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ABSTRACT  
This study aimed to evaluate the paragenesis of the Mississippian Sycamore Formation in 

the southern Flank of the Arbuckle Anticline in order to document the extent of diagenetic 

alteration in outcrop, assess the factors controlling the diagenesis (open vs. closed), and determine   

the timing of diagenetic events. Core plugs were collected from multiple sites in the southern flank 

of the Arbuckle Anticline (I-35 outcrop) for thin sections as well as for anisotropy of magnetic 

susceptibility (AMS) and paleomagnetic analysis. Thin section and scanning electron microscope 

(SEM) analysis were used to identify the microfacies, diagenetic features, pore types, fracture 

mineralization, and the parageneses based on cross cutting and textural relationships.  The AMS 

analysis was performed to obtain information about the fabric of the rock and level of alteration. 

Paleomagnetic analysis was used to identify the magnetic components and date any chemical 

remanent magnetizations (CRMs). The results of this study contribute to the understanding of 

micro-textural fabric alteration and add insights into the complexities related to pore evolution of 

the Mississippian strata. 

The Sycamore Formation is characterized by five microfacies- argillaceous mudrock, 

siliceous mudrock, calcareous mudrock, calcitic siltstone, and calcite cemented siltstone. Major 

diagenetic events include calcite cement precipitation, feldspar dissolution, clay alteration, 

styliolitization, and fracturing. Early calcite cement occludes most of the porosity in calcite 

cemented siltstones, and feldspar dissolution is more predominant in calcitic siltstones. Inverse 

AMS fabrics are concordant with precipitation of ferroan dolomite as a result of alteration by iron-

rich dolomitizing fluids. A secondary magnetization, interpreted to reside in magnetite, is present 

in the Sycamore Formation and the upper Woodford Shale, but determining the timing of 

remagnetization was not possible because a fold test could not be performed. The Sycamore 

Formation is interpreted to have been a closed diagenetic system with internal fluids derived from 



 xviii 

the mudrock facies. During burial, the Sycamore Formation might have evolved into an open 

system with the introduction of external iron-rich dolomitizing fluids and acidic fluids from 

organic matter maturation of the underlying Woodford Shale. Petrographic analysis suggests that 

there is no sufficient evidence for hydrothermal alteration in the Sycamore Formation. 
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1. INTRODUCTION    
The Mississippian Sycamore Formation is of interest because it marks deposition during the 

transition from a sag basin stage to the onset of Pennsylvanian orogenesis (Domeier, 2015), and it 

records initial stages that marked the closure of the Laurentian and Gondwana plates (Donovan, 

2001). The Sycamore Formation also contains a significant economic value as a productive 

hydrocarbon reservoir especially in recent years as it has been exploited with horizontal drilling 

and fracture stimulation (Jackson et al., 2018; Miller and Cullen, 2018). In fact, equivalents to the 

Sycamore Formation have been prolific hydrocarbon reservoirs in the STACK, Merge, and 

SCOOP plays within the Anadarko Basin and north-central Ardmore Basin (Nojek and Li, 2017; 

Milad, 2019). 

Although there have been studies of the depositional setting of the Sycamore Formation in 

southern Oklahoma (e.g., Culp, 1961; Franklin, 2002; Milad, 2019), little work has been done on 

the diagenesis of these rocks. The role that diagenesis plays in terms of reservoir characterization 

is an open issue that is vital to further produce oil and gas from unconventional reservoirs in the 

Anadarko and Ardmore Basins. Moreover, fundamental questions about the paragenesis of the 

Sycamore Formation such as whether the alteration pertains to an open or closed system (e.g., 

Land et al., 1997; Bjorlykke and Jahren, 2012) remain to be investigated. Results of these studies 

on the Sycamore Formation could also be important to compare with studies of other units in the 

Arbuckle Mountains and southern Oklahoma which indicate extensive alteration by basinal (e.g., 

Elmore, 2001) and hydrothermal fluids (Roberts et al., 2019).  

Research has been done on various geoscience subjects in the Sycamore Formation in southern 

Oklahoma; however, the paragenesis and paleomagnetism of Sycamore rocks are yet to be 

investigated in detail. No previous study has fully assessed the parageneses of the Sycamore 
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Formation, especially in outcrop studies. Therefore, this project will attempt to unravel the 

paragenesis of the Sycamore Formation in order to document the major diagenetic events and 

understand the controlling factors at a well exposed outcrop along I-35 in southern Oklahoma 

(Figure 1).  The observations will focus on reporting the differences in diagenesis between the 

major Sycamore lithofacies and recognizing the effects of diagenetic processes on the dynamic 

evolution of the pore system. After identifying the major diagenetic events, paleomagnetic analysis 

will be used to test if a magnetization can be used to date the origin of a chemical remanent 

magnetization (CRM) carried by diagenetic minerals and thereby place an absolute time point into 

the paragenetic sequence. The principal objectives and hypotheses to be tested in this study are as 

follows: 

1. Determine the paragenesis of the Mississippian Sycamore Formation in outcrop in order to 

understand the diagenetic evolution between lithofacies and its implications to pore 

development.  

2. Test if diagenetic variations are controlled by lithology (closed system) or regional fluid 

migration events (open system). 

3. Test if hydrothermal fluids have altered the unit.  

4. Test if petrofabric analysis can provide a better understanding of particle alignment and 

level of alteration.  

5. Test if a magnetization can be used to determine the timing of diagenetic events and the 

nature of magnetization (burial or fluid processes).  

This project will contribute to the understanding of micro-scale textural fabrics of the 

Sycamore Formation while adding insights into the diagenetic evolution of Mississippian strata. 

Applying paleomagnetic studies to date diagenetic events could shed a light onto the complexities 
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associated with the timing of magnetization, fluid alteration, hydrocarbon migration, fracturing 

events, and/or maturation of organic matter (e.g., Elmore et al., 2012). This study will also 

contribute to the understanding of pore development in the Sycamore Formation in the SCOOP 

play and serve as a future reference for correlations with the Meramec Formation in the STACK 

play.  

1.1. Area of Study 
 

The area of study comprises the Sycamore Formation at the Arbuckle Anticline in southern 

Oklahoma (Figure 1). The Arbuckle Anticline is one of the most prominent structures in the 

Arbuckle Mountains as well as the most intensely deformed part of the mountains. It is faulted, 

asymmetric, and overturned to the north. The Washita Valley fault bounds the northern flank of 

the Arbuckle Anticline while the Ardmore basin bounds its southern flank (Perry, 1989). With an 

altitude of approximately 1,377 ft (420 m), the Arbuckle Anticline represents one of the 

Pennsylvanian-age inversion structures that resulted from the uplift along high angle thrust faults 

(Miller and Cullen, 2018; Perry, 1989). The evolution of the Arbuckle anticline and its associated 

minor folds occurred during two major events: (1) the formation of the main anticlinal structure 

and secondary folds in the Middle Virgilian; and (2) the formation of the Dougherty anticline in 

the Late Virgilian (Ham et. al., 1969). 

The Mississippian exposure along the overturned northern flank of the Arbuckle Anticline 

(commonly known as the “fried pies outcrop”) dips around 75° to the south-southwest and is 

located in Murray County, South Central Oklahoma (34°26.780′N, 97°07.839′W). The southern 

section of the Sycamore Formation (also known as the “I-35 Sycamore outcrop”) is located in 

Carter County (34°21'3.42"N, 97° 8'54.31"W) dipping southward about 47° into the Ardmore 

basin. The distance between the two outcrops is approximately 7 miles (Figure 1). 
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A few comparisons are made with the northern exposure in the course of this project, but 

the observations and interpretations presented are primarily from the I-35 Sycamore outcrop which 

is an excellent 450 ft exposure of the complete Sycamore Formation. From its basal contact with 

the Woodford Shale to the overlying Caney Shale, the southern Sycamore section is much thicker 

than the northern overturned exposure (221 ft as recorded by Fay, 1989).   

2. GEOLOGIC SETTING  
 

2.1. Regional Structure 
 

The oldest structural events identified in the Anadarko Basin region are associated with 

crustal consolidation across Laurentia and regional high-grade metamorphism during the 

Precambrian time (Perry, 1989). The subsequent development of a failed arm or linear rift of a 

triple junction occurred in southern Oklahoma between the late Precambrian to the middle 

Cambrian time. The three radial arms continued to spread and formed a continental rift zone; 

however, the NW-trending arm failed and extended into the continent as an aulacogen (Franklin, 

2002). The aulacogen is now commonly termed the Southern Oklahoma Aulacogen (SOA). Its 

evolution includes three different stages to reach its final configuration: (1) rifting, (2) subsidence 

and infilling of the rift, and (3) rock deformation (Cole, 1988). 

The rifting stage began during late Proterozoic and consisted of uplift, extensional rifting, 

faulting, and the development of grabens as well as small rift valleys. This stage was also 

characterized by extensive igneous activity along the axis of the Southern Oklahoma Aulacogen. 

The Cambrian Colbert Rhyolite present in the center of the Arbuckle Anticline serves as evidence 

for the rifting stage of the SOA (Franklin, 2002). At the end of the rifting stage, the aulacogen 

began to cool and subside resulting in the formation of the southern Oklahoma trough (Perry, 

1989). From the Cambrian to early Mississippian time, the southern Oklahoma trough established 
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a principal axis of sedimentation parallel to the northwest-southeast trend of the aulacogen (Caylor, 

2019).  

 

Figure 1. Map outlining the location of the study area in the Ardmore Basin, Southern Oklahoma. 

The yellow star indicates the location of the southern flank of the Arbuckle Anticline which 

represents the complete exposure of the Sycamore Formation (Interstate 35 highway outcrop or 

“I-35 Sycamore outcrop”). The samples for this study were collected in the South Flank section; 

however, the green star indicates the Sycamore exposure in the North Flank of the Arbuckle 

Anticline for reference and comparison. The distance between the two outcrops is approximately 

7 miles. The delineated orange area represents the STACK play while the yellow area represents 

the SCOOP play. (Modified from Northcutt and Campbell, 1998).  

 

 

The subsiding stage of the SOA was the longest stage ranging from late Cambrian to 

Mississippian time (Franklin, 2002). Rapid subsidence created sufficient accommodation space to 

allow the deposition of a very thick sedimentary sequence (Ham et. al., 1969). Approximately 
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34,000 feet of sediment was deposited in the SOA, and those that accumulated in the Anadarko 

Basin attest to the subsidence stage of the Southern Oklahoma Aulacogen (Palladino, 1985). In 

addition to thick sediment accumulation, the subsidence stage was also accompanied by the 

formation of a passive continental margin and a marine transgression which eventually played a 

significant role in Sycamore deposition (Allen, 2000; Franklin, 2002).  

The final deformation stage was marked by the reactivation of faults originated during the 

rifting stage and the development of orogenic structures. The Laurentia-Gondwana collision 

during the Late Pennsylvanian caused extensive deformation of the aforementioned thick 

sedimentary package followed by tectonic uplifts such as the Wichita, Ouachita, and Arbuckle 

Mountains (Perry, 1989; Granath, 1989; Franklin, 2002). Progressive deformation in the foreland 

of the Ouachita orogeny led to the development of the structurally complex Ardmore Basin. 

