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Abstract: Bone health is determined by many factors including bone metabolism.
At any time, many bone multicellular units (BMU) are going through a remodeling
cycle. Depending on different signaling factors, the cycle will end with the same
amount of bone as at the beginning of the remodeling cycle (healthy) or increased
or decreased amounts of bone. These changes contribute to chronic bone diseases
such as osteoporosis. Osteoporosis results in brittle bones that are easily fractured.
Recently immune cells have been identified as major signaling factors for this process.
However, it is unclear how and to what extent they affect bone metabolism.

One strategy to better understand this phenomenon is to consider different foods
or medicines that activate immune cells. Lactobacillus rhamnosus GG (LGG), for
example, is a probiotic that increases butyrate production in the gut. Butyrate has
been shown to indirectly increase bone density through a series of interconnected
processes throughout the body that involve immune cells (Tyagi et al., 2018). One
key process is the increase of Wnt-10b within the bone compartment by stimulated
regulatory T cells. This process has been shown to increase bone volume.

Here, we focus on how Wnt-10b has been shown to alter osteoblastogenesis, osteoblast
apoptosis rate, and osteoblast bone formation rate, which collectively lead to the in-
crease of bone density (Wend et al., 2012). To model this change, we adapted a
previously published and well-cited model of bone remodeling (Graham et al., 2013).
The resulting model is a single compartment system that includes ordinary differ-
ential equations for cell types typically involved in remodeling such as osteoclasts,
osteoblasts, and osteocytes and a delayed differential equation that tracks the amount
of bone present at the remodeling site. Our alterations to the original model consist
of extending it past a single remodeling cycle, implementing a reaction to Wnt-10b,
and including a delayed relationship for the formation of the bone matrix. Three new
parameters were estimated and validated using normalized data collected on mice
(Bennett et al., 2005, 2007; Roser-Page et al., 2014). The values of the parameters
were found using MATLAB nonlinear least-squares solver lsqcurvefit and delayed
differential equation solver dde23.

The completed model connects Wnt-10b to bone metabolism. Interestingly, we find
that this model predicts that osteoblast population does not change with Wnt-10b,
but pre-osteoblast and osteoclast populations do. This model improves the under-
standing of immune cell disturbances to bone health and can help identify targets for
medical intervention of bone loss.

iv



TABLE OF CONTENTS

Chapter Page

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Osteoporosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bone Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II Osteoimmunology and Related Models . . . . . . . . . . . . . . . . 7
2.1 Osteoimmunology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Wnt-10b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Computational Models . . . . . . . . . . . . . . . . . . . . . . . . . 9

III Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Graham 2013 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Osteocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Osteoclasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Altered Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Pre-Osteoblasts . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Osteoblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Bone Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

IV Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Osteoblast Generation . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Osteoblast Apoptosis . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Bone Formation Rate of Osteoblast . . . . . . . . . . . . . . 26

4.3 Delayed Osteoblast Activity . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Bone Resorption Manual Adjustment . . . . . . . . . . . . . . . . . 30

V Model Results and Validation . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

VI Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



A Data Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B MATLAB Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



LIST OF TABLES

Table Page

3.1 Unaltered parameter values and definitions from Graham et al. (2013) 17

3.2 Initial conditions for equations . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Adjusted parameter values and definitions from chapter IV . . . . . . 18

4.1 Mice data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Residual norms for different β2adj upper bounds . . . . . . . . . . . . 26

4.3 Bone resorption rate values . . . . . . . . . . . . . . . . . . . . . . . 31

vii



LIST OF FIGURES

Figure Page

1.1 Causes of osteoporosis (Walker-Bone, 2012) . . . . . . . . . . . . . . 1

1.2 Osteoporotic fractures (Xie et al., 2019) . . . . . . . . . . . . . . . . . 3

1.3 Balanced and unbalanced bone metabolism (Chang et al., 2019) . . . 4

1.4 Bone remodeling phases . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Interactions between bone cell populations adapted from Graham et al.

(2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Wnt-10b alterations of bone metabolism adapted from Graham et al.

(2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Normalized Wnt-10b fold change . . . . . . . . . . . . . . . . . . . . 20

4.2 Normalized BV/TV relationship with normalized Wnt-10b fold change 20

4.3 Osteoblast formation at varying values of β1adj within set bounds . . 23

4.4 Osteoblast apoptosis at varying values of β2adj within set bounds . . . 25

4.5 Discontinuity that occurs when β2adj is greater than 0.00015 . . . . . 26

4.6 Net mouse bone formation rate (Bennett et al., 2007) . . . . . . . . . 27

4.7 Estimated bone formation rate with varying kM values . . . . . . . . 28

4.8 Nonphysical bone dynamics with a 5 fold increase in Wnt-10b . . . . 29

4.9 Physiologically relevant bone dynamics with a 5 fold increase in Wnt-10b 30

4.10 Original model results (Graham et al., 2013) . . . . . . . . . . . . . . 31

4.11 Original model replicated . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 Original model balanced . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.13 Model with delay balanced . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



5.1 Validation of model with data from Roser-Page et al. (2014) . . . . . 35

5.2 Simulation results for three normalized Wnt-10b fold changes . . . . . 36

5.3 Activated cell population results for a normalized 1 fold decrease in

Wnt-10b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Activated cell population results for a normalized 5 fold increase in

Wnt-10b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Activated cell population results for a normalized 50 fold increase in

Wnt-10b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Pre-osteoblast cell population at varying levels of normalized Wnt-10b

fold change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 Osteoclast cell population at varying levels of Wnt-10b fold change . 40

5.8 Osteoclast number on sections of femur for 3 week old mice (Bennett

et al., 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Graphs provided in Bennett et al. (2007) used for model parameterization 49

A.2 Graphs provided in Bennett et al. (2005) used for model parameterization 49

A.3 BV/TV values for 1.8 Wnt-10b fold increase used for model validation

(Roser-Page et al., 2014) . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.4 Wnt-10b relative expression for data from Roser-Page et al. (2014)

used for model validation . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



CHAPTER I

Introduction

1.1 Osteoporosis

Osteoporosis is a disease characterized by decreased bone mass caused by the struc-

tural deterioration of bone tissue. Both trabecular bone, the bone found within the

end of long bone and the interior of flapped bones, and cortical bone, the hard exte-

rior of bone, are affected by this disease, but signs of osteoporosis are first shown in

trabecular bone. The structure of healthy bone is a dense matrix with small pockets

of space, but as osteoporosis breaks down the matrix, bone structure becomes less

connected with larger pockets of space. Osteoporosis is considered primary if the

bone loss is related to aging. Secondary osteoporosis is caused by many other health

factors and diseases (Figure 1.1).

Figure 1.1: Causes of osteoporosis (Walker-Bone, 2012): Primary osteoperosis is
linked to aging and other traditinal health factors such as gender, smoking, and phys-
ical activity. Secondary osteoperosis is the result of a separate underlying condition
such as chronic diseases, medications, and HIV.
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Over 10 million Americans age 50 or over have osteoporosis, and at least 34 million

Americans are considered at risk of developing the disease. This disease results in

brittle bones that are easily fractured in areas such as the wrist, hip, and spine. Many

of the resulting fractures leave individuals with a lower range of mobility and a lower

life expectancy. Over 1.5 million osteoporosis related fractures occur per year in the

United States alone leading to a high financial burden. In 2005 the estimated cost

of these fractures was 19 billion dollars (Harvey et al., 2010). Due to the prevalence

of the disease and the physical and economic burden caused by the disease, under-

standing, preventing, and treating osteoporosis is a high priority for many research

agencies.
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Figure 1.2: Osteoporotic fractures (Xie et al., 2019): Bone changes caused by osteo-
porosis lead to a higher risk of fractures. As individuals age the cortical bone begins
to lose thickness and porosity, and trebecular bone material begins to lose density and
connectivity resulting in an overall loss of structural integrity. This leads to inorganic
pyrophosphate (PPi) and advanced glycation end-products (AGEs) accumulating in
the bone.

1.2 Bone Metabolism

Bone metabolism is the process that replenishes existing bone tissue with new tissue.

The process occurs in a continuous cyclic pattern throughout an individual’s lifetime
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and is controlled by many complex interactions. Homeostasis or no net change in

volume or density of bone is achieved when the interactions are balanced between

degradation and formation. When the balance is perturbed, bone tissue no longer

remodels properly, leading to weak brittle bones if bone resorption dominates (Figure

1.3).

