 1, 5,1X,IC)		
C185	EMM=ECCI	(3,KX,K1,3,IX,IC)		
0186	EPM=ECC	(5,KX,KI,3,IX,IC)		
C187	EMP=ECC	(3,KX,KI,5,IX,IC)		
C186	DHS=RIN	K*KINK		
0189	£DD=(EPF	P+EMM-(2.ODU*EXY))/DHS		
C190	EED=(EP)	M+EMP-(2.0D0*EXY))/DHS		
C191	DD3(KX+)	< I,IX,IC) =(EDD-EED)/4.0D	0	
6192	DD3(KX.)	,IX,IC)=DD3(KX,KI,IX,I</td <td>C) #FACT</td> <td></td>	C) #FACT	
0193	WRITE(6	,797)		
C194	797 FORMAT()	//.5X, SECOND DERIVATIVE	BY 3 POINT METHOD ./)	
0195	WRITE(6	,795)XYZ(KX),KI,XYZ(IX),	IC, DU3(KX, KI, IX, IC)	
0196	IF (KX - EC	Q.IX.AND.KI.EG.IC)GC TO	540	
C197	GO TO 5	51		
C198	540 CUNTINUE			
	C ////////////////////////////////////		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	C SEI-UP AN	ND CALLULATE DIAGUNAL FU	REL CUNSIANI MAIRIX EL	EMENIS BY PULYNUMIAL
	C LEAST SOL	JARES FIL MELHUD.		
C199	DU 550 I			
0200	00 550 1	LYELF/	0	
0201	IFIIK-G	I . L. AND . IY . LI . / IGU IU 55	U	
0202	K5#1K+1)	7 - 1		
020.5	Kru=KS-			
0204		CONTRAINS		
0205				
0200				
0207	UALL LUS	54())		
0200	WRITELO	Y ISECTNEL DEPENATIVE DE		SOURCES FOUNTION FOUL
V647		LAY DECOMO DENIYATIVE OF	THE COLINGRIAE ECADI	JEGNILJ LEGNILUN FULL

.

FURIKAN IV	G LEVEL	21	MAIN	UATE = 70149	21/49/59
		IION FOLLON	S*+/)		
0210		000=0.000			
C211		DDP=2.000*	CO(3)*FACT		
0212		WRITELO,79	5) XYZ(KX),KI,XYZ(IX),IC	UDP	
0213	551	CONTINUE		•	
C214	300	CONTINUE			
0215	311	CUNTINUE			
0c16		KCX=0			
C217		DU 42 I=1+	5		
0218		UU 42 KX=1	3 .		
0518		KCX = KC X + 1			
C.20		KC (KX . 1) = K	CX		
0221	42	CONTINUE			
0222		wRITE(6,77	5)		
0223	-	WRITE(6.76			A D AGINT A
0224	760	FORMAT(1X,	CARTESIAN COORDINATE F	-URCE CUNSTANT MATRIX I	SY 3 PUINI M
		LETHOD: 1			
.0225		KC T = 0			
0226		UU 439 I=1	,4		
0227		KCR[]]=0			
0228		KCC(1)=0	_		
0229	439	$BC(1) = C \cdot 0D$	0		
0230		KR=0			
0231		DU 445 KI=	1.6		
0232		DO 445 KX=	1,3		
C233		KR=KR+1			
0234		WRITE(6,76	L) KR		
J235		WRITE(6,76	0) ((DD 3 (KX , K I , I X , I) , I X=	=1,3),1=1,6)	
C236	c ///	KCT=0 ///////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	i i	CONSTRUCT A	ND PUNCH CARTESIAN CUOP	RUINATE FORCE CONSTANT	MATRIX BY 7 POINT
	Ŭ I	METHOD.			
16257		UO 444 I=1	•6		
0238		DO 444 IX≖	1,3		
C235		IF(DABS(DD	3(KX•K[•IX•I))•LE•0•1D-	-9)GU TO 441	
0240		KCT = KC T + 1			
0241		KCR(KCT)=K	C(KX.K1)		
0242		KCC(KCT) = K	C(IX+1)		
0243		BC (KCT)=DD	3(KX•KI•IX•I)		
0244		IF(KCT.EQ.	4)GU TO 440		
0245	441	IF(I.EQ.6.	AND.IX.EQ.3)GO TO 440		
0240		GŨ TU 444			
0241	440	CUNTINUE			
0248		WRITE(7,76	3) [KCR [KCX], KCC [KCX], BC	C(KCX), KCX=1, 4)	
0249		WRITE(6,76	3) (KCR (KC X) • KCC (K C X) • BC	C(KCX),KCX=1,4)	
0250		KCT=0			
0251		DO 442 1Z=	1 • 4		
0252		KCR(IZ)=0			
0253		KUCIIZJ=0			
0254		BUIIZJ=0.0	00		
0205	442	CUNTINUE			
6256	444	CUNTINUE			
0257	445	CUNTINUE			
0258		WRIIE(6,77			
0259		WRITE[6,76]		ODCE CONCTANT MATCHE	A T DOINT M
0260	162	FURMATCIX,	CARTESIAN COURDINATE P	-UKLE CUNSIANT MATRIX	SY / PUINI M
00/1					
0261		NEND=-2			

. .

FLETKAN	IV G	LEVEL	21	MA IN	DATE = 76149	21/49/59
C. 62		765	FURMAT(13)			
0263			KR = 0	4		
0264			00 44 KI=1,6	1		
0265			UU 44 KX=1.3			
0206			KK=KR+1			
0267			wRITE(6,761)	KR .		
6568		161	FURMAT(//1X,	*RON*,I3)		
0269			wRIIE(6,760)	((UD(KX,K1,1X,I),IX=	1,3),I=1,2)	
0270			WRITE(6,760)	((D)(KX,K1,IX,I),IX=	1,3),[=3,4)	
0271			WRITE (6,760)	((UU(KX,KI,IX,I),IX=	1,3), I=5,6)	
6272		100	HORMAT(/.1X.	6(1X,1PD20.13))		
0213		763	FURMAT (4(213	•1P014•7))		
0214			00 430 [=1,4			
0275			KCR(1)=0			
0276			KCC(I)=0			
0277		430	$BC(I) = C \cdot ODO$			
0278			KCT=0			
		6/11	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	
		L	CUNSTRUCT AND	PUNCH CARTESIAN COG	RDINATE FURCE CONSTANT	MATRIX BY 3 POINT
		Ċ.	METHOD			
0279		-	00 43 IC=1.6			
0280			DU 43 IX=1.3			
0281			IF (DABS(DD(K	X.KI.IX.IC)).LE.0.1D	-9160 TO 431	
0282			$K \subseteq T = K \subseteq T + 1$			
0283			KUR(KCT) = KC1	KX.KI)		
1284			KCC(KCT)=KCC	IX.IC)	i.	
0264			BC(KCT)=DDLK	X • KI • I X • I C)		
0256			LE(KCT_EQ_4)	GIL TIL 432		
0200		4 11	16(10,50,6,4	ND-IX-F0-33GD TO 432		
0707		771	CO TO 41			
0.200		43)	- JUTTE (7. 763)	IKCRIKIX) - KICIKCX) - B	(K(X),K(X=1.4)	
0209		456		(K(R K(X),KCC(K X),B))	C(K(X),K(X=1.4)	
0290			KC1=0			
11203						
0292			K(R(1)=0			
0274			K(((1)=0)			
0234			A((1)=0.000)			
0295			CONTINUE			
02.70			161KX.(0:3.A	ND.KI.FU.O)WRITE(7.7	53) WEND	
0244		44			000000	
02 70		1 335	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	· · · · · · · · · · · · · · · · · · ·	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»
			A SMALLER FUR	CH CONSTANT MATRIX I	S NEEDED FOR CH3 FREQUE	ENCY CALCULATION.
		č	I CNSTRUCT AND	PUNCH CH3 TRHNCATED	FORCE CONSTANT MATRICE	÷S.
		1 110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			WRITELS. 7651			
14.0.0			wRITE(1.766)			
0300		74.		ARTESTAN COURDINATE	EDRON CONSTANT SET FOR	(H3. BY 7 PT. METH.
0,01		100	IT METHODES	ARTESTAR COCRDINATE		
0.10.3			00 45 1-1.4			
(10)			K(V(1)+0			
3.000			KC(([]=0			
0304						
0105		6.5				
0,000		47				
0507						
		•	00 40 61-110			
6.309			100 40 NA=1#3		T 15100 TO 49	
0310			ATTRUCES ATT	ALI A TAUNANG INAANI / AU	1.17/00 10 40	
0311			UU 41 16=1,0	-		

