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Abstracts

The first chapter examines the role of non-market behavioral adaptation to climate change in

the United States for the case of outdoor leisure with a novel estimation procedure that accounts

for both short-run weather and long-run climate adjustments. First, I comprehensively review the

temperature sensitivity of all activities in the American Time Use Survey using a flexible non-linear

estimation procedure. Predictably most activities are found to be unresponsive to temperature

with the exception of those that take place outdoors. Time spent outdoors is studied further using

the Climate Adaptation Response Estimation approach, which allows for temperature responses

to vary geographically. I find the sensitivity to temperature varies across the country, and this

variation is especially pronounced for cold-weather cities in which inhabitants modify their outdoor

and physical activities in response to temperatures more than warm-weather cities. Simulating the

expected change in outdoor activity time using climate models compiled by the Intergovernmental

Panel on Climate Change implies a large increase in outdoor time driven by warmer winters.

In the second chapter, I explore how policing in the United States is influenced by weather

and climate. Policing is under renewed scrutiny following a number of high-profile murders at the

hands of law enforcement officers. I use data from the Stanford Open Policing Project, which in-

cludes over 200 million traffic and pedestrian stops between 2011-2019, to estimate the sensitivity

of police productivity to weather. Results from non-linear temperature response functions suggest

a ten percent increase in the number of stops police conduct on the hottest days. These results are

further supported with estimates showing that the speeds at which drivers are stopped for speeding

violations are five percent lower on hot days relative to cool days. Finally, using the “veil of dark-

x



ness” approach, I find that the gap in the rate of pullovers of black drivers during daylight versus at

night increases on hot days. Taken together, these results suggest that police activity is influenced

to a large degree by the weather.

The third chapter investigates the consequences of marijuana legalization on housing markets

in the United States. Despite federal law, twelve American states and Washington D.C. have le-

galized recreational marijuana since 2012. Using a national housing data set from the online real

estate listing database Zillow.com, we identify the cross and inter-state effects of marijuana le-

galization on house prices in different points of the price distribution function. We find positive

effects upwards of ten percent in the top half of the price distribution following successful legal-

ization ballot initiatives, and between five and fifteen percent across the distribution after the state

enacts the ballot initiative and the first legal sales take place. A spatial difference-in-differences

model reveals that within Colorado and Washington, prices in neighborhoods with new dispensary

openings nearby experience a seven percent price appreciation. To summarize, our results suggest

that there are second order benefits to marijuana legalization.
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Chapter 1

Geographic Heterogeneity in Climate

Change Adaptation: Behavioral Evidence

from Participation in Outdoor Activities

Globally, the past five years mark the five hottest since record keeping began in 1880, with

2020 on track to be the hottest ever.1 As concerns about warming have increased, the economics

literature has made major progress in evaluating the costs of climate change. Early work on the

topic studied the effect on agriculture (e.g. Mendelsohn et al. [1994]), but the literature has ex-

panded to include the effect on health and mortality (Deschênes and Greenstone [2011], Heutel

et al. [2017], Barreca et al. [2016]), energy consumption (Davis and Gertler [2015], Mansur et al.

[2008], Auffhammer [2018]), and worker productivity (Adhvaryu et al. [2019], Colmer [2019]),

among others.2

Within the climate economics literature, few causal estimates exist of the role geographic het-

erogeneity plays in determining outcomes. In the United States, regions are expected to be exposed

to different extreme weather events that will increase in frequency and intensity as climate change

progresses. Wildfires in the West, hurricanes in the South and East, and droughts in the Midwest

are all examples of headline weather events that fit this criteria and are well-understood by the

1



public. Despite the prominence of these events, the broader and more gradual effects of climate

change will also vary across regions. By expanding our understanding of the geographic hetero-

geneity of climate responses, we get a more complete picture of the welfare effects of climate

change. This research studies the role geography and climate play in Americans’ participation in

outdoor nonmarket activities with data from the American Time Use Survey (ATUS).

To this end, I estimate the sensitivity of outdoor activities to both short-run weather and long-

run climate in cities across the United States and project the results forward to predict future

welfare changes. My findings formalize intuition about outdoor activities: doing things outdoors

is more pleasant than indoors, and because outdoor activities are sensitive to hot and cold tempera-

tures, American cities with low average temperatures will gain days with pleasant outdoor weather

due to warmer winters. This stands in contrast to cities with warm average temperatures, which

don’t gain from warmer winter days but may lose outdoor time due to extreme hot summer days.

To complete the analysis, three questions must be asked. First, which household activities are

sensitive to temperature? The activity set is narrowed to those that exhibit some response to tem-

perature, leading to the second question: do these temperature sensitivities vary by local climate?

I estimate the temperature response function for outdoor nonmarket activities separately for each

city in the United States. Finally, having recovered the city-level response to temperature, the final

question is: how will activity time allocation in the United States change when the climate distri-

bution shifts? This is done using climate prediction models from the Intergovernmental Panel on

Climate Change (IPCC). My research estimates which activities are sensitive to temperature, how

these sensitivities vary by local climate, and how we should expect the amount of time dedicated

to these activities to change with the climate.

The non-linear model suggests that most activities Americans spend time on are not influenced

by the weather. Although respondents do not adjust their time spent doing particular activities,

they do adjust where they do them. Consistent with results in Zivin and Neidell [2014], I find that

outdoor activities are very sensitive to temperature. This intuitive result underscores the importance

of considering a wider range of outcomes when thinking about climate change. Rather than merely

2



being an extension of past work, these responses likely have large implications for human welfare.

Figure 1.1 plots the share of time certain activity groups are unpleasant, based on the U-Index

developed by Kahneman and Krueger [2006]. Non-market activities are less unpleasant when

they take place outdoors; averaged across all activities, the U-Index is two-thirds lower outdoors

than in. The public health and psychology literature find similar positive benefits associated with

spending time outdoors.3 If climate change alters the indoor-outdoor margin through changes in

the weather, there could be large welfare implications – either warmer summers induce more time

inside or warmer winters induce more time outside.

Those living in warm-weather cities may response differently in ways relevant for understand-

ing climate adaptation. To capture the climate effect, I use a novel estimation procedure developed

by Auffhammer [2018] which allows for agents’ temperature sensitivity to vary across geogra-

phy. The method, referred to as Climate Adaptation Response Estimation (CARE), models the

relationship between climate and economic outcomes in two stages. In the first stage, CARE esti-

mates a non-linear temperature response function. This non-linear approach has become common

in the climate literature because it relaxes parametric assumptions regarding the temperature re-

sponse function. The key innovation of the first stage is that the function is estimated separately

for each geographic unit in the sample. Due to the large number of cities in the ATUS sample and

the non-linear functional form, the first stage produces a large number of estimated temperature

coefficients. In the second stage, these estimated coefficients are regressed on the long-run tem-

perature averages, which reflect the local climate. As a result, the first stage can be thought of as

the response to weather and the second stage how sensitive the weather response is based on the

local long-run climate. The estimated temperature response function from the first stage is then

projected forward using climate models aggregated by NASA, which allows for simulation of the

potential welfare effects of future climate change under two different emissions scenarios.

The results of the climate model illustrate significant geographic heterogeneity in the United

States. There are three primary results from the CARE method and its projection: first, the temper-

ature response function from stage one reflects a distinct inverse-U shape. That is, people spend

3



less time outdoors at both hot and cold temperatures relative to a baseline “nice” day in the 60-

70 degree Fahrenheit range. This suggests that individuals avoid extreme temperatures at both

the high and low end of the temperature distribution. Then the estimated coefficients from the

first stage are regressed on the long-run climate of their respective metropolitan area. My results

demonstrate that metropolitan areas with large shares of cool days are generally more temperature

sensitive than those with a greater share of warm days. While both cold and warm climate cities

decrease the amount of time spent outside when it is very cold and very hot (i.e. the first stage),

cold climate cities have more extreme responses.

This result is the first contribution of my research, suggesting that agents in cold climate cities

are more sensitive to temperature than their warm climate counterparts. The stage one estimates

measured a temperature response function – i.e. how activity time allocation changed as a result of

short term weather events. The weather is a particular day’s temperature, precipitation, or humidity.

These weather results are informative, but do not reflect how climate may mediate these outcomes.

For example, the climate of Minnesota is quite different from the climate of Florida. If Floridians

are less sensitive to hot days, these results can teach us about how the response of Minnesota may

change when Minnesota warms. Similar research estimating the relationship between outdoor

activities and the weather take a non-linear approach but do not provide estimates of the climate

effect.

The most similar research to this exercise is Chan and Wichman [2020], which uses a non-

linear fixed effects model to estimate how recreational cycling responds to weather fluctuations.

The authors find cyclists are more sensitive to cold temperatures than warm, similar to the results

presented here. These results should not be a surprise, as human physiology bounds the range of

temperatures that we find desirable (Arens and Bosselmann [1989]; Höppe [2002]; Stathopoulos

et al. [2004]). Importantly, the results of this research demonstrate heterogeneous preferences for

temperature across the United States.4 In a time use setting, the reallocation of time from outdoors

to indoors and from active to passive will have a profound effect on welfare as different regions

warm at different rates.

4



The second contribution is to provide evidence for the relationship between weather and the

universe of non-market activities in the American Time Use Survey. The American Time Use Sur-

vey provides a nationally representative sample of agents’ time use patterns and is not restricted

to a particular subset of activities. Empirical exercises of time use surveys date back to the 1970s

(Gronau [1976a], Gronau [1976b]), and the theory of time use and allocation to the 1960s (Becker

[1965], Johnson [1966]), but my research is the first to provide comprehensive estimates of temper-

ature response functions for all the activities included in the time use survey. I exploit within-city

variation in weather to identify the non-linear relationship between temperature and the universe

of activities in the American Time Use Survey.

The paper proceeds as follows. Section ?? clarifies the distinction between weather and climate

as it pertains to the econometric model, details the data being used, and motivates the research with

a descriptive empirical exposition. Section 1.2 outlines the two-step estimation procedure used in

the CARE model. Section 3.4 estimates both the short-run temperature response function and the

long-run climate adaptation model. Section 1.4 projects the results of the model forward using

General Circulation Models (GCMs) from NASA, and Section 3.5 concludes.

1.1 The Weather, Climate, and Americans’ Daily Activities

This section discusses of the difference between the weather and climate, which is key to

understanding the CARE methodology. Then, to establish a relationship between the weather and

activity time allocation, a series of non-linear temperature response functions are estimated using

data from the American Time Use Survey. Outdoor activities stand out for their relationship with

the weather, leading to the climate analysis in the following section.

1.1.1 The Difference Between Weather and Climate

The climate literature in economics has taken two broad approaches to estimating the effect of

climate and economic outcomes. The first, established in Mendelsohn et al. [1994], uses long-run

5



values of a region’s weather outcomes as a proxy for the local climate. The economic outcome

of interest is regressed on these long-run values (typically the seasonal or monthly averages of the

preceding two-to-three decades) cross-sectionally. The alternative approach, which has increased

in popularity in the last decade, uses fluctuations in weather to identify the relationship between the

outcome and climate. Identification requires panel data in which the researcher observes regions

repeatedly over time. The distinction between these two approaches is that the former explicitly

models the climate effect, whereas the latter estimates the weather effect with an assumption that

this is informative for climate responses. Understanding the difference is important in interpreting

the results of the two stage CARE approach used in this paper.

Early research measuring climate adaptation estimated the effect of weather on different out-

comes using cross-sectional data. Mendelsohn et al. [1994], for example, regressed county farm

prices in the United States on monthly average temperatures. This approach has the advantage

of estimating the true climate effect since farmers are aware of prior climate information at their

location, allowing them to optimize production and investment, and therefore are able to maximize

returns for their property on the market. The major disadvantage of the cross-sectional approach —

and the reason it has fallen out of favor in the climate literature — is that it is susceptible to omitted

variable bias. By estimating the temperature response function with panel data and fixed effects,

and then recovering the long-run climate effect using cross-sectional data and the estimated coef-

ficients from the first stage, CARE recovers the climate effect while avoiding the pitfalls typically

associated with cross-sectional data.

The key idea in the panel data-weather fluctuations approach is that weather observations are

draws from the climate distribution. To demonstrate this idea, Figure 1.2 plots a simulation of the

climate distribution under the current climate and a future climate where the mean temperature

increases by 3 Celsius (5.4 Fahrenheit). This is a hypothetical scenario, as the true temperature

distribution for the United States is not as neatly normal as the distributions depicted due to regional

differences. Any individual day’s temperature (or precipitation, humidity, etc.) is the realized value

of the climate distribution. Figure 1.2 assumes that the two distributions are different due to the

6



nature of time and expected changes in the climate, but the two could distributions could also

reflect the difference in climate between regions. For example, the current climate could instead

represent the cold climate of Boston and the future climate could represent the warm climate of

Los Angeles.

A common approach in the climate literature estimates an outcome variable on temperature

with location and time fixed effects to adjust for unobservable characteristics unique to a place

and time. The downside of such models is that fixed effects impose that the estimated temperature

response function is the same for each location in the sample (Auffhammer and Schlenker [2014]).

As a result, the coefficients reflect only the response to deviation in weather, not climate. The

practical implication is that Minnesotans and Floridians are assumed to have the same reaction to

a 95 day.5 Much of the recent climate literature has taken this approach despite its limitations.

The CARE method marries the two approaches by estimating both the short-run weather effect

and the long-run climate effect, although it is not the first to consider geographic heterogene-

ity when estimating climate adaptation. Barreca et al. [2016] estimate the relationship between

temperature and monthly mortality rates separately for each of the nine Census regions, reporting

results for each individually. Similarly, Butler and Huybers [2013] regress maize yields on growing

and killing degree days in approximately 1000 counties in the United States. Heutel et al. [2017]

take a slightly different approach, interacting a non-linear temperature response function with indi-

cators for whether a U.S. ZIP code falls in the top/middle/bottom climate tercile. The advantage of

CARE over these other approaches is that it estimates the temperature response function for each

geographic unit using panel data in the first stage and then allows the estimated coefficients to vary

cross-sectionally in a second stage.

1.1.2 Data

A number of data sources are used in the analysis, including time use survey data from the U.S.

Bureau of Labor Statistics, the Current Population Survey from the United States Census Bureau,

and meteorological data from the University of Idaho.
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Time Use Data

The primary source of data comes from the Census Bureau and the Bureau of Labor Statistics’

American Time Use Survey (ATUS). The ATUS randomly selects one member of a household that

has completed eight consecutive months of the Current Population Survey (CPS) to fill out a time

use diary. This diary asks that the respondent log the amount of time they spent completing all

activities over a 24-hour period. Importantly for this research, the respondents are asked where

each of their activities takes place, which helps distinguish between weather sensitive and weather

insensitive activities.

Activities are first separated by the categories defined by the BLS. The categories include

household activities, education, work and work-related activities, socializing, and others. These

groups are quite broad. For example, household activities include meal preparation and gardening.

Following Zivin and Neidell [2014], any activity that takes place “outdoors, away from home” or

makes references to the exterior of the home, such as “gardening” or “exterior maintenance” is

encoded as an outdoor activity. As Zivin and Neidell note, some activities are said to take place

“at the home or yard,” but since this categorization is ambiguous, it is encoded as not taking place

outdoors.

Table 1 presents the summary statistics for each activity group in the ATUS data and for all

activities which are coded as occurring outside. Six categories of activities are considered: house-

hold labor, market labor, market consumption activities, leisure activities, outdoor activities, and

miscellaneous activities. The sub-categories correspond to the 18 major categories defined by the

BLS, plus five outdoor activities created for the purpose of this research. Both the unconditional

number of minutes spent doing an activity and the number of minutes conditional on participation

(i.e. the number of minutes > 0) are included. The three largest activities by time allocation are

sleeping, engaging in market labor, and leisure time. Only about a third of respondents participate

in outdoor activities but, conditional on participation, respondents average more than ninety min-

utes outdoors per day. To get a better idea of which activities take place outdoors, Figure 1.4 plots

the share of time each of the major activity categories takes place outdoors. Household activities,
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including activities such as yard maintenance and pet care, and sports and exercise take place out-

doors approximately twenty-five percent of the time, by far the largest out of the major activity

groups.

Because the ATUS is administered to individuals who have completed eight rounds of the

CPS, the ATUS data can be matched to the CPS data at the individual level. A large number of

variables from the CPS are used, including the respondent’s age, sex, race, educational attainment,

household income, marital status, the number of children, and homeownership status.

Meteorological Data

Meteorological data are obtained from the University of Idaho’s gridMET dataset [Abatzoglou,

2013]. gridMET provides daily ground-level meteorological data at a 4-km spatial resolution. The

sample used in this research starts at the beginning of 1979 (the earliest year available in gridMET)

and ends in 2018. From 1979 to 2004, the only variables derived from gridMET are maximum and

minimum daily temperature. As is common in the climate literature, these two variables are aver-

aged to produce daily mean temperature. Starting in 2005 other meteorological measures, includ-

ing maximum and minimum relative humidity, mean wind speed, and the precipitation amount, are

also imported from gridMET.

The most disaggregated geographic level in the ATUS data is the Census’ metropolitan sta-

tistical area (CBSA). A CBSA TIGER shapefile from the Census is used to merge the gridMET

and ATUS data. Since the gridMET is measured continuously in space, the values in each CBSA

must be aggregated. For each meteorological variable, the median value in a CBSA is extracted

from the continuous gridMET data [Dorman, Rush, Hough, Russel, and Karney, 2020]. The value

extraction derives meteorological data for each CBSA-day in the ATUS data.

Miscellaneous Data

In addition to the time use and meteorological data, there are a handful of other data sources

used. Elevation data is from the R package “elevatr” [Hollister and Shah, 2020], which provides ac-
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cess to Amazon Web Services’ Terrain Tiles via an API. End-of-century climate projections come

from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Twenty-one

General Circulation Models (GCMs) conducted under the Coupled Model Intercomparison Project

Phase 5 (CMIP5) provide daily maximum temperature, minimum temperature, and precipitation.

I calculate daily mean temperature for each metropolitan-date between 2080-2099. Creating these

daily means allows me to match the expected mean temperature in 2080-2099 to the day that a

respondent in the ATUS filled out their diary. NEX-GDDP includes projections for two Represen-

tative Concentration Pathways (RCPs): RCP4.5 and RCP8.5. RCP4.5 trajectories model emissions

as peaking in 2040 and declining after that. In RCP8.5 models, emissions continue to rise through-

out the 21st Century. RCP8.5 models are typically referred to as “business as usual” models.

Figure 1.3 shows the number of days per year in temperature bins of 5 under three climate scenar-

ios. The light green color reflects the current climate in the United States, the middle green shade

the RCP4.5 scenario, and the darkest green shade the RCP8.5 scenario. There is a clear rightward

shift in the average temperature distribution. A large number of cold-weather days in the current

climate are lost in both RCP scenarios, while there is a marked increase in the number of days in

the top two temperature bins.

1.1.3 Empirical Justification

Before estimating the full model, we first need to determine what (if any) household activities

are weather sensitive. This first exercise demonstrates that – unsurprisingly – outdoor and physical

activities are most sensitive to the weather.

It is assumed that temperature affects some activities more intensely than others. For example,

due to the prevalence of air conditioning in the United States, we should not expect that passive

indoor activities such as watching television are influenced by weather conditions outside. The

ATUS enumerates a large number of activities over which respondents participate. This allows for

an analysis of the temperature sensitivity of different activities. This temperature response function
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can be represented by:

yit =
∑

b∈B\{60−70}

βbDibt + γXijt + αjm + φmy + εit (1.1)

where yit represents the number of minutes respondent i spent doing activity y at time t and

Dibt is an indicator for whether the temperature experienced by respondent i at time t falls into

temperature bin b. The model allows for non-linearities in the temperature-outcome relationship

by including these indicators. Xijt is a vector of confounding variables which are adjusted for,

including other weather variables (precipitation, humidity, and wind speed), demographic charac-

teristics of respondent i from the Current Population Survey (age, race, marital status, number of

children, education, household income, home ownership status), ATUS diary information (day of

the week the diary was completed for, an indicator for whether the diary day was a holiday) and

region j geographic and economic characteristics (elevation, slope, air conditioning prevalence).