Figure 1.3: Balanced and unbalanced bone metabolism (Chang et al., 2019):(Top)
A balanced remodeling cycle is when the resorption of bone equals the formation
of bone. This cycle will end in no net change to the bone matrix. (Bottom) An
unbalanced remodeling cycle is when the resorption of bone is greater than the bone
formation. This results in a net reduction of bone mass. The less frequent case of net
bone growth is not shown.

Bone metabolism works in a cyclic pattern frequently called the bone remodeling

cycle (Figure 1.4). The cells involved in remodeling are part of what is called a basic

mulitcellular unit (BMU). For trabecular bone the BMU works on the surface of the

bone. The four main cells in a BMU are osteoclasts, pre-osteoblasts, osteoblasts,

and osteocytes. Osteoclasts are responsible for breaking down the mineralized bone

matrix in the resorption phase; they are differentiated from myeloid cells when the

remodeling process is triggered. Pre-osteoblasts and osteoblasts are developed from

mesenchymal stem cells. The difference between the two cell types is that the os-

teoblasts have received the proper signal to begin to rebuild the bone matrix in the

formation phase, while pre-osteoblasts are still inactive in the reversal and formation

phase. Osteocytes are a form of osteoblasts that have been embedded in the bone

matrix during the termination phase. When these cells become damaged or die they
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release a signal that triggers a remodeling cycle (Parfitt, 2002, 1994; Eriksen, 2010;

Raggatt and Partridge, 2010).

Figure 1.4: Bone remodeling phases (Raggatt and Partridge, 2010): In the activa-
tion phase the faded osteocytes represent the matrix damage that signals a remodel-
ing cycle through chemicals such as osteoprotegerin (OPG) and macrophage colony-
stimulating factor 1 (csf-1) and monocyte chemoattractant protein-1(MCP-1). During
the resorption phase, osteoclasts develop due the signaling with parathyroid hormone
(PTH) and receptor activator of nuclear factor κβ ligand (RANKL). These osteo-
clasts break down that bone and are regulated by internal signaling and osteoblast
signaling. The reversal phase prepares the bone surface for new bone tissue. New
bone tissue is formed by mature osteoblasts during the formation phase. This phase
includes pre-osteoblasts differentiating into mature osteoblasts (not shown) and ma-
ture osteoblasts embedding into the matrix as osteocytes. These osteocytes release
sclerostin leading to the termination of the remodeling cycle.

1.3 Thesis Objective

This work aims to develop a better understanding of bone metabolism through a com-

putational model. This work explores a potential way to shift bone metabolism away

from over resorption to prevent or repair bone damage caused by osteoporosis. The

model developed is a five equation system of ordinary and delayed differential equa-
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tions that describes the relationship between the bone remodeling cycle and Wnt-10b.

This thesis is a first step towards our lab’s long term goal to create multicompart-

ment mechanistic model that describes how bone health is impacted by the immune

system.
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CHAPTER II

Osteoimmunology and Related Models

2.1 Osteoimmunology

Interestingly, it has become clear that to obtain a full understanding of the bone re-

modeling cycle, one must also take into account the cross-talk between bone metabolism

and the immune system. In 2001 the first paper using the term osteoimmunology was

published (Targońska et al., 2001). This paper did not receive much attention, but

the next paper published in 2002 was well-cited (Theill et al., 2002). Both papers

introduced the idea that the immune system and bone metabolism have a complex

interplay of interactions. Since, several papers have been published in an attempt to

fill in what these interactions are exactly.

Some studies focus on two or three parts of the interaction and study how these

parts interact. Sphingosine kinase 1 (SPHK1) has been shown to mediate the acti-

vation of sphingosine-1-phosphate receptor 1 (S1PR1). Activated S1PR1 signals the

production of receptor activator of nuclear factor κβ ligand (RANKL) production.

This relationship is known as the SPHK1- S1PR1-RANKL axis (Xiao et al., 2018).

The RANKL-receptor activator of nuclear factor κβ (RANK)-osteoprotegerin (OPG)

axis is very important for the production and activation of osteoclasts. RANKL

and RANK signal the production and activation of osteoclasts while OPG acts as a

receptor decoy inhibiting osteoclastogenesis (Leibbrandt and Penninger, 2008).

Others focus on one type of cell and interactions surrounding it. A well known

immune cell, T cell, can be triggered by the parathyroid hormone (PTH) to either

signal resorption or formation of bone depending on where the hormone binds on
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the T cell (Pacifici, 2013). Dendritc cells are another type of immune cells that

interact osteoblast. A study done with titanium plates found that titanium pushed

the dendritic cells to mature faster than the osteoblasts could regenerate bone (Yang

et al., 2019). In turn BMU cells can influence immune responses as well. It has been

shown that osteoclasts participate in phagocytosis, antigen presentation, and immune

modulation (Madel et al., 2019).

Several studies have been done over how different cytokines of the immune system

interact with bone health mediator (Walsh et al., 2006; Croes et al., 2017; Bucher

et al., 2019; Nanjundaiah et al., 2013; Jamali et al., 2013). Recently it was noted that

this field was originally conceived to find the impact immune factors have on bone

cells, but bone cells have also been shown to regulate the immune system in return

(Ponzetti and Rucci, 2019).Due to the very complex interactions of this system, it is

not surprising that osteoimmunology is still being actively studied.

2.2 Wnt-10b

Wnt-10b is a signaling protein that interacts with cells involved in maintaining bone

metabolism and is also important to the immune system. This protein can be pro-

duced by a number of different cells, including osteoblasts and T cells. A change in

Wnt-10b levels has been shown to alter the bone volume significantly (Kato et al.,

2002; Patsch et al., 2011). Wend et al. (2012) and Jing et al. (2018) attribute Wnt-

10b regulation of bone volume to a change of osteoblastogenesis, osteoblast apoptosis,

and bone formation rate.

One way to explore how Wnt-10b interacts with bone metabolism is through

studying immune responses. Lactobacillus rhamnosus GG (LGG) is a probiotic that

has been shown to increase bone volume in mice through the increase of butyrate

producing gut flora. Then through a series of reactions involving immune cells, bu-

tyrate causes T cells to produce Wnt-10b in bone marrow (Tyagi et al., 2018). Our
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lab is currently developing a model that describes mechanistically how butyrate in-

creases T-cell-produced Wnt-10b. By developing a model that shows the relationship

between this produced Wnt-10b and bone volume, we can provide insight on how

bone metabolism and the immune system interact. Combining these models would

provide a mutlicompartment model that describes this phenomena providing an even

deeper understanding of this relationship.

2.3 Computational Models

At this point in time, there are a few published mathematical/computational models

on bone metabolism, but none of them provide a physiological understanding of the

impact of Wnt-10b on bone health. In the early 2000s three models were developed.

In one model a system of equations was developed to track the population changes

of osteoblasts, osteoclasts and PTH. This model was used to explore the effect of

PTH administration on the other two cell populations (Rattanakul et al., 2003).

Another model was developed to describe the autocrine and paracrine interactions

of osteoblasts and osteoclasts. This model consisted of three ordinary differential

equations (ODEs) that tracks the cell populations as well as changes in bone mass

(Komarova et al., 2003). In 2005 this model was updated to include a relationship

with PTH (Komarova, 2005).

In 2010 more complex models began to be published. The model produced in

Komarova et al. (2003) was expanded to include an ODE for myeloma cells and

then altered to include spacial dimensions (Ayati et al., 2010). The same year a

multicompartment model on the calcium homeostasis in the body was published.

One of the compartments in the model is the bone compartment which also tracked

some important bone dynamics (Peterson and Riggs, 2010).In 2013 an ODE model

that tracks how different signals cause the development of osteoclasts and osteoblasts

and a change in bone mass Graham et al. (2013). This model will be described in more
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detain in section one of III. In 2014 a hybrid cellular automaton model was developed

to explore the bone environment of metastatic prostate cancer (Araujo et al., 2014).