FURTHAN IV GIEVEL 21

UATE = 76149

6317	D(1 47 1X=1,3
6313	1+ (KG(1X,1C) • LT • 4 • UR • KC(1X,1C) • GT • 15) GU 10 93
0314	IF (DABS(DU(KX,KI,IX,IC)).LT.1.0L-10)D0(KX,K1,IX,IC)=0.0D0
6315	IF(DD(KX,KI,IX,IC)+EU+0+0DO)GU TU 47
0310	KCT=KCT+1
C 3 1 7	$\kappa_{\rm LK}$ (KCT) = KC (KX · KT) - 3
0.12	K(1 K(1) = K(1 X - 1(1) - 3)
0110	$BC(KCT) = DD(KX \cdot KI \cdot IX \cdot IC)$
6 1 2 0	16100 to 2 AND 17 E0 5160 TO 49
03.11	
0321	
0322	49 IF(KX.EU.J.ANU.KI.EU.6750. 10 51
C 1 2 3	50 CONTINUE
じうご4	1+(KCT-NE-4)GU FU 47
3325	GU TÚ 51
0326	93 1F(KCT-GT-O)GU TU 51
1560	GU TU 47
6328	51 CONTINUE
0321	WRITE($5, 763$) (KeR(I), KCC(I), $3C(I), I=1.4$)
113.4.3	w(1) + (7, 7, 3) + (8) + (1)
r 2 2 1	
0121	
6.5.52	
6660	KCC(1)=0
0334	80(1)=0.000
0335	45 CUNTINUE
ひょうひ	KLT=0
013/	47 CONTINUE
0330	45 CUNTINUE
0134	NR1TE(6.765)NEND
0140	wRITE((7.75) NEN)
0341	
0.141	
0347	WELLEATING ACANTESTAN CONDITATE FORCE CONSTANT SET FOR CH2 BY 2 DT
0.343	TOT FURMATIZAT CARTESTAN CEURDINATE FUNCE CONSTANT SET FOR COS. OF S FT.
	II. METHOD.
0344	00 85 1=1.4
0345	KCR(1)=0
0346	KL([]=0
0347	BC(1)=0.0DO
0340	35 CUNTINUE
0349	KCT=0
0350	DD 84 KI=1.6
0351	D(1 88 KX=1.4
1.252	IELEVIEWEED IT A. DR KEEKY.KID. OT. 151GD TO 88
0352	
6373	
0354	$0.3 \ 6.7 \ 1.7 $
0355	11 (KC(1X,1C).L1.4.0K.KC(1X,1C).G1.15)GU 10 92
6150	$1 \neq (DABS(DD3(RX,K1,1X,1C)) + L^{-1} + 0 = 10)DD3(RX,K1,K1,1X,1C) = 0.000$
0.357	1F(DD3(KX,KI,IX,IC).EQ.0.000)50 TO 87
じょちぃ	KUT=KCT+1
6119	KCR(KCT) = KC(KX,KT) - 3
0460	KCC(KCT)=KC(1X,1C)-3
3361	$BL(KLT) = DD(3(KX \cdot KI \cdot IX \cdot IL))$
C 162	$16(1x - E_0, \delta, AN) = 10 - E_0, 6(160 - T_0), 69$
U 102	(3 f) Q)
()()	
0.201	07 IFINA EWSSANUSNISEUSGIGU IU 91
0.705	90 CONTINUE
0366	[F[KL]+NE+4]GU TO 87
0367	GU TO 91
Clud	92 IF(KCT.GT.O)GU TO 91

ų.

FERTRAN	lν ų L	ινιι	21	MAIN	DATE	= 76149
0369			GU TU 87			
0370		- 91	CUNTINUE			
0571			ARITELO, 7	103)(KCK(1),KCC(1),BC(1)	(, I=1,4)	
0312			WRITE(7,7	763)(KCK(I),KCC(I),BC(I)	,1=1,4)	
573			00 86 1=1	4		
6314			K(K(1)=0		•	
0315			KCC(1)=0			
0376			86(1)=0.0	000		
0311		60	CUNTINUE			
6370			KL T=0			
0379		67	CUNTINUE			
0380		υυ	CUNTINUE			
6301			WRITE(6.7	165) NE NU		
0352			wRITE(7.7	135 INENU		
6363		1111	STOP			
0384			LND			