Structural inversion associated with the Laurentia-Gondwana collision resulted in the growth of 

the asymmetric Anadarko Basin which experienced minimal structural deformation since the 

Permian time (Perry, 1989; Granath, 1989). The Arbuckle Anticline (Figure 2) is one of various 

Pennsylvanian-age inversion structures that segmented the Southern Oklahoma Aulacogen into a 

series of foreland basins: Ardmore, Anadarko, Arkoma, Marietta, and Forth Worth (Miller and 

Cullen, 2018).  
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Figure 2. (Left): Geologic map of the Arbuckle Mountains (Ham et al., 1954; revised by Johnson, 

1990) depicting the location of Sycamore exposure and the profile line for the cross section. 

(Right): Cross sectional view of the Arbuckle Anticline in southern Oklahoma (Ham and 

McKinley, 1954; revised by Johnson, 1990). Modified from (Miller and Cullen, 2018). 

 

2.2. Stratigraphy  
The regional stratigraphy of this area is a reflection of the processes associated with the 

evolution of the Southern Oklahoma Aulacogen. In fact, the rock units deposited during the Upper 

Devonian to Middle Mississippian represent periods of significant subsidence in the aulacogen 

(Franklin, 2002). The stratigraphy of the study area consists of Sycamore rocks overlying the 

Upper Devonian to Early Mississippian Woodford Shale, and Chesterian series sitting on top of 

the complex Sycamore Formation (Figure 3).  

During Mississippian time, a large and tropical epicontinental sea (Figure 4) covered part 

of North America landmass (Curtis and Champlin, 1959) and this vast sea continued to extend 

throughout the Midcontinent area (Northcutt, et al., 2001). As a result, the Sycamore Formation 

was deposited in the Southern Oklahoma Aulacogen on the shelf to the north during the major 

marine transgression in Meramecian time (Schwartzapfel, 1990). Earlier studies suggested that the 

Sycamore Formation was deposited in relatively shallow water followed by reworking due to 

waves and local currents (Champlin, 1959; Cole, 1988). However, later on, Schwartzapfel (1990) 
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and Coffey (2000) proposed a depositional mechanism associated with turbidity currents or gravity 

flows justifying the transport of sediments into such a low energy environment. Recent studies 

claimed that the Sycamore Formation was deposited on a slope setting as gravity flows or below 

a storm wave base. The presence of carbonate grains is attributed to deep surface or bottom surface 

currents (Franklin, 2002; Miller and Cullen, 2018; Milad, 2019).  

The Mississippian carbonates of the northern Anadarko Basin were deposited on a stable 

shelf and ramp setting which moved down-dip into the deep-water siltstones and mudstones of the 

Osage, Meramec, and Sycamore formations (Terrel, 2019). The Sycamore Formation in the 

SCOOP (South Central Oklahoma Oil Province) play is coeval with the Meramec Formation of 

the STACK (Sooner Trend Anadarko Canadian Kingfisher) play (Figure 1). A depositional 

sequence of argillaceous to calcareous siltstones comprises the primary facies of the Meramec 

Formation, and a series of depositional, physiochemical, and tectonic factors justify the lateral 

variations of facies in Mississippian rocks in Oklahoma. The Meramec Formation consists of 

shallowing upward cycles capped by marine-flooding surfaces deposited in systems of low-angle 

clinoforms reworked by currents within or below storm wave base (e.g., Miller, 2018; Price et. al., 

2020).  

The Sycamore Formation consists of a mixed carbonate siliciclastic system (Duarte, 2018; 

Milad, 2019) resulted from turbidity currents and gravity flows that developed incomplete Bouma 

sequences, contorted bedding, and flute casts (Terrel, 2019; Milad, 2019). Terrel (2019) concluded 

that the Osage in the STACK is the time equivalent of the Lower Sycamore Formation in the 

SCOOP whereas the Meramec in the STACK is the time equivalent of the upper portions of the 

Sycamore Formation in the SCOOP. Terrel (2019) also added that the Sycamore “Limestone” 

derived from a northern (Osage) and southern sediment source. 



 9 

 

Figure 3. Representative Mississippian stratigraphic column of the Arbuckle Mountains originally 

modified from (Johnson and Cardott, 1992). However, Milad (2019) modified the nomenclature 

of the “Sycamore Limestone” to account for the new observations which classify the system as 

siliciclastic rather than entirely carbonate. Note that the Woodford Shale underlies the Sycamore 

Formation, which is capped by the Delaware Creek Shale, also known as Caney Shale. Milad 

(2019) also combined the Devonian-Mississippian type-log to illustrate the subsurface pattern of 

the Sycamore Formation with emphasis on the significant changes in the Gamma Ray log. 
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Figure 4. Paleogeographic map of the early Mississippian time (358 Ma). The area 

highlighted in red illustrates the study area which was covered by a shallow sea prominent 

in the North America landmass. The prevailing wind was from the present-day northeast 

direction. (Modified from Blakey, 2013 and Terrel, 2019). 

 

At the I-35 outcrop (Figure 5), the contact between the Woodford Shale and Mississippian 

units is very evident as the rocks transition from chert beds with phosphate nodules to a green 

fissile shale. Field observations from Milad (2019) suggest six stratigraphic sections within the I-

35 Sycamore outcrop, namely: Lower Shale Transition Section (LShTS); Lower Sycamore Section 

(LSyS); Middle Shale Section (MShS); Middle Sycamore Section (MSyS); Upper Shale Section 

(UShS); and Upper Sycamore Section (USyS). With these distinctive subdivisions, the same 
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nomenclature will be utilized throughout this research alongside to the outcrop lithofacies 

established by Milad (2019).  

 

Figure 5. Cross-sectional view of the I-35 Sycamore outcrop depicting the stratigraphic sections 

defined by Milad (2019). The up-section direction is from North (right side) to South (left side). 

The illustration at the bottom represents outcrop Gamma Ray readings in counts per second; note 

the high radioactive pattern in the Upper Shale Section (UShS). Modified from (Milad, 2019). 

 

 

3. PREVIOUS STUDIES  
 

3.1. Lithostratigraphic and Chronostratigraphic Studies  

Numerous studies have been done in the Sycamore Formation, and the earlier studies 

focused mainly on the stratigraphy and the age of the formation (e.g., Taff, 1903; Cooper, 1926; 

Prestridge, 1957). Between 1961 and 1987, there were some large-scale outcrop work and 

publications that referred to the Sycamore Formation, but none of these studies analyzed it in detail 

nor determined its actual age (e.g., Fay, 1989). In 1988, Cole published his work on the Sycamore 

“Limestone” by defining six formation lithofacies and suggesting a lagoonal or slightly deep 

marine environment of deposition; however, there were still arguments regarding the 

chronostratigraphic position of the Sycamore Formation. Schwartzapfel (1990) observed conodont 
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elements typical of Upper Mississippian at the very top of the Woodford Shale at the southern 

flank of the Arbuckle Anticline (I-35 outcrop). Through conodont zonation studies, these 

observations suggested that the Sycamore Formation could not be older than the Middle 

Meramecian in age. Therefore, Schwartzapfel (1990) concluded that the lower Sycamore is not 

older than middle Meramecian while the upper Sycamore is upper Meramecian to lower Chesterian 

in age. He also concluded that the upper Sycamore is partially “turbiditic in origin” due to the 

occurrence of an incomplete Bouma Sequence indicative of deep-water environments.   

Donovan (2001) performed a meticulous field study comparing and contrasting the two 

Sycamore sections in the Arbuckle Mountains, Oklahoma. With emphasis primarily on facies 

interpretation and petrography, Donovan (2001) recognized two members in the Sycamore 

Formation: (1) gray shales and argillaceous limestones constituting the lower “transition” member; 

(2) interbedded gray shales and tan-weathering marlstones containing significant silt-sized 

siliciclastic grains which comprise the upper member. Donovan (2001) established two main 

lithologies in the Sycamore Formation: gray shales and limestones/marlstones. There is little 

difference in the mineralogy and texture of the beds between the two Sycamore sections; however, 

single beds are usually thicker in the northern overturned section than in the southern exposure. 

Perhaps these differences are due to stratigraphic variations and/or structural thinning during 

overturning of the beds in the northern section.  

Regarding depositional settings, Donovan (2001) reported that the sedimentary structures 

in individual beds are not characteristic of a particular environment. But as a whole, it seems that 

the beds record “rapid deposition” from a mass gravity flow deposit which is somewhat similar to 

Schwartzapfel’s (1990) depositional model. Settling grain fabrics and disruptive bioturbation 

observed in thin sections supports the hypotheses that the bulk of the Sycamore Formation was 
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deposited rapidly under “fluidized (turbidity) flow conditions”. Donovan (2001) also added that 

the carbonate grains in the Sycamore Formation attest to the existence of a carbonate shelf to the 

north while the siliciclastic grains suggest that tectonic uplift occurred at some distance to the east 

and north.  

Deciphering the depositional conditions of the Sycamore Formation can be challenging 

because the literature offers different depositional environment interpretations. Some studies 

suggest deposition in shallow water transgressive conditions (Bennison, 1956; Prestridge, 1957; 

Cole, 1988) while others propose deposition on a slope or below storm wave base setting 

(Schwartzapfel, 1990; Franklin, 2002; Miller and Cullen, 2018). However, most of these 

aforementioned studies presented depositional environment interpretations without conducting a 

detailed rock characterization and lithofacies classification of Sycamore strata. 

Milad (2019) published one of the most recent studies on the Sycamore Formation (I-35 

outcrop) consisting of detailed lithofacies characterization and in-depth field work aiming to 

unravel the formation’s depositional history. The study divided the I-35 Sycamore outcrop into six 

stratigraphic sections and seven lithofacies which are heavily referenced in the course of this 

project. Milad (2019) attributed the presence of pyrite crystals, chert beds, and high radioactivity 

as an indicative of deep-water conditions for the siliceous shale facies in the Sycamore Formation. 

On the other hand, the occurrence of Bouma Sequence (Ta-Te) in the Sycamore siltstone strongly 

suggests deposition by slope gravity flow processes. These interpretations are accordant with 

earlier observations suggesting Sycamore deposition in a slope setting or below storm wave 

base/deep waters (Schwartzapfel, 1990; Donovan, 2001; Franklin, 2002; Miller and Cullen, 2018), 

and it seems that it is currently the acceptable depositional model for Sycamore rocks. 
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3.2. Diagenetic Studies  

After multiple chronostratigraphic studies (e.g., Culp, 1961; Cole, 1988; Schwartzapfel, 

1990), researchers began to take a different approach in understanding the complexities of the 

Sycamore Formation. Coffey (2000) agreed with Schwartzapfel’s (1990) chronostratigraphic 

position and depositional interpretation of the Sycamore Formation, and he was one of the pioneers 

attempting to understand the diagenetic history of the Sycamore Formation with emphasis on 

reservoir characterization in the Carter-Knox Field.  

According to Coffey (2000), past tectonic activity had a significant impact on reservoir 

quality of the Sycamore Formation in Carter-Knox Field. The extensive periods of uplift and 

successive meteoric diagenesis produced porosity values characteristic of this field. Coffey (2000) 

added that calcite is the primary cement of Sycamore facies and that undersaturated fluids leached 

the calcite, creating secondary porosity and enhanced permeability in the high-relief areas of the 

field. His observations did not present sufficient evidence to explain the pre-diagenetic factors 

defining the course of diagenesis and the role of fractures or mineralization in the Sycamore 

Formation. Furthermore, Coffey’s (2000) study lacks a paragenetic sequence documenting the 

sequential order of mineral phases. Coffey’s (2000) research only focused on integrating 

subsurface data to unravel the depositional history of the Sycamore Formation while also assessing 

aspects of the diagenetic history.  