Later this model was expanded to include possible treatment pathways (Cook et al.,

2016). Another model was published around the same time that focused on the

development of the bone collegan matrix. This model explored the mineralization lag

time of osteoblasts (Komarova et al., 2015). All of these models provide insight into

bone metabolism, however, none of them show a direct mechanistic relationship on

how Wnt-10b alters the bone remodeling cycle. Thus the objective of this thesis is

to develop a model that directly connects Wnt-10b and the remodeling cycle.
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CHAPTER III

Model

We altered an existing bone homeostasis model without immune interactions (Graham

et al., 2013) to include a mathematical relationship that represents how Wnt-10b

interacts with bone formation. This is a single compartment model that tracks the

important cells involved in the bone remodeling cycle as well as bone volume. We

extended past a single remodeling cycle, added a reaction to Wnt-10b stimuli, and

implemented a delayed relationship for the lag in bone matrix development. We

added a reaction to a stimulus by utilizing published data to obtain parameters that

were fitted utilizing MATLAB nonlinear least-squares solver lsqcurvefit and delayed

differential equation solver dde23. During this process we consulted with Dr.Brenda

Smith from the Department of Nutritional Sciences at Oklahoma State University to

ensure that our model was not only mathematically correct but also physiologically

relevant.

3.1 Graham 2013 Model

The existing model we utilized includes five ordinary differential equations that track

the changes in populations of osteocytes (S), pre-osteoblasts (P ), osteoblasts (B),

osteoclasts (C), and in bone volume (z) (Graham et al., 2013). The model does

not include an equation for the population of pre-osteoclasts. The model includes

important autocrine and paracrine signaling factors that are represented by power

law relationships (Figure 3.1). These relationships are described in Table 3.1. This

section covers the parts of the Graham 2013 model that we did not alter.
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Figure 3.1: Interactions between bone cell populations adapted fromGraham et al.
(2013): This figure depicts the relationships used to to develop the equations found
in Graham et al. (2013). Note that only osteocytes, pre-osteoblasts, osteoblasts, and
osteoclasts circles represent a differential equation. The fifth equation comes from
a combination of the bone resorption and formation arrows. The other solid arrows
represent autocrine and paracrine signaling factors. The dashed lines represent the
transformation of one cell type to another.

3.1.1 Osteocytes

Equation 3.1 describes the dynamics of the osteocyte cell population, S. The equation

shows that mature osteoblasts convert into osteocytes at a rate of α1. The term(
1− S

Ks

)
+

represents the effectiveness of sclerostin regulation by osteocytes where

the + means that the value must remain greater than or equal to zero. Note that

although sclerostin regulation does include a Wnt pathway, we are focusing on Wnt-

10b excreted from T cells or from a genetic perturbation, not Wnt-10b produced

within a balanced remodeling cycle. It is assumed in the model that over the duration

of remodeling, ostoecytes will not will not die; therefore, there is no death term in

the equation. Instead of a death term,the osteocyte population is reduced from the

steady state value of 200 cells to 180 cells at the start of each remodeling cycle.

This decrease in osteocyte population represents the initial biomechanical action that

12



triggers a remodeling cycle.

dS

dt
= α1B

g31

(
1− S

Ks

)
+

(3.1)

3.1.2 Osteoclasts

Equation 3.2 describes the dynamics of the osteoclast cell population, C. It is assumed

that there is large amount of pre-osteoclasts available leading to no significant change

in the population so the population is not modeled. The production of osteoclasts

depends on a differentiation rate, α4 and a RANK/RANKL/OPG interaction that

this described by Sg41P g42(ε + B)g43
(

1− S

Ks

)g44

+

. OPG can act as a decoy receptor

for RANKL. This interaction is represented as (ε+ B)g43 . This term includes a very

small number, ε, to prevent dividing by zero when the osteoblast population is zero

since g43 is a negative integer. The second part of the equation shows that osteoclasts

die at a rate of β3.

dC

dt
= α4S

g41P g42(ε+B)g43
(

1− S

Ks

)g44

+

− β3Cf34 (3.2)

3.2 Altered Model

This section covers the parts of the model that have alterations in them. Many parts

of the equations have remained the same as the Graham 2013 model, but with new

terms added to each of the following equations. As these additions are related to

Wnt-10b, we introduce a variable, Wnt, into the equations that represents the nor-

malized fold change of Wnt-10b present compared to the normal levels of Wnt-10b

in the system. Note that if the Wnt-10b levels are normal the remodeling cycle is

normal as well and Wnt takes on a value of zero. Figure 3.2 visually describes how

Wnt-10b alters the remodeling cycle.
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Figure 3.2: Wnt-10b alterations of bone metabolism adapted from Graham et al.
(2013): Wnt-10b has a positive correlation with osteoblastogenesis and bone forma-
tion rate. Wnt-10b has a negative relationship with osteoblast apoptosis. These
relationships are shown by altering the arrow size of the the original image from
Graham et al. (2013).

3.2.1 Pre-Osteoblasts

Equation 3.3 describes how the pre-osteoblast cell population changes over the course

of a remodeling cycle. Most of this equation has remained the same as it was in

the Graham 2013 model. Pre-osteoblasts differentiate at a rate of α2 from a large

population of stem cells. This differentiation is triggered by the sclerostin signaling of

osteocytes. The pre-osteoblast cell population can also be increased by proliferation

of existing cells at a rate of α3. The population can be decreased by differentiation

into osteoblasts or by cell death. Cell death is represented by δP . We have altered

the equation to include a linear relationship with Wnt-10b in the pre-osteoblast dif-

ferentiation to osteoblast process. Pre-osteoblasts differentiate into osteoblasts at a

balanced rate of β1 due to paracrine signaling, but Wnt-10b increases this differenti-

ation by a term of β1adjWnt.
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dP

dt
= α2S

g21

(
1− S

Ks

)g22

+

+α3P
g32

(
1− S

Ks

)
+

−(β1+β1adjWnt)P f12Cf14−δP (3.3)

3.2.2 Osteoblasts

Equation 3.4 shows how osteoblasts will change over a remodeling cycle. Pre-osteoblasts

mature into osteoblasts at a normal rate of β1, but when the amount of Wnt-10b is

altered, maturation rate changes by β1adjWnt as discussed in the previous section.

Wnt-10b also changes how fast osteoblasts die. This is defined as a decreasing linear

relationship represented by β2adjWnt. Osteoblasts can also differentiate into osteo-

cytes as shown by α1B
g31

(
1− S

Ks

)
+

.

dB

dt
= (β1 + β1adjWnt)P f12Cf14 − (β2 − β2adjWnt)Bf23 − α1B

g31

(
1− S

Ks

)
+

(3.4)

3.2.3 Bone Volume

Equation 3.5 shows the dynamics of bone volume, at a single remodeling site. Bone

volume is reduced by osteoclasts at a rate of k1. This rate is slightly different than

the rate in the original model due to rounding. Osteoblasts build back the bone at

a balanced rate of k2. This rate is increased by a Michaelis Menten relationship to

Wnt-10b. Here half of our maximum saturation of Wnt-10b is the kM and k2adj is

Vmax. We also implemented a delayed relationship with osteoblasts to allow time for

osteoblasts to build the bone matrix, as shown in Komarova et al. (2015) and Araujo

et al. (2014).

dz

dt
= −k1C +

(
k2 +

k2adjWnt

Wnt+ kM

)
Blag (3.5)
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Blag = B(t− τ) (3.6)
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Table 3.1: Unaltered parameter values and definitions from Graham et al. (2013)

Parameter Definition Value Units
α1 Osteoblast embedding rate 0.5 day−1

α2 Differentiation rate of pre-
osteoblast precursors

0.1 day−1

α3 Pre-osteoblast proliferation rate 0.1 day−1

δ Apoptosis of pre-osteoblasts 0.1 day−1

α4 Differentiation rate of osteoclast
precursors

0.1 day−1

Ks Critical value of osteocyte pop-
ulation

200 cells

g31 Osteoblast autocrine signaling 1 dimensionless
g21 Osteocyte paracrine signaling of

pre-osteoblasts
2 dimensionless

g22 Sclerostin regulation of os-
teoblastogenesis

1 dimensionless

g32 Pre-osteoblast autocrine signal-
ing

1 dimensionless

g41 Osteocyte paracrine signaling of
osteoclasts

1 dimensionless

g42 Pre-osteoblast paracrine signal-
ing of osteoclasts

1 dimensionless

g43 Osteoblast paracrine signaling
of osteoclasts

-1 dimensionless

g44 Sclerostin regulation of osteo-
clastogenesis

1 dimensionless

f12 Pre-osteoblast paracrine signal-
ing of osteoblasts

1 dimensionless

f14 Osteoclast paracrine signaling of
osteoblasts

1 dimensionless

f23 Osteoblast autocrine signaling
for apoptosis

1 dimensionless

f34 Osteoclast autocrine signaling
for apoptosis

1 dimensionless

ε Avoid 0 denominator 1 cells

Table 3.2: Initial conditions for equations

Symbol Initial Condition Definition Units
S 180 Osteocyte population at time t cells
P 0 Pre-osteoblast population at time t cells
B 0 Osteoblast population at time t cells
C 0 Osteoclast population at time t cells
z 100 Relative bone volume at time t %
Blag 0 Osteoblast population at time t− τ cells
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Table 3.3: Adjusted parameter values and definitions from chapter IV