21/49/59

FCRTRAN IV GI	RELEASE 2.0	MAIN	DATE = 76302	10/04/47
	C **************	** ********	** * * * * * * * * * * * * * * * * * * *	*******
	C ABSOLU	TE RATE THEORY ROU	FINE	
	C CALCULATES I	CINETIC ISOTOPE EF	FECTS USING	
	C A MODIFIC	ATION OF SUBROUTIN	E THERMO	
		ADAPTED FRUM		0 I
	C WULFSBERG MUL	DIFILATION OF SCHA	HISLNEIDER SD-903	2-1
0001	IMPLICIT REALS	(A-H-0-/)		*********
0002	DIMENSION SIG(18.181.W(18.181.DV	(18).WT(10).RECORD	(40) .NB((300) .
	1NC0(300) •NE0(30	0).Z(300).TEMS(18	. TMOM(3). HEXC(2.4	0.181.8HFX((10.40).
	201, ONUIM(2,40)	UGTL(2,40),06FR(2	401 .SUMNU(2.40) .M	UPROB(2.40).SSUMNU(2.40)
	3NU (2,40)			
C0C3	COMMEN SIG WO	/ • TEMS • TMOM • TMASS • I	RECORD, Z, BEXC, RBEX	L,
	1 WT, ONUIM, OGTL	UGFR,SUMNU,SSUMNU	•	
	*ROTC, 0V1,0V2,0V	21, DV 22, ASSM,		
	2 NOTEM, NQ, KIND	NUMB, NOAT, NIUMB, N	2UMB, NOPROB, NRO, NC	D,NFO,MOPROB
	*• MU1 • NROT			
		HE CONTROLS THE IN	TO THERMU WHIGH	H LALLULATES KINETIC
		VIING ABSOLUTE RA	E INCURT.	, , , , , , , , , , , , , , , , , , , ,
0004	90 CONTINUE			
	C PRINT SUPPRESS COM	TROL CARD		
	<pre>c>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·····	····
	C IF NCD(1)=1 THEM	I THERMO WILL ONLY	WRITE THE FINAL IS	SOTUPE EFFECT RESULTS
0005	NCC(1)=1			
0006	NC 0 (1) = 0			
0.01	c/////////////////////////////////////			<<<<<<<<<<
0007	Z FURMATUISI		ALSENERG MONTELEN	TON OF THE
		DAS USED IN THE N	IULFSBERG MUDIFICA	ILON UF THE
		//////////////////////////////////////		, , , , , , , , , , , , , , , , , , , ,
	L IND = INDICATOR	UF NEW FREQUENCY	DATA SET WHEN FOU	AI TO -09
	C NOPROB = PROBLEM	NUMBER OF DATA SE	T	
	C NU = NUMBER OF F	REQUENCIES		
	C NUAT = NUMBER OF	ATOMS		
	C NOTEM = NUMBER (IF TEMPERATURES TO	BE READ IN	
	C KIND= ISOTOPIC C	ONFIGURATION (1= 1	IGHT ISOTOPE, 2=	HEAVY ISOTOPE).
	C NUMB = LABEL FOR	FREQUENCY SET FRO	DM 1 TO 40	
		INU = 1: UTHERWISE	IS TO PATIOEN HIT	THE DECENT NATA COT
	f = 1000 = 1000 OF	SENT DATA SET THAT	IS TO RATIOED WITH	DATA: OTHEDWISE
		THE KINC=2 PEACTAN	AT DATA TO BE RATH	TED WITH
	C THIS ISC	TOPIC TRANSITION	TATE DATA RATIO.	
	C NRUT = INDICATES	ROTATIONAL CORREC	TION IS TO BE REAL	D IN IF > ZERD.
	C (NOTE: ROTATIONAL	ANU ASSM FACTORS	ARE PLACED ON AN A	ADDITIONAL CARD
	G AND PUT IMMEDIATEL	Y AFTER THE SECOND) LABEL CARD IN TH	E LAST DATA SET
	C BEFORE THE KIE IS	CALCULATED.		
	C RCTC = EXPONENTI	AL ROTATIONAL CORF	ECTION FACTOR.	
		UNAL EXPONENTIAL C	URRECTION FACTOR.	
		ADING SECOND. DE T-	INVALUN OF THE PR	CEVICUS DATA SET.
	C ////////////////////////////////////	///////////////////////////////////////	U UN MUNE NEAUTANI	UMIM SEISIA
C008	93 READ(5 4) IND NO	PROB, NO, NOAT NOT FM	KIND NUMB NILLAB	2UMB NROT .
	*MO 1			
0009	4 FORMAT(13,16,13	.8X,13,9X,613,24X	13)	
0010	IF (NOPROB.EQ.77	77JCALL EXIT		
0011	91 IF(9+1ND)90,92,	90		

,

FCRTFAN	LV 01 - 8E	LEASE	2.0	MAIN	DATE =	16302	10/04/47
0012		92	CONTINUE				
0013		97	REAU(5.6.	(RECURU(1),I=1,40)		1	
CO14		6	FORMAT(20) 44)			
0015			ROTC = C. OL	00			
0016			ASSM=0.00	00			
001/			IF (NRCT.	Q.0100 TO 102			
JU18			READ(5,11	LIROTC . ASSM			
0019		11	FORMATIE	2.0,48X,F12.0)			
0020		102	IF (NOTEM)	103,103,300			
2021		800	IF (K IND-1	1)802,802,103			
0022		302	IF (NUMB-1	1804,004,103			
		ι	READ TEMPE	RATURES AT WHICH KIE	S ARE TO BE	CALCULATE	D
		C I	UNLY IF KI	ND=1 AND NUMB=1	*******	********	*****
0023		804	READ(5.10))(TEMS(I),I=1,NCTEM)			
0024		103	CONTINUE				
		c ///	///////////////////////////////////////			///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		C	READ CALCU	LATED FREQUENCIES FO	R A GIVEN M	DLECULAR I	SOTOPIC CONFIGURATION.
0025			DO 300 I=	1.NU			
0026		300	UV(I)=0.0	000			
0027			READ(5.10))(DV(I),I=1,NQ)			
0028		10	FURMAT(6F	12.6)			
		6 111	///////////////////////////////////////		(1111111111	///////////////////////////////////////	///////////////////////////////////////
		ι I	READ ATOM	C WEIGHTS BY ATCM NU	MBER.		
C029		324	READ(5.10))(wT([],I=1,NGAT)			
		C i	READ MOMEN	TS OF INERTIA INTO T	AOM ([] .		
		C	TMASS = MC	ILECULAR WEIGHT OF IS	DTOPIC CON	FIGURATION	•
6030			REAU(5.7)	(TMÚM(1), 1=1, 3), TMAS:	5		
CU 31		7	FORMAT (46	18.9)			
3332			IF(NOTEM)	280,280,806	•		
0033		J U6	CALL THEN	IMU			
C034		280	CONTINUE				
0035			GU TO 90				
0036			END				

