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CHAPTER I
" INTRODUCTION

Within the limits of the Born-Oppenheimer approximation, the
equilibrium molecular configurétion and the hypersurface expressing the
electronic potential energy for nuclear motion as a function of inter-
nuclear coordinates are independent of isotopic substitution. However,
the kinetics of nuclear motion on the potential-energy surface are
affected by isotopic substitution. This phenomenon leads to isotope
effects on equilibria and rates of chemical reactions. Since kinetic
isotope effects (KIEs) cén be treated within the framework of
transition-state (absolute rate) theory,1 experimental kinetic isotope
effects can be either predicted from or used to extract information
about the potential-energy reaction hypersurface. This research is
concerned with experimental and theoretically calculated KIEs in the

following reactions.

CH4 + H- > CH3- + H2 (1I--1)

CH3’ + H2 -> CH4 + H- (1-2)

The purpose of this theoretical investigation is two-fold. First, it
serves to test in part the usefulness of the IMR six-body potential-
energy surface (LMR-PES) for the thermal reactions (I-1) and (I-—2).2

In this regard the agreement between experimental and theoretical KIEs,



if the former values are assumed to be accurate, provides information
concerning the accuracy of the curvature of the potential-energy
surf§ce for motion both parallel and perpendicular to the reaction
coordinate. Second, these isotope effects wereused to assess thevalidity
of anumber of the qualitative interpretations of KIEs develoﬁed in physical
organic chemistry. It ‘should be pointed out that this research is meant to
augment the extensive theoretical studies of KIEs on model sysfems3
and/or the deduction of transition-state parameters from experimental

36,3h,4

KIEs. Klein has most recently published a literature review of

current isotope-effect publications. '
The KIEs for various labelled reactants in equations (I-1) and

(I-2) were computed within the framework of absolute-reaction-rate

theory. The exact equations are expressed in equations (I-3) and (I-4)

using the simplified notation of Wolfsberg and Stern,3 >~ where
k1 S29’1=|=
KIE = T ) = (MMI) (EXC) (ZPE) (1-3)
2 slSZT
oy SZSl+ "1L+
KIE = = +> = 3 (VP) (EXC) (ZPE) (I-4)
2 1515, VoL

1

SZS

kl/k

2 > is the ratio of

is the isotopic rate constant ratio and<
s

$1°%2 .

symmetry numbers associated with the isotopic configurations. MMI is

the mass moment of inertia term composed of the molecular weights, Mj’

,I_ and I , about the three principal axes

Ay" By i
of the labelled and unlabelled reactants and transition states, see

and the moments of inertia, I



equation (I—-S).7 The vibrational excitation term, EXC, and the zero

(I-5)

point energy term, ZPE, are given by (I;6) and (I-7), respectively,

3,-6 1- exp(—uli)

I - -
o1 1 - exp( UZi)
EXC = + (1-6)
37-7 1 - exp(-u +,)
ng 13
ot
i=1 - -
1 - exp( u21)
[ 3,-6
exp i;Zl(uli-—uZi)/z
ZPE = — + + + (I-7)
31-7 :
exp ny (uli “21)/2 }
i=1
where uji ='hcvji/kT; h is Planck's constant; c is the velocity of

light; k is Boltzmann's constant; T is the temperature in °K; and

vji is the ith normal mode frequency in cm—1 for the jth isotopic

species.7 By the Teller-Redlich product theorem, MMI can be equated

ot oot

L/Vor» Vqp and

to the vibrational product term, VP, times the ratio vl

vzi are the imaginary frequencies representing motion of the light and

heavy isotopic species, respectively,valong the reaction coordinate



in the transition-state configuration, see (I-8).8 Therefore,

3,-6
by gy
MMI = vlL/vZL VP = vlL/vZL 3+_7 T (1-8)
Ny vy /ugy
1=1

equations (I-3) and (I-4) are completely equivalent.

The normal mode frequencies and the moments of inertia for the
variously labelled species were calculated using force constants and
geometries computed from the IMR-PES in the Wolfsberg-Stern modifica-
tion of the Schachtschneider (WMS) normal mode frequency computer
program.9 In this way, the theoretically calculated KIEs are expressed
as a function of the LMR-PES.

In the reaction represented by (I-1), quasiclassical-trajectory
analysis has shown that the LMR-PES reasonably reproduces the isotopic
yield ratio (HT/CHa)/(DT/CDA) obtained by Chou and Rowland using
translationally hot (2.8 eV) tritium atoms.lO Chou and Rowland report
a value for the yield ratio isotope effect (HT/CHa)/(DT/CDA) of 1.4310
compared to the computed value of 1.18.2 This agreement indicates
that the IMR-PES predicted relative isotopic reaction cross sections
are reasonably accurate.

The high temperature limit for KIEs calculated using transition-
state theory corresponds' to v:+/v:% 1

AL 2L
energy contained by the tritium atoms used in the LMR-PES trajectory

The 2.8 eV of translational

analysis computation of the isotopic yield ratio (HT/CHA)/(DT/CDa)
corresponds to an ideal gas temperature of approximately 22,000°K.

These high—enefgy tritium atoms collide with room temperature (~300°K



or approximately stationary relative to the tritium atoms) isotopic
methane molecules. Even though the tritium atoms translational energies
will be moderated to some extent prior to their reactions with methane,
their energy distribution will not be Boltzmann. However, as a first
approximation translationally hot tritium atoms might exhibit an

isotope effect similar to thé‘KIE for the reactions represented by

(I-9) and (I-10) at high temperature.

CH, + T+ > CH," + HI | (1-9)

¢b, + T- - CDh,- + DT (1I-10)

Comparison of the viilvgi ratio for (I-9) and (I-10) to the isotopic
yield ratio (HT/CH4)/(DT/CD4) is discussed in Chapter III.

Abstraction is the only reaction observed between thermalized
hydrogen atoms and thermalized methane molecules, see (I-1). However,

translationally hot hydrogen (tritium) atoms also react with methane

via substitution as shown in (I-11).

*
CH4 + T - CH3T + H- (I-11)

* . P 10 .
where T represents a translationally hot tritium atom. Since

transition-state theory assumes a Maxwellian distribution of atom and

molecule energies, it is only applicable to computation of KIEs for

reactions that occur at thermal energies, for example (I-1) and (I-2).
Kurylo, Hollinden and Timmons have investigated the temperature

dependence of the hydrogen (deuterium) atom abstraction from methane.12

CH4 + D- > CH3- + HD (1-12)



The isotopic reactions, see (I-1) and (I-12), were run independently
and monitored by following the hydrogen or deuterium atom decay with
ESR spectroscopy as a function of flow rate and distance down the fast
flow reactor tube. Equation (I-13) gives the experimentally observed

temperature dependence of kH/kD which corresponds to a value of
ky/ky = 1.38 exp[(-500 + 150)/RT] (1-13)

12 Analysis of the data is complicated by the

kH/kD = 0.762 at 424°K.
fact that the deuterium atoms react at a measurable rate with the
product CH

radicals to give CH,D and H atoms as well as abstracting H

3 2
12

from methane; see equations (I-14) and (I-12).

CH3- + D- > CHZD- + H- (1-14)

Due to the error introduced into the experimental determination of the
rate constant for (I-12) by (I-14), Kurylo, Hollinden and Timmons found
it necessary to approximate the preexponential factor, 1.38, in (I-13)
using a simple collision theory calculation.12

Kurylo, Hollinden and Timmons compared their experimental results
to KIEs calculated using London-Eyring-Polanyi-Sato (LEPS) and bond-
energy-bond-order (BEBO) potential-energy surfaces using a computa-
tional approach developed by Weston.3 These results are compared to
the corresponding transition-state theory computations on the LMR-PES.

The experimental KIEs for the variously isotopically labelled
reactants in equation (I-2) are given in Table I. Table II gives the

temperature dependences of these results. The different KIEs in

Tables I and II are designated according to the isotopic ratio of the



TABLE I

EXPERIMENTAL KIEs

Isotopic Rate Temperature
Constant Ratio °K k1/k2 Source
K(CH, H) 296 2.12 a
—3 2 399 4.80 b
k(CHjs D)) 403 4.79 c
403 5.50 d
k(CD,, H,) 296 0.465 a
3 2 402 3.33 b
k(CDg, D)) 403 2.98 c
403 4.11 d
\
f e
k(CH,, HD) 296 6.37 a
3 403 2.33 c
k(CH,, DH) 467 2.08 b
£
k(CD,, HD) 402 1.81 b
K@, D0 402 1.76 c

3See Reference 13.

bSee Reference 14.

€See Reference 15.

dSee Reference 16.

eTing and Weston state that this value is probably excessively high due
to the effect of the high HD pressures required for the hot methyl

radical reaction. See Reference 13.

fThe atom underlined is the one being abstracted by the methyl group.



TABLE II

TEMPERATURE DEPENDENCE OF EXPERIMENTAL KIEs

AE / Temperature
KIE A1/A2 cal./mole Range °K Source
k(CHB, Hz) 0.911 1327 399-645 b
m-)- 0.194 1760 403-564e (]
3’ "2 0.246 2516 408-571¢ d
1100 409-591 e
k(CD3, HZ) 1.592 588 402-611 b
m 3.724 -201 410-572€ c
3’ "2 1.727 701 407-570® d
k(CH3, ED) 0.283 1929 467-651 b
m 0.452 1350 408-569 c
k(CD,, HD) 0.932 546 402-611 b
[ — / -
k(CD3, DH) 1.73 0 410-572 ¢

8K1Es were fit to the Arrhenius equation of the form 1n(k1/k2) =
1n(A1/Ap) + AE/RT.

bSee Reference 14.

Csee Reference 15.

dSee Reference 16.

®Davison and Burton assumed a steric factor of S1/S7 =1 in their calcu-
lation of AE from their data. See Reference 17.

fSince Whittle and Steacie and Majury and Steacie did not run ,
simultaneous isotopic reactions the temperatures indicate the smallest

range encompassing both isotopic reactions.



corresponding reactants. For example, the KIE designated k(CD3, HD)/

k(CD3, DH) refers to the kl/k2 rate constant ratio for the reactions

represented by equation (I-15) and (I-16).

o

CD, + HD —— CD.H + D (I-15)
ko

CD, + DH ——» CD,D + H (I-16)

Theoretical KIEs were computed for.a comparison to the experimental
values in Tables I and II and are discussed relative to each other in
Chapter III.
. 13 .
Except 1n the studies done by Ting and Weston, methyl radicals

were generated by photolysis of acetone or acetone-d
14,15,16,17

using a mercury-

6

vapor lamp. The intensity of the 253.7 nm radiation was

minimized in order to reduce the mercury sensitized decomposition and

14,15,16,17

scrambling of isotopic reactants. Only a small percentage

of the initial acetone was photolyzéd (Shapiro and Weston,14 1-27%;
Whittle and Steacie,15 < 5%3 Majury and Steacie,16 < 10%) in order to
reduce the occurrence of secondary reactions of methyl radicals with
the product methanes. The experimental KIE rate constant ratios in
Table I were calculated in terms of the initial concentrations of the
isotopic reactants, molecular hydrogen and acetone,13b and the final
concentrations of the products, methanele17 and ethane.ls’16

Shapiro and Weston used competitive techniques to determine the KIEs
for CH3 and CD3 abstraction from HZ/DZ mixtures.14 Majury and
Steacie16 and Whittle and Steaéie15 determined these KIEs by measuring

the individual rate constants. As seen in Table I, the Shapiro values

appear to agree reasonably well with those of Whittle and Steacie.
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However, the temperature dependence data in Table IT show that the
agreement is somewhat fortuitous. Due to the effect of identical iso-
topic reaction conditions the KiEs determined by competitive techniques
should be the more accurate over the temperature range reporfed, other
factors being equal. Indeed'the ensemble of experimental data is con-
tradictory in nature and indicates the necessity for precise evaluation
of the status of experimental procedures.

Shapiro and Weston used LEPS and BEBO methods together with their
experimental results in an attempt to deduce the transition-state geo-
metry and force constants for reaction (I—2).14 One deficiency in the
LEPS and BEBO functions is that they donot include valence bending force
constants betwéen the honreacfing methyl hydrogens and between the nonreact-

|
ing methyl hydrogens and the hydrogen being abstracted. Therefore, Shapiro
and Weston used bending force constants from spectroscopic methane data for
the HCH bending coordinates not directly associated with the reaction coor-
dinate motion. 14 These authors investigated the dependence of the KIEs on

the assumed magnitudes of the HCH valence bending force constants, F,, asso-

B
clated with the partially formed C-Hbond in the transition state. 14 The re-
sults from these calculations are discussed in detail in Chapter ITI. How-
ever, it is worthnoting that a self-consistent set of transition-state
parameters cannot be deduced from the various isotope effects measured for
reaction (I-2). It can be seen in Tables I and II that there is con-
siderable difference between the corresponding CH3 and CD3 KIE results.
This difference musé be associated with the transition state force con-
stants. By adjusting the HCH bending force constant in the transition

state, Shapiro and Weston could approximately fit either the CH3 or

the CD3 KIE results, but not both.
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Ting and Weston generated hot methyl radicals by photolyzing CH _Br

3
and CD3Br with 185 nm light.13 The KIE determined for reaction of hot

CH3 with H2 or D2 was normal (kH/kD = 2.12) while the corresponding

KIE for CD3 was inverse (kH/kD = 0.465); see Table I. Ting and Weston
attempted to explain these unusual results using activated-complex
theory to calculate the average cross sections for reaction as a func-

tion of total energy. The resultant KIEé, k(CHB’ Hz)/k(CH D2) = 1.30

3’
and k(CDB, HZ)/k(CDB’ D2) = 1.79, are not close to the experimental
values.13 Chapman and Bunker18 calculated relative cross sections for
reaction of both CH3 and CD3 with H2 and D2, that is, o(CHB, HZ)/

o(CH,, D,) = 1.84 and o(CD,, H,)/o(CD,, D) = 0.70, which correlate
3 2 3 2 2 N

3’
Lo . . 13 s .
with Ting and Weston's experimental isotope effects. The signi-
ficance of this result is not clear since a cross section ratio is not
the same measured or calculated quantity as a KIE. These isotope
effects were indicated to occur only for ground state vibrational energy
hnthemethylradical.l8 However, the Chapman and Bunker results show
that vibrational excitation of H2(D2) tended to preserve this unusual

isotope effect and enhance the reaction rates. This enhancement of

reaction rates is in agreement with the experimental data of Sims and

others for reactions of halogen atoms with H2.19
The transition-state configuration for reactions (I-1) and (I-2) is

treated as being linear along the two bonds directly involved in the hydrogen

transfer reactions, see (I-17), where r+ is the C-H, bondlength,

1 1
r r
1 2 _ _
CHy. v Hy. v H, (1-17)

r+ is the H —H2 bond length and r+ and r+ are collinear. If the CH

2 1 1 2 3
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moiety is treated as a point group, then there are four normal mode

frequencies associated with the linear configuration (I-17); Vg is the

symmetric stretching frequency, v, is the imaginary asymmetric stretch-

L
ing frequency representing translational motion along the reaction
coordinate and VB corresponds to the doubly degenerate linear bending
frequency. Theoretical treatments of the linear three-center transi-
tion-state configuration have often neglected the linear-bending
frequencies on the assumption that the sum of the two frequencies
compensates for the loss in reactant-state bending frequencies. (That
is, in passing from the reactant state to the activated complex no net
change in vibrational energy due to the normal vibrational bending
modes is associated with the H(D) being transferred.) This allowed the
isotope effect to be rationalized as a result of the normal mode
stretching vibrations VS and V. The transition state harmonic

potential energy expression for this simplified configuration is given

in (I-18),

(1-18)

+
! IArz

| t +  F 7
2V = flAr1 + szrz + 2f12Ar

where fl and f2 are the stretching force constants associated with r

and Ty respectively, f

1

12 is the stretching interaction force constant,

and Arl and Ar2 are deviations from the equilibrium values for Ty and

s respectivelyuzoBigeleisenzo and Willi and Wolfsberg21 have shown

that the primary hydrogen (déuterium) KIE is a maximum for a symmetric

1 T, 1 i

transition-state configuration where r1 = r2 and fl = f2 when vy = 0.
(That is, the PES is flat at the top of the barrier along the reaction
coordinate.) However, Willi and Wolfsberg have demonstrated that if

vi, has an imaginary value then the transition-state bond orders can be
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very unequal and still yield a KIE value that is almost identical to
the KIE calculated for the symmetric transition-state configuration.2
This shows that knowledge of the temperature independent factor,

W

ViL is really essential in determining the transition-state

Vor?
configuration. Thus, insight into the transition-~state bonding and
geometry requires comparison of vlL/VZL ratios and KIEs calculated
from a complete and reasonably’accurate potential-energy surfaée with
experimental KIEs and their temperature dependency data.

The approximation of neglecting all bending frequencies associated
with the isotopic atom being transferred in a reaction proceeding via
a linear three-center activated .complex may have some validity at
least in certain instances. KfeSge and Chiang determined a KIE for a
proton transfer reaction involving the hydrolysis of ethyl vinylether
by HF (or DF). These reactions assumably proceed through a linear
transition-state configuration.22 The magnitude of this KIE was con-
siderably less than the value expected. Kresge and Chiang attributed
the low KIE to the existence of a doubly degenerage linear-bending
frequency in the transition-state configuration which tends to compen-
sate for the loss in the HF (DF) stretching vibration. The magnitude
of the bending vibration necessary to cause the observed lowering of
the KIE was aboutllOOcm_l.22 Kresge and Chiang noted that since
1100 Cm—l is not very different from HCX bending frequencies in many
molecules this could account for the reasonable success in predicting
maximum KIEs with neglect of‘the bending frequencies associated with
the atom being transferred in the activated complex.22 A semi-

quantitative estimate of the effect on the KIEs of the C-H-H linear

bend in the six-body transition-state configuration, CH3—H—H, was
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-made on the basis of a normal mode frequency analysis using force
constants obtained from the LMR-PES. This normal mode frequency
analysis allowed an estimate of the inaccuracy that would be
‘incurred by neglecting bending frequencies in the calculation of
KIEs for (I-1) and (I-2).

The Swain-Schaad relationship, see (I-19), provides a simple

method of relating primary deuterium and tritium KIEs.23 The

ke /Ky = (kH/kD)l'442 (1-19)

Swain-Schaad relationship takes advantage of the fact that at low
temperatures primary hydrogen isotope effects principally reflect
changes in the zero-point energy associated with the hydrogen
(deuterium or tritium) being transferred in passing from the reactant
state to the transition‘state. The assumptions basic to the Swain-
Schaad relationship are as follows. First, in a reaction like (I-1)
the isotopic H being transferred is bonded to a polyatomic and
relatively heavy molecular entity. Thus, as a reasonable first approx-
imation isotopic substitution affects only the harmonic frequencies
associated with the bond to the isotopically substituted atom. Second,
no tunneling is assumed to occur.23 Consequently, the KIE is
effectively equated to the ZPE term, see (I-7), involving only the
vibrations associated with the H being transferred. For high temper-
atures Swaln and others included a vibrational excitation correction
factor, o, based on the temperature dependency of EXC, see (I-6), such

that I /K = u(kH/kD)1°442.23
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Bigeleisen, using a more complete transition-state theory
approach, predicted a range of 1.33 £ r £ 1.58 for the relative
deuterium to tritium KIEs where r is defined by (I-20) and r = 1.442 is

1n (g /)

r = ~15?E;7E;y— (I-20)
equivalent to the Swain-Schaad equation (I—19).24 Stern and Vogel
calculated the temperature dependences for r in a large number of model
calculations and agreed with Bigeleisen's observation that an experi-
mental value for r lower than 1.33 would be evidence for the existence
of tunneling provided that the isotope effects are large primary (or
mixed secondary-primary) normal individual isotope effects exhibiting
a monotonic temperature dependence.25 However, in a more recent paper
Stern and Weston found that there was no direct general correlation
between the magnitude of r and the extent of tunneling.

In this research values of r as a function of temperature were
obtained from the calculated KIEs for reaction (I-1) relative to

(I-21) and (I-22). Correspondingly similar calculations of r were also

CH, + D(T) » CH_, + HD(HT) (1-21)

4 3

CH3D(T) + H- > CH, + DH(TH) (1-22)

3

made for the isotopic reactions of equation (I-2). These values are
discussed in Chapter III.

A relationship similar to the Swain-Schaad equation has been
developed for relating carbon-13 and carbon-14 KIEs. This

relationship was tested relative to the transition-state theory
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calculated KIEs in a manner similar to that used for the tritium-—
deuterium relationship.

Bigeleisen has developed equations for relating, Sz/Slf(%)’ the
vibrational partition function ratios of isotopically substituted
molecules which are commonly referred to as the rule of the geometric
mean (RGM).27 These equations were developed from the relationship
between the vibrational frequency sum rules of Decius and Wilson27C

and the approximation of the Bigeleisen Szlslf(%) factor by the

truncated expansion in powers of ui, see (I-23), where ui is as

ln[Sz/Slf(l)] = 1/24 i ufy T Uy (1-23)

previously defined, see (I-7), and 82/81 is the symmetry number ratio.7b

Equation (I-23) is the first-order approximation to the exact equation

for Sz/Slf(%), see (I-24), and is valid at sufficiently high tempera-

) .
8,/8£(p) =T (1-24)

ture that Uli<<2H. The sum-rule relationships between isotopically
different Sz/Slf(%) values approximated by (I-23) require the
involvement of three or more different isotopic molecular species.27C

Bigeleisen has given a general expression for higher order approxima-

tions to Sz/Slf(%), see (I-25), where the B's are Bernoulli numbers
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2,
3n-6 m B Su J
20y _ oy JHL 23-1 i _
1n(52/slf(l)) T -E (-1) 230250 (1-25)
i j=1
1 1 1 27b

(B1=%> B3730 » B5 Ty > et cetera), and fuy =y, —uy, for vy, <2l

Bigeleisen has stated that systems that obey sum rules through the order

m will obey the RGM through the order of Guim.27b Some examples of RGM

relationships given by Bigeleisen are exhibited in (I-26) through

(1-28).%7P
CH.D CHD
22,3 _ 3
[Sz/Slf(CH S Y]1” = sz/slf(Eﬁ—— (I-26)
3 4
CHD, 4 cD,
[SZ/Slf(CH p 1 = Sz/slf(Eﬁ—ﬁ° (1-27)
272 3
CHD, cD,
[Sz/Slf (*éﬁ;ﬁ)] = SZ/Slf —éﬁ_l: (1-28)

The Bigeleisen Sz/Slf factors are also defined in terms of equation

(I-29), where VP-EXC-ZPE are as previously defined, see (I—l+).7 Using

s_/s.£(2)

271 1
t,.1.4.2
s, /s1 f (1)

= VP-EXC-ZPE (1-29)

(I-29), calculations similar to (I-26) through (I-28) were done using
the normal mode frequencies obtained from the LMR-PES, see (1—30)

through (I-33). The results of these relationships are discussed in

Chapter TIII.
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CH 4D 3 CHD
sz/slf(EﬁZ—ﬁ ] SZ/slf(EﬁZ—)
t o Tt CH,D-Hi-H J i o4 d CD,-H-H (1-30)
Sy /Sl f (Eﬁ;:ﬁ:ﬁ"? s, /sl £ (CH3_H_H)
CH,D CH.D
35 2 279
sz/slf(CH4 ) sz/slf( a, )
- (1-31)
Pk PN T
CH,D . ,
Sz/slf(———CH3 ) i S‘Z/Slf(—c’ﬁ;)
bt S 4 g g O
LS, /s1 f (CHB—H—H ). s, /Sl f (m)
CH D , ci,
S?_/Slf(*“‘—CH ) vSZ/Slf(EI-I——)
o4 +3CH o T +3can HoH (1-33)
_2 = CHD,-H-H
S, /5) f (CH3_H_H ) s, /s'f (CHB_H_H )



CHAPTER II
COMPUTATIONAL PROCEDURES
Calculation of Force Constants and Geometries
General

The applicafion of transition-state theory to the calculation of
kinetic isotope effects for reactions (I-1) and (I-2) by equations
(I-3) and (I-4) requires the normal-mode vibrational frequencies
assoclated with the isotopic reactant and transition-state molecular
gspecies. Calculation of these normal mode frequencies requires the
force constant description of the bonding in the various molecular
species and the associated geometry and atomic masses. The harmonic
force-constant description is calculated as the second derivative of
the internal energy of a molecular species with respect to an

internal coordinate motion.28 For example, molecular hydrogen, H

2’
has the bond stretching internal coordinate defined by ry. If V is
the internal potential function for HZ’ then the force constant FH is

2
given by 2 Z . The normal-mode frequency for this simple

BrH

" W) eq

| Fu.1/2
molecule is calculated by vH = Zn(;—) , where My is the reduced mass
H

of the H, molecule. Normal-mode frequencies for large molecular species

2
are calculated using the’WMS program method described in Appendix B.9

19
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Description of the IMR-PES

The LMR-PES is defined as a sum of three-body interactions plus

harmonic bond-bond interactions, where the three-body terms,

= + +
V(Ri,ej) T(r1’r53r6) T(r23r53r7) T(r39r5:r8)
6 (II-1)
1 or 2
+ T(r4,r5,r9) +_E-'E kj(e, - ej)
j=1
. [} 2
T(rAB’rAC’rBC)’ and the harmonic bond-bond terms k.j(ej ej) are

defined in terms of the LMR-PES internal coordinates shown in Figure 1
and/or designated in Table III. Values of the internal coordinates for

the CH4 + H and CH3 + Hz‘reactant states are also presented in Table

!
III. Each of the three-body terms in equation (II-1) are defined in

terms of the interaction energies between the two atoms in the

diatomic pairs represented by the interatomic distances T rj, and rk,

Tlrisrpr) = Qp + Q0 + Qg
(II-2a)
2 2 2.1/2
1/2[Q,g = JIge) + e = Jap) + Uge = I ]
1 3
Qg = [ Epe ™t Eae]/2 (11-2b)
...1 _3 -
JaB = [ EaB EaB]/Z (II-2c)

where lE “and 3Ea

of B

respectively, for each aB diatomic system. The singlet state energy is

are the singlet and triplet state energies,

represented by a Morse function, see(II-3), where rn is the interatomic
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X

Figure 1. Interatomic Distances Used in the LMR-
PES



TABLE ITI

IMR~PES AND VALENCE INTERNAL COORDINATES
DESIGNATIONS AND VALUES FOR REACTANTS

22

Atoms in LMR-PES

Equilibrium Values and Valence
Coordinate Designation Coordinates Designations for
CH, + H CH, + H
4 2
Value® Coordinateb Value® Coordinateb
CHl r; 2.0673 R1 20.0000
CH2 r, 2.0673 R2 2.0673 R1
CH3 ry 2.0673 R3 2.0673 R2
CH4 r, 2.0673 R_,+ 2.0673 R3
CH6 re 1002.0673 21.4020
‘ c
H1H6 re 1000.0000 1.4020 Rl
H2H6 r, 1002.7583 21.5016
H3H6 rg 1002.7583 21.5016
H4H6 T, 1002.7583 21.5016
H1CH2 61 109.4712 ¢l 90
H1CH3 62 109.4712 ¢2 90
HlCH4 63 109.4712 ¢3 90
HZCH3 64 109.4712 ¢4 120 ¢1
H2CH4 65 109.4712 ¢5 120 ¢2
H3CH4 66 109.4712 ¢6 120 ¢3

2Bond lengths and interatomic distances in atomic units and bond angles

are in degrees.

bOut—of—plane bending valence coordinate for CH3 is not defined by the

IMR-PES.

cSpecifies the vibrational motion of H2'
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lEaB = D[exp{—Za(rn - re)} - 2exp{—0L(rn - re)}] (I1-3)

distance between one of the nine 0B diatomic pairs in Table III, re is
the equilibrium af bond distance, ﬁ is the bond dissociation energy
plus the zero-point energy, and o ié the exponential Morse parameter.
As shown in equation (II-4), the triplet state energy is given by a

B2, = PDlexp(-28(x, - r )} + 2exp{-8(, - £ )}] (11-4)

%
similar functional representation for the condition that all r Sro.

* *
If r > r then BEG is represented by (II-5). Thus, r is the

B

3 2 ; _
EaB = C[rn + A]exp(orn) (II-5)

changeover point between the functional forms (II-4) and (II-5). Values
for the triplet state parameters in (II-4) and (II-5) are given in

Table IV. These parameters were empirically determined by a procedure

previously described by Raff and coworkers.z’29 The harmonic bond-bond
6
interaction terms, 1/2 jélkj(ej—eg)z, are a function of the six HCH

angles described in Table III,‘where the eg are the angles character-
istic of the equilibrium moiecular configuration and the Gj and kj are
the angles and bending force constants, respectively, for a specified
molecular configuration. The force constant values are determined by

(11'6) ’

=
|

o
.= ko f(r, o osT YE(r o oTy
37 3 e-H TH ST o-H ) TH H ) (11-6)

L

with i = 1,2,3,4, % 1,2,3,4 and 2+i. The equilibrium bending force
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TABLE IV

LMR-PES PARAMETERS

Diatomic Pair

Parameter C-H c-H'2 H-H
pP 4.5808 1.1452 4.7466
o 0.98058 0.98058 1.04435
red 2.0673 2.0673 1.402
Deb 1.63 0.4075 1.9668
B¢ 0.60 0.60 "1.000122
cP 3675.92 918.98 25.55301785 .
Al ~2.360263 -2.360263 1.0
o© 2.296479 2.296479 1.6756385
*d 3.0 3.0 1.6
ale 0.8999975
aze 0.448035
a3e 0.606528
a4e 3.239921
ase 0.080768

aCorresponds to the two atoms describing ro in Table TII.

bIn units of eiectron volts (eV).

¢In (atomic units (a.u.))—l. \

In a.u.

“In (a.u.)_z.
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constant k; equals 3.4436 eV/rad.2 Each f(r 6) term is a

c-H’"H-H
function of one of the C-H bonds defining the angle 9j and the

corresponding interatomic distance between the hydrogen bonded to the

carbon and the abstracting hydrogen, H,. The form of the f(r ,T )
. 6 C-H H—H6
function was determined by a nonlinear least squares fit to INDO
calculated results as given by (II-7),
N _ o _ _ _ _ 2 _
f(rC_H,rH_H6) = ki/ki = Alexp{ AZ[rC—H re(C H) ]} (I1-7a)
A, = 1.0 - exp(-a,r 2 ) (II-7b)
1 1 H—H6
. _ : 9
= + - - — -
A2 a, a3exp{ ei4[rH_H6 re(H H) 17} (II-7¢)

where the coefficients Al’ A2, al,«az, a3, and a4 were all determined by
nonlinear least squares procedures and re(C—H)in.(II—7a)andAre(H-H)in
(I'T-7¢) refer to the equilibrium C-H and H-H bond lengths, respectively. 2 The
equilibrium frontside angles, Gf(f=1,2,3), are determined by the

functional relationship given by (I1II-8),

ef = T—as[r+fré(C—H)], (r+ < 6.274 a.u.) (1I-8a)

02 = 90°, (r' > 6.274 a.u.) (11-8b)

where T is the tetrahedral angle in radians, and a_. and the value 6.274

5

were determined from INDO computational results. The longest C-H bond
length in the five atom CH4 methane configuration is designated as r+

+
(in the transition state r ==r1), and re is the equilibrium C-H bond
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length. The equilibrium backside angles, Gb(b=4,5,6), are functions of

the frontside angles, see (II-9). The values of the constants used in

6; = arcos(l.O—l.Ssinzeg) (11-9)

the LMR-PES function calculations are given in Table IV. It should be
noted that the energy parameters, D, D3, and C, for the C-H' values are
25 percent of the C-H values because the C-H' interaction is counted

once in each of the four three-body terms in (II-1).

Reactant and Product Geometries and Coordinates

The general six—atom configuration is given by Figure 1. Table III
compares the LMR-PES internal coordinate designations and geometry
values for the reactants and products in equations (I-1) and (I-2) to
the corresponding internal valence coordinates designations for which
force constants are calculated. The two-atom internal valence
coordinate designations describe bond stretching vibrational motion and
the three-atom designations describe bond bending vibrational motion.