Parameter Definition Value Units
β1 Balanced differentiation rate of

pre-osteoblasts
0.1 day−1

β1adj Wnt-10b alteration of differenti-
ation rate of pre-osteoblast

5e-03 day−1

β2 Balanced osteoblast apoptosis
rate

0.1 day−1

β2adj Wnt-10b alteration of osteoblast
apoptosis rate

1.5e-04 day−1

k1 Bone resorption rate 0.69825
%volume

day2

k2 Balanced bone formation rate 0.015445
%volume

day2

k2adj Wnt-10b alteration of bone for-
mation rate

1.6828e-03
%volume

day2

kM Half saturation 25 dimensionless
τ Time delay 14 days

Note: Estimated parameters were rounded to five significant figures based on k2
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CHAPTER IV

Developing the Model

This section covers the data used and the assumptions made in the development of

this model. The parameters discussed in this section were estimated using MATLAB

dde23 and lqcurvefit. At the end of each remodeling cycle the cell populations that

had a value less than one was set to zero. The data shown in this section was pulled

from other sources. The original tables and graphs can be found in Appendix A. If the

data was originally presented in a graph then it was extracted using Plot Digitizer, a

tool that digitizes the axes and gives a data point based on the pixel location. This

tool helps prevent misread data points. For the purposes of our model, we took fold

change to be as

Altered levels− Baseline levels

Baseline levels
= Fold change (4.1)

resulting in Figure 4.1. This was done so that the model would produce a balanced

remodeling cycle when Wnt = 0, representing a normal baseline level of Wnt-10b.

The model was used to produced a simulation with a residual norm of 154.08, which

is acceptable for the values of the data, and visually fit the data well (Figure 4.2).

The final parameter values can be found in Table 3.3.
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Figure 4.1: Normalized Wnt-10b fold change: The five different Wnt-10b levels are
shown in bar graph form. The bars represent the normalized fold change, Wnt, of
each scenario. Note that when the level of Wnt-10b is at a normal baseline the value
of the bar is zero. When Wnt-10b has been deleted from the system the value of the
bar becomes negative one.

Figure 4.2: Normalized BV/TV relationship with normalized Wnt-10b fold change:
The simulated results produce an acceptable residual norm of 154.08 with the data
from ? and Bennett et al. (2005). Data points were compared with the final simulated
BV/TV after six remodeling cycles.
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4.1 Available Data

Due to the limited amount of data on human bone remodeling, we utilized three data

sources from in vivo experiments with C57BL/6 mice (Table 4.1). Two sources from

the same lab were used to estimate the parameters (Bennett et al., 2005, 2007), and

the third source from another lab was used to validate the model (Roser-Page et al.,

2014). The BV/TV data was normalized against the control groups using

Altered− Baseline

Baseline
∗ 100 = Normalized BV/TV (4.2)

turning
Bone Volume

Total Volume
(BV/TV) data into relative change in bone volume. In Table

4.1 ”Altered BV/TV” represents mice that have been genetically altered to over or

under produce Wnt-10b, while ”Baseline BV/TV” represents unaltered litter mates.

The normalized data was implemented into the parameter estimation code since we

have a model based on human information. Note that since our model starts at a

baseline of 100 percent of normal bone volume, we expect our simulation to produce

z that is 100 plus the expected normalized bone volume. We also took into account

the different remodeling cycle lengths of our model and mice. Mice have a 12 to 15

day remodeling cycle, but our model has a 100 day remodeling cycle (Jilka, 2013).

Note that for humans a remodeling cycle is actually about 200 days long (Parfitt,

2002), but we utilized parameters from the original model that was fit for a 100 day

remodeling cycle. In order for our model to show a more accurate depiction of the

chronic Wnt-10b fold changes in the 3 and 6 month old mice, we extended our model

to over two years of remodeling cycles. We held constant the number of remodeling

cycles between mice and humans when comparing them. The mice were considered

to have undergone 6 cycles. Thus we ran the computational model for humans for

6 100-day cycles. The bone volume percentage relative to baseline at the end of 6

remodeling cycles was the output compared for the parameter estimation, each stim-
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ulated by different normalized Wnt-10b fold changes. The simulation results shown

in Figure 4.2 are the final bone volume values after running through 6 remodeling

cycles. We assumed that the 6 and 3 month old mice could be modeled at this single

time point.

Table 4.1: Mice data

Normalized
Wnt-10b Fold
Change

Age
(Months)

Altered
BV/TV (%)

Baseline
BV/TV (%)

Normalized
BV/TV

Source

-1 3 4.3 7.4 -29.7 Bennett et al.
(2007)

+1.8 3 8.04 6.35 26.6 Roser-Page
et al. (2014)

+1.8 6 4.42 3.24 36.6 Roser-Page
et al. (2014)

+5 3 18.1 10.7 69.2 Bennett et al.
(2007)

+50 6 15.8 3.6 339 Bennett et al.
(2005)

Note: Bennett et al. (2005) followed the procedures in Longo et al. (2004) to
produce the fifty fold change of Wnt-10b in mice.

4.2 Parameter Estimation

As discussed in previous chapters, Wnt-10b has been shown to alter osteoblast gen-

eration, osteoblast apoptosis, and the rate of bone formation. In order to account

for these changes we added three parameters β1adj, β2adj, and k2adj that adjusted the

corresponding relationships in the model. We also set a half saturation parameter

(KM) and a time delay (τ).

4.2.1 Osteoblast Generation

A linear relationship with Wnt-10b was chosen because it is the simplest relationship

that would achieve the desired result. Knowing that literature suggested an increase
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in osteoblast formation, we wanted a parameter that added to the existing β1. To do

this we chose to implement a parameter, β1adj, that acted as a positive slope in the

linear relationship with Wnt-10b. However, we wanted to allow for the possibility of

a negative value within a logical physiological window. Knowing that β1 + β1adjWnt

represents osteoblast formation we wanted to ensure that the entire term would not

become negative. To do this, we solved the upper and lower bounds of the inequality

β1 + β1adjWnt ≥ 0 (4.3)

using our minimum and maximum fold change in the place of the Wnt variable. The

resulting -0.002 and 0.1 became bounds for the estimation of β1adj. To make sure

that there were no unexpected jumps or discontinuities in the model with this linear

relationship, we graphed osteoblast formation in the established bounds (Figure 4.3).

Figure 4.3: Osteoblast formation at varying values of β1adj within set bounds: A
positive linear relationship is expected between osteoblast formation and Wnt-10b.
However, we assume that the only constraint is that the osteoblast formation must
always be positive. The linear relationship is bound in such a way that our osteoblast
formation per day is allow to increase or decrease with changes in Wnt-10 as long as
the value remains positive.

23



4.2.2 Osteoblast Apoptosis

A linear relationship with Wnt-10b was also chosen for osteoblast apoptosis because

it is the simplest relationship that would achieve the desired result. Knowing that

literature suggested a decrease in osteoblast apoptosis, we wanted a parameter that

decreased the existing β2. To do this we chose to implement a parameter, β2adj, that

acted as a negative slope in the linear relationship with Wnt-10b. However, much like

we did for osteoblast generation, we wanted to allow for the possibility of a positive

value within a logical physiological window. Knowing that β2 − β2adjWnt represents

osteoblast apoptosis, we wanted to ensure that this entire term would not become

positive to do this, we solved the inequality

β2 − β2adjWnt ≥ 0 (4.4)

using our minimum and maximum fold change in the place of the Wnt variable.

The resulting lower (-0.1) and upper (0.002) bounds were used for the estimation of

β2adj. To make sure that there were no unexpected jumps or discontinuities in the

model with this linear relationship we graphed osteoblast apoptosis in the established

bounds (Figure 4.4).
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Figure 4.4: Osteoblast apoptosis at varying values of β2adj within set bounds:A nega-
tive linear relationship is expected between osteoblast apoptosis and Wnt-10b. How-
ever, we initially assume that the only constraint is that the osteoblast apoptosis must
always be positive. The linear relationship is bound in such a way that our osteoblast
apoptosis per day is allow to increase or decrease with changes in Wnt-10 as long
as the value remains positive. The top blue line is the only line that represents an
increase in osteoblast apoptosis with increasing Wnt-10b.