FORTRAN	IV G LEVEL	21	THERMU	DATE =	16241	23/04/44	
0001		SUBRUUTIN	E THLRAD			321 3	59
	C ///	111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,	11
	Ĺ	THERMO WL	TH BIGELEISEN DEFINITION	OF F			
	Ć .	THIS ROUTIN	NE CALCULATES ($K1/K2I = M$	MI * EXC *	ZPE		
	L	AND COMPARI	S IT TU $F(1/2) = VP * EXC$	* ZPE			
	C T	HE ROUTINE	ALSU CALCULATES THE FIT	TO THE LN	OF THE AR	RHENIUS EQUATION:	
	C		LN(K1/K2) = LN(A1/A2) + (E1-E2)/(R*T	••••••		
	(///	///////////////////////////////////////		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,	//
0002		IMPLICIT	(EAL*8 (A-H,U-Z)				
	<i>C111</i>	1. 1		IN ISOTODE	CEEECT (A		
	c c	$16 m_{2} = 4 k k_{1}$	LOB NIDMAL MODE EDECUIENC	IN ISUIUPE	EFFECT CA	LULATIONS .	
	L L	THILM = AUP.	AV FOR PRINCIPAL MOMENTS	DE INFRITA		C MULECULE.	
	C C	HEAGH = ARR	AY FOR VIBRATIONAL EXCLID	TION TERM	VALUES.		
	č	DSUMU = ARI	RAY HER ZPH THRM VALUES.				
	č	MT = AKRAY	FOR ISOTOPIC ATOMIC WELG	HTS.			
	Ĺ	TMASFA = AL	KRAY FOR MMI TERM VALUES.				
	Ĺ	TMASS = MI	CLECULAR WEIGHT.				
	L	UGER = LN	VIBRATIONAL PRODUCT FACT	UR) .			
	С	SUMNU = AKI	KAY FOR THE SUMS OF THE I	SUTUPIC VI	BRATIONAL	FREQUENCIES.	
	L	SSUMNU = A	KRAY FOR (SUMNU)**2.				
	C	UNUIM = ARI	RAY FOR ISUTUPIC VALUES O	F THE IMAGE	NARY FREG	UENCIES.	
	C	YUU = ARRAY	7 FOR UNITLESS VIBRATIONA	L ENERGY FA	CTOP S.		
	C	Y()U = H*C*I	NU/(K*T)	T-200			
	L.	STUN = AKR	AY FOR BELL TUNNELING FAL	TURS:			
		WIUN = ARR	AY FUR WIGNER TUNNELING F	ACTURS .			
000.	c////		(40) YI (40) CORE(10)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		//
0005	61111	///////////////////////////////////////	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	
	C TEE	FULLOWING	ARE ARCHENIUS FOLATION P	ARAMETERS.			
	с С	ARAT = ARRA	AY FOR RATIO OF PREEXPONE	NTIAL FACTO	RS.		
	č	DC = ARRAY	FOR DIFFERENCES IN ACTIV	ATION ENERG	IES.		
	ü	SUY = STANL	DARU DEVIATION IN THE RAT	IU OF RATE	CONSTANTS	K1/K2.	
	C	SUA = STAN	JARD DEVIATION IN ARAT.				
	Ĺ	SUDE = STAM	NDARD DEVIATION IN DE.				
	C////	///////////////////////////////////////	· <i>· · · · · · · · · · · · · · · · · · ·</i>	///////////////////////////////////////	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,	11
0004		KEAL*8 BE	(TUN(13),YDEV(18),BXQRAT(18), ARAT(4)	,DE(4),SU	Y(4),Y(4,18),	
		2, SUA(40),	SDUE(40), SY(4), SXY(4)				
0005		DIMENSION	TEMS(18), JV(18), TMOM(3),	BEXC (2,40,1	3),wT(10)	, TMA SFA (2,40321 3	60
		1),0G1L(2,4	101,0GFR(2,40),SUMNU(2,40	J.RBEXC(18,	401,RMASE	A(40),DUGFR(321 3	61
		2401+REUURI		+407 • YOUL	181,51611	8,18J,W(18,1821 3	163
		JUJARWKALLI A DDDDATALI	101,550 MNU(2,40),0001 M(2,	40) WIUNILB	1 .01 UNL 18	/ WRWKAI(18/321 3	60
		4,080888111 5.061112.40)) + D3 30 MM (407) KEFFK (10 /) M	KU (SUO / I NCU	1 3007 1 11 10	(3007,2(300)	
0006		COMMON STO	// 1.W.DV.TEMS.TMOM.TMASS.RE	CORD. 7. BEXC	. RBEYC.		
0000		I WT. DNHIM	DETL OGER SUMNUSSUM	CORDIZIOLAC	ROLACI		
		*ROTC.0V1.0)V2.DV21.DV22.ASSM.				
		2 NOTEM NO	KIND .NJMB .NOAT .N1UMB .N2U	MB.NUPROB.N	RD.NCO.NE	0.MOP808	
		*.MU1.NKUT					
0007		ALUG(X0)=L	DLUG(XU)				
C006		SIGNIXO, YU))=DSIGN(X0,Y0)				
C009		[. XP (XU) = DE	EXP(XO)				
0010		SOR1(X)=05	GORT (X)				
0011		SIN(XO)=DS	SIN(XO)				
0012		ABS(XO)=DA	AB2(XO)				
0013		MUPRUBIKI	NUMB)=NOPROB			32 I 3	66
0014		00 530 1=1	•3			321 36	6A
CO15		IF (TMOMLE)	1928,928,930			321 36	68

1. F. 1. M.

FLRTRAN	IV G LLVEL 21	THERMO	DATE	= 16247	23/04/44	
0016	928 TMOM(1)=1	•000			32	1 3660
0017	TMAE-1 OU	0			521	
0018	C ////////////////////////////////////	Υ FOR MURE THAN ONE REACT THEN THE DATA SET IS AS	ANT TO BE	INCLUDED	//////////////////////////////////////	/////
C019	IF(M01.6T	.0) TMAH =T MAS FA(K IND, NUMB	s ////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,
	L LALCULATE	MMI ELEMENT.				
C 0 2 C	940 TMASFALKI 1AF	ND + NUMB) = (TMCM(1) + TMOM(2) *T MOM (3)))**0.500 *T!	1ASS**1.500*TM32	1 367
0021	1F(MC1)95	1,950,951				
0022	950 UGTE(KIND	•NUM5)=0.0D0				
0023	951 CUNTINUE					
0024	952 DU 960 I=	1,NUA1			32	1 369
0025	956 UGTL(KIND	•NUMS)=OGTL(KIND•NUMB)+1	.500*ALOG	(WT(L))	32	I 370
0026	960 CUNTINUE				32	1 371
C027	IF(MC1)96	5.964.965				
0028	964 OGERTKIND	•NUMB)=0.000			32	1 372
0029	965 CUNTINUE					
030	968 00 980 1=	1 • NC			32	1 373
0031	972 IF(C.100-	UV([))976.980.980			32	1 374
0032	976 UGFRIKIND	• NUME) = OGFR (KIND • NUMB) +A	LOG(DV(I))		32	1 375
0033	980 CONTINUE				32	1 376
0034	LE (MOL) 98	7.984.987				
0035	984 SUMNULKIN	U.NUMB1=0.0D0			32	1 377
0036	SHO SSUMNULKI	ND . NUMB = 0.0L0			32	1 378
0037	ONUTMERIN	U.NUME) = 0.000				
00.16	927 CUNTINUE					
0039	988 00 999 1=	1.NC				
0040	452 TELD, 1-DV	(1))994.996.996			32	1 380
0041	GGA SHMNULKIN	D.NUMBI=SUMNU(KIND.NUMB)	+DV(1)/2.0	סמפ		
0042	60 TC 998					
0042	550 1E(=1.0=0	V(1))948.948.947				
0044	957 INULMIKIN	D.NUMBJ=-DV(I)				
0044	SSB UVTROV(1)	**2				
0045	LCO SSUMNIART		B)+SEGN(D)	T.DV(1))		
0040		-F0-1160 TO 904				
0041	1200 ARITE(6.1	400 NOPROB.KIND.NUMB. (BP	CORDIN. 1:	1.20)		
0349	1400 FURMAT (38	H1 THERMODYNAMIC QUANTIT	IES PROBLE	EM NO.18,1	5H MOLECULE K32	1 385
0050	1204 WRITE16.1	404) (TMOM(1) , [=1,3) .TMAS	S		32	1 387
0051	1404 FURMATIGH	J IA= F12.6.0H 1B= F12.	0.6H IC=	F12.6.8H	MASS= +12.6) 32	1 388
C052	1208 WRITE (6.1	406) TMASFA(KIND, NUMB)			32	1 389
0053	14CH FURMAT(27	HO ((1A*18*1C)**1/2)*M**	3/2=E18.9)		32	1 390
0054	1212 WRITE(6.1	412)(DV([),I=1,NQ)			32	1 391
0055	1214 WRITF(6+1	414) SUMNU (KIND. NUMB) . SSL	MNU (KIND.	NUMB)	32	I 392
0054	1412 FURMAT(21	HU FREWLENCIES IN CM-1/	7F16.6))		32	1 393
0057	1414 FORMAT(11	HO SUM NU/2=+18.9.1/HCM-	1 SUM NU	J##2=E18.9	,4HCM-2) 32	1 394
0058	964 DU 1550 L	#1 +NUTEM				
0059	1F(MU1)90	9.968.969				
C06C	YOB BEXCININD	• NU MB • L)=1.000				
0061	9C9 CUNTINUE					
0062	910 SUMU#0.00	0				
	C ////////////////////////////////////	- ////////////////////////////////////		,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0064	912 00 944 1#	LING			32	1 398
6064	913 YOU(1)=1.	438300* DV (1)/TEMS (L)				