It should be noted that in Table IIT the internal valence coordinates
for the reactants and products aré direct functions of the corresponding
LMR-PES internal coordinates except for the out-of-plane bending
valence coordinate which is not defined by the functional form of the

IMR-PES. By equation (II-8), the LMR-PES predicts a planar CH_ geometry.

3

However, by (II-6) and (II-7) when CH, is planar then the kj(j=l,2,3)

3

~ force constant terms in the LMR-PES which describe the out-of-plane

bending motion in CH, are effectively zero. For this reason the calcu-

3

lation of the out-of-plane bending force constant value is handled

separately from the LMR-PES force constant calculations which follow.
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Transition-State Geometry and Coordinates

The transition—-state geometry values are given in Table V for the
IMR-PES coordinates. Unlike the reactants and products coordinates,
all of the transition-state LMR-PES coordinates contribute significantly
to the calculated energy. Therefore, since not all the LMR-PES
coordinates correspond to a valence coordinate, the valence coordinates
were expressed as a function of the appropriate LMR-PES coordinates
involved in each internal valence coordinéte designation. Force
constants were calculate& with respect to these designated intermnal
valence coordinates.

The transition-state geometry values in Table V were obtained by
scanning the IMR-PES for the top of the barrier along the reaction
coordinate. The coordinates r., and r,6 were initialized at values

1 6

greater and less than their corresponding equilibrium values from

-

Table IV, respectively. The r, coordinate is then decremented 100

times (or until a minimum energy is found) at eéch r6 incremented coor-
dinate value. These minimum energy configurations describe the
reaction coordinate for reactions (I-1) and (I-2). The maximum energy
along the reaction coordinate corresponds to the-top of the barrier.
The barrier height energy is obtained by subtracting the reactant

CH4 + H internal energy from the configuration energy at the top of the

barrier. Table VI shows the results of a consecutive series of con-

current scans of the IMR-PES to find the top of the barrier.
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LMR-PES AND VALENCE INTERNAL COORDINATES DESIGNATIONS
AND VALUES FOR THE TRANSITION STATE

IMR-PES Coordinates

Valence

Coordinates

Atoms in Equilibriuma Atoms in

Coordinate Designation Value Coordinate Designation
CHI r 3.0178 CH1 Rl = f(rl,rs,r7,r8,r9)
CH2 r, 2.0673 - CH2 R2 = f(rz,r7)
CH, r, 2.0673 CH, Ry = £(ry,1y)
CH4 T, ©2.0673 CH4 R4 = f(r4,r9)
CH r5 4.4982 H1H6 R5 = f(rs,r6,r7,r8,r9)
H1H6 r6 1.4804 H1CH2 ¢1 = f(Gl,r7)
H2H6 r7 5.4170 H1CH3 ¢2 = f(62,r8)
H H, rg 5.4170  H CH, by = £(8,,1y)
H4H6 T, ' 5.4170 HZCHB ¢4 = f(eé,r7,r8)
HlCH2 61 105.0726 HZCH4 ¢5 = f(es,r7,r9)
H,CH, 6, 105.0726  H,CH, b = £(8,,7g,T)
HlCH4 63 105.0726 (CH1H6):Z a = f(rs,r7,r8,r9)
H,CH, 8, 113.4886 (CHH)® oy, = £(rgr;,Tg,1y)
HZCH4 65 113.4886
H3CH4 96 113.4886

a . . . . . .
Bond lengths and interatomic distances in atomic units and bond angles

in degrees.

bSpecifies linear bending in the xz plane.

CSpecifies linear bending in the yz plane.



TABLE VI

TRANSITION-STATE SCANNING RESULTS

Scan a a Barrier Height
Number ry Te Increment Size® Energyb
Start 1 3.5 1.25 7.5 x 1073

. End 19 3.02 1.49 5.60624735710553
start 2 3.0275 1.475 1.5 x 1074
End 24 3.0179 1.48055 , 5.59759021152999
Start 3  3.0182 1.48025 | 6.0 x 107°°
End 3d 3.017804 1.480382 \ ' 5.59758731815947
Start 4  3.017816 1.48037 2.4 x1077
End 49 3.0177992 1.4803774 5.59758731610498
Start 5°  3.01779968 1.48037696 9.6 x 107° ;
End 54 3.0177991232 1.4803772096 5.59758731609884
Start 6°  3.0177991424 1.4803771904 3.84 x 10 10
End 69 3.017799132032 1.480377204608 5.59758731609884

a . . .

Values in atomic units (a.u.).

b . . . s

Values in kilocalories per mole for reaction (I-1).
c

Values at the start of the scan.

dValues at the end of the scan.

6¢
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Numerical Methods of Force Constant

Determination

Force constants were calculated numerically for each of the
internal valence coordinates described in Tables IIT and V. Addition-
ally, off-diagonal cross term force constants were calculated. These
force constants determine the amount of interaction between any two of

the valence coordinates in a particular molecular species. These force

I

da; 895" 435,

qj are valence coordinates of a molecular species defined in Table III

constants are defined by the value of ( » Where a4 and
or Table V. 1If qi=qj, then the second derivative is a diagonal force
constant, but if qj+qi, it is an interaction force constant.

The simplest numerical partial differentiation technique used is

the two function-point definition of a derivative,

lim f(x+h,y)-f(x,y)

_ of(x,y) _
h~0 h fl(an) 3% (I11I-10)

where f(x,y) is a function of variables x and y, and h is the increment
size.30 Equation (II-10) was used to generate the three-point second

derivative method given by (II—11).30

lim [(f(x+h,y)-f(x,y)) _ (f(xly)-f(x-h,y))]
h h _

h=+0
h
2
lim f(x+h,y)+f(x-h,y)-2f(x,y) _ £ (x,y) = 3 f(x,y)
h->0 12 1,1'%Y 02

fl 1(x,y) = f(X+h,}7)+f(}2{_h)}7)-2f(x’y} (II—].].)

h
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The error in (II-11) is equal to

E. = - — £ (¢) (I1-12)

where h is the increment size and fIV(E) is the fourth derivative of

the function being differentiated with |£—x! < lh].30 This error is

referred to as the discretization error due to the method of finite
- N oe s ey 30
differences and is in addition to any round-off error. For double

precision accuracy on the IBM 360/65 used for these calculations, the

relative round-off error is approximately 1_x10_l6. An estimate of the

error involved in the calculation of (II-11) with f(x,y) =[g(x) +k(y)],

2

where g(x) = Cze_ X—2Ce_x, C= e2, x=2,h=1x% 10__4 and k(y) =0 is given by

4E -4, 2 4E
_ ry _ —~(1x10 ) 2 -2x% -X r
E = (Ed'+ 2) =[ 12 (16GC" e -2Ce ) +—*-“—f:Z—E](II—l3)

h (1x10 %)

where Er is the approximate round-off error in each of the four func-~

16

tion values in (II-11). 1If Er =1 x 10 then the relative error in

the evaluation of (II-11) for f(x,y) is given by E = E/f(x,y) =

-1.4 x 10_8. Although the exact error involved in numerical differentia-

Rel

tion of (II-1) is not calculated, the functional form is composed primarily
ofnegativeexponentialtermswithfelativelysmallexponents.Therefqre,
the relativgerror involved in applying (II-11) to (IT1-1) should be close to
that for (II-13) within two or three orders of magnitude. The follow -
ing difference method for cross—terms should have comparably small error.

A computational method was derived for calculation of the off-
diagonal (cross term) second derivatives of the form é%(§£é§LZl)x =
fl’z(x,y). For purposes of derivation, a function of the incremented

coordinates was defined by
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Qh,k(d) = f(x + Sh,y + &k) (11-14)

where 6/x and 8/y << 1 and h and k are unit directional coefficients of
§ having possible values of 1, 0, or -1. By deriving a functional form
for the second derivative of Qh k(6) it was possible to obtain a

b

(8)

numerical approximation to fl 2(x,y). The fitst derivative of Qh Kk
b . b

is defined by (II-15),

9f (x + Sh,y + 8k)

' =

h,k(‘s) 36

ro(s) = 3f (x+6h,y +6k) . 3(x+38h) . 3f(x+6h,y+5k) . 3(y+8k)
h,k 3(x +68h) 38 3 (y +6Kk) 36

' (8) = hf_ (x+6h,y+8k) + kf,(x+&h,y+38k) (11-15)
h,k 1 _ 2

: of (x+ Sh,y + 8k) - .
+ + = 25 -
where f2(x Sh,y + 8k) 3 (y + 6K) , f1 is defined by (II-10),
h = d(x+6h) and k = 3 (y +38k)

Y Y Therefore, the second derivative of .

Qh k(G) is given by (II-16),
+ + +
o (5 =h Bfl(x Sh,y Sk). 3 (x + 6h) s Bfl(x-kﬁh,y Sk) . 5 (y + 5K)
h,k 5 (x +6h) 36 3 (y + 6k) 36
1
v afz(x+6h,y+6k) 3 (x+6h) sz(x+6h,y+6k) 3(y + 6Kk)
3(x+6h) 38 3 (y +6k) 96

2

(6)==h2fl 1(x-+6h,y-k6k)-+2hkf (x+8h,y +8k) +k°f (x + 8h,y +8k)
b

QU x 1,2 2,2

(11-16)

Bzf(x-+6h;y-+6k)
[5(y +6k)1°

and f (x+6h,y +6k) =

where f2’2(x-+6h,y-+6k) = 1,2
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f2 1(x-+6h),y-k6k). Therefore, the second derivative, Q; k(6), for
b b

§ = 0 is given by (II-17).

" - 2 2 _
Qh,k(o) h fl’l(x,y) + 2hkfl’2(x,y) + k fZ,Z(X’y) (I11-17)

Using the definition of Qh k(6) in equation (II-14), Qﬁ k(0) is also
bl b}

defined by (II-18).

§) - 2 0) + -8
" (0) = 1in Qh,k( ) Qh’k( ) Qh’k( )
h,k , 2
§>0 8

(I1-18)

The difference equations used to calculate the second derivatives of
the form of fl,Z(X’Y) were obtained by combining (II-14), (II-17) énd
(IT-18) for various pairs of (h,k) values. For example, one difference
equation is given by substituting h=1, k=0 into (II-17), see (II-19a);
then equating (II-19a) to (II-18) in (II-19b). The specific form of

(II-19b) used to obtain the numerical second derivative is given by

substitution of (II-14) with (h,k) = (1,0) into (II-19b), see (II-19c).

1" EPNT) _ 2 2
QL (0 =@ (0 = (D] | G,y) +2(D) OF; ,(xy) + (O, ,(x,y)

(1I-19a)
Q, ~(8) -2Q, ,(0) +Q, (-9)
1,0 1,0 1,0
QY .(0)=f£f (x,y) = 1im 2 2 —=2 (I1-19b)
1,0 1,1 5 0 52

§+0 §

Similarly for (h,k) = (0,1), equations (I1-14) and (II-18) lead to

equation (II-20) which defines fz 2(x,y).

b
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f(x,y+8) -2f(x,y) +f(x,y-8)
2

Qg l(0) = lim (I1-20)

§>0 §

Finally, substitution of (h,k) = (1,1) into (II-17), (II-18) and (II-14)

produces an expression which includes the desired cross term fl 2(x,y),
bl

see (II-21).
" _ 2 ' 2
Ql,l(o) = (1) fl’l(x,y)-*2(1)(1)f1’2(x,y)-F(l) fz,z(X’Y)
Q;,l(O) = fl,l(x,y)-F2fl,2(x,y)-*f2’2(x,y) (I1-21a)
Q (8) -2qQ (0) +Q (-8
Q0 = 1l 1,1°° 1,; 1,1
? §>0 . )
Qi 1(0) - 1im f(x+8,y+96) —2§(x,y)-+f(x-6,y-—6) (TI-21b)
? §>0 : §

By rearrangement of (II 213),f1’2(x,y) [Ql,l(o) fl,l(X’Y) fz,z(x,y)]/Z.
This result and the definition of fl l(x,y) and f2 2(X,y) in (II-19)
and (ITI-20), respectively, led to equation (II-22) which defines the
cross term second derivative.

Q1,1(°) - Ql,O(O) - QO,l(O)

£ 2(x,y) = > (I1-22)

’

The general difference method equations are summarized in Table VII.
The symbols A, B, C, D and E in Table VII represent second derivatives
in the limit as the increment size § approaches zero. Thus for a
given §, A and B constitute numerical approximations to the diagonal

force constants (second derivatives), (62f(x,y)/6x2)y and
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TABLE VII

SUMMARY OF THREE-POINT CROSS-TERM DIFFERENCE EQUATIONSa

Unitb c d
Increment Definition of Difference Method Approximation
Pair Second Derivative to the Second Derivative
(h,k) = (1,0) £ (x,y) = lim A A = f(x+38,y) -2f(x,y) +f(x-38,y)
1,1 2
§>0 8
+ : — -—
(k) = (0,1) £, (x,y) = lim B B = (¥ +8) = 20C6y) +£0e,y = 8)
2,2 2
§>0 §
(h,k) = (1,1) Q; 1(0) - 14m D D = f(x+6,y+6)-2§(x,y)~kf(x~6,y—6)
? >0 §
(h,k) = (1,-1) Q; 1(0) - lim E E = f(x+6,y—5)-2§(x,y)-+f(x—6,y+6)
> §>0 S
C = D-A-B - A+B-E _ D-E

f (x,y) = 1lim C
1,2 5> 0

2 2 4

aSee Reference 31.

bSee Equations (II-19),

(I1-20), and (II-21).

CDefinitions based on combination of Equations (II-14), (II-17), and

(I1-18).
d

Difference methods based on Equations (II-14) and (II-18).

Note

Equation C is only definable as a combination of other difference

methods.

Also, the increment size § should be identical in all

equations used for each calculation of C.
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(Bzf(X,y)/Byz)x, respectively. For a given &8, D is the numerical
estimate of ale’l(O)/BGZ. Therefore, given a specific § the numerical
approximation to the off-diagonal force coﬁstant, azf(x,y)/axay, is
obtained by substituting A, B, and D into (II-22). The symbol E in
Table VII is defined in the same manner as D, except for (h,k) = (1,-1).
Thus for a given §, E is the numerical estimate of aqu,_l(O)/aaz. By
substituting the numerical approximations A, B, and C for the appro-
priate analytical second derivatives in (II-17) with (h,k) = (1,-1), E
is defined as the quantity (A-2C+B). This definition of E leads to
the last two quantities equated to C in Table VII which constitute two
additional numerical approximations to the off-diagonal force constant
(or cross-term second derivative).

The energy values obtained from six equal increments and decrements
about a particular cartesian coordinate were least squares fitted to a

quadratic equation, see (II—23).32 A numerical estimate of the

V= sz + Lx + M (I11-23)

cartesian coordinate force constant is then provided by the analytic
second derivative of this quadratic equation, 82V/8x2 = 2K,

A seven point difference method based on the differentiation of a
Langrangian interpolation function was also used to calculate force

constants for comparison to the three-point and polynomial least-

squares methods.33 As shown in Equation (II-24) the derivative is

0 1

o = Bq, - 6on L4y V) 9y =V ) + (V3 -V 5] (11-24)

calculated at the center (equilibrium) point, v, = f(qi)’ using
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energies VZ = f(qi + £h) for three equally incremented and decremented
+

(that is £ = 3, +2, *1) pointé, where h is the increment size and qy
is the coordinate being incremented. Thus a particular force constant
v V; was evaluated as follows. For a given h, potential energies Vj
were computed for j =0 and *1 to *6. Equation (II-24) and these Vj
were used to obtain first derivatives Vj at j=%3, *2, *1. Equation
(I1-24) and these V; values were then used to calculate V;_at j =0,

The error in the seven-point difference method, E, is given by (II-25),

h VII

E =-—125'f (&) (11-25)

where h is the increment size and fVII(E) is the seventh derivative of
the function being differentiated for (qi-3h) < £ < (qi-FBh). An
accurate estimate of this error cannot be made but it can be seen that
a sufficiently small increment size, h, will tend to overshadow the
fVII(g) function. Since h £ 1 x 10_4 was used then fVII(E) must
exceed 1 x 1022 to significantly affect the calculated force constant.
In view of the functional form of (II-1) this is unlikely.

Values for the cross-term second derivative force constants were
calculated using the seven point difference method. This method
requires a seven by seven point grid of energy values. These were
obtained by concomitantly incrementing two different coordinates 9

and q Figure 2 displays the grid of coordinate positions for which

5
energy values were calculated. The calculated energy values falling
on a line perpendicular to the qi axis in Figure 2 were substituted

into Equation (II-24) to calculate the first derivatives at

V(qi-+£h,qj) for £ =%*1 to *3 on the qy axis. These V'(qi-+£h,qj) for



9
- + +
V(qi 3H,qj 3h) V(qi, a; 3h) V(qi+3h,qj+3h)
& Y . il e — qi
- +
V(qi 3h,qj) V(qi, qj) V(qi 3h,qj)
® . [ L . o .
* * . r . . -
_ a _ ] L _ . - + . -
V(qi 3h,qj 3h) V(qi, qj 3h) V(qi 3h,qj 3h)

Figure 2. Grid of Incremented Coordinate Positions for Which
Energies were Calculated ’

38
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£ =+1 to +3 were then substituted into Equation (II-24) to obtain

82V/3q18q or V"(qi-kﬂh,qj) for £ =0. These interaction force constant

J
values obtained by the seven-point difference method are not based on
as sound a theoretical background as those determined by the three-

point method summarized in Table VI. For this reason, the three-point
method interaction force constants were used to evaluate the isotopic
normal mode frequencies for the isotope effect calculations. However,

the seven-point method values were very close if not identical to the

three~point method values.

Force Constant Calculation

The previously described difference methods were applied to
energies obtained from the IMR-PES and its coordinate relationships,
see Appendix A, to calculate force constants for the internal valence
coordinates described in Tables ITI and V. The transition-state
internal valence coordinate force constants (TS-VFC) were calculated
for several increment sizes using both the three-point and seven-point
difference methods, see Table VIII. The increment sizes, 1 x 10—4 and
5 x 10—5, were found to give the best agreement between degenerate
force constants. Overall, the best agreement between the force
constants calculated by the two difference method techniques is given
by an increment size of 1 x 10_4. Thé force constants in Table VIII
show a lack of consistency between degenerate force constants
calculated using incremeng\sizes of 5 x 10-.6 and 5 x 10—7. The
validity of both numerical difference methods and the LMR-PES

coordinate relationships was established as follows. First, force

constants were calculated with respect to the cartesian coordinates of



TABLE VIII

TRANQITION STATE DIAGONAL INTERNAL COORDINATE
FORCE CONSTANT VALUES?

490

Three Point Methodb

Seven Point Methodc

Valence @Eyé gfyé QEY? gfyé gfyf gfy?

Coorginate aqi aqi aqi 3qi 3qi aqi
th -1.5344  -1.5345 |-1.5345 -1.5345 -1.5344 -1.5342
th 5.0393 5.0395 5.0395 5.0395 5.039%4 5.0355
R3h 5.0393 5.0395 5.0395 5.0395 5.0394  5.0392
Rah 5.0393 5.0395 5.0395 5.0395 5.0394 5.0392
RSh 4.4042 4.4043 4.4043 4,.4043 4.4043 4,4077
¢li 0.1802 0.1802 0.1802 0.1802 0.1802 0.1813
¢21 0.1802 0.1802 0.1802 0.1802 0.1802 0.1813
¢3i 0.1802 0.1802 0.1802 0.1802 0.1802 0.1813
L 0.5517 0.5517 0.5517 0.5517‘ 0.5517 0.5530




TABLE VIII (Continued)
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Three Point Methodb

Seven Point MethodC

Valence 82vd BZVe 82Ve BZVd a2Vf aZVg
Coordinate — — —_— -— —_— _—
3q° 39> 3q° 3q> 3q° 3q°
¢51 0.5517 0.5517 0.5517 0.5517 0.5517 0.5530
¢6i 0.5517 0.5517 0.5517 0.5517 0.5517 0.5530
axi 0.0270 0.0270 0.0270 0.0270 0.0269 0.0257
ayi 0.0270 0.0270. | 0.0270 0.0270 0.0270 0.0256

a .
Force constants calculated for the internal valence coordinates

described in Table V.

bValues calculated by the three point difference method, see (II-11).

“Values calculated by the seven point difference method, see (II-27).

I

Increment size h

eIncrement size h=1x 10 .

Increment size h

gIncrement size h = 5 x 10 '.

5 x 10 .

5x 10 .

5

4

6

7

hStretching force constants in mdyne/x.

iBending force constants in mdyne—x.
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each atom in the transition-state configuration. These cartesian
coordinate force constants (CCFC) were compared to the CCFC obtained
from conversion of the TS-VFC matrix using the B matrix method
described in Appendix B. It' can be seen in Table IX that the agreement
is reasoﬁably good but not quan£itative. Second, transition-state
normal mode frequencies were calculated using the VFC, converted CCFC,
and directly calculated CCFC. These values are compared in Table X.
When the CCFC are used to éalculate normal-mode frequencies there are
six degrees of freedom in the eigenvalues in addition to those
corresponding to the normal-mode frequencies. These six extra degrees
of freedom correspond to the translation and rotation of the transition-
state molecular configuration. It can be seen that the directly
calculated CCFC generate some small residual values that correspond to
rotational and translational degrees of freedom. Theoretically these
rotational and translational values should be zero but the directly
calculated CCFC were not normalized with respect to the internal
coordinates. Due to the form of the ICFC normal mode frequency
calculation, the six extra degrees of freedom are not allowed. Also,
the method of converting the ICFC to CCFC normalizes the converted
CCFC to the internal coordinates. Therefore, onl? zero or negligibly
small values for the translational and rotational degrees of freedom
are obtained. Neglecting the rotational and translational degrees of
freedom, it can be observed that the various sets of normal-mode
frequencies in Table X agree very well; the largest deviation being
about 2.5 cm_l. This indicates the validity of the LMR-PES coordinate

relationships and the numerical difference methods.
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TRANSITION-STATE DIAGONAL CARTESIAN COORDINATE FORCE CONSTANTS
CALCULATED BY DIFFERENT NUMERICAL METHODS2

Cartesian

Coordinate Seven Poin;:C Three Pointd Quadratice Convertedf
X 0.2112 0.2112 0.2112 0.2095
Yy 0.2112 0.2112 0.2112 0.2095
z, 1.2552 1.2552 1.2552 1.2552
x, 0.7680 0.7680 0.7680 0.7665
v, 4.7208‘ 4.7208 4.7208 4.7190
z, 0.6271 0.6271 0.6271 0.6265
X4 3.7326 3.7326 3.7326 3.7309
Vs 1.7562 1.7562 1.7562 1.7546
z4 0.6271 0.6271 0.6271 0.6265
X, 3.7326 3.7326 3.7326 3.7309
Yy 1.7562 - 1.7562 1.7562 1.7546
z 0.6271 0.6271 0.6271 0.6265
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TABLE IX (Continued)

Cartesian c 4 e £
Coordinate Seven Point Three Point Quadratic Converted
Xg 8.7621 8.7621 8.7621 8.7640
Vs 8.7621 8;7621 8.7621 8.7640
zg 0.3412 0.3412 ' 0.3&12 0.3394
- Xg 0.0439 0.0439 0.0439 0.0439
Yo 0.0439 0.0439 A 0.0439 0.0439
zg 4,4043 4.4043 4.4043 4.4043

%Force constant values in mdyne/X. All values calculated using an
increment size of 5 x 10-3.

bCoordinate subscript is the atom number, see Figure 1.
“Values calculated by the seven point difference method, see (II-27).
dValues calculated by the three point difference method, see (II-11).

*Values calculated by the quadratic least squares fit method, see
(11-23).

fValues converted from internal coordinate force constant values by the
B-matrix conversion method described in Appendix B.



TABLE X

TRANSITION-STATE NORMAL MODE FREQUENCIESa

Normal b c 4
Mode Internal Cartesian Cartesian Assignment of the Normal Mode
v, © 3388.5 3388. 5 3388. 5 Symmetric C-H-H stretching
v, 2937.7 2937.7 2937.6 Symmetric CH, stretching
u3e 964.7 964.7 967.2 CH, bending deformation
‘vhe 1479.31 1479.31 1479.31 Antisymmetric C-H-H st?etching
vsf 3085.7 3085.7 3085.7 Antisymmetric CH3 stretching
v6f 1502.9 1502.9 1503.7 Degenerate CH3 bending deformation
v7f 752.3 752.3 754.5 Linear bending + CH3 bending
vsf 367.3 367.3 369.8 Linear bending - CH3 bending
ng 0 50.8 Rotation about Z-axis
R2g 0 39.4 Rotation about Y-axis

SY



TABLE X (Continued)

Mode Internalb Cartesian® Cartesiand Assignment of the Normal Mode
R3g 0 ' 39.4 Rotation about X-axis
/ Tlh 0 1.5
T, 0 5
T3h ' ' 0 -2

a . . -1 ‘ . . -
Frequencies in cm ~. Force constants calculated using an increment size of 5 x 10 5.

b . ' . . . . .
- "Frequencies calculated using the internal coordinate force constants in Table VIII plus all off-diagonal
interaction force constants.

c . . . . \ .
Frequencies calculated using cartesian coordinate force constants converted from the internal coordinate
force constants described in footnote b.

Frequencies calculated using the three point method cartesian coordinate force constants from Table IX
plus all off-diagonal interaction force constants.

eNon—degenerate normal mode frequencies.
f
Doubly degenerate normal mode frequencies.

gRotational degree of freedom,

hTranslational degree of freedom.

9%
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The assignments of the normal modes in Table X are based on the
eigenvectors given in Table XI. The cartesian coordinate eigenvectors
make assigning a normal mode of motion relatively easy, since each
eligenvector value represents relative motion along or parallel to the
cartesian coordinates for each atom in Figure 1. The rotational

assignments are particularly easy. For example, the R, eigenvector

1
shows that atom two has motioh in the positive x direction, atom three
has motion in the negative x and positive y directions, and atom four
has motion in the negative x and negative y directions. Thus, Rl is ‘an
eigenvector representing rotation about the Z axis in Figure 1.

Force constants were calculated for the reactant molecular species
in reactions (I-1) and (I-2) with respect to the internal valence
coordinates described in Table ITII. Normal-mode frequencies calculated
using these force gonstants are compared with spectroscopic values in
Tables XII and XIII. The CH4 frequency values from the LMR-PES VFC
agree well with those calculated from the diagonal Herzberg VFC matrix
in Table XII.34 However, the numerically determined VFC matrix from
the IMR-PES is not a diagonal matrix due to strong internal coupling
between the CH stretching and HCH bending VFC. The diagonal Herzberg
force constants,34 5.04 mdynelx and 0.5517 mdyne—x for CH stretching
and HCH bending, respectively, appear implicitly and explicitly,
respectively, in the L'MR—PES.2 However, the numerically determined CH
stretching VFC from the IMR-PES is 5.08 mdyne/X. The agreement
between frequencies predicted by the ILMR-PES and Herzberg VFC reflects
the fact that the C-H stretching modes are coupled, 1) between them—

selves by a small -0.01 mdyne/g value and 2) to the HCH bending VFC by

a larger *0.042 mdyne value (+0.042 coupled to adjacent C-H bonds and



TABLE XI

TRANSITION-STATE CARTESIAN COORDINATE EIGENVECTORS®

Transition-State Normal Modesb Rotation® Translationd
Eosdavins A N T A A R S AN B M SR
3 0 0 0 0 -.003 .010 .758 .087 0 -.450 .007 .241
Yy 0 0 0 0 0 .015+ .087 374 0 -.007 -.450 .022
z, . 547 .018 .117 .787 0 0 0 0 0 0 0 .004
X, 0 0 0 0 -.023 -.405 .080 .023 .575 .149 -.002 .241
Yy .018 .550 -.116 .025 .016 .126 .OQG‘ .092 0 .002 .150 .002
z, -.013 150 -.499 .005 -.004 .152 .052 . 507 0 .005 .333 .004
X, -.015 476 .144 .021 -.553 .287 .060 .026 -.288 .149 -.002 .241
Y, -.009 .275 .083 .012 -.306 -.232 .020 .099 .498 .003 .149 .022
zq -.013 .150 -.499 .005 ;.173 ~.160 .365 .152 0 -.290 -.162 .004
X, .015 476 =144 .021 -.567 -.369 .058 .018 -.288 .149 -.003 .241
Y, -.009 .275 .083 .012 .314 -.653 .004 .098 -.498 .001 .149 .022
z, -.013 .150 -.499 .005 .177 .008 417 .355 0 .285 -.171 .004

8%



TABLE XI (Continued)

Transition-State Normal Modesb Rotation® Transiationd
Cocrdinate "2 '3 K ’s ’6 °7 ’8 Bl R Ry 1
X 0 0 0 0 .096 .040 .065 .010 0 .060 -.001 .241
Yo 0 0 0 0 -.002 .062 -.007 -.004 0 .001 .060 .022
zg .027 .036 .105 -.108 0 0 0 0 0 0’ 0 .004
Xe 0 0 0 0 .001 .001 .186 -.140 .001 -.716 .011 .241
Yo 0 0 0 0 0 .001 -.021 .605 0 =-.011 -.716 .022
zg -.826 .045 .132 .481 0 0 0 0 0 0 0 .004

a . . . . .
The values are relative potential motion vectors along or parallel to the cartesian coordinates for each
numbered atom in Figure 1.

Normal modes correspond to those in Table X.

c . . . . .
Represent nonzero rotational contributions from cartesian force constant frequency calculation, see
Table X.

Typical eigenvector for the negligibly small translational energy contribution from cartesian force
constant frequency calculation, see Table X.

6Y



TABLE XII

TETRAHEDRAL CH, NORMAL MODE FREQUENCIESa

4
Calculated Herzberg Shimanouchi®
Normal
Mode IMR-PES Force Constants Calculated Spectroscopic Spectroscopic
vl 2917 2914 2914 2917
vzd 1527 1527 1526 1534
v3e 3080 3080 3020 3019
v4e 1366 1363 1306 1306

8A11 values in cm_l.
bSee Reference 34.
®See Reference ?5.
dDoubly degenerate.

eTriply degenerate.

0s
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TABLE XITI
PLANAR'CH3 AND H, FREQUENCTES®
Normal b c a o ' £ g
Mode Snelson MJ TWP IMR-PES ~ Gaussian 70 Herzberg
v, 3044 | 2914 3251
v, 617 611 607 847 847
v3h 3162 3100 3455
v 1396 1606 1538
sun’ v (CH,) 12777 13173 14084
sum’ v(CH,) 12160 12326 13237
v (H,) 4468 4395

aAll values in cm_l.

See Reference 36. Since vy is infrared inactive, the value
corresponds to Snelson's calculated value.

CSee Reference 37.
d
See Reference 38.

®calculated using ILMR-PES valence force constants except for the
vZ(CHB) obtained from Gaussian 70, see Reference 39.

f

Calculated from Gaussian 70, 6-31G basis set force constants.

gSee Reference 40.

hDoubly degenerate frequencies.

iSum includes the v2 value.

Jsum excludes the vz value.
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-0.042 coupled to non-adjacent C-H bonds). These interaétion VFC
values effectively decrease the calculated normal mode frequency
‘values. The diagonal HCH bending VFC from the LMR—PES’are identical to
the Herzberg values.34 It can be seen in Table XII that the
Shimanouchi spectroscopic values35 differ somewhat from the Herzberg34
spectroscopic values and agree somewhat better with the calculated
values.

The spectroscopic CH, frequencies in Table XIII reported by

3

Snelson for Vi» v3 and v4 compare reasonably well with the

corresponding LMR-PES values. In terms of KIE calculations it should

be noted that differences in the v, values would tend to be offset by

opposing differences in the 121 and V3 values.36 Thus, the LMR-PES

curvatures governing the symmetric and asymmetric CH stretching are

realistic. However, the v, in-plane bending VFC may be somewhat large

4

compared to the spectroscopic value. The frequencies calculated from
Gaussian 70 VFC are all greater than the corresponding spectroscopic

values by about nine percent on the average. The v2 out-of-plane

bending frequency is about 235 cm_l greater than the corresponding

36,37,38

spectroscopic frequencies. The effect of using either the

Gaussian 70 or the spectroscopic isotopic v, frequencies in

2

conjunction with the corresponding IMR-PES calculated frequencies to

obtain KIEs from (I-3) and (I-4) is discussed in Chapter III. The H2
frequency (4468 cm_l) obtained from the IMR-PES VFC (5.924 mdyne/X) is
less than two percent greater than the Herzberg spectroscopic
frequency (4395 cm ) having a VFC of 5.732 mdyne/R.