αjm are region-month fixed effects and φmy are month-year fixed effects. The set of fixed effects

absorb unobserved region-month and month-year determinants of time allocation.

Table 2 displays the results of the model. The coefficients should be interpreted as the change

in the number of minutes for a particular activity as the result of the daily temperature falling into

one of eight temperature bins, relative to a baseline day of 60-70. Broadly there are five categories

considered: household labor, market labor, consumer activities, leisure, and outdoor activities. The

first four categories are exclusive of one another, but outdoor activities is inclusive of the others.

For example, the sub-category “exercising outside” is a subset of the “exercising” category in the

leisure group.6 Looking at the results in Table 2, it is clear that activities which either occur outside

or are physically active are those that are most sensitive to temperature. All of the outdoor activities

have significant negative coefficients, especially in the bottom half of the temperature distribution.

The effects are less pronounced at the top of the distribution however. Physical activities, including

exercising and participating in sports similarly show significant negative effects when the weather

is the coldest but little when it is hottest. Interestingly, general leisure time increases by a large
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amount in the lower bins.

Having established that the number of minutes spent outdoors is particularly susceptible to

temperature, Figure 1.5 estimates the outdoor time response function for metropolitan areas in the

bottom and top quantile of the temperature distribution separately. This approach is common in

the climate literature.7 The quantiles here were chosen to demonstrate potential divergences in the

temperature response function as a function of local climate. Figure 1.5 shows that the coldest

metropolitan areas are consistently more temperature sensitive than the hottest metropolitan areas.

It should be noted that although the estimated coefficients in the hottest areas are significant and

negative for the second (20-30) and third (30-40) bins, they do not experience any days in the first

bin (<20). The coldest areas, on the other hand, do experience days in the ninth bin (>90). In

general the hottest cities have a flatter response curve than the coldest cities, supporting the notion

that there are heterogeneous temperature preferences in different climate regions.

To further support the notion that different regions of the country have heterogeneous pref-

erences for outdoor activities, Figure 1.6 plots the daily number of minutes spent outdoors each

month by state. The graph displays the unconditional survey-weighted average amount of non-

work time spent outside. Although the share of time outside is generally quite low, states in Moun-

tain West, North West, and North East increase their shares substantially in the Spring and Summer

months relative to the Winter. Surprisingly, the share levels in the South East and South West are

quite low and do not vary much throughout the year. The pattern suggests that there is large geo-

graphic and temporal heterogeneity in preferences for outdoor time use in the United States. These

seasonal and geographic patterns emphasize the need to estimate temperature response functions

separately across states, rather than assuming average effects are uniform throughout the country.

1.2 Empirical Strategy

The previous section demonstrated that weather influences the decision to spend time outside.

In order to establish the relationship between weather, climate, and leisure time, I use data from
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the American Time Use Survey and remote sensing organizations. Following Auffhammer [2018],

I detail the Climate Adaptation Response Estimation (CARE) method. Doing so allows me to

estimate both the short-run behavioral response to temperature and the long-run response to local

climate, allowing for geographic heterogeneity across the United States.

1.2.1 Estimation Strategy

The CARE method estimates both a short-run temperature response function and a long-run cli-

mate adaptation effect. The two step procedure is estimated separately for each metropolitan area

in the United States, which allows for the current geographic heterogeneity in climate preferences.

In the first stage I measure the temperature response function for each CBSA in the ATUS

sample. The model is represented by:

yit =
∑

b∈B\{60−70}

βjbDibt + γXit + αm + φy + εit (1.2)

where yit is the number of minutes spent by individual i doing some activity on day t. The

explanatory variables of interest are represented by Dibt, which are dummy variables indicating

whether the average temperature experienced by individual i on day t falls in temperature bin b. In

additionXit is a vector of observed confounders, including individual characteristics from the CPS

and other non-temperature meteorological variables such as the relative humidity and precipitation.

αm and φy are month and year fixed effects, respectively.

Potential non-linearities in the relationship between temperature and the time spent per day in

various activities are captured by the temperature bins b (Schlenker and Roberts [2009]; Deschênes

and Greenstone [2011]). As in Auffhammer [2018], the bins are split by decile with exceptions at

the top and bottom of the temperature distribution, where they are further divided to create bins for

the first, fifth, ninety-fifth, and ninety-ninth percentiles. In total, there are fourteen bins created.

Each of the estimated βjb coefficients should be interpreted as the temperature response function

relative to the baseline category of the eighth temperature bin. That is, the eighth temperature bin
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(from 60to 70F) serves as a baseline and the deviation measured by the βjb coefficients is not the

effect of a day in bin b on yit, but the effect of replacing a day in temperature bin eight with a day

in temperature bin b.

One of the primary strengths of this research approach is that the binned temperature coef-

ficients are estimated separately for each CBSA j. The exclusion of location fixed effects — a

typical feature in the climate literature — reflects the estimation strategy. By recovering a non-

linear temperature response function for each CBSA, CBSA fixed effects are implicitly included.

It is also common to interact location fixed effects with time fixed effects to adjust for seasonal

characteristics unique to a particular location. Again the nature of the CARE estimation procedure

makes the location-time interaction implicit with month and year fixed effects. Still, the exclusion

of individual-level fixed effects could create biased estimates if there are unobservable character-

istics that influence time-use patterns and are correlated within a geographic location. To account

for this, a large number of individual covariates from the CPS are included.

Another key difference between the CARE method and other estimation methods in the climate

literature is the inclusion of a second stage. The estimated β̂jb coefficients from the first stage

are used as the dependent variable to estimate the sensitivity of CBSA j’s temperature response

function to the long-run climate. The second stage model can be represented by:

β̂jb = ω0 + ω1Cjb + ω2Zj + ηjb (1.3)

where β̂jb are the estimated coefficients from the first stage. Cjb is the share of days in CBSA

j that occur in temperature bin b from 1979 to 2004. This variable reflects the long-run climate

in CBSA j. Zj is a vector of confounders in a metropolitan area which could influence the long-

run response to climate, including income and population density. Adjusting for these variables

is important as they could reflect adaptation mechanisms taken through geographic sorting. For

example, if cold weather adaptation is more expensive than warm weather adaption due to heating

costs and the costs of heavier winter clothing, then failing to account for income should bias
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estimated coefficients downward.

The coefficients of interest are the Cjb terms. To clarify interpretation, consider the uncondi-

tional number of minutes spent participating in outdoor activities in Table 1. The mean number

of minutes outdoors is 32.5 across the sample. In the first stage, if the time response to a day in

the 80-90 degree bin relative to a day in the 60-70 degree bin is a decrease of ten minutes, then

this would reflect a thirty-three percent decrease in the amount of time spent outdoors on average.

Extending the interpretation to the second stage, if the share of days a city experiences above 80

degrees each year increases by ten percent, an estimated coefficient of positive one would be inter-

preted as an increase in the slope of the first stage coefficient by one minute. More concisely: the

hotter a climate is (or becomes), the less sensitive it becomes to hot temperatures. This interpre-

tation can be thought of as the difference under future climates within a city and as the difference

between cities with different climates currently.

The purpose of the second stage is to capture geographic differences in the temperature re-

sponse function that are due to climate. This can be thought of as a cross-sectional approach,

in the tradition of Mendelsohn et al. [1994]. The preferences of metropolitan areas for various

temperature-sensitive activities reflects not just the temperature on that day, but also the long-run

climate as a result of geographic sorting. Deschênes and Greenstone [2011] and Aroonruengsawat

and Auffhammer [2011] use a similar approach, but observations of the estimated first stage pa-

rameters were at the Census division level, so the results from the second stage were imprecise

with only nine observations per temperature bin. The first stage in this research is estimated at the

metropolitan level, which provides for many more observations per temperature bin.

1.3 Results: How Weather and Climate Explain Leisure Be-
havior

Section 3.4 implements the Climate Adaptation Response Estimation procedure. The first stage

recovers the temperature response function for each metropolitan area in the sample. The result-
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ing parameters are then used to estimate how much of a city’s long-term climate influences its

sensitivity to temperature in the second stage. Results suggest that cold-weather areas are more

temperature sensitive and therefore would be expected to respond (or adapt) most aggressively to

climate change.

1.3.1 First Stage

The first stage estimates the temperature sensitivity of household activities separately for each

metropolitan area in the American Time Use Survey dataset. The results support heterogeneous

temperature preferences across the country.

Figure 1.7 plots the estimated coefficients following Model 1.2, with the number of minutes

spent outside per day as the dependent variable. In total there are 31 metropolitan areas in the

sample. The orange line represents the median response among the metropolitan areas, with each

successive ribbon of blue representing a 20% change in percentile. Since the reference bin is from

60-70, the coefficients can be interpreted as the change in the number of minutes spent outside from

the daily average temperature falling in bin b, relative to a day with average temperature between

60-70. The curve has a vague inverse-U shape, but there is significant heterogeneity between

the cities in the sample. Estimates in the bottom half of the temperature distribution are more

consistently negative than those in the top of the temperature distribution. Response heterogeneity

is reflective of the different temperature response functions in Figure 1.5, where the hottest twenty

percent of metropolitan areas have much flatter estimated coefficients than those in the coldest

twenty percent. Figure 1.8 plots the temperature response curve for each city separately. The cities

are arranged to closely resemble their relative geographic position, so New York City is in the top

(north) right (east) and San Diego is in the bottom (south) left (west).

To make the comparison more clear, Figure 1.9 represents a placebo exercise which estimates

the same equation separately for each metropolitan area, but now the dependent variable is the

number of minutes spent shopping per day. Shopping was arbitrarily chosen as it was one of the

activities in Table 1 which demonstrated no relationship to temperature. Relative to the results in

Figure 1.7, the estimates of βjb are flat and close to zero across the temperature distribution. The
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effects, when compared to those in Figure 1.7, are much smaller in magnitude and do not exhibit

the same inverse-U shape. These results support the idea that there are certain activities which are

uniquely vulnerable to the weather and to climate change, which imply long-run welfare effects

since the margin for adaptation is limited.

1.3.2 Second Stage

In this section, estimated coefficients from the first stage are used as the dependent variable

to recover the effect of local climate on temperature sensitivity. The cross-sectional approach

demonstrates the role of the long-run climate distribution on preferences.

Table 3 presents the results. The coefficients of interest are the “Bottom Bin Shares” and the

“Top Bin Shares,” which are the pooled shares of days in the bottom five and top three bins over

the twenty-five years prior to the start of the ATUS data (1979-2004). The model is estimated at the

metropolitan level. A pooled model is estimated because not every metropolitan area experiences

days in the most extreme bins, so results are more stable than estimating the climate response

on the share of each bin separately. That being said, columns (1) and (2) regress the estimated

coefficients for the bottom five bins in stage one on the share of days in those bins, and columns

(3) and (4) do the same for the subset of coefficients for the top five bins. Since the slope of the

estimated coefficients from stage one can differ dramatically at the extreme bins, columns (2) and

(4) include interaction terms for a bin estimate being in the bottom and top three bins.

The coefficients can be interpreted as the change in the slope of the first stage coefficients from

increasing the share of days in the bottom/top bins by ten percent. In plain terms this means that the

coefficients represent the change in the temperature sensitivity of outdoor time due to the relative

coldness/hotness of the local climate. A positive (negative) slope in the first two columns would

indicate that a higher share of cold days would induce more (less) time outside when the weather

is cold.

The results in columns (1) and (2) suggest that a ten percent increase in the share of cold days

makes the slope of the temperature response function more negative. For reference, a two minute
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decrease in the slope of the first stage temperature response curve accounts for approximately

ten percent of the total temperature response. That is, as the share of cold days increases in a

city, the less time people spend outdoors on cold relative to pleasant days. Although these results

appear counter-intuitive at first glance, they reflect the disparity in adaptation measures already

taken with respect to cold weather across the United States. For example, Minneapolis, Minnesota

has an eight-mile system of enclosed pedestrian footbridges which connect buildings in the city’s

downtown, making navigation of the harsh winter more manageable. Avoidance behavior is itself

adaptation, and so it should not be a surprise that those most experienced with cold weather are

those most able to avoid it. The same experience cannot be said of hot cities with respect to hot

weather, however; results for the top bins in columns (3) and (4) are statistically insignificant with

large standard errors.

To demonstrate the effect more clearly, Figure 1.10 plots the predicted second stage values

for two representative cities: one cold city with the share of cold days equal to that of the tenth

percentile in cold day shares, and one hot city with the share of hot days equal to that of the

ninetieth percentile in hot day shares. The cold city is predicted to spend much less time outdoors

as the share of cold days increases but not change when the share of warm days increases, all else

equal. On the other hand, the hot city spends slightly less time outdoors with a higher share of cold

days but more time outdoors with a higher share of hot days. The hot city-hot days relationship is

less than half that of the cold city-cold days relationship, suggesting that there is more room for

adaptation in cold weather than there is in hot weather.

1.3.3 Robustness Checks

If the first stage results are biased I would expect to see a knock-on effect in the second stage,

so in this section I run a number of robustness checks to establish that the first stage results are not

biased. First, in order to ensure that the shape of the non-linear temperature response function is not

being driven by intertemporal substitution, Figure .0A1 presents the same model as in Equation 1.2

with lags for the mean daily temperature in city j over the three days prior to the respondents’ diary

18



days. If respondents were engaging in intertemporal substitution of outdoor activities, we would

expect the temperature response function to be flatter across the eight estimated temperature bin

than it is in Figure 1.7 where no temperature lags are included. However, what it observed in Figure

.0A1 is consistent with previous estimates, exhibiting large negative effects for temperatures below

the reference bin and no or little effect in the top temperature bins.

In the main specification of the CARE model, month and month-year fixed effects are used to

adjust for seasonal and contemporaneous unobserved confounders. The model is also estimated

separately for each metropolitan area in the sample, so location fixed effects are implicit. Although

the location “fixed effects” cannot be omitted due to the model specification, the month and month-

year fixed effects can be. If the results without time fixed effects maintain their shape (i.e. large

negative responses below the 60-70reference bin and small flat responses above the reference bin),

a conclusion can be drawn: the sample period of 2005-2018 does not contain enough temporal

variation to alter the results. This suggests that — apart from the seasonality implied by the tem-

perature bins — the time horizon is not long enough to capture any change in the climate. The first

stage estimates the short-run temperature response function, not the climate effect, so omitting

time fixed effects should have no impact on results. Figure .0A2 plots the first stage model with no

time fixed effects. As expected, the temperature response curve maintains its shape.

1.4 Outdoor Leisure in a Changing Climate

The practical implications of the previous estimates depends on the climate changing over

the course of the coming decades. Shifting the climate distribution to the right will mean more

warm days and fewer cold days. Using a suite of General Circulation Models (GCMs) from the

Intergovernmental Panel on Climate Change, this section explores how a warming world could

change non-market behavior in the United States and its welfare implications.
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1.4.1 Forecasting the Effect of Climate Change on Outdoor Time

Estimates from Section 3.4 are used to project the effect of end-of-century warming on the

amount of time spent outdoors. There are two competing effects happening. First, there will be

more extremely hot days which – absent of adaptation – should decrease outdoor time. On the other

hand, an increase in average temperatures could induce more time outside in the winter as the cost

and prevalence of cold weather decreases. The change in the time outside can be represented by:

∆yj =
yjt+inf

yjt
=

∑
j β̂jb ×∆Mean Tempj∑
j Mean Time Outdoorsj

(1.4)

where ∆yj is the percentage change in the amount of time spent outside in city j between the

current period and the RCP4.5 and RCP8.5 GCMs. βjb are the estimated coefficients from Stage

1 of the CARE method from Equation 1.2 which are multiplied by the change in the number of

days in bin b for each city j under the two GCM scenarios. This estimate of the change in the

amount of time spent outdoors is divided by the average number of minutes spent outdoors in city

j during the ATUS sample period (2005-2018). The resulting quotient is the percentage change in

the number of minutes spent outside each year for city j.

Daily downscaled projections of the future climate come from NASA’s Earth Exchange Global

Daily Downscaled Projections (NEX-GDDP) dataset. The data are at a 2.5km × 2.5km grid.

NASA publishes 21 climate models from international research groups, each of which provide

estimates for the RCP4.5 and RCP 8.5 scenarios. The models are weighted following the methods

used in the Fourth National Climate Assessment (Sanderson and Wehner [2017]). The RCP4.5

scenario assumes that greenhouse gas emissions (CO2, CH4, N2O, etc.) plateau in the early 2040s

and decline in the subsequent years. This is in contrast to the RCP8.5 scenario, which assumes

a “business as usual” approach to greenhouse gasses. Emissions continue to rise throughout the

century under the RCP8.5 scenario. As a result, the RCP8.5 scenario projects upwards of four

degrees Celsius of warming, whereas RCP4.5 results in between two and three degrees of warming.

I will focus on the RCP4.5 scenario for two reasons. First, the 2014 IPCC Fifth Assessment
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Report (AR5) which established the RCP system, presented the RCP8.5 scenario as an unlikely

worst-case scenario with “with low income, high population and high energy demand due to only

modest improvements in energy intensity” (Riahi et al. [2011]). The “business as usual” moniker

then is somewhat misleading, since greenhouse gas-abatement technologies such as solar energy

become increasingly cost effective. It is unlikely that the current energy status quo persists to the

end of the century. Second, uncertainty of natural processes which create deviations in climate

models are especially pronounced in RCP8.5 models, where warming feedback loops compound

uncertainty. Cloud dynamics, for example, have proven especially difficult to project (Meehl et al.

[2020]). For the purpose of this research then, the primary results will be those of the RCP4.5

scenario.

Figure 1.11 presents the results of the simulation. The cities featured are those included in

the first stage of the CARE method in Section 1.2.1. Each city has two bars: one for the RCP4.5

scenario and one for the RCP8.5. The change in the amount of time outside is displayed in green

if it is increasing and in orange if it is decreasing. Broadly, cities in the top (northern) half of

the graph experience increases in their outdoor time, whereas cities in the bottom (southern) half

see decreases. The results are reflective of the conclusions from Stage 2 of the CARE method

which suggested that cold weather cities spent more time indoors when the weather was cold.

In general, it appears that there are margins for increasing outdoor time in northern cities due to

warmer winters, but that margin doesn’t exist in southern cities where winters are already warm

enough to enable outdoor activities. Instead, these southern cities will likely lose outdoor time as

their hot summers become more extreme.

1.4.2 Back of the Envelope Welfare Calculations

Finally, to provide a rough approximation of the welfare consequences of climate change as a

result of shifting time use patterns in the United States, I return to the U-Index measure developed

by Kahneman and Krueger [2006]. Figure 1.12 plots the change in the U-Index due to the change

in the present climate to the predicted end of century climate in cities with at least 1000 ATUS diary
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day observations. The change is calculated by multiplying the outdoor-indoor U-Index ratio by the

expected change in time outdoors for each city, as presented in Figure 1.11. An increase in the

U-Index ratio implies that the share of time spent doing activities outdoors — and therefore time

spent doing activities that are more pleasant — increases. A five percent increase in the U-Index

ratio means a five percent increase in the amount of time spent doing outdoor activities, which

in general are more pleasant than indoor activities. The results of this simple exercise reflect the

results of the CARE model: many of the cities that stand to benefit the most are cold-weather cities

which will see a decrease in the number of cold days, allowing for more time outdoors. In contrast,

the cities most negatively affected are largely warm-weather cities with mild winters already but

hot summers, leading to less outdoor time in the aggregate.

1.5 Conclusion

This paper illustrates the importance of accounting for non-market adaptations to climate

change. There are two implications of the work. First, the role of behavioral change is considered

as a margin for adaptation. Frequently the climate change literature in economics focuses on mar-

ket activities and investment as the means of adapting, but time use surveys provide a non-market

vector of change. Additionally, the surveys are both familiar to economists and will continue to up-

date as the climate changes. Second, there are behavioral preferences for climate that vary within

the United States. The breakdown of time spent indoor versus outdoors depends to a great extent

on where in the country a person lives. There are clear non-linearities in the temperature response

function which are most pronounced in the coldest regions of the country. These areas are expected

to warm the most in the coming century, leading to large welfare changes as winters become more

mild and summers more extreme. These heterogeneous climate preferences reflect both long-term

adaptation and geographic sorting.