FCRTRAN IV	GLEVEL 21	THERMO	DATE = 76247	23/04/44	
0065	916 [F(0.1-UV()	1))920,924,924	, , , , , , , , , , , , , , , , , , , ,	321	400
		KI ELEMENT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,
0066		NUMBAL DEBEX CLK INCANUME	•1)*() •000~EXP(-YOU(1))	321	401
0067	926 CONTINUE			321	402
006.8	930 [E(0,1=0V)	111960.944.964		321	403
2400	940 SUMU=SUMU+	YUU(L) /2.000		JE1	,05
0070	944 CUNTINUE			321	405
0070		60.1360 TO 1550		521	
0072	1216 00175(6.14)			321	4/16
0072		1 = 1EMPERATURE = E12.61		321	407
0074	1217 WELTE (4.14)	I = I = I = I = I = I = I = I = I = I =		321	408
0075	1417 FURMAT(24H	THE VALUES OF U FOLL	NW/(10E12.6))	321	404
0076	1220 WRITE(6,16)			321	410
0010	1550 CONTINUE			521	
0078	1420 EDRMAT(19H	EXCITATION EACTER=EL2	-8-10H 172SUM U=E14-61	321	411
0	¢ ////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111
		SOTOPIC RATIES.		••••••••	
0079	1000 TE(K100-2)	1044-1004-1084		321	412
0080	1004 RMASEALJUM	() = TMASEA(2, NUMB)/TMASE	EA(I.NILMB)	321	413
0081	$1020 \pm 0.0611 = 0.011$	$(1 \cdot N1 \cup MB) = CGTI(2 \cdot NUMB)$		321	414
0082	1024 TREA=RMASE	A(NUMB)*FXP(DOGTL)		321	415
0083	1028 DOGERINUMB	$= DGER(2 \cdot NUME) - DGER(1)$	NIUMB)	321	410
0084	1032 PRODE4=EXP	(DDGER (NUMB))		321	417
0.085	1035 TRAULE=PRO)FA/TREA		321	418
0000		H) = SUMNU(1 . NTUMB) - SUMN	U(2.NUMB)	321	419
0087	DSSUMNLAUM	$31 = SSUMNU(1 \cdot N1UMB) - SSU$	MNU(2.NUMB)	201	
0088	IF (NLD(1))	-0.1160 TO 1037			
6689	1226 WRITE16.142	S NUMB . NOPROB . NIUMB . M	OPROB(1.NIUMB)	321	420
0090	1428 EURMAT(50H)	THERMODYNAMIC QUANTI	TIES FOR MOLECULE OF KI	ND 2 NUMBER 321	421
	113.12H PRO	LEM NO. 18/42H WITH RE	SPECT TO MOLECULE OF KI	ND 1 NUMBER321	422
	213.12H PRO	3LEM Nú. 18)		321	423
0091	1232 WRITE(6.14)	321 TRRULE		321	424
0042	1432 FURMAT (81H0	ATIO PRODUCT NU2/PR	ODUCT NUL TO MASS FACTO	R=1.0 (TELL321	425
	IER-REDLICH)	OK = NULL/NU2L = E18.9		321	426
0093	1037 DU 1551 L=1	L-NUTEM			
0094	LOBB ROEXCLL.NUM	BJ=BEXC(1.N1UMB.1.)/BE	XC(2.NUMB.E)	321	428
C095	USUMU=1.438	BBDO*(SUMNU(1.N1UMB)-S	UMNU(2.NUMB))/TEMS(L)		
0096	1039 EXSUMU=EXP			321	430
C097	1040 URAT=RMASE	A(NUMB)*RBEXC(L.NUMB)*	EXSUMU	321	431
0098	1044 EFFR=PRODE/	*RBEXC(L.NUMB)*EXSUM	u	321	432
0099	IF (NCU(1).	EW-1)GO TO 1551	-		
0100	1230 WRITE (0.143	BOITEMS(L)		321	433
0101	1436 FURMAT(15HC	D TEMPERATURE=F12.6)		321	434
01 02	1240 WRITE(6.144	O)RMASFA(NUMB) . RBEXC (L.NUMBJ.EXSUMU.DSUMU.Q	32 [435
	1RAT			321	436
0103	1440 FURMATIO6H	Q2/Q1=MASS FACTOR (2/	1)*EXCITATION FACTOR (1	/2) * ZERU-P0321	437
	1[NT (1-2)=6	18.9.1H*E 18.9/50X.1H*	E18.9.10H (UR EXP E18.	9.2H)=E18.9321	438
	2)			321	439
0104	1244 WRITE(4.144	44JEFFR		321	440
0105	1551 CONTINUE				
0106	1444 FURMAT(10HC	52/S1 F=E18.9)		321	441
0107	1046 IF(N2UMB)10	084,1084,1052		321	442
C108	1052 KRMAS=RMASE	A (N2UMB) / RMAS FA (NUMB)		321	443
C109	1056 RPRUD=EXP(L	UGFR(N2UMB)-DOGFR(NUM	8))	321	444
0110	1058 RATIO=RRMAS	SZRPROD			
C111	WRITE (0.160	00)			
0112	16CU FURMAT(1.	. ABSOLUTE RATE THEOR	Y EQUATIONS FOLLOW *.//)	