Several studies have investigated the Mississippian strata regionally and in north central 

Oklahoma. For example, Dehcheshmehi et. al., (2016) completed a regional diagenetic study on 

the Mississippian strata of the southern Midcontinent with the aim of understanding the effects 

that basinal fluids had on reservoir quality. The study revealed that the principal diagenetic events 

affecting these rocks occurred during burial and basinal fluid migration through these units. 
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Amongst several observations, the study claimed that late diagenetic calcite and quartz cements 

fill the fractures, breccias, and vugs in Mississippian carbonate facies in north-central Oklahoma. 

Stable isotope data indicates that these fractures are coeval with regional flow of saline basinal 

fluids associated with orogenic events such as the Ouachita tectonism (Dehcheshmehi et. al., 

2016). 

Following the regional study presented by Dehcheshmehi et. al., (2016), Duarte (2018) 

introduced an integrated study characterizing the Mississippian strata in central Oklahoma with 

emphasis on the Meramec Formation. After detailed core descriptions, thin section analysis, 

scanning electron microscopy (SEM), and X-Ray fluorescence (XRF) interpretations, the study 

suggested two facies associations to the Meramec Formation- gravity flows and hemipelagic 

sediments. Additionally, the study revealed that the occurrence of blocky calcite cement in the 

Mississippian strata depends on diagenetic processes controlling reservoir quality. The blocky 

calcite cement is believed to occlude primary porosity and it was precipitated during burial late 

diagenesis (early to middle stages) in the calcite-cemented siltstones of the gravity flow facies 

(Duarte, 2018). Nonetheless, Hardwick (2018) highlighted the primary pore types present in the 

Meramec microfacies including dissolution pores in feldspars, interstitial pores in clay, and 

intergranular pores among framework grains. With that, interstitial clay porosity is common in the 

argillaceous siltstone facies while the porosity associated with dissolution of unstable grains is 

abundant in the calcareous siltstones (Hardwick, 2018). 

Terrell (2019) published one of the most recent studies on the diagenetic characterization 

of Mississippian rocks. His work mainly addressed the extent to which diagenetic alteration affects 

reservoir quality. Similar to Duarte (2018) and Hardwick (2018), Terrel (2019) agreed that marine 

calcite cements occlude primary porosity within the siltstone facies in the Meramec and Sycamore 
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Formations. Though porosity in the Sycamore Formation is primarily enhanced as a result of 

meteoric diagenesis, increasing clay content prevents calcite nucleation and therefore, preserves 

primary porosity. Although Duarte (2018), Hardwick (2018), and Terrell (2019) presented a more 

detailed diagenetic interpretation compared to Coffey (2000), their studies assessed diagenesis in 

cores combined with a series of subsurface, geochemical, and paleomagnetic data. Therefore, there 

is still a necessity for assessing the parageneses of Sycamore rocks in outcrop and understanding 

its diagenetic evolution. 

3.3. Paleomagnetic Studies 

Paleomagnetism of Sycamore rocks is yet to be investigated in detail, though analyzing the 

timing and origin of fluid migration events in the Arbuckle Mountains has been subject of active 

research for a number of years (e.g., Elmore, 2001). The dating method consists of isolating the 

chemical remanent magnetization (CRM) carried by authigenic minerals that precipitate during 

rock-fluid interactions and comparing the pole position from the CRM with the position in the 

Apparent Polar Wander Path (APWP) (Elmore et al., 1998). In addition to determining the timing 

of remagnetizations, paleomagnetic studies are also critical to discern the extent and timing of fluid 

alteration relative to hydrocarbon migration, fracture events, and maturation of organic matter.  

Numerous paleomagnetic studies have taken place in the Midcontinent area (e.g., McCabe 

and Elmore, 1989; Elmore et al., 1998; Elmore et al., 2012; Heij, 2018; Roberts et al., 2019), and 

most interpretations suggested that hydrothermal alteration plays a major role in mechanical 

properties and reservoir quality of Mississippian rocks in Oklahoma. Elmore et al. (2017) 

documented evidence of Permian remagnetization of Mississippian Carbonates in north central 

Oklahoma as a result of hydrothermal fluid flow events. Dehcheshmehi et. al., (2016) claimed that 

deeper basin fluids associated with the Ouachita and Appalachian orogenies might have 
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diagenetically altered the Meramec facies in the STACK play. Furthermore, Hardwick (2018) 

found a characteristic remanent magnetization (ChRM) in the Meramec which implies 

hydrothermal alteration and/or association with the emplacement of hydrocarbons. With that, 

testing for secondary magnetizations in the Sycamore Formation and ultimately correlating the 

results with previous observations in the Meramec Formation can provide a better understanding 

of diagenetic events and perhaps develop a temporal component on the evolution of the petroleum 

system.  
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4. METHODOLOGY 
 

4.1. Petrography  

Petrographic analysis was conducted on a total of thirty-seven thin sections from the 

Sycamore Formation in both the southern and northern flanks of the Arbuckle Anticline. Core 

plugs were sampled from the I-35 Sycamore outcrop for thin section preparation which resulted in 

thirty-three thin sections (Figure 6). These thin sections covered the entirety of the I-35 Sycamore 

outcrop and they were selected based on the representative outcrop facies and distinctive features 

such as mineralized fractures. Due to field sampling constraints, only four thin sections were 

sampled from the northern flank Sycamore exposure (“fried pies” outcrop), mainly for 

comparative purposes. The thin sections were impregnated with blue epoxy and polished to a 

thickness of thirty microns. Some thin sections were stained with alizarin red S (ARS) with the 

aim of distinguishing between calcite and dolomite grains.  

Optical microscopy was performed under cross-polarized, plane-polarized, and reflected 

light on a Zeiss AxioImager.Z1m. The photomicrographs were captured with a linked AxioVision 

microscope camera attachment. The thin section analysis assisted in organizing each thin section 

into a microfacies classification scheme in order to characterize the variability of diagenetic 

alteration within the study area. The microfacies classification was based on composition, sorting, 

grain size, and volume proportion of cements, framework grains, matrix, and authigenic phases. 

The estimation of mineral volume proportion was solely done through petrographic observation 

since quantitative mineral volume determinations via point counting were not performed. The 

paragenetic sequence was constructed based on cross-cutting and textural relationships.  

A FEI Quanta 250 Scanning Electron Microscope (SEM; BSE – backscattered electron 

imaging, SE – secondary electron imaging) with a Bruker Electron Dispersive Spectrometer (EDS) 
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was utilized to image and identify micron scale diagenetic minerals and features. Ten thin sections 

were selected for SEM analysis and they were covered with gold to prevent chemical charging 

during electron beam exposure. The microphotographs were taken by using the Everhart Thornley 

Detector and (ETD) and Circular backscatter detector (CBS) at specific operating conditions. SEM 

analysis was vital to quantify elemental analysis of mineral phases and provide supplemental 

micro-scale observations.  

4.2. Paleomagnetism 

A total of ninety-two core plug samples were collected from the outcrops on both the 

northern and southern flanks of the Arbuckle Anticline. Eighty-two samples were collected from 

nine different sites covering the entirety of the southern flank Sycamore exposure (Figure 6). 

However, only a total of ten core plugs were collected from the north flank Sycamore exposure 

due to the limited access to suitable beds for drilling and extensive vegetation. Data from seven 

samples from the Woodford Shale exposure in the I-35 outcrop and eight samples from the south 

flank of the Sycamore I-35 outcrop that were collected as part of previous class projects were also 

analyzed.  The core plug samples were collected using a portable gas-powered drill and oriented 

using a Brunton compass attached to a clinometer. The oriented cores were then cut into a standard 

plug size (2.5 cm diameter X 2.2 cm height) by using a water-cooled drill press.  

A total of twenty-five samples were subjected to two demagnetization techniques - 

alternating field (AF) and thermal demagnetization. One specimen from each flank of the Arbuckle 

Anticline was subjected to a pilot alternating field (AF) demagnetization up to 120 millitesla (mT) 

in 10 mT increments. Sixteen specimens from the southern flank underwent stepwise, thermal 

demagnetization in 20-50°C increments up to 500°C. The seven specimens from the Woodford 

Shale underwent AF demagnetization up to 100 mT in 10 mT increments. The natural remanent 
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magnetizations (NRM) were measured using a 2G Enterprises three-axis cryogenic magnetometer 

with DC SQUIDs (superconducting quantum interference device) located in a magnetically 

shielded room. Data processing and interpretation was performed in the SuperIAPD program by 

picking principal components on orthogonal projections (Zijederveld, 1967) of inclination and 

declination values. After performing principal component analysis (Krischvink, 1980), the 

magnetic components with mean angles of deviation (MAD) less than 18° were used to calculate 

mean statistics (Fisher, 1953). 

4.3. Anisotropy of Magnetic Susceptibility  

Low-field anisotropy of magnetic susceptibility (AMS) was determined to assess the 

magnetic petrofabric of the Sycamore Formation. Seventy-two core plugs were collected from a 

total of nine sites in the Sycamore I-35 outcrop (Figure 6) and the cores were cut to the dimensions 

of standard AMS specimens (2.5 cm diameter X 2.2 cm height). The AMS was measured using a 

KLY-4S Kappabridge magnetic susceptometer and the data was processed using Anisoft 4.2 

(Chadima and Jelinèk, 2009). The magnetic susceptibility represents the degree of magnetization 

(M) of a material in response to an applied magnetic field (H). The AMS is represented by an 

ellipsoid with three mutually perpendicular principal axes K1 (maximum), K2 (intermediate), and 

K3 (minimum). The shape of the ellipsoid can be described by the shape parameter (T) where an
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oblate magnetic fabric is observed when 0 ≤ T ≤ 1 and prolate when –1 ≤ T ≤ 0 (Jelinèk, 1981). A normal magnetic fabric occurs when 

the principle magnetic axes (K1, K3) coincide with crystal shape axes (e.g., phyllosilicates) or inverse, where the K1 parallels the 

foliation and K3 parallels the lineation (e.g., ferroan dolomite) (Rochette, 1987). Moreover, a combination of inverse and normal 

magnetic fabrics is known as mixed/intermediate fabrics (Ferré, 2002).  

 
Figure 6. Photomosaic of the I-35 Sycamore Outcrop from its northern contact with the Woodford Shale through its southern contact 
with the Caney Shale. The numbers indicate site location for core plug sampling. These core plugs were used for thin section preparation, 
thermal demagnetization, and anisotropy of magnetic susceptibility measurements. (Modified from Milad, 2019).
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5. RESULTS AND INTERPRETATIONS 

5.1. Microfacies Classification and Description 

 Petrographic analysis reveals three major lithologic groups in the Sycamore Formation: 

clay-rich mudrocks, silt-rich mudrocks, and carbonate-rich mudrocks. Following Lazar et al.’s 

(2015) rock classification scheme, the lithologic groups are subdivided in five predominant 

microfacies based on grain size and composition of major mineral fraction (detrital, biogenic, and 

authigenic phases). The five microfacies include argillaceous mudrock, siliceous mudrock, 

calcareous mudrock, calcitic siltstone, and calcite-cemented siltstone. The argillaceous, 

calcareous, and siliceous mudrock microfacies were observed in samples from the Sycamore Shale 

member whereas the calcitic siltstone and calcite-cemented facies were observed in the Sycamore 

Siltstone member, also widely held as Sycamore “Limestone”. 

