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Table 1: Abbreviations Used in this Thesis 

Abbreviation Meaning 

CAVD Calcific aortic valve disease 

AV Aortic valve 

VECs Valvular endothelial cells 

VICs Valvular interstitial cells 

TGF-β Transforming growth factor beta 

vWF Von Willebrand factor 

CFD Computational fluid dynamics 

CPD Cone-and-plate device 
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1. Abstract 

Calcific aortic valve disease (CAVD) is the second leading cause of heart surgery and is 

responsible for about 15,000 deaths per year in North America. CAVD involves the thickening 

and calcification of the leaflets that comprise the aortic valve—as this occurs, the blood flow 

through the valve becomes disturbed and creates an environment of oscillatory pathological shear 

stress. The regulatory cytokine TGF-β1 is activated by shear stress and its upregulation furthers 

disease progression by inducing fibrosis and calcification of the cells that comprise the valve. The 

heart valve is difficult to study directly because of the complexity of its geometry and the heavy 

computational demands that modeling the valve entails. Therefore, studies have been done looking 

at the activation of TGF-β1 in steady vs oscillatory shear environments in a cone and plate device. 

In this report, the CFD software ANSYS Fluent is used to model three different oscillatory profiles 

in a cone and plate device: rotation of the cone with abrupt stopping, rotation with ramped 

acceleration/deceleration when changing directions, and sinusoidal oscillation. All three profiles 

generate similar time-averaged shear stresses (2.8, 2.7, 2.7 dyne/cm2, respectively), but the abrupt 

stopping case generates a spike in shear stress that is nearly 50% higher than the maximum shear 

stresses seen in the ramped or sinusoidal cases: 14.6 vs 9.94 and 10.2 dyne/cm2. Simulations were 

also run using the simpler geometry of parallel plates to validate the findings. It was found that 

decreasing the “stop time” when the plate’s motion is abruptly stopped by an order of magnitude 

did not greatly affect the maximum shear stress near the plate (175 vs 169 dyne/cm2 for stop times 

of 0.10 and 0.01 s, respectively), but it did result in a 3-fold increase in the ramped acceleration 

case: 43.2 vs 130 dyne/cm2. These trends are independent of Reynolds number and affect about 

30% of the fluid domain in the cone and plate device. Therefore, when it comes to modeling the 

aortic valve directly, the sensitivity of the solution to the boundary conditions depends on two 
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things: if the valve opening and closing occurs in a manner more similar to the abrupt or to the 

ramped case and the sensitivity of TGF-β1 to large spikes in shear stress.  
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2. Introduction 

2.1. The Aortic Valve and Calcific Aortic Valve Disease 

Calcific aortic valve disease (CAVD) is the most common valvular heart disease in the 

aging population of the developed world1, and it is becoming increasingly prevalent and deadly. 

In 2019, disease prevalence was up 76% from 2010, with an age-standardized mortality rate of 

1.76 per 100,000 people2. It is the second-highest cause of heart surgery in North America. CAVD 

ranges from mild thickening of the aortic valve to severe calcification. This progression begins 

with aortic sclerosis, which involves valve thickening without obstruction of blood flow, and ends 

with aortic stenosis, where the valve is severely calcified, resulting in impaired leaflet motion and 

left ventricular outflow obstruction3. This progression is shown in the figure below4.  

As CAVD worsens, the valve leaflets thicken and calcium nodules form at the base of the 

cusps on the aortic side, gradually extending until they protrude through the orifice and interfere 

with the cusps’ opening. The valve opening narrows, leading to increased levels of shear stress in 

the blood moving through the valve. Shear stress has been shown to activate molecules such as 

Transforming Growth Factor β (TGF-β)5,6, which facilitate the calcification process, creating a 

vicious self-propagating cycle that furthers disease progression. Eventually, blood flow restriction 

Figure 1: Progression of CAVD from a normal to severely calcified aortic valve. Image from 

[4]. 



 

2 
 

through the cusps leads to congestive heart failure and death3. Currently, the only treatment 

available for aortic stenosis is surgical valve replacement.  

2.1.1. Normal aortic valve anatomy and function 

The aortic valve (AV) lies at the junction between the left ventricle and the aorta, serving 

as the check valve for blood leaving the heart for systemic circulation7. The AV opens and closes 

with each heartbeat over 100,000 times a day. Because of this, as well as the significant back 

pressure it experiences when closed during diastole, the AV exists in a very mechanically 

demanding environment and must have a robust structure to guarantee its reliability8. 

The aortic valve consists of three half-moon shaped leaflets, earning it the name “semi-

lunar” valve7. The internal framework of the leaflets consists of three distinct layers: the fibrosa, 

spongiosa, and ventricularis, from the aortic to the ventricular side. The fibrosa layer is closest to 

the outflow surface and provides most of the strength of the leaflets. It consists of dense connective 

tissue rich in highly aligned Type 1 collagen fibers. The central spongiosa layer is made up mainly 

of loose connective tissue rich in glycosaminoglycans. It provides cushioning and lubrication 

between the fibrosa and ventricularis. The ventricularis is closest to the inflow surface and is rich 

in elastin to facilitate flexibility during valve opening and closure7.  

The outside edges of the AV are lined by valvular endothelial cells, while the layered 

interior contains valvular interstitial cells that maintain the structural integrity of the valve 

leaflets3,9. 
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2.1.2. Disease progression  

The classical perspective on CAVD is that this disease is degenerative (and therefore 

unmodifiable), wherein continued “wear and tear” on the valve over time leads to calcification and 

loss of function. However, evidence has shown that calcification is an actively pathobiological 

process, with characteristic features such as chronic inflammation, deposition of lipoproteins, and 

active calcification present in calcific aortic valve lesions10. 

Over recent decades, several risk factors for CAVD have been identified, many of which 

overlap with those of cardiovascular atherosclerosis. These include the following:  

In CAVD development, an initial endothelial injury triggers an inflammatory response, 

which leads to differentiation of VICs into myofibroblasts and osteoblasts and subsequent 

calcification11. Mechanical and shear stresses combined with the given risk factors create an initial 

endothelial injury, causing an inflammatory response in the tissue. This inflammatory response is 

Figure 2: The layers of the aortic valve. The exteriors are lined with valvular endothelial cells 

(VECs), while the interior contains valvular interstitial cells (VICs). The three layers are: 

collagen-rich fibrosa, glycosaminoglycan (GAG)-rich spongiosa, and elastin-rich ventricularis. 

LV = left ventricle. Image from [3].  

—Age   —Hypertension  —Smoking  

—Male gender —Diabetes mellitus   —Elevated cholesterol levels 
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characterized by the deposition of oxidized low-density lipoproteins and the presence of cell types 

commonly associated with chronic inflammation, such as macrophages and T-lymphocytes. 

Within the lesion, the valvular interstitial cells begin to differentiate into myofibroblasts and 

osteoblasts, a process mediated in part by inflammatory cytokines such as transforming growth 

factor beta (TGF-β), tumor necrosis factor (TNF)-α, and interleukin-1β. These differentiated VICs 

are then responsible for the active deposition of calcium during CAVD3. Proteins such as bone 

morphogenic proteins (BMP-2 and -4) and receptor activator of nuclear factor NF-κB ligand 

(RANKL) have been detected in calcified tissue and are involved in tissue calcification 

regulation11. 

 

Figure 3: Aortic stenosis pathobiology. An initial endothelial injury triggers an inflammatory 

response, which leads to differentiation of VICs into myofibroblasts and osteoblasts and 

subsequent calcification. Image from [11].  
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Table 2: Figure 3 Abbreviations 

LDL 

oxLDL 

mtUPR 

 

ACE 

 

ECM 

MMPs 

MVs 

TNF-α 

BSP 

BMP-2 

LRP5 

SOX9 

Low-density lipoprotein 

oxidized LDL 

mitochondrial unfolded 

protein response 

angiotensin-converting 

enzyme 

extracellular matrix 

matrix metalloproteinases 

microvesicles 

tumor necrosis factor α 

bone sialoprotein 

bone morphogenetic protein 

LDL receptor-related protein 5 

SRY-box 9 

RUNX2 

ALP 

RANKL 

 

RANK 

OPG 

NO 

VEGF 

TGF-β  

ROS 

ICAM-1 

vCAM-1 

CACNA1C 

 

runt-related transcription factor 2 

alkaline phosphatase  

receptor activator of NF-kappa B 

ligand 

receptor activator of nuclear factor κ  

osteoprotegerin  

nitric oxide 

vascular endothelial growth factor 

transforming growth factor beta 

reactive oxygen species 

intercellular adhesion molecule 1 

vascular cell adhesion molecule 1 

calcium voltage-gated channel 

subunit alpha 1 C 

 

In sum, CAVD is an active pathobiological process where the aortic valve becomes 

inflamed, leading to osteoblastic transformation and bone formation, which eventually inhibits 

valve leaflet motion, restricts blood flow, and causes death.  

2.2.  Shear Stress and Calcific Aortic Valve Disease 

Shear stress arises from a tangential force (such as a flowing fluid) acting on a surface. Its 

units match that of pressure: force per unit area, often expressed in Pa or dyne/cm2 (1 Pa = 10 

dyne/cm2). It is calculated as the gradient of the velocity (shear rate) multiplied by the viscosity of 

the fluid. The equation below describes the shear stress for one component using Newton’s Law 

of Viscosity12:  

𝜏𝑥𝑦 = 𝜇 ∗
𝑑𝑣𝑥

𝑑𝑦
                      Equation 1 

While blood is a non-Newtonian fluid, it follows Newtonian behavior for shear rates > 100 s-1. The 

effect of non-Newtonian behavior in flow is not significant in large blood vessels such as the aorta, 

where shear rates are high13. Therefore, the often-used approximation of blood as a Newtonian 

fluid will be applied in this thesis, with fluid properties matching that of water.  
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In the body, the endothelium that lines the cardiovascular system is highly sensitive to the 

shear stresses that act on the vessel walls in the direction of flow. Physiological shear stress has 

been shown to be critical to the maintenance of normal vascular function and homeostasis. 

Conversely, shear stress that arises from “disturbed” (i.e. nonlaminar, or otherwise pathological) 

flow plays a role in the pathogenesis of atherosclerotic plaque14.  

The vascular and valvular endothelium play important roles in mediating hemodynamic 

and humoral stimuli. In non-pathological conditions, fluid shear stress has been shown to promote 

anti-inflammatory and anti-oxidizing gene expression15. This “good” shear stress is characterized 

by steady, unidirectional, laminar flow. It results in upregulation of antioxidants such as CYP1A1, 

PRDX1, and SOD2, and downregulation of proinflammatory mediators such as BMP-4 and 

CAD11, which induce differentiation of cells into chondrogenic (cartilage forming) and osteogenic 

(bone forming) phenotypes16.  

There are several reasons to suggest that altered flow patterns may contribute causally to 

the initiation of valvular pathogenesis. To begin with, several studies have shown that endothelial 

inflammation and atherosclerosis occur preferentially at sites of low or oscillatory flow (often 

characterized in literature as “disturbed” flow)17. Additionally, most calcific lesions form on the 

aortic rather than ventricular side of the AV. The aortic surface experiences a more complex 

circulating flow that differs from the unidirectional flow on the leaflet’s ventricular side18, 

suggesting that it is this difference in flow that affects the development of the calcific lesions 

characteristic of CAVD. An analysis of gene expression profiles on each side of the AV showed 

that while the aortic side is protected in normal conditions against inflammation and lesion 

initiation, it is also “permissive to calcification” in a way that the ventricular side is not15.  
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It is worth investigating the effect that shear stress arising from “disturbed” flow has on 

the initiation and progression of CAVD. The aortic side of the AV expresses elevated levels of cell 

adhesion molecules and markers of inflammation when exposed to non-physiologic shear stress. 

Altered shear stress causes TGF-β1 expression, which in turn causes BMP-4 expression. This 

BMP-4 expression results in increased inflammatory responses, as confirmed by increases in the 

leukocyte adhesion molecules ICAM-1 and VCAM-119. It is worth noting that the activated TGF-

β comes primarily from platelets circulating in the blood, so while the endothelial response to shear 

is important, the focus of this report is on how TGF-β in the blood activates and contributes to the 

progression of CAVD.  

2.2.1. Shear-Activated Proteins 

2.2.1.1. The von Willebrand Factor (vWF) 

TGF-β is not the first shear-activated soluble protein to be discovered. Other proteins in 

the body have been found to respond to mechanical stimuli such as shear stress. The best-studied 

example of a shear stress-mediated protein is that of the von Willebrand factor (vWF)20. vWF is a 

Figure 4: Shear stress acting on the aortic valve. The ventricular side of the valve (green) 

experiences more steady, unidirectional flow while the aortic side (red) experiences more 

oscillatory flow. Image adapted from [15]. 
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large glycoprotein that plays a key role in the formation of blood clots. Blood clot formation is a 

complex process that involves platelet aggregation and adherence at the site of injury, which 

requires binding between multiple receptor-ligand pairs. vWF facilitates platelet adhesion through 

its binding to molecules such as Factor VIII, collagen, and platelet GPlb (glycoprotein lb)21. 

vWF is normally present in the blood in a loosely coiled, globular structure. However, 

when exposed to shear rates greater than 1000 s-1, the molecule abruptly changes its conformation, 

elongating until linear. This exposes the A1 domain on the protein, which is the binding site for 

platelet GPlb. When shear rates get above 5000 s-1, the A1 domain is activated and experiences a 

much higher binding affinity for GPlb22. Shear rates this high are pathological and can be found at 

sites of vascular injury where vasoconstriction reduces the blood vessel diameter.  