The force constants used to calculate the IMR-PES and Gaussian 70

frequencies for CH, are compared to the spectroscopically determined

3



53

force constants in Table XIV. It can be seen in Table XIV, that the
Gaussian 70 in-plane bending VFC agrees well with the LMR-PES value,
but the spectroscopic value is somewhat lower. This corresponds to the

agreement between v, frequencies in Table XIII. However, the two C-H

4
stretching VFC differ considerably. This difference is reflected in
disagreement between the 21 and v3 values in Table XIII. As discussed
earlier in the coordinates section, the LMRfPES predicts no out-of-
plane bending force constant. Therefore, the Gaussian 70 ab initio
program was used with its 6-31G internal basis set to calculate the
value for FY in Table XIV.39 The out-of-plane bending internal
coordinate corresponds to bending all three CH bonds out-of-plane
simultaneously by the angle y in radians. The numerical methods
discussed earlier were applied to the incremented Gaussian 70 energies
to obtain the CH3 VFC in Table XIV. The Gaussian 70 out-of-plane
bending VFC is almost twice as large as the spectroscopically

determined value. This difference is clearly reflected in the

calculated and spectroscopic Vo values.
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TABLE X1V
PLANAR CH3 FORCE CONSTANTS AND BONDLENGTHSa
Label LMR—PESb Gaussian 70C Snelsond MJe TWPf

g
Fri(i=2,3,4) 5.040 . 6.273 5.2
F h 0.461 0.422 0.315

b, (1=4,5,6) ' ' '
FYi 0.340 0.179 0.177 0.174
ri(t=2,3,4) 1.094 1.072 , 1.079 1.079 1.079

8A11 force constants are in mdyne/X and the bondlengths, ri(i=2,3,4)

are in

bValues calculated from the LMR-PES.

®Values calculated using (II-11) and (II-23) methods applied to 6-31G
basis set energies from Gaussian 70, see Reference 39.

dSee Reference
Bradley force

e
See Reference

f
See Reference

36. In-plane force constants are calculated Urey-
constants.

37.

38.

&c-H stretching force constant.

hHCH in-plane bending force constant.

1Out—of—plane bending force constant.



CHAPTER III

THEORETICAL KINETIC ISOTOPE EFFECTS FOR THE

EACTION CH, + H 2 CH. + H
REACTION CH, 2 cH, )

Results and Discussion

Comparison of Theoretical Vibrational

Frequencies and Force Constants

The activated complex normal mode frequencies calculated for the
LMR-PES and the various BEBO and LEPS models reported by Kurylo,
. 12 CL L 14 z ,
Hollinden, and Timmons and Shapiro and Weston are compared in
Table XV. It should be noted that most of these normal mode
frequencies are of comparable magnitude except for the symmetric

stretching frequency for motion along the reaction coordinate, v,, and

1

the linear bending modes, v7 and Vg~ Also, the imaginary frequency, v

4°
for the LMR-PES is considerably smaller in value, than the correspond-
ing BEBO and LEPS values indicating that the former potential-energy
barrier along the reaction coordinate has less curvature than either

of the latter two. This lower degree of curvature in the barrier may
be at least partially the result of the LMR-PES having a somewhat lower
barrier height as can be seen in Table XVI. Table XVI also shows that
the imaginary frequency for the BEBO and LEPS models results from a
large interaction force constant between the C—Hl and'Hl—H6 stretching

force constants. 1In contrast the imaginary frequency for the LMR-PES

55
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TABLE XV

CH3—H—H TRANSITION-STATE FREQUENCIES FROM DIFFERENT SOURCES®

Frequencies From

LMR-PES® KHT® swd

Normal - o £ £

Mode BEBO LEPS BEBO3® LEPS2® BEBO3™ 1EPS2 BEB03® LEPS28
v, 3388 1610 1397 1568 1392 1577 1412 1603 1482
v, 2938 2980 2980 3149 3149 3149 3149 3149 3149
vy 965 1179 1147 958 954 1156 1142 1337 1279
v, 14791 16891 2024i 1691i 1839i 1691i 1838i 1690i 1838i
Vg 3086 3047 3047 3165 3165 3166 3167 3168 3168
v 1503 1459 1458 1473 1472 1480 1480 1527 1535
vy 752 1046 1077 623 779 1008 1078 1355 1384
Vg 367 446 502 14 14 430 500 458 555

aa11 frequencies in cm_l.
bCalculated using IMR-PES parameters.
“Calculated using the BEBO and LEPS parameters in Reference 12.

dCalculated using the BEBO3 and LEPS2 parameters in Reference 14 with
the HCHy bending force constant value specified in the footnotes.

e oot - -
Calculated with F i=1,2,3) T 0.0001 mdyne-A&.

f = —
Calculated with F¢i(i=l,2,3) = 0.26 mdyne 2.

g
Calculated with F¢i(i=l,2,3)

0.568 mdyne—x.



TABLE XVI

COMPARISON OF TRANSITION-STATE PARAMETERS®

Values from

KHTC syd
Value Label ILMR-PES BEBO LEPS BEBO3 LEPS2 Units
-1 -1.534 1.157 0.775 1.096 0.930 mdyne/8
R
1
Fi AAA .157 0.565 1.096 0.653 mdyne/R
5
Fint 0.807 .879 1.653 1.818 1.597 mdyne/%
Fi 0.0270 .0526.  0.0821 0.0486 0.0799 ndyne-%
Fi (1=1.2.3) 0.180 .280 0.260  -—-=" — mdyne-§
i \ 2 2
Fl (i=4.5,6) 0.552 .568 0.568 0.568 0.568 mdyne/R
i 2 b
Fi (1=2.3.4) 5.039 .040 5.040  5.50 5.50 mdyne/%
i sJos '
0.0 .050 0.050 0.124 0.124 mdyne/&

F Pl
RiRj (1+J_293,4)

LS



TABLE XVI (Continued)

Values from

KHTC swd
Value Label LMR-PESP BEBO LEPS BEBO3 LEPS?2 Units
FR.¢. (1-2.3,4) 0.0 0.165 0.165 0.165 0.165 mdyne
iti-2
FR.¢, (1=2,3,4) 0.0 -.165 -.165 0.0 0.0 . mdyne
i"i-2
F+ )
R,R (i=2,3,4) -0.0015 0 0 0 0 mdyne/A
FR 6. (i=1,2,3) 0.0268 0 0 0 0 mdyne
171
F+ . 0.0007 0 0 0 0 mdyne
b Riyp (71,2,3) ‘
FRS¢ (i=1,2,3) -0.0014 0 0 0 0 mdyne
r 1.597 1.27 1.29 1.27 1.28 X
T, 0.783 0.92 0.96 0.92 0.95 S
r, (i=2,3,4) 1.094 1.091 1.091 1.09 1.09 R
Va(CH4 + H)f 5.60 12.24 12.22 kilocalories/mole

‘86



TABLE XVI (Continued)

Values from

5 KAT® swe
Value Label IMR-PES BEBO LEPS BEBO3 LEPS2 Units
Va(CH3 + Hz)f 9.42 13.46 10.63 kilocalories/mole
E_(CH, + H)® ~ 11.11 \ 13.17 10.9  kilocalories/mole
E_(CH, + H)h ‘ 6.4k 11.73 11.53 kilocalories/mole

aAll force constants have subscript designations from Table V. The bondlength designations are also from
Table V; see Reference 7.

bValues determined from the LMR-PES.

“BEBO and LEPS parameters described in Reference 12.

dBEBO3 and LEPS2 parameters described in Reference 14.

eInteraction force constant between the C—Hl and Hl—H6 stretching force constants.
Barrier height in kilocalories/mole.

gActivation energy calculated at 500°K.

hActivation energy calculated at 625°K.

1Three different values 0.0001, 0.26, and 0.568 mdyne—g were used; see Reference 14.

Jincludes a tunneling correction.

6G



60

activated complex results from a negative C-H, stretching force

1

constant. This difference in force constants is not unreasonable since

the IMR-PES predicts C-H, and H,-H, bond lengths in the transition

1 17
state approximately 0.3 S longer and 0.15 R shorter, respectively, than
the BEBO and LEPS models. For this reason, the ILMR-PES activated

complex more closely resembles a methyl radical and hydrogen molecule

than the BEBO and LEPS models. This geometry and the large H_-H_ force

16
constant, FR , give rise to the exceptionally large 21 value for the
5
LMR-PES in Table XV. Although the differences in the v7 and v8

frequencies reflect the differences in the linear-bending force

constant, Fa’ differences in these frequencies result primarily from

4

= F . ]
¢1_3 d)i (1_1,2’3)
between the surfaces. The frequency changes associated with the

+

1-3
constants in Table XVI and the frequencies in Table XV considered

differences in the HCHl bending force constants,

changes in the F values can be observed in Table XV. The force

together show that a BEBO3 and LEPS2 value of FI = 0.26 mdyne—x14
1-3
gives the best agreement with the IMR-PES and Kurylo, Hollinden, and

Timmons (KHT)12 v_ and v, frequencies. For the KHT BEBO and LEPS

7 8
1

o values in columns three and four of Table XVI vary by

surfaces the F
a factor of 1.56 but produce a negligible change in v7 and v8, see

columns three and four of Table XV. Thus the magnitude of the linear

bending frequencies is not strongly dependent on the magnitude of the

t

bending force constant, Fa

For purposes of comparison, the values for the LMR-PES activation
energies were calculated using the method of Kibby and Weston.41 The
values predicted by the LMR-PES are compared to the BEBO and LEPS Ea

reported by KHle and Shapiro and Weston (Sw),14 which were also



61

reportedly calculated by this method. The method, as given by Kibby
41 42 .

and Weston, follows the approach of Johnston. The experimental

activation energy, Ea, is treated as a linear function of the rate

constant and temperature.

E = M (III—]_)

a d(T—l)
Integration of (III-1) gives the natural log form of the Arrhenius

equation.

Ink = 1nA - — (I11-2)

Johnston then gives an equation similar to (ITI-2) derived from transi-

tion-state theory,

1nk = 1n(B(T)) - Va/RT (I11-3)

where Va is the barrier height along the reaction coordinate in kilo-
calories per mole, B(T) is a temperature dependent form of the

Arrhenius preexponential factor, and R and T are the gas constant and
temperature in °K, respectively. The relation between the theoretical

B(T) and Va on the one hand and the A and Ea on the other hand is given

by:
q = é%%%%ll (I1I-4a)
A = B(T)exp(Q) (I1I-4b)
Ea = Va + QR? | (I11-4c)
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The expressions in (III-4) assume that the (Blnk/aT)p for (III-2) and
(I11-3) are identical and that (III-2) and (III-3) may be equated.
Kibby and Weston (KW) then define Wy for each vibrational degree of

freedom by

w, = (ui/2)coth(ui/2) -1 (I1I-5)

where uy is the same as u g in (I-6) and (I—7).41 The temperature

dependent factor, 9, is defined by KW as

* + : ‘d+—l + dr r
Q=w + 1/2(d" - dr) + T w, - T oW, (I1I-6)
i=1 Y i=1 *

where w* is a tunneling correction factor (if used, zero otherwise);
d+ is the number of vibrational degrees of fréedom in the activated
complex including the imaginary frequency; dr is the number of
vibrational degrees of freedom in the reactants, and LA and wz have a
value for each transition—-state and reactant vibrational degree of
freedom calculated by (III-5), respectively. As a result of the 3.82
kcalorie/mole (0.1658 eV) difference between the C—Hl (4.5808 eV) and
Hl—H6 (4.7466 eV) bond energies used(in the LMR-—PES,2 the Va_(9.42
kilocalories/mole) and Ea (11.11 kilocalories/mole) for reaction of
CH3 + HZ calculated at 500°K are reasonably comparable to the corres-
ponding v, (13.46 and 10.63 kilocalories/mole for the BEBO3 and LEPS2
models, respectively) and Ea (13.1 and 10.9 kilocalories/mole for the

BEBO3 and LEPS2 models, using F = 0.26 mdyne—g,

o (i=1,2,3)
respectively) calculated by SW.14 However, the LMR-PES Va (5.60 kilo-

calories/mole) and Ea (6.44 kilocalories/mole) for reaction of
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CHA-FH calculated at 625°K are aboutfivekilocaloriespérmolesmaller

than the corresponding Va (12.24 énd 12.22 kilocaloriés/mole for the BEBO

and LEPS models, respectively) and Ea (11.73 and 11.53 kilocalories/mole

for the BEBO and LEPS models, respectively) values calculated by KHT. 12 The

difference in the relationships between Ea and Va for the various model'sdis
primarily the result of the diversity in themagnitude of the 1_%1 f iErlw]i:
differences in equation (I11-6). The Z w+ values were easily determined
by (I1I-5) using the frequencies in TabieIXV withno tunneling correction.
However, calculation of the er wi values requires a full s;at of reactant
frequencies. For the reactlionlof CH4 and Hit was determined that KHle used

the spectroscopic frequency values for methane that are reported by
Herzberg,34 since their reported Ea could be reproduced using these

frequency values. For the reaction of CH3 and H2 it is not known what

set of reactant frequencies that SW used to calculate their reported Ea
since they do not specify which of the various spectroscopic of calcu-

lated sets of CH3 frequency values they used.14 The LMR~PES Ea values

were calculated using the harmonic methane and CH3 and H2 calculated
| dy
normal mode frequencies given in Appendix C. Since the I wi values at
i=1
625°K are 13.89 for the LMR-PES harmonic CH4 frequencies and 13.52 for

the Herzberg spectroscopic CH4 frequencies, it can be seen that the

positive deviation between the LMR-PES Va and Ea values and the

negative deviation between the KHT-BEBO (or LEPS) Va and Ea values

ot

is the result of the E w% values. he Z W values calculated
at 625°K are 13.07 foi_ihe IMR-PES actlv;;id complex, 11.61 for
the KHT-BEBO activated complex, and 11.47 for the KHT-LEPS activated
complex. By application of equation (III-6), the © values 0.68,

-0.41, and -0.55 were calculated for the ILMR-PES, KHT-BEBO, and
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KHT-LEPS CH4 + H models, respectively. Therefore, the LMR-PES data
generate a larger Q value than any of the BEBO or LEPS models leading
to a greater difference in the corresponding Va and Ea values. The

reason for the larger @ value can be traced to the very large ILMR-PES

1

transition-state vl (3388 cm_l) value which is more than twice as

large as any of the BEBO and LEPS vi values.

Assuming that the curvature parametef fof motion perpendicular to
-the reaction coordinate are essentially independent of the barrier
height, then the inadequacies of the IMR-PES in this regard have a
negligible effect on the quantum mechanical contribution to the

predicted KIEs. However, the curvature of the barrier for motion

parallel to the reaction coordinate is not necessarily independent of

¥

the barrier height and clearly effects the magnitude of vy -
Consequently, an inaccurate barrier height would affect the classical
mechanical contribution to the calculated KIE. The magnitude of the
effect should be largest for a primary KIE where isotopic motion is
directly considered in the reaction coor&inate and much smaller for a
secondary KIE.

Since SW report their calculated KIEs only in the form of
temperaﬁure dependence plots, accurate comparison to the LMR-PES KIEs
required recalculation of the SW KIE values. Using the activated
complex parameters in Table ¥VI and tetrahedral geometry for the CH3
group relative to the linear C-H-H entity, isotopic normal-mode
frequencies consistent with the monoisotopic frequencies in Table XV
were calculated for the BEBO and LEPS models and are tabulated in

Appendix C along with the mass moment of inertia parameters. These

frequencies and parameters were combined with the H, and D, harmonic
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frequencies reported by Persky and Klein, that is, 4395.2 and

3109.1 cm_l, respectively, to calculate the SW KIES.43 Table XVII
presents isotope effects determined experimentally and calculated
from the various theoretical models. It should be noted that the H2

and D2 frequencies are the only reactant-state frequencies which
contribute to the calculated KIEs in Table XVII, since all other
reactant contributions to the KIEs cancel out. However, SW14 report
that they used the rotationally corrected H2 and D2 quantities
reported by Persky and Klein (PK)43 to calculate the
k(CH3,H2)/k(CH3,D2) and k(CD3,H2)/k(CD3,D2) values in their data. The
transition-state theory equation used by Swl4 is equivalent to (I-4)
plus a rotational correction factor added to the reactant ZPE term.

The SW reactant and transition state vibrational partition function

ratios, f(HZ’DZ) and f+, respectively, are defined in (III-7),

Zy T %y
% <: 2 2j>
kH/kD ) v+ /V+ f(Hz/DZ) ) (mH/mD) exp\ 5
L7072l g4 11 ui,sinh(u+,/2)
1 i 1i
i=1uiisinh(uii/2)

(I11-7)

where m, and m, are the isotopic masses of hydrogen, 1.007825 and
2.0141 amu, respectively, T is in °K, the uji terms are the same as in

(I-6) and (I-7), and ZX equals (ux /2)—(0X /3). The o /3 value is

2 2 2 2
the rotational correction to the (ux /2) = (hcvx )/(2kT). The combined
2 2
ZPE exponent, (Z, -Z_ )/T, can be expanded to [(u_ -u_ ) (%) -
i, D, i, D
(o, =0 )(1/3)]/T. Since o, and o_ have the values 87.5 and 43.8,
i, D, ) D,

respectively, then obviously, the application of the rotational



TABLE XVII

EXPERIMENTAL AND THEORETICAL KINETIC ISOTOPE EFFECTS

Rate LMR-PES? Experimental Theoreticalb
Constant Temp. a - . S s % 1 _ BEBO3 _ BEBO3J _ BEBO3.  LEPS2  [EPSJ  LEPS] BEBO LEPS
Ratio k  #° Brd or® mef ka9 swt ws® wms? b w F,=0.0001 F;=0.26 F,;=0.568 F;=0.0001 F,=0.26 F,=0.568
k(cH,,H) 500 0.509 0.611 0.834 0.739  0.738  0.738  0.7866  0.786  0.786 0.724 0.785
k(CH, ;D) 546 0.554 0.639 0.870 0.773 n.773 n.773 0.818 0.818 0.819 0.763 0.821
K(CEy,H)) 296 1.99 -—- 1.85 1.67 2,12 7.14 5.40 © 4.25 6.82 5.26 4.19  5.07 5.32
ReEopy 399 1.%0 5.04 1.80 1.7 4.80 4.85 4.06 3.44 4.77 4.04 3.44  3.91 4.07
3'P2) 403 1.30 4.87 1.80 l.67 4.79 5.50 4.79 4.03 3.42 4.72 4.00 3.42  3.87 4.04
409 1.89 4.61 1.79 1.67 5.75 4.71 3.98 339 4.65 3.96 3.39 3182 3.99
426 1.88 3.98 1.78 1.67 5.32 4.50 3.84 3.30 4.45 3.82 331 3.69 3.85
428 1.88 3.93 1.78 1.67 4.45 . 4.37 3.82 3.29 4.42 3.81 3.30  3.67 3.83
482 1.83 3.26 1.75 1.65 2.80 3.33 3.92 3.45 3.04 3.90 3.45 3.05  3.33 3.47
KICD,,H,) 296 1.98 --- 1.83 1.67 0.465 7.13 5.32 4.08 6.82 5.19 4.04  4.99 5.26
Kb 402 1.90 4.89 1.79 1.67 3.33 4.81 4.01 3.36 4.73 3.99 3.37  3.89 4.03
3'P2) 403 1.90 4.85 1.79 1.67 2.98 4.11 4.79 4.01 3.36 4.72 3.98 3.36  3.85 4.02
468 1.84 3.18 1.76 1.65 3.07 4.06 3.53 3.07 4.03 3.53 3.08  3.40 3.55
483 1.83 3.01 1.75 1.65 2.98 3.48 3.92 3.44 3.01 3.90 3.44 3.02  3.32 3.47
k(ChyHD) 296 2.02 --- 6.37  2.06 1.56 1.23 1.57 1.22 0.972 1.55 1.20
403 1.73 2.57 2.33 1.77 1.49 1.26 1.47 1.25 1.07 1.48 1.24
K(CH/BHT 467 1763 2.07 2.08 1.67 1.46 1.27 1.43 1.26 1,11 1.46 1.25
483 1.61 2.00 1.79 1.65 1.25 1.28 1.42 1.26 112 1.45 1.25
532 1.55 1.83 1.92 1.60 1.43 1.30 1.40 1.27 1.14  1.43 1.25
k(CD,,HD) 402 1.73 2.56 1.81 ' 1.77 1.48 1.24 1.47 1.24 1.05  1.48 1.23
403 1.73 2.55 1.76 1.77 1.48 1.24 1.47 1.24 1.05 1.47 1.23
KCOIDHT 468 1.63 2.06 1.71 1.67 1.45 1.26 1.43 1.25 1.10 1.45 1.24
483 1.61 2.00 1.73 1.65 1.45 1.26 1.42 1.26 1.10 1.44 1.25

@Transition-state theory calculated KIEs using the LMR-PES geometries and force constants (plus Guassian 70 out-

force constant) except as noted.

bTransition-state theory calculated KIE values using the LEPS2 and BEBO3 mox

and using the BEBO and LEPS model parameters from Reference 12.

c - .
Transition-state theory calculated using the harmonic calculated LMR-PES normal mode frequencies.

d

LMR-PES-HF values including Bell tunneling.

eLHh-PES KIEs calculated using the H2 and D2 observed frequencies from Reference 40.

£ :
LMR-PES-HF values corrected to the rotationally corrected Hz and D2 values in Reference 43; see text.

IResults from

hResults ffom

i

i
k.
1

Results from

Results from
Results from

Results from

Reference 12.
Reference 14.
Reference 15.
Reference 16.
Reference 17.

Reference 13.

del parameters from Reference 14 [FE=F+

¢; ti=1,2,3

of-plane bending

99
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correction in (III-7), reduces the KIE value below that produced by

the same set of frequencies used in (1—4).43 At about 400°K the amount

of this reduction is approximately three percent. The interatomic H

2

2

distance, r, = 0.7428, was used in both the PK43 and the LMR-PES
2

calculations. Therefore, use of the PK Oy and OD values to apply a
2 2

rotational correction to the ILMR-PES KIEs in Table XVII is valid
[since, 0x2=h2/(8ﬂ2kTurX2), where h, k, T, u, and rX2 are the Planck's
constant, Boltzmann's constant, temperature in °K, reduced mass of the
diatomic molecule, and the interatomic distance, respectively]. The
application of a rotational correction to the LMR-PES
k(CHB’HZ)/k(CHB’DZ) values in the column labeled HF at 296 and 483°K
reduces the values 1.99 and 1.83 to 1.89 and 1.78, respectively.
Similarly for k(CD3,H2)/k(CD3,D2) in the column labeled HF the values
at 296 and 483°K are reduced by rotational correction from 1.98 and
1.83 to 1.88 and 1.78, respectively.

Since our transition-state-theory computer routine was not
designed to handle a rotational correction in the manner of (III-7)
directly, the rotationally corrected frequency values reported by PK
were used to obtain a temperature dependent correction factor which
could be multiplied times the KIEs obtained by (I-3) or (I-4). One
factor value was used to correct the SW values and another factor
value was used to obtain LMR-PES values which are directly comparable
to the rotationally corrected SW values.14 The SW correction factor
is obtained as follows. The reactant exponent in the ZPE term for

(I-3) and (I-4) is given by (III-8),
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HZ D2 - 1.4388(4395.243109.1) _ 925.2 (I11-8)
2 2T ' T
hcvi 1.4388\)i ‘
where u, = = is the conversion factor used in the
1 kT T
computer code. The rotationally corrected exponent reported by Persky

889.4 43
-

and Klein is Therefore, the reactant ZPE term using (III-§)

is converted to the PK rotationally corrected ZPE term by multiplying

by (1II-9).
889.4
exp(—+) _ _
922 — = exp (882:4 - 925.2, exp(__s_%;g) (111-9)
exp (5555)

The rotationally corrected KIE is given by (III-10) since the

reactant EXC value 13 to at 1east five significant digits unity.

kH/kD(corrected) = kH/kD'expG:§%4ﬁ5 (I1I-10)

All of the BEBO3, LEPS2, BEBO, and LEPS k(CHS’HZ)/k(CHS’DZ) and
k(CDs,Hz)/k(CD3,D2) values in Table XVII were calculated by application
of (ITI-10) to those KIEs calculated using (I-3) and the H2 and D2
frequencies in (I1I-8). The same type correction was applied to the
IMR~PES KIEs; these rotationally corrected LMR-PES KIEs are given in
the column labeled RC in Table XVII. The LMR-PES Hz and D2 harmonic
frequencies, 4468.1 and 3160.6 cm-l, respectively, were used to

calculate this correction factor, and the corrected LMR~PES KIE is

given by (I1I-1le).
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u —-u
H D .
22 2 (1MR_PES) = 1.4388(4238.1—3160.6) = exp 2406y (117_11a)
T
oxep (38224,
89.4-940. -51.
945 - exp (389 i 940.6y _ oyn( ST 2y (III-11b)
exp (—**T' )
/k_(corrected IMR-PES) = k./k_(IMR-PES)exp (—2=2) (ITI-11c)
/g 'k P _

Therefore, the values in the column labeled RC in Table XVII are

obtained by multiplying the values in the column labeled HF by

(I11-11b). Obviously, adjusting the LMR-PES reactant ZPE values to the

rotationally corrected PK reactant ZPE values does lead to lower
calculated KIES and does further increase the disagreement between

experiment and theory. However, some of the LEPS2, BEBO3, LEPS,

and BEBO KIEs were larger than their corresponding experimental values.

Therefore, lowering these theoretical KIEs by application of the

rotational correction improved their agreement with experiment. This
improvement occurs for the BEBO3 and LEPS2 k(CH3,H2)/k(CH3,D2) values

in columns 13 and 16 only in Table XVII (that is, for the KIEs calcu-

lated using F* =0.0001 mdyne—R). However, for the

b, (1=1,2,3)
k(CD3,H2)/k(CD3,D2) values the rotational correction improves the
agreement with most of the experimental values (that is, most all of

‘the values in columns 13 through 19 in Table XVII exceed or are

approximately equal to the corresponding experimental value). One

exception to the latter statement for the k(CDB’Hz)/k(CDB’DZ) values 1is

that the Majury and Steacie experimental values, 4.11 and 3.48,16
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exceed the calculated LEPS2 and BEBO3 KIEs using F+ =
4, (1=1,2,3)
12

and 0.568 mdyne-gl4 and the LEPS and BEBO™~ KIEs. .

0.26

Columns five and six of Table XVII show that use of the observed

H, and D, frequeneciles, 4395.2, and 3118.46 cm—l, respectively, in

2 2 4
plaée of the IMR~PES harmonic frequencies leads to KIEs which are about

five percent lower than those calculated using harmonic frequencies.ao

Clearly, the agreement between theory and expériment is not as strongly
dependent upon the magnitude of the fundamental frequencies for H2 and
DZ used in the calculation as upon other factors.

Application of Bell tunneling to the ILMR-PES KIEs in the column

b4

labeled HF produces the values in the column labeled BT. Bell

tunneling treats the potential-energy barrier along the reaction

coordinaie as being parabolic in shape and is assumably valid for all
+ hevy

HL _E%; ¢ 2%, where h is Planck's constant, ¢ is the velocity of

l1ight, k 1s Boltzmann's constant, T is in °K and vi is the imaginary

frequeney representing translational motion along the reaction coordi-
nate for the aectivated complex.44 The Bell tunneling correction

faector Bt is caleulated for the isotopic ui < 27 using equation

(III’lZ).

+ +
ul_ sin(ul, /2)
B (T) = 1L 2L (I1I-12)

ugLsin(uIL/Z)

The condition u+ ¢ 27 1is valid for the LMR=PES above 340°K; for the

L
BEBO model above ~390°K; and for the LEPS model above ~465°K. The Bell
tunneling correction factor is a funetion of the absolute temperature

and 1s simply multipiied by the transition-state theory LMR-PES-HF KIE



71

at the corresponding temperature to obtain the Bell tunneling corrected
KIEs in the column labeled BT. It can be seen that the application of
Bell tunneling to the LMR-PES KIEs improves the agreement with the
corresponding experimental KIEs with the‘possible exceptions of the
k(CDB,ﬂD)/k(CDB,PH) and the k(CD3,H2)/k(CD3,D2) values. This improve-
ment in the agreement between theoretically calculated KIEs and
experimental KIEs upon applying a correction for tunneling does not
necessarily indicate the presence of tunneling in that reaction. It
couldbalso indicate deficiencies in thg IMR-PES and/or inaccuracies in
the experimentally determined KIE.’

The only experimental KIE for reaction of CH4 + H involves the
effect of D atoms versus H atoms on the abstréction rate.12 The
activated complexes principally determine this KIE since the reactants
contributibn only reflects the momentum of H relative to D along the
reaction coordinate. Similarly the intramolecular isotope effects for
the reaction of CH3 and CD3 with HD are entirély determined by the
isotopic properties of the activated complexes. ‘Obviously, the
k(CHB,ED)/k(CH3,QH) and k(CD3,§D)/k(CD3,QH) values predicted by the
IMR~-PES KIEs with and without tunneling agree reasonably well,
although not quantitatively with the experimental KIEs. This amount of
agreement between the LMR-PES and experimental KIEs indicates that the
force constants governing vibrational motion both parallel and
perpendicular to the reaction coordinate at the top of the barrier (or
saddle point) are reasonable.

The various BEBO and LEPS models produce values for

k(CHa;H)/k(CHA,D) in better agreement with experiment than does the

ILMR-PES. Also, variation of the HCH1 bending force constant,
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FI (1=1,2,3)° from 0.0001 to 0.568 mdyne—x in the SW BEBO3 and LEPS2
i b 1

models has no effect on the k(CHA,H)/k(CHA,D) KIE values. However,
the LMR-PES k(CH3,§D)/k(CH3,QH) and k(CD3,§D)/k(CD3,PH) KIEs agree with
experiment much better than the corresponding BEBO and LEPS KIEs

except for the BEBO3 model with the unrealistically small HCH, bending

1

force constant F = 0.0001 mdyne—x. Comparison of the BEBO3

¢i(i=1,2,3)
and LEPS2 k(CH3,§D)/k(CD3,QH) and k(CD3,§D)/k(CD3,QH) values as a

function of the FT values shows that as the HCH, force
! | 6, (1=1,2,3) y fore

constant becomes larger, these intramolecular isotope effects become
smaller and hence the agreement between theory and experiment worsens.

The LMR-PES predicts a value for the F of 0.18 mdyne-x which

¢i(i=l’2’3)
is comparable to but slightly smaller than both the median value used
by SW and the value assumed by KHT, see Table XVI.

In view of the results in Table XVII, the KIEs for the reactions
CH4 + H(D), CH3 + HZ(DZ) and CD3
indicating inadequacies in the LMR-~PES compared to the BEBO and LEPS

+ H2(D2) could be construed as

models relative to experiment. However, the results for the reactions
CH3 + HD and CD3 + HD in Table XVII could be taken to suggest that the
BEBO and LEPS models are inadequate relative fo the LMR-PES when
compared to experiment. These contradictory results are indicative of
one or more of the following. First, both the LMR-PES and the BEBO3,
LEPS2, BEBO, and LEPS models contain inadequacies specific to a
cerfain type of calculated KIE. Absolute reaction rate theory
requires that the correct potential energy hypersurface reproduce all
experimental KIEs assuming fhat the latter are accurate and precise.

Therefore, it seems illogical that a model could reasonably predict

results for only one of two related experiments. Second, the
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experimental determination of one type of KIE is subject to errors and
and the correction of these errors would lead to agreement between only
one theoretical model and experiment. Although this is not
inconceivable, it is impossible to tell which model (BEBO3, LEPS2,
BEBO, LEPS, or the LMR-PES) if any would best fit a set of revised
experimental results, provided the present results were found to be in
error. Empirical variation of various IMR-PES transition-state force
constants was attempted, but no completelﬁvself—consistent set of
isotopic frequencies could be found to reproddce the experimental
differences betwéen fhe CH

and CD, reactions with H2(D2) and HD. A

3 3

similar conclusion was reached by Shapiro and Weston.1
As seen in Table XVII, Ting and Weston observed normal inter-
molecular and intramolecular isotope effects on the abstraction of
. % . _
9 by hot CH3, that is, k(CH3,H2)/k(CH3,D2) = 2,12 and
13

k(CH3,§D)/k(CH3,QH) = 6.37 at 296°K. However, reaction of hot CD

hydrogen from H

3
wiﬂ1H2(D2)producedaninverseisotopeeffect,k(CDB,HZ)/k(CD3,D2)of
0.465.13 As discussed in Chapter I, these results are difficult to
interpret either qualitatively or quantitatively. Since a thermal
distribution of reactant energies is a prerequisite to the use of
absolute-reaction~rate theory, kinetic isotope effects can not be
calculated for these reactions by this approach.