FCRTRAN	IV G LLVEL	21	THERMO	DATE = 76247	23/04/44	
0112		157-0111	FO 1100 TO 1060			
0114	1252	wRITE(6, 14	52)MOPROR(2.N2UMB).MOPRO	B(2.NUMB)	321	446
0115	1452	FORMAT(81)	W RATIOS OF RATICS OF TH	ERMUDYNAMIC QUANTITI	ES. IN THE N32I	447
		IUMERATUR &	IS PRUBLEM NO. 18/36H IN	THE DENCMINATOR 2 I	S PROBLEM NU321	448
		2.18,18.1			32 I	449
C116	1250	WRITE(0,14	+56)KATIO		321	450
0117	1450	FURMAT(19)	HU ⊌ RATIO/F RATIO= E18.9	3	32 I	451
	ΰ ///	///////////////////////////////////////	· / / / / / / / / / / / / / / / / / / /	,,,,,,,,,,,,,,,,,,,,,,,,,	~//////////////////////////////////////	///
	(L)	CALCULATE H	-INAL RATIU TERMS FCR MMI	• EXC. & ZPE.		
C118	1060	00 1552 L=	=1,NUTEM			
C119	1064	RRBEXC=RBI	XC(L,N2UMB)/RBEXC(L,NUME	·)	321	453
		CALCULATE A	LPE TERM ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
0120		00011MIL-070	//////////////////////////////////////		+ 11 321	454
0121	1000		0 M V 2 70 0 0 0 5 1 4 2 0 0 0 0 1 1 1 1 1 2 0 1 0 0 0 0 1 1 2 0 1 1 0 1 1 1 2 0 1 1 0 1 1 1 2 0 1 0 1	DSOMIOLINOMD///TEMSI	321	455
0122	1070	KEFFR(L)-	(PROD*RRBEXC*RRSUMU		521	
	6 ///	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////		111
	C	CALCULATE 1	UNNELLING FACTORS			
0123		wTUN(L)=1.	.000			
0124		BTUN(L)=1.	0D0		•	
0125		BEXTUN(L)=	= 1 . 00 0			
0126		IF (GNUIM (2	NUMB))1080,1080,1078			
0127	1078	WTUN(L) = (1)	0D0+(1.0D0/24.0D0)*(1.4	38800*0NUIM(1,N1UMB)	/TEMS(L))**2	
		1)/(1.000+(UNUIM(2.NUMB)/IEMS(L	.]]**Z] 2.000*TEME(1221.4	667
0120			_NUIM(I,NIUM0/#SIN(II.430800)	300*0N01M(2;N0M6/)/(2.000*TEMS(L321 4	1001
		21	IN(2, NUMB)*31N((1.430000*	UNOTHER AND METTICE	DUFTENSTETT	
1126		4 J UTUNI = 1.43	88800×0NUIM(1.NIUM8)/1EMS	.(1.)		
0123		UTUN2=1.43	8800*UNUIM(2.NUMB)/TEMS			
0131		UETUN1=1.	0.00 + (UTUN1 + UTUN1/24, 00.0) + (UTUN1 + UTUN1/24, 00.0) + (UTUN1 + UTUN1/24, 00.0) + (UTUN1/24, 00.0) +	(7.000*(UTUN1**4)/57	60.0D0)	
0132		BETUN2=1.0)U0+(UTUN2*UTUN2/24.0D0)+	(7.0D0*(UTUN2**4)/57	(60.0D0)	
0133		SEXTUN(L) =	BETUNI/BETUN2			
0134	1080	WRORAT(L)=	RQRAT(L)*WTUN(L)			
0135		BRORAT(L)=	=RQRAT(L)*BTUN(L)			
0130		BXURAT(L)=	RURAT(L)*BEXTUN(L)			
0137	1260	WRITE(6.14	36)TEMS(L)		321	451
0138	1264	WRITE(6,14		WKALL)	321	498
0134	1404	PURMAN(51)	10 V RATIU=MASS FACTURTER	CITATION FACTOR+ZERO	-PUINI=E10.9321	409
C140	1 2 4 14	1+LH+CI0+97	/ DOX # 10 * E 10 * 7 # 10 * E 10 * 7 #	EEEP(I)	321	461
0141	15.52	CONTINUE			521	
0142	1464	FURMAT (54)	HO E RATIO=PRGUUCT FACTOR	*EXCITATION FACTOR*Z	ERO-PUINT=E132I	462
		18.9.1H*E1	4. 9/50X.1H*E18.9.1H=E18.9	•)	321	463
0143	1270	WRITE(6.14	TO MOPROB(2, N2UMB), MOPRO	B(2, NUMB)	32 I A	463
C144	1470	FURMATION	11 RATIOS OF RATIOS OF Q	S. IN THE NUMERATOR	2 IS PROBLEM321 B	463
		1 NU.18/36	H IN THE DENUMINATUR 2 IS	PROBLEM NO.18,1H./1	H0,5X11HTEMP32I C	463
		2ERATURE6X	7HQ RATIO7X,13HWIGNER TU	NNEL, 3X, 14HTUNNEL Q	RATI0,3X,11H32I U	1463
		BUELL TUNNE	EL,3X,14HTUNNEL Q RATIG,3	X, BTUN EXPAN. ,2X,	TUNNEL Q RAT321 E	463
	~	410 • • /)			321 F	403
01.0	ι ///	1111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///
0140		2L=0 SX=0 000				
0140		SX2=0.000				
0145		DO 1510 I	=1.4			
0149		SY(1)=0.00	00			
C150	1510	SXY(1)=0.0	000			
0151		DÚ 1272 La	=1,NOTEM		32 I E	JLO
0152		XL(L)=1.00	DO/TEMS(L)			