The elongation of vWF and subsequent activation of the A1 domain is easily reversible—

vWF will return to its globular state as soon as the flow returns to normal, for example downstream 

of the site of an injury23.  

 

 

 

 

 

 

 

The flow-mediated activation of vWF is integral to the immune response. It prevents the 

buildup of platelets under normal physiological conditions and preserves homeostasis by 

Figure 5: Mechanical activation of vWF. A) vWF, tethered to the endothelium, is elongated and 

activated by high levels of shear stress. B) Schematic showing the activation of the A1 domain of 

vWF, where it has a high affinity for the platelet GPlbα. Image from [23].  

B A 
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facilitating clot formation should an injury occur in the vasculature. Areas of high shear are more 

susceptible to injury, so having shear increase the binding probability of vWF serves as an effective 

self-regulating repair mechanism24.  

While not relevant to the conversation about CAVD, vWF is an important example of how 

shear stress can play a major role in protein activation.  

2.2.1.2. Transforming Growth Factor Beta (TGF-β) 

Transforming growth factor beta, or TGF-β, is a regulatory cytokine that plays a role in 

immune response suppression, cell differentiation, and tissue repair25. It is part of the TGF-β 

superfamily, which is a large group of proteins that includes the activin/inhibin family, bone 

morphogenic proteins (BMPs), growth differentiation factors (GDFs), and the glial cell line-

derived neurotropic factor (GDNF) family26. The TGF-β superfamily is important for regulating a 

variety of biological processes such as cell growth, development, tissue homeostasis, and immune 

system regulation. 

 The TGF-β subfamily consists of homodimeric polypeptides that have multiple regulatory 

properties. Peptide secretion is both temporal and tissue-specific, allowing for integration of 

multiple cell types and pathways. TGF-β has been found in three isoforms: types I, II, and III. 

TGF-β1 is the most abundant and ubiquitously expressed and will be the focus moving forward.  

 TGF-β has been found in almost all cell types, but is most prevalent in platelets, which are 

responsible for ~45% of the latent TGF-β in circulation and have 40-100x more TGF-β than other 

cell types27. It is produced in a latent form and then binds to its receptors when activated, which 

triggers a host of signaling cascades.  

 Latent TGF-β consists of the molecule noncovalently bound to its precursor, called latency-

associated peptide (LAP). The LAP is disulfide bonded to a latent TGF-β binding peptide (LTBP), 
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which plays an important role in tying TGF-β to the extracellular matrix. This complex is known 

as the large latent complex (LLC)25,27.  

 Latent TGF-β cannot bind to its receptors until it is activated. Activation consists of freeing 

the TGF-β molecule from the LAP by an activator (TA). This activation has been shown to be 

mediated by shear stress6,27,28,29,30. Little is known about the specifics of how shear stress activates 

TGF-β, but studies have found potential mechanisms to be modulation by potassium ion channel 

currents6 and by thiol-disulfide exchange27.  

Once activated, the TGF-β dimer binds to TGF-β receptor II, which recruits TGF-β 

receptor I (also known as ALK5), forming a heterodimeric complex. These receptors are 

serine/threonine kinases25. This phosphorylates the receptors’ intracellular kinase domains, 

activating them. The active kinase domains can then phosphorylate SMAD transcription factors. 

The phosphorylation of the SMAD transcription factors make up TGF-β’s canonical signaling 

pathway. SMADs 2 and 3 are phosphorylated by the activated kinase domains and form a 

heterotrimeric complex with the co-factor SMAD 4. This complex enters the nucleus and acts on 

the TGF-β target genes. This canonical TGF-β signaling pathway is shown in Figure 6, below31. 

TGF-β can also act through non-canonical signaling pathways. These include the MAPK 

pathway (which involves ERK1/ERK2, JNK, p38, and PI3K kinases), Notch signaling, AKT/PKB, 

GTP-binding proteins pathway, PTK, NF-κB, and Wntβ-catenin. This allows TGF-β to indirectly 

participate in cell apoptosis, endothelial-to-mesenchymal transition, cellular migration, 

proliferation, differentiation, and matrix formation.  
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Upregulation of TGF-β signaling has been heavily implicated in the progression of CAVD, 

as it induces fibrosis and calcification32,33. TGF-β triggers the transformation of VICs into 

collagen-producing myofibroblasts though its canonical (SMAD) signaling pathway34. 

Additionally, TGF-β mediates the calcification of valves via apoptotic mechanisms33. 

 TGF-β activation increases with increasing shear stress27,29. As aortic valve stenosis 

worsens, the valve opening narrows, leading to increased levels of shear stress. This increase in 

shear stress increases TGF-β activation, which increases calcification, creating a vicious self-

propagating cycle. Therefore, understanding TGF-β’s sensitivity to shear stress could be crucial in 

developing treatments for CAVD.  

Figure 6: TGF-Beta canonical cell signaling pathway. Activated TGF-β binds to its receptors, 

activating their intracellular kinase domains (KD). This leads to the phosphorylation of SMADs 

2 and 3, which, in conjunction with co-factor SMAD 4, form a complex that enters the nucleus 

and triggers gene transcription. This process could be blocked by TGF-β receptor or SMAD 

inhibitors. Image from [31].  
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2.2.2. Modeling disease progression with Computational Fluid Dynamics 

Computational fluid dynamics (CFD) has emerged in recent years as a powerful tool in 

system design and optimization within industries such as chemicals, aerospace, and 

hydrodynamics. It is also used to increase understanding of the biomechanical behavior of blood 

flow in normal and pathological blood vessels. The impact of CFD has only increased as 

technological advances are made in computing power, coupled with cost reductions in the 

equipment needed for supercomputing35. 

 CFD modeling is becoming increasingly important in the field of cardiovascular medicine. 

It can enhance diagnostic assessment, device design, and aid in clinical trials by contributing to 

our understanding of the physiological responses to intervention and by computing unmeasurable 

hemodynamic parameters36. For example, patient-specific modeling can be used to determine 

whether surgical intervention is needed in cerebral aneurisms by assessing the rupture risk due to 

altered hemodynamics37,38. CFD modeling has also been used to simulate transcatheter aortic valve 

degeneration39 and more broadly in modeling the hemodynamic parameters of diseased aortas35,40. 

In sum, CFD modeling has immense potential in the field of cardiovascular medicine for both 

clinical and research applications—improving treatments and developing new ones.  

 However, it is important to understand the current limitations CFD modeling faces, 

particularly in the field of cardiovascular medicine. CFD modeling is difficult—complications 

arise from meshing the solid-fluid boundary, modeling the coupled fluid-solid interaction, 

modeling transitional flow, turbulence, and reaching Reynolds numbers of peak flow at 

physiological levels41. Fluid-structure interactions (FSI) play a major role in modeling blood flow 

correctly—blood vessels and valves change dynamically with changes in pressure and velocity, 

and this changing geometry must be accounted for. For example, in the case of the cerebral 
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aneurisms given above, FSI models produce lower values of wall shear stress than rigid-wall 

models, which could be the difference between an invasive surgery needing to be performed and 

not42. In the aortic valve, FSI is complicated to model because of the large motion of very thin 

leaflets through the fluid domain. Progress is being made43,44, but a complete, robust FSI model of 

the aortic valve has yet to be developed.  

 Despite its limitations, CFD modeling of the aortic valve is still crucial to understanding 

the changing hemodynamics associated with CAVD. Valve modeling begins with clinical imaging 

of the area, using technologies such as ultrasound, CT, MRI, and X-ray angiography. From there, 

the images are converted into geometries with clearly defined physical boundaries in a 

segmentation and reconstruction step. Then, the geometry can be discretized (meshed), boundary 

conditions established, and solution methods applied36. The accuracy of the solution is therefore 

heavily reliant on precise imaging technology.  

 CFD modeling of the aortic valve has been used to estimate valvular resistance45, 

abnormalities in the wall shear stresses of bicuspid aortic valves46, and other hemodynamic 

properties in the aorta35,47.  

2.2.2.1. Testing with a Cone and Plate Device 

Because of the challenges of modeling the human aortic valve directly, some researchers 

have turned to using simpler geometries and idealized flows in studying the mechanobiology of 

the aortic valve41. Typical simplification approaches include building geometries with rigid walls 

and using steady flows. These simpler geometries are also useful in connecting computational 

models to ex vivo experiments. The cone and plate device (CPD) is one such example—it is used 

to mimic the flows of the arterial system on endothelial cells ex vivo. The advantage to the cone 

and plate device is that it produces a nearly uniform shear stress environment and allows wider 
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ranges of flow regimes and shear stresses with a lower volume of fluid than parallel plate 

apparatuses48.  

The CPD consists of an inverted cone that rotates just above a flat stationary plate. Fluid 

fills the well between the cone and plate and tissue samples can placed on the surface of the plate. 

Fluid shear stresses are generated by rotating the cone at different angular velocities49.  

 

 

 

 

 

Sucosky et al. built a cone and plate device designed to expose whole tissue samples to 

physiological shear stress while minimizing radial secondary flows, which can occur at higher 

Reynolds numbers or if the cone angle or gap between the cone and plate are too large48. Kouzbari 

et al. used a CPD to demonstrate that oscillatory shear potentiates the activation of latent TGF-β 

more than steady shear, by measuring the amount of active TGF-β in platelet releasates after 

exposure to the shear stress generated by constant rotation of the cone and by rotation of the cone 

with abrupt changes in direction50. It has also been shown that the time lag between the cone 

rotation and shear stress generated on the plate is negligible (on the order of 10-3 s)51, which 

suggests that the system can apply both temporally unsteady and spatially non-uniform flow52. 

In sum, the CPD is a useful apparatus that can expose endothelial cells or fluids to different 

shear stress profiles to enhance understanding of how shear stresses regulate the severity of 

Figure 7: General schematic of a cone and plate device. The device consists of a cone with 

radius R and angle α placed at a height h0 above a flat plate, creating a well that is filled with 

fluid. The cone rotates with angular velocity ω, subjecting the fluid in the well to shear stresses. 

Image from [49]. 
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cardiovascular diseases. It is necessary to use computational simulation to fully elicit the details 

of the flow that is imposed in these devices51. However, these simulations typically focus on the 

shear stresses on the plate, where tissue samples are placed53. Here, we are interested in the 

activation of TGF-β in the blood, so the shear stresses throughout the entire fluid domain in the 

CPD are important. Combining the experimental and computational approaches will be critical to 

further understanding the progression of atherosclerotic and stenotic diseases as they relate to fluid 

flow.  

2.3.  Scope of this report 

In this report, CFD analysis is run to understand the shear stress profiles generated by 

different types of oscillatory shear in two different geometries—semi-infinite parallel plates and a 

cone and plate device. Validation is shown for a cone and plate device programmed to generate 

three different oscillatory shear stress profiles and section 6.1 outlines the experimental procedure 

for using the device to test the effect of the shear profiles on the activation of latent TGF-β in 

platelet releasates. Note: the original intent was that these experiments would be performed in 

conjunction with the CFD analysis, but they were not able to be carried out because of COVID-19 

restrictions.  

Through modeling the different oscillatory profiles, we can see how sensitive these time-

dependent flow fields are to subtle changes in the boundary conditions. If the shear stresses in the 

fluid only change slightly with changes in the motion of the cone (CPD geometry) or plate (parallel 

plate geometry), then the boundary conditions do not need to be modeled as precisely as if small 

changes in wall motion generate large changes in shear stress. These limits on how precisely we 

need to know the wall motion to estimate the bulk shear stresses in the fluid will be important to 

future computational and imaging studies.  
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Additionally, most of the literature investigating the activation of latent TGF-β has studied 

the effect of no shear vs shear, or constant shear vs oscillatory shear. Little is known about the 

exact mechanism of activation. By analyzing different types of oscillatory shear, we will be able 

to elicit more information about how latent TGF-β is activated—does the activation come from 

transient spikes in shear stress, or does it come from spending time at a certain elevated level of 

shear? A better understanding of the mechanisms of TGF-β and how it relates to shear stress near 

the aortic valve has clinical implications for disease treatment and will contribute to future 

modeling and studies of TGF-β and shear stress.  

3. Materials and Methods  

3.1. Fluid Dynamics  

The computational software package used in this thesis is ANSYS Fluent54. Fluent works 

by solving the governing integral equations for the conservation of mass and momentum. It utilizes 

a control-volume based technique that involves dividing the domain into discrete control volumes, 

integrating the governing equations on the control volumes, constructing algebraic equations to 

solve for unknowns such as velocity, temperature, and pressure, and linearizing the discretized 

equations and solutions to yield updated values of the unknowns54. This allows one to get solutions 

to problems in fluid dynamics that cannot be solved analytically, such as those with several 

velocity components that are functions of several variables12. 