For the hot-atom reactions T* + CH4 - CH3 + TD and T* + CDA -
CD3 + TD the hot atom yield ratios, [(HT/CH4)/(DT/CD4)], found
experimentally by Chou and Rowlandlo and éalculated by Raff2 are 1.43
and 1.18, respectively. The calculated yield ratio was obtained using

the IMR-PES, an integrated reaction probability equation, and reactant

and Broy moderator concentrations equivalent to those used by Chou and
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Rowland.z’10 Both the calculated and experimental yield ratios

assumably reflect the reaction of thermalized (or relatively station-~

ary with respect to H and T atoms) CH4 and CD4 with tritium atoms

possessing translational energies < 65 kilocalories/mole. The
temperature equivalent of. these translational energies is £ 22,000 °K.

In terms of equation (I-4) it is important to note that as T in °K

1 3a,b,11

approaches infinity VPXEXC approaches ZPE~ Thus, in the

1limit of high temperature the isotope effect for a given reaction

1

1L v+ ;y that is, the observed KIE is classical mechanical in

equals v o1}

origin. It is thus interesting to note, that for the abstraction

reactions of thermalized tritium atoms with CH, and CD4, the LMR-PES

4

predicts an "infinite'-temperature isotope effect, VTL/ViL’ of 1.19.

This value is in good agreement with both the experimental and hot
atom yield ratios. Thus, this agreement maybe tentatively taken to

*
suggest that in a reactive collision between T*and CH4 and T and CDA’

the T' atom translational energies are on the average sufficiently
large to obscure the differences in quantum mechanical effects for the

two reactions.
*

%
However, for the reactions CH3 + H2(D2) and CD3 + H2(D2) using

hot methyl radicals, the isotope effects reported by Ting and Weston,
kH/kD = 2.12 and 0.465, respectively, are not approximated by the

ij/viL ratios calculated for the corresponding thermal reactions,

vTL/viL = 1.327 and 1.328, respectively. The following comments are
thus pertinent. First, the agreement between the hot atom yield

b

11/ Vo1, ratio is merely fortuitous. Second, the CH

ratios and the v

3

and CD3 excitation energy involves principally internal rather than

translational modes of the radicals. It is to be noted that Chapman
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18

and Bunker claim isotope effects of 1.84 and 0.70 on the ratios of

reactive cross sections, o(CH )/O(CHB’DZ) and G(CDB’HZ)/O(CDB’DZ)’

3°H)
respectively. These results supposedly reproduce the corresponding

normal and inverse isotope effects reported by Ting and Weston12 for

*

*
CH3 + HZ(DZ) and CD3 + HZ(DZ)' Chapman and Bunker (CB) also claim

that these isotope effects do not reflect vibrational excitation in CH3

and CD3.18 However, their data does appear to show that vibrational

excitation of H, (or D2) does enhance the reaction rate and preserve

2
the unusqal isotope effect, as previously mentioned in Chapter I.18
However, these conclusions could be fortuitous, since each normal mode
frequency is assigned an apparently arbitrary dynamic energy which is
used to obtain and then adjust the internal coordinates of the molecule
to obtain some specified total energy for the molecule. It is not
clear whether this adjustmént procedure or the method of choosing the
initial energies allows for the proper representation of the CB
potential energy surface in these calculations. Also, the validity of

‘comparing isotopic reactive cross sections with the experimental

isotope effects of Ting and Weston is unclear.

Theoretical and Experimental

Temperature Dependences

The temperature dependences for the experimental KIEs in Table
XVII are compared to the temperature dependences of the corresponding
LMR-PES, BEBO, BEBO3, LEPS, and LEPS2 theoretically calculated KIEs
summarized in Tables XVIII through XXII. The ratio of the preexponen-
tial factors, AH/AD’ and the difference in activation energies for

labeled and unlabeled reactions, AE, was determined for each isotope



TABLE XVIII

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CH4,H)/k(CH4,D)a

‘AH/AD AR Temperature Referenceb .
(calories/mole) Range (°K) Source Source  Label

.391 + 0.003 -1000 * 2 396-969 2 LMR-PES
.903 + 0.053 -355 + 59 396-696 2,44 LMR-PES + Bell Tunneling
.38 ~500 % 300 500~732 12 KHT experimental result
.268 + 0.008 -541 + 6 396-696 14 BEBO3 FI - 0.0001 mdyne-8¢
.269 + 0.008 -541 + 6 396-696 14 BEBO3 Fj - 0.26 mdyne-8¢
.269 + 0.008 -541 + 6 396-696 14 BEBO3 Fi  0.658 mdyne-8°
.263 *+ 0.008 -475 + 6 396-696 14 LEPS2 Fi - 0.0001 mdyne-8¢
.264 + 0.008 ~476 *+ 6 396-696 14 LEPS2 Fi = 0.26 mdyne-89
.265 + 0.008 -477 + 6 396-696 14 LEPS2 Fi = 0.568 mdyne-3°

9L



TABLE XVIII (Continued)

AH/AD AE Temperature Referenceb
(calories/mole) Range (°K) Source Source® Label
1.224 = 0.007 -561 = 6 396-696 12 BEBO
1.261 £ 0.008 -469 * 6 396-696 12° .LEPS

a : . .
All results except experimental results are from the least squares fits to equation (III-13) for
12 temperatures over the specified range. All deviations are standard deviations.

References from which the experimental values and/or the force constants and geometries used
for the theoretical calculations were obtained.

c . . .
Describes information obtained from the references.

dpt _

. » see Table XVI.
¢ o;(i=1,2,3)7 55 TEE

LL




TABLE XIX

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CHS’HZ)/k(CHB’DZ)a

AH/AD AE Temperature Referenceb
(calories/mole) Range (°K) Source Source® Label

.483 £ 0.009 201 + 6 396-696 2 ILMR-PES
.612 * 0.064 1584 + 102 396-696 2,44 IMR-PES + Bell Tunneling
.911 * 0.020 1327 £ 24 » 399-645 14 SW experimental
.194 (0.659)d 1760 (707)d 403-564 15 WS experimental.
.246 + 0.134 2516 * 613 ' o
1809 + 0.673)d (1560 + 1693)d 408-571 16 MS experimental

1100 409-591 17 DB experimental
.337 £ 0.013 1028 + 10 396-696 14 BEBO3 Fj =0.0001 mdyne-8°
.455 + 0.018 822 = 12 396-696 - 14 BEBO3 Fj = 0.26 mdyne-ge
.540 + 0.019 646 * 13 396-696 14 BEBO3 Fj = 0.568 mdyne-8°

8L




TABLE XIX (Continued)

AH/AD AE Temperature Referenceb c
(calories/mole) Range (°K) Source Source Label

1.379 + 0.016 993 + 12 396-696 14 LEPS2 F:::o_OQOIHQyne_Xe
4 e

1.488 = 0.020 801 + 14 396-696 14 LEPS2 F& = 0.26 mdyne—R

1.566 + 0.021 635 + 14 396-696 14 LEPS2 Fz = 0.568 mdyne-R€

1.533 = 0.019 777 = 13 : 396-696 12 BEBO

1.484 + 0.020 809 + 14 ‘ 396-696 12 LEPS

3A11 results except experimental resulis are from the least squares fits -to equation (III-13) for 12
temperatures over the specified range. All deviations are standard deviations.

b . . .
References from which the experimental values and/or the force constants and geometries used for the
theoretical calculations were obtained.

C. . . . .
Describes information obtained from the references.

dValues in parentheses are calculated by a different method, see text.

eF% = F* (i=1,2,3), see Table XVI.
6~ Yo,

6L



TABLE XX

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CDB’ Hz)/k(CD3,D2)

AH/AD AE Temperature Referenceb o
(calories/mole) Range (°K) Source Source Label

1.488 + 0.010 197 + 7 396-696 2 'LMR-PES
0.616 * 0.964 1576 + 101 396-696 2,44 LMR-PES + Bell Tunneling
1.592 + 0.124 588 + 70 402-611 14 SW experimental
3.724 (1.702)d -201 (714)d 410—572 15 WS experimental
(i:éé; i 8:2;3) (1183 i Zgg)d 407-570 16 MS experimental
1.339 £ 0.013 1027 = 10 396-696 14 BEBO3 Fi==0.0001nﬁyne-ge
1.466 + 0.018 813 + 13 396-696 14 BERO3 Fj = 0.26 mdyne-8°
1.572 £ 0.021 616 *+ 14 396-696 14 BEBO3 Fi = 0.568 mdyne—ge

08




TABLE XX (Continued)

AH/AD AE Temperature Referenceb o
(calories/mole) Range (°K) Source Source Label
1.380 £ 0.016 992 + 12 396-696 14 LEPS2 Fi = 0.001 mdyne-8
+ e
1.497 £ 0.021 792 £ 14 396-696 14 LEPS2 F¢ = 0.26 mdyne—g
% e
1.595 + 0.023 607 + 15 396-696 - 14 LEPS2 F| = 0.568 ndyne-&
1.490 + 0.019 777 = 13 396-696 12 BEBO
1.493 + 0.021 800 + 14 396-696 12 LEPS

aAll results except experimental results are from the least squares fits to equation (III-13) for 12

temperatures over the specified range.

All deviations are standard deviationms.

b . . .
References from which the experimental values and/or the force constants and geometries used for the

theoretical calculations were obtained.

c . . . .
Describes information obtained from the references.

d .
Values in parentheses are calculated by a different method, see text.

ext _ ¢t
Fo ™ T, (11,2,

, see Table XVI.
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TABLE XXI

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CH3,I:ID)/k(CH3,]3H)a

AH/AD AE Temperature Referenceb
(calories/mole)  Range (°K) Source Source® Label

.083 + 0.003 379 + 3 396-969 2 LMR-PES
.761 + 0.027 945 + 36 396-696 2,44 IMR-PES + Bell Tunneling
.283 £ 0.258 1929 £ 690 367-651 14 SW experimental

d a )
.452 1350 408-569 15 WS experimental
.170 * 0.002 330 + 2 396-696 14 BEBO3 FI = 0.0001 mdyne-8°

4 e

.273 + 0.001 125 + 1 396-696 14 BEBO3 F| = 0.26 mdyne-%
.346 + 0.001 -51 + 1 396-696 14 BEBO3 FI = 0.568 mdyne-8°
.213 * 0.001 154 + 1 396-696 14 LEPS2 Fi = 0.0001 mdyne-&°

c8



TABLE XXI (Continued)

AH/AD AE Temperature Referenceb C
(calories/mole Range (°K) Source Source  Label
1.308 £ 0.002 -362 £ 1 396-696 14 LEPS2 Fi = 0.26 mdyne—xe
1.375 £ 0.002 =201 = 1 396-696 14 LEPS2 Fj = 0.568 mdyne Re
1.278 + 0.001 120 + 1 396-696 12 BEBO
1.309 * 0.002 -44 £ 1 396-696 12 LEPS

a . . .
All results except experimental results are from the least squares fits to equation (ITII-13) for 12
temperatures over the specified range. All deviations are standard deviations.

References from which the experimental values and/or the force constants and geometries used for
the theoretical calculations were obtained.

c . .

Describes information obtained from the references.

d ,

Average of the results at two different reactant pressures.

eFI _

. , see Table XVI.
¢i(1_1,293)
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TABLE XXII

EXPERIMENTAL AND THEORETICAL TEMPERATURE DEPENDENCES FOR k(CD3,§D)/k(CD3,pH)a

AH/AD AE Temperature Ref erenceb
(calories/mole) Range (°K) Source Source® Label
.085 + 0.003 375 + 3 396-696 2 LMR-PES
.764 + 0.027 939 + 35 396-696 2,44 LMR-PES + Bell Tunneling
.932 = 0.133 546 * 131 402-611 14 SW experimental
.698 0 410-572 15 WS experimental
4 d
.171 *+ 0.002 329 + 2 396-696 14 BEBO3 F| = 0.0001 mdyne-R
.282 + 0.001 115 + 1 396-696 14 BEBO3 F = 0.26 ndyne-8
4 d
.374 + 0.002 -82 + 2 296-696 14 BEBO3 F| = 0.568 ndyne-%
4 d
.214 + 0.001 153 + 1 396-696 14 LEPS2 F] = 0.0001 mdyne-%
4 d
.316 * 0.002 —46 + 1 396-696 14 LEPS2 F| = 0.26 ndyne-8

78



TABLE XXII (Continued)

AH/AD AE Temperature Referenceb
(calories/mole) Range (°K) Source Source® Label
1.401 + 0.003 -230 £ 2 396-696 © 14 LEPS Ft - 0.568 mdyne-8¢
1.289 £ 0.001 109 + 1 396-696 12 BEBO
+ + 2 396-696 : 12 LEPS

1.317 £ 0.002 -54 +

aAll results except experimental results are from the least squares fits to equation (III-13) for
12 temperatures over the specified range. All deviations are standard deviations. The atom
underlined is being abstracted.

b . . .
References from which the experimental values and/or the force constants and geometries used for
the theoretical calculations were obtained.

c . . . .
Describes information obtained from the references.

d + *
F, =TF . » see Table XVI.
¢ ¢i(1_‘192:3)

68
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effect by applying equation (IITI-13) to the KIE data using the method

of least squares.

1n<kl/k2) = 1n(A1/A2) + AE/RT (I11-13)

In (I1I-13) the subscripts 1 and 2 refer to the light and heavy‘
isotopes, respectively, and kl/k2 is the KIE at a specific temperature
T in °K.

For the isotope effect k(CHA,H)/k(CHA,D), the data in Table XVIIT
shows that the error in the KHT experimental AE value encompasses all
but the IMR-PES AE value. The application of Bell tunneling to the
ILMR-PES KIEs apparently over-corrects the LMR-PES AE value, but
it does cause the value to fall within the error bounds of the
experimental value. However, inclusion of the Bell tunneling correc-—
tion produces a calculated AH/AD value of 0.903 which is lower than
either the experimental value, 1.38, or the values obtained from the
various BEBO and LEPS models. As previously mentioned the improve-
ment in the agreement with experiment by application of tunneling
may be more 1ndicative of inadequacies in either one or more of
the theoretical models or in the experimental results or both than
the existence of tunneling. The maximum error in the experimental
AH/AD value, 1.38, is estimated by KHT to .probably be within * 0.14.12
However, due to the experimental problems discussed in Chapter I, this
AH/AD value, 1.38, and the associated error were estimated
using simple collision theory.12 It should be noted that

changes in the value of F has no more

¢i_(i=ls 2,3)
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effect on the calculated Arfhenius equation parameters than it does
on the k(CHA,H)/k(CHA,D) values in Table XVITI.

As seen in Table XIX, the AE for the reaction CH3 + H2(D2)
calculated from the experimental KIEs is greater than the values
obtained from the isotope effects calculated without inclusion of
tunneling; the lowest value being that from the LMR-PES data. For the
IMR-PES, inclusion of Bell tunneling into the isotope effects
significantly improves the agreement between predicted and experimental
AE values. However, this result does not necessarily indicate that
tunneling is present. Precise comparison between theory and experi-
ment is necessarily precluded by the considerable discrepancies
between the experimental AE values. The individual experimental AE
values differ by more than the uncertainties measured for any one
reported value. The experimental AH/AD Valueé in Table XIX seem too
low except for the value reported by SW.14 The differences in these
experimental AH/AD values may be at least partially dﬁe to the
experimental technique. Davison and Burton17 and SW14 determined their
KIE values for the reaction of methyl radicals with a mixture of H

2

and D2, whereas Whittle and Stegcie15 aﬁd Majury and Steacie16 reacted
methyl radicals with H2 or D2 separately. Davison and Burton (DB)
defermined their AE value by fitting a line to their KIE values
assuming a steric factor ratio of unity. The collision theory
equation used by DB is equivalent to the Arrhenius equation used by SW
except that the steric factor ratio (51/82) must be multiplied by a
collision number ratio (Cl/CZ) to obtain a value equivalent to the

AH/AD values given by fitting data to (III-13). The collision number

ratio, Cl/CZ’ is given by
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2
1/M + 1/M
G(CHB,HZ) CH3 ",

+
CH3 1/MD2

c,/c, =
172 O(CH3,D2)- 1/M

(I11-14)
where the M values are molecular weights of the species specified in
the subscript and the o values are the collision diameters of the
reactant species.l7 Assuming the same collision diémeter for H2 and
D2, a C1/C2 value of 1.337 is obtained from (III-14) using the masses
(in amu): C= 12; H = 1.007825; D = 2.0141. Therefore, the S_C /SZC

171
value 1.337 could be taken as the AH/AD associated with the DB AE

2

value of 1100 calories/mole and could be comparea to the other AH/AD
values in Table XIX. The Arrhenius parameters reported by Whittle
and Steacie (WS)15 and by Majury and Steacie (MS)16 were calculated
from rate constants obtained by two methods. THese-two different
methods are only applicable to the determination of the individual
rate constants for the reactions CH3 + D2 and CD3 + H2 which are

used to calculate the Arrhenius parameters in Table XIX and Table XX,
respectively. The values obtained by using method I rate constants
are given in parentheses in Tables XIX and XX. For method I the rate
constants were calculated by subtracting the concentration of methane
obtained from photolysis of acetone alone from the total concentration
of isotopic methanpes obtained from photolysis of acetone or

acetone-d, in the presencelbf D, or H, to obtain the concentration of

6 2 2

CH3D or CD3H, respectively. These concentrations are ngeded to

determine the individual rate constants for formation of CH_D or

3
15,16

CD,H, respectively. For method II, rate constants were obtained

3

from mass spectrometric determination of the ratios [CHBD]/[CH4] or
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[CD3H]/[CD4] in the product gases from phofolysis of acetone or

15,16

acetone-d, in the presence of either D, or H,, repectively. The

6 2 2

individual k(CHB,HZ)/k(CH3,D2) and k(CD3,H2)/k(CD3,D2) values that
were reported in Table XVII and attributed to MS were calculated by
us using the rate constants reported by MS in a summary table and are
averages of the method I and method II rate constant values.
However, WS considered the method II rate constants to be the more
accurate. Therefore, the k(CHB’HZ)/k(CHS’DZ) and k(CD3,H2/k(CD3,D2)
values reported in Table XVII in the column labeled WS were calculated
using the method II rate constants k(CH3,D2) and k(CD3,H2).15 WS
did not report individual method I rate constant values in their
summary table from which the other WS values in Table XVII were
calculated.15 It should be noted that the rate constants for reaction
of CH3 + H2 and CD3 + D2 could only be determined by method I.
Therefore, the generally better agreement between the method I
Arrhenius equation parameters given in parentheses in Tables XIX and XX
for M816 and WSlS, and the parameter values reported by Shapiro and
Weston14 and by Davison and Burton17 reflects the probable cancella-
tion of consistent errors in the method I values yielding reasonably
accurate KIEs. Although, the method II rate constants determined by
MS16 and WS15 may be more accurate, by themselves, the KIEs
determined by a ratio of one method I and one method II rate constant
may actually compound the error of each rate constant into a greater
error in the resultant KIE value.

The data in Tables XIX and XX clearly show that transition state

theory predicts only negligible differences between the

k(CHB’HZ)/k(CHB’DZ) and k(CD3,H2)/k(CD3,D2) Arrhenius parameters
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are in serious disagreement with this prediction. Furthermore, for

the reactions of CH3 and CD3 with H2 and D2 the LMR-PES and SW

transition-state force constants could not be arbitrarily adjusted to
produce a single set that would produce a variation in the KIEs and
Arrhenius parameters comparable to the variation in the experimental

values. It can be seen that decreasing the F force

) ¢i(i=l,2’3)
constants from 0.568 to 0.0001 mdyne—g increases the calculated AE

values and decreases the AH/AD values. Therefore, the BEBO3 and

LEPS2 Arrhenius parameters calculated using F =(.0001

¢i(i=l’2’3)
mdyne—x are in much better agreement with the Table XIX experimental
results than those using larger F¢i(i=l,2,3) values. However, a force

constant value of F = 0.568 mdyne—x produces BEBO3 and

¢i(i=l,2,3)
LEPS2 theoretically calculated Arrhenius parameters in best agreement
with the experimental values in Table XX. Similarly for the LMR-PES,
other transition-state force constants including off-diagonal cross-
term force constants can be adjusted to produce KIEs and Arrhenius

parameters which are in agreement with one but not both of the

CH, + H2(D2) or CD

3 + HZ(DZ) experimental values.

3
The k(CH3,§D)/k(CH3,QH) and k(CD3,ﬂD)/k(CD3,QH) Arrhenius para-
meters are given in Tables XXI and XXII, respectively. The LMR-PES
- gilves kH/kD values which lead to AH/AD and AE values in much»better
agreement with experiment than are the values predicted by the BEBO3,
LEPS2, BEBO and LEPS models. This result is opposite to that
observed for the reaction of CH3 and CD3 with H2 and D2. As can be
seen, the reproducibility in the AH/AD and AE values derived from

experiment leaves much to be desired. Also, as in Tables XVIII

through XX the addition of Bell tunneling to the LMR-PES wvalues



improves the agreement with experiment for reactions involving CH, or

4
CH3 radicals but tends to over-correct those values obtained for reac-
tions involving CD3 radicals. The differences in the values reported
by both Swl4 and WSl5 between the experimental AE values in Table XXI
and the corresponding values in Table XXII are about 1.4 kilocalories/

mole. However, for each isotope effect the AE value reported by swl4 is

about 500 calories/mole greater than the AE values reported by WSIS.

This latter difference is most pronounced in Table XXII where WS report
the isotope effect is temperature independent. Since the rate determin-
ing step involves transfer of either H or D, the result is clearly in-
correct and casts doubt upon the experimental results obtained by Whittle
and Steaciels. For the theoretically calculated Arrhenius parameters,

it can be seen that the LEPS2 and BEBOé models predict increasingly

large AH/AD values and decreasing'AE values which actually become nega-
tive as Fii(i=l,2,3) increases. It should also be noted that the error
bounds on the SW AE values do not encompass any of the theoretically

calculated AE values, although the LMR-PES AE and AH/AD values are

closer to the SW experimental result than any other theoretical result.

Theoretical Primary Carbon Effects

Tables XXIII and XXIV tabulate 13-carbon isotope effects and their
temperature dependences based upon the LMR-PES. These tables also pre-
sent 13-carbon KIEs based upon BEBO12 and BEB0314 models. These latter
values are based upon force constants and geometry that were also used
to calculate secondary u—deuterium isotope effects (see below).
Although k.,/k,, for both reactions are no where maximal, the k(CH4,H)/

12° 713
13

k( CHA,H) are much larger than k(CHB,Hz)/k(lBCH ’HZ)' This result is

3



TABLE XXIII

COMPARISON OF k(CH4,H)/k(13CH4,H) RESULTS?

Transition State Theory Results Arrhenius Resultsb
Activated Complex  Temperature Al/A2 Temperature

Used °K MMT EXC ZPE KIE AE Range °K

IMR-PES® 296 1.002 0.999 1.034 1.035 _s
546 1.002 0.998 1.018 1.018 0.999 *+ 3 x 10 ~ 21.1 % 0.02 273-546

BEBOd 296 1.003 0.999 1.020 1.022 _s
546 1.003 0.998 1.010 1.011 0.999 * 7 x 10 ~ 13.0 * 0.06 273-546

BEBO3® 296 1.003 0.993 1.032 1.028 s
546 1.003 0.993 1.017 1.013 0.995 * 4 x 10 ~ 19.0 * 0.03 273—54§

BEB03f 296 1.003 0.999 1.006 1.008 _s
546 1.003 0.999 1.003 1.005 1.001 £ 3 x 10 3.9 * 0.03 273-546

a .
For purposes of comparison all results were calculated using the IMR-PES reactant data with the
activated complex parameters from the specified source.

bResults obtained by linear least squares fit of 1In(kjs/k13) versus T T for 12 values over the
specified temperature range. See Appendix D. AE is in calories per mole.

CCalculated using the LMR-PES data.
dCalculated using the BEBO activated complex data from Reference 12.

®Calculated using the BEBO3 activated complex data with Fi (i=1,2 3)=0.0001.mdyne—XfroaneferenceIA.
J\LTLs 4

fCalculated using the BEBO3 activated complex data with F+

¢i(i=l,2,3)=0'568 mdyne—g from Reference 14.

c6



COMPARISON OF k(CH3,H2)/k(13CH

TABLE XXIV

3

JH) RESULTS?

Arrhenius Resultsb

Transition State Theory Results
Activated Complex Temperature Al/A2 Temperature

Used °K MMI EXC ZPE KIE AE Range °K

IMR-PES® 296 1.008 0.999 0.999 1.006 1.006 £ 4 x lO—5 0.4 £ 0.03 273-546
546 1.008 0.998 1.000 1.006

BEBOd 296 1.009 0.999 0.985 0.993 1.007 =+ 1 x 10_4 -7.7 £ 0.09 273-546
546 1.009 0.998 0.992 0.999

BEBO3® 296 1.009 0.993 0.997 0.999 1.002 + 1 x 10—5 -1.8 + 0.01 273-546
546 1.009 0.993 0.999 1.001

BEBO3f 296 1.009 1.000 0.972 0.979 1.008 £ 9 x 10_5 -16.8 +* 0.07 273-546
546 1.009 1.000 0.984 0.993

£6



TABLE XXIV (Continued)

Transition State Theory Results Arrhenius Resultsb
Activated Complex Temperature Al/A2 Temperature
Used °K MMI EXC ZPE KIE AE Range °K
Pimentel® 296 1.008 1.000 0.995 1.003 1.007 £ 7 x 10“5 -2.7 * 0.05 273-546
546 1.008 1.000 0.997 1.005

a . . .
For purposes of comparison all results were calculated using the IMR-PES reactant data with the
activated complex parameters from the specified source.

bResults obtained by linear least squaresfitln(klz/k13)Vs.T_l for 12 values over the specified
temperature range. See Appendix D. AE is in calories per mole.

CCalcﬁlated using the IMR-PES data with Gaussian 70 out-of-plane bending frequency values.
dCalculated using the BEBO activated complex data from Reference 12.

®Calculated using the BEBO3 activated complex data with F =0.0001 mdyne—g,fromlleference 14.

$4(i=1,2,3)

fCalculated using the BEBO3 activated complex data with F =0.568 mdyne—g from Reference 14.

¢i(i=l,293)

gCalculated using the LMR-PES data with out-of-plane bending frequency values correspending to the
harmonic values from Reference 38. .

%6
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not unreasonable qualitatively since reaction (I-1) involves almost
total breaking of the C—Hl bond in passing from reactant-state to the
transition state (that is, the transition-state configuration for (I-1)
is very product-like). However, the small primary carbon effect for H

atom abstraction on CH4 reflects the fact that the loss in the fre-

quencies associated with the C-H., bond being broken is compensated to a

1

large extent by the frequencies associated with the Hl—H6 bond being

formed. Conversely, for reaction (I-2) passing from the reactant state

to the transition state involves very little of both H bond breaking

-H
16
and C—-Hl bond making (that is the transition state for reaction (I-2) is

very reactant-like). Since the 13-carbon KIE is largely dependent on

frequency changes associated with the C~H, bond and reaction (I-2) in-

1

volves less of a change in the C—Hl bonding in passing from reactant
state to transition state than reaction (I-1), then the Table XXIV KIEs
for reaction (I-2) tend to be less than the corresponding KIEs for reac-
tion\(I—l). Also, the BEBO3 13-carbon effect using Fii(i=l,2,3) = 0.568
mdyne—x gives an inverse KIE for reaction (I-2) and a very small KIE

for reaction (I-1). Comparison of the BEBO and BEBO3 13-carbon KIEs
shows that all the KIEs values become lower or more inverse as the

value of F¢i(i=l,2,3) is increased. This is the result of the effect

of the F, (i=1,2,3) values on the frequencies most strongly associated
i
with the C—Hl bond in the transition state. Specifically, the carbon

effect is the result of differences in the CH, asymmetric stretching,

3

v_, and degenerate bending, v frequencies in the activated complex

5 6’

and their corresponding reactant state values. The 2 and 7 activated

complex frequencies for the symmetric and asymmetric motion along the

reaction coordinate, respectively, also contribute to the carbon effect.
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However, the vy and Vg linear bending frequencies are virtually unaf-
fectéd by isotopic carbon substitution. It should be noted that the
values labeled "Pimentel" in Table XXIV are calculated with all LMR-PES
harmonic frequencies except the isotopic out-of-plane bending frequen-
cies which are calculated using a harmonic force constant adjusted to

produce a CH, out-of-plane bending frequency of 607 cm_l which corre-

3
sponds to the spectroscopic frequency reported by Tan, Winer and
Pimentel (also, see discussion of this force constant in the secondary
a-deuterium KIE section).38 The 13-carbon KIE calculated using this
frequency is normal but exhibits an inverse temperature dependence.

The LMR-PES 13-carbon KIE using the Gaussian 70 out-of-plane bending

frequency is normal with a very small normal temperature dependence.

This difference is the result of the smaller isotopic change in
the "Pimentel" calculated, 607 cm—l, than the Gaussian 70 calculated,

847 cm—l, CH., out-of-plane bending frequencies.

3
Precise experimental determinations of carbon isotope effects for
reaction (I-1) and/or (I-2) would allow some additional insight into
which one if any of the LMR-PES, BEBO and BEBO3 theoretical models have
any validity. Also, carbon effects could be intepreted and contrasted
with the primary effects already discussed to give a more quantitative
description of the bonding that occurs in the transition state for the

abstraction reaction. This information could possible be used to con-

struct a better theoretical model of the reaction hypersurface.

Theoretical Secondary a-Deuterium Effects

"Exact" calculations for model reactions within the framework of

absolute rate theory show that secondary a-deuterium isotope effects are



TABLE XXV

COMPARISON OF SECONDARY o-DEUTERIUM k(CH4,H)/k(CD3H,H) RESULTS®

Transition State Theory Results Arrhenius Resultsb
Activated Complex Temperature Ai/A2 Temperature

Used °K MMI EXC ZPE KIE AE Range °K

LMR-PES® 296 1.319 0.858 1.395 1.579
546 1.319 0.771 1.198 1.218 0.889 + 0.002 332 £ 2 273-546

BEBOd 296 1.274 0.903 1.123 1.293
546 1.274 0.830 1.065 1.127 0.962 = 0.003 175 + 2 273-546

BEBO3® 296 1.275 0.645 1.832 1.507
546 1.275 0.642 1.389 1.136 0.807 + 0.003 367 + 2 273-546

BEBOSf 296 1.275 0.930 9.601 0.712
546 1.275 0.879 0.759 0.850 1.052 + 0.002 -229 + 1 273-546

a X
For purposes of comparison all results were calculated using the LMR-PES reactant data with the
activated complex parameters from the specified source.

. -1
Results obtained by linear least squares fit of In(kyg/kp) vs. T = for 12 values over the specified
temperature range. AE is in calories per mole. Deviations are standard deviations.

CCalculated using the IMR-PES data.

dCalculated using‘the BEBO activated complex data from Reference 12.