While performing parameter estimation we began to notice a discontinuity in the

relationship of Wnt-10b fold change and relative bone volume as shown in Figure 4.5.

This discontinuity only occurred when β2adj took on a value greater than 0.00015. It

is unclear what is causing the discontinuity, but after comparing the residual norms

for different β2adj values as shown in Table 4.2 we set our practical upper bound to

0.00015 instead of the expected upper bound of 0.002.
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Figure 4.5: Discontinuity that occurs when β2adj is greater than 0.00015: There us a
jump in the estimated normalized BV/TV when β2adj is greater than 0.00015. This
jump indicates a discontinuity in the solution within the set bounds for β2adj.

Table 4.2: Residual norms for different β2adj upper bounds

β2adj Residual Norm
0.00015 154.08
0.0002 476.00
0.00075 114330
0.002 3.97e107

4.2.3 Bone Formation Rate of Osteoblast

Like the Wnt-10b relationships with osteoblast formation and apoptosis, we at-

tempted to implement a linear relationship for the bone formation rate of osteoblast,

but this resulted in high residual norms or nonphysical parameter values. We chose

instead to implement a Michaelis Menten relationship. This decision was partly based

on some extra data provided in Bennett et al. (2007) shown in Figure 4.6 and also

partly because it produced the best residual norm with physiological parameter val-

ues. We chose only to set a lower bound of 0 with k2adj because we knew from data

that this needed to cause an increase of bone formation.
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Figure 4.6: Net mouse bone formation rate (Bennett et al., 2007): The net bone
formation rate (BFR) of mice was recorded in Bennett et al. (2007). When graphed
this data shows a slight curve to the relationship between net BFR and normalized
Wnt-10b levels. This curve is characteristic of a Michaelis Mentien relationship.

Figure 4.6 shows the change in net bone formation rate (BFR) for mice with Wnt-

10b values ranging from a normalized 1 fold decrease to a normalized 5 fold increase.

From the data you can see a slight curve that would be expected for a Michaelis

Mentien relationship. We could not use this data for much more than a visual un-

derstanding of the relationship between bone formation and Wnt-10b, because this

data does not separate out the bone formation rate from the bone resorption rate as

in our model.

After deciding on a Michaelis Mentien relationship in the form of

BFR = (k2 +
k2adjWnt

Wnt+ kM
) (4.5)

for bone formation and Wnt-10b, we explored two values for kM , 25 and 50. First,

we compared the residual norms of the resulting parameter estimations, but they

were very close at 154.08 and 151.32. In order to decide between them, we graphed
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bone formation against Wnt-10b (Figure 4.7) and compared the shape of the curves.

We decided on kM equal to 25 because the curve was more responsive to changes in

Wnt-10b indicating a stronger saturation.

Figure 4.7: Estimated bone formation rate with varying kM values: The BFR rate
for two values of KM are compared. When KM is equal to 25 the BFR changes are
more dramatic than when the KM is equal to 50. This indicates that KM equal to
25 represents a stronger saturation of Wnt-10b.

4.3 Delayed Osteoblast Activity

The results from our first few rounds of parameter estimation yielded Figure 4.8.

After discussing the resulting shape of the curve with Dr.Smith, we decided that this

was a nonphysical result. Bone resorption should only occur once during a remodel-

ing cycle. To remedy this we looked at other models and literature. We found that

mature osteoblasts take about 10 to 14 days to produce the bone matrix (Komarova

et al., 2015; Araujo et al., 2014). This information led us to implement a delayed

relationship of 14 days between the osteoblast population and the bone formation

rate. This is represented by Blag. After using the delayed relationship, the parameter

estimation results were giving curves that looked to be more physiologically relevant
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(Figure 4.9).

Figure 4.8: Nonphysical Bone dynamics with a 5 fold increase in Wnt-10b: The
simulated curve shows the results of the initial parameter estimation. The endpoint
is close to the data, but the shape of the curve is not a physical possibility. This result
indicates that there are two resorption phases in a single remodeling cycle. This is
not a possibility in a living system.
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Figure 4.9: Physiologically relevant bone dynamics with a 5 fold increase in Wnt-
10b: After implementing a time delay the simulation gave physiologically relevant
bone dynamics. The simulation still ends close to the data and gives the expected
bone remodeling cycle with one resorption and formation phase.

4.4 Bone Resorption Manual Adjustment

Another adjustment we had to make was to the value of k1 as shown in Table 4.3.

This was not due to any changes in Wnt-10b, but rather a rounding issue with the

original model. Figure 4.10 shows the bone volume results from the original model

(Graham et al., 2013). The cycle does not go back to 100 as expected with a balanced

remodeling cycle. When we replicated the Graham 2013 model in MATLAB using

the corresponding SIMBIOLOGY file, we also saw the same issue (Figure 4.11). Since

Equation 3.5 depends on a resorption and formation term we looked closer at k1 and

k2. The original value for k1 was 0.7, but after looking at the significant figures in

k2, we decided that the authors could have rounded k1 without noticing the slight

deviation from a truly balanced cycle since they only considered one cycle. The offset

after several cycles is much more significant. We manually balanced the remodeling

cycle by slightly reducing the value of k1. This process had to be repeated after the
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delayed relationship with osteoblasts was implemented. As seen in Figure 4.13 the

first remodeling cycle related to the delayed relationship goes up to a value of 99.99,

but the remaining cycles all balance at 100. We believe that this difference is not

enough to make a significant difference in the model results.

Table 4.3: Bone resorption rate values

Model k1
Unbalanced 0.7
Balanced 0.6983
Balanced with delay 0.69825

Figure 4.10: Original model results (Graham et al., 2013): The results represented
in Graham et al. (2013) show that their model ends a cylce at a value just below 100
percent. This difference is barely noticeable for a single remodeling cylce.
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Figure 4.11: Original model replicated: The original model was replicated using a
SIMBIOLOGY file. The cycle ends at 99.76 instead of the expected 100. The value
for k1 is set to 0.7. This is consistent with Figure 4.10

.

Figure 4.12: Original model balanced: When k1 was changed to 0.6983 the cycle
became balanced. The model now starts and ends at 100 percent relative bone volume.
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Figure 4.13: Model with delay balanced: When a delayed relationship for osteoblast
bone formation was implemented, the model had to be re-balanced slightly. The final
value for k1 was set at 0.69825. This results in a slightly unbalanced initial remodeling
cycle followed by completely balanced remodeling cycles.
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CHAPTER V

Model Results and Validation

5.1 Model Validation

To determine if the model was a good predictor of the change in bone volume that

occurs when Wnt-10b levels are altered, we utilized a separate set of data (Roser-Page

et al., 2014). In Figure A.3(Appendix A), there is extra data provided on the range

of the measurements taken. To produce error bars for the validation, we used

±Data for Altered Case

Altered Data
= Error Range (5.1)

. This relationship provided us with the smallest error. The simulation results fall

within the error of the data (Figure 5.1).
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Figure 5.1: Validation of model with data from Roser-Page et al. (2014): The simu-
lation shown is the result of running the model with a 1.8 normalized fold change of
Wnt-10b for twelve remodeling cycles. The data provided in Roser-Page et al. (2014)
corresponds to six and twelve remodeling cycles. The simulation falls withing the
error of the data provided.

5.2 Model Results

The final validated model gives the results shown in Figure 5.2. The initial condi-

tions for these simulations are provided in Table 3.2. As Wnt-10b increases the bone

volume also increases. For each fold change in Wnt-10b shown, there is also cor-

responding information on the activated populations of osteocytes, pre-osteoblasts,

osteoblasts, and osteoclasts (Figures 5.3, 5.4, and 5.5). Interestingly, across all three

cases the activated osteoblast population seems to remain relatively consistent across

all cycles even though we altered the formation and apoptosis rates for osteoblasts.
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Figure 5.2: Simulation results for three normalized Wnt-10b fold changes: The dif-
ferent fold changes used to parameterize the model are shown with the corresponding
data points from Bennett et al. (2005) and Bennett et al. (2007). All three simulations
were ran for six remodeling cycles and end close to the corresponding data.