There are four primary steps to running a simulation in Fluent: building the geometry, 

meshing the geometry, setting up the solver, and postprocessing. The geometry is built using 

Design Modeler, where two-dimensional sketches can be extruded or rotated to yield three-

dimensional bodies with specified dimensions. The bodies are then meshed to create the 
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computational grid of discrete control volumes. The quality of mesh plays a significant role in the 

accuracy and stability of the simulation and is based on factors including node point distribution, 

smoothness, and skewness54. A solution method is then chosen while setting up the solver and 

parameters such as inputs and boundary conditions are specified. Finally, during postprocessing, 

one can analyze the results of the computation.  

Two different geometries were used in this report: semi-infinite parallel plates and a cone-

and-plate device (CPD). The cone and plate geometry matches that of devices used in laboratory 

experiments50. The parallel plate geometry is simpler and is used to validate that Fluent is being 

used correctly, as well as to serve as a check that the cone and plate results make sense. Aortic 

valves were not modeled directly for several reasons. While studies have been done to simulate 

flow in heart valves18,36,39, the fact remains that numerically modeling the aortic valve is difficult. 

Complications arise from meshing the solid-fluid boundary, modeling the coupled fluid-solid 

interaction, modeling transitional flow, turbulence, and reaching Reynolds numbers of peak flow 

at physiological levels41 (see 2.2.2 for a more detailed explanation of the limitations of modeling 

aortic valve flows). Therefore, the simplified geometry of the CPD case will be used to model 

different velocity profiles.  

3.1.1. Geometry and Meshing  

To construct the parallel plates, a two-dimensional rectangular sketch (in the XY plane) 

was built in the geometry Design Modeler. The sketch was then extruded in the Z direction to 

become three-dimensional. The geometry was then meshed using the Fluent Mesh-Modeler, with 

the following parameters: 

 Aspect Ratio: Min = 1.0101, Max = 1.0110, Average = 1.0101 

 Orthogonal Quality: Min = 1.000, Max = 1.000, Average = 1.000 
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 Skewness: Min = 1.3E-10, Max = 5.0E-04, Average = 9.0E-06 

The aspect ratio is a measure of the stretching of a cell, calculated as the ratio of the maximum and 

minimum values of the distances between cell and face centroids, or cell centroids and nodes. The 

orthogonal quality relates to how closely angles between adjacent element edges are to an optimal 

angle. The skewness is the difference between the cell’s shape and the shape of an equilateral cell 

of equivalent volume—the lower the skewness, the more accurate and stable the solution. The 

following figure shows the meshed geometry of the parallel plates. 

 

 

 

 

 

To construct the cone and plate device, a two-dimensional sketch was built in Design 

Modeler and then rotated around the Y axis to become three-dimensional. The meshed geometry 

had the following properties:  

 Aspect Ratio: Min = 1.1575, Max = 9.5065, Average = 1.8781 

 Orthogonal Quality: Min = 0.2013, Max = 0.9948, Average = 0.7567 

 Skewness: Min = 5.4E-09, Max = 0.7987, Average = 0.2414 

Note: A general rule for triangular/tetrahedral mesh (as is used here) is a skewness with a 

maximum below 0.95 and an average below 0.3354. The following figure shows the meshed 

geometry of the cone and plate:  

 

Figure 8: Parallel plate meshed geometry 
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3.1.2. Setting up the Solver 

The solver used is pressure-based, with absolute velocity formulation (as opposed to 

relative), with either steady or transient time, depending on the case. The solution methods are 

SIMPLE scheme pressure-velocity coupling, with spatial discretization as follows: Least Squares 

Cell-Based Gradient, Second Order Pressure, and Second Order Upwind Momentum. In transient 

cases, the formulation was First Order Implicit. The cases were initialized using hybrid 

initialization because there were no inlets or outlets in the system.  

In all cases, the material chosen was water, with constant density = 998.2 kg/m3 and 

viscosity = 0.001003 kg/m/s.  

The boundary conditions were as follows:  

 

Figure 9: Cone and plate meshed geometry. Side and top views shown. 
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Table 3: Parallel Plate Boundary Conditions 

Zone Boundary Condition 

Interior Interior-solid 

Top Plate (Y = 1 mm) Moving Wall: Absolute translational motion, no slip shear 

Bottom Plate (Y = 0 mm) Stationary Wall: no slip shear 

XZ Plane Periodic: Translational 

The periodic boundary condition works to essentially make the plates unbounded in the 

XZ plane, so that edge effects do not need to be considered and the flow is fully developed. In all 

cases, the plate’s motion is in the X-direction, making that the only nonzero component of the fluid 

velocity, with a velocity gradient in the Y-direction (the gap between the two plates). The operating 

pressure is set to 101325 Pa and the periodic pressure gradient is set to 0 Pa/m unless otherwise 

specified.  

Table 4: Cone and Plate Boundary Conditions 

Zone Boundary Condition 

Free Surface Symmetry Wall 

Cone Moving Wall: Absolute rotational motion (Y axis), no slip shear 

Plate Stationary Wall: no slip shear 

Side Wall Stationary Wall: no slip shear 

The cone rotates around the Y-axis (the ϴ- direction), creating velocity gradients in 

multiple directions: vertically, between the cone and plate (along the Y-axis), and outwards in the 

radial direction (the XZ plane in Cartesian coordinates). 

The boundary conditions for moving walls were set in one of two ways: a User-Defined 

Function (UDF), or a profile. The UDF involves writing the boundary condition as a function, 

using the programming language C. It was used to create sinusoidally oscillating motion, as the 

wall velocity is a continuous function of time. A profile allows the user to input specific time and 

velocity (or other relevant parameters) coordinates, that Fluent can then read and execute as the 

run progresses. This is particularly useful for creating boundary conditions that are step-wise 
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functions, which are difficult to write as a UDF. Profiles were used for the oscillatory cases that 

involved abrupt stops and ramped acceleration.  

The Solver was then programmed to run for a specified number of time steps at a given 

time step-size, with a set number of iterations per time step. The time step chosen needs to be small 

enough that the solution converges accurately and is stable, without taking too much computation 

time. A time-step independence analysis was performed to check the largest time-step that could 

be used without sacrificing accuracy:  

 

 

The largest difference in calculated shear stress between the different time steps was seen 

at the point of maximum shear stress. The difference in maximum values for the 1E-03 and 1E-04 

second time steps were within 10%, with an average difference in shear stress of 2.7%. These 

differences were deemed small enough that a 1E-03 second step size was acceptable and was the 

step size used in all runs moving forward.  

Figure 10: Time-step independence analysis. Calculated shear stress on the surface of a parallel 

plate moving at 1 m/s for 0.4 seconds in one direction, before stopping abruptly for 0.1 seconds.  
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3.1.3. Validation  

To confirm the accuracy of the set-up in Fluent, several cases were run that have known 

analytical solutions. The computational and analytical solutions were compared to ensure that the 

computational solutions generated by Fluent were in good agreement with the calculated analytical 

results. Validation was run for both steady and transient flow in the parallel-plate geometry and 

steady flow with the cone-and-plate geometry.  

3.1.3.1. Parallel Plate 

3.1.3.1.1. Steady state 

Flow between parallel plates is a case that has been extensively studied in fluid dynamics 

because its simple geometry allows for robust analytical solutions. The simplest case is that of 

pressure-driven flow between two semi-infinite stationary plates. Using the coordinate system 

established in 3.1.1, the fluid is moving only in the X-direction and is a function of only one 

independent variable: position in the Y-direction, which is the vertical distance between the two 

plates. The fluid has the following velocity profile, at steady-state and ignoring end effects55:  

𝑣𝑥(𝑦) =  
1

2𝜇
(

𝑑𝑃

𝑑𝑥
) [𝑦2 − 𝐿𝑦] +

𝑣0𝑦

𝐿
          Equation 2 

where μ is the viscosity of the fluid in [Pa*s], dP/dx is the imposed pressure drop in [Pa/m], L is 

the distance between the two plates in [m], and v0 is the velocity of one of the plates in [m/s], equal 

to 0 in the case that both plates are stationary.  

A simulation was conducted in Fluent with the following conditions: Both plates stationary, 

an imposed pressure gradient of 1000 Pa/m, using the steady-state solver for 1000 iterations. The 

results from the simulation are compared to the analytical solution in the figure below:  
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To further validate this solution, the solver was run again, only this time, the boundary 

condition of the top plate was set to a constant -10 cm/s, making the final term in Equation 2 

nonzero (v0 = -0.1 m/s). The computational and analytical results for this case are shown below.  

 

 

 

 

 

 

 

 

Figure 11: Pressure-driven flow between two stationary parallel plates. The analytical solution 

(solid line) is calculated from Equation 2, with a plate distance of 0.1 cm and a pressure drop of 

1000 Pa/m. The orange bars visually represent the stationary plates. 

Figure 12: Pressure-driven flow between two parallel plates. The solid line is calculated from 

Equation 2, with a plate distance of 0.1 cm, a pressure drop of 1000 Pa/m, and a top plate 

velocity of -10 cm/s. The orange bar represents the stationary plate, and the blue bar represents 

the moving plate. 
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As can be seen from these figures, the computational solution gives good agreement with 

the analytical solution in this simple case of pressure-driven flow between parallel plates.  

3.1.3.1.2. Transient 

Parallel plate problems can quickly grow in complexity as independent variables are added. 

For example, the analytical solution to flow between parallel plates with one plate moving and no 

pressure drop is a simple linear function. That case, however, becomes much more complicated 

when considering its startup (from the time the plate is set in motion to the time it reaches steady 

state). Before the fluid motion reaches steady-state, it is a function of two independent variables: 

position (in the Y-direction) and time t.  

The analytical solution to this case involves an infinite series. It consists of a steady-state 

term minus a transient term that fades out with increasing time, until the solution converges with 

the steady-state case (Equation 2).  

This solution is more conveniently calculated with dimensionless rather than absolute 

variables. Use of dimensionless variables offers several advantages—the final solution ends up 

independent of specific geometric parameters, units do not need to be kept consistent throughout 

the calculation, and it allows one to reduce partial differential equations that are functions of 

multiple variables down to functions of single variables. The relevant dimensionless parameters in 

this case are:  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝜙 =
𝑣𝑥

𝑣0
;           𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛: 𝜂 =

𝑦

𝐿
;           𝑇𝑖𝑚𝑒: 𝜏 =

𝜈𝑡

𝐿2
 

where v0 is the final velocity of the plate [m/s], L is the distance between the two plates [m], ν is 

the kinematic viscosity [m2/s], and t is the time in [s].  

The derivation of the solution can be found in Bird, Stewart and Lightfoot12, and the 

solution is reported here:  
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𝜙(𝜂, 𝜏) = (1 − 𝜂) −  ∑ (
2

𝑛𝜋
)  𝑒𝑥𝑝(−𝑛2𝜋2𝜏)  𝑠𝑖𝑛 (𝑛𝜋𝜂)∞

𝑛=1             Equation 3 

The first term is the steady-state term and the summation is the transient piece of the 

solution. The transient term converges quickly—the calculation only needs to be carried out until 

the ratio of the (nth + 1) term to the summation of n terms is sufficiently small, for example, < 1E-

03. A good rule of thumb is to use n = 30.  

A simulation was run in Fluent with the transient solver for a moving wall at v0 = 0.113 

m/s. Note: this is not pressure-driven flow, so the periodic pressure gradient was set to 0. Several 

time points were chosen for analysis. The computational solution was compared to the analytical 

solution, calculated with the same parameters using Equation 3. The analytical solution was 

generated through a macro written in Excel Visual Basic, with n = 30 and terms checked for 

convergence. The comparison of these two solutions at several different time points is shown 

below.  

 

Figure 13: Startup flow between parallel plates. Comparison of computational (points) and 

analytical (lines) velocity profiles as a function of dimensionless position with time as a 

parameter. Steady-state (t = ∞) was reached at a simulation time of t = 3 s.  
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Again, the analytical and computational solutions demonstrate good agreement, with accuracy 

increasing with increasing time.  

3.1.3.2. Cone and Plate 

3.1.3.2.1. Steady state 

The cone and plate geometry is significantly more complicated than the parallel plate 

geometry, because of the addition of an independent variable: The velocity profile is now a 

function of position in the Y (vertical) and XZ (radial) directions, as well as time in non-steady-

state cases. However, with the proper simplifications and assumptions, an analytical solution for 

the wall shear stress can be found.  

Sucosky et al pose48 an analytical expression for the wall shear stress on the surface of the plate 

in a cone and plate device (CPD). This expression is valid for low Reynolds numbers and small 

angle α between the cone and the plate. With the presence of a gap h between the cone apex and 

the plate, the wall shear stress on the plate is spatially dependent, and can be modeled by:  

𝜏𝑤 = 𝜇𝜔 (
𝑧

ℎ+𝑧𝛼
)    Equation 4 

where τw is the shear stress on the surface of the plate [dyne/cm2], μ is the viscosity of the fluid, ω 

is the angular velocity in [rad/s], z is the radial position, h is the gap height, and α is the cone angle.