One of the benefits of extending the climate literature to non-market activities using time use

surveys is that similar surveys are carried out in a number of countries, including in Europe and
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East Asia. Further research estimating non-market adaptation in other national contexts could

provide new and potentially more generalizable results, especially in the developing world. This

research includes strong assumptions about the ability to adapt to temperatures at the top of the

climate distribution which have not yet been realized in the United States, so there may be countries

or regions with weather observations that are outside the sample used here that might preview what

is to come.
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Notes

1https://www.washingtonpost.com/weather/2020/04/21/earth-warmest-year-likely-2020/

2Many articles reviewing outcomes exist. For agriculture see Auffhammer and Schlenker [2014], for energy see

Auffhammer and Mansur [2014], for conflict see Burke et al. [2015], and for a general overview of climate economet-

rics, see Hsiang [2016]. Finally, Massetti and Mendelsohn [2018] reviews the adaptation literature.

3For a meta-analysis of public health research, see Bowler et al. [2010]. For a review of the psychology literature,

see Pearson and Craig [2014]. And for a meta-analysis of the role greenspace plays in health outcomes, see Twohig-

Bennett and Jones [2018].

4This conclusion is intuitive. As Senator Bernie Sanders, a Vermont native, put it in an August 2020 interview:

“When I’m in Washington, I don’t go outside, and when I’m in Vermont, I don’t go inside. So there you go.”

5Time fixed effects impose the same assumption but over time. This is less of a concern, because this style of

models typically uses data that spans years, not decades, so the potential for short-term adaptation is limited.

6The categorization is inherently subjective, something that many time use research projects have contended with.

Aguiar and Hurst [2007] and Ramey and Francis [2009] attempt to create a framework for time use allocation in the

context of shifts in Americans’ labor-leisure intensive margin adjustments, but come to different conclusions due to the

subjectivity of the categorization process. Krueger and Mueller [2012] creates two methods based on the respondents’

emotional state while carrying out the activities. Since this research does not study time-use trends, the categorization

here is strictly for presentation purposes and does not have bearing on the conclusions reached.

7Barreca et al. [2016] and Heutel et al. [2017] similarly estimate the temperature-mortality relationship for different

time periods and different percentiles of the temperature distribution respectively.
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Table 1: Summary Statistics for Time Use Activities
Number of Minutes per Day

Unconditional Conditional on Minutes > 0

Activity Mean Median Share Zeros Mean Median N. Obs.

Household Labor

Personal Care 47.1 35 19.8% 58.7 45 141,331
Doing Housework 115.5 65 21.5% 147.2 105 138,209
Caring for HH Member 33.9 0 71.1% 117.1 80 50,986
Caring for non-HH Member 8.2 0 88.2% 69.3 20 20,721
Traveling/Commuting 75.3 60 15.1% 88.6 70 149,569

Market Labor

Working 157.6 0 62.1% 415.6 460 66,778
Working Outside 0.7 0 99.7% 230.0 120 530

Market Consumption Activities

Shopping 25.9 0 57.3% 60.6 40 75,159
Using Services 5.0 0 92.3% 65.6 45 13,519
Using HH Services 0.9 0 97.9% 43.3 20 3,709
Sports 19.3 0 80.9% 101.5 60 33,568

Leisure Activities

Eating/Drinking 68.4 60 4.2% 71.4 60 168,723
Leisure 295.0 255 4.7% 309.7 270 167,802
Using the Telephone 7.7 0 84.0% 47.9 30 28,205
Exercising 17.5 0 81.7% 95.9 60 32,164

Outdoor Activities

Outdoors 32.5 0 62.5% 86.6 50 66,109
Outdoor Dining 0.3 0 99.3% 39.7 30 1,202
Outdoor Exercise 5.0 0 94.5% 90.4 60 9,686
Outdoor Non-work 31.8 0 62.6% 84.9 50 65,938

Miscellaneous Activities

Sleeping 529.1 520 0.1% 529.6 520 175,956
Education-Related Activities 16.3 0 94.0% 272.5 240 10,516
Religious Activities 12.9 0 88.0% 107.2 85 21,152
Volunteering Activities 8.9 0 93.5% 136.1 100 11,500
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Table 2: Change in the Number of Minutes Spent by Activity
Relative to a Day with Max Temperature from 60-70°

Temperature Bins

Activity ¡20° 20-30° 30-40° 40-50° 50-60° 70-80° 80-90° ¿90° R2

Household Labor

Caring for HH Member -4.3 (2.6) -1.2 (2) -1.8 (1.6) -0.4 (1.1) 1.1 (1) -0.4 (1.1) -0.5 (1.8) 0.3 (4.6) 0.235
Doing Housework -2.3 (4.1) -4.3 (3.6) -3.8 (2.6) -3.8 (2.2) -1.3 (1.9) 0.2 (1.8) -0.8 (2.9) 15.1 (8.4) 0.162
Caring for Non-HH Member -1.4 (1.2) 0.2 (1) 0.2 (0.9) 0.1 (0.6) 0 (0.6) 0.1 (0.7) 1.3 (1) -1.2 (2.5) 0.072
Personal Care 0.1 (1.7) 0.5 (1.2) 0 (1) -0.4 (0.9) -0.8 (0.7) -0.8 (0.8) 0.2 (1.2) -3.2 (4.4) 0.091
Traveling/Commuting -1.2 (2.8) -3.5 (2.7) -3.2 (1.8) -3.5 (1.3) -0.9 (1.1) 0.8 (1.1) 0 (2) -9.9 (4.6) 0.071

Market Labor

Working -13.4 (9.1) -2.9 (5.4) -2.6 (5.2) -0.1 (4.1) 2.1 (3.5) 0.8 (4) -3.1 (7.8) -9.4 (16.7) 0.380
Working Outside 0 (0.6) 0 (0.5) 0.4 (0.4) 0.3 (0.3) 0.5 (0.2) 0 (0.3) 0.2 (0.5) 2.6 (1.9) 0.054

Market Consumption Activities

Using Government Services -0.2 (0.2) 0 (0.2) 0.2 (0.2) 0 (0.1) 0 (0.1) 0.1 (0.2) 0 (0.2) -0.1 (0.3) 0.048
Using HH Services 0 (0.2) 0 (0.2) 0.1 (0.2) 0.1 (0.2) 0 (0.1) 0 (0.2) 0.4 (0.3) -0.2 (0.6) 0.040
Using Services -0.5 (0.7) 0 (0.6) -0.1 (0.5) 0.2 (0.3) 0.5 (0.3) -0.1 (0.4) -0.3 (0.6) -0.1 (2) 0.059
Shopping 0.1 (1.7) -0.2 (1.2) 0.1 (1) 0.5 (0.9) 0.4 (0.8) 0.1 (0.9) -0.4 (1.2) 5.6 (5.2) 0.107
Sports -4.4 (1.7) -4.2 (1.2) -4.1 (1) -2.8 (1) -1.1 (0.8) 1.3 (1) 3.7 (1.7) -1.2 (4.9) 0.080

Leisure Activities

Exercising -4.3 (1.7) -3.5 (1.2) -3.5 (1) -3 (0.9) -1.6 (0.8) 1.4 (1) 3.8 (1.5) -1.3 (4.5) 0.079
Eating/Drinking -0.3 (1.8) -1.3 (1.3) 0.4 (1.2) -0.7 (0.8) 0.1 (0.8) 0 (0.8) 2 (1.1) 5 (4) 0.085
Leisure 21.8 (5.7) 15.1 (4.5) 9.8 (3.8) 6.9 (3.1) 0.6 (2.3) 2 (3.2) 4.3 (4.7) 11.6 (13) 0.195
Using the Telephone 0.7 (0.7) 0.3 (0.6) 0.4 (0.4) -0.2 (0.3) -0.4 (0.3) 0 (0.3) 0 (0.5) 2.4 (1.4) 0.071

Outdoor Activities

Outdoor Dining 0 (0.1) 0 (0.1) -0.1 (0.1) 0 (0.1) 0 (0.1) 0 (0.1) 0 (0.1) -0.2 (0.2) 0.041
Outdoor Exercise -1.7 (0.9) -1.3 (0.8) -2 (0.6) -1.2 (0.6) -0.8 (0.5) 0 (0.4) 0.3 (0.7) -1.1 (1.2) 0.069
Outdoor Leisure -0.5 (0.5) -0.7 (0.5) -0.5 (0.4) -0.6 (0.4) -0.3 (0.4) 0.5 (0.4) 0.4 (0.6) 0.4 (1) 0.058
Outdoors -10.2 (2) -11.1 (2) -11 (1.7) -7.5 (1.5) -2.6 (1.3) -0.1 (1.3) -0.2 (2) -2.2 (4) 0.111
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Outdoor Non-work -10.1 (2.1) -11.2 (2.1) -11.5 (1.7) -7.8 (1.5) -3.2 (1.2) -0.1 (1.3) -0.5 (1.8) -4.9 (2.9) 0.115

Miscellaneous Activities

Education 0.4 (2.4) -1.1 (1.8) -1.2 (1.8) -0.4 (1.3) -1.2 (0.9) -1.4 (0.8) -2.5 (1.1) 1.9 (5.9) 0.136
Religious Activities 0.7 (1.3) -0.2 (1) 0.3 (0.8) 0.4 (0.7) 0.5 (0.7) 0 (0.6) 0 (1) -1.9 (2.5) 0.134
Sleeping 5.1 (5) 2.9 (3.9) 5.7 (2.7) 4.8 (2.3) 0 (2) -2.7 (1.7) -2.9 (2.9) -9.8 (9.7) 0.167
Volunteering -1.2 (1.3) 0.1 (1.1) -0.8 (0.9) 0 (0.7) -0.2 (0.6) -0.3 (0.7) -0.8 (1.1) -1.9 (2.6) 0.064

Note: Each activity is estimated separately as a dependent variable with city-month and month-year fixed effects. Standard errors in parentheses are
clustered at the state level.
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Table 1.3: CARE Stage 2

Bottom Bins Top Bins

No Interactions Interactions No Interactions Interactions

Bottom Bin Shares -2.47*** -1.94**
(.913) (.816)

Top Bin Shares 2.63* 3.89**
(1.35) (1.77)

Num.Obs. 160 160 79 79
R2 0.101 0.104 0.092 0.104
Bin FE Yes Yes Yes Yes
SE White White White White

* p < 0.1, ** p < 0.05, *** p < 0.01
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Figures

Figure 1.1: Outdoor Activities More Pleasant

Note: The U-Index (Kahneman and Krueger [2006]) calculates the share of time an activity is
reported as being unpleasant by survey respondents. If the primary emotion during the activity is
negative (e.g. if the respondent reports being more unhappy than happy), then the activity is coded

as unpleasant for that respondent. The index is the weighted average of all such responses from
the American Time Use Survey’s Wellbeing module. The graph demonstrates that activities which

take place inside are more unpleasant than the same activities when they take place outside.
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Figure 1.2: Simulation of the Temperature Distribution Shifting 3 Celsius

Note: This simulation reflects the change in the temperature distribution of the United States
given a three degree Celsius increase in daily average temperatures. The numbers are simplified

for demonstration purposes; different areas of the United States are expected to warm at different
rates. Plotting the average national temperature distribution ignores the heterogeneous response to

climate change across the country.
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Figure 1.3: Annual Number of Days with Average Temperature in 5 F Bins Under Three Climate Scenarios

Note: The figure presents the average temperature under three climate scenarios in the sample
locations. First in light green is the current climate, defined as the period from 2005 through
2018. The second is the Intergovernmental Panel on Climate Change’s (IPCC)Representative
Concentration Pathway (RCP) 4.5 in which greenhouse gas emissions peak between 2040 and
2045 and then begin to decline. This intermediate scenario implies global temperatures rise by

2-3 Celsius. Finally, the darkest shade represents RCP 8.5, under which emissions continue to rise
unabated and global temperatures increase by more than 4 Celsius.
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Figure 1.4: The Share of Time Spent Outside by Activity Group

Note: Household activities — including gardening, yard maintenance, and pet care — and
participation in sports and recreation take place outside approximately one quarter of the time.

Other activity groups have much smaller shares of time spent outside.
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Figure 1.5: Estimated Change in the Number of Non-Work Minutes Spent Outside in Cities in the Bottom
and Top Quintiles of the Temperature Distribution

Note: The temperature response function is estimated for the bottom and top quintiles of the
average temperature distribution. The coldest metropolitan areas appear to be more consistently

sensitive to temperature for the coldest bins and are clearly more sensitive than the top quintile at
extremely hot temperatures.
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Figure 1.6: Daily Share of Non-Work Time Spent Outside

Note: The graph above calculates the daily share of non-work time spent outside by dividing the
total number of minutes reported outside by the number of non-work and non-sleeping minutes.
Large heterogeneous seasonal patters across states emphasize the importance of not assuming

constant temperature reaction functions.
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Figure 1.7: Distribution of Stage 1 Temperature Response Coefficients for Outdoor Time

Note: The solid orange line represents the median response, and each shaded green area
represents the surrounding high and low decile. For example, the darkest shaded area is the

estimated coefficients that are in the 40th to 60th percentile of the coefficient distribution. The
coefficients are interpreted as the change in time outside as a result of being in a particular

temperature bin relative to a day in the 60-70bin.
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Figure 1.8: Stage 1 Temperature Response Function Across Cities

Note: This figure displays the results for each city with at least 1000 ATUS respondents as
estimated in Stage 1 of the CARE method. The results in Figure 1.7 are an aggregation of the

city-level results presented here. The cities are arranged approximately geographically.
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Figure 1.9: Placebo Exercise: No Pattern for Shopping

Note: The specification for this figure is the same as in Figure 1.7, but with shopping as the
dependent variable. The median response to temperature on shopping is much flatter than the

response on time spent outdoors, supporting the conclusions from Section 1.2 that there are some
settings that are more temperature sensitive than others.
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Figure 1.10: Predicted Second Stage Response in a Synthetic Cold and Hot City

Note: This figure presents the percentage change in the number of minutes spent outside for the
in-sample cities under the RCP4.5 and RCP8.5 climate scenarios published by the IPCC. Similar

to Figure 1.8, the cities are arranged approximately geographically for visualization purposes.
Green indicates an increase in time outside and orange indicates a decrease.
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Figure 1.11: Percentage Change in the Amount of Time Spent Outside

Note: This figure presents the percentage change in the number of minutes spent outside for the
in-sample cities under the RCP4.5 and RCP8.5 climate scenarios published by the IPCC. Similar

to Figure 1.8, the cities are arranged approximately geographically for visualization purposes.
Green indicates an increase in time outside and orange indicates a decrease.
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Figure 1.12: Change in the U-Index Under the RCP4.5 Scenario

Note: This figure presents the percentage change in the number of minutes spent outside for the
in-sample cities under the RCP4.5 and RCP8.5 climate scenarios published by the IPCC. Green

indicates an increase in time outside and orange indicates a decrease.

41



Chapter 2

Weather, Climate, and the Police in America

Three Americans are killed by police every day.8 The murder of civilians – like that of George

Floyd in 2020 – have propelled social justice movements around the world and forced a reckoning

with the use of force by police. The deaths of Floyd, Philando Castile, Eric Garner, and others,

along with countless episodes of police brutality more generally, were the result of routine foot

and traffic patrol stops. Racial disparities in police interactions with the public are a particular

focus of the broader public conversation and research literature (Knox et al. [2020], MacDonald

and Fagan [2019], Goncalves and Mello [2020]). Increased focus on police departments comes

simultaneously with renewed attention on the potential damages that result from climate change.

This research unifies these two emerging narratives, exploring the relationship between police-

public interactions in the United States and the climate.

In order to conceptualize the role of weather and climate on police conduct, I argue that there

are two channels through which officers are affected. First, the productivity of the police – i.e. how

many interactions police have with the public – could be subject to the weather conditions that they

experience. Other sectors and industries show productivity being strongly affected by the weather

workers experience (Colmer [2019], LoPalo [2020], Kahn and Li [2019]). The second channel

is through increased aggression. Similar to the productivity channel, it is well established that

people act more aggressively at extreme temperatures (Hennessy and Wiesenthal [1999], Reifman
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et al. [1991]). Police aggression is a central theme of the Black Lives Matter movement, and if the

weather impacts the police through both their decision making and their behavior, then the future

of the police’s relationship with the public will be put under more strain as the climate warms,

absent reform.

Using data from the Stanford Open Policing Project (Pierson et al. [2020]), I estimate the sen-

sitivity of police conduct to short-run weather and long-run climate among eighty-seven police

departments in the United States. I find that the number of encounters police have with the public

varies greatly on a week-to-week basis depending on the weather, with both extreme hot and ex-

treme cold temperatures having a pronounced effect. This result reflects the impact of weather and

climate on police productivity, as the number of encounters is one of the primary ways cities and

police departments evaluate their own performance (Collier [2001], Fielding and Innes [2006]).

Having established that police productivity changes with the weather, the next step is to estimate

whether the criteria that police require to engage in an encounter with a member of the public

becomes more strict with changes in the weather. If the police are simply responding to the be-

havior of the public, then we would expect the criteria for stops to remain constant. To test this

intuition, I estimate the difference between the speed limit and the speed drivers are traveling when

they are stopped by the police. Finally, I use the “veil of darkness” approach (Grogger and Ridge-

way [2006]) to estimate whether the racial bias exhibited by the police when conducting stops

increases in severity on abnormally hot days. These last two exercises – the speed test and the

veil of darkness test – demonstrate that weather makes the police more strict and exacerbates their

racial biases.

Following work in the climate literature, all the models are estimated non-linearly to allow

for the response to temperature vary across the temperature distribution (Schlenker and Roberts

[2009], Barreca et al. [2016], Auffhammer [2018]). This allows the response to a day when the

temperature is ninety (or twenty) degrees Fahrenheit to be different from the response to a day

when it is sixty degrees. In the weekly stops model, police increase the number of stops they make

by as much as four percent when the weather is significantly warmer than average, but decrease
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the number of stops by the same amount when the weather is significantly colder than average.

These results support the notion that police productivity changes when the weather deviates from

comfortable temperatures in the 65 to 70 degree Fahrenheit range commonly used as a reference

temperature in the climate literature. Despite these pronounced results, the increase (and decrease)

in police activity might simply reflect the actions of the public. If, for example, drivers become

more aggressive when the weather is hot (Kenrick and MacFarlane [1986]), we could expect the

police to respond in kind and conduct more stops.

To test whether the police are responding to public behavior or themselves changing their

behavior, the second and third models present evidence that the police become more strict and

increase the share of black drivers they stop at hot temperatures. To capture the change in strictness,

I estimate a similar non-linear model to that of the weekly stops model, this time at the daily level

with the dependent variable representing the difference between the posted speed limit and the

speed a driver is traveling when they are stopped. If the police are simply responding to the actions

of the public, then there are two possible outcomes for this model. First, there is no change in

the dependent variable – i.e. the standards of the police do not change. Second, if the public

is speeding faster at extreme temperatures, then the average difference in the dependent variable

should increase to reflect the fact that drivers are traveling faster. Despite this expectation, the

results of the second model show that police officers actually decrease the speed difference that

they stop drivers for. That is, the police become more strict and pull drivers over for smaller

infractions at very hot temperatures.