Figure 5.3: Activated cell population results for a normalized 1 fold decrease in Wnt-
10b: The activated cell populations follow identical dynamics for each remodeling
cycle. For osteocytes, the activated cell population is decreased at the start of a
remodeling cycle and then increases back up to the steady state activated population
of two hundred. The other three cells types initially increase from a steady state
activated population of zero and then decrease back to zero.
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Figure 5.4: Activated cell population results for a normalized 5 fold increase in Wnt-
10b: The cell dynamics for a normalized 5 fold increase in Wnt-10b follow the same
pattern as the activated cell populations for a normalized 1 fold decrease in Wnt-10b
(Figure 5.3). The maximum activated cell population of pre-osteoblasts and osteo-
clasts does decrease from the previous case. The activate osteoblast and osteocyte
populations remain consistent with the previous case.
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Figure 5.5: Activated cell population results for a normalized 50 fold increase in
Wnt-10b: The cell dynamics do not deviate from the previous cases (Figures 5.3 and
5.4). The decrease in the maximum activated pre-osteoblasts and osteoclasts does
become more significant than the previous case. The maximum activated osteoblast
and osteocyte population continues to remain consistent throughout all three cases.

The activated pre-osteoblast cell population decreases with increasing Wnt-10b

levels as well as the activated osteoclast population (Figures 5.6 and 5.7). Bennett

et al. (2007) experimentally tested Wnt-10b causing a reduction in osteoclast pop-

ulation for mice with a normalized 5 fold increase in Wnt-10b, but found that the

changes in mice osteoclasts on the perimeter of the bone not to be statistically sig-

nificant (Figure 5.8). Our model does show that for a normalized 5 fold change in

Wnt-10b the maximum activated osteoclast population changes less than two cells

over one and a half remodeling cycles. For a normalized 50 fold change, our model

predicts a much greater change in the maximum activated osteoclast cell population.

The maximum activated osteoclast population reduces by six cells over one and a half

remodeling cycles. That would be statistically significant. This correlation is more

than likely due to a change in autocrine and paracrine signaling levels caused by the

increase of Wnt-10b.

38



Figure 5.6: Pre-osteoblast cell population at varying levels of normalized Wnt-10b fold
change: The maximum activated cell population of pre-osteoblasts was determined
over a range of normalized Wnt-10b fold changes after running the simulation for one
and a half remodeling cycles. The circles indicate the normalized fold changes that
were input into the simulation. The simulation shows a negative correlation between
maximum activated pre-osteoblast cell population and Wnt-10b.
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Figure 5.7: Osteoclast cell population at varying levels of Wnt-10b fold change: The
maximum activated cell population of osteoclasts was determined over a range of
normalized Wnt-10b fold changes after running the simulation for one and a half
remodeling cycles. The circles indicate the normalized fold changes that were input
into the simulation. The simulation shows a negative correlation between osteoclast
cell population and Wnt-10b.

40



Figure 5.8: Osteoclast number on sections of femur for 3 week old mice (Bennett et al.,
2007): The bar graph compares the number of osteoclasts per milimeter of bone for
an unaltered (WT) mouse and a genetically altered (OC-Wnt10b) mouse. The OC-
Wnt10b mouse has a normalized 5 fold increase of Wnt-10b over the WT mouse.
At three weeks, or one and a half remodeling cycles, there is a slight decrease in
OC-Wnt10b osteoclasts compared to WT osteoclasts. This decrease is not significant
at a normalized 5 fold change, but it could indicate a negative correlation between
osteoclast cell population and Wnt-10b at greater fold changes.
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CHAPTER VI

Conclusion

6.1 Discussion

Understanding the relationship between bone metabolism and the immune system

is a high priority to prevent osteoperosis. Though there are a few published models

about bone metabolism, the model developed in this project provides new insight on

how chronic changes in Wnt-10b can alter a bone remodeling cycle. As discussed in

Chapter III, experimentally Wnt-10b as been shown to alter osteoblastogenesis, osto-

blast apoptosis, and osteoblast bone formation rates. However, our simulation showed

that these changes had little effect on the overall osteoblast population. Instead it

seems as though the changes in these parameters might result in a population change

of pre-osteoblast and osteoclasts. This could be due to the changes in autocrine and

paracrine signaling. It could also be due to the fact that we did not independently

model the effect of Wnt-10b on osteoblast formation, instead we kept the relationship

coupled to the paracrine signaling of pre-osteoblasts and osteoclasts. Either way,

these results could be the basis of a new experimental design that could provide a

better understanding about this Wnt-10 and bone metabolism relationship.

Establishing a relationship between Wnt-10b and bone metabolism is a small step

towards a better understanding of osteoimmunology. This model is especially inter-

esting because it has already been shown experimentally that an immune response

in the gut can induce T cells to secrete Wnt-10b (Tyagi et al., 2018). This provides

us with information to combine this model with a mulitcompartment model of this

response that has been developed in our lab.
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6.2 Future Work

We are currently preparing this model for publication, but there are still modifications

that need to be made before publication and other additions that we would like to

make in the future. We would like to:

• Alter our model to be representative of a typical 200 day remodeling time period

for humans (Jilka, 2013; Parfitt, 2002);

• Look at fitting the data point from Bennett et al. (2005) at twelve remodeling

cycles since the measurements were taken from 6 month old mice;

• Explore the biological relevance of the predicted decrease in pre-osteoblast and

osteoclasts

• Combine this model with a model that predicts how LGG induces an immune

response that leads to an increase in Wnt-10b levels;

• Expand the model to include other biological chemicals of interest such as TNF-

α (experimentally shown to alter osteoclast formation and activity), and IL-6

(experimentally shown to alter osteoclast formation) (Ponzetti and Rucci, 2019).
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APPENDIX A

Data Images

Figure A.1: Graphs provided in Bennett et al. (2007) used for model parameterization

Figure A.2: Graphs provided in Bennett et al. (2005) used for model parameterization
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Figure A.3: BV/TV values for 1.8 Wnt-10b fold increase used for model validation
(Roser-Page et al., 2014)
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Figure A.4: Wnt-10b relative expression for data from Roser-Page et al. (2014) used
for model validation
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APPENDIX B

MATLAB Code

Parameter Estimation Code

1 %Carley Cook
2 % This code was written to estimate the change in parameters when ...

a change
3 % in Wnt10b occurs
4 %% Data from Bennett 2005 and Bennett 2007
5 clear
6 close all
7 format long e
8 xdata=[-1, 5, 50]; %Wnt10b Fold Change
9 ydata=[-29.7, 69.2, 339]; % Bennet Data normalized BV/TV %.339 I ...

ommited one set of OC data is because it is a repeated data point
10

11 ParamY=2;% ParamY=1 for running parameter estimation code
12 % ParamY=2 for just graphing
13 K2type=2;%LinearK2=1 linear with wnt10b
14 %LinearK2=2 MM with wnt10b
15 kM=25; %kM for MM with k2 Try 50 or 25
16 N=1; %Number of Cylces
17 cyclelength=100; %length of cylces
18 tlag=14; %DDE lag from osteoblast maturation to activation
19 Gwntdose=0; %Dose of wnt that will be graphed
20 %% Guesses for the parameters
21

22 kg(1)= 5e-03 ;%beta1adj
23 %For Linear:5.873531975374805e-03 ...

resnorm:1.449131332295683e+02
24 %For kM 25:5.018040516139597e-03 ...

resnorm:1.540881900659893e+02
25 %Rounding to 5 sig figs does not alter resnorm ...

for kM=25
26 %Rounding as shown below alters only slightly ...

assume same
27 %resnorm
28 %5e-03
29 %For kM 50:5.510605529240327e-03 ...

resnorm:1.513236172705052e+02
30 kg(2)=1.5e-04;%beta2adj
31 %For Linear:1.499999999763948e-04
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32 %1.499999999729445e-04 This value is the actual ...
number given

33 %by param estimation
34 %1.5e-04
35 kg(3)=1.6828e-03;%k2adj
36 %For Linear:1.517244270770526e-05
37 %For kM 25:1.682813357447710e-03
38 %1.6828e-03
39 %For kM 50:1.807770227757210e-03
40 kguess=kg;
41

42 %Setting guesses to k values if only graphing
43 if ParamY==2
44 k=kg;
45 end
46

47

48 %% Initial conditions
49 % S0=200 for SS and K S-rho=(180) for activation
50 S0=180; % Initial Osteocytes
51 P0=0; %Initial Pre-Osteoblasts
52 B0=0; %Initial Osteoblasts
53 C0=0; %Initial Osteoclasts
54 z0=100; %Initial Bone Volume
55 y0=[S0,P0,B0,C0,z0]; % Initial conditions in vector
56

57 %% Parameter Estimation with k parameters, BV, and resnorm outputs
58 %Turning on parameter estimation
59 if ParamY==1
60 OPTIONS = optimoptions('lsqcurvefit','StepTolerance',1e-16,...
61 'FunctionTolerance',1e-16,'optimalitytolerance', 1e-16);
62 lb=[-0.1/50,-0.1,0];
63 %lb=[0,0,0];
64 %ub=[0.1,0.1/50,Inf];
65 ub=[Inf,0.00015,Inf];
66 %[k,resnorm] = lsqcurvefit(@(k,xdata) ...