 A Fluent run was done for ω = 30 rad/s, h = 0.01 cm, α = 2.5°. The simulation was run with 

the transient solver for two seconds (~10 rotations) to achieve steady state. The results from the 

simulation compared to the analytical solution calculated by Equation 4 are shown below for the 

shear stress profile as a function of radial position Z along the plate.  
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The difference between the computational and analytical cases are within 5%, except very 

near the plate edges. This is to be expected, because at the cone apex (z = 0) and cone outer wall 

(z = 0.7 cm) the presence of end effects generates a secondary flow, compromising the accuracy 

of the analytical solution.  

3.2. Cone and Plate Experiments 

3.2.1. CPD setup and validation  

3.2.1.1. Description of CPD setup 

As previously mentioned, Kouzbari et al. built a cone and plate device to test the 

dependency of latent TGF-β activation on shear stress. The following figure shows the device’s 

design and dimensions:  

Figure 14: Steady-state rotation of a CPD as a function of radial position. Computational 

solution (points) compared to the analytical solution (line), calculated from Equation 4. ω = 30 

rad/s, h = 0.01 cm, α = 2.5°. Solution given as a function of dimensionless position z/R, where R 

is the cone radius (R = 0.7 cm).  
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The cone and plate functionality is as follows50:  

We designed and built a cone-and-plate shear device capable of generating either 

steady shear (SS) or oscillatory shear (OSS) by rotation direction controlled by an 

Arduino MEGA System connected to a Big Easy Driver stepper motor controller 

with an ON/OFF rocker switch. The cone is made of Delrin acetal resin to render it 

biocompatible, and has a 2.5 degree angle and a diameter of 14 mm. The diameter 

of the plate is 15.8mm, with a gap 0.9mm between the cone and the plate on each 

side. The cone was connected to a stepper motor (bipolar, 200 steps/rev, NEMA 17 

size) via an aluminum shaft coupling. The mounting base for the stepper motor was 

designed using Solidworks 2017 and 3D printed with poly-lactic acid (PLA) on a 

Makerbot Replicator 5th generation. An A4988 Allegro-based micro stepping 

driver (Big Easy Driver) was supplied with 24V DC and connected to an Arduino 

MEGA 2560-R3 microcontroller to control the stepper motor. The Arduino 

Integrated Development Environment (IDE; version 1.8.2) was used to program the 

Figure 15: Cone and plate device used in Kouzbari et al. Dimensions shown on the figure include 

the diameter of the cone and well, the angle between the cone and the plate, and the gap height 

between the plate and the cone apex. Image from [50].  
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microcontroller to switch the rotation mode between SS and OSS, by controlling 

the rotational velocity, and the period of oscillation/switch rotational direction. 

(Quoted from [50]). 

I reprogrammed this device to test the effect of shear stress generated by different 

oscillation patterns on the activation of latent TGF-β. The four previously programmed cases were 

overwritten, and three different types of oscillatory velocity profiles were generated to drive the 

motor. A fourth case with constant rotation of the cone was programmed for a control. The 

description of these cases and the validation of the motor that drives the rotation of the cone is 

presented below. With this reprogramming, this device can now be used in future experiments at 

the Oklahoma Medical Research Foundation to build on previous results and better understand the 

mechanisms and triggers that drive TGF-β activation.  

3.2.1.2. Motor Validation  

The cone and plate device (CPD) was programmed to generate oscillatory shear three 

different ways. In the first case, the cone rotates in one direction for 0.4 s and then abruptly changes 

direction with a 0.1 s pause in between, for a total cycle length of 1 s. In the second case, the cone 

rotates in one direction for 0.4 s and then linearly decelerates for 0.1 s until it is rotating at the 

same speed in the opposite direction, again for a total cycle length of 1 s. In the third case, the cone 

rotation is sinusoidal—the boundary condition is given by the following function:  

𝛺𝑐𝑜𝑛𝑒(𝑡) = 300 𝑠𝑖𝑛 (2𝜋𝑡)          Equation 5 

This results in a maximum speed of the cone of 300 RPM, a speed safely in the operating range of 

the motor, and a period of 1 s. A fourth case, of unidirectional steady rotation, was used as a 

control. The velocity profiles of these cases are shown in the figure below.  
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The maximum speed (in RPMs) for the four cases were determined by first setting the 

sinusoidally oscillating case to Ωcone = 300 RPM, a speed close to the maximum speed at which 

the motor can consistently operate. From there, the other cases’ speeds were set by matching the 

integrals of the profiles to that of the sinusoidal case (see 3.2.2 for more details). This resulted in 

a maximum angular velocity of 240 RPM for the abrupt case, 212 RPM for the ramped case, and 

190 RPM for the constant case.  

 The Arduino code used to drive the motor for each of these cases can be found in the 

Appendix. Once the CPD was programmed correctly, an external encoder (Rotary Encoder- 1024 

Figure 16: Velocity profiles for the different cases programmed on the CPD. 2 periods of 

rotation shown. A) Oscillation with an abrupt change in direction. B) Oscillation with ramped 

acceleration/deceleration. C) Sinusoidal oscillation. D) Constant unidirectional rotation (steady 

shear; control case). Positive RPMs indicate counterclockwise (CCW) rotation; negative RPMs 

indicate clockwise (CW) rotation of the cone. 

    

    

    

 

   

   

   

               

 
  

  
  
  
  
  
  
  
  
  
  

  
  
  

 

        

    

    

    

 

   

   

   

               

 
  

  
  
  
  
  
  
  
  
  
  

  
  
  

 

        

    

    

    

 

   

   

   

               

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

        

    

    

    

 

   

   

   

               

 
  

  
  
  
  
  
  
  
  
  
  

  
  
  

 

        

B A 

D C 



 

31 
 

P/R Quadrature) was used to validate the device’s operation. A model showing the CPD-encoder 

assembly for testing is shown below.  

 

 

 

 

 

 

 

The encoder was driven by the motor shaft and an Arduino Uno was used to read the position of 

the encoder, outputting a time (in μs) and increment of “ticks” every time the motor took a step. 

There are 1024 ticks per 1 rotation of the motor. These data were then read into MatLab and 

converted to RPM(t) by the following equation:  

𝑅𝑃𝑀(𝑡𝑛) =
𝑡𝑖𝑐𝑘𝑠𝑡𝑛+1−𝑡𝑖𝑐𝑘𝑠𝑡𝑛−1

𝑡𝑛+1−𝑡𝑛−1
∗

1 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

1024 𝑡𝑖𝑐𝑘𝑠
∗

1𝐸06 𝜇𝑠

1 𝑠
∗

60 𝑠

1 𝑚𝑖𝑛
                     Equation 6 

The encoder-generated RPM profiles of the motor were plotted against the velocity profiles 

shown above. The results for the four cases are shown below: 

 

 

 

 

 

 

Figure 17: Fusion 360 model showing the CPD used in experiments mounted to an external 

encoder for validation tests. 
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As can be seen from the graphs, the encoder data are in excellent agreement with the 

desired profiles. This means we can say with confidence that the motor is producing the target 

oscillatory profiles with high accuracy.  

While each case will only be operated at one motor speed, it is also worth checking that 

the cases work consistently across the whole range of RPMs. Therefore, tests were run at 100, 200, 

and 300 RPM for each of the four cases. The results for the ramped case are shown below. 

 

 

 

Figure 18: CPD validation. Circles indicate encoder data; lines indicate modeled profile. A) 

Oscillation with an abrupt change in direction. B) Oscillation with ramped 

acceleration/deceleration. C) Sinusoidal oscillation. D) Constant unidirectional rotation (steady 

shear; control case). Positive RPMs indicate counterclockwise (CCW) rotation; negative RPMs 

indicate clockwise (CW) rotation of the cone. 
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Additional tests were run to check for operational consistency of the motor over time. The 

abrupt case was run for two hours, with data taken every 30 minutes to check that the motor’s 

operation does not drift over time. The results from this test are shown below.  

 

 

 

 

 

 

Figure 20: Motor validation over time for the abrupt case. 5 s of data taken every 30 minutes for 

2 hours. Data (points) compared to the modeled profile (line).  

Figure 19: Validation across the range of RPMs for the ramped case. Experimental data (points) 

and target profiles (lines) for the ramped case with a maximum motor speed of 100, 200, and 

300 RPM. In all cases, acceleration is the same (4240 RPM/s). 
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As the figure shows, the motor runs remain consistent even over longer periods of time. 

Most importantly, the motor reaches the same maximum speed (240 RPM) every cycle—it does 

not deviate from its programmed value. 

 In sum, the motor’s performance in the CPD has been validated to work for three different 

cases of oscillatory motion, as well as a constant control case. It works at the specific RPMs for 

each case, across the entire range of RPMs, and over long periods of time.  

3.2.2. Shear Stress Calculations 

Fluent was used to generate velocity profiles as a function of position and time. Those 

velocity profiles were then used to manually calculate the shear stress in the fluid. Fluent calculates 

Wall Shear Stress, but calculating the shear stress throughout the whole fluid must be done 

manually. The shear stress was calculated using Equation 1 (Newton’s law of viscosity). The shear 

rate (dv/dy) was calculated using one of the following finite difference formulas, based on whether 

the data point of interest was the first, last, or in the middle of the dataset. 

Forward: 𝑓′(𝑥) =
−3𝑓(𝑥)+4𝑓(𝑥+𝛥𝑥)−𝑓(𝑥+2𝛥𝑥)

2𝛥𝑥
                              Equation 7 

Backward: 𝑓′(𝑥) =
3𝑓(𝑥)−4𝑓(𝑥−𝛥𝑥)+𝑓(𝑥−2𝛥𝑥)

2𝛥𝑥
         Equation 8 

    Centered: 𝑓′(𝑥) =
𝑓(𝑥+𝛥𝑥)−𝑓(𝑥−𝛥𝑥)

2𝛥𝑥
         Equation 9 

 Several types of oscillatory cases are tested in this report—abrupt stop, ramped 

acceleration, and sinusoidal. To maintain continuity between these cases, the maximum value of 

the velocity in each case was chosen such that the integral of the velocity profile remains the same. 

Note that this choice is somewhat arbitrary because we do not know the specific differences in 

shear are generate different responses in latent TGF-β activation. By keeping the integral of the 
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velocity profile constant, we can obtain shear stress profiles with very similar averages but 

different peaks.  

The cases for each geometry were normalized to the sinusoidal case. This case has a 

continuous (as opposed to step-wise) velocity profile, so the integral could be calculated 

analytically. The general form of the sinusoidal boundary condition for the velocity is as follows:  

𝑣(𝑡) = 𝐴 ∗ 𝑠𝑖𝑛(2𝜋𝑡)         Equation 10                                     

where A is the maximum velocity in units of either linear velocity [m/s], or angular [rad/s]. In the 

parallel plate geometry A is set to 1 m/s and in the cone and plate geometry it is set to 31.4 rad/s 

(300 RPM). This function has the following integral:  

∫ 𝐴 ∗ 𝑠𝑖𝑛(2𝜋𝑡) 𝑑𝑡
0.5

0
=

𝐴 𝑠𝑖𝑛2( 0.5𝜋)

𝜋
        Equation 11 

This integral is evaluated for the first half of the sine curve (t = 0 to t = 0.5), because it is the 

positive area (the integral of the entire sine curve would just be zero).  

 The value of A = 1 m/s was chosen for the parallel plate geometry based on the peak 

velocity of forward flow in the aortic valve. Peak velocity of forward flow is about 1.0 m/s in a 

normal aortic valve56, so this was chosen as the maximum velocity of the plate. The value of A = 

300 RPM is chosen for the cone and plate geometry because it is the maximum speed that the 

motor driving the physical cone and plate device should operate at.  

 Under normal physiological flow conditions, the wall shear rate in blood vessels ranges 

from ~10 – 2000 s-1.57 The shear rates used in this thesis are on the order of 500-700 s-1 in the cone 

and plate device and 600-1000 s-1 in the parallel plate geometry, which are well within this range. 

Reports of peak wall shear stress on aortic valve leaflets vary from 20 to over 1000 dyne/cm2.58 

This large range has to do with where measurements are taken, the nature of the flow in which the 

valve was functioning, and whether it was natural or prosthetic. It is probable that this range is 
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closer to 100-200 dyne/cm2.58 The simulations in this report have peak shear stresses between 20-

200 dyne/cm2.  

4. Computational Results 

4.1. Parallel Plates 

4.1.1. Abruptly oscillating plate 

The parallel plate was set to oscillate with abrupt changes in direction. It moves for 0.4 

seconds in the +X direction, pauses for 0.1 seconds, and moves in the -X direction for 0.4 seconds, 

followed by another 0.1 second pause, for a total cycle length of 1 second. The plate’s velocity is 

set to ± 0.79577 m/s. This value was chosen because it produces an integral of the velocity profile 

equal to that of a sinusoidal velocity profile with a maximum velocity of 1 m/s. These values are 

summarized in the table below: 

Table 5: Summary of case variables for the abrupt oscillation of a parallel plate 

Variable Value 

Case Type Abrupt 

Plate maximum velocity 0.79577 m/s 

Hold time 0.4 s 

Stop time 0.1 s 

 

The velocity of the fluid in the direction of motion (Vx) produces shear stresses on the fluid 

particles. The shear stress is calculated using the following reduction of Newton’s law of viscosity:  

𝜏 = 𝜇 ∗
𝑑𝑣𝑥

𝑑𝑦
                      Equation 12 
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where τ is the shear stress in [dyne/cm2], μ is the viscosity of the fluid (1.0019E-02 cP), and dvx/dy 

is the shear rate in [s-1]. The velocity and shear stress profiles are shown below. Note: The 

simulation results are from the third period; two periods of oscillation were run first to ensure the 

damping of any start-up effects, allowing the simulation to reach pseudo-steady state. This will be 

the case for all results shown.  