Sycamore Mudrock Microfacies 

 The argillaceous mudrock microfacies (Figure 7A) are clay-rich (~50%) with a dark clay 

matrix, quartz-silt grains (~30%), and detrital organic matter. Silica components occur as sub-

angular to angular quartz-silt with grain sizes ranging from 0.0078 to 0.0156 millimeters (mm). In 

addition to the presence of detrital quartz in the matrix, biogenic silica in the form of radiolarians 

and other palynomorphs such as tasmanites are also observed in this microfacies. The majority of 

the palynomorphs appear flattened or collapsed creating parallel preferential alignments along 

thinly laminated layers. Silica replacement of fossil fragments and local clay partings associated 

with the depositional structure of clay minerals are common within the matrix. Carbonate mineral 

phases are present in small amounts (~7-10%), possibly as calcite cement, but its low concentration 

might be due to the fact that the primary pore space where calcite would potentially precipitate 

might have been occluded by clay particles. Little to no porosity is observed at the petrographic 
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microscope scale; however, SEM analysis reveals interstitial porosity associated with the clay 

structure in the matrix and organic-matter pores (Figure 8A). Pyrite crystals appear dispersed 

throughout the matrix in the form of cubic crystals and framboids. Euhedral pyrite crystals appear 

to have replaced some allochems such as radiolarians and Tasmanites; however, prior to 

pyritization, these allochems are typically replaced by a form of silica. Mineralized fractures are 

not observed in this microfacies. 

The siliceous mudrock microfacies are characterized by a matrix with a mixture of 

microcrystalline quartz, calcite, muscovite, and clay particles (Figure 7B). Sub-angular to angular 

quartz-silt grains are the principal components of this microfacies (~50%) though carbonate 

material is also predominant (~35%) in the form of calcite cement and minor dolomite rhombs. 

The detrital silt-sized quartz appears isolated in the matrix as well as scattered in thin lenses. 

Argillaceous material occurs both in the matrix (~10%) and as clay laminations, commonly with 

a contorted geometry. On a microscope scale, flat grains such as muscovite flakes can be bent or 

deformed between quartz and calcite grains. Organic material is unevenly distributed as patches 

not aligned in preferential planes. Soft-sediment deformation and burrowing occur in the siliceous-

rich facies. Pyrite is commonly observed as cubic crystals or framboids replacing portions of 

organic materials. Radiolarians are rare, but flattened tasmanites and agglutinated forams are 

observed as coarser silicified grains in the matrix.  
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Figure 7. Representative microfacies of Sycamore mudrocks. Plane polarized light (PPL) 
photomicrographs. A) Argillaceous mudrock showing a dark clay matrix with detrital 
silica, biogenic silica in the form of radiolarians, and authigenic silica replacing fossil 
fragments. B) Siliceous mudrock with large phosphate grains. Calcite is stained red. Blue 
arrows indicate the intergranular pore spaces. C) Calcareous mudrock with a fine grained 
micritic matrix. D) Calcareous mudrock with abundant clay content and replacement of 
microfossils by chalcedony. E) Calcareous mudrock with fine grained micritic matrix and 
large calcispheres. F) Calcareous mudrock with a coarser crystalline matrix and sparry 
calcite cement. 
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Additional minerals in the siliceous mudrocks include gypsum (<2%) and large early 

diagenetic grains (up to 250 µm in diameter) of phosphate material (~3%) (Figure 7B). Phosphate 

concretions have been documented in outcrop studies in the I-35 exposure, particularly in the 

Uppermost Woodford section (Figure 6) which marks the contact with the Lower Transition Shale 

Section (LTShS) in the Sycamore Formation (e.g., Galvis, 2017). Microscopic analysis of the 

LTShS samples shows abundant detrital grains of phosphate material which could possibly be 

collophane grains as seen in the siliceous mudrock microfacies. Intergranular pores were observed 

around mineral grains over a wide range with uneven distribution, typically in spaces associated 

with organic material and clay aggregates. 

 
Figure 8. Common pore-types within Sycamore mudrocks. Backscatter SEM images. A) 
Interstitial porosity associated with the clay structure in the matrix and organic-matter pores in 
argillaceous mudrock microfacies. Yellow arrows indicate pore spaces. B) Large dissolution vug 
filled with dolomite (Dol.), quartz (Qtz.), and dissolved calcite grains (Cal.). Yellow arrows 
indicate intergranular porosity and possible pores within vugs. 
 
 

In the calcareous mudrock microfacies (Figure 7C-F), the textures of carbonate 

components vary significantly. Calcareous mudrock samples from the Lower Transition Shale 

Section (LTShS) and Lower Sycamore Section (LSyS) predominantly consist of a micrite matrix 
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with calcite cement (~70%), detrital quartz-silt (~10%), framboidal and cubic pyrite (~5%), barite 

(~3%), and amorphous dark material (~2%) (Figure 7C). Allochemical grains such as peloids are 

relatively common and low amounts of biogenic silica are observed in the form of discrete 

radiolarians within the matrix. Calcispheres and circular grains of carbonate nature (Figure 7E) are 

sporadically distributed in the calcareous mudrock microfacies with fine-grained carbonate mud. 

In the Middle Sycamore Section (MSyS), the calcareous mudrock microfacies contain a carbonate 

matrix with less micrite but increasing amounts of a coarser crystalline calcite matrix (sparite) and 

sparry calcite cement (Figure 7F).  Groups of microfossils aligned in a preferred orientation occur 

as lenses filled with calcite and/or silica-rich crystals around the rims. In other instances, 

microfossils are filled with micro-fibrous chalcedony cement (Figure 7D) replacing the original 

carbonate composition. The presence of lobate edges and embayments in some microfossils 

suggests replacement of grains by authigenic quartz in the form of microcrystalline chert. 

Barite occurs not only as euhedral crystals dispersed in the matrix and pores, but also in 

association with dissolution vugs typically containing calcite (Figure 9). Barite also displays 

irregular forms related to dissolution of foraminifera shells or other microfossils. Apatite often 

contains small quartz and pyrite inclusions. The porosity in this microfacies is typically associated 

with organic-matter pores, and pores within dissolution vugs and between mineral grains (Figure 

8B). 
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Figure 9. Backscatter SEM images. A) White material identified as barite (Brt.) based on 
energy dispersive analysis. Barite appears to be filling calcite (Cal.) dissolution vugs. B) 
Barite occurring in the matrix and as a late mineral phase filling pore spaces between 
dolomite (Dol.) and quartz (Qtz.) grains. 

 
Sycamore Siltstone Microfacies   

The calcitic siltstone microfacies (Figure 10A-B) are moderate to poorly sorted and consist 

of sub-angular to sub-rounded, medium to coarse quartz-silt (~35%), allochems (~20%), potassium 

feldspar (~15%), clay (~10%), ferroan dolomite (~8%), pyrite (framboidal and cubic), and minor 

sparse muscovite. The majority of the allochems occurs as non-skeletal grains such as peloids and 

calcispheres, and small amounts of skeletal grains including brachiopods. The carbonate peloids 

are largely composed of micrite whereas the calcispheres contain walls consisting of micrite or 

composed of larger single calcite crystals. The Alizarin Red S colors the majority of the allochems 

deep pink to red while the cement in the matrix does not stain for calcite (Figure 10B). Therefore, 

a combination of silica and clay cements exceeds the amount of calcite cement in the calcitic 

siltstone microfacies. Relict feldspars and dissolved feldspars which create pore spaces between 

grains are very common (Figure 11A-B). Thus, the typical pore types observed are secondary 

intragranular pores in dissolved feldspars (Figure 11C-D), and intergranular pores between 

framework grains (Figure 12A) such as dolomite and quartz.  Minor porosity is also found in pyrite 
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framboids (Figure 12B) and in between clays, most commonly kaolinite [Al₂Si₂O₅(OH)₄] sheets 

(Figure 13).  

 
Figure 10. Representative microfacies of Sycamore siltstones. Plane Polarized Light (PPL) 
photomicrographs in A, B, C, and D. Backscatter SEM images in E and F. A) Calcitic 
siltstone microfacies. B) Calcitic siltstone stained with alizarin red S (ARS). Yellow arrows 
denotate that allochems stained deep pink to red for calcite. Note that a pervasive calcite 
cement does not occur in this microfacies. C) Calcite-cemented siltstone with a vertical 
mineralized fracture. Blue arrows demonstrate intergranular pore spaces. D) Calcite 
cemented siltstone stained red for calcite indicating a pervasive calcite cement. E) Major 
mineral phases in calcitic siltstone microfacies including framboidal pyrite (Py.), anatese 
(Ant.), dolomite (Dol.), and kaolinite (Kln). F) Calcite cemented microfacies with a vertical 
calcite vein, zircon (Zrn.), and quartz (Qtz.) grains. 
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Figure 11. Secondary porosity as a result of dissolution of potassium feldspar (Kfs.) within 
Sycamore rocks. Backscatter SEM images in A and B. Plane polarized light (PPL) and 
stained photomicrographs in C and D, while blue color represents the porosity of the rock. 
A) Partially dissolved feldspar (Kfs.) in the top right. Kaolonite (Kln.) replacement of 
feldspar in the lower left. Apatite (Ap.) with quartz (Qtz.) inclusions in the lower right. B) 
Partially dissolved feldspars (Kfs.) creating secondary porosity. Other typical mineral 
phases in calcitic siltstones include zircon (Zrn.) and barite (Brt.). C) Yellow arrows 
indicate dissolved feldspar grains resulting in dissolution porosity. D) Yellow arrows 
denotating intergranular porosity between quartz grains and dissolution porosity. 
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Figure 12. Common pore-types in Sycamore siltstones. Backscatter SEM images. White 
arrows are denotating the pore spaces. A) Intergranular pore spaces. B) Porosity associated 
with pyrite framboids. 

 
Figure 13. Common types of phyllosilicates in Sycamore siltstones. Backscatter SEM 
image in A and energy dispersive analysis graph in B. A) Two common types of clays in 
Sycamore rocks- Kaolinite (Kln.) and illite (gray box). The yellow arrows indicate pore 
space associated with clay structure. B) Graph showing the elemental composition of a 
point in the illite grain within the gray square. Illite is the stable potassium-rich 2:1 clay 
with concentrations of aluminum (Al), silicon (Si), and oxygen (O).   
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Dolomite crystals appear in the calcitic siltstone microfacies as euhedral rhombs, filling 

fractures, replacing other phases, and as cement (Figure 14A-D). SEM elemental composition 

mapping shows zoned dolomite crystals, evidence of alteration due to evolving fluids (Figure 15). 

Some detrital quartz grains are replaced by dolomite as well. Additional detrital grains present in 

the matrix include zircon (ZrSiO4) (Figure 10F). Moreover, authigenic phases such as barite 

(BaSO4), anatase (TiO2), and halite (NaCl) are sparsely distributed in the matrix. Stylolites were 

only observed within mineralized fractures which have been subjected to brecciation and some 

degree of deformation.  