Graham2013(k,xdata,y0,N,cyclelength,tlag),kguess,xdata,ydata, ...
lb, ub)%, OPTIONS)

67 [k,resnorm,residual] = lsqcurvefit(@(k,xdata) ...
Graham2013(k,xdata,y0,...

68 N,cyclelength,tlag,kM,K2type),kguess,xdata,ydata, lb, ub, ...
OPTIONS)

69 %% Final k values beta1adj and beta2adj
70 k1f=k(1) %beta1adj
71 k2f=k(2) %beta2adj
72 k3f=k(3) %k2adj
73 end
74 %% Graphing of BV vs Wnt
75 figure(1)
76 %xp = linspace(xdata(1),xdata(end),1001);
77 %xp = linspace(xdata(1),xdata(end),100);
78 xp = linspace(-1,50,100);
79 ycalcp = Graham2013(k,xp,y0,N,cyclelength,tlag,kM,K2type);
80 plot(xp,ycalcp(1,:),'r','Linewidth',2);
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81 hold on
82 plot(xdata,ydata,'o')
83 legend("Simulation Results","Literature ...

Data",'Location','Best','FontSize',12)
84 xlabel('Wnt-10b (Fold Change)','FontSize',15)
85 ylabel('BV//TV (% Change from normal Wnt-10b)','FontSize',15)
86

87

88 %Plot all cases on the same graph
89

90 %% Graphing of Cells and Bone Volume vs time
91 figure(2)
92 [tcalcpt,ycalcpt]=Cyclefunction(k,Gwntdose,y0,N,cyclelength,tlag,...
93 kM,K2type);
94

95 tiledlayout(2,2)
96 %Osteocytes
97 nexttile
98 plot(tcalcpt,ycalcpt(:,1),'r-');
99 xlabel('time(days)')

100 ylabel('Osteocyte Cells')
101

102 %Pre-osteoblasts
103 nexttile
104 plot(tcalcpt,ycalcpt(:,2),'b-');
105 xlabel('time(days)')
106 ylabel('Pre-osteoblast Cells')
107

108 %Osteoblasts
109 nexttile
110 plot(tcalcpt,ycalcpt(:,3),'g-');
111 xlabel('time(days)')
112 ylabel('Osteoblast Cells')
113

114 %Osteoclasts
115 nexttile
116 plot(tcalcpt,ycalcpt(:,4),'m-');
117 xlabel('time(days)')
118 ylabel('Osteoclast Cells')
119

120 figure(3)
121 plot(tcalcpt,ycalcpt(:,5),'g-','Linewidth',2)
122 xlabel('time(days)','FontSize',15)
123 ylabel('Relative bone volume (%)','FontSize',15)
124

125

126

127

128 %% History functions for the DDE
129 function historyV1 =history1(t,y0,k,xdata,oldsol,kM,K2type)
130

131 historyV1=y0'; % Initial conditions in vector
132 if t<0
133 historyV1(1)=200;
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134 else
135 historyV1(1)=180;
136 end
137

138

139 end
140 function historyV2 =history2(t,y0,k,xdata,oldsol,kM,K2type)
141

142 historyV2=deval(oldsol,t); % Initial conditions in vector
143 %Refers to function that already resets for next time interval
144 % if t<0
145 % historyV2(1)=200;
146 % else
147 % historyV2(1)=180;
148 % end
149

150

151 end
152 %% Define ODE equations with variable parameters
153 function dydt= ddefun(t,y,Z,y0,k,x,oldsol,kM,K2type)%x is a ...

scalar wnt10b dose
154

155 Bone=1;
156 alpha 1=0.5;
157 alpha 2=0.1;
158 alpha 3=0.1;
159 beta 1=0.1;
160 delta=0.1;
161 beta 2=0.1;
162 alpha 4=0.1;
163 K S=200;
164 k1=.69825;%Graham2013 paper has .7 to get the ss to 100 .6983 ...

works for ode
165 %When dde .69825
166 %When dde with round(c).71575
167 %When dde with round(c) in dcdt .72249
168 k2=0.015445;
169 g 31=1;
170 g 21=2;
171 g 22=1;
172 g 32=1;
173 g 41=1;
174 g 42=1;
175 g 43=-1;
176 g 44=1;
177 f 12=1;
178 f 14=1;
179 f 23=1;
180 f 34=1;
181 epsilon=1;
182 beta 3=0.1;
183 rho=20;
184

185 S =y(1);
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186 P =y(2);
187 B =y(3);
188 C =y(4);
189 z=y(5);
190 ylag=Z(:,1);
191 Blag=ylag(3);
192

193

194 %Set parameter definitions
195 beta1adj = k(1);
196 beta2adj = k(2);
197 k2adj=k(3);
198

199 %Setting k2 relationship to wnt
200 if K2type==1
201 knew=k2+(k2adj*x);
202 elseif K2type==2
203 knew=k2+((k2adj*x)/(x+kM));
204 end
205

206 %Algebraic equations needed for the ODEs
207 Differentiation of Osteoblast to Osteocytes = ...

Bone*alpha 1*power(B,g 31)*max((1-S/K S),0);
208 Differentiation of MSC cells to PreOsteoblast cells = ...

Bone*alpha 2*power(S,g 21)*max((1-S/K S),0)ˆg 22;
209 Proliferation of preosteoblasts = ...

Bone*alpha 3*power(P,g 32)*max((1-S/K S),0);
210 Differentiation of PreOsteoblast to mature osteoblast = ...

Bone*(beta 1+(beta1adj*x))*power(P,f 12)*power(C,f 14);
211 %Differentiation of PreOsteoblast to mature osteoblast = ...

Bone*(beta 1+(beta1adj*x))*power(P,f 12)*power(round(C),f 14);
212 Apoptosis of preosteoblast = Bone*delta*P;
213 Apoptosis of osteoblasts = ...

Bone*(beta 2-(beta2adj*x))*power(B,f 23);
214 Differentiation of preosteoclast to osteoclasts = ...

Bone*alpha 4*power...
215 (S,g 41)*power(P,g 42)*power(epsilon+B,g 43)*...
216 max((1-S/K S),0)ˆg 44;
217 Apoptosis of osteoclasts = Bone*beta 3*power(C,f 34);
218 %Apoptosis of osteoclasts = Bone*beta 3*power(round(C),f 34);
219 Resorption of bone = Bone*k1*C;
220 %Resorption of bone = Bone*k1*round(C);
221 Formation of bone = Bone*((knew*Blag));
222 %Formation of bone = Bone*((knew*B));
223 %ODEs
224

225 %d([Osteocytes (S)])/dt = ...
1/Bone*Differentiation of Osteoblast to Osteocytes;

226 dydt(1)=1/Bone*Differentiation of Osteoblast to Osteocytes;
227

228 %d([Pre-Osteoblasts (P)])/dt = ...
1/Bone*(Differentiation of MSC cells to PreOsteoblast cells ...
+ Proliferation of preosteoblasts - ...
Differentiation of PreOsteoblast to mature osteoblast - ...
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Apoptosis of preosteoblast)
229 dydt(2)=1/Bone*...
230 (Differentiation of MSC cells to PreOsteoblast cells ...
231 + Proliferation of preosteoblasts - ...
232 Differentiation of PreOsteoblast to mature osteoblast...
233 - Apoptosis of preosteoblast);
234

235 %d([Osteoblasts (B)])/dt = 1/Bone*
236 %(-Differentiation of Osteoblast to Osteocytes +
237 %Differentiation of PreOsteoblast to mature osteoblast
238 %- Apoptosis of osteoblasts)
239 dydt(3)=1/Bone*(-Differentiation of Osteoblast to Osteocytes...
240 + Differentiation of PreOsteoblast to mature osteoblast...
241 - Apoptosis of osteoblasts);
242

243 %d([Osteoclasts (C)])/dt = ...
1/Bone*(Differentiation of preosteoclast to osteoclasts - ...
Apoptosis of osteoclasts)

244 dydt(4)=1/Bone*(Differentiation of preosteoclast to osteoclasts...
245 - Apoptosis of osteoclasts);
246

247 %d([Bone volume (z)])/dt = 1/Bone*(-Resorption of bone + ...
Formation of bone)

248 dydt(5)=1/Bone*(-Resorption of bone + Formation of bone);
249

250

251 dydt=[dydt(1)
252 dydt(2)
253 dydt(3)
254 dydt(4)
255 dydt(5)];
256

257 end
258

259 %% Solve ODE using variable parameters
260 function yout = Graham2013(k,xdata,y0,N,cyclelength,tlag,kM,K2type)
261

262 for i = 1:length(xdata)
263

264 [~,ycalc] = ...
Cyclefunction(k,xdata(i),y0,N,cyclelength,tlag,kM,K2type);

265

266 yBV(i,1)=ycalc(end,5);
267 yout(i,1)=yBV(i,:)-100;
268

269

270 end
271 yout = yout';
272 end
273 %% Cycle Function
274 function [combined tcalc N cycles, combined ycalc N cycles] ...