As can be seen from the figure, the stopping of the plate generates a spike in shear stress, 

as does the resumption of motion. This spike can be seen in the opposite direction when the plate 

motion is stopped/resumed from motion in the opposite direction, but with the same magnitude. 

The shear stress reaches a peak value of 175 dyne/cm2, although it averages just 16.9 dyne/cm2 

over the entire 1 second period.  

The above graphs show the velocity and shear stresses at the plate as a function of time. 

An alternative way to conceptualize the data is to look at the velocity and shear stress profiles over 

the entire gap between the two plates at different time points (Figure 22, below).  

The velocity profiles at the time points in the middle of the 0.4 second holding periods 

(0.25 and 0.75 seconds) approach linearity. This result approaches the analytical solution to the 

case of parallel plates with one plate moving unidirectionally at a constant speed. The 

Figure 21: Velocity and shear stress profiles generated by an abruptly oscillating parallel plate. 

Left: Velocity of the plate (dotted line) and velocity of the fluid just below the moving plate (solid 

line; y/yplate = 0.95). Right: Shear stress of the fluid at the wall. The 0.10 s stop time is labeled on 

both graphs with a red arrow. 
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corresponding shear stresses are relatively low and constant in the entire distance between the 

plates, decreasing slightly closer to the stationary plate.  

The velocity profiles at the transition points (t = 0, 0.50, 1.0 s), where the plate’s motion is 

suspended (vplate = 0 m/s), are parabolic. Because this motion is periodic, the velocity profiles at    

t = 0 and t = 1 second are identical. The curve is inverted at t = 0.50 seconds because the fluid had 

just been flowing in the opposite direction as at t = 0 and 1. Parabolic flow is expected here because 

Figure 22: Velocity and shear stress of the fluid between two parallel plates at different time 

points. Top: Velocity profile. Colored arrows show the direction that the fluid is moving for each 

given time point. Bottom: Shear stress profile. Inset: Velocity profile of the abruptly oscillating 

plate. Colored points correspond to the colored curves on the graphs. Time points taken at t = 0, 

0.25, 0.50, 0.75, and 1.0 s. The maximum velocity of the plate is ±0.80 m/s. The moving plate is 

depicted as a blue rectangle, and the stationary plate as an orange rectangle. 
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when both plates are stationary, the fluid will be moving fastest at the point farthest away from the 

plates. The shear stress profiles calculated at these times show an inflection point in the center of 

the gap between the plates, which is where the velocity is a maximum.  

What the above graphs are missing, however, is how the shear stress and velocity profiles 

appear when the shear stress reaches its maximum magnitude. In the cycle, this occurs twice—

both times in the instant the plate’s motion has been restarted.  

 

 

    

    

    

    

    

    

    

    

    

   

                                

  
  
 
 
  
  
 
 

              

           

           

           

              

 

    

    

    

    

    

    

    

    

    

   

                           

 
 
  
 
 
 
  
  

 

                       

           

           

           

              

Figure 23: Velocity and shear stress profiles for an abruptly oscillating plate just after plate 

motion has been restarted (t = 0.001, 0.501 s). Top: Velocity of the fluid between the plates. 

Bottom: Shear stress of the fluid between the plates. Dashed lines: the position-averaged shear 

stress for each time. The moving plate is depicted as the blue rectangle, and the stationary plate 

as an orange rectangle.  
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As can be seen from Figure 23, the abrupt spike in shear stress caused by the abrupt change 

in plate motion does not propagate very far into the fluid—in fact, only 10% of the fluid domain 

experiences shear stress magnitudes above the average. This spike in shear stress, however, is 

significant—note the difference in scale in the X-axis of Figure 22 vs Figure 23: there is a 13-fold 

increase.  

Overall, abrupt oscillatory motion of a parallel plate generates spikes of high shear stress, 

although this elevated shear stress does not last for very long or propagate very far into the fluid.  

4.1.2. Ramped acceleration/deceleration of oscillating plate 

The parallel plate was set to oscillate with linear acceleration/deceleration during changes 

in direction. It moves with a velocity +vplate for 0.4 seconds in the +X direction, decelerates to           

-vplate for 0.1 seconds, stays at -vplate in the -X direction for 0.4 seconds, and accelerates back to 

+vplate in another 0.1 seconds, for a total cycle length of 1 second. The plate’s velocity is set to vplate 

= ± 0.70736 m/s. This value was chosen because it produces an integral of the velocity profile 

equal to that of a sinusoidal velocity profile with a maximum velocity of 1 m/s. These values are 

summarized in the table below: 

Table 6: Summary of case variables for the ramped oscillation of a parallel plate 

Variable Value 

Case Type Ramped 

Plate maximum velocity 0.70736 m/s 

Hold time 0.4 s 

Ramp time 0.1 s 

The velocity profile, as well as the shear stress profile (calculated as in Equation 12) for this case 

are shown in Figure 24. 
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As can be seen from the figure, changing the velocity of the plate causes a temporary 

increase in shear stress. The shear stress reaches a peak value of 43.2 dyne/cm2, averaging 15.1 

dyne/cm2 over the entire 1 second period.  

The above graphs show the velocity and shear stresses at the plate as a function of time. 

An alternative way to conceptualize the data is to look at the velocity and shear stress profiles over 

the entire gap between the two plates, at different times (Figure 25). 

In Figure 25, the velocity profiles at the time points in the middle of the 0.4 second holding 

periods (0.25 and 0.75 seconds) approach linearity, very similarly to how they did in the abrupt 

case. This approaches the analytical solution of the velocity profile of flow between parallel plates 

with one plate moving at a constant speed in one direction. The corresponding shear stresses are 

relatively low and constant in the entire distance between the plates, decreasing slightly closer to 

the stationary plate.  

Figure 24: Velocity and shear stress profiles generated by an oscillating parallel plate with 

ramped acceleration. Left: Velocity of the plate (dotted line) and velocity of the fluid at y/yplate = 

0.95 (solid line). Right: Shear stress of the fluid at the wall. The 0.10 s stop time is labeled on 

both graphs with a red arrow. 
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The velocity profiles taken at points immediately after a ramped acceleration/deceleration 

period (t = 0.0, 0.5, 1.0 s), when the plate has reached its maximum speed, are bidirectional. At 

those instances (the blue and red curves on the figures above), most of the fluid shows the typical 

(if slightly skewed) parabolic velocity profile. In the top quarter of the gap between the plates, 

however, the fluid velocity is actually already moving in the other direction, reflecting the fact that 

Figure 25: Velocity and shear stress of the fluid between two parallel plates with oscillatory 

motion and ramped acceleration at different time points. Top: Velocity profile. Colored arrows 

show the direction that the fluid is moving for each given time point. Bottom: Shear stress 

profile. Inset: Velocity profile of the plate for the ramped case. Colored points correspond to the 

colored curves on the graphs. Time points taken at t = 0, 0.25, 0.50, 0.75, and 1.0 s. The 

maximum velocity of the plate is ±0.71 m/s. The moving plate is depicted as a blue rectangle, 

and the stationary plate as an orange rectangle. 

 

    

    

    

    

    

    

    

    

    

   

                             

 
 
  
 
 
 
  
  

 

              

    

       

      

       

     

           

              

 

    

    

    

    

    

    

    

    

    

   

                          

  
  
 
 
  
  
 
 

                       

           

              



 

43 
 

the plate has recently changed direction. This extreme shift is reflected in the shear stress profiles, 

which reaches a maximum (43.2 dyne/cm2) on the wall at these times.  

Overall, oscillatory motion of a parallel plate with ramped acceleration/deceleration 

generates a spike in shear stress much lower than the abrupt case, with the maximum shear stress 

occurring immediately after the acceleration periods. 

4.1.3. Sinusoidally oscillating plate 

The plate was then programmed to oscillate smoothly, using a sinusoidal function. After 

adjusting a sine curve to have a period of 1 second and an amplitude of 1 m/s, the following 

equation for the velocity of the plate was developed:  

𝑣𝑝𝑙𝑎𝑡𝑒(𝑡) = 1
𝑚

𝑠
∗ 𝑠𝑖𝑛 (2 ∗ 𝜋 ∗ 𝑡)                   Equation 13 

where t is in [s], and vplate is in [m/s]. This velocity profile, as well as the corresponding shear stress 

profile, is shown below.  

The shear stress profile is roughly an inverted sine curve, with a maximum value of 23.9 

dyne/cm2 and a magnitude averaging 15.3 dyne/cm2 across the 1 second period. The velocity and 

shear stress profiles as functions of position at the critical points of the velocity profile (maximum, 

minimum, and zeroes) are shown in Figure 27 below.  

  

    

 

   

 

                             

 
  
  

  
 

        

              
              
              

    

    

 

   

   

                             

  
  
  
  
  
  
  
 
  
  
  

  

        

Figure 26: Velocity and shear stress profiles generated by a sinusoidally oscillating parallel 

plate. Left: Velocity of the plate (dotted line) and velocity of the fluid at y/yplate = 0.95 (solid 

line). Right: Shear stress of the fluid at the wall. 
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The velocity profile in Figure 27 is very similar to that of the abrupt stopping case, with 

roughly parabolic profiles at the points where the plate is stopped and profiles approaching 

linearity at the maximum and minimum velocities.  

The shear stresses at the transitions between rotational directions (i.e., counterclockwise to 

clockwise) that occur at t = 0, 0.5, and 1.0 seconds, are bidirectional. This means that any proteins 

Figure 27: Velocity and shear stress of the fluid between two parallel plates with sinusoidal 

oscillatory motion at different time points. Top: Velocity profile. Colored arrows show the 

direction that the fluid is moving for each given time point. Bottom: Shear stress profile. Inset: 

Velocity profile of the plate for the sine case. Colored points correspond to the colored curves on 

both graphs. Time points taken at t = 0, 0.25, 0.50, 0.75, and 1.0 s. The maximum velocity of the 

plate is ±1.0 m/s. The moving plate is depicted as a blue rectangle, and the stationary plate as an 

orange rectangle. 
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in the fluid when testing in a real CPD would experience opposing shear stress every 0.5 seconds, 

causing a high molecular strain that would accumulate over time and could be a critical factor in 

higher TGF-β activation50. 

Additionally, in the sinusoidal case the shear stress profile remains a smooth curve, without 

the spikes characteristic of the abrupt case. It is much more similar quantitatively to the ramped 

acceleration case, although qualitatively, the two shear stress profiles do look different.  

4.1.4. Changing stop time 

Next, we investigated the effect of changing the transition time on the shear stress 

profiles—the stop time in the abruptly oscillating case and the acceleration time in the ramped 

acceleration case. Three time-lengths were chosen for analysis: 0.01 s, 0.05 s, and 0.10 s. As 

before, the maximum plate velocity for each case was chosen so that the integrals of the velocity 

profiles stayed constant. The maximum plate velocities of each case are summarized below.  

Table 7: Summary of plate velocities for the abrupt and ramped cases tested at different 

stopping/acceleration times. 

Stop/Acceleration 

Time [s] 

Abrupt Case plate 

velocity [m/s] 

Ramped Case plate 

velocity [m/s] 

0.01  ±0.64961 ±0.64305 

0.05  ±0.70736 ±0.67013 

0.10  ±0.79577 ±0.70736 

 

The shear stress profiles of the abrupt and ramped cases are compared directly for the three given 

time periods.  
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The effect of stop time in the abrupt case is small—the maximum and average shear 

stresses do not vary greatly with increasing stop time.  In contrast, the ramped acceleration cases 

have similar averages, but maximum shear stress decreases with increasing start time. 

Quantitatively, the averages between the abrupt and ramped cases are very similar, but the ramped 

cases have much lower spikes in shear stress. These statistics are summarized in the following 

table.  

Table 8: Maximum and average shear stresses for the abrupt and ramped cases with different 

stop/acceleration times. 

 Abrupt Stop Ramped Acceleration 

Stop/Acceleration 

Time [s] 

Maximum shear 

stress 

[dyne/cm2] 

Average shear 

stress 

[dyne/cm2] 

Maximum 

shear stress 

[dyne/cm2] 

Average shear 

stress 

[dyne/cm2] 

0.01 169 15.0 130 15.0 

0.05 161 15.8 60.2 15.0 

0.10 175 16.9 43.2 15.1 

   

 

  

   

   

   

                                           

  
  
  
  
  
  
   

  
  
  

  

        

      

      

     

   

 

  

   

   

   

                     

  
  
  
  
  
  
  
 
  
  
  

  

        

      

      

     

   

 

  

   

   

   

            

  
  
  
  
  
  
  
 
  
  
  

 
 

        

      
      

     

Figure 28: Shear stress profiles of the abrupt oscillation and oscillation with ramped 

acceleration/deceleration of parallel plates. A) 0.01 second pause/acceleration time. B) 0.05 

second pause/acceleration time. C) 0.10 second pause/acceleration time. Abrupt stopping cases 

shown in blue; ramped acceleration cases shown in green. Stop time labelled with a red arrow.  
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The maximum shear stress in the abrupt case increases slightly with increasing stop time, 

while in the ramped case the maximum shear is much lower at longer acceleration times. Across 

all cases, the average shear stress remains nearly constant, which makes sense because of the way 

the maximum velocities were calculated. Thus, a comparison between the abrupt and ramped cases 

at a given stop time provide a way to observe whether TGF-β activation depends on high spikes 

in shear stress or is just based on an average.  