Finally, to test whether the racial biases police exhibit are exacerbated by hot weather, I estimate

a veil of darkness model (Grogger and Ridgeway [2006]). the veil of darkness mode tests whether

the share of black drivers stopped by police decreases with the onset of night or increases with

sunrise. The intuition is that police have a more difficult time deciphering the race of drivers when

there is no daylight. Table 2.2 shows a simple cross section, using the variability of darkness

throughout the year between 5:30 and 6:00PM to get the proportion of drivers who are black and

pulled over by police when it is light and dark out. The share of black drivers stopped decreases
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when it gets dark out, suggesting some support for the veil of darkness hypothesis. For a number

of reasons though, including the fact that commuting patterns between racial groups may differ

(Hamermesh et al. [1996]) this naive comparison is insufficient. To demonstrate the different

commuting patterns, Figure 2.1 shows the cumulative number of police stops by race over the

average twenty-four hour period. The most salient fact on display is that black drivers’ share of

stops increases at night relative to white, Hispanic, and Asian and native drivers. This suggests

either that the veil of darkness hypothesis is either exactly incorrect, or – more likely – black

drivers travel more frequently at night than drivers of other races. Lamberth [2003] finds in a

traffic survey that ninety-five percent of drivers’ races could be identified during the daylight hours

but that nighttime observations were impossible to record without additional lighting, leading to

the conclusion that the commuting pattern hypothesis is likely to be correct.

To summarize, the results presented here indicate that when the weather is hotter than usual:

the police increase the number of traffic and pedestrian stops they make each week; the police

become more strict with speeding violations; and the police do not increase the veil of darkness

gap. Taken together, the results of the three models suggest large productivity implications for the

police and large welfare implications for the public who are being stopped at higher rates and more

arbitrarily when the weather is warm. The racial biases exhibited by the police do not intensify

on hot days, but the increase in the number of contacts between the police and the public could

exacerbate racial disparities in the use of police force without the temperature having a direct effect

on police behavior.

The most similar research to this is Annan-Phan and Ba [2019], which estimates the effect of

temperature on civilian deaths at the hands oft he police. The authors of that work find that the

number of assaults among the public and of police increases in temperature, but the rate of fatal

police shootings does not increase. However, they also note that on extremely hot days – i.e. days

above 32 degrees Celsius – the rate of deaths from Taser and restraints increases. This research

expands on the theme of temperature’s effect on police activity and demonstrates that the police

become more strict with regard to speeding violations as a result of extreme temperatures. In this
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sense, the paper contributes to the climate literature in two regards. First, the effect of temperature

on the number of stops the police conduct on a weekly basis adds to the literature on climate

change and productivity. The number of stops officers make is one of the primary measures of

productivity researchers and departments use when evaluating productivity, so the results presented

here add to the growing literature on the climate’s effect on worker output. Second, by showing

that police officers issue citations for smaller speeding infractions when the weather is hot, this

paper contributes to the strain of the climate literature examining the role of heat on behavioral

outcomes.

The paper proceeds as follows. Section 2.1 discusses the role weather and climate have on

worker productivity and personal behavior, as well as the difference between weather and climate

and its implication in econometric models. Section 2.2 discusses the data being used in the analysis

and provides details on the non-linear estimation strategy. Section 2.3 estimates the three models

– weekly stops, speeding, and veil of darkness – and provides robustness checks and alternative

model specifications. Section 2.4 concludes.

2.1 Productivity, Conflict, and the Weather

The climate change literature in economics is rich with research on the effect of climate on both

productivity and conflict. Recent advances in computational power and the availability of remote

sensing data has precipitated a rush to estimate the effect that weather and climate have on a large

number of outcomes as the threat of climate change becomes more acute. To properly establish

this research’s place in the literature, this section discusses the work that has already been done

and reviews the difference between weather and climate, which is one of the central themes in the

climate literature.

First, the effect of the weather and climate on productivity. In regions across the globe, heat has

been shown to hinder worker productivity in settings ranging from manufacturing (Colmer [2019],

Zhang et al. [2018], Adhvaryu et al. [2018]) and survey work (LoPalo [2020]) to outdoor work in
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the United States (Zivin and Neidell [2014]). Cognitive tasks become more burdensome (Seppanen

et al. [2006]), and even household activities are conducted more sluggishly at high temperatures

(Kjellstrom et al. [2016]). Even test scores among school-aged children are subject to heat-induced

stress (Park [2017]). It is therefore not a stretch to assume that in a high-stakes occupation such as

policing, extreme temperatures may affect officers’ productivity and judgement on the job.

Next, the role of weather on conflict. Although the connection between police encounters with

the public and conflict usually does not end in violence, it is an ongoing source of public debate

and concern in the United States. Therefore, situating this research in the climate-conflict literature

is appropriate. At both the interpersonal and international scale, extreme weather has been shown

to intensify the propensity for violence across the world. At the interpersonal level, the number

of assaults, murders, rapes, and other violent crimes increase with hotter temperatures (Ranson

[2014]). Assaults by members of the public on other members of the public and on police officers

also increases as the thermostat rises (Annan-Phan and Ba [2019]). At the societal level, the effect

of abnormal weather on conflict is not limited to hot temperatures: Iyigun et al. [2017] find that

cooling between 1400 and 1900 CE, often referred to as the “Little Ice Age,” increased incidents of

war and conflict between nations in Europe, North Africa, and the Near East. Finally, Burke et al.

[2015] use a hierarchical meta-analysis of the conflict-climate literature, finding that a standard

deviation increase in temperature increases interpersonal conflict by 2.4% and inter-group conflict

by 11.3%.

Experimental evidence supports the hypothesis that behavioral changes are a key factor in heat-

induced increases in conflict. Laboratory settings have demonstrated that extreme temperatures at

both ends of the distribution induce aggression and hostile attitudes (Anderson et al. [1996]). Out-

side the lab in a large number of contexts – from driving (Baron [1976], Kenrick and MacFarlane

[1986]) to baseball (Reifman et al. [1991], Larrick et al. [2011]) – people act more aggressively

at high temperatures. Combining the effect of heat-induced aggression with the high-stress nature

of police work could have large welfare implications for the police and the public, something that

this research seeks to explore further.
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2.2 Empirical Strategy

2.2.1 Data Description

The primary source of data used in this research is The Stanford Open Policing Project, but

there is also meteorological data from the University of Idaho’s gridMET dataset and population-

level statistics from the United States Census Bureau.

Police Encounters Data

The Stanford Open Policing Project collects data for encounters between the police and civil-

ians through freedom of information requests to state and local police departments (Pierson et al.

[2020]). Due to the federalized nature of policing in the United States, there is no national-level

source for interactions between police and the public. The Open Policing Project is the most com-

prehensive data available at this time. The complete dataset contains over 200 million observations,

each of which represent a single police encounter. Data include both pedestrian and vehicle en-

counters, however the majority of the data is vehicle stops as many police departments do not make

pedestrian stops available.

Figure 2.2 displays the sample being used in this analysis. The figure is at the county level,

with counties in dark blue representing those in-sample. A number of cities and states available

through The Open Policing Project are excluded due to certain variables being unavailable. For

example, the Oregon and Nevada State Patrols do not provide information on where stops take

place. Location data is necessary to match with weather observations in order to go forward with

the analysis. The data are provided by either state police patrols or city police departments. In Fig-

ure 2.2, city departments are presented at the county level to more easily highlight their inclusion.

A number of major cities and state capitals, such as Chicago, New Orleans, Oklahoma City, and

others stand out for being city-level departments within states that do not provide data. There are

also cases like those of the major city departments in Texas and North Carolina – e.g. Houston,

Austin, Raleigh, etc. – that are in states which have state patrol data available. These cities do not
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stand out as well as those cities in states that do not provide data.

To get a complete picture of the cities and states included, Table 2.3 presents the number of

observations, sample years, and the analyses – main, speeding, and veil-of-darkness – each location

is apart of. The sample spans from 2011 to 2019; the largest single source is the California State

Patrol, which includes over 24 million observations. Every city or state department listed appears

in the primary model specification, which estimates the change in the number of stops in a county

per week as a result of abnormal temperatures. The second analysis, testing whether the speed

police pull drivers over for changes on abnormal weather days, is much more restricted as only

a handful of departments make the speed limit and driver speed data at the location of a stop

available. Despite the restricted sample, there are still over 10 million observations in the speeding

model due to the large size of the cities and states included. Finally, the veil of darkness model

is more inclusive of the total sample than the speeding model. The veil model requires data on

the time of day a stop takes place and the race of the driver, which is provided by most of the

departments in the sample.

Meteorological Data

Weather data comes from the University of Idaho’s gridMET dataset (Abatzoglou [2013]). The

gridMET data provides measures such as maximum and minimum temperature, maximum and

minimum relative humidity, wind speed, and precipitation at the 2.5 x 2.5 mile spatial resolution

for the continental United States since 1979. gridMET combines gridded climate data from The

PRISM Climate Group with reanalysis data to, creating a precise and high-resolution dataset that

is comparable with weather stations but with more consistent temporal and spatial coverage.

For this analysis, daily weather observations from gridMET are used to find the average tem-

perature, relative humidity, wind speed, and precipitation in the county which a police encounter

occurs. For example, a stop in Boston on June 1, 2015 is merged with the average meteorological

values in Suffolk County, Massachusetts on that date. A majority of the police agencies in the

Open Policing dataset do not make the exact location of a stop – e.g. the coordinates or closest
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street address – available, necessitating the use of county averages. Each weather variable is ex-

tracted as the mean value in the county of an encounter from the continuous gridMET data using

the “terra” package in R (Hijmans [2021]).

Figure 2.3 displays the annual mean temperature for each county in the sample. The gridMET

meteorological data is matched to the Stanford Open Policing data to create the figure. Counties

are divided into five temperature bins to more clearly display the regional temperature patterns

present. In the models presented, identification is derived from within-county temperature vari-

ability. Therefore, regional geographic temperature heterogeneity plays an important part in de-

termining the difference in police behavior given certain weather conditions. Average temperature

on a county-encounter day is the primary explanatory variable of interest, but as part of a series of

robustness checks, I also use the other variables available in the gridMET data, including the daily

maximum temperature, the wind-chill temperature, and the wet bulb temperature (Stull [2011]).

2.2.2 Estimation Strategy

Following the recent work in the climate change literature, I estimate the three models allowing

for non-linearities in the temperature response function. In practice, this means that the response

to temperature is flexible and allowed to change based on where in the temperature distribution a

particular day falls. Following the work in Auffhammer [2018], I create a series of temperature

bins based on the percentiles of the temperature distribution. The primary model, which estimates

the change in the number of stops a police department conducts in a given week, is represented by:

ycwy =
∑
b

βbDcbwy(Tb) +
∑
j

γjDcwy(Pj) + ρXcwy + αcw + φmy + εcwy (2.1)

where ycwy is the log number of police stops in county c for week w in year y. Dcbwy is the sum

of days in week w that county c falls into temperature bin b. The βb and γj terms are non-linear

temperature and precipitation response coefficients, respectively. They represent a series of bins

to allow for police departments to have differential responses to more or less severe weather. The
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βb terms can be interpreted as the effect of an extra day per week in bin b on the number of stops

per week relative to the reference bin, in this case a day between 64 and 69 degrees Fahrenheit.

Similarly, the γj term is interpreted as the effect of an extra day per week with rain relative to the

reference bin of a day with no rain. Xcwy are a series of weather covariates and an indicator for

whether the police department in county c includes pedestrian stops rather than just traffic stops.

The weather covariates include the average relative humidity and average wind speed.

Following work in the climate literature (Schlenker and Roberts [2009], Deschênes and Green-

stone [2011], Barreca et al. [2016], etc.) αcw and φmy are county-week and month-year fixed

effects. αcw captures annual variation occurring in county c during a particular week of the year.

For example it’s reasonable to expect the week of Memorial Day – typically associated with the be-

ginning of summer in much of the United States – would see more police activity in counties with

popular outdoor recreational amenities available. Similarly, the month-year fixed effects capture

the effect of events that are shared across all the counties in the sample that occur in a particular

month-year. The sample only runs through 2019, but March and April 2020 provide strong intu-

ition for idea: as lock-downs due to COVID-19 were extended across the country, we would expect

that the number of police encounters fell as a result of fewer people traveling from home.

More must be said about the structure of the temperature bins. As mentioned, the models

presented follow that of Auffhammer [2018] by creating percentile-based bins. This is relatively

uncommon in the literature, where readers more frequently encounter five or ten-degree tempera-

ture (Fahrenheit) bins. Both approaches allow for agents to respond non-linearly to the experienced

temperature, but the Auffhammer approach has the additional advantage of recovering estimates

for the most extreme temperature days. Fourteen bins are created: a bin for observations below the

first percentile of average temperatures, a bin between the first and fifth percentiles, a bin between

the fifth and tenth percentiles, a bin between the tenth and twentieth percentiles, and a bin for each

decile until the ninetieth percentile. The bins above the ninetieth percentile reflect the bins below

the tenth percentile: one between the ninetieth and ninety-fifth, one between the ninety-fifth and

ninety-ninth, and one above the ninety-ninth. The precipitation bins are also non-linear, but do not
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take the same percentile approach. Instead, they are divided into seven bins: below five millime-

ters of precipitation, between five and ten millimeters, between ten and twenty millimeters, then

every subsequent bin represents ten millimeter increments until the seventh, which reflects days

with more than fifty millimeters of precipitation.

The second and third models – the change in the speed required for drivers to be stopped and

the change in the veil of darkness – are slight modifications on the main model. The speed model

can be represented as follows:

yit =
∑
b

βbDit(Tb) +
∑
j

γjDit(Pj) + ρXit + αcw + φmy + εit (2.2)

where yit is the difference between the speed a driver was driving when stopped and the posted

speed limit on day t. Unlike in the primary model above, the speed model is at the individual

encounter level i rather than at an aggregated county-week level. The bins Dit then refer to the

weather conditions – mean temperature and precipitation – on the day of the stop. Again Xit is

a vector of covariates containing humidity and wind speed. However, since the model is at the

encounter level there are a number of additional variables available: the race, sex, and age of the

driver, the time of day the stop occurred, and the age and type of vehicle being driven. Since

the stops in the sample are necessarily traffic stops, the indicator for whether the data contained

pedestrian stops is not contained in this model. Again αcw and φmy are county-week and month-

year fixed effects.

Two aspects of the non-linear approach should be noted. First, although the method is more

flexible than a simple quadratic approach, an identifying assumption is that the effect within bins is

constant. A majority of the bins are approximately five degrees wide, so in practice this assumption

means that we would expect the response to a day with mean temperature of 75 to be the same as a

day with mean temperature of 79. The Auffhammer percentile-based bins mitigate concerns about

this assumption somewhat by creating bins that are slightly less arbitrary than five or ten-degree

bins. Second, in Model 2.1 the dependent variable is the log of weekly stops in a county. Wichman

[2018] shows that, in the non-linear temperature response models used in the climate literature, we
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should be careful interpreting the coefficients as a percentage change in the outcome of interest if

the estimated response is sufficiently large. To account for this, Section 2.3.4 includes a robustness

check allowing for the dependent variable to adjust according to the suggestions made in Wichman

[2018].

The veil of darkness model can be represented by the following:

Pr(blacki|t, c,D) = logit−1(αDi+βDi×tempi+δDi×temp2
i +γns6t+ρXi+ψc+φmy+εit) (2.3)

where Pr(blacki|t, c, p,D) is the probability that the driver in stop i is black, given the date and

time t, the county c, and the darkness indicator D. D equals one if stop i occurs after dusk and

zero if the stop is before sunset. The D indicator is interacted with both the linear and quadratic

forms of temperature. The coefficients of interest are those representing the interaction terms, β

and δ. ns6t represents a natural spline of time, reflecting the thirty-minute time period leading up

to or following sunset or dusk. It could be the case that the time variable should vary non-linearly

as certain periods within the thirty-minute window have different visibility for the police on patrol.

For example, the glare ten minutes before sunset might be more severe than thirty minutes before

sunset. The spline allows for this sort of variation. Xi is a vector of variables that may influence

the officers’ decisions to make a stop and/or be associated with black drivers, such as the other

non-temperature weather conditions, the gender of the driver, and the type of vehicle being driven.

Finally, ψc and phimy are county and month-year fixed effects, respectively. These are included to

soak up any county-specific and month-year specific variation, as described in the previous models.

As demonstrated in Figure 2.1, racial differences in commuting patterns make a simple com-

parison of light and dark police pullovers insufficient. To account for this, I follow the analysis in

Grogger and Ridgeway [2006] and Pierson et al. [2020] by focusing on traffic stops that occurred

up to sixty minutes before sunset and up to sixty minutes following dusk, with the thirty minutes

between sunset and dusk filtered out to account for the fact that it is neither light nor dark during

this period. The sample is also restricted to the sixty days surrounding the commencement or ex-
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piration of daylight savings time (Ridgeway [2009]). The reason for restricting the sample to this

period around daylight savings changes is that drivers’ schedules are plausibly the same during

these periods despite the level of darkness varying. That is, it is unlikely that many drivers change

their commuting patterns based on whether it is light or dark out at 5:00 PM in, for example,

November.

2.3 Results: How Weather Changes Police Productivity and

Behavior

The results presented below show significant changes in both the number of stops that police

conduct in the course of a week and in the speed that police pull drivers over for. Section 2.3.1

estimates the main police encounters model detailed in Equation 2.1, finding a large increase in

the number of stops at hot temperatures and a large decrease at cold temperatures. Section 2.3.2

demonstrates that, rather than police simply responding to changes in the public’s behavior, the

police themselves become more strict at hot temperatures.

2.3.1 Change in the Number of Foot and Traffic Patrol Stops

Figure 2.4 and Figure 2.5 present the results of Model 2.1 for the non-linear temperature and

non-linear precipitation variables of interest. The reference bin – i.e. the bin that the rest of the bin

coefficients are interpreted as being relative to – is the ninth bin, from 64 to 69 degrees Fahrenheit.

The dependent variable in both figures is the log number of weekly stops that police departments

make. Therefore, the results should be read as the percentage change in the number of stops a

police department makes in a week if we were to replace one day with temperatures between 64

and 69 degrees with, for example, a day with mean temperatures above 87 degrees.

Both Figures 2.4 and 2.5 show significant non-linearities across the temperature and precipita-

tion distributions. In the figures, the center dot of each bin represents the estimated coefficient and

the error bars are clustered standard errors at the state level multiplied by two to roughly approx-
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imate a 95% confidence interval. First, the number of stops per week is affected by both low and

high temperatures, with the effect being especially pronounced at the extreme ends of the distribu-

tion. On the bottom (i.e. colder) half of the distribution, the number of stops decreases by as much

as four percent with an extra day per week in the lowest bin relative to a day between 64 and 69

degrees Fahrenheit.

An important thing to note in the weekly stops models presented here represent the change in

the response of police to temperature and precipitation, but this response could be a reflection of

changing behavior on the part of drivers and pedestrians. It is well established in the literature

that people act more aggressively when the temperature is hot (Kenrick and MacFarlane [1986],

Reifman et al. [1991], Larrick et al. [2011]), so the coefficients estimated in this section might be

explained by the public’s behavior rather than the police’s.

2.3.2 Change in the Speed Drivers are Stopped For

To get a better sense of whether the effect of temperature on police behavior, Model 2.2 esti-

mates the difference in the speed that police stop drivers for. That is, whether the delta between

the speed limit and the speed a driver is stopped for changes due to the weather. If the change in

the number of stops per week demonstrated in the previous section were due strictly to the change

in behavior of the public, then there are one of two possibilities: first, there could be no change

in the speed drivers are stopped for. This would be the case if there were more drivers speeding

but their average speeding infraction was not more severe at hot temperatures than under normal

conditions. Alternatively, if individual drivers drove faster and therefore more aggressively, then

we would expect the average speed that police are stopping drivers to increase.

Figure 2.6 plots the results of Model 2.2. Similar to the previous section, the center dot of

each bin represents the estimated coefficient and the error bars are clustered standard errors at the

state level multiplied by two. The dependent variable is the difference between the speed a driver

was traveling and the speed limit when they were stopped by police. For clarity I will refer to this

difference as the speeding gap. The coefficients then can be interpreted as the change in the speed
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delta as a result of a day falling in one of the thirteen temperature bins rather than being in the

reference bin of 64 to 69 degrees Fahrenheit. Again I use the Auffhammer percentile bins to relax

the assumption of constant effects within a bin and to better estimate the effect on the extremes of

the temperature distribution.