 
Figure 14. Occurrence of dolomite (Dol.) and ferroan dolomite (Fe-Dol.) in Sycamore 
siltstones. Plane polarized light (PPL) microphotograph in A. Backscatter SEM images in 
B, C, and D. A) Yellow arrows pointing to euhedral dolomite rhombs distributed in the 
matrix. B) Dolomite grains within a mineralized vein. C) Dolomite zoned by authigenic 
ferroan dolomite rim. D) Ferroan dolomite within a calcite-filled fracture. 
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Figure 15. A clast of dolomite zoned by an authigenic ferroan dolomite rim. Backscatter 
SEM image in A. Elemental mapping in B, C, and D. A) Fe-dolomite within the gray 
square. Note the gradational changes in color and sharp contacts suggesting changes in 
composition between dolomitizing fluids during evolving stages. B) Elemental mapping of 
the Fe-dolomite grain indicating the presence of calcium (Ca). C) Elemental mapping of 
the Fe-dolomite grain indicating the presence of magnesium (Mg). D) Elemental mapping 
of the Fe-dolomite grain indicating the presence of an iron-bearing rim (Fe).  

 
The calcite-cemented siltstone microfacies (Figure 10C-D) contains nearly the same 

mineral composition and diagenetic features as the calcitic siltstone microfacies except that the 

former contains pervasive calcite cement (Figure 10D) and less dissolved feldspar grains. In some 

zones, the calcite-cemented microfacies appear to exhibit a loosely packed “floating grain” texture 

without point-to-point grain contacts (Figures 16 A-C). Although large calcite crystals are 

dominant, calcite cement also occurs in lesser proportions as micrite possibly grading into finer-

grained calcite anhedral crystals (Figure 16D). Locally, most of the calcite cement occurs as 
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medium to large crystals filling intergranular pore space, fractures, and secondary dissolution 

features in unstable grains such as potassium feldspars.  

 
Figure 16. Calcite cemented siltstone microfacies. Plane polarized light (PPL) 
microphotographs stained red for calcite. Some quartz-silt grains in A, B, and C appear to 
be floating (yellow arrows) suggesting a syn-depositional calcite cementation. D) Some 
calcite seems to be dissolving as well as possible calcite grains grading into micrite through 
the process of neomorphism. 

 
The mosaic of blocky calcite cement crystals hosts a series of authigenic and detrital phases 

including pyrite, zircon, and quartz grains. In addition to the pervasive calcite cement, calcite is 

also present in peloids (Figure 10C) and in small to medium-sized (between 20 to 50 µm) skeletal 

allochems including bryozoan and echinoderms. The calcite-cemented microfacies in the North 

Flank, specifically in the Middle Sycamore Section (MSyS), contain a large volume of silica 

precipitating before the calcite cement with evidence of dissolution before the silica precipitation. 
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The silica tends to precipitate in the outer rims of the calcite grains creating very accentuated and 

distinctive compositional zones between grains (Figure 17).  Authigenic carbonate-apatite grains 

are found in the matrix (Figure 18).  

 
Figure 17. Variation of calcite cemented microfacies in the northern flank of the Arbuckle 
Anticline. A) and B) show precipitation of silica in outer rims of calcite grains, a 
phenomenon that is not common in calcite cemented microfacies from the southern flank. 
Elemental mapping (right) shows evident compositional boundaries between calcium (Ca) 
and silicon (Si). 
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Figure 18. Apatite (Ap.) crystal present in the matrix of Sycamore rocks. Backscatter SEM 
image in A, energy dispersive analysis graph in B, elemental mapping in C and D. A) 
Euhedral apatite crystal inside the gray square. B) Energy dispersive analysis graph 
illustrating the major chemical elements constituting the apatite crystal in the gray box. 
These being phosphorous (P), calcium (Ca), and oxygen (O). C) Elemental mapping of the 
apatite crystal showing abundant phosphorous composition. D) Elemental mapping of the 
apatite crystal showing abundant calcium composition.   
 
Fractures present in the siliceous mudrock microfacies (Figure 19A) and in the siltstone 

microfacies (Figures 10C and 19B-D) are complex with multiple cross-cutting fracture patterns. 

The fractures are dominantly vertical to sub-vertical in nature, some with evidence of fracture-

related brecciation (Figures 19C and 20A). Fracture sets are primarily filled with large euhedral 

calcite and detrital quartz grains (Figure 19B-D). Small dolomite rhombs are observed along the 

boundaries of the fractures and less commonly, fractures are also filled with euhedral pyrite, 
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authigenic quartz, stylolites, and bitumen as isolated blobs or at triple junctions of grain boundaries 

(Figure 20B). The simple wave-like and suture-type stylolites cross-cut large idiomorphic calcite 

grains and fragments of the host rock present inside mineralized fractures (Figure 19B). These 

stylolitic seams are highlighted by a residue of insoluble opaque minerals (e.g., pyrite and/or 

hematite) or organic matter. Petrographic observation reveals that brecciation occurred right before 

stylotization based on textural relationships. Authigenic quartz occurs as a late fracture filling 

phase by permeating the open spaces available in vertical fractures between the carbonate phases. 

Quartz overgrowths are poorly developed, if any, they are not common in the samples analyzed. 

Later fractures exhibit sharper edges and are more predominant as we move stratigraphically up 

towards the Middle Sycamore Section (MSyS).  

 
Figure 19. Vertical fractures and fracture-fill in the Sycamore Formation. Backscatter SEM 
images in A and D. Plane polarized light (PPL) microphotographs in B and C. A) Calcite-filled 
fracture in siliceous mudrock. B) Vertical fracture filled with calcite (Cal.), quartz grains, and 
fragments of the host rock. Stylolites (yellow arrows) cut through the fracture. C) Vertical fracture 
filled with large euhedral to subhedral calcite (Cal.) grains with evidence of brecciation in the 
lower right corner. D) Two vertical fractures filled with calcite and minor dolomite rhombs 
indicated by yellow arrows.  
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Figure 20. Cross polarized light (XPL) in A. Backscatter SEM image in B. A) Brecciation within 
calcite-filled fractures. B) Yellow arrows indicate hydrocarbon within calcite-filled fractures. 
Based on energy dispersive analysis, the dark material contains significant carbon composition.    
 
       
5.2. Paragenetic Sequences  

Since the occurrence of diagenetic events in the Sycamore Shale member differs from the 

ones observed in the Sycamore Siltstone (“Limestone”) member, the parageneses of the Sycamore 

Formation was divided into two distinctive sequences. One sequence outlines the major diagenetic 

events observed in the Sycamore Mudrock (“Shale”) member which includes the argillaceous, 

calcareous, and siliceous mudrock microfacies (Figure 21). The other sequence depicts the 

diagenetic events observed in both the calcitic siltstone and calcite-cemented facies representing 

the Sycamore Siltstone (“Limestone”) member (Figure 22). The diagenetic stages presented in 

each sequence are subdivided into early, middle, and late stages. Early diagenesis refers to 

processes that occur near to the sediment surface that may be influenced by seawater at lower 

pressures and temperatures or perhaps by meteoric fluids if the sediment was exposed to it. 

Conversely, late diagenesis consists of processes occurring at depth, elevated temperatures 

(conventionally at temperatures lower than 300°C), and beyond surface water influence 

(Bjørlykke, 1998). For the most part, early to middle diagenesis in the Sycamore Formation is 
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dominated by events in the matrix and allochems, while middle to late diagenetic events are 

associated with fracturing and brecciation. The parageneses and diagenesis of the Sycamore 

formation are described in the next sections.  

 
Figure 21. Paragenetic sequence for the Sycamore Mudrock, also known as the Sycamore 
“Shale” Member. The diagenetic events are listed from early to late, and the timing of the 
events is based on cross-cutting and textural relationships. Diagenetic events are divided 
into the ones occurring in the matrix and allochems versus the ones occurring within the 
mineralized fractures. Dashed line refers to uncertainty in timing of events. 
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Figure 22. Paragenetic sequence for the Sycamore Siltstone (Sycamore “Limestone” Member). 
The diagenetic events are listed from early to late, and the timing of the events is based on cross-
cutting and textural relationships. Diagenetic events are divided into the ones occurring in the 
matrix and allochems versus the ones occurring within the mineralized fractures. Dashed line 
refers to uncertainty in timing of events. 
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5.3. Diagenesis of Sycamore Mudrock (“Shale”) Member  

Framboidal pyrite is interpreted to represent the earliest diagenetic event (Figure 21) within 

the near surface environment, and its occurrence is interpreted to have formed as a result of 

seawater sulfate reduction as indicated by Schieber (2011). The presence of distorted fabrics 

visible on a microscope scale such as deformed muscovite flakes and flattened microorganisms 

suggests that compaction resulted in these fabrics at earlier diagenetic stages (e.g., Prothero and 

Schwab, 2013). The intergranular calcite cement in the calcareous mudrock facies was precipitated 

during early diagenesis because it is next to the detrital grains. Perhaps the precipitation of 

intergranular calcite cement occurred in the absence of quartz cement, and if clay coats were 

common, it would be reasonable to imply that the clay coats would have prevented the nucleation 

of quartz overgrowths as well (e.g., Pittman et. al., 1992). The intergranular calcite cement might 

have been derived from internal sources in the system including dissolution of calcium-bearing 

allochems and feldspars (e.g., Morad et al., 1990; Moore, 2001). Alteration of clays in the 

interbedded mudrocks might have also provided the essential ions to precipitate carbonate cements 

(e.g., Sun et al., 2019).  

Dolomite rhombs occur mostly as a secondary phase replacing the precursor mineral calcite 

during early to middle diagenesis, though some dolomite could also appear as a late mineral phase 

within mineralized fractures. The phosphate grains are detrital and interpreted to be sourced from 

collophane that precipitated from seawater. Similarly, both apatite and barite may have formed 

from seawater and then been remobilized and precipitated during early diagenesis. Various barite 

crystals might have only precipitated after the development of dissolution porosity due to the fact 

that irregular forms of barite fill dissolution pores.  
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The cryptocrystalline form of silica, chalcedony, contributed to the silicification of allochems 

during early to middle diagenesis based on its occurrence in skeletal debris. The overall silica 

replacement of microfossils is interpreted to be early to middle diagenesis as proposed in other 

studies which attribute silica replacement of fossils as a result of simultaneous dissolution of fossils 

and precipitation of authigenic silica at shallow burial depths (e.g., Schieber et al., 2000; Milliken 

and Olson, 2017). The silica present in the Sycamore mudrock facies is interpreted to be mostly 

derived from alteration of siliceous microfossils such as radiolarians during early diagenesis (e.g., 

Schieber et al., 2000; Milliken and Olson, 2017). Chalcedony might have precipitated from opaline 

silica which might have been released from the dissolution of siliceous microorganisms at near 

surface conditions (Prothero and Schwab, 2013). 

The formation of pores in Sycamore mudrocks is interpreted as a relatively continuous process. 