®Calculated using the BEBO3 activated complex data with FI,(1=1,2,3)==0-0001 mdyne—g from Reference 14.
i

fCalculated using the BEBO3 activated complex data with F+ (i=1,2 3)==O.568 mdyne—x from Reference 14.
1 (15454,

L6
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principally determined by the change in the a-hydrogen to carbon to

leaving (entering) group bending force constants [F+ (i=1,2,3)] in pass-
i .
ing from the reactant state to the transition state.Bb_d Since SW

varied F+ (i=1,2,3) in their BEBO3 activated-complex models, the small-
i
est and largest values of these force constants were used with the
other reported BEBO3 parameters in Table XVI to calculate secondary
14 12
o-deuterium KIEs. The BEBO parameters reported by KHT  were also
used to calculate secondary o-deuterium KIEs since their reported

F+ (i=1,2,3) value is almost the same as the median value used by swl4,

i
see Table XVI. For purposes of comparison, the LMR-PES reactant-state

frequencies and parameters were used in all the secondary o-deuterium
KIE calculations. The secondary o-deuterium KIEs for reaction (I-1) are

presented in Table XXV. Obviously, using the very large FI (i=1,2,3)
i

value of 0.568 mdyne—g in the BEBO3 model14 has a dramatic effect on the
secondary o-deuterium KIEs; it produces inverse KIEs while the LMR-PES ,
BEBO12 and the BEBO3 with FI (i=1,2,3) = 0.0001 mdyne—x all predict nor-
mal KIEs. This change to anlinverse KIE for large values of FI (i=1,2,3)
occurs because the differences in the isotopic activated—comple; fre-
quencies exceeds the differences in the isotopic reactant frequencies

as is evidenced by the ZPE values in Table XXV. The differences in the
MMI terms are the result of the differences in the activated complex
geometries which produce different moments of inertia about the car-
tesian coordinate axes. The method of calculating these moments of
inertia about the cartesian coordinate axes is given in Appendix B.

The Arrhenius aqtivation—energy differences, AE, and preexponential
factors (A,/A,) for the LMR-PES and BEBO3 [FI.(i=l,2,3) = 0.0001

i
mdyne—X] appear to show the best agreement in both Table XXV and Table
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XXVI. However, this agreement is apparently due to a fortuitous set of

compensating factors. As seen in Table XXVI all secondary o-deuterium

isotope effects for reaction (I-2) are inverse. The large F+ (i=1,2,3)
i
0.568 mdyne—x for BEBO3 merely causes the secondary KIE to become more

inverse. The more inverse KIEs for larger F=|= (i=1,2,3), as expected,

b

i
show a larger negative AE compared to the other AE values in Table XXVI.

It should be noted that the LMR-PES isotopic CH, normal-mode frequencies

3
are used in-all the secondary KIEs in Table XXVI and include the iso-
topic out-of-plane bending frequencies calculated using the Gaussian 70
out—-of-plane bending force constant given in Chapter II, except for the
KIEs labeled Pimentel. The o effects labeled as Pimentel are based on
the use of the out-of-plane bending normal mode frequency calculated
using the out-of-plane bending force constant of Tan, Winer and Pimentel
(TWP).38 These authors obtained this force constant from their spectro-
scopic frequencies.38 It should be noted that their reported force
constant could not be weighted or adjusted in such a way as to exactly
reproduce the harmonic frequencies that TWP report having calculated.38
However, the difference is negligible, both our calculation and TWP

give 607.0 cm_l for CH3, but TWP gives 470.2 cm_l for CD3 compared to

our 470.5 cm—1 for CD3. The various isotopic CH3 harmonic normal-mode
frequencies that were calculated using this force constant are tabu-
lated in Appendix C. Harmonic normal-mode frequencies were used
instead of spectroscopic methyl radical frequencies for three reasons:
First, TWP did not report spectroscopic frequencies for all the iso-
topic methyl radicals needed. Second, for the purpose of cénsistency,

all other frequencies used to calculate the KIEs are harmonic normal-

mode frequencies. Third, the use of spectroscopic frequencies for the



TABLE XXVI

'COMPARISON OF SECONDARY o-DEUTERIUM k(CHB,HZ)/k(CD3,H2) RESULTS?

Transition State Theory Results Arrhenijus Resultsb
Activated Complex Temperature Al/A2 Temperature

Used °K MMI EXC ZPE KIE AE Range °K

IMR-PES® 296 1.669 0.871 0.577 0.838 1.138 + 0.008 -179 = 5 273-546
546 1.669 0.773 0.742 0.958

Pimenteld 296 1.669 0.895 0.506 0.756 1.190 + 0.010 -266 £ 3 273-546
546 1.669 0.800 0.691 0.923

BEBO3f 296 1.613 0.917 0.464 0.686 1.217 + 0.001 -336 £ 6 273-546
546 1.613 0.833 0.660 0.886

BEBOBf 296 1.613 0.655 0.757 0.800 1.021 = 0.002 =144 + 1 273-546
546 1.613 0.644 0.860 0.894

00T



TABLE XXVI (Continued)-

Transition State Theory Results Arrhenius Resultsb
Activated Complex Temperature Al/A2 Temperature
Used °K MMI EXC ZPE KI1IE AE Range °K
BEBO3® 296 1.613 0.943 0.248 0.377 1.331 + 0.009 -739 = 5 273-546
546 1.613 0.882 0.470 0.668

qror purposes of comparison all results were calculated using the LMR-PES reactant data with Gaussian-70
out-of-plane bending frequencies (unless specified otherwise) with the activated complex parameters
from the specified source.

bResults obtained by linear least squares fit of 1In(kp/kp) vs. T_l for 12 values over the specified
temperature range. See Appendix D. AE is calories per mole.

®Calculated using the LMR-PES data with Gaussian-70 out-of-plane bending frequencies.

dCalculated using the LMR-PES data with the methyl radical out-of-plane bending frequencies corresponding
to the calculated harmonic values in Reference 38.

eCalculated using the BEBC activated complex data from Reference 12.

f
Calculated using the BEBO3 activated complex data with F+ =0.0001 mdyne—g from Reference 14.

¢i(i=152’3)

Bcalculated using the BEBO3 activated complex data with F (i=1,2.3) = 0.568 mdyne—x from Reference 14.
q)i_a,

10T
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out-of-plane bending mode in the transition-state-theory calculation
would only raise the KIE by about 2-5 percent over the KIE calculated
using harmonic frequencies. The Pimentel KIEs in Table XXVI have a
slightly greater more inverse temperature dependence than the corre-
sponding KIE calculated using the Gaussian 70 force constant. However,
this difference is smaller than the differences in the transition-state
theory KIEs obtained using the BEBO and BEBO3 models.

Careful experimental determination of the KIEs in Tables XXV and
XXVI might help distinguish which model if any adequately describes the
real reaction hypersurface. The experimental rate constants reported
by Majury and Steacie (MS)16 and Whittle and Steacie (WS)15 can be used
to calculate secondary o-deuterium isotope effects. The values for
k(CH,,H,) /k(CD,,H ) are 0.91, 0.80, and 0.72 for MS'°, and 0.85, 0.69,
and 0.60 for WSl5 at the temperatures 403, 483 and 563 OK, respectively,
using the method I rate éonstants for k(CD3,H2). For the method II

k(CD3,H2) values, the experimental k(CH )/k(CD3,H2) isotope effects

3
are 0.89, 0.71, and 0.62 for MS,16 and 1.23, 0.83, and 0.64 for WS15 at
403, 483, and 563 OK, respectively. Obviously, these experimental
secondary o~deuterium KIEs become more inverse with increasing tempera-
ture. This experimental result defies both logical and theoretical
predictions, since isotopic substitution should become less important
at higher temperatures, especially at temperatures well above room
temperature, and the KIEs should approach unity (or vTL/viL) as the
temperature increaées. Nevertheless, the individual experimental KIEs
are all inverse, except for one WS value at 403 oK, as are all of the

theoretical KIEs, and the magnitudes of the experimental and theoretical

KIEs are not greatly different. Therefore, one can conclude that the
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frue secondary a-deuterium KIE for the reaction CHB(CD3) + Hz‘is most
likely inverse. However, the experimental temperature dependence for
this reaction is questionable. The transition-state theory calculated
KIEs in Table XXVI have more reasonable temperature dependences than
experiment. Therefore, a more accurate determination of the experimen-
tal secondary o-—deuterium KIE for this reaction would be very helpful
in quantifying the theoretical results. Quantitative comparison of
the present theoretical and experimental KIEs is virtually impossible
or at best meaningless due to the opposing trends of their temperature
dependences.

The fact that the transition-state theory secondary o-deuterium
KIEs for reaction (I-1) of CHA(CDBE) + H in Table XXV produces normal

KIEs and for reaction (I-2) of CH3(CD3) + H, in Table XXVI produces in-

2
verse KIEs is explained by the change in bonding between reactants and

activated complex. For reaction (I-1) the HCH1 bending force constant,

F¢ (i=1,2,3), is usually reduced to a smaller FI (i=1,2,3) in the

i i
activated complex. This means that a-deuterium substitution produces

less change in the normal-mode frequencies in the activated complex
than in reactants. This produces a normal KIE. However, if

F, (1=1,2,3) < F+ (i=1,2,3), as is the case with one BEBO3 value in
¢, b5
Table XXV and all the KIEs in Table XXVI, then inverse KIEs are pro-

duced. The inverse BEB0O3 KIE in Table XXV is the result of the unreal-
istic assumption that F¢ (i=1,2,3) = FI (i=1,2,3). However, the in-

i i
verse KIEs in Table XXVI for reaction (I-2) are the result of more

bonds being associated with the a-deuteriums in the activated complex

than in the reactants (that is, there is no F¢ (i=1,2,3) value in the
i
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reactants, since there is no C—Hl bond). Therefore, the a-deuterium
substitution in reaction (I-2) causes a greater change in the normal
mode frequencies in the activated complex than in the reactants. Ob-
serving the form of the equations (I-3) and (I-4), it is then reasonable
that the secondary a-deuterium KIEs in Table XXVI should be inverse and
the corresponding KIEs for reaction (I-1) in Table XXV should be normal.
A comparison of the magnitude of the MMI terms in Tables XXIII and
XXIV show that the BEBO and BEBO3 models have somewhat larger MMI values
than the LMR-PES. However, in Tables XXV and XXVI for the secondary
o—deuterium KIEs the MMI terms using the BEBOQand BEBO3 models are
smaller than the‘corresponding MMI values for the LMR-PES. The differ-
ence in these MMI relationships is directly related to the differences
in the activated complex geometries. The LMR-PES has longer non-react-
ing C-H bond lengths than does either the BEEO or BEBO3 models. There-
fore, the a—-deuterium atom substitution causes a greater change in the
moments of inertia for the LMR-PES isotopic configurations than in the
BEBO and BEBO3 models. Similarly, differences in the C-H, reacting
bondlength create slightly greater differences in the 13-carbon MMI

terms for BEBO and BEBO3 models than for the LMR-PES.

The Effect of Transition-State Geometry on the

Isotope Effects

Shapiro and Weston (SW) report that a change in the geometry of
the CH3 group relative to the C-H-H entity in the activated complex
from tetrahedral to planar produced significant changes in the activated-

14
complex normal-mode frequencies. However, these authors found for

the reaction CH3 + H2 that this geometry change altered the primary



105

KIEs by less than one percent.14 The effect of CH, geometry in the

3
activated complex was extensively tested by calculating various KIEs
based upon the LMR-PES. The results are presented in Tables XXVII and
XXVIII. The frequencies usgd to calculate these KIEs are tabulated in
Appendix C. It can be éeen in Table XXVII that the primary deuterium
and 14C KIEs all show a maximum percentage deviation between the high-
est and lowest values for the three KIEs in each row of less than one
percent. This is in agreement with the findings of SW for primary
effects.14 However, the secondary deuterium KIEs for reactions (I-1)
and (I-2) at 296 OK differ by a maximum of 10 percent. This somewhat
larger effect on the secondary deuterium KIEs is expected, since

changing the CH, geometry affects the positions of the isotopic atoms

3
in the activated complex. Wolfsberg and Stern have shown for a similar
reaction involving elimination of x from CH3X or CD3X that at 300 oK

a change from tetrahedral CH3 or CD3 to planar CH3 or CD3 geometry
produces a 5.3% change in the secondary o-deuterium isotope effect.3C
They also state that this change is directly related to the MMI factor,
but that information about the MMI factor and the corresponding geometry
of the activated complex seem impossible to obtain directly from an ex-
perimental set of KIEs.3C However, Wolfsberg and Stern also state that
the secondary o-deuterium isotope effects are primarily the result of
force constant changes between reactants and activated complex.3C In
summary, since secondary\deuterium KIEs are more strongly affected by
such geometry changes than primary KIEs, then more uncertainty can be
expected in the force constants;deduced from experimental secondary

deuterium KIEs. The values in Table XXVIII are the Arrhenius para-

meters obtained by fitting the KIEs in Table XXVII over the specified



TABLE XXVII

THE EFFECT OF CH3 GEOMETRY IN THE ACTIVATED COMPLEX

Calculated Isotope Effects®

Rate Comstant Temperature b c d Standarde Maximumf Percent
Ratijos °K Tetrahedral LMR~-PES Planar Deviation Deviation
k(CH4 + H) 296 1.549 1.579 1.704 + 0.082 10.0
k(CD3§ + H) 546 1.213 1.218 1.236 + 0.012 1.9
k(CH4 + H) 296 1.067 1.066 1.068 + 0.0009 0.2
k(lQCHé + H) 546 1.035 1.034 1.034. + D.0004 0.1
k(CH4 + H) 296 0.251 0.251 0.252 + 0.0007 0.4
k(CH.[I + D) 546 0.554 0.554 0.555 + 0.0006 0.2
k(CHa + H) 296 5.593 5.590 5.618 + 0.015 ’ 0.5
k(CH3P + H) 546 2.422 2.421 2.426 + 0.003 0.2
k(CH3 + Hz) 296 0.822 0.838 0.904 + 0.044 10.0
k(CD3 + Hz) 546 0.954 0.958 0.972 + 0.010 1.9
k(CH3 + Hz) 296 1.013 1.012 1.014 + 0.0009 0.2
k(14CH3 + 1)) 546 1.012 1.011 1.011 + 0.0004 ' n.1

90T



TABLE XXVII (Continued)

Calculated Isotope Effectsa

Rate Comstant Temperature b c a Standard® Maximumf Percent
Ratios °K Tetrahedral IMR-PES Planar Deviation Deviation

k(CH3 + Hz) 296 0.929 0.930 0.934 * 0.003 0.5

k(CH3 + HD) 546 1.055 1.055 1.057 + 0.001\ 0.2

k(CH3 + H2) 296 o l;?75/ 1.874 1.883 + 0.005 0.5

;k(CH3 + DH) 546 1.622 1.621 1.625 + 0.002 0.2

¥inetic isotope effects calculated using the harmonic IMR-PES reactant frequencies.

bCalculated using tetrahedral CH, geometry in the activated complex.

3
“Ccalculated using the LMR-PES CH3 geometry in the activated complex.

dCalculated using the planar CH, geometry in the activated complex.

3

eStandard deviation in the three KIEs in the row.

fLargest difference relative to the smallest KIE in the row.

LOT



TABLE XXVIII
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4

THE EFFECT OF CH3 GEOMETRY ON THE TEMPERATURE DEPENDENCESa
Al/Azb
Rate Constant q Std.g
Ratios Tetrahedral LMR—PESe Planar Dev.
k(CH4 + H) 4 4
— + + +
k(CD3H 0 0.901 + 6 x 10 0.889 * 3 x 10 .846 * 0.002 t.029
k(CH4 + H) 5 . -5 A
14 0.997 + 8 x 10 0.998 + 9 x 10 .995 £ 2x10 +.002
k( CH4 + H)
k(CH4 + H)
—— +
k(CHA ¥ D) 1.407 + 0.002 1.406 = 0.002 404 + 0.002 +.002
k(CH4 + H)
Ezaﬁgﬁmi“ﬁy' 0.896 *+ 0.001 0.895 = 0.001 .894 + 0.001 +.001
k(CH3 + H2)
i(CD3 n Hz) 1.115 + 0.005 1.101 + 0.005 .047 * 0.002 +.036
k(CHy + H,)) s s s
1.010 = 5 x 10 1.010 £ 4 x 10 .008 £ 7x10 +.001
k(l4CH + H
' 3 2
k(CH, + H,)
—— +
k(CH3 T @D) 1.219 £ 0.002 1.218 + 0.002 .216 + 0.002 _.002>
k(CH3 + H2)
E?Eﬁ;mifﬁﬁf 1.341 £ 0.006 1.340 + 0.006 .338 + 0.006 +.002
AES (calories/mole)
Rate Constant d e £ Std.g
Ratios Tetrahedral IMR-PES Planar Dev.
k(CH4 + H) ' '
—_—— +
k(CD3§ ) 323 + 0.6 341 + 0.3 410 1.9 46
k(CH4 + H
14 40 + 0.1 39 + 0.1 41 0.2 +1
k(T CH, + H) :
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TABLE XXVIII (Continued)

AES (calories/mole)

Rate Constant d e £ Std.g
Ratios . Tetrahedral IMR-PES Planar Dev.
k(CH4 + H)
_— - + - + - 4
k(CHA ) 1011 + 1 1010 + 1 . 1006 * 1 +2
k(CH4 + H)
ﬁzaﬁgﬁ”l‘ﬁj' 1079 + 1 1079 = 1 1083 £ 1 +2
k(CH3 + HZ)
— 2 e - - - + +
K(CD. ¥ H.) 166 = 4 149 + 4 79 = 2 146
3 2
k(CH3 + HZ) .
1 1.7 £ 0.05 1.0 £ 0.04 3.2 £ 0.05 1.1
+ I
k( CH3 qz)
k(CH3 + HZ)
E?Eﬁ;“lfﬁﬁj' -156 = 1 -155 £ 1 -151 £ 1 +2
k(CH3 + H2) .
209 £ 4 209 £ 4 213 £ 4 +2

k(CH3 + DH)

@A11 deviations are standard deviations in the Arrhenius equation
parameters from a least squares fit to 1n(kl/k2)==ln(A1/A2)-F(AE/R)
(1/T) using IMR-PES reactant frequencies over the temperature range
371-546°K.

bIsotopic ratio of Arrhenius preexponential factors.
CIsotopic difference in Arrhenius activation energies in kcal/mole.

dCalculated using tetrahedral CH, geometry in the activated complex.

3
®Calculated using the LMR-PES CH3 geometry in the activated complex.

fCalculated using the planar CH, geometry in the activated complex.

3

BStandard deviation in the preceding three values in the row.
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range of temperatures to equation (III-13). As expected from Table
XXVII the largest deviations in Table XXVIII are for the secondary
deuterium KIEs. The geometry caused deviations in the primary carbon

and deuterium effects are negligible.

Contributions of the Bending and Stretching

Frequencies to the Primary KIE

At reasonably low temperatures (g lOOOC), primary deuterium iso-
tope effects primarily reflect the magnitude of ZPE. Therefore, an
estimate of the degree to which the KIE is influenced by normal mode
bending frequencies can be ﬁade by calculating the ZPE contributions to
the KIE using stretching and bending normél—mode frequency values in
separate calculations. The isotopic reactant and transition-state fre-
quencies used for these calculations are given in Tables XXIX and XXX
respectively, along with the summations over the separate sets of
stretching and bending normal modes. The isotopic differences between
these summations are used in equation (I-7) to obtain the contributions
to the ZPE term tabulated in Table XXXI. For the CH4+H reaction, ZPE
values calculated using only the stretching normal-mode frequencies are
in better agreeﬁent with the "total ZPE" values than those ZPE contri-
butions calculated with either the bending normal mode frequencies alone
or the stretching plus linear bending frequencies. However, for the

3 2 2

linear bending frequency values to the corresponding isotopic stretch-

reaction of CH, with H_, and D, or HD, the addition of the isotopic

ing frequency values produced two ZPE contributions within three per-
cent of the corresponding "Total ZPE" values in Table XXXI. The ZPE

contributions involving abstraction of D from HD differ considerably
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REACTANT ISOTOPIC FREQUENCIESa
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Normal Methane Methyl and Molecular Hydrogen
Modes CH4 CH3D CH3 H2 D2 HD
v, 2917.0 2224.1 2914.2  4468.1  3160.6 3870.0
Voa 1526.6 1476.3 847.1
Vor, 1526.6 1476.3
Vaa 3080.1 3080.1 3099.6
Vap, 3080.1 3080.1 3099.6
v 3080.1 2966.4
3c
Via 1366.1 1356.7 1605.9
Vib 1366.1 1197.9 1605.9
v 1366.1 1197.9
b4e
CH4 CH3D CH3 + 1 CH3 + D2 CH3 + HD»
3n-6 b .
vy 19308.8  18055.8 17640.4 16332.9 17042.3
i=1
Sum(\)2+\)4)C 7151.5 6705.1 4058.9 4058.9 4058.9
Sum(v1+v3)d 12157.3 11350.7 13581.5 12274.0 12983.4

aAll values in cm_l.

All values calculated using LMR-PES force con-

stants and geometry except v, under CHj determined from Gaussian-70
force constant and geometry.

b . .
Sum of all isotopic frequencies for a particular reactant or

reactants.

c . . . .
Sum of all isotopic bending frequencies for a particular reactant

or reactants.

d . . . .
Sum of all isotopic stretching frequencies for a particular reactant

or reactants.
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TRANSITION-STATE ISOTOPIC FREQUENCIESa
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Normal Modes CH,~H-H CH_.-D-D

3 3 CH3—D—H CH3—H—D
v, 3388.4 2405.0 3106.0 2720.9
v, 2937.7 2939.3 2937.0 2941.2
vy 964.7 953.6 959.3 956.9
v, 1479. 31 1115.04 1181. 1350. 41
v b 3085.6 3085.7 3085.7 3085.7
v b 1502.9 1502.9 1502.9 1502.9
v_b 752.3 632.6 636.6 746.1
vgb 367.3 296.0 345.7 327.5
3n-7 c
% v, 18707.0 17332.3 18144. 17943.4
i=1
Sum (v, +v ) 3970.5 3959.4 3965. 3962.7
Sum(v7+v8)d 2239.2 1857.2 1964. 2147.2
Bending sum v© 6209.7 5816.6 5929. 6109.9
Stretching sum v 12497.3 11515.7 12214. 11833.5

8A11 values in cm—l. Based upon the LMR~PES.

bDoubly degenerate normal mode frequencies.

C

d

Sum of the associated linear bending frequencies v

eSum of all the bending frequencies v3, v6,
f

Sum of all the real stretching frequency values v

7

and v,_.

8

1>V

and v_.

Sum of all real frequencies omitting Vo the imaginary frequency.
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TABLE XXXI

BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE zPE?

Linear Bendingd

. b - . ¢ .

Isotoplc Ratio Bending - Stretching - + Stretching Total®
of Reactants ZPE 7 Dev. ZPE 7% Dev. ZPE % Dev. ZPE
CH4 + H
Cﬁ;ﬁ“}fﬁ' 1.138 53.0 0.654 -12.1 0.258 =-65.3 0.744
CH4 + H
Eﬁ;ﬁi;“i 1.499 -72.0 3.571 -=33.2 1.832 -65.8 5.349
CH4 + H
e 0.785 403.2 0.199 27.6 0.249 59.6 _ 0.156
CH[+ + D
CH3 + H2 :
—_—= 0.385 -54.6 2.206 160.1 0.872 2.7 0. 849
CH, +D

3 2
CH3 + H2
Eﬁ;;triﬁi 0.506 -53.5 2.;51 97.5 1.558 43.1 1.089
CH3 + H2
Eﬁ;ﬁ:—gﬁ 0.785 17.3 0.852 27.4 0.681 1.8 0.669

aFrequency contributions to the vibrational zero point energy term
(ZPE) calculated at 296°K, see (I-7).

bCalculated using only the bending frequencies from the LMR-PES
reactant and transition-state species.

€Calculated using only the stretching frequencies from the LMR-PES
reactant and transition-state species.

dCalculated using only the linear bending and stretching frequencies
from the isotopic IMR-PES reactant and transition-state species.

€Calculated using all the isotopic LMR-PES frequencies.

fPercent deviation from the total ZPE.
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from the "Total ZPE" value, but the linear bending plus stretching fre-
quencies still produce a ZPE contribution in better agreement with the
"Total ZPE" value than either‘the bending or stretching ZPE contribu-
tion alone. Clearly, the addition of linear bending frequency values
to the stretching frequencies improves the agreement of the calculated
ZPE contributions with the "Total ZPE" values for reaction (I-2) [that
is, CH3 + isotopic Hz]. However, combination of linear bending and
stretching frequencies produces ZPE contributions in worse agreement
with the "Total ZPE" values for reaction (I-1) [that is, isotopic
CH4 + H(D)] than obtained from use of stretching frequencies alone. The
origin of this difference between the ZPE contributions for reactions
(I-1) and (I-2) is the relative magnitude of the differences between
the reactant and transition-state bending frequencies. For reaction
(I-2), the transition-state linear bending frequencies have a dominate
effect on the ZPE contributions. However, for reaction (I-1) the
reactant bending frequencies contribute approximately as much as
the transition-state linear-bending frequencies to the ZPE value.
Therefore, the addition of only the transition-state linear-bending
frequencies to the stretching frequencies in reaction (I-1)
without the compensating effect of the reactant bending frequencies
actually decreases the agreement of the calculated ZPE contribu-
tions with the "Total ZPE" values in Table XXXI.

The separate bending, stretching and linear-bending plus
stretching frequency contributions to the EXC values are given
in Table XXXII1. Due to the function form of the equation for
calculating the EXC values, (that is, 1‘e_ui), see (I-6), the

largest frequency values have the least effect on the calculated
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TABLE XXXII

BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE Exc?

Linear Bendingd

. b ) . C .

Isotopic Ratio Bending Stretching + Stretching Totale
of Reactants  EXC % Dev.f Exc % pev.f EXC % Dev.f EXC
CH4 + H
CH3D + D 0.808 0 1.000 23.8 0.805 -0.4 0.808
CH4 + H
Eﬁiﬁ;ir7i 0.921 0 1.000 8.6 0.918 -0.3 0.921
CH4 + H
Eﬁg;j;j;‘ 0.914 0 1.000 9.4 0.914 0 0.914
CH3 + H2 .
—_— 0.805 0 . 1.000 24.2 0.805 0 0.805
CH_ +D

3 2 .
CH3 + HZ
éﬁ;ﬁ;iif— 0.918 0 1.000 8.9 0.918 0 0.918
CH3 + H2 :
Eﬁ;ﬁ;‘gﬁ 0.914 0 1.000 9.4 0.914 0 0.914

aFrequency contributions to the vibrational excitation factor (EXC),
see (I-6). All values calculated at 296°K.

bCalculated using only the bending frequencies from the isotopic LMR-
PES reactant and transition-state species.

“Calculated using only the stretching frequencies from the isotopic
LMR-PES reactant and transition-state species.

d .
Calculated using only the linear bending and stretching frequencies
from the isotopic LMR-PES reactant and transition-state species.

®Ccalculated using all the isotopic LMR-PES frequencies.

fPercent deviation from the total EXC.
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EXC values. For this reason, the relatively large stretching
frequencies produce negligibly small EXC contributions. Since the
transition—state linear-bending frequencies are the smallest in
magnitude, then the combinations of the stretching and linear-
bending frequencies produce EXC contributions almost identical to
the "Total EXC" values in Table XXXII. The bending frequencies
alone produce EXC contributions identical to the "Total EXC" values

to the accuracy expressed in Table XXXIT.

The separate frequency contributions to the VP values are given in
Table XXXTIII. The stretching frequencies alone do not produce VP con-
tributions in good agreement with the '"Total VP" values. Use of the
linear-bending frequencies plus the stretching frequencies produces VP
contributions in excellent agreement with the '"Total VP" values except
for the first two cases in Table XXXIII. For these two cases the reac-
tant HiCHl(i=2,3,4) bending frequencies exert a considerable influence
on the magnitude of VP. The bending frequencies alone produce VP values
that are very close to the total VP values in the first and fourth rows
in Table XXXIII. This excellent agreement can be interpreted as the
complimentary effect of the isotopic reactant HCH bending and activated
complex linear bending frequencies on the former VP, and the dominate
influence of the isotopic activated complex linear bending frequencies
over the latter VP in row four. The VP values involving the CH.-H-D and

3
CH3—D—H frequencies require more compensating effects between the bend-
ing and stretching isotopic frequencies to obtain the total VP value.
The contributions of the bending, stretching and linear-bending

plus stretching frequencies to the ZPE, EXC and VP values tabulated in

Tables XXXI through XXXIII are combined in Table XXXIV with the vTL/viL
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TABLE XXXIIT
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Linear Bendingd

\ . b . C .

Isotopic Ratio Bending Stretching + Stretching Total®
of Reactants VP % Dev.f VP % Dev.f VP % Dev.f VP
CH4 + H 4
Eﬁ;ﬁf;ﬁﬁ 1.573 -3.3 1.034 -36.4 2,252 38.4 1.627
CH4 + H
Eﬁ;ﬁ_i*ﬁ 1.132 24.8 0.801 —11.7 1.263 39.3 0.907
CH4 + H
Eﬁg::jis 1.289 -19.6 1.244 -22.4 1.591 -0.8 1.604
CH3 + H2 .
e 2.203 -0.4 0.996 -54.6 2.169 -1.1 2.194
CH, + D

3 2
CH3 + H2
Eﬁ;‘;f?ﬁ’ 1.585 -5.7 0.945 -37.0 1.490 -0.6 1.499
CH3 + H2
Eﬁ;—I—Eﬁ 1.289 -7.2 1.077 -22.5 lf378 -0.8 1.389

aFrequency contributions to the vibrational product (VP) factor, see
(I-8). All values calculated at 296°K.

bCalculated using
PES reactant and

cCalculated using
IMR-PES reactant

dCalculated using
from the LMR-PES

€Calculated using

fPercent deviation from the total VP.

all the isotopic IMR-PES frequencies.

only the bending frequencies from the isotopic LMR-
transition-state species.

only the stretching frequencies from the isotopic
and transition-state species.

only the stretching and linear bending frequencies
reactant and transition-state species.
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BENDING AND STRETCHING FREQUENCY CONTRIBUTIONS TO THE KIEa
. . d

Isotopic b . Linear Benqlng
Ratio of Bending Stretching + Stretching + ) % Total®
Reactants KIE % Dev.f KIE % pev.f KIE % pev.f V1r/Vor KIE
CH4 + H
Eﬁ;ﬁf:fﬁ 1.919 48.1 0.897 -30.8 0.621 -52.1 1.3267 1.296
CH4 + H
Eﬁ;§j;~ﬁ 1.956 -65.0 3.581 <=35.9 2.659 =52.4 1.2518 5.590
CH4 + H ; : . .

1.013 304.6 0.271 8.0 0.397 58.2 1.0955 0.251
CHA + D
CH3 + H2

0.906 -54.4 2.915 46.6 2.020 1.6 1.3267 1.988
CH3 + D2
CH3 + H2
bH3 + DH 0.922 -50.8  2.545 35.8 2.668 42.4 1.2518 1.874
CHj + Hz
CH3 ¥ HD 1.013 -8.9 1.005 8.1 0.940 1.1 1.0955 0.930

aBending and stretching KIE values calculated using the
ZPE quantities in the accompanying tables, see (I-4).
calculated at 296°K.

bCalculated using only the bending frequencies from th

VP, EXC, and
All values

isotopic

IMR-PES reactant

“Calculated using
IMR-PES reactant

dCalculated using
frequencies fro
species times v

eCalculated using

fPercent deviatio

and transition-state species times vf
only the stretching frequencies from, the

and transition-state species times v L/v

]

isotopic
T

2L°

L/v Lt

only the linear bending plus the stretching

the isotopic LMR-PES reactant and transition-state
?L/va' ]

all the isotopic LMR-PES frequencies.

n from the total KIE.
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values to give the corresponding comparisons for the calculated KIE
values. It can be seen that few of the individual contributions to the
total KIE come close to agreeing with the total KIE values. Two notable
exceptions are the contributions due to the linear bending plus stretch-
ing frequencies in rows four and six of Table XXXIV. These differ from
the total KIE value by 1.6% and 1.17%, respectively. The other values
differ by about 8 percent to aé much as 304.6 percent. The data in
Table XXXIV show that the strétching frequencies alone tend to repro-
duce the KIE values as well or better than all the other bending or
linear-bending plus stretching frequency sets; except for the two cases
previously mentioned. However, except for these two exceptions, the
error due to using an incomplete vibrational frequency data set, as
discussed in Chapter I, can lead to very large errors in the calculated

KIEs.