The results in Figure 2.6 show an upside down-U shape, demonstrating that on days with ex-

treme temperatures the police become more strict with speeding relative to days with temperatures

between 64-69 degrees Fahrenheit. Since the coefficients represent the change in the speeding

gap, the most extreme hot bin’s result of approximately -.50 is a half a mile per hour decrease in

the speed drivers get pulled over for. The results at the cold end of the temperature distribution

are similarly negative, but the magnitude is smaller with the estimated coefficients ranging from

-.30 to -.05 miles per hour. The results are consistent with an interpretation of the police not only

responding to driver behavior, but changing their own behavior due to the weather. As discussed

in the previous section, if the police were simply reacting to the actions of the public, we would

not expect to see any change in the speeding gap. However, the model clearly shows this is not the

case, and therefore we can conclude that the police are not immune to the stresses and pressures of

the weather.

2.3.3 Change in the Veil of Darkness

Table 2.4 displays the results of Equation 2.2.2. The dependent variable in each of the four

columns is an indicator for whether the driver pulled over by police was black, and the right-hand

side variables of interest are the interaction between the “Dark” indicator and the temperature

and temperature quadratic terms. Each column includes county and month-year fixed effects and

has standard errors clustered at the state level. The only difference between the models is which

covariates are included, as indicated by the rows in the bottom half of the table.

The first column includes three weather variables: relative humidity, wind speed, and precip-

itation. The second includes the gender of the driver, the third includes the age of the driver, and

the fourth includes the outcome of the stop (e.g. ticket issued). The results of all four models
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are inconsistent and – for the interactions between darkness and temperature – very small when

significant. The estimated likelihood values for “Dark” are large, negative, and significant, which

is in line with the existing literature (Pierson et al. [2020]), but its interaction with temperature are

extremely small and slightly positive.

2.3.4 Robustness Checks and Alternative Specifications

Figure 2.7 plots the results of Model 2.1, but instead of using the Auffhammer [2018] percentile-

based temperature bins, ten-degree bins are used. The interpretation of the coefficients is the same:

the effect of an additional day per week in a given bin rather than a day in the reference bin. The

key difference in Figure 2.7 is that the reference bin is now 60-70 degrees Fahrenheit, rather than

64-69 degrees as in Figure 2.4. As expected, the results remain consistent regardless of how the

bins are divided. Police are less active on cold days but substantially more active on hot days,

relative to the reference bin. Days above 90 degrees increase the number of stops per week by over

five percent, which days below twenty degrees decrease the number of stops per week by three

percent.

2.4 Conclusion

This research demonstrates the importance of expanding our understanding of the effect of

climate change on behavioral outcomes. The police are a central part of modern American society,

and the increased scrutiny that their actions draw, are subject to the same stresses induced by

extreme weather as the rest of the public. Their productivity – measured here by the number

of traffic and pedestrian encounters they make in a week – increases as the weather gets hotter.

However, since this productivity effect may simply be in response to the actions of the public, I

also demonstrate that the police become more strict with regard to speeding violations on high

temperature days. Non-linearities in the response to temperature also demonstrate that shifts in the

temperature distribution itself will have unforeseen consequences, such as when warmer winters
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induce more active behavior on the part of the police and public.

Other measures of police productivity and conduct that are not explored in this work may also

be affected by the weather. Further research into changes in police violence and the penalties that

they issue as a result of the weather would enhance the public’s understanding of what to expect

with respect to intensifying climate change and potentially point to areas where police reform can

be targeted, one of the central tenets of recent social movements such as Black Lives Matter. It is

also unclear whether these results are generalizable to other countries, where police practices vary

substantially from those in the United States. Estimates of geographic heterogeneity within and

between countries could provide further insight into the role of weather on stressful occupations as

well as the effect of climate change more generally.
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Tables

Table 2.1: Proportion of Drivers Pulled Over Who are Black
Between 5:30 and 6:00PM when it’s light and dark out

Proportion Black

Dark 17.2%
Light 18.9%
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City and State Departments Included in the Sample

Sample Years Outcome Models

Police Agency State N. Obs Min. Year Max. Year Main Speeding Veil

Little Rock AR 13, 641 2017 2017 Yes No Yes

Gilbert AZ 336, 607 2011 2018 Yes No No

Mesa AZ 96, 621 2014 2017 Yes No Yes

State Patrol AZ 3, 481, 294 2011 2017 Yes No Yes

Anaheim CA 87, 876 2012 2017 Yes No No

Bakersfield CA 153, 691 2011 2018 Yes No Yes

Long Beach CA 208, 331 2011 2017 Yes No Yes

Los Angeles CA 4, 966, 403 2011 2018 Yes No Yes

Oakland CA 133, 405 2013 2017 Yes No Yes

San Bernardino CA 90, 523 2011 2017 Yes No Yes

San Diego CA 382, 844 2014 2017 Yes No Yes

San Francisco CA 474, 367 2011 2016 Yes No Yes

San Jose CA 152, 833 2013 2018 Yes No Yes

Santa Ana CA 46, 268 2014 2018 Yes No Yes

State Patrol CA 24, 199, 710 2011 2016 Yes No No

Stockton CA 41, 629 2012 2016 Yes No No

Aurora CO 172, 929 2012 2016 Yes No Yes

Denver CO 1, 870, 609 2011 2018 Yes No No

State Patrol CO 2, 642, 566 2011 2017 Yes No Yes

Hartford CT 18, 435 2013 2016 Yes No Yes

State Patrol CT 1, 175, 339 2013 2015 Yes No Yes

State Patrol FL 6, 622, 051 2011 2018 Yes No Yes

Tampa FL 1, 301, 854 2011 2018 Yes No No

State Patrol GA 1, 906, 772 2012 2016 Yes No Yes

State Patrol IA 1, 391, 911 2011 2016 Yes No Yes

Idaho Falls ID 66, 071 2011 2016 Yes No Yes

Chicago IL 846, 456 2012 2016 Yes No Yes

Fort Wayne IN 152, 265 2011 2017 Yes No Yes
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Louisville KY 110, 959 2015 2018 Yes No Yes

Owensboro KY 6, 921 2015 2017 Yes No Yes

New Orleans LA 450, 127 2011 2018 Yes No Yes

State Patrol MA 1, 883, 756 2011 2015 Yes No No

Baltimore MD 854, 759 2011 2017 Yes No No

State Patrol MI 782, 459 2011 2016 Yes Yes Yes

Saint Paul MN 223, 547 2011 2016 Yes No Yes

State Patrol MS 758, 412 2013 2016 Yes Yes No

State Patrol MT 682, 388 2011 2016 Yes No Yes

Charlotte NC 625, 570 2011 2015 Yes No Yes

Durham NC 136, 901 2011 2015 Yes No Yes

Fayetteville NC 222, 529 2011 2015 Yes No Yes

Greensboro NC 212, 847 2011 2015 Yes No Yes

Raleigh NC 337, 390 2011 2015 Yes No Yes

State Patrol NC 7, 766, 734 2011 2015 Yes No Yes

Winston-Salem NC 176, 901 2011 2015 Yes No Yes

Grand Forks ND 46, 848 2011 2016 Yes No Yes

State Patrol ND 268, 925 2011 2015 Yes No Yes

State Patrol NE 3, 034, 695 2011 2016 Yes No No

State Patrol NH 259, 822 2014 2015 Yes No Yes

Camden NJ 195, 100 2013 2020 Yes No Yes

State Patrol NJ 2, 801, 557 2011 2016 Yes No Yes

Henderson NV 111, 089 2011 2019 Yes No Yes

Albany NY 47, 600 2011 2017 Yes No Yes

State Patrol NY 6, 841, 977 2011 2017 Yes Yes Yes

Cincinnati OH 207, 987 2011 2018 Yes No Yes

Columbus OH 128, 157 2012 2016 Yes No Yes

State Patrol OH 6, 267, 341 2011 2017 Yes No Yes

Oklahoma City OK 726, 433 2011 2017 Yes No Yes

Tulsa OK 311, 102 2011 2016 Yes Yes Yes

Philadelphia PA 1, 865, 096 2014 2018 Yes No Yes
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State Patrol SC 4, 382, 384 2011 2016 Yes No No

State Patrol SD 435, 895 2012 2016 Yes No No

Nashville TN 2, 781, 729 2011 2019 Yes No Yes

State Patrol TN 2, 012, 268 2011 2016 Yes No Yes

Arlington TX 112, 526 2016 2016 Yes No Yes

Austin TX 259, 403 2011 2016 Yes No No

Garland TX 159, 840 2012 2019 Yes Yes Yes

Houston TX 1, 375, 920 2014 2018 Yes Yes No

Lubbock TX 411, 790 2011 2018 Yes No No

Plano TX 249, 043 2012 2015 Yes Yes Yes

San Antonio TX 1, 040, 428 2012 2018 Yes No Yes

State Patrol TX 14, 812, 214 2011 2017 Yes No Yes

State Patrol VA 2, 398, 402 2011 2016 Yes No No

Burlington VT 31, 510 2012 2017 Yes No Yes

State Patrol VT 258, 806 2011 2015 Yes No Yes

Seattle WA 121, 393 2011 2015 Yes No Yes

State Patrol WA 8, 966, 807 2011 2018 Yes No Yes

Tacoma WA 141, 591 2011 2017 Yes No No

Madison WI 208, 310 2011 2017 Yes Yes Yes

State Patrol WI 1, 052, 838 2011 2016 Yes No Yes

State Patrol WY 172, 948 2011 2012 Yes No Yes

Total 132, 765, 275 2011 2019 132, 765, 275 10, 687, 063 88, 989, 983
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Veil of Darkness Models

(1) (2) (3) (4)

Dark -0.090 -0.132** -0.179** 0.025
(0.057) (0.057) (0.078) (0.078)

Avg. Temp -0.002 -0.002 -0.002 -0.001
(0.002) (0.002) (0.003) (0.003)

Avg. Temp2 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Dark ×Temp 0.002 0.003 0.006** 0.003
(0.002) (0.002) (0.003) (0.004)

Dark ×Temp2 0.000 0.000 0.000* 0.000
(0.000) (0.000) (0.000) (0.000)

Num.Obs. 2,214,542 1,977,556 1,055,907 724,624
FIPS FE X X X X
Month-Year FE X X X X

Weather X X X X
Driver Sex X X X
Driver Age X X
Stop Outcome X
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figures

Figure 2.1: The Time Drivers of Different Races Get Pulled Over

Note: This plot reflects the relative proportion of stops by police for each race in the sample over
the course of an average twenty-four hour period. The afternoon shares are largely constant

across the four groups, but black drivers are stopped at much higher rates during the overnight
hours, suggesting different driving patterns from whites and Hispanics in particular.
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Figure 2.2: States, Counties, and Cities in the Sample

Note: This figure plots the state and city police departments in-sample at the county level for
clarity. Not all states are fully represented, and some states which provide data from their state

patrols also have data from city departments. A prominent example of this is in Texas, where both
the state patrol and the departments of major cities such as Houston, Austin, and Dallas all

provide data.
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Figure 2.3: Average Annual Temperature by County

Note: This plot demonstrates the heterogeneity in temperature across the counties in the sample.
The counties are grouped into five temperature bins based on their average annual temperature.
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Figure 2.4: Change in the Number of Pullovers Per Week

Note: The temperature response function is estimated using a non-linear model to allow for the
effect of temperature to vary across the temperature distribution. Cold weather decreases the

number of stops police make per week relative to days in the 64-69 degree bin, but hot
temperatures increase the number of stops police make.
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Figure 2.5: Change in the Number of Pullovers Per Week – Precipitation

Note: This plot displays the estimated coefficients for the non-linear precipitation model. The
dependent variable is the log number of stops per week, as it is in the temperature model. The
reference bin is zero precipitation. Unsurprisingly, the more precipitation that falls, the fewer

stops police make per week.
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Figure 2.6: Change in the Speed Pullover

Note: This figure plots the change in the speed required for police to pull drivers over. Again a
non-linear approach is taken to allow the response to vary across the temperature distribution. At
extreme temperatures, police reduce the speed required to be stopped, suggesting that the weather

affects police behavior.
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Figure 2.7: Change in the Number of Pullovers Per Week

Note: This figure plots the same temperature response function with the log number of weekly
stops as the dependent variable, however the bin structure is modified to include 10-degree bins

rather than the percentile-based bins from Auffhammer [2018].

70



Chapter 3

Retail Marijuana Deregulation and Housing

Prices

The rapid legalization of recreational marijuana has created a new industry in the United States.

Despite the quick succession of states passing these legalization measures, there is little evidence

of how the local economy responds. Immediately upon passage of legalization laws, states increase

revenues with marijuana sales taxes and decrease costs by reducing the burden of marijuana-related

arrest and incarcerations. Both of these examples create second-order effects on markets which

have yet to be considered. This research contributes to the growing marijuana legalization literature

by studying the cross-state effect of recreational marijuana legalization (RML) on the housing

market.

Other studies has considered the impact of marijuana legalization on residential home prices,

many of which are concerned with the effect of marijuana dispensaries. Thomas and Tian [2017],

Conklin et al. [2020], Tyndall [2019], and Burkhardt and Flyr [2019] all estimate the housing

market response to new dispensary openings in nearby neighborhoods. Among these papers, the

evidence is decidedly mixed with negative, positive, null, and positive results respectively. Cheng

et al. [2018] use the staggered adoption of city-level marijuana regulations within Colorado to esti-

mate a difference-in-differences model, finding a six percent price increase in the housing market.
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Our key contribution to the literature is the estimation of a cross-state model, which is made possi-

ble with a rich national level housing data set from the online real estate database Zillow.com. We

also provide new evidence of the effect of dispensaries on nearby home values in both Colorado

and Washington.

Twelve states and Washington D.C. have passed initiatives legalizing the use of marijuana for

recreational purposes since 2012. Additionally, 33 states and Washington D.C. have passed med-

ical marijuana laws since 1996. This quick shift in policy puts the states at odds with the federal

government, which still classifies marijuana as a Schedule 1 narcotic on par with cocaine, heroin,

and lysergic acid diethylamide (LSD).9 The disconnect between the public and the federal govern-

ment reflects the evolution of the perceived benefits of marijuana. Large majorities of American

adults believe that marijuana has medical benefits (Keyhani et al. [2018]), and adolescents have

low risk perceptions of the drug (Roditis and Halpern-Felsher [2015]) even though medical pro-

fessionals are unsure of its efficacy (Kondrad and Reid [2013]; Carlini et al. [2017]; Fitzcharles

et al. [2014]; Braun et al. [2018]). Despite the public’s beliefs, most states have been reluctant

to legalize marijuana for recreational use. Concerns about the potential effect on crime rates and

the difficulty in policing impaired driving have been cited as reasons to slow-walk the path to full

recreational legalization.

Legalization could increase crime rates, as the drug’s effect can make users act more erratically,

and easy access to marijuana creates a low-risk trafficking network across state lines. It is well

established that crime and the perception of crime negatively impact home prices (Pope [2008];

Buonanno et al. [2013]), so legalization might put downward pressure on the housing markets

of states with successful ballot measures. Counter to the crime narrative however, early research

suggests that there are no negative effects. Brinkman and Mok-Lamme [2019] find a 19 percent

decrease in crime rate in Denver neighborhoods with dispensaries relative to the average crime

rate in the sample period. Similarly, Morris et al. [2014] and Huber et al. [2016] find decreases in

violent and property crimes following the passage of medical marijuana legalization. There is also

evidence that RML increased crime clearance rates by police in Colorado and Washington (Makin
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et al. [2019]). Research on traffic incidents suggest similar null or negative results in states with

legal recreational (Hansen et al. [2020]) and medical marijuana (Bartos et al. [2018]).

An emerging literature studies the impact of medical marijuana legalization on labor market

outcomes. Sabia and Nguyen [2018] find no effect on adult wages, employment or hours worked

and a small decrease in wages among young men with access to marijuana dispensaries. Nicholas

and Maclean [2019] focus on older adults, finding an increase in the labor supply of those over the

age of 51 with the largest effect coming for adults with health conditions which qualify them for le-

gal medical marijuana use. If there are positive labor supply effects, then it is possible that the hous-

ing market could be impacted directly through in-migration as individuals from non-legalization

states seek to enjoy the perceived benefits. Zambiasi and Stillman [2020] use a synthetic control

approach to estimate Colorado’s in and out-migration following its passage of RML. Their results

suggest that Colorado experienced a large positive inflow of migrants as a result of legalization and

no change in out-migration.

Immigration inflows have been shown to increase single family home prices in Switzerland

(Degen and Fischer [2017]), but decrease in the United Kingdom as wealthy native homeowners

leave the newly immigrant-populated neighborhoods (Sá [2015]). Despite these mixed results, the

combination of reduced crime rates (and arrests), migrant inflows, and a new source of sales tax

revenue could increase demand for housing in states that pass RML. Some of these states have used

the new tax revenue specifically for school funding, which is a mechanism through which home

prices might increase. There is a long literature on school resources and student outcomes (Card

and Krueger [1998]; Jackson et al. [2016]; Martorell et al. [2016]) and school capital investment’s

impact on the value of nearby homes (Cellini et al. [2010]; Neilson and Zimmerman [2014]). The

combined effect of RML – increased revenue for public goods, decreased crime, little or no change

in traffic incidents, and positive labor supply and migration inflow effects – lead naturally to the

question of the real estate market. This paper contributes to the literature by estimating the cross

and within-state impacts of RML on housing.

First we estimate the cross-state impact using Zillow housing data. The Zillow data is at the
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individual property transaction level. The treatment group consists of home transactions in states

which have legalized the recreational use of marijuana and the control group consists of home

transactions in states which have have not legalized it. We find consistent positive effects in the

RML case of around 8 percent across a number of specifications which include time and loca-

tion fixed effects ranging from the county level to the ZIP code level. The estimates are most

pronounced when we consider the date that the sale of recreational marijuana is made legal, sug-

gesting that housing demand responds primarily once the drug is being sold, not when the law is

victorious at the ballot.

We then extend the cross-state analysis by estimating an unconditional quantile regression

(UQR) as in Firpo et al. [2009] with city level fixed effects. Using city level fixed effects con-

trols for unobserved local property taxes which have long been recognized to influence the hous-

ing market (Oates [1969]; Anderson [1986]). Doing so provides additional insight into the forces

driving our treatment effect. Due to the large heterogeneity in housing markets across the coun-

try, the UQR estimates are more robust against extreme value observations than our fixed effects

models and provide a more complete understanding of central tendency and dispersion measures.

The results of the UQR show positive effects in the top of the distribution following the success of

the ballot measure legalizing recreational marijuana, but no effect in the lower half. The greatest

impact occurs once it becomes legal to sell marijuana, with large positive effects across the price

distribution, especially in the middle three deciles. Heterogeneous responses to a policy shock

have not been well-researched in the housing literature, making the findings here one of our major

contributions.

Finally, we estimate a spatial model within Colorado and Washington using the Zillow housing

data and dispensary location information from the Marijuana Enforcement Division of the Col-

orado Department of Revenue and the Washington State Department of Health. Our identification

strategy follows that of Dronyk-Trosper [2017], who use the staggered construction of municipal

buildings such as fire stations to estimate their impact on home prices. In our application, homes

which are within two miles of a dispensary at time t and have a second dispensary open within

74



a half mile of the home at time t + 1 increase in value by over 6 percent. The price appreciates

the closer to the new dispensary a home is, suggesting that the dispensary itself is a neighborhood

amenity which has some positive value among home buyers.

This paper contributes to the existing literature by providing robust evidence that marijuana

legalization has beneficial spillover effects at both the state and local levels. Taken together, our

three sets of results show that states which pass RML ballot measures benefit relative to other states

and that marijuana dispensaries provide a boost to the home values in the immediate vicinity. Mar-

ijuana’s liberalization provides a novel source of tax revenue which states have used to fund capital

expenditures, especially in education and it acts as an amenity via the dispensaries that distribute it.