4.1.5. Reynolds number analysis 

The Reynolds number (Re) is a dimensionless quantity that describes the ratio between inertial 

and viscous forces in a fluid. It serves as an indicator of the amount of turbulence present in a 

flowing fluid. For parallel plate geometry, the Reynolds number is calculated as  

𝑅𝑒 =
𝜌∗𝑣∗𝐵

𝜇
                                         Equation 14 

where ρ and μ are the density (998.2 kg/m3) and viscosity (0.001003 kg/m/s) of the fluid, v is the 

maximum velocity of the fluid, and B is the size of the gap between the two plates (1E-03 m).  

An analysis of the effect of Re on the shear stress profiles generated by oscillatory motion 

of the plate was done using the abrupt stopping for 0.10 s case. The Re was dropped several orders 

of magnitude, by changing either the maximum velocity the plate was set to move, or the viscosity 

of the fluid. Cases were run for Re = 800 (vplate = 7.96E-01 m/s; μ =0.001003 kg/m/s); Re = 8 (vplate 

= 7.99E-03 m/s; μ =0.001003 kg/m/s); Re = 0.08 (vplate = 7.96E-05 m/s; μ =0.001003 kg/m/s); and 

Re = 0.08 (vplate = 7.96E-01 m/s; μ = 10.02 kg/m/s). Results are shown below.  
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In the first three cases, where Re is changed by changing the velocity of the plate (and 

therefore the maximum velocity of the fluid), the shear stress profiles have the same behavior and 

the shear stress magnitudes scale with Re. This finding is somewhat surprising—even as inertial 

forces are greatly reduced, there is still a clear spike in shear stress even when the fluid velocity is 

extremely low. To test if this finding was consistent, the fourth case was done, increasing fluid 

viscosity instead of decreasing velocity and keeping an extremely low Re. The shear stress 

magnitudes are extremely large (recall that shear stress is a function of viscosity), but the profile 

shape remains mostly unchanged.  

In sum, these profiles remain qualitatively similar even if the velocity changes by orders 

of magnitude. This has the important implication that even if biological values differ from the 1.0 

Figure 29: Shear stress profiles at the moving plate for an abruptly oscillating plate at different 

Re. A) Re = 800; vplate = 7.96E-01 m/s; μ =0.001003 kg/m/s. B) Re = 8; vplate = 7.99E-03 m/s; μ 

=0.001003 kg/m/s. C) Re = 0.08; vplate = 7.96E-05 m/s; μ =0.001003 kg/m/s. D) Re = 0.08; vplate 

= 7.96E-01 m/s; μ = 10.02 kg/m/s. 

    

    

 

   

   

                             

  
 
 
  
  
  
  
  
  
 
  
 

 
 

        

        

  

  

 

 

 

                             

  
  

  
  
  
  
  
  
  
  

  

        

      

     

     

 

    

    

                             

  
 
 
  
  
  
  
  
  
 
  
 

  

        

         

       

       

      

      

      

                             

  
 
 
  
  
  
  
  
  
 
  
 

 
 

        

         

A B 

C D 



 

49 
 

m/s chosen for models in this report, the trends found here are still applicable. While 1.0 m/s is the 

typical velocity of the fluid near a normal aortic valve, this value can increase as much as 4x in 

stenotic valves56, and other studies have found the maximum speed of valve opening and closure 

to be on the order of 20 cm/s, which is about an order of magnitude lower59. 

4.2. Cone and Plate 

Simulations were run in Fluent in a cone and plate device with geometry matching that of 

the CPD used in experiments (see 3.2). Cases were run to understand the shear stress profiles 

generated by oscillatory motion of the cone analogous to those run with the parallel plate geometry 

in the preceding section, but at lower speeds to match the physical constraints of the motor driving 

the CPD.  

The summary variables for the three cases are shown in the table below. In all cases, the 

oscillation is cyclical with a period of 1 second. The abrupt and ramped cases have a hold time of 

0.4 s at their maximum angular velocity and a stop/acceleration time of 0.1 s.  

Table 9: Maximum angular velocities for each oscillatory profile type in the CPD geometry. 

Values given in rad/s and in RPMs (parentheses). 

Case Type Maximum Angular Velocity ω 

[rad/s] (RPM) 

Abrupt 25.0 (240) 

Ramped 22.2 (212) 

Sinusoidal 31.4 (300) 

This geometry is 3-dimensional, but radially symmetric. Therefore, when running 

simulations in Fluent, a cross-section was taken at Z = 0, with points chosen for analysis along the 

X and Y axis.  
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In this geometry, velocity is changing with position in the radial (XZ) and vertical (Y) 

directions, as well as with time. The velocity profile was generated in Fluent and the shear stress 

was calculated as  

𝜏(𝑧, 𝑦, 𝑡) = 𝜇 ∗
𝑑𝑣𝑧

𝑑𝑦
|𝑧         Equation 15 

There is a non-zero X-component of the velocity, but it is negligible compared to the Z-

component, because it is, on average, several orders of magnitude smaller.  

The shear stress in the fluid will be the highest at the surface of the cone, which is where 

velocities are highest. Therefore, the shear stress was calculated at the surface of the cone as a 

function of both radial position on the cone (X) and time. The velocity and corresponding shear 

stress profiles for each case are shown below.  

Figure 30: Cross-section of the CPD taken at Z = 0. Coordinate axes and basic components of 

the CPD geometry labeled. The black arrow along the length of the cone is indicative of where 

data were taken. 
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The shear stress profiles are qualitatively similar to those seen in the corresponding cases 

in the parallel plate geometry, which is a good indication that the simulation is being run correctly. 

The maximum and average shear stresses for each case are summarized in the table below.  

 

    

     

    

     

 

    

   

    

   

                             

  
 
  
  
 
  
 
  
  
  
 
  
  
 
  
 

        

       
         
   

                           

   

   

  

 

 

  

  

                             

  
  
  
  
  
  
   

  
  
  

  

        

       
         
   

                           

    

     

    

     

 

    

   

    

   

                             

  
 
  
  
 
  
 
  
  
  
 
  
  
 
  
 

        

       
         
   

                           

   

   

  

 

 

  

  

                             
  
  
  
  
  
  
  
 
  
  
  
 

 
 

        

       
         
   

                           

    

     

    

     

 

    

   

    

   

                             

  
 
  
  
 
  
 
  
  
  
 
  
  
 
  
 

        

       

         
   

                           

   

   

  

 

 

  

  

                             

  
  
  
  
  
  
  
 
  
  
  
 

 
 

        

       
         
   

                           

A 

Figure 31: Velocity (left) and shear stress (right) profiles of oscillatory cases in a CPD. 1 period 

of rotation shown. Profiles shown as functions of time with relative distance from the cone apex 

(x/R) as a parameter. R = cone radius; 7.0 mm. A) Abruptly oscillating case. B) Oscillation with 

ramped acceleration. C) Sinusoidal oscillation. Velocity profiles given in linear velocities rather 

than angular because that is how the computational results were pulled from Fluent; vz = ω*x. 

B 
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Table 10: Shear stress summary statistics for the three oscillatory cases in a CPD. Maximum 

and average shear stresses [dyne/cm2] reported. The shear stress is averaged over both position 

and time for each case. 

Case Type 
Maximum Shear Stress 

[dyne/cm2] 

Average Shear Stress 

[dyne/cm2] 

Abrupt 14.6 2.8 

Ramped 9.94 2.7 

Sinusoidal 10.2 2.7 

While all three cases experience nearly identical average shear stresses along the cone 

length, there are differences in their maximums. The maximum shear stresses in the ramped and 

sinusoidal cases are very similar (percent difference < 3%), but there is a nearly 50% increase in 

when moving from the ramped or sinusoidal case to the abrupt case.  

These results have implications for modeling flow through an actual aortic valve. If the 

valve’s motion is more like the ramped or sinusoidal cases, the precise details of how the boundary 

conditions are modeled may not be as significant since such similar profiles are produced. 

However, if the aortic valve’s motion is more abrupt, spikes in shear stress will be generated from 

the valve’s motion that would not be captured by modeling the motion with a smoother velocity 

profile, making precise modeling much more important.  

4.2.1. Shear Stress throughout cone volume 

While shear stress in the CPD varies as you move radially outwards, it also changes as you 

move vertically within the volume between the cone and plate. Shear stress is highest closest to 

the cone, decreasing as you approach the plate. It is important to characterize this trend to know 

how much of the fluid experiences elevated levels of shear stress.  

To test this, data were collected for each of the three cases (abrupt, ramped, and sinusoidal 

oscillation of the CPD) along the entire distance from plate to cone at a point 5 mm away from the 
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cone apex (x/R = 0.7). The shear stress was calculated at 11 evenly spaced points between the plate 

and cone over the course of the one second period for each case. Results are plotted below.  

 

 

 

 

 

 

 

 

 

 

 

Shear stress is higher closer to the cone in all cases, but this effect is most pronounced in 

the abrupt case (Fig. 32A), particularly where there are spikes in the shear stress. To better 

understand this effect, we can look at the maximum shear stress, rather than the shear stress over 

the entire period of oscillation. The figure below shows the peak shear stresses at points between 

the cone and plate, as a function of dimensionless position.  

Figure 32: Shear stresses over time at positions between the cone and the plate. A) Abrupt 

stopping case. B) Ramped acceleration case. C) Sinusoidal oscillation case. D) Cross-section of 

cone taken at Z = 0 indicating where in the geometry the data were taken (X = 5 mm; Y from 0 

to 0.318 mm). 
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The highest maximum shear stress for all cases occurs at the cone. For the abrupt case, this 

is 10.7 dyne/cm2, which is much higher than both the ramped (4.72 dyne/cm2) and sinusoidal (5.11 

dyne/cm2) cases. However, the average shear stress over the period changes little with either 

position or case type: for each case, the time and position-averaged maximum shear stresses are 

3.18, 3.12, and 3.11 dyne/cm2 for the abrupt, ramped, and sinusoidal cases, respectively.  

In sum, the abrupt case has a much higher maximum shear stress than the ramped and 

sinusoidal cases, a finding that is relevant for the 30% of the fluid domain that experiences shear 

stresses above the average maximum between the cone and plate. Across all three cases, the 

average shear stress changes little across both time and position between the cone and plate. 

Therefore, if TGF-β activation is higher in the abrupt than in the ramped or sinusoidal cases, we 

know that it is that region of fluid where the peak shear stresses are highest where the TGF-β 

activation is occurring.  

Figure 33: Maximum shear stresses in the fluid as a function of position between the plate and 

cone. On the X axis, 0 is the shear stress on the plate, and 1 is the shear stress on the cone. 

Maximum values found over the entire 1 second period of oscillation in each case. 
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4.2.2 Shear Stress in the well  

Next, the shear stress in the outer edge of the CPD was studied. The well, between the edge 

of the cone and the far wall, ranges from X = 7.0 mm to X = 7.9 mm. The shear stress at Y = 1.5 

mm was studied as a function of position in the X direction and time. Results for each case (abrupt, 

ramped, and sinusoidal oscillation of the cone) are shown below.  

 

Shear stress is highest in all cases closest to the cone edge, which is the moving surface. 

To better understand this trend, we can look at the maximum shear stress at each position, rather 

than the shear stress over the entire period of oscillation. The figure below shows the peak shear 

stresses at points from the edge of the cone to the outer wall, as a function of dimensionless 

position.  

   

   

  

 

 

  

  

                             

  
  
  
  
  
  
  
 
  
  
  

  

        

        
        
        
        
        

                 

   

   

  

 

 

  

  

                             

  
  
  
  
  
  
  
 
  
  
  

  

        

        
        
        
        
        

                 

   

   

  

 

 

  

  

                             

  
  
  
  
  
  
  
 
  
  
  

  

        

        
        
        
        
        

                 

Figure 34: Shear stress as a function of time in the well past the edge of the cone. Dimensionless 

position calculated as X/Xwall, where 0 is at the edge of the cone (X = 7.0 mm), and Xwall is the 

outer wall, at X = 7.9 mm. A) Abrupt case. B) Ramped case. C) Sinusoidal case. D) Cross-

section of the CPD with a black arrow showing where the data were taken. 
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The highest maximum shear stress for all cases occurs at the edge of the cone. For the 

abrupt case, this is 14.9 dyne/cm2, which is much higher than both the ramped (7.79 dyne/cm2) 

and sinusoidal (4.66 dyne/cm2) cases. In all cases, about 20% of the fluid in the well experiences 

a maximum shear stress above the time and position-averaged maximum (4.49, 3.20, 3.01 

dyne/cm2 in the abrupt, ramped, and sinusoidal cases respectively).  