Relating Primary Deuterijum and Tritium Isotope

Effects

The relationship between tritium and deuterium primary KIEs is
commonly referred to as the Swain-Schaad relation.23 This relatioﬁship
was tested for its applicability to the CH4+H and CH3+H2 reactions by
using the LMR-PES isotopic frequencies to obtain transition-state
theory calculated KIEs which are compared using Bigeleisen's definition
of r (see footnote a in Table XXXV).24 The results are given in Table
XXXV. The isotopic reactions compared in Table XXXV were chosen based
upon the feasibility of their experimental determination rather than

their being pure primary isotope effects. As discussed in Chapter I,

the Swain-Schaad relation is only supposed to be applicable to reac-
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RELATIONSHIPS OF TRITIUM AND DEUTERIUM ISOTOPE EFFECTS

SS

(L/mg)™> - (1/mp) ">

Ratio of Rate : b Temperature
Constants kH/kD kH/kT 2 Arss °K
k(cH, 1) € 2.311 x 107 1.640 x 10° 1.424 -.018 50
-Eaﬁ$3Z7¥ 1.614 x lO2 1.407 x 103 1.426 -.016 100

3% 5.4573 11.230 1.425 -.017 300
2.4207 3.5396 1.430 -.012 546
1.2518 1.4324 1.600 0.158 o
k(CHA,H)C 2.970 x 10~5  4.103 x 10-7 1.411 -.031 50
TS 7.165 x 1073  9.610 x 10~4 1.407 -.035 100
4’ 0.2569 0.1517 1.388 -.054 300
0.5539 0.4501 1.351 -0.091 546
1.0955 1.1641 1.666 0.224 o
k(CH,HK)®  22.085 96.327 1.476  0.034 50
E?Eﬁ—*iﬁ—' 5.2396 11.607 1.480 0.038 100
32 2.0011 2.7751 1.471  0.029 300
1.5370 1.8741 1.461 0.019 546
1.1428 1.2306 1.554 0.112 o
k(CH3,H2)C 1.0995 1.4199 3.696 2.254 50
i}fﬁf—?z—y 1.7567 2.6103 1.703 0.261 100
3789 1.9847 2.8476 1.527 0.085 300
1.7908 2.3950 1.499  0.057 546
1.3267 1.5394 1.526  0.084 o
8 = ln(kH/kT)/ln(kH/kD), see Refere?ce 24. ;
Par = o> Where T = (/my) "~ - (1/my) = 1.442,

X = D or T. The underlined element represents the atom being

abstracted if there is more than one possibility.
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tions involving transfer of the isotopic hydrogen at rather low temper-
atures (< lOOOC). It can be seen that the only pure primary isotope
effect in Table XXXV is k(CHA,H)/k(CHBK,H). Over the temperature range
considered, the calculated value of k(CHa,H)/k(CH3§,H) agrees quite
well with the theoretical rSS = 1.442 determined only from the H, D,
and T atomic weights (as éhown in footnote b of Table XXXV). The KIEs
and r values reported for infinite temperature are obtained from the
high temperature limits to the KIEs (that is,vTL/viL). The other ex-
treme is represented by the k(CH4,H)/k(CH4,X):vaiues which are pure end
atom effects. It can be seen that theseKIE valuesare inverse (that is,
the heavier isotopic reactants react faster) and that the KIE values go
past (or crossover) unity at some tempefﬁture above 546°K (approximately
1500 to ZOOOOK). It has been noted by Stern and Vogel that when the
KIEs are very near unity, the r values become anomalous and useless as
a method of approximately tritiﬁm KIEs from deuterium KIEs or vice
versa.zs The other two KIEs for which r values were determined in
Table XXXV are combined end atom plus normal primary KIEs. Their cal-
culated r values decrease toward'rss = 1.442 until between 600 and
lOOOoK, and then increase untill the infinite temperature value is
reached. The k(CH3,§X)/k(CH3,§H) valués show better overall agreement
with the re " 1.442 since each individual D or T KIE increases mono=-
tonically with lowering temperature. The k(CH3,H2)/k(CH3,X2) values
have an inflection point at approximately 200°K and decrease in value
at lower temperature. Since the D and T inflection pointsdonot occur
at exactly the same temperature the calculated r values decrease in
theilr agreement with s at lower temperatures., These results in Table

XXXV seem to indicate that this simple Swain-Schaad relationship can
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be used to give a reasonable estimate of the expected kH/kT value given
an accurate value for kH/kD and raising it to the ro =S 1.442 power.

The values for the first three KIEs in Table XXXV indicate that such a
relationship would be reasonably correct over a very broad range of
temperature. However, the k(CH3’H2)/k(CH3’X2) values show that the
Swain-Schaad relationship will yield only fair results at the supposedly

most optimum temperature and worse results at lower temperatures.

Relating 13C and 14C Isotope Effects

Since the Swain-Schaad relationship in its most abbreviated form

appears to work for the CH4 +HZ7 CH3 + H2 reaction system even at

higher temperatures (> lOOOC) than it is supposed to be valid, and since
reasonable values were obtained for isotopic configurations other than
the strictly primary D(or T) effects, it was reasoned that possibly a
similar relation might be applicable to 13-carbon and l4-carbon KIEs.
The résults obtained from the extension to carbon iéotope effects using
the LMR-PES predicted lS—cérbon and l4—carboh effects are shown in

Table XXXVI. To estimate the magnitude of a l4-carbon KIE at a particu-
lar temperature, the 13-carbon KIE at that temperature is raised to

the r = 1.888 power (see footnote b iﬁ Table XXXVI). The estimated
accuracy of this relation is given by calculating the r. values (see
footnote (a) in Table XXXVI) and determining the differences between
these r, values and the theoretical r = 1.888. It can be seen in Table
XXXVI that the CH,+H carbon effects fit the theoretical r = 1.888 very

4

well over the entire temperature range. However, the CH3+H2 carbon

effects tend to fall off rather rapidly at low temperature and the re-

lationship is not very accurate below room temperature (~ 3000K). This
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TABLE XXXVI

13 14C ISOTOPE EFFECTS
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.5
(1/m12) - (l/m13)

Raéiﬁsiﬁnﬁite 127%95 k127K e br, e

K (CH, ,H) 2241 1.4566 1.860 -.028 50

k (*CH,, ,H) .1074 1.2089 1.860 ~.028 100
.03513 1.06633 1.860  -.028 296
.01825 1.03422 1.860 -.028 546
.00544 1.01024 1.878 ~0.10 o

K (CH, 1) .00396 1.00639 1.614 ~.274 50

k (*CH,, H, .00584 1.01048 1.792 ~.096 100
.00637 1.01186 1.857 ~.031 296
.00601 1.01123 1.864 ~.024 546
.00544 1.01024 1.878 ~.010 w

arc = In(ky,/ky,)/InCky,/k 3)

. (1/my )" = (Afmy )

Arc = rC where r = 5 " 1.888.
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relationship was also tested with some fractionation factor equilibria
o_ 45
values reported by Hartshorn and Shiner that were calculated at 298 K.

The reactions used are given by equations (III-14) and (III-15).

13 13

CO2 + CO3 -+ CO2 + CO3 (111-14)

\

13 ' 13
CO2 + CH4 > CO2 + CHQ (I11-15)

Hartshorn and Shiner (HS) report a value of 1.0066 for the 13-carbon
effect in (III-14). By raising this value to the 1.888 power, a value
of 1.0125 was obtained which compares favorably with l4-carbon effect
value of 1.0122 reported by HS._45 Similarly, the relation for the

l4-carbon effect in (III-15) is given by

(0.9429)1'888 = 0.8949 (I1I-16)

The l4-carbon effect value reported by HS is 0.8948.45 The fact that

these calculated values agree within 0.03% of the absolute rate theory
calculated values reported by HS supports the validity of the relation-

ship expressed in Table XXXVI.

Rule of the Geometric Mean Relationships

As discussed in Chapter I, the rule of the geometric mean is based
on the applicability of vibrationai frequency sum rules to the calcu-
lation of transition-state theory isotope effects. Table XXXVII shows
the relationship between the various secondary o-deuterium KIEs for

4 3 2
k(H/D) and F(H/D) (see footnote a in Table XXXVII) values for one

both the CH, + H and the CH, + H_ reactions. It can be seen that the
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RULE OF THE GEOMETRIC MEAN RELATIONSHIPS FOR SECONDARY ISOTOPE EFFECTS

Tsotope Effect Temperature of Isotope Effect ‘

Relationship?:P 50°K 273°K  546°K  746°K  1046°K  2246°K
K (CH, ,H/CD_H, H) 9.4826 1.6502 1.2182 1.1251 1.06675 1.01563
F (CH, ,H/CD_H, H) 9.4755 1.6490 1.2173 1.1243 1.06595 1.01487
[k(CHa,H/CHZDﬁ,H)]B 8.6101 1.6430 1.2176 1.1249 1.06668 1.01559
[F(CH4,H/CH2D§,H)]3 8.6038 1.6418 1.2167 1.1241 1.06590 1.01486
K (CH, ,H/CHD, H, K) 4.3250 1.3942 1.1404 1.08171 1.04399 1.01038
 (CH, ,H/CHD_H, ) 4.3229 1.3935 1.1399 1.08117 1.04348 1.00989
[k(CH4,H/CH2D§,H)]2 4.2009 1.3924 1.1403 1.08164 1.04397 1.01037
[F(CHA,H/CHZDE,H)]Z 4.1988 1.3917 1.1397 1.08112 1.04346 1.00988
K (CH, ,H/CH,DH, H) 2.0496 1.1800 1.06783 1.04002 1.02175 1.00517
F (CH, ,H/CH_DH, H) 2.0491 1.1797 1.06757 1.03977 1.02150 1.00493
K (CH,H, /CD ., H,) 06413 .8115 .9579  .9804  .9915  .99902
F(CH,,H,/CD,H,) .06408 .8109 .9572  .9796  .9908  .99827
[k(CH3,H2/CH2D,H2)]3 .05756 .8093  .9574  .9800 .9913  .99898
[F(CH3,H2/CH2D,H2)]3 .05751 .8088 .9568 .9794  .9907  .99826
K (CH,,H, /CHD, ,H,) .1548  .8697 .9717  .9868  .9943  .99934
F(CH,,H, /CHD, ) 1547 .8692  .9712  .9863  .9938  .99884
[k(CH3,H2/CH2D,H2)]2 1491 .8684  .9714  .9866  .9942  .99932
[F(CH,,H,/CH,D,H,)]%  .1490 .8681 .9710 .9862 .9938  .99884
k(CH_,H,/CH D, H,) .3861  .9319  .9856  .9933  .9971  .99966
F(CH,H,/CH,D, H,) 3860 .9317  .9854  .9931  .9969  .99942

ak(1/2) =(\)=|= /\)+ YF(1/2), where 1 and 2 represent the light and heavy
= VP.EXC-ZPE,

1" 2L

isotope species respectively and F(1/2) =

see (I-29).

Sa2/81f(2/1)

sz/slf (2/1)

bWhere applicable the atom being abstracted is underlined.



126

a-deuterium when squared and cubed give reasonable approximations to the
transition-state theory calculated k(H/D) and F(H/D) values having two
and three o-deuteriums, respeétively. This relationéhip produces better
results at higher temperature, since the sum rules upon which this re-
lationship is based apply to the high temperature approximation to the
transition-state theory calculated KIEs which is only valid at elevated

temperatures, see (I-23) and (III—l7).46

n-6 2 2 3n-7

- nef pEy e A0 12 _ f2
Inly /) = InCvy, /o3, ) + 7l 8y (uiymugy) = gLy (g - )] (II-17)

1L 2L

An indepth study of theé deviations from the rule of the mean as it
is related to the method of finite orthogonal polynomial expansions has
been recently given by Ishida and Bigeleisen, see (I—25).27’47 However,

the simple relationships expressed in Chapter I satisfy the comparisons

made in Table XXXVII.
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APPENDIX A

LMR-PES COORDINATE RELATIONSHIPS

The relationship between cartesian coordinates and' the IMR-PES
internal coordinates is controlled by three sets of equations in the
computer code. The first set, shown in Equation (A-1) initializes

the cartesian coordinates for each numbered atom in Figure 1 given

values for Z1 and Z6 equal to ry and (rl + r6), respectively, in
Table III or Table V,
Yy = resine
z2 = recose
X, = r sin® cos(1lln/6)
3 e
yq = r651n6 sin(11w/6)
23 = recose
X, = re31n6 cos(71/6)
Y, = resine sin(7w/6)
z, = recose (A-1)
with 0 defined by
8 = 90°, (rl > 6.274)
b=t , (r; < re)
B =1 ~ as(rl-re), (re<r1 < 6.274) (A-2)

where re has the value 2.0673 atomic units, a. is defined in Table IV,

5
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T is the tetrahedral angle and X5 Yps Xgs X , X,, and Ve are

5° Y52 Z50 %g

set equal to zero. These cartesian coordinates are converted to the

15 possible interatomic distances by the DIST routine defined by (A-3),

T e A R R (a-3)

where i and j are the atom numbers 1 through 6 with i*j. The
\

corresponding interatomic distances defined in Tables IIT and V are

given by (A-4).

1- P15
T2~ Pays
T3~ D35
Ty T P45
Ts = Dg s
Te = D16
r7 = Dy
tg = D3 g
Ty = Dyl
10 = P1,2
117 P13
T12 = D14
T13~ D3
T14 = Pys
ris = D3’4 : (A-4)

The last six interatomic distances ( through rlS) are used to

10

calculate the six angles 6., through 86.

1 The ANGLE routine uses the
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law of cosines and the interatomic distances in (A-4) to calculate

ei(i=l,2,3,4,5,6), see (A-5).

~ 2. 2 2 i
0, = arcos[(rl + ri+l'_ri+9)/(2rlri+l)]’ (i=1,2,3)
6 = arcos [(r 2-+r 2 -r 2 Y/ 2r f ), (i=1,2)
43 2 j+2  Ti+12 2°5+27° > i
8 = arcos [(r 2+—r2-r 2)/(2r r,)] (A-5)
6 3 4 15 34

Therefore, when a cartesian coordinate is incremented the DIST and
ANGLE routines convert that change to IMR-PES coordinates before the
energy is calculated.

The relationships between the internal valence coordinates
designations (given in Table V) and the corresponding ILMR-PES coor-
dinates was established by equations relating the valence coordinates
designations to the proper cartesian coordinate representations. The
cartesian coordinate values calculated using these equations were then
used in subroutine DIST to obtain the proper values for the IMR-PES
coordinates designations. Each valence coordinate in the last column
of Table V has a discrete functional cartesian coordinate representa-
tion programmed into the routine QRESET or ALBEND. For example, when

Rl is incremented by h the QRESET function is given by (A-6),

;< T + h
Zg = (ry = Zgp) ¥ Zgg
Zl = rl (A-6)

where o1 and ZCl and ZC6 are the equilibrium IMR-PES and cartesian

coordinate values, respectively, for the molecular configuration for
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which force constants are being determined. The Zl and Z6 values are
then used in the DIST routine to obtain the corresponding LMR-PES
coordinates changes relative to Rl = f(rl,rs,r7,r8,r9). The same
notation is used for each of the following valence coordinate relation-

ships. The non-reacting C-H bond stretching relationships from

incrementation of Ri(i=2,3,4) by h is given by (A-7),

ry = Tgg TR
T
A=t - &
rpi = ricos(A)
T = arctan(xCi/yCi)
x, = r_.sin(T)
i pi
vy = rpicos(T)
z. = -r,sin(A) (A-7)
i i

where i=2,3,4, rpi is ri projected into the xy plane, see Figure 1, and
A is the angle of r, out of the xy plane. DIST then converts X Yy

and zZss (i=2,3,4) to the corresponding IMR-PES coordinates.

The H-H bond stretching relationship for incrementation of R_. by h

5

is geometrically related to the linear-bending valence coordinates ax

and ay. Therefore, R oL and uy relationships are all handled by the

5,
same set of equations programmed in the ALBEND routine. These

equations relating the incremented coordinates re=r +h, ax==ax-Fh,

Ccé

or ay = ay + h to the ILMR-PES coordinates are given in (A-8),

Ao =7 - a
X X
Ao =1 - o
y
S =1 - sinz(Aa )sinz(Aa )
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R =r cosz(Au )/S
x 6 y
6
R =r cosz(Aa )/S
y 6 X
6
X = Rx sin(Aax)
6
Ve = RX s1n(Aay)
6
z, = [R cos(ha )] +r (A-8)
6 Xe X 1

where R5 and re correspond to the same interatomic distance, but R5 is

also a function of the ILMR-PES coordinates rS, r7, r8 and r9 as are the

@ and ay valence coordinates from Table V. Application of the DIST

equations complete the transformation of the incremented RS’ a or ay
coordinates to the corresponding set of ILMR-PES coordinates.
The incremented ¢i(i=l’2’3) valence angle coordinates are
transformed into IMR-PES coordinates by (A-9),
6, =¢, +h
i i
A=06, - (n/2)
i
Toi+l - Ti+1608A
T = arctan(xi+l/yi+l)
3 1 T
Xir1 = TpiarSin(D
Yit1 = Tpi+1¢0% (D
2141 = ri+131n(A) (A-9)
where X110 Vil and Zi1 (i=1,2,3) correspond to the cartesian

coordinates of the non-reacting hydrogens in Figure 1. The correspond-

ing change in the r (i=1,2,3) values during incrementation of

i+6
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¢i = f(ei,ri+6), (i=1,2,3) 1is calculated by application of thé DIST

equations.
Equation (A-10) interrelates valence angle coordinates ¢i (i=4,5,6)

and the IMR-PES coordinates for the HCH angles associated with the non-

reacting C-H bonds.

Oy =d¢;*h
Ay = by - (m/2)
Ay =6, 5 = (n/2)
rpl = rzcos(Al)
rp2 =r —lCOS(Az)
r. = [r 2 +r 2 _ 2r.r, .cosfH ]l/2
Gi 2 -1 2 i-1 i
lZ _Z__ll
pre =1, cos[arcsin(———;f——l;——ﬁ]
i i 6,
i
_ 2 2 2
pei = arcos[(rpl + rp2 - prei)/(erlrpz)]
Po. = 1/20(2n/3) - p, ]
i 6,
i
= + i
ex De' arc51n(x2/rpl)
2 i
X, = rp151n(6X )
2
Yy = rplcos(eX )
2
z, = —rzsin(Al)
Byi = Dei - (n/6) + arcsin(xz/rpl)
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X 4= rpzcos(Gy.) /
1
Vi T rp251n(9y.)
i
?i_1==—ri_151n(A2) (A-10)

For i=4 or 5 in equation (II-35) r and r are the r_. and r, bond-

pl p2 2 i-1
lengths projected into the xy plane, respectively, and the cartesian
coordinates x2, y2, 22’ Xi—l’ yi—l’ and zi—l convert the incremented
¢4 and ¢5 coordinates into the properly changed LMR-PES coordinate

values through application of (A-3) and (A-4). The valence coordinate

transfbrmation for incrementation of ¢6 by h is given by (A-11),

B, = ¢ + h
A3 =6, - (r/2)
A4 = ¢3 - (n/2)
rp3 = r3cos(A3)
rp4 = r4cos(A4)
2 2 1/2
r86 = [r3 + r, - 2r3r4cose]
z, - z
pr, =r cos[arcsin(—g————é)] -
0 0 r
6 6 9
) 6
_ 2 2 2
pe()--arcos[(rp3 + rp4 - pre6 )/(2rp3rp4)]
D = 1/2[(27/3) - P_ ]
66 '66
6 =---D
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0 = 0
y4 Y3
= 6
Xy rp3cos( y3)
Y3 = rp351n(6y3)
z4 = —rBSin(A3)
X, = —rp4cos(6y )
4
v, = rp451n(6y )
4
z, = —r451n(A4) (A-11)

where rp3 and rp4 are the r3 and r4 bondlengfhs projected into the xy

plane, respectively, and the cartesian coordinates X35 Vg5 Zgs X, A

and z, transform the incremented ¢6 coordinate into the proportionally
changed IMR-PES coordinates through application of (A-3) and (A-4). It
should be noted that the ANGLE transformation routine was not used in
incrementing a valence angle coordinate(s) since the internal valence
coordinates not being used to obtain a particular derivative must be
held constant while the energy values are computed as a function of a

particular coordinate's values. Use of the ANGLE routine equations

would not allow this to be ddne.



APPENDIX B

CALCULATTON OF NORMAL MODE FREQUENCIES

AND ASSOCIATED PARAMETERS
Calculation of Normal Mode Frequencies

The normal mode frequencies for the various isotopic configura-
tions were calculated using the Wilson FG matrix method which has been
programmed in the Wolfsberg modification of the Schachtschneider
program (WMS).9 The purpose of this appendix is to describe the
relationship between the cartesian coordinate force constant matrices
and the internal coordinate force constant matrices used in the
FXGEN ROUTINE in addition to describing the calculational methods
generally assoclated with the Wilson FG matrix calculations used in
the Schachtschneider program.

The usual input procedures requires the masses and cartesian
coordinates associated with each atom and an internal coordinate code
for each internal coordinate in the molecule.g’48 The IMR-PES
cartesian coordinates are easily obtained from Tables IIT and V and
the equations (A-1) and (A-2) in Appendix A. The internal coordinate
specifications are also obtained from Tables IIT and V. These
specifications are combined with the cartesian coordinates of each

atom to generate the transformation matrix, B, having I rows and 3N

columns where I is the number of internal coordinates and N is the

139
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49

number of atoms. The B matrix transforms the cartesian coordinate

column vector X, where Xt = [xl,yl,zl,xz....z ], into the column

N

vector of internal coordinates R, where Rt = [Rl’R ..RI], by (B-1),

2>

R = Bx (B-1)

where the superscript t indicates transposition of the column vector to

9,48

the corresponding row vector. The inverse kinetic energy matrix,

G, is calculated by (B-2),

¢ = B ‘Bt (B-2)

-1 e . .
where M is the diagonal inverse mass matrix in which mix’ miy’ and

m are the masses associated with each atom i from one to N for each

iz
cartesian coordinate in (B—3).49
l/mlX 0 o ... ... ..0
0 l/m1y
0 l/mlZ
M = . . . (B-3)
0 v v v e e e e e e e e e e .l/mNZ

The resultant G matrix is an I by I square matrix. Frequencies are
obtained by solution of the corresponding GF product matrix secular

equation, (B-4),

. GFL = LA (B-4)



141

where F is the I by I internal coordinate force constant matrix, L is
the transformation matrix which must be normalized to properly remove
any redundant internal coordinates from the diagonal eigenvalue

50

matrix A. The A matrix values are related to the vibrational

frequency values vi(cm_l) by (B-5),

7 2

A, = ———— = (5.88852 x 10 )vi (B-5)

The numerical constant in (B-5) is that used in the Schachtschneider
program.

The vibrational potential energy, V,is defined by (B—6).9’50

2v = RYFR (B-6)
Substitution of (B-1) into (B-6) gives (B-7).
2V = (Bx)F(Bx) = x B FBx (B-7)

Since the vibrational potential energy is defined as the scalar
product of a force constant matrix and its associated coordinate
vectors as in (B-6) then the 3N by 3N cartesian coordinate force

t
constant matrix FX in equation (B-8) is equivalent to B FB in equation

(B—7).51

— t —
2V = x Fxx (B-8)

Combining (B-7) and (B-8) produces a method of transforming internal

coordinate force constant matrices into their corresponding cartesian

. 51,52
coordinate force constant matrices.” ’
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t
Fx = B'FB (B-9)

If a cartesian coordinate force constant matrix is used in the
. -1
frequency calculation then the G matrix equals M and the secular

equation reduces from (B-4) to (B—lO).51

M FL=LA (B-10)

The functional form of the secular equation (B-10) with the symmetric
M—lFX product matrix allows it to be solved more easily than the
unsymmetric GF product matrix. Also, if FX is obtained from (B-9)
it is properly normalized and all eigenvalues except the normal mode
frequencies will be zero upon solution of (B—lO).g,’51 1f Fx is
calculated directly from a potential energy surface the eigenvalue
solution to (B-10) may exhibit some small residual rotational-transla-
tional character unless special care is taken in the calculation of Fx'
The more involved solution of the internal coordinate GF secular
equation used in the WMS program as described by Schachtschneider
follows.9 The solution of an unsymmetric GF matrix is avoided by
solving two symmetric secular equations. The G matrix is factored

into conjugate W matrices by an eigenvalue-eigenvector diagonalization

procedure to solve (B-11),
GD = DT (B-11)

where D is the eigenvector matrix of G and T is the diagonal eigen-
value matrix of G. Since G is a symmetric matrix of real values, D

must be orthogonal and the Pi roots must be real. Therefore, (B-12) is
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correct and the W matrix is defined by (B-13),

¢ = orot = (or?) a'ph (B-12)

W= pr? (B-13)

where Fg is the diagonal matrix of square roots of the Fi eigenvalues.9

The G matrix is then defined by (B-14).
G = WW (B-14)
A real symmetric H matrix which is equivalent to the corresponding GF

product matrix is defined by (B-15).

H = W'rW (B-15)

The solution of the secular equation (B-16) by diagonalization of H
HC = CA (B-16)

produces the eigenvector matrix C and the diagonal eigenvalue matrix A
which is the same as the A in (B-4) and (B-5). The major difference
between (B-4) and (B-16) is that in (B-4) L must be properly normalized
to remove the redundant normal coordinate representations in the GF
matrix (that is those over the 3N-6 limit). However, the symmetric
form of H causes these redundancies to be automatically removed

during the solution of (B—16).9
Calculation of Moments of Inertia

The first step in the calculation of the mass moments of inertia,

Ix’ Iy, and I for a particular molecular species is the calculation
z
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of the cartesian coordinates of the center of mass, Cx’ Cy’ and Cz,

for that molecular species using equation (B-17),

1 N
cC = - ﬁ' 7, m.,X
X =1 11
N
C,=-—y I mv.
Y i=1 * 1t
1 N
cC =-=— I m.z, (B-17)
z M . ii
i=1

where M is the molecular weight, N is the number of atoms, mi is the
atomic weight of atom i (H = 1.007825 amu, D = 2.0141 amu, T =

3.01605 amu, 120 = 12.000 amu, 13C = 13.00335 amu, and 14C =

14.0032 amu), and X Yo and z; are the cartesian coordinates of

atom i. The next step involves the calculation of the elements of the
moment of inertia tensor matrix. The diagonal elements of the moment

of inertia tensor matrix require the distance, Tos of each atom i from

the center Of mass.
2 2 2.%
= + + + -
ry [(xi CX) + (yi Cy) + (zi cz) ] (B-18)

The individual elements of the moment of inertia tensor matrix are
given by (B-19)

N

I = % m[r,? - (x, +C)°]
XX . 1 1 1 X
i=1
N
2 2
- - +
I T mi[ri (yi Cy) 1

voooq=1
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i N
I = 73 ‘m,[r,z - (z, +¢C )2]
zz ] i i i z
i=1
N 7
I =1 = Zm(x,+C)(y.+C)
Xy yX ) ii X i v
i=1
N
I =1 = Ifm(x, +C)(Z, +C)
Xz zX . ii X i z
i=1
N
I =1 = Im (y,+C)(z, +C) (B-19)
yz zy i=1 171 y i z

The moment of inertia tensor T in (B-20) is

I I
Ixx Xy xéW
I I
T = Iyx Cyy vz (B-20)
I I I
zX zy zz

then diagonalized to obtain the eigenvalues Ix’ Iy’ and Iz which are

the principal moments of inertia for a particular molecular species

53

about each of the center of mass cartesian coordinate axes.



APPENDIX C

TABULATION OF ISOTOPIC NORMAL MODE FREQUENCIES
AND PARAMETERS USED IN TRANSITION-STATE

THEORY ISOTOPE EFFECT CALCULATIONS

All normal mode frequencies, that are tabulated in this Appendix
and are specified as being calculated using data from the LMR-PES,
were calculated using internal coordinate force constants determined
from the LMR-PES by the three-point difference method with an
increment size of 1 x 10—4. . The other tabulafed‘frequencies and
parameters were calculated uéing the internal coordinate force
constants and geometry from the specified source. The symbol F:

used in the latter tables refers to the HCH valence angle bending

force constant FI , see Table V.
1-3

146



TABLE XXXVIII

LMR-PES DATA FOR ISOTOPIC HYDROGEN

Molecular Hydrogen Isotopic Configurations Data

H, HD D, T, HT DT
vla 4468.1 3870.0 3160.6 2582.8 3649. 3 2886.2
be 0.0 0.0 0.0 0.0 0.0 0.0
be 0.27736 0.36972 0.54429 0.83004 0.41578 0.66470
Izb 0.27736 0.36972 0.55429 0.83004 0.41578 0.66470
Molecular®
olecular 2.01565 3.02193 4.02820 6.03210 4.02388 5.03015

Weight

aFrequencies are in cm—l. Date from LMR-PES.

The principal moment of inertia about the respective cartesian coordinate axis in units
of amu %

“Molecular weight in amu.

Lyt
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TABLE XXXIX

IMR-PES DATA FOR ISOTOPIC METHYL RADICAL

Methyl Radical Isotopic Configurations?

13 14

CH3 CD3 CHD2 CH2D CH3 CH3

vlb 2914.2 2061.5 2138.9 2229.4 2914.2 2914.2
vzb’c 847.1 656.7 725.7 788.8 840.5 834.8
vzb’d 607.0 470.5 520.0 565.2 602.3 598.2
v3e 3099.6 2323.6 2327.7 2989.4 3085.2 3073.90
3099.6 2323.6 3048.2 3098.9 3085.2 3073.0

vae 1605.9 1174.7 1461.9 1344.4 1600.8 1596.4
1605.9 1174.7 1185.6 1590.4 1600.8 1596.4

IXf 1.8092 3.6155 3.6155 2.9378 1.8092 1.8092
ny 1.8092 3.6155 2.3402 1.8092 1.8092 1.8092
sz 3.6183 7.2311 5.9557 4.7470 3.6183 3.6183

Molecularg

Weight 15.0235 18.0423 17.0360 16.0298 16.0268 17.0267

aFrequencies are in cm_l. Data calculated from the IMR-PES except as
stated.

b .
Non-degenerate normal mode frequencies.

cOut—of—plane bending frequency calculated using Gaussian 70 force
constant weighted by LMR-PES bond length.

dOut—of—plane bending frequencies calculated using the adjusted Tan,
Winer and Pimental force constant weighted by the LMR-PES bond
length. See Reference 38. '

eDoubly degenerate frequencies for symmetric species.

f A . . .
The principal moments of inertia about the respective cartesian
coordinate axis in amu-R%.

BMolecular weight in amu.



TABLE XL

IMR-PES DATA FOR ISOTOPIC METHANE

. . . a
Methane Isotopic Configurations

13 14

CH4 CH3D CH2D2 CHD3 CD4 CH4 CH4 CH3T CD3T
2917.0 2224.1 2166.4 2113.2 2063.4 2917.0 2917.0 1890.2 1850.5
1526.6 1476.3 1449.3 1303.5 1079.9 1526.6 1526.6 1470.5 1061.4
1526.6 1476.3 1322.2 1303.5 1079.9 °  1526.6 1526.6 1470.5 1061.4
3080.1 2966.4 3080.1 3046.2 2287.8 3068.3 3058.3 2964.3 2160.7
3080.1 3080.1 3008.7 2287.9 2287.8 3068.3 3058.3 3080.1 2287.7
3080.1 3080.1 2288.1 2287.9 2287.8 3068.3 3058.3 3080.1 2287.7
1366.1 1356.7 1280.7 1040.0 1029.4 1358.0 1350.9 1343.3 1017.7
1366.1 1197.9 1133.2 1052.6 1029.4 1358.0 1350.9 1121.8 951.7
1366.1 1197.9 1052.9 1052.6 1029.4 1358.0 1350.9 1121.8 951.7

oyt



TABLE XL (Continued)

Methane Isotopic Configurationsa

13 14
CH4 CH3D CH2D2 CHD3 CD4 CH4 CH4 CH3T CD3T
Ixe 3.2163 4.3494 5.5352 6.4276 6.4276 3.2163 3.2163 5.3520 7.5696
Iye 3.2163 4.3494 4.8219 5.1597 6.4276  3.2163 3.2163 5.3520 7.5696
Ize 3.2163 3.2163 3.9296  5.1597 6.4276  3.2163 3.2163 3.2163 6.4276
Molecular.
o-ecular 21.0584

. 16.0313 17.0376 18.0438 19.0501 20.0564 17.0346 18.0345 18.0395
Weight ,

a . . -1
Frequencies are in cm =, Data calculated from the LMR-PES.
b ,
Non-degenerate normal mode frequencies.
c . , .
Doubly degenerate normal mode frequencies for symmetric species.
d. . . . ,
Triply degenerate normal mode frequencies for symmetric species.
e s . . . ; . . A 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-3 .

f
Molecular weight in amu.