The intergranular pore development is interpreted to be an early to middle diagenetic event as 

described in other studies (e.g., Er et. al., 2016, Wang et.al., 2016) while dissolution pores between 

grains probably occurred during later diagenesis. Compaction at an early diagenetic stage triggered 

the reduction of pore volume as fine-grained materials were compacted and clay floccules were 

compressed. With increasing chemical compaction and burial depth, the dehydration and 

conversion of clay minerals might have caused the development of the intergranular and/or 

intercrystalline pores between authigenic clays during early to middle diagenesis (Zhang et. al., 

2019). Based on cross-cutting relationships, authigenic cubic pyrite marks the late stages of 

diagenesis with some evidence of fine crystalline pyrite occluding intergranular pores. The low 

abundance of mineralized fractures in the Sycamore “Shale” supports previous studies which have 

reported that burial of Sycamore “Shale” has resulted in minor amounts of fracturing (e.g., Terrell, 

2019).  
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5.4. Diagenesis of Sycamore Siltstone (“Limestone”) Member     

Diagenesis within the Sycamore Siltstone “Limestone” Member was marked by near 

surface cement precipitation followed by compaction and fracturing (Figure 22). The early marine 

calcite cement is the primary authigenic phase variably occurring in each Sycamore siltstone 

microfacies, and surrounding silt-sized grains, skeletal fragments, and peloids. For the calcitic 

siltstone facies, the high clay volume may have resulted in the low concentrations of calcite 

cement. The authigenic silica which locally occurs in the matrix may also have contributed to the 

low amount of calcite cement. In some instances, the siltstone microfacies contain partially 

dissolved allochems which could be the primary source of calcite cement if the grains were 

dissolved during the diagenetic evolution of the sediment (e.g., Al-Ramadan et. al., 2005). Due to 

seawater typically being saturated with calcium carbonate, calcite cement could have been derived 

directly from saturated seawater or from partial dissolution and reprecipitation of carbonate grains 

specifically skeletal allochems which can provide nucleation surface for calcite cementation 

(Brenner et. al., 2010; Morad, 2010).  

The occurrence of calcite cemented silt grains with a floating texture (Figures 16A-C), in 

the absence of quartz cement, implies that the calcite cement was syn-sedimentary in origin (e.g., 

Ulmer-Scholle et al., 2015; Xiong et. al., 2016). Hence, in this particular setting, the cementation 

process occurred soon after deposition and prior to the earliest stages of mechanical compaction. 

The fact that micrite could possibly grade into the coarser calcite suggests that the latter replaced 

the micrite during neomorphism (Figure 16D). The process of neomorphism could account for the 

development of the aforementioned “floating” texture in the Sycamore siltstone microfacies. It is 

also possible that the calcite formed soon after deposition since Mississippian seas represent a 

transitional period between calcite-dominated seas to aragonite and high-magnesium calcite seas 
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(Ries, 2010). The composition of the calcite cement is likely the low-magnesium end-member of 

calcite since high-Mg is relatively unstable past surface conditions (e.g., Molenaar, 1990; Prothero 

and Schwab, 2013). If calcite cement was indeed syn-sedimentary, it formed before compaction 

and contributed to the “floating texture” by preventing the grains from being in close contact to 

each other.  

The precipitation of framboidal pyrite is interpreted to represent an early diagenetic stage 

based on its isolated occurrence in the matrix and previous interpretations that associate it with 

sulfate reduction (e.g., Folk, 2005; Schieber, 2011). The occasional pyrite laminae in some 

specimens probably indicates it was concentrated in organic-rich zones (e.g., Berner et al., 1985). 

Dolomite occurring in the matrix and as a replacement of allochems is interpreted as forming 

during early to middle diagenesis, whereas the dolomite in fractures precipitated during middle to 

late diagenesis. Ferroan dolomite is interpreted as forming during early to middle diagenesis when 

iron and magnesium were available in the system as a result of clay conversion or local dewatering 

of shales. Changes in dolomite grains from a non-ferroan core to a ferroan rim with sharp 

transitional contacts probably indicates stages in which dolomitizing fluids entered the system 

(Figure 15). 

Quartz cement is not abundant in the siltstone microfacies nor are quartz overgrowths. The 

small amount of quartz cement in the Sycamore siltstone microfacies might be related to a 

combination of factors including possible unfavorable burial temperatures (below 60°C or above 

80°C), and large volumes of early calcite cement (e.g., Bjorlykke and Egeberg, 1993; Rahman and 

Worden, 2016; Walderhaug, 2000). Experimental work on the solubility of silica conducted by 

Blatt (1982) reveals that quartz nucleates and precipitates so slowly that deep burial and longtime 

spans are required. Though a significant amount of quartz cement can only be produced at great 
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depths, minor quartz cement can still be produced through other various mechanisms. Assuming 

that pressure solution from mechanical compaction was minor in the Sycamore Formation, the 

small amount of quartz cement may have been primarily derived from biogenic silica (e.g., 

Milliken and Olson, 2017; Schieber et. al., 2000) which is common in the Sycamore mudrock 

microfacies. Alternatively, quartz may be formed from silica released during the conversion of 

smectite-to-illite in the course of early to middle diagenesis (e.g., Sivalingam, 1990; Thyberg et. 

al., 2010). Another possible source of the minor quartz cement could have been from alteration of 

feldspars and micas subsequently releasing silica into the system (e.g., Bjørlykke, 1988; Sun et al., 

2019).  

The dissolution of feldspars (Figure 11) is identified as burial in origin, and it is the 

principal mechanism for the presence of secondary porosity in the Sycamore Formation. Previous 

studies suggest (e.g., Worden and Barclay, 2000; Yuan et. al, 2015) that dissolution of feldspars 

occurs in the presence of CO2 along with acidic and organic-rich fluids. These fluids could be 

sourced from the internal clay-rich mudrocks within the Sycamore Formation, or more likely from 

the underlying organic-rich Woodford Shale. Due to the organic richness of the Woodford Shale 

(Miceli Romero and Philp, 2012; Cardott, 2012), it is reasonable to infer that the CO2 released 

during decarboxylation of organic matter in aqueous solution contributed to the development of 

acidic fluids that caused the dissolution of feldspars in the Sycamore Formation. The conversion 

from smectite to illite could have also be one of the potential mechanisms for the source of the 

dissolving fluids (e.g., Ulmer-Scholle et al., 2015).  

The magnitude of feldspar dissolution is more pronounced in the calcitic siltstone 

microfacies. Perhaps the pervasive calcite cement in the calcite cemented siltstone reduced the 

permeability of the rock; and thus, creating impermeable zones affecting how acidic fluids 
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interacted with unstable feldspar grains and ultimately leading to less dissolution of these grains. 

The dissolved feldspar grains also supply ions to precipitate illite which is one of the most common 

authigenic clays in the Sycamore Formation. Although most of the illite is interpreted to have 

formed from smectite conversion during early to middle diagenesis, some illite is also interpreted 

to be coeval with the pores within dissolved feldspars during middle to late diagenesis. Since some 

dissolution pores and related clay minerals contain bitumen linings, it suggests that illitization and 

hydrocarbon migration might have occurred around the same time during paragenesis. However, 

maturation of hydrocarbons probably occurred during the smectite-to-illite conversion in early 

stages of diagenesis (Pevear, 1999). 

The carbonate-apatite (Figure 18) found in the matrix of the siltstone microfacies may have 

precipitated from seawater or formed due to dissolution and reprecipitation of phosphatic material 

during early diagenesis (e.g., Nesse, 2017). Barite occurs isolated from other phases and 

determining the relative timing is difficult. It can precipitate from seawater sulfate during 

hydrothermal activity (e.g., Hanor, 2000) or form during early diagenesis as a result of remobilized 

barium and sulfate material. It is crucial to point out that hydrothermal alteration associated with 

both barite and apatite has been documented in the Woodford Shale in Southeastern Anadarko 

Basin, Oklahoma (Roberts et al., 2019). Therefore, it is possible that the barite could be 

hydrothermal in origin. Titanium oxides, likely anatase, are interpreted as occurring during middle 

diagenesis based on textural criteria.   

Mineralized fractures (Figure 19) crosscut the other diagenetic features such as the calcite 

cement which indicates that they formed after the calcite and probably during late diagenesis. As 

previously mentioned, the fractures are filled with calcite, dolomite, quartz/chalcedony, pyrite, and 

they also contain stylolites (Figure 19B). Authigenic silica in the mineralized fractures implies that 
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it precipitated during late diagenesis based on the textural criterion. Following near surface 

diagenesis, the Sycamore siltstone underwent burial and compaction which aided in the 

development of mineralized fractures and stylolites. The presence of hydrocarbons in intergranular 

pores in the matrix, in dissolved grains, and in the fractures suggests that the hydrocarbon 

migration occurred after dissolution events during late diagenesis.   

 

5.5. Paleomagnetism 

Thermal demagnetization of the Sycamore Formation in the southern flank reveals a south-

southeasterly component (Figures 23A-B). The component is a characteristic remanent 

magnetization (ChRM) unblocked at relatively high temperatures ranging from 100 °C to 450 °C 

with a south-southeasterly declination and relative shallow inclinations (~17°). A poorly defined 

steep component is also removed in some specimens at low temperatures ranging from 100 °C to 

175 °C (Figures 23C-D) and is interpreted as a viscous remanent magnetization (VRM). While 

exposing the specimens to an alternating magnetic field (AF demagnetization), a similar ChRM 

was isolated from 10 mT to 100 mT with southeasterly declination and moderate up inclination 

(Figure 24). Demagnetization of northern flank specimens resulted in southeasterly directions, but 

the mean angles of deviation (MAD) are unacceptable (>18°) for calculation of mean statistics 

(Fisher, 1953). Alternating field demagnetization of the Woodford Shale samples produced a linear 

decay with southeasterly declinations and positive inclinations (Figure 25).  

There is a general southeasterly grouping of the specimen directions for the southern flank 

Sycamore specimens (Geo.: Dec= 129°, Inc= 3.6°, k= 14.91, α95= 13.8°, n/no: 06/12; Strat.: Dec= 

124.6°, Inc= 8.3°, k= 14.43, α95= 15.1°, n/no: 06/12; Figure 26), especially in the Lower and 

Middle Sycamore Sections of the southern flank. The ChRM in the Woodford Shale had a better 
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grouping (Geo.: Dec= 135.1°, Inc= 3.7°, k= 74.08, α95= 5.6°, n/no: 07/07; Strat.: Dec= 136.8°, 

Inc= -8.7°, k= 152.57, α95= 3.9°, n/no: 07/07; Figure 26) than the specimens in the Sycamore 

Formation. Performing a fold test was not possible due to the poor data quality from the north 

flank Sycamore specimens. Based on the CRM mean geographic directions, the pole position for 

the Sycamore Formation in the south flank has a latitude of 30.2°N and longitude of 147°E (dp= 

6.9; dm= 13.8; Figure 27), and the pole position for the Woodford Shale has a latitude of 20.1°N 

and longitude of 127.5°E (dp= 3.9; dm= 6.6; Figure 27). The pole position for the mean 

stratigraphic directions in the Sycamore Formation have a latitude of 25.3°N and longitude of 

148.2°E (dp= 7.7; dm= 15.2; Figure 27), whereas the Woodford Shale has a latitude of 40.1°N and 

longitude of 146.2°E (dp= 2; dm= 3.9; Figure 27). 
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Figure 23. Representative Zijderveld diagrams for thermal demagnetization in the 
Sycamore Formation, southern flank of the Arbuckle Anticline, I-35 Outcrop (A and C). 
Closed squares represent the horizontal component of the magnetic field whereas open 
squares represent the vertical component. The NRM was removed from both figures 
because of high intensity and to better illustrate the thermal decay. Both specimens are 
from the Lower Sycamore Section. A) The unblocking temperature of the ChRM is from 
275 °C to 400° C. The magnetic component has a Declination= 135.6°; Inclination= -11.1°; 
and MAD angle= 8.7°. C) The unblocking temperature of the ChRM is from 250°C to 
450°C. The magnetic component has a Declination= 121.3°; Inclination= 29.9°; and 
MAD= 5.6°. B and D) Magnetic intensities versus temperature plots of each respective 
specimen. 
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Figure 24. Representative Zijderveld diagram for AF demagnetization in the Sycamore Formation, 
southern flank of the Arbuckle Anticline, I-35 Outcrop. Closed squares represent the horizontal 
component of the magnetic field whereas open squares represent the vertical component. The 
ChRM was isolated from 10mT to 80mT. Magnetic component has a Declination= 160.5°; 
Inclination= 44.8°, and MAD= 9.8°. 
 