In sum, we have looked at the maximum and time- and position-averaged shear stresses in 

a CPD and seen shear stress as a function of time, as well as position along the length of the 

spinning cone, between the cone and the plate, and in the well between the edge of the cone and 

the outer wall. In all cases, it is the fluid that is within the 30% of the volume closest to the cone 

in the region between the cone and plate and the 22% of the volume closest to the cone edge in the 

well, that experiences above average maximum shear stresses.   

Figure 35: Maximum shear stresses in the fluid as a function of position in the well. On the X 

axis, 0 is the shear stress at the edge of the cone, and 1 is the shear stress on the outer wall. 

Maximum values found over the entire 1 second period of oscillation for each case. 
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5. Discussion 

This report focused on the differences between three different ways to generate oscillatory 

shear stress: through rotation with abrupt changes in direction, with linearly ramped 

acceleration/deceleration between direction changes, and sinusoidal oscillation. These cases were 

first modeled in Fluent in a parallel-plate geometry because its simplicity makes it easier to check 

that the results make logical sense. A plate gap of 1 mm was used in all cases and maximum 

velocities were on the order of 1 m/s, which is the average velocity of blood moving through the 

aortic valve56. All three cases had similar average shear stresses at the moving plate: 16.9, 15.1 

and 15.3 dyne/cm2 for the abrupt, ramped, and sinusoidal cases, respectively (abrupt and ramped 

cases with a 0.10 second stop/acceleration time). They did, however, have different maximum 

values: 175, 43,2, and 23.9 dyne/cm2. A novel way of presenting the velocity and shear stress 

profiles was shown for each case that allows the viewer to see exactly what the velocity is at each 

point between the two plates for any given time.  

The effect of changing the stop/acceleration time in the abrupt and ramped cases was 

studied, while keeping the 1 second cycle length constant. Stop times of 0.01, 0.05, and 0.10 s 

were tested and the maximum and average shear stresses compared. In the abrupt case, neither 

changed very much: maximum shear stresses at the plate were 169, 161, and 175 dyne/cm2, 

respectively, with averages of 15.0, 15.8, and 16.9 dyne/cm2. These differences could have some 

biological significance, if, say, a critical shear stress threshold was crossed between these values 

that would significantly increase TGF-β expression, but it is not likely. While the ramped case also 

had similar average shear stresses across the different times, much larger differences could be seen 

in the maximum values: 130, 60.2, and 43.2 dyne/cm2 for acceleration times of 0.01, 0.05, and 

0.10 seconds, respectively. As the stop time gets smaller, the ramped case shear stress profile 
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approaches that of the abrupt case. In the body, the mechanism of opening and closing the aortic 

valve likely falls somewhere between these two cases: not completely abrupt, but not simply linear 

acceleration. Studies have shown that valve closure occurs on the order of 10 msec60, which makes 

the difference between the abrupt and ramped cases much less significant. However, the physical 

properties of the aortic valve change with disease progression, affecting the “close time” of the 

valve, further enforcing the importance of understanding how shear stress changes with different 

stop times.  

Additionally, an analysis of the abrupt case over a wide range of Reynolds numbers (0.08-

800) showed that while the peak shear stresses scale with Re, the profiles’ behavior remains the 

same, even at very low Re. The fact that even very low inertial forces still produce strong spikes 

in shear stress is somewhat surprising, but what it means is that these trends remain applicable 

across a wide range of Re—they would not be affected by the variability in flowrates through the 

heart valves of different patients or different stages of stenosis, for example.  

The three oscillatory profiles were then modeled with the geometry of a cone-and-plate 

device. The trends qualitatively aligned well with the findings in the parallel plate geometry, 

although quantitatively, calculated shear stresses were much lower because the simulations were 

run at lower velocities. In this case, it was found that 30% of the fluid between the cone and plate 

experiences elevated shear stresses (peak shear stresses above the position-averaged maximum), 

as does 20% of the fluid in the well. 

6. Conclusions and Future Work 

Prior research has shown that a) elevated levels of activated TGF-β are associated with the 

progression of calcific aortic valve disease33, b) latent TGF-β is activated by fluid shear stress27, 
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and c) as the aortic valve stenoses, it causes disturbances in the flow through the valve that are 

characterized by low, oscillatory velocity profiles15. Attempts have been made at imaging the 

stenotic heart valve in diseased patients, but it is difficult to precisely model the blood flow, and 

these models are heavily dependent on the patient’s specific anatomy. Additionally, the exact 

mechanism through which TGF-β responds to shear stress is still unknown. Most experiments test 

the binary difference between shear and no shear, or steady and oscillatory shear. Modification of 

the shear stress environment or attenuation of TGF-β activation are potential pathways for treating 

CAVD, but for either of them to be effective, there needs to be a better understanding of the 

relationship between TGF-β activation and shear.  

This report, through CFD simulation, demonstrates that even minute differences in how an 

oscillatory velocity profile is generated can create drastic differences in shear stress. When changes 

in direction happen abruptly, they generate spikes in shear stress that are not present when the 

changes in direction happen with linear acceleration.  

The “disturbed flow” in literature is described as low, oscillatory flow. The three cases 

modeled in this report fit this description; however, the abrupt case sees large spikes in shear stress 

that are 5x higher than the average. Therefore, if TGF-β activation is higher in the abrupt case, we 

know that it is not necessarily the “low, oscillatory” nature of pathological shear stress that causes 

TGF-β activation, but transient spikes in shear stress that occur in narrow regions in the fluid. A 

way to test this would be to take samples from different parts of the fluid in the CPD (e.g. close to 

the cone where shear stress is high and further from the cone where the shear stress stays lower) 

and see if there are different levels of TGF-β activation in these different regions in the fluid. This 

is outside the scope of this paper but suggests an interesting area for future research.  
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Thus, we have the question: how significant are these abrupt spikes in shear stress to the 

activation of latent TGF-β? Does TGF-β respond to any changes in shear stress, prolonged changes 

in shear stress, or abrupt spikes? This question is best answered by coupling the computational 

results in this thesis with experimental data, which can be done using the cone and plate device 

that was used in Kouzbari et al.50 and reprogrammed with different oscillatory profiles (see 3.2.1.2 

for profile description and validation).  

6.1.  CPD Experiments 

To test the effect of different shear profiles on TGF-β activation, experiments should be 

performed following the methods described in Kouzbari et al.50 Five cases should be tested: no 

shear (no rotation of the cone at all), steady, unidirectional rotation of the cone, and bidirectional 

rotation of the cone with abrupt changes in direction, with ramped acceleration/deceleration 

between changes in direction, and with sinusoidal oscillation. The no shear and steady shear cases 

should be used as controls to describe baseline TGF-β activation. Any difference in latent TGF-β 

activation between the steady and sinusoidal cases will show the difference between steady and 

oscillatory shear. Any difference in activation between the abrupt and ramped cases will show the 

effect of temporary spikes in shear stress—if activation is significantly increased from ramped to 

abrupt, we can be confident that more TGF-β activation is occurring in the narrow band of fluid 

just below the rotating cone, during the points in the period when cone motion has just been started 

or stopped. Differences between the ramped and sinusoidal cases would show that TGF-β is 

extremely sensitive to changes in boundary conditions, because those two cases have nearly 

identical shear stress averages and maximums.  
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7. Appendices 

7.1. Arduino Code 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

// Define Arduino Input Pins For Buttons 

  // Buttons 1-4 labeled horizontally from top left 
to bottom right 

  const int Button1 = 11;    // Button 1 is attached 

to Arduino pin 11  
  const int Button2 = 26;    // Button 2 is attached 

to Arduino pin 26 

  const int Button3 = 10;    // Button 3 is attached 

to Arduino pin 10 
  const int Button4 = 24;    // Button 4 is attached 

to Arduino pin 24 

  int current_button = 0;    // determine which 
button is pressed 

  const int dirPin = 8;      // HIGH = CCW 

rotation; LOW = CW rotation 

  const int stepPin = 9; 
  const int MS1 = 6;         // Big Easy Driver pins 

for control of microstepping 

  const int MS2 = 5;         // All 3 on HIGH is the 
default; 1/16th step microstepping 

  const int MS3 = 4; 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

// Arduino setup() function (REQUIRED) 

void setup(){ 

  pinMode(Button1, INPUT_PULLUP); 
 

  pinMode(Button2, INPUT_PULLUP); 

  pinMode(Button3, INPUT_PULLUP); 
  pinMode(Button4, INPUT_PULLUP); 

  pinMode(dirPin, OUTPUT); 

  pinMode(stepPin, OUTPUT); 
  pinMode(MS1, OUTPUT); 

  pinMode(MS2, OUTPUT); 

  pinMode(MS3, OUTPUT); 

} //close setup  
 

// Arduino loop() function (REQUIRED) 

void loop() 
{  

  // If Button 1 is pressed 

  while(current_button == 1){ 
    continuousCase();     // put motor code in this 

function below 

Figure 36: Wiring schematic of Arduino and Big Easy Driver for motor 

operation. Image from [50]. 
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    current_button = 
ButtonNOW(Button1,Button2,Button3,Button4)

; // loop exit check: check to see if Button 1 is 

still on 

  }             // end while loop button 1 
   

  // If Button 2 is pressed 

  while(current_button == 2){ 
    abruptCase();       // put motor code in this 

function below 

    current_button = 
ButtonNOW(Button1,Button2,Button3,Button4)

; // loop exit check: check to see if Button 2 is 

still on 

  }             // end while loop button 2 
   

  // If Button 3 is pressed 

  while(current_button == 3){ 
    rampedCase();     // put motor code in this 

function below     

    current_button = 
ButtonNOW(Button1,Button2,Button3,Button4)

; // loop exit check: check to see if Button 3 is 

still on 

  }             // end while loop button 3 
   

  // If Button 4 is pressed 

  while(current_button == 4){ 
    sineCase();     // put motor code in this 

function below 

    current_button = 

ButtonNOW(Button1,Button2,Button3,Button4)
; // loop exit check: check to see if Button 4 is 

still on 

  }             // end while loop button 4 
   

  // If no button is pressed 

  while(current_button == 0){ 
    noButtonCase();     // put motor code in this 

function below 

    current_button = 

ButtonNOW(Button1,Button2,Button3,Button4)
; // loop exit check: check to see if all buttons are 

still off 

  }             // end while loop button 0 
}               // end void loop 

 

// RPM to microseconds calculations 
  //The following 4 functions return the 

necessary t_delay in microseconds to drive the 

motor at a given RPM 

  //RPM = (1 microstep / 2 t_delay)/(200 
steps/rev)/(16 microsteps/step)*(1E6 us/sec)*(60 

sec/min) 

  //This calculation gives t_delay = 9375/RPM - 

t_other for 16 microsteps/step. t_other is the 
"think time" the code takes to execute, and is 

different for each case.  

  //1/8th microstepping mode gives t_delay = 
18750/RPM - t_other 

, and 

  int ConstantmicroSeconds(int RPM) { //Use 
this for the CONSTANT case with default 

(1/16th) microstepping 

      float t_delay = 9375/RPM -35.7;    

      t_delay = round(t_delay); 
      if(t_delay < 2.0){ // This is a safety check to 

ensure the motor does not try to spin faster than 

it can. A delay of 2 us should be about 250 
RPM. 

        t_delay = 2.0; 

      } // end if statement 
      if(t_delay > 900.0){ // This is a safety check 

to ensure the motor does not try to spin slower 

than is reasonable. A delay of 900 us should be 

about 10 RPM. 
        t_delay = 900.0; 

      } // end if statement 

      return (int)t_delay; 
  }//end Constantmicroseconds function 

 

   int AbruptmicroSeconds(int RPM) { //Use this 

for the ABRUPT case with default (1/16th) 
microstepping 

      float t_delay = 18750/RPM - 10.6; 

      t_delay = round(t_delay); 
      if(t_delay < 20.0){ // This is a safety check 

to ensure the motor does not try to spin faster 

than is reasonable. A delay of 20 us should be 
about 300 RPM. 

        t_delay = 20.0; 

      } // end if statement 

      if(t_delay > 900.0){ // This is a safety check 
to ensure the motor does not try to spin slower 

than is reasonable. A delay of 900 us should be 

about 10 RPM. 
        t_delay = 900.0; 

      } // end if statement 

      return (int)t_delay; 
  }//end Abruptmicroseconds function 
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   int RampedmicroSeconds(int RPM) { //Use 
this for the RAMPED case with 1/8th 

microstepping 

      float t_delay = 18750/RPM - 10.6; 

      t_delay = round(t_delay); 
      if(t_delay < 50.0){ // This is a safety check 

to ensure the motor does not try to spin faster 

than is reasonable. A delay of 50 us should be 
about 310 RPM. 

        t_delay = 50.0; 

      } // end if statement 
      if(t_delay > 900.0){ // This is a safety check 

to ensure the motor does not try to spin slower 

than is reasonable. A delay of 900 us should be 

about 20 RPM. 
        t_delay = 900.0; 