0ST



TABLE XLI

IMR-PES ACTIVATED COMPLEX DATA

151

Activated Complex Isotopic Configurationsa

CDh_-D-H

CH3—H—H CHZD—H—H CHDZ—H—H CD3—H—H CD3—H—D 3
vlb 3388.4 3388.3 3388.1 3387.8 2724.7 3104.8
vzb 2937.7 2228.7 2158.0 2095.3 2093.7 2095.2
v3b 964.7 906.6 836.4 735.0 726.4 728.0
vab 1479.31i  1478.91 1478.61  1478.2i 1349.1i  1180.5i
vsc 3085.6 3085.3 3043.1 2303.2 2303.2 2303.2
3085.6 2995.4 2305.3 2303.2 2303.2 2303.2
v6c 1502.9 1478.9 1353.4 1093.8 1093.8 1093.8
1502.9 1272.6 1130.2 1093.8 1093.8 1093.8
v7c 752.3 750.5 703.9 691.9 681.8 552.8
752.3 696.4 692.0 691.9 681.8 552.8
v8c 367.3 365.9 344.2 313.6 274.3 308.7
367.3 328.5 314.0 313.6 274.3 308.7
de 9.6301 10.8995 11.7429 11.8790 16.7999 13.9858
Iyd 9.6301 9.8801 10. 5286 11.8790 16.7999  13.9858
Izd 3.3736 4.3931 5.5278 6.7427 6.7421 6.7421
Molecular®
17.0391 18.0454 19.0517 20.0580 21.0642 21.0642
Weight
Activated Complex Isotopic Configurationsa
; 13 14
—H- -D- -D- -D- CH_-H-H CH,,-H-H
CH3 H-D CH3 D-H CH3 D-D CD3 D-D 3 3
vlb 2720.9 3106.0 2405.0 2407.6 3387.3 3386.4
vzb 2941.2 2937.0 2939.3 2093.2 2936.0 - 2934.5
v3b 956.9 959.3 953.6 721.4 959.7 955.3
v b 1350. 41 1181.74  1115.0i 1113.5i  1471.3i

1464.31
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TABLE XLI (Continued)

Activated Complex Isotopic Configurationsa

13 14

CHj-H-D  CHy=D-H CH;-D-D  CD,=D-D ~"CH,-H-H = 'CH,-H-H
v5° 3085.7  3085.7  3085.7  2303.2  3072.4  3061.1
v6° 1502.9  1502.9  1502.9  1093.8  1499.0  1495.7
v7° 746.1 636.6 632.6 543.2 750.8 749.5
vBC 327.5 345.7 296.0 262.4 367.0 366.6
de 14.2103 11.5250 15.7957 18.6144  9.6625  9.6913
.Iyd 14.2103 11.5250 15.7957 18.6144  9.6625  9.6913
Izd 3.3736  3.3736  3.3736  6.7421  3.3736  3.3736

Moleculare

Helght 18.0454  18.0454  19.0517  22.0705 18.0425  19.0423

Activated Complex Isotopic Configurationsa

CHy=H-T ~ CDy=H-T ~CH,~T-H CD,-T-H CH,~T-T  CD,~T-T
vlb 2445.6  2449.9  2997.5  2994.2  1973.3  1967.1
vzb 2939.9  2091.2  2934.9  2095.2  2938.9  2101.2
va 950. 2 719.0 955.6 722.8 946.8 712.5
v4b 1270.81 1269.3i 1032.74 1031.1i  961.0i  958.7i
v5° 3085.7  2303.2  3085.7  2303.2  3085.7  2303.2
v6c 1502.9  1093.8  1502.8  1093.8  1502.9  1093.8
v7° 744.1 678.7 596.9 499.5 593.5 489.1
v8° 312.8 259. 3 331.4 304.6 254.3 232.1
14 18.2899 21.2536 13.2127 15.8926  20.8221  25.2528

I 18.2899 21.2536 13.2127 15.8926  20.8221 25.2528
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TABLE XLI (Continued)

Activated Complex Isotopic Configurationsa

CHB—H—T CD3—H—T CH3—T—H CDB—T—H CH3—T—T CDB—T—T

Izd 3.3736 6.7421 3.3736 6.7421 3.3736 6.7421

e
Molecular™ .4 0474  22.0662 19.0474 22.0662 21.0556  24.0744
Weight
Activated Complex Isotopic Configurationsa
CHB—D—T CHB—T—D CD3—D—T CD3—T—D
b
v, 2112.7 2275.3 2135.7 2278.5
vzb 2939.1 2939.0  2071.9 2092.4
v3b 948.3 951.1 715.4 717.5

v,P  1070.21 990.8i  1068.4i 988.81

v.¢  3085.7 3085.7 2303.2 2303.2

v € 1502.9 1502.8 1093.8 1093.8

6

v,©  63L.4 594.2 540.5 491.3

v8° 277.1 275.8 244.0 253.0
d

IX 19.6223 17.2163  22.8219 20.2638
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TABLE XLI (Continued)

Activated Complex Isotopic Configurationsa

-D-T  CH,-T- -D-T ~T-
CH, 4~T-D  CD,=D CD ,~T-D

d \ :
Iy 19.6223 17.2163 22.8219 20.2638
d
Iz 3.3736 3.3736 6.7421 6.7421

e
Molecular

Weight 20.0536  20.0536  23.0724  23.0724

aFrequencies in cm—l. Data calculated using the LMR-PES force
constants and geometry.

b
Non-degenerate normal mode frequencies.
cDoubly degenerate normal mode frequencies.

d . . . .
The principal moment of inertia about the respective cartesian
coordinate axis in amu-R2.

eMolecular weight in amu.



IMR-PES ACTIVATED COMPLEX DATA ¢i(i=l,2,3) = 90° AND ¢i(i=4,5,6) = 120°

TABLE XLII

Planar CHj Activated Complex Isotopic Configurations?@

CH,,~H-H CH,~D-D CD,-H-H CH,~D-H  CH,~H-D 13CH3—H—H 14CH3—H—H
3386.3 2403.8 3386.3 3103.8 2720.6 3385.4 3384.6
2914.0 2914.0 2061.3 2914.0 2914.0 2914.0 2914.0
555.2 548.9 426.1 551.9 551.5 552.0 549.2
1469.51 1108.11i 1469.51 1174.14 1340.71 1461.61 1454.74
3099.8 3099.8 2324.4 3099.7 3099.8 3085.3 3073.0
1606.7 1606.6 1176.2 1606.6 1606. 7 1601.5 1597.0
746.8 625.9 683.7 629.9 740.5 746.3 745.9
368.3 297.7 310.0 347.1 328.7 368.2 368.2

GqT



TABLE XLII (Continued)

Planar CH3 Activated Complex Isotopic Configurations?@
13 14
CH,-H-H CH,-D-D CD,-H-H CH,-D-H CH,~H-D CH,~H-H CH,~H-H
de 9.1465 14.9889 11.0948 10.9083 13.5185 9.1990 9.2457
Iyd 9.1465 14.9889 11.0948 10.9083 13.5185 9.1990 9.2457
Izd 3.6183 3.6183 7.2311 3.6183 3.6183 - 3.6183 3.6183
Molecular®
olecular 17.0391 19.0517 20.0580 18.0454 18.0454 18.0425 19.0423

Weight

a . .
Frequencies in cm

group planar and perpendicular to rj.

b ;
Non-degenerate normal mode frequencies.

cDoubly degenerate normal mode frequencies.

Data calculated using the IMR-PES force constants with the isotopic CH3

d . . . . .
The principal moment of inertia about the respective cartesian coordinate axis in amu—gzg

*Molecular weight in amu.

9¢T



TABLE XLIII

IMR~PES ACTIVATED COMPLEX DATA FOR ¢i(i=l—6) = 109°28"'

Tetrahedral CH5 Activated Complex Isotopic Configux.‘at:'.onsa

CH,-H-H CH,-D-D CD,~H-H CH,-D-H CH,-H-D 13CH3—H-H 14CH3—H—H
3389.3 2405.2 3388.3 3107.4 2720.1 3388.1 3387.1
2952.9 2955.5 2117.4 2951.6 2958.6 2950.1 2947.6
1104.6 1093.2 837.5 1099.4 1096.0 1099.2 1094.5
1478.91 1113.2i 1477.31 1180.4i 1349.41 1471.14 1464.34
3077.1 3077.1 2290.6 3077.1 3077.1 3064.5 3053.8
1451.9 14§1.8 1053.1 1451.7 1451.9 1448.7 1440.9

751.1 631.1 693.2 635.2 744.8 749.3 747.6
365.8 295.0 | 313.8 344.6 326.0 365.3 364.9

LST



TABLE XLIII (Continued)

ey

Tetrahedral CH, Activated Complex Isotopic Configurationsa

3
CH.-H-H CH_. ~-D-D CD.,-H-H CH,-D-H CH,-H-D 13CH -H-H 14CH -H-H
3 3 37 3 3 3 3

de 9.7949 16.0533 12.1351 11.7281 14.4346 9.8225 9.8471

'Iyd 9.7949 16.0533 12.1351 11.7281 14.4346 9.8225 9.8471

Izd 3.2163 3.2163 6.4276 3.2163 3.2163 3.2163 3.2163

Molecular®

o.ecular 17.0391 19.0517 20.0580 18.0454 18.0454 18.0425 19.0423

Weight

aFrequencies in cm_l. Date calculated using the IMR-PES force constants with the isotopic CHjy
group tetrahedral relative to -

b, .

Non—-degenerate normal mode frequencies.

c .

Doubly degenerate normal mode frequencies.

d e . . . . 82
The principal moment of inertia about the respective cartesian coordinate axis in amu-A".

eMolecular weight in amu.

861



TABLE XLIV

BEBO ACTIVATED COMPLEX DATA®

BEBO Activated Complex Isotopic Configurations

—H- D= —H- —D- _H- —D- H- _p-u 13¢H.-H-H l4CH. -H-
CH3 H-H CH3 D-D CD3 H-H CD3 D-D CH3 H-D CH3 D-H CD3 H-D CD3 D-H Cq3 H-H CH3 H-H

1610.3 1297.8 1596.6 1218.5 1300.2 1591.5 1226.4 1576.1 1601.7 1594.3
2980.3 2980.0 2139.6  2136.8 2980.0  2980.3 2136.8 2139.6  2977.4 2974.9
1178.9 1077.7 899.5 863.1 1089.0 ll73.lv 870.7 893.3 1174.3 1170.2
1688.91i 1213.1i 1688.3i 1211.8i 1648.71i 1250.21i 1648.2i 1248.41i 1686.81 1685.01i
3046.9  3046.8  2249.1  2248.8 3046.9  3046.8 2249.1  2248.8 3036.7 3028.1
1459.0  1457.7 1065.9 1065.4  1459.0  1457.7 1065.9 1065.4  1455.1 1451.8
1046.1 858.3 980.2 761.8 1040.2 862.6 971.6 770.2  1043.1 1040.4

446.4 365.9 383.3 320.5 399.1 422.9 333.7 376.8 445.7 445.1

6ST



TABLE XLIV (Continued)

BEBO Activated Complex Isotopic Configurations

13 14

CH3—H—H CHB-D—D CDB—H—H CD3-D-D CH3—H—D CH3—D—H CD3—H—D CD3-D—H CHS—H—H CH3-H-H
de 8.1239 13.0996 10.3718 15.8724 12.1165 9.3369 14.7016 11.7648 8.1425 8.1591
Iyd 8.1239 13.0996 10.3718 15.8724 12.1165 9.3369 14.7016 11.7648 8.1425 8.1591
Izd 3.1989 3.1989 6.3929 6.3929 3.1989 3.1989 6.3929 6.3929 3.1989 3.1989
Moleculare
17.0391 19.0517 20.0580 22.0705 18.0454 18.0454 21.0642 21.0642 18.0425 19.0423

Weight

a , . -1
Frequencies in cm .

Data calculated using the

b .
Non-degenerate normal mode frequencies.

CDoubly degenerate normal mode frequencies.

BEBO force constants and geometry from Reference 12.

d .. , L . . . . 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-8°~.

e
Molecular weight in amu.

091



TABLE XLV

LEPS ACTIVATED COMPLEX DATA®

LEPS Activated Complex Isotopic Configurations

CH3—H-H CH3—D—D CDB—H-H CDB-D-D CHB—H—D CH3—D—H CD3—H—D CDB—D—H
vlb 1396.6 1234.3 1372.8 1080.7 1235.1 1368.6 | 1090.4 1336.2
v2b 2979.9 2979.7 2136.8 2135.6 2979.7 2979.9 2135.6 2136.8
v3b 1146.6 959.7 883.3 824.2 980.9 1130.1 838.2 873.2
v4b 2024.41 1448.11 2024.0i  1447.2i  1948.1i  1525.8i  1947.8i  1524.81
v5c 3046.8 3046.7 2248.9 2248.6 3046.8 3046.7 2248.9 2248.6
v6c 1458.1 1457.1 1065.6 1065.4 1458.1 1457.2 1065.6 1065.4
v7c 1076.7 856.1 1029.9 779.7 1063.5 867.4 1012.7 799.2
vsc 501.8 425.3 420.6 362.0 453.0 486.2 370.5 418.6

191



TABLE XLV (Continued)

LEPS Activated Complex Isotopic Configurations

CH_ -H-H CH,-D-D CD,-H-H CD,-D-D CH,-H-D CH,-D-H Cb,-H-D Ch,-D-H

3 3 3 3 3 3 3 3
de 8.4210 13.6386 10.6812  16.4413 12.6318 9.6671 15.2420 12.1113
Iyd 8.4210 13.6386 10.6812 16.4413 12.6318 9.6671  15.2420 12.1113
Izd 3.1989 3.1989 6.3929 6.3929 3.1989 3.1989 6.3929 6.3929
Molecular®

. 17.0391 19.0517 20.0580 22.0705 18.0454 18.0454 21.0642 21.0642
Weight A

aFrequencies in cm-l. Data calculated using the LEPS force constants from Reference 12.
bNon-—degenerate normal mode frequencies.

cDoubly degenerate normal mode frequencies.

dThe principal moment of inertia about the respective cartesian coordinate axis in amu—gz.

®*Molecular weight in amu.
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TABLE XLVI

BEBO3 ACTIVATED COMPLEX DATA FOR Fz =

0.0001 mdyne-&2

BEBO3 Activated Complex Isotopic Configurations

CH3-H-H CH3—D—D CDB—H—H CD3—D—D CH3—H-D CH3—D—H CD3—H—D CD3—D—H lSCHS—H—H 140H3—H—H
1567.6  1195.9 1561.1 1175.7 1203.6 1546.7 1185.4  1539.5 1560.2’ 1553.9
3148.7 3148.5 2253.2 2251.7  3148.5  3148.7 2251.7 2253.2 3146.1 3144.0

938.4 925.3 730.3 709.4 931.5 954.1 715.1 724.9 953.8 949.8
1691.01 1214.81i 1690.6i 1213.8i 1649.71i 1253.21i 1649.3i 1252.0i 1688.81  1687.01
3165.2 3165.2  2345.4  2345.4  3165.2  3165.2 2345.4  2345.4 3153.5 3143.5
1472.8 1472.7 1074.9 1074.8 1472.8  1472.7 1074.9 1074.8 1468.6 " 1465.0

622.9 442.7 622.4 442.0 582.9 494.2 582.3 493.6 622.8 622.6

13.7 13.0 11.0 10.1 13.0 13.5 10.2 10.7 13.7 13.6

€91



TABLE XLVI (Continued)

BEBO3 Activated Complex Isotopic Configurations

13 14
CH3 H-H CH3—D—D CD3—H—H CD3-D—D CH3—H—D CH3—D—H CDB—H—D CD3—D-H CH3—H—H CH3—H—H
de 8.1200 13.0953 10.3642 15.8642 12.1123 9.3329 14.6936 11.7659 8.1386 8.1552
Iyd 8.1200 13.0953 10.3642 15.8642 12.1123 9.3329 14.6936 11.7569 8.1386 8.1552
Izd 3.1931 3.1931 6.3812 6.3812 3.1931 3.1931 6.3812 6.3812 3.1931 ‘ 3.1931
Molec lare
° u 17.0391 19.0517 20.0580 22.0705 18.0454 18.0454 21.0642 21.0642 18.0425 19.0423

Weight

a . . -1
Frequencies in cm .

Data calculated using the BEBO3 force constants from Reference 14 with F

equal to 0.0001 mdyne—x.

$1-3

b .
None-degenerate normal mode frequencies.

CDoubly degenerate normal mode frequencies.

s . . . . . R 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-8°.

®Molecular weight in amu.
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TABLE XLVII

LEPS2 ACTIVATED COMPLEX DATA FOR F’g = 0.0001 mdyne-R2

LEPS2 Activated Complex Isotopic Configurations

CH_-H-H CH_-D-D CDh,-H-H CD,-D-D CH,-H-D CH_-D-H CD,-H-D CDh,-D-H

3 3 3 3 3 3 3 3
1391.6 1096.9 1384.1 1055.7 1106.1 1356.2 1071.3 1346.8
3148.5 3148.4 2252.0 2251.2 3148.4 3148.5 2251.2 2252.0

954.2 895.2 728.3 701.0 908.2 947.3 709.1 721.4

1838.71 1315.71 1838.4i  1315.01 1769.5i  1383.5i 1769.2i  1382.71

3165.2 3165.2 2345.5 2345.5 3165.2 3165.2 2345.5 2345.5
1472.9 1472.8 1075.3 1075.0 1472.9 1472.8 1075.2 1075.1
779.5 554.0 778.5 553.1 730.2 617.6 729.2 616.7
13.6 12.9 10.9 10.0 13.0 13.4 10.1 10.7

9T



TABLE XLVII (Continued)

LEPS2 Activated Complex TIsotopic Configurations

CH_-H-H CH,-D-D Ch,-H-H CD,-D-D CH,-H-D CH,-D-H CDh,~-H-D CDb,-D-H

3 3 3 3 3 3 3 3
de 8.3096 13.4401 10.5615 16.2277 12.4475 9.5376 15.0449 11.9716
Iyd | 8.3096 13.4401 10.5615 16.2277 12.4475 9.5376 15.0449 11.9716
Izd 3.1931 3.1931 6.3812 6.3812 3.1931 3.1931 6.3812 6.3812
Molecular®

. 17.0391 19.0517 20.0580 22.0705 18.0454 18.0454 21.0642 21.0642
Weight

-1
aFrequenci s in cm ~. Data calculated using the LEPS2 force constants and geometry from Reference
14 with F equal to 0.0001 mdyne-f.
$1-3
Non-degenerate normal mode frequencies.
cDoubly degenerate normal mode frequencies.

d .. . . . . . . 32
The principal moment of inertia about the respective cartesian coordinate axis in amu-A".

®Molecular weight in amu.
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TABLE XLVIII

BEBO3 ACTIVATED COMPLEX DATA FOR Fz= 0.26 mdyne-22

BEBO3 Activated Complex Iéotopic Configurations

CH3—H—H CH3—D—D CD3—H—H CD3—D—D CH3—H—D CH3-D—H CD3-H—D CD3—D-H
1577.5 1273.8 1566.0 1196.3 1276.2 1558.3 1204.1 1545.2
3148.7 3148.5 2253.6 2252.1 3148.5 3148.7 2252.1 2253.6
1156.3 1055.0 883.8 846.8 1066.6 1150.3 854.6 877.4
1690.51 1214.14 1690.0i  1212.8i  1649.31i  1252.3i  1648.81i 1250;71
3166.5 3166.4 2348.4 2348.2 3166.5 3166.4 2348.4 2348.2
1479.9 1478.9 1076.6 1076.0 1479.9 1478.9 1076.5 1076.0
1008.1 827.4 944.0 733.9 1002.5 831.4 935.8 741.9

429.6 351.9 368.9 308.3 384.1 406.8 321.2 362.6

L9T



TABLE XLVIII (Continued)

BEBO3 Activated Complex Isotopic Configurations

CH,-H-H CH_-D-D CDh,-H-H CD_,-D-D CH_-H-D CH,_-D-H CD,-H-D CDh,-D-H

3 3 3 3 3 3 3 3

de 8.1200 13.0953 10.3642 15.8642 12.1123 9.3329 14.6936 11.7569

Iyd 8.1200 13.0953 10.3642 15.8642 12.1123 9.3329 14.6936 11.7569

Izd 3.1931 3.1931 6.3812 6.3812°  3.1931 3.1931  6.3812 6.3812
Molecular®

o.ec 17.0391 19.0517 20.0580 22.0705 18.0454  18.0454 21.0642 21.0642

Weight

aFrequencies in cm_l. Data calculated using the BEBO3 force constants and geometry from Reference
14 with F+ equal to 0.26 mdyne—x.
$1-3
Non-degenerate normal mode frequencies.

cDoubly degenerate normal mode frequencies.

d .. . . . . . .. 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-R°.

e . .
Molecular weight in amu.
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TABLE XLIX

LEPS2 ACTIVATED COMPLEX DATA FOR Fz = 0.26 mdyne X2

LEPS2 Activated Complex Isotopic Configurations

CHB—H—H CH3—D—D CD3—H—H CD3-D-D CH3-H—D CH3-D—H CD3—H—D CD3—D-H

vlb 1411.8 1231.6 1391.6 1091.4 1232.9 1383.4 1102.1 1356.5
"-vzb 3148.5 3148.5 2252.4 2251.6 3148.4 3148.5 2251.6 2252.4
v3b 1141.9 968.1 879.3 823.3 989.1 1127.7 836.6 869.8
va 1838.41 1315.11 1838.01i  1314.21i 1769.2i  1382.8i 1768.91i  1381.71
'vSC 3166.5 3166.5 2348.6 2348.3 3166.5 3166.5 2348.6 2348.3
v6c 1480.0 1479.0 1076.8 1076.1\ 1380.0 1479.0 1076.7 1076.1
v7c 1078.4 858.0 1030.8 781.2 1065.5 869.1 1014.0 800.2
v8c 500.4 423.5 420.0 360.9 451.3 484.7 369.5 417.9
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TABLE XLIX (Continued)

LEPS2 Activated Complex Isotopic Configurations
CH_-H-H CH_-D-D CD_,-H-H CD_,-D-D Cbh,-H-D CH_-D-H CDh,-H-D Ch,-D-H

3 3 3 3 3 3 3 3
de v 8.3096 13.4401 10.5615 16.2277 12.4475 9.5376 15.0449 11.9716
Iyd 8.3096 13.4401 10.5615 16.2277 12.4475 9.5376 15.0449 11.9716
Izd 3.1931 3.1931 6.3812 6.3812 3.1931 3.i9§1 6.3812 6.3812
Molecular®

Weight 17.0391 10.0517 20.0580  22.0705 18.0454  18.0454  21.0642  21.0642

aFrequencies in cm—l. Data calculated using the LEPS2 force constants and geometry from Reference
14 with FT equal to 0.26 mdyne—g.
©¢1-3
Non-degenerate normal mode frequencies.
cDoubly degenerate normal mode frequencies.

. . . . . . . . . 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-2 .

“Molecular weight in amu.
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TABLE L

BEBO3 ACTIVATED COMPLEX DATA FOR F* =

B

0.568 mdyne—ga

BEBO3 Activated Complex Isotopic Configurations

CH3—H—H CH3—D—D CD3—H—H CD3—D—D CH3—H—D CHS—D—H CD3—H—D CD3—D—H 13CH3—H—H 14CH3—H—H
1603.4  1432.8 1574.0  1239.7 1432.9 1589.1  1244.2  1554.4 1591.7 1581.8
3148.7 3148.6  2254.3  2252.7  3148.6  3148.7  2252.7  2254.3 | 3146.2 3144.0
1337.1  1102.7 1033.3 960.6 1116.4  1326.2 971.8 1025.5 1334.1 1331.3
1690.1i 1213.51 1689.41i 1211.91 1469.0i 1251.5i 1648.4i 1249.5i 1688.11i 1686.31
3168.3 3168.1  2353.3 2352.4  3168.3  3168.1  2353.3  2352.4 3156.3 3146.0
1526.9  1497.7 1276.1 1086.8 1526.6  1497.7 1273.4 1087.0 1526.4 1526.0
1355.1  1168.9 1072.8 1011.1 1353.6 1170.0 1072.7 1013.3 1348.0 1341.8

457.5 363.4 403.9 326.9 407.3 421.7 349.4 387.8 457.1 456.7
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TABLE L (Continued)

BEBO3 Activated Complex Isotopic Configurations

CH3—HfH CH3—D—D CD3-H—H CD3—D—D CH3-H—D CH3—D-H CD3—H—D CD3—D—H 13CH3—H—H 14CH3—H—H
de 8.1200 13.0953 10.3642 15.8642 12.1123 9.3329 14.6936 11.7569 8.1386 8.1552
Iyd 8.1200 13.0953 10.3642 15.8642 12.1123 9.3329 14.6936 11.7569 8.1386 8.1552
IZd 3.1931 3.1931 6.3812 6.3812 3.1931 3.1931 6.3812 6.3812 s 3.1931 3.1931
Molecular®

Weight 17.0391 19.0517 20.0580 22.0705 18.0454 18.0454 21.0642 21.0642 18.0425 19.0423

aFrequencies in cm_l. Data calculated using the BEBO3 force constants and geometry from Reference 14
with F¥ equal to 0.568 mdyne—x. ‘

$1-3
bNon—degenerate normal mode frequencies.
cDoubly degenerate normal mode frequencies.

d . . . . . . . . 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-R°.

eMolecular weight in amu.
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TABLE LI

LEPS2 ACTIVATED COMPLEX DATA FOR F’é = 0.568 mdyne-R2

LEPS2 Activated Complex Isotopic Configurations

CHB—H—H CH3—D—D CDB—H—H CD3-D—D CH3—H—D CH3—D—H CDB—H—D CDB—D—H
vlb 1481.7 1417.8 1405.6 1167.0 1417.9 1471.1 1171.1 1374.7
vzb 3148.6 3148.4 2253.0 2252.1 3148.4 3148.6  2252.1 2253.0
v3b 1278.6 988.5 1022.9 905.0 1010.7 1246.7 925.0 1009.0
v4b 1838.11 1314.61 1837.61  1313.51 1768.9i 1382.21 1768.61i  1380.71i
vSC 3168.4 3168.2 2353.6 2352.5 3168.4 3168.2 2353.6 2352.5
v6c 1535.4 1497.9 1325.9 1089.5 1534.3 1497.9 1319.4 1090.4
v7c 1384.1 1183.1 1074.8 1033.3 13890.7 1186.0 1074.5 1038.4
VSC 555.2 448.0 482.6 397.6 496.2 518.0 419.7 468.9
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TABLE LI (Continued)

LEPS2 Activated Isotopic Configurations

“CH,-H-H CH_,-D-D CD,-H-H CDh,-D-D CH,-H-D CH,-D-H Cb,-H-D CD,-D-H

3 3 3 3 3 3 3 3
de 8.3096 13.4401 10.5615 16.2277 12,4475 9.5376  15.0449 11.9716
Iyd 8.3096 13.4401 10.5615 16.2277 12.4475 9.5376 15.0449 11.9716
IZd 3.1931 3.1931 6.3812 6.3812 | 3.1931 3.1931 | 6.3812 6.3812
Molecular®

Weight 17.0391 19.0517 20.0580 22.0705 18.0454  18.0454  21.0642 21.0642

aFrequencies in cm_l. Data calculated using the LEPS2 force constants and geometry from Reference
14 with F+ equal to 0.568 mdyne—x.
$1-3
Non-degenerate normal mode frequencies.
cDoubly degenerate normal mode frequencies.

. . . . . . A 2
The principal moment of inertia about the respective cartesian coordinate axis in amu-8°.

®Molecular weight in amu.
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APPENDIX D

TABULATION OF THE KIEs USED TO OBTAIN

TEMPERATURE DEPENDENCE PARAMETERS

This Appendix presents tables of kinetic isotope effects
calculated as a function of temperature. These data were used to

calculate the temperature dependence for each kinetic isotope effect.
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TABLE

LIT

VALUES FOR k(CH4,H)/k(CH4,D)

F¢i(i=l,2,3)

KHT SW
IMR-PES IMR-PES® BEBO  LEPS BEBO3 BEBO3 BEBO3 LEPS2 LEPS2 LEPS2

Temperature + Bell Fg = Fg = Fg = Fg = Fg = Fg =
°K Tunneling 0.0001 0.26 0.568 0.0001 0.26 0.568
396 0.390 0.618 0.597 0.691 0.634 0.634 0.634 0.687 0.686 0.685
421 0.421 0.592 0.625 0.719 0.663 0.663 0.663 0.715 0.714 0.714
446 - 0.450 0.590 0.650 0.744 0.690 0.690 0.689 0.740 0.739 0.739
471 0.478 0.598 0.674 0.766 0.713 0.713 0.713 0.762 0.762 0.762
496 0.505 0.610 0.695 0.786 0.735 0.735 0.735 0.783 0.782 0.782
521 0.530 0.624 0.714 0.805 0.755 0.755 0.744 0.801 0.801 0.800
546 0.554 0.639 0.732 0.821 0.773 0.773 0.773 0.818 0.818 0.818
571 0.576 0.654 0.748 0.836 0.789 0.789 0.789 0.388 0.833 0.833
596 0.598 0.669 0.763 0.850 0.804 0.804 0.804 0.846 0.846 0.846
621 0.618 0.684 0.776 0.862 0.818 0.818 0.818 0.859 0.859 0.859
646 0.638 0.699 0.789 0.873 0.830 0.830 0.830 0.870 0.870 0.870
696 0.674 0.727 0.811 0.893 0.853 0.853 0.853 0.890 0.890 0.890

%Values include a Bell tunneling correction, see (III-12).

bValues calculated using force constants and geometry from Reference 12.

“Values calculated using force constants and geometry from Reference 14. F in mdyne—x.
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TABLE LITI

VALUES FOR k(CH3,H2)/k(CH3,D2)

gkar<* < swd»e
IMR-PES? LMR—PESb BEBO LEPS BEBO3 BEBO3 BEBO3 LEPS2 LEPS2 LEPS?2
Temperature + Bell FB = FB = FB = FB = FB = FB =

°K Tunneling 0.0001 0.26 0.568 0.0001 0.26 0.568
396 1.904 5.171 4.068 4.098 4.894 4.092 3.460 4.814 4.065 3.463
421 1.883 4.097 3.868 3.890 4.558 3.877 3.321 4.502 3.861 3.331
446 1.863 3.512 3.692 3.707 4.273 3.689 3.198 4.234 3.681 3.211
471 1.844 3.140 3.536 3.544 4.028 3.523 3.087 4.002 3.522 3.102
496 1.825 2.882 3.396 3.399 3.815 3.375 2.986 3.799 3.379 3.003
521 1.808 2.691 3.271 3.268 3.630 3.243 2.895 3.620 3.250 2.913
546 1.791 2.543 3.157 3.150 3.466 3.125 2.811 3.461 3.134 2.829
571 1.775 2.426 3.054 3.043 3.320 3.017 2.734 3.329 3.038 2.752
596 1.759 2.329 2.960 2.945 3.190 2.920 2.662 3.193 2.932 2.681
621 1.745 2.248 2.874 2.856 3.073 2.831 2.597 3.078 2.844 2.615
646 1.731 2.179 2.796 2.774 2.968 2.750 2.536 2.975 2.763 2.554
696 1.704 2.068 2.656 2.629 2.786 2.606 2.426 2.795 2.620 2.444

8Yalues calculated using the LMR-PES H

b

IMR-PES values corrected for Bell tunneling, see (III-12).

2

and D,_. frequencies.

2

c . . ‘
Values calculated using the force constants and geometry in Reference 12.

d
Values adjusted to the rotationally corrected reactant Hy and D9 frequencies of

see Chapter III and Reference 43.