The creation of a new legal market has direct implications for the local economy, as it establishes

new dispensary jobs and reduces arrest rates. All of these factors have well-established impacts on

housing markets. Indeed our results show that the spillover effects of marijuana legalization on the

housing market are both statistically and economically significant.

The paper proceeds as follows. Section 3.1 discusses the history of medical and recreational

marijuana legalization in the United States, as well as potential mechanisms through which legal-

ization could impact the housing market. Section 3.2 details three data sources used for estima-

tion and presents summary statistics. Section 3.3 describes the empirical strategy and Section 3.4

presents the impact of marijuana legalization on housing markets.

3.1 Background

3.1.1 Medical and Recreational Marijuana Legalization

Beginning in 1937, the federal government prohibited the use of marijuana for recreational

consumption and sale with The Marijuana Tax Act of 1937 (Pub. L. No. 75-238, 50 Stat. 551).

The law went into effect on October 1, 1937 and two days later a Mexican-American man named

Moses Baca was arrested by Denver police for marijuana possession, the first such arrest in the

country.10 In 1968 Richard Nixon won the U.S. presidency on a platform of law and order, quickly
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establishing drug abuse as “public enemy number one in the United States.” The Controlled Sub-

stance Act (Pub. L. 91-513, 84 Stat. 1236) of 1970 created tiers of illegal drugs indicating the

severity of negative health effects and the level of addictiveness. Marijuana is included in the

Schedule 1 tier, indicating that its severity is at the highest possible level alongside addictive nar-

cotics such as heroin. In 1973 the federal government established the Drug Enforcement Agency,

which was the primary entity responsible for policing drug use in the country.

Some states introduced marijuana decriminalization proposals in response to the federal gov-

ernment’s aggressive stance on marijuana, but that effort ultimately fell out of favor and the in-

tensity of the War on Drugs escalated in the 1980s and early 90s (Pacula et al. [2003]). In 1996

California became the first state to legalize recreational marijuana, marking the beginning of the

end of punitive escalation that began with the Marijuana Tax Act in 1937 and was amplified through

the 70s, 80s, and 90s. Once California passed the Compassionate Use Act in 1996, the floodgates

were opened and in the ensuing years states across the country legalized marijuana for medicinal

purposes. Table 3.2 shows this progress. As of May 2020, 33 states and Washington DC have or

are in the process of legalizing medical marijuana consumption.

Despite the progress in MML over the last 20 years, it has been a much slower path to full

recreational marijuana legalization. Colorado and Washington were the first two states to approve

RML on the ballot in 2012, 16 years after California passed its MML law and after 18 other

states had done the same. In the years since, Colorado and Washington have been joined by

Alaska, California, Maine, Massachusetts, Michigan, Nevada, Oregon, Vermont, and Washington

D.C. Some states have had significant lags between their legalization measures passing a vote and

the practical implementation of the law. Massachusetts, for example, voted in favor of RML in

November 2016 but it was not until November 2018 that dispensaries selling marijuana opened. It

is widely expected that this march of progress will continue in the 2020 election cycle and beyond.

This paper contributes another data point to the debate over marijuana legalization, demonstrating

that those early adopter states have experienced significant appreciations in home values since

legalization has been implemented.
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3.1.2 The Housing Market Connection

Marijuana legalization comes with a number of trade-offs that make its connection to the hous-

ing market ambiguous. The expected direction of legalization’s effect depends on a number of

forces pushing in opposite directions. Increased public capital expenditures and in-migration

would increase demand for housing in the short run and, assuming housing supply is fixed in the

short run, raise prices. On the other hand, out-migration, negative health impacts, and increases in

crime rates could deflate home values.

To establish the direction of the effect on home prices following marijuana legalization, Figures

1, 2, and 3 show the trend in the national housing market since 2000, divided by when each state

adopted RML. There are three cohorts of states. Figure 1 includes Colorado and Washington,

the first two states to legalize recreational marijuana in 2012. Figure 2 includes Oregon, which

legalized in 2014, and Figure 3 includes California, Massachusetts, and Nevada, all of which

legalized recreational marijuana in 2016. The four other states and Washington D.C. which have

legalized recreational marijuana are not included because they are outside the sample for reasons

discussed in Section 3.1. Solid lines are treatment states across the three figures, and dotted lines

reflect states which did not legalize recreational marijuana. To verify that this divergence is a

feature of marijuana legalization and not a few wealthy states outpacing the national trend, we

divide non-RML states into three groups based on average house price per square foot levels. The

six treatment states would all fall into the High average price per square foot grouping with the

exception of Nevada, which would be classified in the Middle group if it were not a treatment

state. By by comparing the trend in those states to other wealthy and middle income states, we can

get a better idea of the impact legalization has had on the housing market.

Figures 1, 2, and 3 demonstrate that all three control groups show similar housing market

trends since 2000. The RML states meanwhile consistently diverge from the control trends upon

their respective cohorts’ legalization dates. Across the three graphs, the price trend was similar

across RML and non-RML states until 2012. Colorado and Washington display a clear divergence

in their housing markets following legalization at the end of 2012. A similar divergence can be

77



seen in Figure 2 when Oregon voted in favor of RML in 2014. At the end of the time trend, the

2016 legalization cohort also see distinct jumps in the housing markets relative to the non-RML

states.

The housing markets of RML states have recovered faster and stronger than those of non-RML

states. The effect in Figures 1, 2, and 3 are all despite the period spanning the Great Recession.

Volatility in the housing market can be seen clearly in each figure; the market begins accelerating

in 2002, peaks in 2006, and reaches its nadir in 2011. The difference in recovery between RML

and non-RML states can be seen most dramatically in the first cohort of Colorado and Washington.

This could reflect slack in housing as the market over-corrected during the recession, but there can

be no doubt that those two states recovered at a faster rate than their economic peers. It appears that

the implementation of RML raised house prices despite the burden of the housing market recovery.

3.1.3 Mechanisms

Having established that states which enacted RML laws received a positive boost during the

recovery period following the Great Recession, we now turn our attention to the mechanisms re-

sponsible. We consider two possible avenues, which we will refer to as the the “economic de-

velopment” effect and the “amenity” effect. The economic development effect considers long-run

changes to the community which legalization induces; increased tax revenue and spending on pub-

lic goods that results is an example. The amenity effect captures the role dispensaries have on

nearby home values. This reflects the local brick-and-mortar changes that occur due to RML. Our

cross-state models estimate the economic development effect and our spatial model estimates the

amenity effect.

First consider the economic development effect. The illegal marijuana market prior to legal-

ization is necessarily un-taxed. In the political debate over legalization, supporters often advocate

for a mandate that marijuana sales taxes fund public goods investment, including infrastructure

improvements and education funding. For example the disposition of Colorado marijuana tax rev-

enue is first distributed to the Public School Capital Construction Assistance Fund, and any revenue
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over $40 million is transferred to the Public School Fund.11 There is a long literature on school

resources and student outcomes (Card and Krueger [1998]; Jackson et al. [2016]). The physical

condition of school capital and government investment as a vehicle for student achievement is also

of interest in the existing literature (Martorell et al. [2016]). There is further evidence that school

capital investment increases the value of local homes. Cellini et al. [2010] use a regression dis-

continuity design method, exploiting local referenda on bond issuances for capital expenditures to

identify the causal effect of referenda passage on the local housing market. Their results suggest

a sizable and immediate positive impact on local home values. Neilson and Zimmerman [2014]

study the staggered implementation of a school construction project in New Haven, Connecticut,

finding that home prices increase in the local neighborhood by approximately 10%. We contribute

to this literature by examining whether the passage of recreational marijuana legalization laws –

and therefore new sources of tax revenue – affect local home prices.

Another potential mechanism of the economic development effect is migration. By legalizing

the use of marijuana, Colorado and other RML states become an attractive option for residents

of other states who value the ability to consume marijuana without fear of legal repercussions.

Zambiasi and Stillman [2020] find large migration inflows following Colorado’s passage of RML,

supporting this hypothesis. For individuals who migrate to a state with legal recreational marijuana,

the cost of moving is less than the consumption cost. Those who use marijuana for medicinal pur-

poses could fall into this category, as easy access to legal marijuana decreases the cost of obtaining

and consuming an ameliorative drug.

Assuming that housing supply does not increase in response to the success of RML, in-migration

of these individuals could affect local housing markets. The effect of inter-country migration on

housing markets is ambiguous in the existing literature (Degen and Fischer [2017]; Sá [2015]).

However, there is substantial evidence that the number of people migrating within the United

States is shrinking and local labor markets conditions and home equity have explain much of the

decision to migrate (Henley [1998]; Foote [2016]; Zabel [2012]; Koşar et al. [2019]). Despite this

downturn in internal migration, young educated households frequently move to areas with high
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quality business environments (Chen and Rosenthal [2008]). Recreational marijuana legalization

liberalizes the criminal code, but it also creates a new industry in the states that enact it. Business

creation increases employment opportunities and growth (Baptista and Preto [2011]; Andersson

and Noseleit [2011]), which in turn puts upward pressure on housing markets (Liu et al. [2016];

Reichert [1990]). Benefits (and potential costs) of industry job creation and demand for marijuana

from non-locals could be capitalized into housing values (Cheng et al. [2018]).

We estimate the effect of marijuana legalization at different points of the process (i.e. at the

time of the vote to legalize, when the law goes into effect, and when the first dispensaries open),

which provides insight into the magnitude of the economic development effect. Since the two-way

fixed effects and UQR models define treatment as all homes in a state, the coefficients should reflect

the broad treatment inside each state. Homes without nearby dispensaries therefore are likely not

experiencing the positive shock through an amenity effect, but through secondary mechanisms

such as increased school funding and capital investment. We estimate the UQR model to capture

the sensitivity of the price distribution to the economic development effect. The hedonic price

function frequently estimated in the housing literature can be highly non-linear. For this reason,

the UQR model is our preferred model specification and the primary contribution of this research’s

estimates of RML on the economic development effect in housing.

The amenity effect will be captured in our Spatial Difference-in-Differences model (see Sec-

tion 4). By restricting our sample to just homes near dispensaries in Colorado and Washington, we

recover the dispensaries’ effect on the nearby housing market. This approach is in line with previ-

ous research, as prices exhibit localized variation based on a number of amenity factors, including

public school quality (Bogart [2000]; Cheshire and Sheppard [2004]), public transit options (Bajic

[1983]; Dewees [1976]), water quality (Epp and Al-Ani [1979]; Young and Teti [1984]; Leggett

and Bockstael [2000]), rail lines (Bowes and Ihlanfeldt [2001]; Gibbons and Machin [2005];

McMillen and McDonald [2004]), and crime (Hellman and Naroff [1979]). Home prices vary

significantly as households are heterogeneous in their amenity preferences and income (Gibbons

and Machin [2008]). If dispensaries are an amenity – either positive or negative – then we should

80



be able to recover an effect with the Spatial Difference-in-Differences model. Indeed other research

has estimated the dispensary-housing market connection (?; Conklin et al. [2020]; Tyndall [2019];

Burkhardt and Flyr [2019]), but either did not use a spatial model as part of their identification

strategy or are limited to particular cities which might raise external validity concerns. Recovering

the amenity effect of dispensaries in Colorado and Washington using a novel estimation method is

the second major contribution of this research.

3.2 Data

This research relies on three primary sources of data. First is a national housing data set from

the online real estate database company Zillow (Zillow [2017]). The second is a hand-compiled

data set identifying each states’ laws regarding the liberalization of marijuana use. Finally, we

have yearly data on the construction of marijuana dispensaries in Colorado and Washington.

3.2.1 Housing Data

Zillow is a popular tool used by the public to search for properties available for sale in the

United States. The company provides a centralized source of property transactions through its

Zillow Transaction and Assessment Dataset (ZTRAX).12 This dataset compiles multiple listing

services (MLS) from all fifty states, Washington D.C., and other U.S. territories to provide a com-

prehensive resource for real estate transactions.

The information includes not only details of a given housing market transaction, such as the

sales price and date, but also information about the house itself. The ZTRAX repository provides

access to a large number of home characteristics, such as the number of rooms, square foot area

of the property, and any structures on it. Table 3.1 shows the summary statistics for all homes in

our sample, as well as annual state-level economic variables, such as GDP. The differences among

both the home characteristic and local economic variables suggest that local fixed effects will be

an important factor in our model specifications.
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We consider all homes in each state, conditional on the data being representative of a state’s

housing market. This is not the case for every state, as some do not have MLS public reporting

requirements across all counties. For example, North Dakota has only one county which consis-

tently reports transactions to the state’s MLS, so we exclude it from our sample. Additionally, since

this research is interested in the spillover effect of marijuana legalization of the housing market,

we only consider homes which Zillow documents as residential properties. The richness of the

data means that some states report business, government, and other non-residential properties. We

exclude these observations.

The data is also filtered for observations that are likely non-market transactions. All included

observations are categorized as a deed transfer, which signifies the exchange of a property’s title

from one party to another. Despite this, there are observations where a non-market transfer occurs

between, for example, family members in the case of inheritance. These types of observations are

often indicated as such, but in order to further exclude cases where reporting standards differ, we

also filter for transactions which have a listed sales price below $10,000 and above $10,000,000.

Doing so substantially reduces the sample size, but it is unlikely that homes below that price

are actual market transactions given the price distribution. Additionally, states that have fewer

than 100,000 transaction across the sample period are excluded in order to reinforce that a state’s

housing market sample is properly represented. We provide a more comprehensive examination of

our data cleaning process for the Zillow data in Appendix A.

3.2.2 Marijuana Laws

In addition to the housing and dispensary data, we used the legalization dates as determined

by each state to identify our treatment conditions. As mentioned in the introduction, there are

three possible legal states that marijuana can be classified as: legal to use recreationally, legal to

use medicinally, and illegal. We used successful laws and ballot measures to indicate the relative

legality of marijuana in each state. The information in this data is presented in Table 3.2. The

second column reflects the date that a given state votes for and passes recreational legalization.
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The third column is the “effective date” for recreational legalization when either the result of a

popular vote is approved or a law goes into effect. This is the date when it is no longer illegal to

possess or grow marijuana for recreational purposes.

It is not until the date in Column (4) that there is a way to legally purchase recreational mari-

juana. An important distinction to note is the difference between the “Dispensary Date” and “First

Dispensary” columns. In some cases, the ballot question outlines a specific date on which dispen-

saries are allowed to open. This is not always the case, however, as some states leave the decision

when to open dispensaries up to local municipalities. This distinction is why Dispensary Date and

First Dispensary are considered two separate treatments. Some states, such as California and Col-

orado, specify the Dispensary Date in their ballot questions, and as a result have dispensaries open

on that date. In that case, the Dispensary Date and First Dispensary column dates are identical.

Other states such as Massachusetts and Maine have large time gaps between the two dates due to

local governing bodies having discretion over dispensary permit approvals. The preferred treat-

ment and what is presented in our primary models is the Dispensary Date. We provide separate

estimates for both variables, and consider the First Dispensary treatment as a robustness check.

We use a similar logic for cases of medical marijuana legalization. This process is significantly

more complicated, however, as the regulations enacted by each state vary widely. A state may vote

via a ballot measure or through the state legislature to legalize the use of marijuana for medicinal

purposes, but the process following that approval has many additional steps. Similar to the recre-

ational case, the law becomes effective as soon as it is passed, but the possession of marijuana is

not necessarily legal due to the method through which the state distributes licenses. California,

which was one of the first states to enact medical marijuana legalization, distributed medical li-

cense cards similar to a driver’s license for those eligible for marijuana possession. Additionally,

there are complications with prescriptions that vary by state which add a layer of complexity to

identifying the timing of our effective date. It is also not always clear whether dispensaries that

can sell medical marijuana to users with a valid prescription have opened, or if there is some other

distribution mechanism that the state has adopted. As a result, we use a similar logic to the recre-
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ational case and consider the effective medical marijuana legalization date to be the date that a

ballot measure is ratified or a state legislative measure is signed by the governor.

3.2.3 Dispensary Data

For our spatial analysis we use data from the Marijuana Enforcement Division of the Colorado

Department of Revenue and the Washington State Liquor and Cannabis Board, which detail every

dispensary location in the two states since their legalization of recreational marijuana. These data

include the spatial coordinates of a given dispensary and the year it opened. Our estimation focuses

on the opening of new dispensaries, so the data begins in 2014 when the first strictly recreational

dispensaries opened in Colorado and Washington. It is worth noting however that there existed

dispensaries in both states prior to recreational legalization due to the previous passage of medical

legalization. Those dispensaries are taken as given and exist at the start of the data. The spatial

identification strategy depends on the opening of new dispensaries, so whether a dispensary was an

already-existing medical dispensary should have no bearing on the validity of the estimation. We

combine the dispensary data with the Zillow housing data to estimate the effect of new dispensaries

opening on the housing market in the immediate vicinity. This represents the within-state amenity

effect of legalization.

3.3 Empirical Strategy

Our empirical strategy involves three primary specifications. First is a linear model, which

we test with varying fixed effect levels to establish a baseline relationship between marijuana le-

galization (both MML and RML) and home prices. We estimate the following: log(Priceijst) =

α1Recreational Votest+α2Recreational Possessionst+α3Dispensary Datest+α4Medicalst+βX ′ijst+

δj + ρq + εijst

Since the Zillow housing data is at the transaction level, our primary dependent variable Priceist

is the price of home i in county/city/ZIP j and state s at time t. In this simple model the variables
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of interest are Recreational Votest, Recreational Possessionst, Dispensary Datest, and Medicalst,

which are all binary variables indicating whether state s has adopted RML (for Recreational Vote,

Recreational Possession, and Dispensary Dates) or MML (for Medical) at time t. Recreational Votest =

1 if the state has approved RML by ballot vote or a legislative statute by the transaction date,

Recreational Possessionst = 1 if the RML law has gone into effect and it is legal to possess mari-

juana, Dispensary Datest = 1 if dispensaries can apply for permits to sell recreational marijuana,

and Medicalst = 1 if MML has been approved by state voters or legislators. In addition to these

indicators, X ′ijst is a vector of housing characteristics and local economic measures including the

number of bedrooms, bathrooms, the age of the home, state GDP, state population, and state land

area. Finally we include location and time fixed effects, δj and ρq, respectively. We use year-

quarter fixed effects for ρq, but the legalization dummies are defined by the exact date of RML

voting, possession, and dispensary openings. This makes our models traditional hedonic estima-

tions.

The second model employed is an unconditional quantile regression (UQR), as specified by

Firpo et al. [2009] (FFL). Table 3.1 demonstrates the large amount of variation across the data,

especially with regard to our outcome variable of choice, home price. The observed prices and

house characteristics exhibit significant heterogeneity, which makes a UQR an attractive estimation

strategy. As we demonstrated in Figures 1, 2, and 3, response to the housing recovery varied widely

between RML states and non-RML states. Extending this idea to the distribution of prices, a UQR

model accounts for systematic differences across states that may influence their decision to pass

legalization measures. The UQR model is evaluated on the distribution of independent variables

marginally. Because of this, the model does not depend on the covariates conditioned on as in a

traditional conditional model.

The UQR model evaluates the impact of RML and MML on house prices across the price dis-

tribution using a recentered influence function (RIF) (Hampel et al. [2005]). Although the RIF can

be applied to any distributional statistic, FFL use it to estimate quantiles along the distribution. The

marginal effect of any quantile on the home price can be represented by: E[RIF(Priceijst; qτ )|RML,MML, X, δ, ρ] =
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α1Recreational Votest+α2Recreational Possessionst+α3Dispensary Datest+α4Medicalst++βX ′ijst+

δj + ρq + εijst

Model 3.3 is the same equation as in Model 3.3, with the only difference being the estimation of

the RIF. qτ in the RIF reflects each quantile being estimated. In our case we will derive estimates for

each decile along the price distribution (i.e. qτ = (0.1, 0.2, ..., 0.9)). By estimating each decile, the

RIF allows us to interpret the effect of RML across the distribution which may provide additional

insight into the mechanisms behind legalization’s impact on the housing market.