 
Figure 25. Representative Zijderveld diagram for alternating field demagnetization in the 
Woodford Shale, southern flank of the Arbuckle Anticline, I-35 Outcrop. Closed squares represent 
the horizontal component of the magnetic field whereas open squares represent the vertical 
component. The unblocking temperature of the ChRM is from 10 mT to 90 mT. The magnetic 
component has a Declination= 131.5°; Inclination= 40.9°; and MAD angle= 7.6°. 
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Figure 26. Equal-area plots of the ChRM specimen directions of the Sycamore Formation (left) 
and Woodford Shale (right). Declination values are measured clockwise from north. Inclination is 
measured from 0° at the edge of the circle and 90° at the center of the circle. The closed squares 
represent directions in the lower hemisphere with down inclinations whereas the open squares 
represent directions in the upper hemisphere with up inclinations. The smaller circles and the plus 
symbol represent the α95 confidence limit and the mean direction, respectively. 
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Figure 27. Apparent Polar Wander Path (APWP) for North America. The calculated virtual 
geomagnetic pole (VGP) for the CRM is depicted by the yellow color for the Sycamore Formation 
(left) and the blue color for the Woodford Shale (right). The star represents mean geographic 
coordinates while the square represents mean stratigraphic coordinates. The VGP latitude and 
longitude were calculated from the declination and inclination values from the specimens as well 
as the latitude and longitude of the study area. The pole position plots off the APWP for the 
Sycamore Formation, but it plots between Late Devonian to Early Mississippian for the Woodford 
Shale in geographic coordinates. Conversely, the pole position plots off the APWP for both the 
Sycamore Formation and the Woodford Shale in stratigraphic coordinates. Modified from (Torsvik 
et. al., 2012).  
 

5.6. Anisotropy of Magnetic Susceptibility 

 Magnetic susceptibility values from the studied specimens range from a minimum of 1.789 

x 10-5 SI to a maximum of 2.37 x 10-4 SI, although for most of the specimens (roughly 95%), mean 

susceptibility (km) values range between 2.0 and 7.0 10-5 SI. The AMS results display significant 

diversification between sites. The sites are subdivided into three groups based on the AMS results. 

One group consists of two sites which have steep K1 axes (Sites 7 and 9; Figure 27) perpendicular 

to the bedding plane. A second group contains only one site (Site 3; Figure 28) in which K1 has a 

shallow inclination in stratigraphic coordinates. The third group consists of most sites without a 



 52 

great deal of consistency. Representative AMS results for these variable sites are shown in figures 

29 (Site 8) and 30 (Sites 2 and 6). The presence of prolate to triaxial fabrics throughout the 

Sycamore Formation is interpreted to be carried mostly in paramagnetic minerals since the mean 

susceptibility values are positive (Table 3) (Tarling and Hrouda, 1993; García-Lasanta et. al., 

2013). 

 
Table 1. Summary of magnetic average scalar data for each site. Site: name of the site; N: number 
of specimens; km: mean susceptibility; σ: standard deviation; L: magnetic lineation; F: magnetic 
foliation; Pj: corrected anisotropy degree; T: shape parameter. Note that sites 1 and 4 were very 
challenging to drill for core samples resulting in unreasonable data for interpretation. 

 
The uppermost (9) and lowermost (7) sites display a dominant linear prolate fabric with 

vertical to sub-vertical maximum axes that are perpendicular to the bedding plane, suggesting an 

inverse magnetic fabric (e.g., Rochette et al., 1992; Dudzisz et al., 2016). Site 7 has the highest km 

values amongst all the sites, and K3 and K2 tensors have a moderate girdle in directions in contrast 

to site 9 where K2 and K3 are shallow with NNW-SSE and WSW-NE directions (Figure 28). 

Specimens in site 3 have shallow inclinations with NNE-SSW declinations in stratigraphic 

coordinates. In the third group, some specimens from the Middle Sycamore Section (sites 1, 4, 5, 

8) generally display scattering of the principal axis (e.g., Site 8; Figure 30) in geographic 

coordinates. Conversely, still in the third group, some sites exhibit well-grouped directions (e.g., 

Sites 2 and 6; Figure 31).  
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Figure 28. Representative data of the first group: A) and B) Equal area projections of AMS 
data from the lowermost (left) and the uppermost (right) sites of the Sycamore Formation 
in stratigraphic coordinates. K1 tensors are vertical to sub-vertical suggesting inverse AMS 
fabrics. Jelinek (1981) plots of the shape factor (T) versus degree of anisotropy (P) for C) 
site 7 and D) site 9. The diamond shape represents the specimens which indicate a prolate 
fabric. Each equal area plot displays confidence ellipsoids.  

 

 

 
Figure 29. Representative data of the second group: A) Equal area projection with 
confidence ellipsoids from site 3 of the Sycamore Formation in stratigraphic coordinates. 
B) Jelinèk (1981) plot of the shape factor (T) versus degree of anisotropy (P) suggesting a 
prolate fabric. 



 54 

 

 
Figure 30. Representative data of the third group: A) Equal area projection with confidence 
ellipsoids from site 8 of the Sycamore Formation in geographic coordinates. The lack of 
consistent directions within principal axes and the complexities associated with composite 
magnetic fabrics makes it very difficult to interpret certain sites in the Sycamore 
Formation. B) Jelinèk (1981) plot of the shape factor (T) versus degree of anisotropy (P) 
suggesting a prolate 
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Figure 31. Representative data of the third group: A) and B) Equal area projections of 
AMS data from site 2 (left) and site 6 (right) of the Sycamore Formation in geographic 
coordinates. K1 appears nearly horizontal. C) and D) Equal area projections of AMS data 
from site 2 (left) and site 6 (right) of the Sycamore Formation in stratigraphic coordinates. 
K1 appears inclined after tilt correction. Each equal area plot displays confidence 
ellipsoids.  
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6. DISCUSSION  

6.1. Controls on Diagenetic Alteration: Open vs. Closed System and Pore Development 

The issue of whether the sequence of diagenetic events in a system is being controlled by 

lithology (closed system) or regional fluid migration (open system) remains a fundamental 

question in both siltstones and mudrocks (e.g., Roberts et al., 2019). Based on petrographic and 

SEM analysis, the diagenesis of the Sycamore Formation is interpreted to be primarily controlled 

by internal processes occurring during early diagenesis. In the course of middle to late diagenesis, 

the Sycamore Formation probably evolved into an open system as a result of external fluids 

causing dissolution of unstable grains and perhaps precipitation of ferroan dolomite.  

During the formation of pyrite, silica replacement of microfossils, and calcite cement 

precipitation, the Sycamore Formation is interpreted to be largely closed to internal fluids. The 

calcite cement in the calcite cemented siltstone microfacies is interpreted to be syn-sedimentary or 

precipitated soon after deposition. Calcite cementation probably formed before compaction which 

resulted in the “floating texture.” Since deposition of the Sycamore Formation occurred in the 

Mississippian during the transition from calcite to aragonite seas (Ries, 2010), then early calcite 

cementation is possible. 

With increasing temperature and pressure during burial, a series of mineral reactions and 

phase changes likely released ions in aqueous solutions which became involved in diagenetic 

processes. After some burial, dewatering of the local interbedded mudrocks might have provided 

fluids for dissolution including those fluids that favored the precipitation of non-ferroan dolomite 

(Krajewski and WOŹN, 2009). Another process is the conversion of smectite to illite which can 

release a substantial amount of water which may have been a source of the dissolving fluids (e.g., 

Ulmer-Scholle et al., 2015). Illitization also releases cations such as Mg+2 and Si+4 which could 
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have contributed to the precipitation of dolomite and siliceous cements, respectively (e.g., Boles 

and Franks, 1979).  One issue with the compaction model is that after mudrocks are compacted 

and dewatered, the expelled fluids tend to migrate vertically rather than laterally. In addition, mass 

balance equations reveal that compacting even an enormous volume of mudrock would result in 

dolomite equal to as little as 1% of the mudrock volume (e.g., Prothero and Schwab, 2013).  

The zoned nature and chemical composition of the ferroan-dolomite observed in Sycamore 

siltstones suggests formation from evolving fluids characterized by variable content of 

magnesium, calcium, and iron (Figure 15). The origin of dolomitizing fluids is puzzling because 

dolomite is thermodynamically stable in seawater which is the most abundant Mg-bearing fluid. 

However, slow kinetics at near surface conditions tend to inhibit dolomitization while elevated 

temperatures as a result of burial or hydrothermal circulation tend to promote dolomitization (e.g., 

Zhang et. al., 2007). For Sycamore rocks, the origin of the dolomite is attributed to burial fluids 

(e.g., Blomme et. al., 2017).  

As previously described, the dissolution of feldspars is interpreted as a being caused by 

burial fluids.  In addition to illitization being one of the potential sources for the dissolving fluids, 

the generation of organic acids and CO2 as a result of organic matter maturation in the underlying 

Woodford Shale and/or in the mudrock facies in the Sycamore could also be a source of such fluids 

(e.g., Ehrenberg and Jakobsen, 2001). Previous studies (e.g., Sassen et. al., 1987) propose that the 

onset of oil generation at vitrinite reflectance of about 0.55 % RO produces organic fluids and CO2. 

As a prolific source rock in Oklahoma, the average vitrinite reflectance value from the Woodford 

Shale in the I-35 outcrop is 0.50% RO (Cardott and Chaplin, 1993). This suggests that these organic 

diagenetic processes occurring in the Woodford Shale and/or the Sycamore mudrock facies could 
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have led to the formation of subsurface fluids which triggered feldspar dissolution in the Sycamore 

Formation and produced secondary porosity.  

Although the Woodford Shale is located in the same outcrop exposure as the Sycamore 

Formation, it is important to emphasize that composition of subsurface fluids can be due to the 

mixing of chemically unrelated waters and continuous rock-water interactions (Moore, 2001). 

Thus, it is likely that the diagenetic events in the Sycamore Formation were controlled by both 

internal and external processes. A series of internal fluids dominated the Sycamore during early 

diagenesis, but external fluids migrating from the Woodford Shale also contributed to development 

of the diagenetic events in Sycamore rocks. If the mudrock facies in the Sycamore Formation 

provided the organic acids, then the system could have been closed. It is not possible to determine 

the source of the fluids, although if the Woodford was involved, the Woodford-Sycamore interval 

may have behaved as a closed system.     