®Values calculated using the force constants and geometry in Reference 14.

mdyne

F

B

Persky and Klein,

Fo (1=1,2,3) 17
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TABLE LIV

VALUES FOR k(CD3,H2)/k(CD3,D2)

gur®> ¢ gud>©
LMR—PESa LMR—PESb BEBO LEPS BEBO3 BEBO3 BEBO3 LEPS2 - LEPS2 LEPS2
Temperature + Bell Fg = Fg = Fg = Fg = Fg = Fg =
°K Tunneling 0.0001 0.26 0.568 0.0001 0.26 0.568
396 1.900 5.149 3.900 4.076 4.893 4,068 3.394 3.813" 4,043 3.401
421 1.880 4.085 3.713 3.873 4.558 3.859 3.268 4.501 3.844 3.280
446 1.861 3.505 3.547 3.693 4.273 3.675 3.155 4.234 3.668 3.169
471 1.842 3.136 3.400 3.533 4.028 3.512 3.052 4.002 3.511 3.068
496 1.824 2.879 3.268 3.390 3.816 3.367 2.958 3.799 3.370 2.975
521 1.807 2.689 3.148 3.261 3.630 3.237 2.871 3.620 3.243 2.889
546 1.790 2.542 3.041 3.144 3.467 3.120 2.791 3.462 3.128 2.810
571 1.775 2.425 2.942 3.038 3.321 3.014 2.717 3.320 3.024 2.736
596 1.759 2.329 2.853 2.944 3.191 2.917 2.649 3.193 2.928 2.668
621 1.745 2.248 2.771 2.853 3.074 2.829 2.585 3.079 2.841 2.604
646 1.731 2.179 2.695 2.772 2.969 2.748 2.526 2.975 2.761 2.545
696 1.705 2.068 2.561 2.628 2.787 2.605 2.420 2.795 2.619 2.437
aValues calculated using the LMR-PES H_, and D, frequencies.

b

LMR-PES values corrected for Bell tunneling, see (III-12).

2

2

c , .
Values calculated using the force constants and geometry in Reference 12.

dValues adjusted to the rotationally corrected Hy and Dy frequencies of Persky and Klein, see Chapter

ITIT and Reference 43.

®Values calculated using the force constants and geometry in Reference 14.

mdyne

¥

8

F¢i(i=l,2,3)

in

8LT



TABLE LV

VALUES FOR k(CH,,HD)/k(CH,,DH)

B ¢i(i=l,2,3)

KHT SW
IMR-PES IMR-PES®  BEBO  LEPS BEBO3 BEBO3 ~ BEBO3  LEPS2 LEPS2  LEPS2

Temperature + Bell Fg = Fg = Fg = Fg = Fg = Fg =
°K Tunneling 0.0001 0.26 0.568 0.0001 0.26 0.568
396 1.748 2.637 1.488 1.235 1.782 1.491 1.261 1.476 1.247 1.063
421 1.702 2.366 1.476 1.240 1.737 1.477 1.266 1.459 1.252 1.080
446 1.661 2.183 1.464 1.245 1.697 C1.466 1.271 1.443 1.256 1.095
471 1.625 2.049 1.454 1.249 1.663 1.455 1.275 1.430 1.259 1.109
496 1.593 1.946 1.445 1.252 1.633 1.445 1.278 1.418 1.261 1.121
521 1.563 1.863 1.436 1.255 1.607 1.436 1.282 1.407 1.264 1.133
546 1.537 1.795 1.428 1.257 1.584 1.428 1.285 1.398 1.265 1.143
571 1.573 1.738 1.421 1.259 1.563 1.421 1.287 1.389 1.267 1.152
596 1.491 1.689 1.415 1.261 1.545 1.414 1.289 1.381 1.268 1.160
621 1.471 1.647 1.409 1.262 1.528 1.408 1.292 1.374 1.270 1.168
646 1.453 1.610 1.403 1.263 1.514 1.402 1.293 1.368 1.271 1.175
696 1.421 1.549 1.394 1.266 1.488 1.393 1.297 1.357 1.272 1.187

8Values corrected for Bell tunneling, see (III-12).

bValues calculated using force constants and geometries in Reference 12.

“Values calculated using force constants and geometry in Reference 14. F_ = F+ in mdyne—R.
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TABLE

LvI

VALUES FOR k(CDB,ﬂD)/k(CD3,pH)

KHT SW
IMR-PES LMR—PESa BEBO LEPS BEBO3 BEBO3 BEBO3 LEPS2 - LEPS2 LEPS2
Temperature + Bell Fg = Fg = Fg = Fg = Fg = Fg =
°K Tunneling 0.0001 0.26 0.568 0.0001 0.26 0.568
396 1.744 2.628 1.478 1.228 1.782 1.482 1.237 1.475 1.240 1.044
421 1.699 2.3690 1.468 1.234 1.736 1.470 1.246 1.458 1.246 1.063
446 1.659 2.179 1.458 1.240 1.697 1.460 1.254 1.443 1.251 1.081
471 1.623 2.046 1.449 1.245 1.663 1.450 1.260 1.430 1.255 1.097
496 1.591 1.943 1.440 1.248 1.633 1.441 1.266 1.418 1.258 1.111
521 ©1.562 1.861 1.433 1.252 1.607 1.433 1.271 1.407 1.261 1.123
546 1.536 1.794 1.426 1.254 1.584 1.426 1.276 1.398 1.263 1.135
571 1.512 1.737 1.419 1.257 1.564 1.419 1.28- 1.389 1.265 1.145
596 1.491 1.688 1.413 1.259 1.545 1.413 1.283 1.381 1.267 1.154
621 1.471 1.646 1.407 1.261 1.529 1.407 1.286 1.374 1.268 1.163
646 1.453 1.610 1.402 1.262 1.514 1.402 1.289 1.368 1.270 1.170
696 1.420 1.549 1.393 1.265 1.489 1.392 1.293 1.357 1.272 1.183
aValues corrected for Bell tunneling, see (III-12).
bValues calculated using force constants and geometry in Reference 12.
“Values calculated using force constants and geometry in Reference 14. FB = F¢,(i=1,2,3) in mdyne‘x.
i
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VALUES FOR k(CH,,H) /k('7CH, ,H)

TABLE LVII

181

Temperature LMR-PES BEBO® BEBO3P BEB03”
°K = 0.0001 F_ = 0.568
273 1.038 1.024 1.031 1.0086
296 1.035 1.022 1.028 1.0080
321 1.032 1.020 1.025 1.0075
346 1.030 1.019 1.023 1.0071
371 1.028 1.017 1.021 1.0067
396 1.026 1.016 1.020 1.0064
421 1.024 1.015 1.018 1.0061
446 1.023 1.014 1.017 1.0058
471 1.021 1.013 1.016 1.0056
496 1.020 1.013 1.015 1.0053
521 1.019 1.012 1.014 1.0051
546 1.018 1.011 1.013 1.0049

%Yalues calculated using the force constants and geometry in Reference

12.

bValues calculated using the force constants and geometry in Reference

14.
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TABLE LVIII

13
VALUE FOR k(CH3,H2)/k( CH3,H2)

Temperature  IMR-PES®  IMR-PES® BEBO® BEBO3¢ 3EB03
°K + Pimentel FB = 0.0001 FB = 0.586
273 1.0064 1.0021 0.9923 0.9993 0.978
296 1.0064 1.0026 0.9935 0.9995 0.980
321 1.0063 1.0030 0.9945 0.9997 0.982
346 1.0063 1.0033 0.9954 0.9999 0.984
371 1.0063 1.0036 0.9962 1.0001 0.986
396 1.0062 1.0038 0.9969 1.0003 0.987
421 1.0062 1.0040 0.9974 1.0004 0.988
446 1.0061 1.0041 0.9979 1.0005 0.990
471 1.0061 1.0043 0.9984 1.0006 0.991
496 1.0061 1.0044 0.9987 1.0007 0.991
521 1.0060 1.0045 0.9990 1.0008 0.992
546 1.0060 1.0046 0.9993 1.0009 0.993

8yalues calculated using the LMR-PES force constants and geometry plus
the Gaussian 70 CH3 out-of-plane bending force constant, see
Chapter II.

bValues calculated using the LMR-PES force constants and geometry plus
the Tan, Winer, and Pimentel harmonic CH3 out-of-plane bending
frequency, see Appendix C.

“Values calculated using‘the BEBO data in Reference 12.

dVilues calculated using the BEBO3 data in Reference 14. FB =
F¢1(i=1’2’3) in mdyne-A.
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TABLE LIX

VALUES FOR k(CHA,H)/k(CD3§,H)

Temperature LMR-PES BEBO? BEBO3” BEBO3”
°K - Fg = 0.0001 Fo = 0.568
273 1.650 1.321 1.591 0.687
296 1.579 1.293 1.507 0.712
321 1.514 1.266 1.434 0.735
346 1.460 1.242 1.374 0.755
371 1.413 1.222 1.324 0.772
396 1.372 1.203 1.283 0.787
421 1.338 1.186 1.248 0.800
446 1.307 1.172 1.219 0.812
471 1.281  1.159 1.193 0.823
496 1.257 1.147 1.172 0.833
521 1.237 1.136 1.153 0.842
546 1.218 1.127 1136 0.850

8Yalues calculated using the BEBO data in Reference 12.

bVilues calculated using the BEBO3 data in Reference 14. FB =
F¢i(i=1’2’3) in mdyne-A.



TABLE LX

VALUES FOR k(CHB,HZ)/k(CDB,HZ)

184

the Tan, Winer, and Pimentel harmonic CHg out-of-plane bending
frequency, see Appendix C.

“Values calculated using the BEBO data in Reference 12.

dValues calculated using the BEBO3 data in Reference 14.
in mdyne-1.

F
¢i(i=1) 233)

Temperature  IMR-PES®  LMR-PES’ BEBO® BEBO3" BEB03"
°K + Pimentel FB = 0,0001 FB = 0.568
273 0.811 0.722 0.650 0.782 0.338
296 0.838 0.756 0.686 0.800 0.378
321 0.862 0.787 0.721 0.816 0.418
346 0.882 0.813 0.751 0.830 0.456
371 0.898 0.835 0.776 0.842 0.491
396 0.911 0.854 0.799 0.852 0.523
421 0.923 0.871 0.819 0.861 0.552
446 0.932 0.884 0.836 0.869 0.579
471 0.940 0.896 0.851 0.876 0.604
496 0.947 0.907 0.864 0.883 0.627
521 0.953 0.916 0.876 0.888 0.649
546 0.958 0.923 0.886 0.894 0.668
#Values calculated using the LMR-PES force constants and geometry plus
the Gaussian 70 CH3 out-of-plane bending force constant, see
Chapter II, and Appendix C.
bValues calculated using the LMR-PES force constants and geometry plus



IMR-PES KIEs USING DIFFERENT TRANSITION-STATE GEOMETRIES

TABLE IXI

14 14
k(CH,,H) /k(""CH, ,H) k(CH,,Hy) /k (" CHy, Hy)
Temperature Tetrahedrala LMR-PES Planarb Tetrahedrala IMR-PES Planarb
(=]
K CH3 CH3 CH3 CH3
371 1.0527 1.0520 1.0526 1.0124 1.0117 1.0123
396 1.0491 1.0484 1.0488 1.0123 1.0116 1.0120
421 1.0459 1.0453 1.0455 1.0122 1.0115 1.0117
446 1.0431 1.0425 1.0426 1.0121 1.0115 1.0115
471 1.0407 1.0401 1.0400 1.0119 1.0114 1.0113
496 1.0384 0.0379 0.0377 1.0118 1.0113 1.0112
521 1.0365 1.0360 1.0357 1.0117 1.0113 1.0110
546 1.0347 1.0342 1.0339 1.0117 1.0112 1.0109
%, (1=1-6) = 109°28'16".

b, . _ oo _ _
¢,(i=1,2,3) = 90°, ¢, (i=4,5,6)

120°.
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IMR-PES KIEs USING DIFFERENT TRANSITION-STATE GEOMETRIES

TABLE LXII

k(CH4,H)/k(CH4,D) k(CH,,H,) /k(CH,,HD)
Temperature Tetrahedral? LMR-PES Planarb Tetrahedral? LMR-PES Planar
K CH3 CH3 CH3 CI-I3
371 0.357 0.357 0.358 .986 0.986 0.989
396 0.389 0.390 0.391 .000 1.000 1.003
421 0.420 0.421 0.422 .012 1.012 1.014
446 0.450 0.450 0.451 .023 1.023 1.025
471 0.478 0.478 0.479 .032 1.032 1.035
496 0.505 0.505 0.506 .041 1.041 1.043
521 0.530 0.530 0.531 .048 1.048 1.050
546 0.554 0.554 0.555 .055 1.055 1.057

a¢i(i=1—6) = 109°28'16".

b¢i(i=l,2,3) = 90°, 4, (i=4,5,6) =

120°.
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IMR-PES KIEs USING DIFFERENT TRANSITION-STATE GEOMETRIES

TABLE LXIII

k(CH4,H)/k(CH3D,H) k(CH3,H2)/k(CH3,pH)
b

Temperature Tetrahedrala IMR-PES Planar Tetrahedrala LMR-PES Planar

°K CH CH CH CH
3 3 3 3

371 3.871 3.869 3.883 777 1.776 1.782
396 3.529 3.527 3.539 .749 1.748 1.754
421 3.252 3.250 3.260 724 1.723 1.728
446 3.024 3.023 3.031 .700 1.699 1.704
471 2.835 2.834 2.841 .679 1.678 1.682
496 2.676 2.674 2.680 .658 1.658 1.661
521 2.540 2.538 2.544 . 640 1.639 1.642
546 2.423 2.421 2.426 .622 1.621 1.625

a¢i(i=1—6) = 109°28'16".

b¢i(i=1,2,3) = 90°, ¢, (i=4,5,6) = 120°.
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TABLE LXIV

IMR-PES KIEs USING DIFFERENT TRANSITION-STATE GEOMETRIES

k(CH4,H)/k(CD3H,H) k(CH3,H2)/k(CD3,H2)
Temperature Tetrahedral® LMR-PES Planarb Tetrahedral® LMR~-PES Planarb
K CH3 CH3 CH3 CHB-
371 1.396 1.413 1.478 0.887 0.898 0.939
396 1.359 1.372 1.426 0.902 0.911 0.947
421 1.326 1.338 1.381 0.915 0.923 0.953
446 _ 1.298 1.307 1.344 0.925 0.932 0.958
471 1.273 1.281 1.311 0.934 0.940 0.963
496 1.250 1.257 1.283 0.942 0.947 0.966
521 1.231 1.237 1.258 0.948 0.953 0.970
546 1.213 1.218 1.237 0.954 0.958 0.972

a¢i(i=l—6) = 109°28'16".

Py, (1=1,2,3) = 90°, ¢, (i=4,5,6) = 120°.
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APPENDIX E
LISTING OF COMPUTER PROGRAMS

The following computer programs are arranged in the relative
order of usage to calculate transition-state theory kinetic isotope
effects. The first program is the SCANNING ROUTINE used to search
out and define the LMR-PES activated complex geometric configuration,
CH3—H—H, for the axial hydrogen abstraction reaction. This is
followed by the subroutines describing the LMR-PES, that is, POT6,
TRI, PLACE, DIST, ANGLE and READ.2 Subroutine TETRAH contains
equations describing a geometric derivation of the tetrahedral angle
and is called no more than once in any one program. The next program
is the INTERNAL COORDINATE FORCE CONSTANT ROUTINE which uses the
subroutines describing the LMR—PES2 in addition to CPUNCH for punching
the force constants in the proper form for use with the Schacht-
schneider normal mode frequency program,9 and ALBEND and QRESET whose
functional forms are described in Appendix A. The third program,
FXGEN ROUTINE, was used to convert internal coordinate force constants
to cartesian coordinate force constants by the matrix methods

described in Appendix B. The fourth program is the CARTESIAN
COORDINATE FORCE CONSTANT ROUTINE which uses the subroutine describing
the LMR—PES2 in addition to the polynomial least squares subroutine

LESQ.32 The fifth program is the ABSOLUTE RATE THEORY ROUTINE which

controls the input to the subroutine THERMO. Then THERMO calculates
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the transition-state theory kinetic isotope effect ratios and their

temperature dependence using subroutine LESQ_.32 THERMO has also been

modified to use a temperature dependent exponential factor like those

in (III-10) and (ITI-11).
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RLLEASE 2.0 MA IN DATE = /6302 10703748

CARRR Gt dR NN NN N AR RBR AR AR NG RNE R IR AR udn AR RN AR NN R RN Kl
LMR=PES SCANNING RUUTINE
s THE LMR=PES UR L. M, RAFF POTENTIAL cNERGY SURFALE 1S PRUGRAMMED IN THE
L SUBKUUTINES PUT6, TRI, PLALE, JIST AND ANGLE.
CHNHBANURKRRANNBRGH BB RA RN R RN ARRAA AN AN NANA R AR AR R N RN RN RN N Y
IMPLICIT REAL*3 (A-H,(G-2)
DIMENSION PLOL 1 00) o XNAXLS) s YMAR(G) s IMAX {6 ) 9 RMAX (15 )y AMAX (b))
DIMENSTON X(O6) oY {63 92161 1 REULDIIDERILIS)ALIG) sR20L5),D1I3)4,03(30,
U ALPHI3) oRELS) s METAI3),CCI3 )0 AAL3) 5 IG(3))RSTRI3},ALS(61.0K1 0},
2 YL(6)sY2006) 4ASSUOY yF{4) 2GF (4) s RXEG Iy PXIL) 4PY (6) 4 PLZ(6),DXI60,
3 DYL6)yDZI6) sUPXI61s0PYL ) OPLLE))UF (15,3}
DIMENSIUN APARMIS)
COMMUN Xy Yol yRyDERVAG\R2 UL ALPH AL yU34yBETAJCCoAA,SIGRSTR,T AU,
1 RVyUDIJsCP oyl csACSoASS RXXI T,y V0yV2yV39Va ybMAX,y
2 RESaVRyPERsH s PXgPYyPZ oAyl ¢yWBRew yDT s DX DY UZyDPXy EPY 4UP Ly T, DF,
3TEMPsRRT ¢ START,APARM,PI, T3P1,ELOPI 456P1,
LI JdJJe KKKy LLLy AVLIsNV2,NV3 4 NV4y JJ NI KEE
KEAL %4 P4PPP
C LbbbbbLEbLEEELEEELELELELOLELELELLLLELEGEULLLELGEELEELEEEULELEEELLLELLLLLELBLELALLELEL
C THIS ROUTINE SCANS A REGIUN UF THE PCTENTIAL ENERGY SURFACE DESCRIBED BY
. THE LMR=PES IN SEARCH CF THE ENcRGY ANDO CHS STRUCTURE FQOR THE AXTAL
C HYURUGEN ABSTRACTIUN  REACTLIJUN AT [HE TOP UF THE BARRIER ALUNG THE
(. WEACTICN CUORUINATE BY INCREMENTING THE C—H DISTANCE VERSUS THt H-H
C UISTANCE SYSTEMATICALLY.
C LLbbLbLLLLEBELEELLELELGLLEGEEELLLELALLELLLLELELLLBLEALELLLLELLELLL LLELELELELLAULL
ABS{XI=DABS{X)
READ(5,100) AsByCoUE
Loy FURMAT (5A1)
300 00 5 [=1.61
vo 5 J=1,100
5 PllyJ)=t
Du 1 I=1,100
PlLlel)=n
1 Pl6lsl)=a
LU 2 I=2,01
PtisLd=3
2 P{1,4100) =g
DO 3 16,5045
00 4 J=l,100
“ P{l+J)=B
3 CUNT INUE
WRITE(6+1011}
10l FORMAT (1HL)
CALL READ
TMAX=0.000
XX=2.842500
CILIIIIIIIIIIIE 070700000070 007700700070007000000070707070007107707770771771771%777
L CALCULATE PI AND FRACTIONS OF PI
P1=2.00N*DARSIN(1.0D0)
T13P1=(2.000%P1}/3.000
ELOPI=(1]1.0D0%*P1)/0u.0D0
S6PI=(7.000*P[)/6.000
CALL TETRAH(TAU,PI)
PPP=2.40
k=]
LEL1)=3.200
CAIIITIIIIIITEE70 07770000700 000701007070777008777810770780707040777717717777077777777
G START INCREMENTATION
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N LAIIIIIILII P TTI L LT a0 0707000000000 70 000007780000 070000000700077717207117777
. CumtbULaTy Ll RuY AR TR STITT v LEUAETEY WS A FUNCTIUN UF SonNe LENGTH UK
“ Tz alTING L=k sUNU
LALL PLALLGOIL N
carl WSt
uall &holk
CALL HUTO
vt +lzo 725200
LTSI I II P I I E 80087770707 7777700770000877777770777777727770771077017770177

8 Tesl Foe MEMIMUM ENERGY (REACTIIN CLURCINATE PUSITIUN) ALNG THE h=H INCKL
(. MUl LN SuaiNa
Lidd by iT-ve) 2Crcla?1
o1l Teit
Vo T 22

23 1=A0alT/dad=Ud-60.u301)
TrdL=-el) 70,72,71

71 L=0l

72 CONTENUE
ViLent =0
YN

[t {rb=TMAXE 4009400401
Loatiahotuotouitb o blldlbblludubloblliteuet LaSLLLEELLEULLELEELEE L UL L GLLLEELLERLLLE
. otint LEJMETRY GF MAXIMUM ENERGY CoNF [uURATIONG
tJL TvAX =2k
0 202 la=lvo
AMaR (LK) =XEER)
YIRS XU N
LMARCER) =4 0IK)
ad? AMAA{IK)=ALlin)®1d0.0D0/P 1
U @73 In=l,ly
ERM AMAXU IR skl IR)
409 LUt g
ulL TU 50 .
C LrbbbbubrbbbLbbbutubbionbibobbbbbubbbbiitbuetbGhbLbELbLbLALLULLES L LLLLLELLEEREUE

L PNCREMENT H-H UISTANCE.
il LE6=Lb¢3,50-4
bl CUNT INVE

LobabGobbbbbunbubbbibLLbbbbibubebbboib bl bbb e AbbLLEL LELEELELLER L LLLLELLLELLLLL
L INCKCEMENT C=1 DISTANCE .
50 Llli=2{Lr=-3,00~4
ULl 00 1=1.12
Mase(l=1)+1
WEITELLe LJ2) PPy (P IMyN)yN=1, 1001}
PPP=PPY-C.2)
Ly FARMATULXyF9ac e Xy 10JALY)
103 FUPMAT (84X 10041 )
1 ol Jd=les
AzSe([=1)edel ’
ol W ITE{L 103 (PUMyN)aN=L,100)

©) CUNTINUE
PPP=0.0

ARITELGs L0221 PPPyLlPL6L1oN)«N=1,130)
aR[1EL6,1C5)
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WhLEAGE 2.0 MA {N cAle = 76302 10/03/48

1y FORMAT(G0OX, [9HKEACTION LUORUINAT E
107 LUNTINUE
wRITFloa101)
Wl TElued04d
RV FURMAT (20X e 39IIVERLY ANU GEJMETRY UF THE "SADDLE-POINT//
1 10X OHATOM LolYX,0HATON 2, 15X 6HATUM 3, 15X, GHATOM 4, LOX, GHATUM 5,
¢ LYHA CHATUM o/7)
WKITE{0s405) XMaX, YHAX,LMAX
Wi FUKMAT (L X IHXy 2X 46 (1PDU21 o143/ LAy LHY 4 2X 40 (1PD21al 4}/ LX,y L1l 2X 464 1PD
12114173
Jil 400 I=lylY
il WRITE(6»407) TorMAXLL)
wOT FURMATEL9XsLHR o1 29 IH=, 1X,1PU22.15)
witlTE o, 408) aMAX
AUb FURMAT(/ /20X y6HANGLES/ /10X s SHTL1 =43P 015 06 02X¢ 3HT2=,3PD15.642X,
L 31T 32, 3PDLY. 62X JHTH2, 3PUL5. 692X 3HTH=,3P0L5 6 +2X s 301l L= 43 P00 0y
2 /71
[#AX=(TMAX-0.4500) %2 3.000500
WRITE{L,405) TMAX
405 FURMAT(LUX,28HLARRIER HETGHT IN KCAL/MULE=,2PB25.15)
Gl Td 500
Fald
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FORTRAN TV G LEVEL 21 POT6 DATE = 7604~ 14/04 /41

0001

0002
0003
n004

Ccoos
Q006

0007
NONH
0009
0010
0011

0012

0013
0014
001%
001 6
Qo1l7?
018
QoY 9
0020
oo21
0022
0023
anz2e4
0025
0026
0027

0028
co29

0030
0031
0032

SUBRUUTINE POTo .
C 7 e 7 Ak e ek vk Re ¥ K Ok ok e e e e o ook ol o v e e o o o e ok o g e e K ot e ke ok ol ok X o e ok ok o R B e sl ok sk o ok oo o ol o e oo ok ol ke
C SEF REFERPFNCE: Le M. RAFFy Jo CHEM. PHYS., VOLs 50, 222001974)
C SUBRIUTINE T3 CALCULATE THE CH4-H SUPFACE
C REQUIRFS SUBROUTINES DIST,ANLGE,AND THI
C ALSD COMPUTES DF/DR FOR ALL R AND STIRES RESULTS IN ARRAY DEK
£ e s o ook oKk R0 o e R o o oo R R 263 3Rl o o o o ok ol o RO R KR S 3 ok Kl T R o ok A e 30k ROk
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION FR{4),CFR(4)
DIMENSION X(6)sY{6),Z16YRIL5)yDER(VYS) JAG(6)4R2ILE) 40T (3),D02(3),
1T ALPH(2) o REC3) oBETA(3) yCCU3) s AA(3)ySIGL3) 4 RETR(3)4ACS(6),DKI6),
2 YYL6) 9Y2L06) ASSE6) yFL4) yDF(4) yRX(6)4PXIO)PY(6H)PZI6)DXLAD,
3 DY (A)DZLI6)4yDPX(6DDPY(6)DPZIE)IGFI15y3)
DIMENST NN APAPM{S)
COMMON A 3Y oL yRyDEPZAGyR2y D1 ALPHRE 4 D34 BSTALCCHAASIGFETR,TAY,
1 RV DT JyCRyEELACS)ASSRXy XTT, V1,V2,V3,Vé,3MAX,
2RSS VR yPEF yHHyPX o PY s PZ yWH yWC r WBRoWW s DT 4 OX 4 DY 4 DZy NP Xy DPY ,DPZ, T4 GF,
JTEMP,RRT ,START4APARM,PT,T3PI,FL&EPI,S6PT,
LT L9 JJJe KKKy LLLy NV NV2yNV3 4 NV4,JIyNTWKEE
EXPX)=DEXP{X)
SQRT(X)=DSWRT(X)
C2SEX)=DHC0S(X)
STN(X) =D SIN(X)
ARCNIS [X}=DARCOS(X)
ARSINEX) =DARSIN{X)
C L1111 7177708007072700000778707070204877707070707777770077077210771017071707717771747
C COMPUTE THE INTERPARTICLE DISTANCES R
C CALL DIST
(C % e o e ale sk ok o Xl e ko ook 3 ek oo sl e e e ok A e e e o e e de ko ook e sl vk o xSl ook e e okl ook ek ol ko ReRox ok e ko I ok e R ok R
C CHECK FOR THE FIFTH ATOM==1,8.-~CH&4=~=(H)
C WY DEFINITICN THE FIFTH H ATOM IS THE ONE WHOSE C-H DISTANCE IS MAXIMUM
C /1111777710777 07777727270710720772727000727071077727777270707772177701071210707211°17¢77177
RHMAX=K(Y)
KMA X=1
IF(R{?).LT4RPHMAX) GO TC 1100
PHMAX=R(2)
KMA X=2
1100  IF(R{3).LT.RHMAX} GO TO 1101
RHMAX =K(2)
KMA X=3
1101 IF(R{4).LTRHMAX)} GO TO 1102
RHMAX =R (4 )
KMA X=4
1192 TFR(R{5)LT,RHMAX) GO TN 1103
RHMAX=R{5)
KMA X=5
1793 CONTINUF
C CALL SWITCHUKMAX,1)
€ sk ok A ok ok i ok ko kol e koo ook Aol Ao e 2ol Ko ik e ek el g e ok 20k X oK sk RO O ok k0 2ok ol o S ol ok e ol Rk 3 A A
C COMPUTE THE HCH ANGLES AND STORE RESULTS IN ARRAY AG
C CALL ANGLE
(C e e 3 e v ook ok ik e ok ke ok e e ok ol e e ol ok e ol sl fe ol Stk e sl ol e ook o e djok 3k ook $e ok e o s e et e ok ek kst ak o e s o oo
D3 50 I=1,15
50 DER(I)=0.0D0
C COMPUTE THE FOUR TRIATOMIC TERMS
CALL TPI(RIL)IyRIS)4R(6),D5RIL)yDERIS5)I,DER( 6} ,4143,42,EF)
CALL TKI{R(2Z2)4R(5),RP{T)+DER{2),4CR2,0ER(T)y143,42,E)
FE=EE+F
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0054
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[\BLE]
00%9
0040
00k
0062
0081
0064
0065
0086
0us?
0068
0069
0070
0071
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0073
Q074
0078

n0T4
0?7
0078
aQ79
00RO
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1Iv 6 LEVEL 21 PN T6 DATE = 74044 14/704/41

JERIS)=DEF(5)40R2
CALL TRIGR(A) gRIB) 4R(B)¢NDFR(I)yOR?yDEY(B)414342,5)
EF= EE+F
DER(5)=DFR(5)+DR? ' .
CALL TERIC(R(&)YR(I5) oF(C)yDFR(4) ¢DR? yDER(O)41,3,2,F)
EEmEE+F
DER(5) «LER(5 ) +DR2
50 o0 O o N e N0 R o o ok 0 o e o o o oo e e e e Bt ok Xk R ok ok e ek o o ok
C COMPUTF FNRCE CONSTANTS
C COMPUTE ATTENUATION TERMS
XA=R (1)=~RE(L)
XHiaR (2)=RE(1)
XC=E (3)=RF(1)
XDaR (4 )=RF(1)
XA2=X A#X A
XN 2 eXi %XB
XC 2=aX( #XC
AKD2 =X D®X D
XXAsR({o)=RE(2)
XXB=R(T)=RE(2)
XXC2R(B)=RE(2)
XXD=R (G)=RE(2)
EXAIL=EXP(=-APARM(2)%R2(5))
EXAL2=2EXP(~APARM(2)%R2(7))
EXA122EXP(=APARMIZ)I*R2(R))
EXAV4mEXP (=APAKM(2)%R2(9))
CXA2V =FXP{~APARM(5) % XX A%XXA)
EXA22=2EXP(=APARM(S)2XXB®XXB)
EXA23=EXP(=APARM (5 ) 2XXC*XXC)
EXA24=EXP(=APARM(5) xXXLEXXT)
Al=1,000=-Fxall
A12=21.0D00=-EXAY12
Al3=1,000~EXAL2
Aléal,ONU=EXAL4
A2UmAPARM(3 ) ¢APARM (4) *EXA2L
A22=APARM(3) ¢APARM{4 ) *EXA22
A23= APARM{3 ) +APARM (4 ) ®EXA 23
A24=APARM{Y ) +APARM (4 ) *EXA24
EXFLEEXP(=A2)%XA2)
EXF2=EXP (=A22%XB2)
EXF3=E XP(=423%XL2)
EXFaxE XP(=A24%XD2)
FlL)aAL1U*EXFL
F(2)=AL2 %EXF2
FU3)=AL3IREXF
Fl4)=AL4*EXFoG
C UK?!S ARF THE FORCE GCONSTANTS
DKL= APARM( L) 2F (1) %F( 2)
DKE2)=APARM(L }%F (1 )%F(3)
NK(3)=APARMUL)*F (L I%F(4)
DKE4)=APARMLYL)I*E(21%F(3)
NK{5)2APARM(L) *F (2)%F(4)
DK &) SAPARM{ 1) #F [ 3) *F (4)
(e et e e sk ot st o o0 i ool o oo ke ok oo R oKk oot e e e st e ol XK ok sk okl skt ok e skl Xk e e Aok e ol e o ko
C COMPUTE THF EQUILIBRIUM ANGLES
C FIND THE LARGEST C=M [ISTANCE
RGR=R (1}
KLM=1
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c1ao8
M09

0110

crn
0112
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0115
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020
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0123
mze

0125
0120
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U128
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013

[(ARED)

013?
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01136

800

AO1

902

4000

4007?

4001
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