Like the fixed effects Model 3.3, the UQR estimates the difference in home prices along the

distribution across states. It could be the case that there are differences within states that legalized

marijuana use as well. To test this we use data from the Marijuana Enforcement Division of the

Colorado Department of Revenue, the state agency in Colorado tasked with regulating the sale of

marijuana, and the Washington State Liquor and Cannabis Board. The agencies’ data provide the

location of marijuana dispensaries opened in the states between 2014-2018. By combining this

data with the Zillow housing data, we are able to estimate the effect of a dispensary opening on

neighborhood home values.

A clear source of endogeneity in a standard difference-in-differences (DiD) approach is that

the location of a dispensary is not random; a firm chooses what it believes to be the most prof-

itable location for its dispensary and finds suitable properties to rent or purchase. The firm may

rent property in a business district or near transit, which could bias the housing market in the

immediate area upward. On the other hand if these are new or inexperienced businesses that have

capital constraints, they might locate where property is relatively inexpensive. This would have the

opposite effect, as homes in less dense areas are generally on the lower tail of the price distribution.

To account for the endogeneity concern, we use a DiD approach developed in Dronyk-Trosper

[2017]. The authors use the local government’s construction of public service facilities, such as fire

departments and police stations, to identify changes in the local housing market. Control homes

are those which maintain their distance from the closest facility throughout the sample period.

Treatment homes are those which – at period t0 – have the same distance as the control group
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but at some future period ts, where s > 0, a new facility is constructed that reduces the distance

to the nearest option. We modify this approach by substituting the public facilities for marijuana

dispensaries. The spatial DiD model is represented by:

log(Pricei) = β1Treatmenti + β2Statei + β3(Treatmenti × Statei) + γXi + εi (3.1)

with Treatmenti is an indicator variable which reflects whether a home is in our treatment group

– whether a new dispensary has opened closer to home i since period t0. Statei is a dummy for

whether a home sale occurred before or after the construction of a new closer dispensary, and Xi is

a vector of home characteristic controls. β3 is our variable of interest, which represents the change

in home values for treated units following the opening of a new dispensary. Figure 4 demonstrates

the buffer zones around marijuana dispensaries in the Denver metropolitan area and the homes that

fall within the buffer zone. For the purpose of Model 3.1, only a subset of the homes that appear

in Figure 4 will be included in our treatment group.

3.4 Results

3.4.1 Housing Prices Following Statewide Marijuana Legalization

Tables 3.3 and 3.4 estimate the effect of recreational marijuana legalization on housing prices

using a simple linear model and a fixed effects model, respectively. In these tables and in the

rest of the main specifications, the dependent variable is the logged value of home prices. Each

column in the two tables includes a single treatment variable with the exception of Column (5),

which includes three treatment variables. The treatment variable indicating the date recreational

marijuana possession is legalized is excluded in Column (5) because, as indicated in Table 3.2,

the gap between the vote and possession dates are typically no longer than a month. If this gap is

longer than a month, then the possession date is typically very close to the first legal sales date.

We estimate the coefficient for possession separately in Column (2) of Tables 3.3 and 3.4, and as
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expected its point estimate falls between the vote and sales points estimates.

In Table 3.3, as in the rest of the tables that follow, each estimation includes variables which

control for house characteristics and state economic indicators. Table 3.3 includes city-level clus-

tered standard errors to account for potential correlations of error terms, but does not include any

fixed effects indicators. In this simple linear model the estimated coefficients of interest are large

and significant, with each point estimate reflecting greater than a eighteen percent appreciation

in home prices for the RML variables of interest. Table 3.4 includes city and year-quarter fixed

effects for the same five estimations as Table 3.3. This table represents the primary linear cross-

state results. Similar to the previous table, we find large and positive estimates for the three RML

treatment indicators, again exceeding ten percent when considered individually. A noteworthy dif-

ference between the fixed effects and OLS models is the magnitude of the coefficients. Including

fixed effects greatly reduced the estimated effect, which is to be expected considering the data is

a national sample which features large amounts of heterogeneity in housing and economic charac-

teristics.

The model is designed to identify the effect of RML specifically, but we include the medical

coefficient in order to address the potential endogeneity issue of states voting in favor of recre-

ational legalization. Policy treatment represents a selection issue as voters choose whether to vote

in favor of marijuana legalization. As seen in Table 3.2, however, there are a large number of states

which have legalized medical marijuana but only ten which have legalized recreational marijuana.

Due to the limitations of the Zillow housing data discussed in Section 3.2.1, the only states which

are in the RML treatment group are California, Colorado, Massachusetts, Nevada, Oregon, and

Washington. RML treatment states make up less than a quarter of the MML states as a result.

Every state that has enacted RML has enacted MML, but the inverse is not true. By including the

medical treatment in our primary model specification, we cannot guarantee the consistency of the

medical coefficient but we should recover the marginal effect for the two RML treatment variables.

Column (5) of Table 3.4 demonstrates that once we include city and year-quarter fixed effects

into our primary linear model, both Recreational Vote and Dispensaries Date’s coefficients retain
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large, positive, and significant point estimates. The larger effect happens at the Dispensary Date,

when the first dispensary could open. This estimate reflects an eleven percent appreciation in home

prices. As explained in Section 3.2.2, this is not necessarily the date that the first dispensary opens

since each municipality in a given treatment state has different permitting rules for new businesses.

As a robustness check, we use the opening date of the first dispensary in a state as the dispensary

treatment and find qualitatively similar results. The estimated coefficient for the Recreational Vote

treatment meanwhile reflects 5.4 percent price appreciation. Taken together, the two linear models

support the hypothesis that RML induces large positive effects in the housing market.

To further test the state-level effect of marijuana legalization on housing prices, we estimate an

unconditional quantile regression (UQR) as specified by Firpo et al. [2009]. A UQR has three prin-

ciple advantages over a traditional linear model despite the fact that it simply recovers the marginal

effect of the treatment indicators. First, it is less sensitive to extreme values in the dependent vari-

able. This is unlikely to be an issue in the data used for this paper as the number of observations

is substantial, but it is nonetheless a strength of the model. Second, a UQR model accounts for

differences across states that could affect the likelihood of a given state passing a marijuana legal-

ization bill, which is a significant concern. Finally it marginalizes the treatment effect across the

price distribution, which provides a more complete understanding of the impact of RML on the

housing market.

With those advantages in mind, Figures 5 and 6 plot the UQR coefficients for each decile along

the distribution. For a more precise view of the estimated coefficients, Appendix Tables 3 and 4 in

Appendix B display the point estimates. Again we have estimated two model specifications, one

with the Dispensary Date treatment and one with First Dispensary due to the close time proximity

of those two variables. A pattern emerges in both cases: there appears to be some significant effect

in the Medical Vote or Recreational Vote treatments and a significant, positive, and increasing

effect across the Dispensary Date/First Dispensary distributions. The Recreational Vote treatment

show some significant appreciation in the top four deciles, but as in the linear models the Medical

coefficients should be interpreted conservatively.
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The positive effect in the upper deciles for the two Vote treatments range between a three and

twelve percent increase in home price. The concentration, especially in Qτ = .80, .90 could point

to the level of liquidity available to those purchasing the most expensive properties. For example,

if those wealthy buyers have greater access to credit than buyers lower in the distribution, then their

demand for marijuana and in turn housing in RML or MML states could shift immediately upon

the success of a ballot measure. This interpretation would be consistent with the economic devel-

opment hypothesis presented in Section 3.1.3; demand for housing is responsive to employment

gains, which itself is a natural byproduct of new business creation, and potential in-migration. The

results support the those from the linear fixed effects model estimated in Table 3.4, with the top

two deciles dominating the average effect,

The Dispensary Date and First Dispensary treatments differ from the two Vote treatments in

that they have large, positive, and significant effects across the price per square foot distribution.

These values range from approximately seven percent to nineteen percent, with the point estimates

increasing in magnitude until beginning to decrease at the 7th decile. It should be noted that the

values in the 8th and 9th deciles have very large confidence intervals and so the point estimates

may be overstating the effect. Regardless of the estimated confidence intervals, we can say with

some certainty that the two dispensary treatment dates reflect a shift in housing demand in RML

and MML states. This large effect again supports the hypothesis that the economic development

effect drives the change in the housing market. Once recreational marijuana becomes available to

buy easily at a dispensary and tax revenue is generated, there is significant home price appreciation.

3.4.2 Spatial Model

To further test whether it is open dispensaries that are driving the increased demand for housing,

we estimate the results from a spatial model which identifies the effect of new dispensaries on the

value of nearby homes. The model, which is described in Section 3.3 and follows the empirical

strategy developed in Dronyk-Trosper [2017], estimates the within-state effect, as opposed to the

cross-state effect of the linear and UQR models presented in the previous section. The various
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treated groups in this model represent homes which have already been “exposed” to a dispensary

by having a dispensary open within a two-mile radius of the property. They are then considered

treated when a second dispensary opens geographically closer at a later date. Figure 4 demonstrates

this idea graphically.

In order for this empirical strategy to be valid, homes in the treatment groups must not differ

from each other in price and house characteristics. Table 3.5 presents the mean and standard

deviation values for the four groups. The group “Inside 0.5 Miles” includes all homes sold which

were within a half mile of a dispensary at any point in the sample period of 2014-2018 in Colorado

and Washington; “Between 0.5 and 1 Mile” includes homes sold which were between a half and

one mile of a dispensary at any point in the sample period; “Between 1 and 2 Miles” contains

homes sold which were between one and two miles of a dispensary at any point in the sample

period; and the “Outside 2 Miles” group includes homes which are outside a two-mile radius of

any dispensary.

Table 3.6 presents the results for the spatial difference-in-differences models. Like the linear

and UQR estimates in the previous section, each of the models have the logged value of price as

the dependent variable. Column (1) is a simple fixed effects model, where the point estimates for

1/2 Mile Zone, 1 Mile Zone, and 2 Mile Zone reflect the premium for homes within a two mile

radius of a dispensary in Colorado and Washington during our sample period. This model in this

column has no causal mechanism and simply estimates the mean difference between homes near

(i.e. within two miles) of a dispensary and those outside that bound. Homes within 0.5 miles have

a slight premium of 4.5 percent, but homes between 0.5 miles and one mile and homes between

one and two miles have a slight discount.

The primary spatial model specifications appear in Columns (2) and (3) of Table 3.6. Both

columns follow the identification strategy in Dronyk-Trosper [2017], and so can be interpreted as

the causal effect of a marijuana dispensary opening on the local housing market. Column (2) uses

homes within two miles of a dispensary as the control group. The two treatment variables – 1/2

Mile Zone and 1 Mile Zone – are indicators for homes which previously were within two miles
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of a dispensary and were subsequently sold after a new dispensary opens. The sold homes are

newly situated within a half mile or between a half mile and a mile of a dispensary, respectively.

The coefficients for 1/2 Mile Zone and 1 Mile Zone represent the premium for these homes. Both

treatment zones experience an appreciation in price after the construction of a new dispensary. The

1 Mile Zone homes increase in value by slightly under one percent and the 1/2 Mile Zone homes

increase by slightly over seven percent. Column (3) is the same specification, except now the only

treated homes are those within a half mile of a new dispensary. The homes in 1 Mile Zone that

were previously considered part of our treatment group in Column (2) are now included in the

control group. Again the estimated coefficient for the half mile group is significant and positive

with an eight percent appreciation. In order to guarantee that the results are not being driven by

one of the two state’s effect dominating the other, we separate the sample into tables for Colorado

and Washington as a robustness check. Appendix tables 5 and 6 appear in Appendix B. The results

are similar between the two states and between the individual state estimates and the combined

estimates, suggesting that this effect is not due to one state’s influence.

Dronyk-Trosper [2017] find that the effect of municipal government service buildings, such

as police stations and firehouses, increases the value of homes at a decreasing rate. Those homes

closest to the government buildings actually decrease in value, likely as a response to the increased

traffic and noise associated with those services. Our results imply the opposite; when a dispensary

opens nearby, homes closest to it appreciate in price the most. This is consistent with our interpre-

tation that new dispensaries act as amenities in the local housing market. Since the spatial model

is restricted to Washington and Colorado – the first two states to legalize recreational marijuana –

we cannot guarantee that these results generalize to each subsequent state that legalizes. However,

together with the cross-state models presented in the previous section, it is clear that recreational

marijuana legalization has large positive effects on the housing market of states that legalize and

municipalities which allow dispensaries to open in their communities.
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3.4.3 Robustness Checks

There are two primary robustness check categories we employ. First, we use the home price

per square foot as the dependent variable rather than home price. Geographic heterogeneity in our

sample suggests that simply using house price as the dependent variable could bias the results since

treatment homes are in high-price states. By using house price per square foot as the dependent

variable, we can ensure that this potential source of bias is accounted for. Second, we include

the First Dispensary treatment in place of the Dispensary Date variable for the reasons outline in

Section 3.2.2. If the primary mechanism in our cross-state models is the economic development

effect, then it is possible that the impact is only felt once the first dispensaries open and a large

volume of marijuana sales take place, thereby generating tax revenue.

Appendix Table 1 uses the log value of house price per square foot as the dependent variable

in the two linear cross-state models. In this table, Dispensary Date is still the right-hand side

treatment variable of choice. As in the price per square foot results, the OLS model in the first five

columns shows large positive results for all four treatment variables, including the Medical Vote

treatment. Again, these results should be interpreted carefully as the Medical Vote treatment is

likely absorbing a large amount of the effect due to the lack of time fixed effects. That being said,

the point estimates are very similar to those presented in Table 3.3. The same can be said for the

fixed effects results in columns (6) through (10). The Recreational Vote variable is still significant

and positive, as is the Dispensary Date. The point estimates are large and positive, as in the original

specification.

Next, we check our results using First Dispensary as our treatment variable of interest rather

than Dispensary Date. For some states these dates are the same, so we would expect the results

to be very similar. Appendix table 2 presents the estimates, and indeed that is what we find. The

results are consistent with the Dispensary Date results. Once again, there are positive effects for

each of the two RML variables, Recreational Vote and First Dispensary, just as in our primary

results. The magnitude of the First Dispensary estimates are similar to those for Dispensary Date

presented in Table 3.4. Appendix table 2 also presents the original model specification with various
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levels of controls. Excluding house characteristic and local economic variables do no affect the

magnitude or significance of the estimated models.

3.5 Conclusion

Uncertainty regarding the costs and benefits of marijuana legalization, along with marijuana’s

status on the federal level as a Schedule 1 drug, have made the public reluctant to support policies

which liberalize its use and distribution. To help fill this information gap, this research demon-

strates that there is a large positive spillover effect on the housing market following legalization.

We further support these findings with a spatial approach which shows that within states that le-

galize recreational marijuana use, homes experience a positive valuation shock when a dispensary

opens nearby. The results are robust to a number of of specifications, including a different (but

temporally similar) date for the actual sale of marijuana at dispensaries. Taken together, the inter

and intra-state results suggest that preferences for public services – derived from a new source of

tax revenue – and dispensaries as a commercial amenity create largely positive effects following

the legalization of recreational marijuana.

The impact of legalization on the housing market is supported by two models. First, a fixed

effects model demonstrates a five percent appreciation in home prices following the passage of

RML and an eleven percent appreciation once sales of marijuana products begin. Extending this

logic to an unconditional quantile regression approach, we find positive effects across the home

price distribution following the date that dispensaries are allowed to open. Differences across the

price distribution can likely be thought of as heterogeneous preferences among different levels of

wealth. The promise of future funding to schools and other public infrastructure as a result of

legalization supports a long literature showing a positive relationship between home prices and

local economic development.

To approximate the effect of dispensaries we estimate a spatial model in Colorado and Wash-

ington. The results again show price appreciations for homes as the distance to the nearest dispen-
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sary decreases. This demonstrates that is it not simply the benefits of increased tax revenue, but

also the existence of the dispensaries themselves, that is driving the price increases. The dispen-

saries act as commercial amenities that the public puts a premium on being nearby.

Without the benefit of foresight, our research is not able to determine whether the positive ef-

fect will persist. For example if immigration inflows are the primary cause of our results, then we

would expect that states would experience diminishing returns to legalization. The first cohort of

states which legalized recreational marijuana would draw those that valued legalization most, and

each successive state should not expect a similar inflow. Additionally, more research on marijuana

legalization is required to fill in the remaining knowledge gaps. We do not estimate some of the

other second-order effects, such as the impact on policing and the outcomes for minority commu-

nities that were previously convicted for marijuana possession at a disproportionate rate. Future

research would be well served to approach these questions, as it will better inform the public and

policy makers with respect to the reclassification of recreational drugs.
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3.6 Tables

Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Transaction Prices ($)

House Price 330,342 364,989 10,838 9,999,181 38,145,054
log(House Price) 12.35 0.86 9.29 16.12 38,145,054
Price per Sq. Foot 180 179 1.24 23,088 38,145,054
log(Price per Sq. Foot) 4.90 0.80 0.21 10.05 38,145,054

Property Characteristics

Bedrooms 3.1 0.9 1.0 7.0 38,145,054
Bathrooms 2.1 0.8 0.25 7.0 38,145,054
Sq. Feet 1,948 1,065 420 10,228 38,145,054
log(Sq. Feet) 7.6 0.4 6.0 9.2 38,145,054
Year Built 1976 29 0.00 2018 38,145,054

State Characteristics

GDP (Millions $) 787,941 706,135 36,281 2,968,117 38,145,054
Population 15,535,151 12,272,350 567,136 39,557,045 38,145,054
Land (Acres) 77,264 50,066 61 261,797 38,145,054
Density 2.83 6.04 0.19 114.41 38,145,054
log(GDP) 13.18 0.92 10.50 14.90 38,145,054
log(Population) 16.21 0.89 13.25 17.49 38,145,054
log(Land) 10.96 0.96 4.12 12.48 38,145,054

Treatment Indicators

Recreational Vote 0.07 0.25 0 1 38,145,054
Recreational Possession 0.06 0.25 0 1 38,145,054
Dispensary Date 0.04 0.20 0 1 38,145,054
First Dispensary 0.04 0.20 0 1 38,145,054
Medical 0.45 0.50 0 1 38,145,054

Housing variables are at the individual property transaction level ist, where i is a single property
in state s. t reflects the date of transaction. The Price and Price per Sq. Foot variables represent
unique transaction prices and are deflated using the 2018 Consumer Price Survey. The home
characteristics Bedrooms, Bathrooms, Sq. Feet, and Year Built are unique to a given property but
not necessarily unique to the dataset if a given property was sold more than once during the sample
period. State characteristic variables are yearly at the state level s. GDP is the gross domestic
product in a given year, Population is the state’s total population, Land is the total land area of
state s in acres, and Density is Population divided by Land which represents how concentrated a
state’s population is geographically. Treatment indicators are those indicators described in Section
3.2.2.
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Marijuana Legalization Laws