A

FORTRAN	IV G LEVEL	21	THERMO	DATE = 76247	23/04/44
0153		YL(L)=ALO	G(ABS(RQRAT(L)))		
C1 54		IF (IEMS(L).LT.3.0.0D0)CC TC 1272		
0155		x=1.000/T	EMS(L)		
0150		Y(1,L)=AL	CG(ABSIRQRAT(L)))		
0157		Y(2,L)=AL	CG(ABS(WRQRAT(L)))		
0158		Y(3,L)=AL	UG (AB S (BRORAT(L)))		
0159		Y(4,L)=AL	UG(ABS(BXQRAT(L)))		
C160		ZL = ZL + 1			
0161		SX = SX + X			
0102		SX2 = SX2 + (X * X)		
0163		00 1511 I	=1,4		
0164		SY(1)=SY(I)+Y(I,L)		
C165	1511	SXY(I)=SX	Y([)+(X*Y([,L))		
0166	1272	wRITE(6,1	472) TEMS(L),RQRAT(L),WTU	JN(L), WRQRAT(L), BTUN(L	
		1), BRGRAT(L), BEXTUN(L), BXQRAT(L)		
C167	1472	FURMATIOX	•4(F12.6,E19.9))		
0108		IF(ZL.LE.	0)GO TO 1482		
0169		UN(1M=(2L*	SX2J-(SX*SX)		
C17C		00 1512 I	=1,4		
0171		AKL=((SX2	*SY(1))-(SX*SXY(1)))/DN	MC	
0172		ARAT(1)=E	XP(ARL)		
0173		DESR=((ZL	*SXY([))-(SX*SY([)))/DN(MC	
0174		UE(I)=UES	R*1.9872D0		
C175		SUMSUY=0.	0 D0		
0176		DO 1513 L	=1,NGTEM		
0177		IF (TEMS(L	J.LT.350.JU0360 TO 1513		
C178		YLALC=DES	R*(1.0UO/TEMS(L))+ARL		
0179		YUEV(L)=Y	LALC-Y(I,L)		
0180		SUMSDY=SU	MSDY+(YDEV(L)*YDEV(L))		
C1 81	1513	CONTINUE			
0182		SUY(I)=DS	QKI(SUMSDY/(ZL-2.0D0))		
0183		SUB=SDY(I)*SORT(SX2/DNOM)		
C184		SUA(I)=EX	P(SUB+ARL)-ARAT(I)		
0185		SUDE(1)=S	DY(I) *SGRT(ZL/DNOM) *1.98	8 7 2D0	
0186	1512	CONTINUE			
0187	1481	FORMAT(/,	1X, ARRHENIUS EQUATION (COEFFICIENTS CALCULATED	D FROM THEIR TEM
		1 TEMPERAT	URE DEPENDENCE . /. 2X. PH	RE-EXP. RATIO = ,E19.9	,3(12X,E19.9),/,9X,'
		2),/,9X,'D	ELTA E =',E19.9,3(12X,E)	L9.9),/,1X, STD.DEV. LN	N(QRAT)=•,E1
		38.9,3(12X	+E19.9),/,5X,'STDEV A1//	42 =", E19.9,3(12X,E19.	•9)•/•9X•'STD
		4TDEV DE =	',E19.9,3(12X,E19.9))		
C1 ៩៩	1480	WRITE(6,1	481)(ARAT(I),I=1,4),(DE	(1), [=1,4), (SDY(1), [=1,	, 4)
		*,(SDA(I),	<pre>[=1,4],(SDDE(I),[=1,4)</pre>		
0189	1482	CONTINUE			
C190		WRITE(6,1	473)MOPROB(2,N2UMB),MOPF	ROB(2,NUMB)	
6191	1473	FURMAT (60	HO RATIOS OF RATIOS OF F	"S. IN THE NUMERATOR 2	2 IS PROBLEM
		1 NU.18/36	H IN THE DENOMINATOR 2 P	IS PROBLEM NO. 18, 1H. /1H	HOLOXILHTEMP
		2ERATURE5X	7HF RATIO)		
0192		DU 1474 L	= 1, NOTEM		
C1 5 3	1414	WRITE(6,	1475)TEMS(L),REFFR(L)		
C194	1475	FORMATLLH	7XF12.6,E22.9)		
0195		wRITE(0.1	456)RATIO		
C156		DUSSUM=DS	SUMN (N2UMB) - DSSUMN (NUMB)		
0197		WRITE(0.1	476)DDSSUM		
C198	1476	FORMAT(15	HODEL DEL NU**2=E22.9)		
C195		WRITE(6.1	580)MCPROB(1,NLUMB),MOPF	ROB (2, NUMB)	
0200	1530	FURMAT(/,	40X, TRANSITION STATE PR	ROBLEM NO. RATIO OF ',	18, 17, 16,
	:	*/)			
	0 111	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,
FCRTRAN	IV GLEVEL 21	THERMO	DATE = 16247	23/04/44	
---------	-------------------------	--	------------------------------------	--------------------------	
	C CALCULATE L	INLAR LEAST SQUARES FI	T TO K1/K2 VERSUS 1/1	ſ .	
0201	CALL LESUL	L + L + XL + YL + GUEF J			
		UAURATIC LEAST SQUARES	FIT TO KITK2 VERSUS	I/I UK KI/K2 VERSUS	
0.7.0.7		• • • • • • • • • • • • • • • • • • •			
0202	CALL LESUL	(DEACTANE ZDE	
	C RUTATIONAL	AND ANHARMUNIC CURRECT	ION TO Q RATIO TI-EA	• REACTANT ZPE	
0000		• opoles to 2221			
0203	3300 IFIRUIC.EW	NUTEN			
0204		1 + NUICH + EVD / DATE/TEME()			
0205	KUK=KUKALI XLLLmALOC	(ABC (BAB))			
0200		ADS (RUNI)			
0207	SOLL CUNTINUE	121			
0200			ANT THE CORRECTION.	()	
0209	JJUZ FURMALLEL	(2)			
0210	WINITE10.32	027 05 1901 (
0,12	4205 EUDMAT(7.1	Y. 1200 COORECTION EACT	$GR_{ROTC} = 1 - E12 - 6 - 7 + 12$		
0212	CALL LECOL	1.1. XI. VI. COFE)			
6214	CALL LESOL	2.L.XI.VI.CTEE)			
0215	DIST LEASEM EN				
0215	2221 IF(A33M+EW	1.NOTEM			
0210	RAB=DOBAT(I S & F Y D / ASS W/T FMS () S			
0219					
0210	35CL CONTINUE	(ADSTRACT)			
0220	WRITE(6.35	MZJASSM			
0221	3502 EORMAT(11	.1X. 1 ESO ELT TO REACT	ANT ZPE CORRECTION	//.IX. "REACT ANT	
	*T CORRECTI	ON EACTOR ASSM = 1.612	2.6./)		
C222	WRITE(6.32				
0223	3202 HORMAT(1X.	THE COLUMNS LABELED X	$l = 1/T \cdot Y = LN(KIE)$) AND EXP(Y) = KIE' ,/	
0225	*= K[F!./)				
0224	CALL LESOL	1.L.XL.YL.CCEF)			
0225	CALL LESQ(2.L.XL.YL.CUEF)			
0226	1084 KETURN			321 464	
0227	END			321 465	