Another mechanism that could cause alteration by external fluids would be through 

hydrothermal activity. Hydrothermal fluids are defined by convention as “aqueous solutions that 

are warm or hot relative to the surrounding environment” with temperatures 5°C–10°C higher than 

the host rock (White, 1957; Machel and Lonnee, 2002). Multiple hydrothermal minerals such as 

witherite, chalcopyrite, apatite, and among others have been observed in the Woodford Shale 

suggesting hydrothermal alteration during middle to late diagenesis in the Ardmore Basin (Roberts 

et al., 2019). Petrography and SEM observations in the Sycamore Formation do not show 

substantial evidence for hydrothermal activity. Some minerals which have been tied to 

hydrothermal alteration are observed, including barite and apatite (e.g., Bouzari et. al., 2016), but 

they are not strong evidence because they are not necessarily hydrothermal in origin.    
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6.2. Paleomagnetism  

The ChRM identified in the Sycamore Formation is interpreted to reside in magnetite based 

on removal during AF demagnetization and unblocking temperatures below 580 °C. Removal of 

the component in the Woodford Shale by AF treatment also suggests that it resides in magnetite. 

The ChRMs identified in the Sycamore Formation and Woodford Shale are interpreted to be a 

chemical remanent magnetization (CRM) based on the low burial temperatures for the south flank 

samples. Vitrinite reflectance data from the Woodford Shale in the Arbuckle Mountains yields a 

weighted average of 0.54% RO with estimated burial depth of 1.23 - 1.79 km and a maximum 

burial temperature of 56 – 70 °C (Cardott et al., 1990). Moreover, the average vitrinite reflectance 

value from the Woodford Shale in the I-35 outcrop is 0.50% RO which also suggests burial 

temperatures less than 100 °C (Cardott and Chaplin, 1993).   

Performing a fold test was not possible due to the poor data quality from the north flank 

specimens. The pole position for the Sycamore Formation is off the APWP for North America in 

both geographic and stratigraphic directions perhaps due to the poor grouping of specimens. 

Although the CRM is tentatively considered as post folding, defining the time of magnetization of 

Sycamore rocks is unattainable because a fold test could not be performed. Future work should 

focus on collecting samples from the Sycamore and the Woodford for a fold test.   

The results suggest that the primary magnetization was destroyed and replaced by the 

secondary CRM which was acquired as a new magnetic mineral grew at low temperatures. 

Applying optical and SEM observations to identify ferromagnetic minerals can be arduous since 

these minerals are usually small (≤ 1μm for single domain or pseudo-single domain grains) and at 

very low concentrations (Butler, 1992). Both the ChRM in the Sycamore Formation (southern 

flank) and Woodford Shale (I-35 outcrop) display the same directions suggesting a similar 
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mechanism for the origin of the CRM. Possible remagnetization mechanisms include burial 

processes such as illitization reactions (e.g., Woods et al., 2002; Elmore et al., 2012), maturation 

of organic matter (Elmore et al., 2012) hydrocarbon migration (Elmore and Crawford, 1990), and 

orogenic fluids (Elmore, 2001; Elmore et al., 2012). Burial mechanism such as maturation of 

organic matter could be applied to the Woodford Shale since it is a source rock. However, a similar 

burial mechanism is less likely in the Sycamore siltstones because they are not a source rock and 

do not contain abundant illite. The Sycamore Formation does contain degraded hydrocarbons in 

pores; hence, hydrocarbon migration is possible (e.g., Elmore et al., 2012). Hardwick (2018) also 

identified a CRM held in magnetite in the Meramec Formation in the STACK play which is the 

equivalent of Sycamore rocks in southern Oklahoma. The CRM had poor grouping, but it was 

interpreted as acquired during a period of rapid subsidence associated with the Ouachita Orogeny 

(Hardwick, 2018). 

To reiterate, the ChRMs identified in the Sycamore and Woodford Formations are 

interpreted to reside in magnetite and are chemical remanent magnetizations (CRMs) based on the 

low burial temperatures for the south flank samples.  Unfortunately, no authigenic magnetite was 

found during the petrographic/SEM study, probably because it is present in low concentrations. 

The geographic and stratigraphic pole positions for the Sycamore Formation are off the APWP 

perhaps because of the poor grouping of specimen directions. Although the CRM is tentatively 

considered as post folding, defining the time of magnetization of Sycamore rocks is unattainable 

because a fold test could not be performed. The timing of the CRM in the Woodford Shale could 

not be constrained because a fold test was not possible.    
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6.3. Petrofabric  

Magnetic anisotropy techniques have been commonly used to investigate paleocurrent 

directions (e.g., Schieber and Ellwood, 1993), examine patterns of strain in sedimentary rocks 

(e.g., Dudzisz et. al., 2016), and assess diagenetic alteration (Parés, 2015). Magnetic fabric in rocks 

can be acquired and developed through a series of multiplex processes dependent on the nature of 

the boundaries between grains, and both grain orientation and packing (Parés, 2015). The AMS 

ellipsoids from the Sycamore Formation reveal a number of different magnetic fabrics caused by 

the synergy between diagenetic, tectonic, and hydrodynamic processes.  

Vertical to sub-vertical K1 tensors in the uppermost and lowermost sites (sites 7 and 9) of 

the Sycamore Formation suggest the presence of an inverse AMS fabric, especially when displayed 

in stratigraphic or tilt-corrected coordinates (Figure 28). Inverse fabrics result from an inverse 

relationship between magnetic axes and crystallographic axes where K1 is parallel to Z and K3 is 

parallel to X (e.g., Rochette, 1988; Ihmlé et. al., 1989; Ferré, 2002). Single-domain magnetite or 

iron-bearing carbonates such as siderite, ankerite, and Fe-bearing dolomite are common inverted 

fabric carriers (Rochette, 1988; Heij et. al., 2018). SEM analysis shows evidence of abundant 

ferroan dolomite in the Lower Sycamore Section, specifically in site 7 (Figures 14C and 15) 

indicating alteration by iron-rich dolomitizing fluids. The ferroan dolomite occurs as grains both 

in the matrix and vertical veins as well as authigenic rims on dolomite grains. The occurrence of 

Fe-dolomite suggests that it is the explanation for the inverted AMS fabric in the Sycamore 

Formation. Intermediate AMS fabrics are also likely to occur if there is a combination of  a normal   

and inverse magnetic fabric  (Ferré, 2002).  

The strong bedding-parallel lineation observed in site 3 (Figure 29) with an approximately 

N-S alignment of K1 tensors indicates that the grains of longer axes could be parallel to current 
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flow directions (e.g., Hrouda, 1982). The slightly inclined K1 (0.6°) in site 3 (stratigraphic 

coordinates) suggests flow in the up-current direction, which in this case would represent a north 

to south flow direction (e.g., Schieber and Ellwood, 1988).  The inclination is only very slight, and 

the results from site 3 could still indicate either N-S or S-N currents. The outcrop lithofacies 

located in site 3 have been reported to contain current lineations, planar laminations, and other 

sedimentary structures associated with Bouma sequences (Ta and Tb) (e.g., Milad, 2019). The 

relationship between grain alignment and flow direction is dependent on a series of moderate or 

high hydrodynamic regimes (Heij et. al., 2015).  

Certain sites could be interpreted as containing partial diagenetic fabrics where authigenic 

alteration of mineral phases resulted in new preferred orientation by changing the original AMS 

fabric. The growth of new mineral phases can distort the original fabric particularly in cases where 

the mineral volume exceeds the only space available for mineral growth (Heij et. al., 2015). As 

previously mentioned, inverted fabrics caused by ferroan dolomite are found in specimens of the 

Sycamore Formation. Moreover, the occurrence of mineralized fractures with possible stylolites 

(Figure 19B) may suggest fluid-flow interactions which could lead to diagenetic alteration of 

magnetic fabrics and the development of non-planar fabrics. This hypothesis could serve as an 

explanation for the AMS fabrics in sites 2 and 6 (Figure 31).  

Petrographic analysis from the Middle Sycamore Section also reveals evidence of slip 

along the edge of vertical veins due to movement caused by deformation. This observation implies 

that deformation may also have contributed to the AMS fabrics of the Sycamore Formation. I note, 

however, that there are no sites where K1 is perpendicular to the shortening direction (ESE-WNW) 

although there are instances (Site 8; Figure 30) where a few specimens display WNW directions. 

Though deformation is probably not a major contributor to the AMS fabrics (e.g., Parés, 2015, 
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Dudzisz et. al., 2016), most fabrics in the Sycamore Formation are interpreted as representing 

composite fabrics with possible diagenetic (alteration by Fe-rich dolomitizing fluids), tectonic, and 

hydrodynamic influence (e.g., third group of AMS fabrics- sites 2, 6, and 8; Figures 30 and 31).   

The majority of the AMS results from the Sycamore Formation are very complex and 

probably represent composite fabrics (Figures 30 and 31). It is worthwhile to note that composite 

fabrics between diagenetic, primary hydrodynamic, and tectonic processes are possible in the 

Sycamore Formation, especially in sites with AMS ellipsoids displaying principal axis striking in 

multiple directions (Site 8; Figure 30). In these instances, data interpretation is very difficult 

accounting for the lack of active research on magnetic fabrics of siltstones as well as the 

complexities of factors controlling the development of AMS fabrics in siltstones. 
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CONCLUSIONS 

 The Sycamore Formation displays significant diagenetic alteration through multiple 

dissolution, fracturing, mineralization, and brecciation events. A plethora of early to middle 

diagenetic events occur within the matrix and allochems at relatively low pressures and 

temperatures. During deeper burial at relatively high temperatures, other diagenetic events 

occurred especially those within mineralized fractures.  

Sycamore rocks are characterized by precipitation of two main types of cement- an 

intergranular calcite cement and a blocky pervasive calcite cement. The pervasive calcite cement 

is syn-sedimentary based on the “floating texture” of the grains and early dissolution of skeletal 

allochems. The intergranular calcite cement generally occurs in mudrocks and calcitic siltstone 

microfacies while the pervasive calcite cement dominates the calcite cemented siltstones. The 

intergranular calcite cement precipitated as a result of dissolution of allochems and unstable 

feldspar grains, and during clay alteration in the course of early to middle diageneses.  

Pore development in Sycamore rocks was a relatively continuous process defined by early 

evolution of intergranular porosity associated with clay structure and other framework grains. 

Dissolution porosity is burial in origin as a consequence of feldspar dissolution which is common 

in the calcitic siltstone facies. Therefore, the calcitic siltstone microfacies is locally more porous 

than the calcite cemented siltstones since the pervasive calcite cement in the latter occludes the 

porosity.  

Anisotropy of magnetic susceptibility fabrics are composite, representing a combination of 

diagenetic, tectonic, and depositional fabrics. An inverted magnetic fabric is attributed to the 

occurrence of ferroan dolomite. The dolomite and inverse fabric relate to alteration by iron-rich 

dolomitizing fluids.   
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The Sycamore Formation was primarily a system dominated by internal fluids. Diagenetic 

events such as illitization, dewatering of shales, maturation of organic matter, and dissolution of 

microorganisms and allochems are internally responsible for most of the diagenetic reactions 

within the system. During burial, the Sycamore Formation might have evolved into an open fluid-

dominated system allowing alteration (e.g., dissolution of feldspars) by external fluids. These 

fluids include iron-rich dolomitizing fluids and/or organic acidic-rich fluids deriving from 

hydrocarbon maturation in the underlying Woodford Shale.   

Although some mineral phases (e.g., barite and apatite) that have been tied to hydrothermal 

alteration were observed in Sycamore microfacies, there is no strong evidence for hydrothermal 

alteration in the Sycamore Formation. The magnetizations in the unit are CRMs residing in 

magnetite, but the timing of remagnetization cannot be determined because a fold test could not 

be performed.  
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