      } // end if statement 

      return (int)t_delay; 
  }//end Rampedmicroseconds function 

   

  int SinemicroSeconds(int RPM) { //Use this for 
the SINE case with 1/8th microstepping 

      float t_delay = 18750/RPM - 48.9; 

      t_delay = round(t_delay); 

      if(t_delay < 8.0){ // This is a safety check to 
ensure the motor does not try to spin faster than 

is reasonable. A delay of 8 us should be about 

330 RPM. 
        t_delay = 8.0; 

      } // end if statement 

      if(t_delay > 900.0){ // This is a safety check 

to ensure the motor does not try to spin slower 
than is reasonable. A delay of 900 us should be 

about 20 RPM. 

        t_delay = 900.0; 
      } // end if statement 

      return (int)t_delay; 

  }//end Sinemicroseconds function 
   

 

// ButtonNOW function to determine which 

button is currently on (if any) 
int ButtonNOW(int button1, int button2, int 

button3, int button4){ 

  int button_now1 = digitalRead(button1); 
  int button_now2 = digitalRead(button2); 

  int button_now3 = digitalRead(button3); 

  int button_now4 = digitalRead(button4); 
   

  if(button_now1 == LOW && button_now2 == 
HIGH && button_now3 == HIGH && 

button_now4 == HIGH){ 

    current_button = 1; 

  } 
  else if(button_now1 == HIGH && 

button_now2 == LOW && button_now3 == 

HIGH && button_now4 == HIGH){ 
    current_button = 2; 

  } 

  else if(button_now1 == HIGH && 
button_now2 == HIGH && button_now3 == 

LOW && button_now4 == HIGH){ 

    current_button = 3; 

  } 
  else if(button_now1 == HIGH && 

button_now2 == HIGH && button_now3 == 

HIGH && button_now4 == LOW){ 
    current_button = 4; 

  } 

  else{ 
    current_button = 0;   // this case is true if all 

buttons are off OR if more than one button is on 

  } 

  return current_button; 
} 

 

// Code for continuous rotation of the motor 
void continuousCase(){ 

      //continuous case variables 

          const int rpm = 190;  //set the motor speed 

          const int t_delay = 
ConstantmicroSeconds(rpm);  

      //continuous case setup 

          digitalWrite(dirPin, HIGH); // HIGH = 
CCW rotation 

          digitalWrite(stepPin, LOW); 

          digitalWrite(MS1, HIGH);    // 1/16th 
microstepping 

          digitalWrite(MS2, HIGH); 

          digitalWrite(MS3, HIGH); 

     //continuous case loop   
          digitalWrite(stepPin, HIGH); 

          delayMicroseconds(t_delay); 

          digitalWrite(stepPin, LOW); 
          delayMicroseconds(t_delay); 

} // Close continuousCase 

 
// Code for abrupt rotational changes for the 

motor 

void abruptCase(){ 
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      //abrupt case variables 
            const int rpmAbrupt = 240; //set the 

motor speed 

            const int t_delay = 

AbruptmicroSeconds(rpmAbrupt); 
            long t0 = millis();  // long data type 

allows for 597 hours of operation (vs 30 seconds 

with int data type) 
            float t_hold = 0.4; //time (sec) to rotate 

the motor in one direction            

      //abrupt case setup                
            digitalWrite(stepPin, LOW); 

            digitalWrite(MS1, HIGH);  // 1/8th 

microstepping 

            digitalWrite(MS2, HIGH); 
            digitalWrite(MS3, LOW); 

      //abrupt case loop 

            digitalWrite(dirPin, HIGH); // set 
direction_pin to HIGH for counter-clockwise 

(CCW) rotation 

            t0 = millis(); // get current time before 
starting next loop 

            while(millis()-t0 < t_hold * 1000){ // 

rotate motor 0.4 seconds in one direction 

              delayMicroseconds(t_delay); 
              digitalWrite(stepPin, HIGH); 

              delayMicroseconds(t_delay);           

              digitalWrite(stepPin, LOW);  
              //delayMicroseconds(t_delay); 

            } 

            delay(100); // 100 ms delay 

            t0 = millis(); // get current time before 
starting next loop 

            digitalWrite(dirPin, LOW); // set 

direction_pin to LOW for clockwise (CW) 
rotation 

            while(millis()-t0 < t_hold * 1000){ // 

rotate motor 0.4 seconds in the other direction 
              digitalWrite(stepPin, HIGH); 

              delayMicroseconds(t_delay);           

              digitalWrite(stepPin, LOW);  

              delayMicroseconds(t_delay); 
            } 

            delay(100); // 100 ms delay 

} //Close abruptCase  
 

// Code for oscillation of motor with ramped 

acceleration/deceleration 
void rampedCase(){ 

      //ramped case variables  

            long t0 = millis();               //allows time-
based code to execute repeatedly 

            const int rpm_max = 212;          //set the 

maximum motor speed in RPMs 

            const int rpm_min = -rpm_max;     
//minimum motor speed in RPMs 

            int rpm0 = 0;                     //used in the 

calculation RPM = RPM0 + a*t 
            int t_delay = 0;                  //in 

microseconds, this controls the motor speed and 

is calculated in the Microseconds function 
            int rpm = 0;                      //working 

motor speed in RPMs 

            const float a = 4240;             // 

acceleration (RPM/s). Calculated such that at 
rpm_max = 212, acceleration time is 0.1 s 

            int counter = 0;                  //used to keep 

the code from executing too often and slowing 
down 

      //ramped case setup 

            int t_delay_max = 
RampedmicroSeconds(rpm_max); 

            int t_delay_min = t_delay_max; 

            float t_hold = 0.4; // seconds to keep the 

motor at its max/min speeds 
            digitalWrite(stepPin, LOW);  

            digitalWrite(MS1, HIGH); // 1/8th 

microstepping 
            digitalWrite(MS2, HIGH); 

            digitalWrite(MS3, LOW); 

      //ramped case loop  

            digitalWrite(dirPin, HIGH); // HIGH = 
CCW spinning 

            t0 = millis(); 

            while(rpm < rpm_max) { // 
ACCELERATE FROM 0 TO RPM_MAX  

              while(counter < 8){ // this helps the 

motor run smoother 
                t_delay = RampedmicroSeconds(rpm); 

                digitalWrite(stepPin, HIGH); // Start 

taking a step 

                delayMicroseconds(t_delay); 
                digitalWrite(stepPin, LOW); 

                delayMicroseconds(t_delay); // Finish 

taking a step 
                counter++; 

              } 

              rpm = rpm0 + a*(millis()-t0)/1000; 
              counter = 0; 

            } // ends while statement 

            rpm = rpm_max; 
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            t_delay = t_delay_max; 
            t0 = millis(); 

            while(millis()-t0  < t_hold*1000) { // 

STAY AT RPM_MAX FOR T_HOLD  

              digitalWrite(stepPin, HIGH); // Start 
taking a step 

              delayMicroseconds(t_delay); 

              digitalWrite(stepPin, LOW); 
              delayMicroseconds(t_delay); // Finish 

taking a step 

            } // ends if statement 
            rpm0 = rpm_max; 

            t0 = millis(); 

            while(rpm > 0) { // DECELERATE TO 0 

RPM  
              while(counter < 8){ 

                t_delay = RampedmicroSeconds(rpm); 

                digitalWrite(stepPin, HIGH); // Start 
taking a step 

                delayMicroseconds(t_delay); 

                digitalWrite(stepPin, LOW); 
                delayMicroseconds(t_delay); // Finish 

taking a step 

                counter++; 

              } 
              rpm = rpm0 - a*(millis()-t0)/1000; 

              counter = 0; 

            } // ends if statement 
            digitalWrite(dirPin, LOW); //LOW = 

CW spinning; the dirPin switch is the reason the 

acceleration/deceleration phases each need to be 

in 2 parts 
            rpm0 = 0; 

            rpm = 0; 

            t0 = millis(); 
            while(0 >= rpm && rpm > rpm_min) { // 

DECELERATE TO RPM_MIN  

              while(counter < 8){ 
                t_delay = RampedmicroSeconds(-

1*rpm); 

                digitalWrite(stepPin, HIGH); // Start 

taking a step 
                delayMicroseconds(t_delay); 

                digitalWrite(stepPin, LOW); 

                delayMicroseconds(t_delay); // Finish 
taking a step 

                counter++; 

              } 
              rpm = rpm0 - a*(millis()-t0)/1000; 

              counter = 0; 

            } // ends if statement 

            rpm = rpm_min; 
            t_delay = t_delay_max; 

            t0 = millis(); 

            while(millis()-t0  < t_hold*1000) { // 

STAY AT RPM_MIN FOR T_HOLD  
              digitalWrite(stepPin, HIGH); // Start 

taking a step 

              delayMicroseconds(t_delay); 
              digitalWrite(stepPin, LOW); 

              delayMicroseconds(t_delay); // Finish 

taking a step 
            } // ends if statement 

            rpm0 = rpm_min; 

            t0 = millis(); 

            while(rpm < 0) { // ACCELERATE TO 
0 RPM 

              while(counter < 8){ 

                t_delay = RampedmicroSeconds(-
1*rpm); 

                digitalWrite(stepPin, HIGH); // Start 

taking a step 
                delayMicroseconds(t_delay); 

                digitalWrite(stepPin, LOW); 

                delayMicroseconds(t_delay); // Finish 

taking a step 
                counter++; 

              } 

              rpm = rpm0 + a*(millis()-t0)/1000; 
              counter = 0; 

            } 

            //rpm0 = 0; 

            //rpm = 0; 
}//close rampedCase 

 

// Code for sine wave oscillation of motor             
void sineCase(){ 

      //sine case variables          

            long t0 = millis();                //allows time-
based code to execute repeatedly                   

            int t_delay = 1;                   //in 

microseconds, this controls the motor speed and 

is calculated in the Microseconds function 
            int rpm = 1E-03;                   //working 

motor speed in RPMs 

            int counter = 0;                   //used to keep 
the code from executing too often and slowing 

down 

            float two_pi = 2*3.14159; 
            int a = 300;                      // RPM = 

a*sin(b*t); a is in RPMs. This controls the max 

speed of this function 
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            float b = 2*3.14159;              //RPM = 
a*sin(b*t); b is in seconds 

            float t_period = two_pi/b*1000;   

//period of the sine curve in milliseconds 

            boolean accelerate = true;        // true is 
the 1st half of the sine curve; false is the 2nd 

half 

      //sine case setup 
            digitalWrite(stepPin, LOW);  

            digitalWrite(MS1, HIGH); // 1/8th 

microstepping 
            digitalWrite(MS2, HIGH); 

            digitalWrite(MS3, LOW); 

      //sine case loop 

            digitalWrite(dirPin, HIGH); // HIGH = 
CCW spinning 

            t0 = millis(); 

            accelerate = true; 
            while(accelerate == true && millis()-t0 

< t_period/2 ) {  //FIRST HALF OF THE SINE 

CURVE 
              while(rpm > 0 && counter < 8){ // this 

helps the motor run smoother 

                t_delay = SinemicroSeconds(rpm); 

                digitalWrite(stepPin, HIGH); // Start 
taking a step 

                delayMicroseconds(t_delay); 

                digitalWrite(stepPin, LOW); 
                delayMicroseconds(t_delay); // Finish 

taking a step 

                counter++; 

              } //ends counter while 
              rpm = a*sin(b*(millis()-t0)/1000); 

              counter = 0; 

            } // ends first half while statement 
            accelerate = false; 

            digitalWrite(dirPin, LOW); //LOW = 

CW spinning 
            t0 = millis(); 

            rpm = 1E-03; 

              while(accelerate == false && millis()-

t0 < t_period/2) { //SECOND HALF OF THE 
SINE CURVE 

                while(rpm > 0 && counter < 8){ 

                  t_delay = SinemicroSeconds(rpm); 
                  digitalWrite(stepPin, HIGH); // Start 

taking a step 

                  delayMicroseconds(t_delay); 
                  digitalWrite(stepPin, LOW); 

                  delayMicroseconds(t_delay); // 

Finish taking a step 

                  counter++; 
                } //ends counter while 

                rpm = a*sin(b*(millis()-t0)/1000); 

                counter = 0; 

              } // ends second half while statement 
            accelerate = true; 

            t0 = millis(); 

            rpm = 1E-03; 
}//close sineCase 

 

// Code for when no button is pressed 
void noButtonCase(){ 

  digitalWrite(stepPin, LOW); 

}//close noButtonCase
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7.2. Alternative figures  

The following figures reflect an alternative way to depict the data shown in 4.1.4. These 

graphs group together data based on case type, instead of stop time. Velocity and shear stress 

profiles for the abrupt and ramped cases at three different stop/acceleration times shown.  
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Figure 37: Velocity and shear stresses for the abrupt stopping and ramped acceleration cases 

for different stop times. A) Velocity profiles for the abrupt cases. B) Velocity profiles for the 

ramped cases. C) Shear stress profiles for the abrupt cases. D) Shear stress profiles for the 

ramped cases. In all figures, the three different stop/acceleration periods are 0.01 s (blue line), 

0.05 s (green line), and 0.10 s (yellow line).  
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