State Vote Possession Dispensary Date First Dispensary Medical

Alaska Nov 4, 2014 Feb 24, 2015 Feb 24, 2015 Oct 31, 2016 Mar 4, 1999

Arizona Nov 2, 2010

Arkansas Nov 9, 2016

California Nov 8, 2016 Nov 9, 2016 Jan 1, 2018 Jan 1, 2018 Nov 6, 1996

Colorado Nov 6, 2012 Dec 6, 2012 Jan 1, 2014 Jan 1, 2014 Jun 1, 2001

Connecticut May 31, 2012

Delaware Jul 1, 2011

Florida Jan 3, 2017

Hawaii Jun 14, 2000

Illinois Jun 25, 2019 Jan 1, 2020 Jan 1, 2020 Jan 1, 2020 Jan 1, 2014

Louisiana 1978

Maine Nov 8, 2016 Jan 30, 2017 May 2, 2018 Spring 2020 (Expected) Dec 22, 1999

Maryland Jun 1, 2014

Massachusetts Nov 8, 2016 Dec 15, 2016 Jul 1, 2018 Nov 20, 2018 Jan 1, 2013

Michigan Nov 6, 2018 Dec 6, 2018 Dec 1, 2019 Dec. 1, 2019 Dec 4, 2008

Minnesota May 30, 2014

Missouri Dec 6, 2018

Montana Nov 2, 2004

Nevada Nov 8, 2016 Jan 1, 2017 Jan 1, 2017 Jul 1, 2017 Oct 1, 2001

New Hampshire Jul 23, 2013

New Jersey Jul 1, 2010

New Mexico Jul 1, 2007

New York Jul 5, 2014

North Dakota Apr 18, 2017

Ohio Sep 8, 2016

Oklahoma Jul 26, 2018

Oregon Nov 4, 2014 Jul 1, 2015 Oct 1, 2015 Oct 1, 2015 Dec 3, 1998

Pennsylvania May 17, 2016

Rhode Island Jan 3, 2006

Utah Dec 1, 2018

Vermont Jan 22, 2018 Jul 1, 2018 Jul 1, 2004

Washington Nov 6, 2012 Dec 6, 2012 Jul 8, 2014 Jul 8, 2014 Nov 3, 1998

Washington DC Nov 4, 2014 Feb 26, 2015 Jun 20, 2010

West Virginia Jul 1, 2018

Total 12 12 10 10 34

Note: Vermont and Washington D.C. have passed laws allowing for the possession and cultivation of recreational mari-
juana, but have yet to allow for sales at retail locations as of this writing in February 2020. The data was derived from
legislative and ballot acts, which are compiled nationally at the Marijuana Policy Project – https://www.mpp.org/
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Effect of Marijuana Legalization on House Price per Sq. Foot (OLS)

log (House Price)

(1) (2) (3) (4) (5)
Medical 0.414*** 0.409***

(0.035) (0.034)
Recreational Vote 0.180*** 0.110***

(0.029) (0.020))
Recreational Possession 0.186***

(0.029)
Dispensary Date 0.152*** -0.024

(0.035) (0.029)
R-squared 0.322 0.281 0.281 0.280 0.323
Observations 38,145,054

Note: (i) The Possession dummy is excluded in the main column (5) since the time gap be-
tween Recreational Vote and Possession or Possession and the Dispensary Date are typically
quite small. (ii) Both house characteristics – which includes bedrooms, bathrooms, the year
built – and state characteristics such as state per capita GDP and density are controlled for
in each model. (iii) City level clustered standard errors in parenthesis to take into account
potential correlation in the error terms. (iv) As a robustness check we use house price per
square foot as the dependent variable, which can be seen in Table A1 in Appendix B.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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Effect of Marijuana Legalization on Home Price (Fixed Effects)

log (Price)

(1) (2) (3) (4) (5)
Medical 0.039** 0.061***

(0.019) (0.020)
Recreational Vote 0.106*** 0.054***

(0.014) (0.013)
Recreational Possession 0.107***

(0.014)
Dispensary Date 0.138*** 0.111***

(0.015) (0.010)
City FE Yes Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes Yes
R-squared 0.610 0.610 0.610 0.610 0.611
Observations 38,144,444

Note: All models include city and year-quarter fixed effects. Beside our typical house char-
acteristic controls (number of bedrooms, bathrooms, age), we also include local economic
indicators at the state level. These include per capita GDP and population density. City
level clustered standard errors are in parentheses to account for potential correlation in the
error terms. As a robustness check we use house price per square foot as the dependent
variable, which can be seen in Table A1 in Appendix B.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1.
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Summary Statistics by Spatial Difference-in-Difference Treatment

Inside 0.5 Miles Between 0.5 and 1 Mile Between 1 and 2 Miles Outside 2 Miles

Mean SD Mean SD Mean SD Mean SD
House Price ($) 413,997 373,542 364,451 338,805 378,964 355,227 368,097 296,083
Price per Sq. Foot ($) 255 193 214 149 198 132 186 128
Sq. Feet 1,711 873 1,723 846 1,941 963 2,046 964
Bedrooms 2.9 0.9 3.0 0.9 3.1 0.9 3.1 0.9
Bathrooms 2.0 0.9 2.1 0.8 2.3 0.8 2.4 0.9
Age of House at Sale (Years) 41.5 31.3 43.3 28.9 33.3 24.7 27.1 22.8
Observations 382,937 134,337 150,123 218,436

The sample for the spatial difference-in-differences (SDD) model includes all home transactions in Colorado and Washington from
2014-2018. Each grouping represents the distance a home is from a dispensary, so for example homes in the first group are less than a
half mile away from the nearest dispensary.
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Spatial Difference-in-Differences

log (Price)

(1) (2) (3)
1/2 Mile Zone 0.045*** 0.072*** 0.082***

(0.002) (0.002) (0.002)
1 Mile Zone -0.028*** 0.009***

(0.002) (0.002)
2 Mile Zone -0.034***

(0.002)
Control Group Outside 2 Miles Within 2 Miles Within 1 Mile
Observations 885,833 650,437 565,923
R-squared 0.406 0.425 0.431

The sample includes transactions in the period between 2014 and 2018 in Col-
orado and Washington. Logged county level data such as county number of em-
ployees, wage, and the county employment ratio (county employees/state total
employees), as well as home characteristics including the number of bedrooms,
the square value of bedrooms, the age of the home, the number of bathrooms,
and the square footage of the home, are used in the regression to control for dif-
ferences across the states. Column 1 is an OLS model where treatment homes
are homes that fall within 2 miles or closer of a dispensary and control homes
are home that are not within 2 miles of a dispensary. Column 2 is the spatial
difference in difference model where the control group becomes all homes that
fall within 2 miles of a dispensary and the treatment group are homes that start
off within 2 miles of a location and move within .5 or 1 mile of a dispensary.
Column 3 is the same but now control are home starting off 1 mile and moving
within .5 miles of a dispensary. Robust standard errors in parenthesis.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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Figures

Figure 3.1: Trend of Average House Price Per Sq. Foot (CO, WA)
Note: (i) Control states are divided into three groups – high, middle, and low – based on their average
home price per square foot. The low group is composed of Alabama, Florida, New Hampshire, Rhode
Island, South Carolina, Tennessee, Texas, and West Virginia. The middle group consists of Georgia, Iowa,
Kentucky, Mississippi, Montana, Nebraska, North Carolina, and Pennsylvania. The high group is made of
Connecticut, Washington D.C., Delaware, Illinois, Minnesota, New Jersey, Virginia, and Wisconsin. (ii)
The vertical line reflects the recreational marijuana legalization date for Colorado and Washington, 2012.

102



Figure 3.2: Trend of Average House Price Per Sq. Foot (OR)
Note: The control grouping is the same as in Figure 1. The vertical line reflecting the RML treatment date
is 2014 for Oregon.
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Figure 3.3: Trend of Average House Price Per Sq. Foot (CA, MA, NV)
Note: The control grouping is the same as in Figures 1 and 2. The vertical line reflecting the RML treatment
date is 2016 for California, Massachusetts, and Nevada.
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Figure 3.4: Illustration of Spatial Difference in Difference Model in Denver, Colorado
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Figure 3.5
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Figure 3.6
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Appendix A: Time Use Robustness Checks

Figure .0A1: Distribution of Stage 1 Temperature Response Coefficients for Outdoor Time with 3-Day
Temperature Lags

Note: The solid orange line represents the median response, and each shaded green area
represents the surrounding high and low decile. For example, the darkest shaded area is the

estimated coefficients that are in the 40th to 60th percentile of the coefficient distribution. The
coefficients are interpreted as the change in time outside as a result of being in a particular

temperature bin relative to a day in the 60-70bin.
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Figure .0A2: Distribution of Stage 1 Temperature Response Coefficients for Outdoor Time with No Fixed
Effects

Note: The solid orange line represents the median response, and each shaded green area
represents the surrounding high and low decile. For example, the darkest shaded area is the

estimated coefficients that are in the 40th to 60th percentile of the coefficient distribution. The
coefficients are interpreted as the change in time outside as a result of being in a particular

temperature bin relative to a day in the 60-70bin.
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Appendix B: Data Cleaning Description

Zillow Housing Data

Considering the size and scope of the Zillow ZTRAX repository, it is necessary to document

the data cleaning process used for this research. However, in order to create a dataset that is both

national and representative, some adjustments were made to the import process. In general, the

effort follows Zillow’s own script which creates a hedonic dataset.13 The end product results in a

dataframe in which each row is a home transaction and each column reflects home and transaction

characteristics. The files are initially imported state-by-state and then appended together to make

a master file.

The process goes as follows. First, three tables are imported from the Assessment repository:

Main, Building, and BuildingAreas. These three tables combine to provide house characteristics,

as well as information about the type of property exchanged in a given transaction. For example,

the variable “PropertyLandUseStndCode” in the Building table details whether a property is a

single-family residence, used in industry, is a farm, et cetera. We erred on the side of inclusivity

when filtering for these variables during import, as reporting standards across counties and states

vary widely. The properties included are described as follows in Zillow’s documentation:

1. Residential General

2. Single-Family Residences

3. Rural Residences

4. Mobile Home

5. Townhouse

6. Cluster Home

7. Condominium
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8. Cooperative

9. Row House

10. Planned Unit Development

11. Residential Common Area

12. Seasonal, Cabin, Vacation Residence

13. Bungalow

14. Zero Lot Line

15. Manufactured, Modular, Prefabricated Homes

16. Patio Home

17. Garden Home

18. Landominium

19. Inferred Single-Family Residential

Also, following the logic described by Zillow, we filter the “BuildingAreaStndCode” from the

BuildingAreas table in order to get as accurate a measure of total square footage as possible. Again,

different counties have different reporting standards as to what is included in their square footage

calculations, so to ensure consistency we have included only those options which enumerate the

buildings on the property, not the land itself. These two filters – for “PropertyLandUseStndCode”

and “BuildingAreaStndCode” – are the only two at this point in the process. Once this is complete,

the three assessment tables are merged to create a single assessment file with all the necessary

housing characteristic variables to be used in analysis.

The second set of data comes from the Transaction repository. Included are the PropertyInfo

and Main tables. All the information provided here reflects the transaction itself, not any charac-

teristics of the home. This includes variables like the price of the transaction, the date of transfer,
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and the type of transfer. The only filtering that occurs in this step is in regard to the variable

“DataClassStndCode,” which details the type of transaction occurring. Since the subject of study

are property transactions, only deed transfers and deed transfers with concurrent mortgages are in-

cluded. This excludes other types of transactions, including foreclosures and inter-family transfers

as in the case of inheritances. These two tables are appended together to make a single transaction

file. Finally, the transaction and assessment files are combined to make a single master file for a

given state. The states files are then appended together to make a national-level dataset which is

then used for analysis.

The master file is filtered to exclude extreme observations, as well as define the period of study.

To ensure that results are not being driven but incorrect or implausible observations, we drop

transactions which had sales prices below $10,000 and above $10,000,000, similar to Cheng et al.

[2018]. On the lower end it is unlikely that transactions with prices below $10,000 occurred on the

market, and may have slipped through the “DataClassStndCode” filter. Prices above $10,000,000

are extraordinary and in some cases are likely the result of data entry errors. Similarly, house char-

acteristics are filtered to exclude observations that are in the top thousandth or top ten-thousandth

percentile. Doing so, for example, eliminated an observation with over 1000 bedrooms. This pro-

cess removed a large number of observations in states which do not require counties to report the

home characteristics, leaving small states like Maine with just 11,000 transaction observations. To

guarantee a representative sample, we then dropped states which did not have at least 100,000 ob-

servations. That is an arbitrary standard, but by doing so we can more confidently argue that each

states’ market is properly represented. Finally, prices were adjusted to reflect 2018 prices using

the Federal Reserve’s Consumer Price Index.
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Appendix C: Additional Model Specifications
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Effect of Recreational Marijuana Legalization on House Price per Sq. Foot

log (Price per Sq. Foot)

OLS Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Medical 0.466*** 0.461*** 0.046** 0.069***

(0.035) (0.035) (0.020) (0.021)
Recreational Vote 0.187*** 0.088*** 0.108*** 0.055***

(0.030) (0.020) (0.014) (0.014)
Recreational Possession 0.193*** 0.109***

(0.031) (0.015)
Dispensary Date 0.169*** 0.001 0.141*** 0.116***

(0.037) (0.030) (0.015) (0.011)
Bedrooms -0.434*** -0.458*** -0.458*** -0.459*** -0.433*** -0.102*** -0.102*** -0.102*** -0.102*** -0.102***

(0.035) (0.036) (0.036) (0.036) (0.036) (0.020) (0.020) (0.020) (0.020) (0.020)
Bedrooms2 0.044*** 0.047*** 0.047*** 0.047*** 0.044*** 0.004* 0.004* 0.004* 0.004* 0.004*

(0.004) (0.004) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002)
Bathrooms 0.188*** 0.192*** 0.192*** 0.192*** 0.187*** 0.044*** 0.044*** 0.044*** 0.045*** 0.045***

(0.011) (0.011) (0.011) (0.011) (0.011) (0.006) (0.006) (0.006) (0.006) (0.007)
Age 0.001** 0.001 0.001 0.001 0.001** -0.002*** -0.002*** -0.002*** -0.002*** -0.002***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Age2 -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
GDP Per Capita 0.356*** 0.828*** 0.826*** 0.870*** 0.314*** 1.323*** 1.273*** 1.273*** 1.302*** 1.252***

(0.053) (0.062) (0.062) (0.061) (0.059) (0.109) (0.114) (0.114) (0.113) (0.111)
Density 0.004*** -0.004 -0.003 -0.004 0.005*** -0.003 -0.002 -0.002 -0.002 -0.001

(0.001) (0.003) (0.003) (0.003) (0.001) (0.004) (0.004) (0.004) (0.003) (0.003)
City FE No No No No No Yes Yes Yes Yes Yes
Year-Quarter FE No No No No No Yes Yes Yes Yes Yes
City Clustered S.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.161 0.099 0.099 0.098 0.162 0.528 0.529 0.529 0.529 0.530
Observations 38,145,054 38,145,054 38,145,054 38,145,054 38,145,054 38,144,444 38,144,444 38,144,444 38,144,444 38,144,444

Note: (i) The dependent variable is the log of house price per square foot while the first half columns are OLS results and the latter half are FE results. (ii) Possession dummy is
excluded in our main columns (5) and (10) since the time gap between vote and possession, or sale and possession are too small to capture significantly valuable variations. (iii)
City level clustered standard errors in parenthesis to take into account the correlations of error terms.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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Effect of Recreational Marijuana Legalization on House Price (Robustness)

log (Price)

(1) (2) (3) (4) (5)
Medical 0.094*** 0.101*** 0.095*** 0.102*** 0.062***

(0.023) (0.023) (0.023) (0.023) (0.020)
Recreational Vote 0.168*** 0.154*** 0.161*** 0.146*** 0.052***

(0.013) (0.013) (0.013) (0.013) (0.013)
Dispensary Date 0.063*** 0.074***

(0.013) (0.013)
First Dispensary 0.078*** 0.091*** 0.120***

(0.011) (0.011) (0.011)
Bedrooms 0.023 0.023 0.035*

(0.021) (0.021) (0.020)
Bedrooms2 -0.005** -0.005** -0.007***

(0.002) (0.002) (0.002)
Bathrooms 0.136*** 0.136*** 0.135***

(0.007) (0.007) (0.007)
log(Sq. Feet) 0.654*** 0.654*** 0.645***

(0.017) (0.017) (0.016)
Age -0.002*** -0.002*** -0.002***

(0.000) (0.000) (0.000)
Age2 0.000* 0.000* 0.000**

(0.000) (0.000) (0.000)
GDP Per Capita 1.282***

(0.104)
Density -0.001

(0.002)
R-squared 0.427 0.601 0.428 0.601 0.611
Observations 38,144,444

Note: (i) Various levels of controls are used to ensure that the models are not misspec-
ified. (ii) City level clustered standard errors in parenthesis to take into account the
correlations of error terms.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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Heterogeneous Effect of Marijuana Legalization on House Price across Qτ

Log(Price per Sq. Foot)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

Recreational Vote -0.016 -0.015 0.014 0.021 0.031** 0.046*** 0.071*** 0.104*** 0.123***
(0.024) (0.020) (0.016) (0.015) (0.015) (0.016) (0.016) (0.017) (0.023)

Dispensary Date 0.074*** 0.099*** 0.121*** 0.152*** 0.172*** 0.180*** 0.151*** 0.108*** 0.073**
(0.019) (0.017) (0.015) (0.015) (0.015) (0.018) (0.020) (0.025) (0.036)

Medical 0.084*** 0.090*** 0.073*** 0.069*** 0.064*** 0.061** 0.057** 0.053** 0.041*
(0.030) (0.023) (0.020) (0.021) (0.022) (0.024) (0.024) (0.023) (0.025)

R-squared 0.060 0.123 0.179 0.218 0.243 0.254 0.247 0.220 0.163
Number of Cities 10,640
Observations 38,145,054

Note: (i) Possession dummy is excluded since the time gap between vote and possession, or sale and possession are quite small. (ii) House
characteristics such as the number of bedrooms, bathrooms, year built and state characteristics such as state GDP, population, land area,
and density are controlled in the regressions. (iii) City level clustered standard errors in parenthesis to take into account the correlations
of error terms.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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Heterogeneous Effect of Marijuana Legalization on House Price across Qτ

Log(Price per Sq. Foot)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

Recreational Vote -0.015 -0.014 0.015 0.022 0.030** 0.043*** 0.068*** 0.100*** 0.119***
(0.024) (0.019) (0.016) (0.015) (0.015) (0.016) (0.017) (0.017) (0.022)

First Dispensary 0.076*** 0.104*** 0.126*** 0.159*** 0.184*** 0.195*** 0.165*** 0.120*** 0.084**
(0.017) (0.016) (0.014) (0.015) (0.016) (0.018) (0.019) (0.024) (0.036)

Medical 0.085*** 0.091*** 0.074*** 0.070*** 0.066*** 0.063*** 0.058** 0.054** 0.042*
(0.030) (0.023) (0.020) (0.021) (0.022) (0.024) (0.024) (0.023) (0.025)

R-squared 0.060 0.123 0.179 0.218 0.243 0.254 0.247 0.220 0.164
Number of Cities 10,640
Observations 38,145,054

Note: (i) First Dispensary is used in place of Dispensary Date for the purpose of a robustness check. (ii) The Possession dummy is
excluded since the time gap between Recreational Vote and Recreational Possession, or First Dispensary and Recreational Possession are
quite small. (iii) House characteristics such as the number of bedrooms, bathrooms, year built and state characteristics such as state per
capita GDP, and density are controlled in the regressions. (iv) City level clustered standard errors in parenthesis to take into account the
correlations of error terms.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1

131



Spatial Difference-in-Differences: Colorado Subsample

log (Price)

(1) (2) (3)
1/2 Mile Zone 0.059*** 0.114*** 0.123***

(0.003) (0.003) (0.003)
1 Mile Zone -0.036*** 0.041***

(0.003) (0.003)
2 Mile Zone -0.067***

(0.003)
Control Group Outside 2 Miles Within 2 Miles Within 1 Mile
Observations 447,501 256,699 218,605
R-squared 0.411 0.414 0.413

The results in this table are from the same model specification as in the Spatial
Difference-in-Differences Table 6, but limited to the observations in the Col-
orado subsample. House characteristics and county-level economic data are
used as controls with robust standard errors.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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Spatial Difference-in-Differences: Washington Subsample

log (Price)

(1) (2) (3)
1/2 Mile Zone 0.061*** 0.065*** 0.061***

(0.002) (0.002) (0.002)
1 Mile Zone -0.015*** -0.006***

(0.003) (0.002)
2 Mile Zone -0.013***

(0.003)
Control Group Outside 2 Miles Within 2 Miles Within 1 Mile
Observations 438,332 393,738 347,318
R-squared 0.491 0.510 0.519

The results in this table are from the same model specification as in the Spatial
Difference-in-Differences Table 6, but limited to the observations in the Wash-
ington subsample. House characteristics and county-level economic data are
used as controls with robust standard errors.
∗ ∗ ∗ : p < 0.01
∗∗ : p < 0.05
∗ : p < 0.1
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