FORTRAN	IV G LEVEL 21	LESU	DATE = 76247	23/04/44
0001 C002 0003	SUBROUTINE IMPLICIT F DIMENSION	LESQ(M,NUMBER,X,Y,C) EAL*6 (A-H,C-2) X(40),Y(40),A(11,11),E	(11),C(11),P(40)	
	L LEAST SQUA C X AND Y VAL	RES PRUGRAM LUES MUST BE PAIRED COF	RECTLY.	ТМ
	C NUMBER = AC C M=DEGREE C	TUAL # X.Y DATA PAIRS DF THE PULY.,MAX.=10		TM
	C, N≖NC - UF E	QUATIONS (=M+1)		
		OP SUMS, WHICH BECOME	COFFEE INTHE SIMULTAN	EDUS EQTINS. TM
		IR THE CONSTANT TERMS	N THE SIMULTANEOUS EU	TNS. TM
	L C=ARKAY FO	OR THE UNKNOWNS, WHICH	BECOME THE CUEFF. IN	THE POLY. TM
	C PEARRAY FI	IR THE POWERS OF THE XI	I) FROM 1 TO 2*M.	ТМ
	C ////////////////////////////////////			, , , , , , , , , , , , , , , , , , , ,
		1/////////////////////////////////////		
	C = SDT = STANCC = SDTY = STANC	NOARD DEVIATION IN THE	EXP(Y)	
	c SDA = STAN	ARD DEVIATION IN THE	REEXPONENTIAL FACTOR	A1/A2.
	L SUDL = STAN	DARD DEVIATION IN THE	ACTIVATION ENERGY DIF	FERENCES
	C/////////////////////////////////////			///////////////////////////////////////
	C CALCULATE	SUMS OF X POWERS		
0004	MX2=M¥2	M ¥ 7		TM
0005	P(1) = 0.000)		
0007	DU 23 J=1	NUMBER		TM
0008	23 P(1)=P(1)	-X(J)**I		TM
	C SUBSTITUTE	INTU MATRIX A(11,11)		I M T M
0005	N=M+1	N		TM
0011	UÚ 24 J=1	N		ТМ
C012	K=1+J-2			TM
0013	IF(K)26,20	.25		TM
0014	25 A([,J)=P()			I M T M
CO15		4 U C D		TM
0010	26 ALT 11-NUE			TM
0011	C SUM UP Y	ALUES	N	. TM
0018	B(1)=0.0D	с.		
0019	DU 21 J=1	NUMBER		I M TM
CO20	21 3(1)=3(1)			Тм
0021	B(1)=0.0D			
0023	UO 22 J=1	NUMBER		ТМ
0024	22 B(1)=B(1)	+Y(J)*X(J)**(I−1)		TM
C 0 2 5	NM1 = N-1			I M TM
CO 20	DU 300 K=	I.NMI		TM
0027				ТМ
0029	00 400 I=	KP1.N		тм
0030	AT EMP=DAB	S(A(I,K))-DABS(A(L,K))		TM
CO31	LE (ATEMP)	400,400,401		TM TM
0032	401 L=1			
0033	400 CUNTINUE	0.500.405		TM
0034	405 00 410 .1=	(•N		ТМ
0036	TEMP=A(K.	1)		TM
C037	A(K,J)=A(L.J)		TM

242

A.

FCRIRAN	IV G LEVEL	21	LESU	DATE = 16247	23/04/44
0038	410	A(L,J) = TEMP			TM
0029		ILMP=DIKI			1 H T M
0040		0(K)=0(L) 0(L)=TEMO			TM
0041	600	DIL /= 1 EMP	A)		TM
0042	500		****		ТМ
0045		ALL KIND ODD	J/ALNINI		117
0044			- N		тм
0045	2.01				тм
0040	201	A(1)-A(1)-A	(TODAD(V)		ТМ
0047	500				Тм
0048		TENMI	N 4 N J		Тм
0049	710	1-01-1-1			ТМ
0051	/10				• 1*1
0051		00 700 1-101	N		тм
0052	200				Тм
0054	700				TM
0055			UNIT ALLEL		ТМ
0055		1-1-1 1F(1)800.800	-710		TM
0057	ноо	WRITE(6.791)			•••
0058	791	FORMAT(1X. 1	FAST SOLLARES POLYN	MIN COFFETCIENTS OF T	HE EORM C1 +
0090		102*** + 03***			
0059		WRITE(6.901)	$(I \circ C (I) \circ I = I \circ N)$		
0050	u 01	EORMAT (5 (2X.	2HC(.13,2H)=.017.11	1))	
0061	,01	WRITE(6.002)	2110111312117-101111		
0061	600	E. DMAT(//.11	Y. 171.157.17**21.1	6X. TVI. 15X. TYCALCI. 13X.	1DEVY1-13X-1E
0002	702	** P (V) ! 1 2 Y . !	DEVEX D4./)		Berr (125k) E
0063		DEVS0=0.000			
0064		02730-0.000			
0004					
0066					
0067		00 000 N(=1.	NUMBER		
0001		VICALC=0.000	NONDER	t.	
0000		DO 589 1=1.N			
0070	нно			1 1 1	
0070		DEVY=VINCI-Y			
0072		DYS0=0YS0+(0	EVY*DEVY)		
0073		XS0=X(NC)*X(
0074			NCII		
0075			EXPLATENCE		
0075			(DEXPV#DEXPV)		
0070		WRITE(6.904)	X(NC) + XSQ + Y (NC) - YT	CALC.DEVY.EXPY.DEXPY	
0078	404	600MAT (28.71	n18.101		
0070	704				
0090			N()		
0081	9.00		ne /		
0087	300	LEINIMBER IT	3 10 FTHEN		
0082					
0005			SUMSOX)- SUMX SO		
0004	6	CALCULATE STA	NDARD DEVIATIONS		
6085	U U	SUNAUS LUN	SU/(NUMBER-21)		
0086			EYSO/(NUMBER-21)		
0000		WRITE(6.903)	SOY, SOEV		
0051	0.63		STD. DEV. IN V -1.	D18.10.20X. ISTD. DEV. 1	$N = EXP(Y) = P_0 D B_1 D$
0000	963	*18.10.777	STD. DEV. IN F	510110720A4 3104 0144 1	
C0 - C		-10+10+1111	TISUNSCYADAM		
0000		500-301+03WK	1+5083-DEXP(((1))		
0090			NT (NUMBER / DAMANA)	87200	
0031		2005-201-026		01200	

, e

FORTRAN	١v	ů	LI	VEL	21	LESQ	DATE =	76247	23/04/44
0092					WRITE	6 • 9 10) SDA+ SDDE			
C053				910	FORMAT	(/,1X, SDA=*,1PU18.10,20X,	•SDDE= •, 1PD18	.10)	
0094					WRITE(6.9051 SUMSQX, SUMXSQ, DNM			
0095				905	FURMAT	(/,1X, 'SUM(X**2)=',D18.10,	5X .* (SUMX) **2	2 = ',D1a	3.10,5X, N*SUM(
					X+2)-	(SUMX) **2 = ,D18.10,//)			
0096					RETURN				
0097					END				

VITA 2

Terry Don Marriott

Candidate for the Degree of

Doctor of Philosophy

Thesis: KINETIC ISOTOPE EFFECTS IN THE $CH_4 + H \stackrel{\rightarrow}{\leftarrow} CH_3 + H_2$ SYSTEM. PREDICTIONS OF THE LMR SIX-BODY POTENTIAL-ENERGY REACTION HYPERSURFACE

Major Field: Chemistry

Biographical:

- Personal Data: Born in Watonga, Oklahoma, on November 7, 1943, the son of Mr. and Mrs. D. L. Marriott, Watonga, Oklahoma.
- Education: Graduated from Watonga High School, Watonga, Oklahoma, in May, 1962; received Bachelor of Science degree from Oklahoma State University, Stillwater, Oklahoma in May, 1969, with a major in Chemistry; completed requirements for the Doctor of Philosophy degree at Oklahoma State University, December, 1976.
- Professional Experience: Summer Trainee, Kerr McGee Research Center, Oklahoma City, Oklahoma, 1969; Graduate Teaching Assistant, Oklahoma State University, 1969-75; Oklahoma State University Graduate College Summer Research Awardee, 1971; Oklahoma State University Chemistry Department Special Summer Appointment, 1975; ERDA Research Associate, spring 1976.

Membership in Honorary and Professional Societies: Member of Phi Lambda Upsilon, Honorary Chemical Society.