= Cyclefunction(k,xdata,y0,N,cyclelength,tlag,kM,K2type)
275 startindex=1; %Indices are used to combine the loops into a ...

single column
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276 finalindex=1;
277 oldsol=[];
278 for j= 1:N
279

280 %tspan = (j-1)*cyclelength:0.01:j*cyclelength;
281 %tspan =linspace((j-1)*cyclelength,j*cyclelength,101);
282 tspan = [(j-1)*cyclelength,j*cyclelength];
283 %[tcalc,ycalc] = ode23s(@(t,y) ...

ODEeq(t,y,k,xdata(i)),tspan,y0);
284 %[tcalc,ycalc] = ode23s(@(t,y) ...

ODEeq(t,y,k,xdata),tspan,y0);
285 %sol = dde23(@(t,y) ...

ddefun(t,y,Z,k,xdata),[14],@history,tspan,y0);
286

287 if j==1
288 %Uses initial condition vector as history
289 sol = dde23(@ddefun,tlag,@history1,...
290 tspan,[],y0,k,xdata,oldsol,kM,K2type);
291 oldsol=sol; %saves solution as a history solution
292 else
293 %Uses history solution as history function
294 sol = dde23(@ddefun,tlag,@history2,...
295 tspan,[],y0,k,xdata,oldsol,kM,K2type);
296 oldsol=sol; %saves solution as a history solution
297 end
298 tcalc=sol.x';
299 ycalc=sol.y';
300 ycalc(:,1);
301 %Reset for next time interval
302 y0=ycalc(end,:);
303 idx=(y0<1);
304 y0(idx)=0; %Sets fractions of cells to zero
305 y0(1,1)=y0(1,1)-20; %Reduces osteocytes to initate ...

next cycle
306 oldsol.y(:,end)=y0';
307 finalindex=finalindex+length(tcalc)-1;
308 combined tcalc N cycles(startindex:finalindex,1)=tcalc;
309 combined ycalc N cycles(startindex:finalindex,:)=ycalc;
310 startindex=startindex+length(tcalc)-1; %equals ...

previous final index
311 end
312

313 end

Graphing Code

1 %Carley Cook
2 % This code was written to produce graphs for the Wnt-10b and ...

bone volume
3 % project
4 %% Data from Bennett 2005 and Bennett 2007
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5 clear
6 close all
7 format long e
8 xdata=[-1, 5, 50]; %Wnt10b Fold Change
9 ydata=[-29.7, 69.2, 339]; % Bennet Data normalized BV/TV

10

11 kM=25; %kM for MM with k2 Try 50 or 25
12 N=6; %Number of Cylces
13 cyclelength=100; %length of cylces
14 tlag=14; %DDE lag from osteoblast maturation to activation
15 savegraphs=2; %1 for automatically saving graphs
16 %2 for manual saving of graphs
17 BVandCells=2;%1 to produce Bone Volume and cells for each graph
18 Estimationcase=2; %1 to produce estimation cases on same graph
19 Validationcase=2; %1 to produce validation case
20 OCWnt=1; %1 to produce cells vs wnt
21 barg=2; %1 to produce a bar graph of Wnt fold changes
22 %% Fitted parameters
23 kg(1)= 5e-03 ;%beta1adj
24

25 kg(2)=1.5e-04;%beta2adj
26

27 kg(3)=1.6828e-03;%k2adj
28

29 k=kg;
30

31 %% Initial conditions
32 S0=180; % Initial Osteocytes
33 P0=0; %Initial Pre-Osteoblasts
34 B0=0; %Initial Osteoblasts
35 C0=0; %Initial Osteoclasts
36 z0=100; %Initial Bone Volume
37 y0=[S0,P0,B0,C0,z0]; % Initial conditions in vector
38

39 %% Graphing of Cells and Bone Volume vs time for all cases
40 if BVandCells==1
41 Gwntdose= [-1 0 1.8 1.8 5 50]; %Dose of wnt that will be graphed
42 for i=1:length(Gwntdose)
43 l='FoldChangeCells';
44 l2='FoldChangeBone';
45 N=6;
46 if i==4
47 N=12;
48 end
49

50

51 [tcalcpt,ycalcpt]=Cyclefunction(k,Gwntdose(i),y0,N,...
52 cyclelength,tlag,kM);
53

54 %Cells
55 figure(i)
56 tiledlayout(2,2)
57 %Osteocytes
58 nexttile
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59 plot(tcalcpt,ycalcpt(:,1),'r-');
60 xlabel('time(days)','FontSize',12)
61 ylabel('Osteocyte Cells','FontSize',12)
62

63 %Pre-osteoblasts
64 nexttile
65 plot(tcalcpt,ycalcpt(:,2),'b-');
66 axis([0 N*100 0 200])
67 xlabel('time(days)','FontSize',12)
68 ylabel('Pre-osteoblast Cells','FontSize',12)
69

70 %Osteoblasts
71 nexttile
72 plot(tcalcpt,ycalcpt(:,3),'g-');
73 xlabel('time(days)','FontSize',12)
74 ylabel('Osteoblast Cells','FontSize',12)
75

76 %Osteoclasts
77 nexttile
78 plot(tcalcpt,ycalcpt(:,4),'m-');
79 axis([0 N*100 0 15])
80 xlabel('time(days)','FontSize',12)
81 ylabel('Osteoclast Cells','FontSize',12)
82

83 %Bone Volume
84 figure(i+6)
85 plot(tcalcpt,ycalcpt(:,5),'g-','Linewidth',2)
86 xlabel('time(days)','FontSize',12)
87 ylabel('Relative bone volume (%)','FontSize',12)
88

89

90 if savegraphs==1
91 q=string(Gwntdose(i));
92 v=strcat(l,q);
93 v2=strcat(l2,q);
94 if i== 3
95 q='18';
96 v=strcat(l,q);
97 v2=strcat(l2,q);
98 end
99 if i== 4

100 q='18';
101 w='12months';
102 v=strcat(l,q,w);
103 v2=strcat(l2,q,w);
104 end
105 saveas(figure(i),v,'png')
106 saveas(figure(i+6),v2,'png')
107 end
108

109 end
110 end
111 %% Graphing of cases used for parameter estimation
112 if Estimationcase==1
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113 [tcalcpt1,ycalcpt1]=Cyclefunction(k,-1,y0,N,cyclelength,tlag,kM);
114 [tcalcpt5,ycalcpt5]=Cyclefunction(k,5,y0,N,cyclelength,tlag,kM);
115 [tcalcpt50,ycalcpt50]=Cyclefunction(k,50,y0,N,cyclelength,...
116 tlag,kM);
117 figure(13)
118 plot(tcalcpt1,ycalcpt1(:,5),'g-','Linewidth',2)
119 hold on
120 plot(tcalcpt5,ycalcpt5(:,5),'b:','Linewidth',2)
121 plot(tcalcpt50,ycalcpt50(:,5),'r-.','Linewidth',2)
122 plot(600,ydata+100,'ko','Linewidth',2)
123 legend("-1 Fold","5 Fold","50 Fold","Literature Data",...
124 'Location','Best','FontSize',12)
125 xlabel('time(days)','FontSize',15)
126 ylabel('Relative bone volume (%)','FontSize',15)
127

128 if savegraphs==1
129 saveas(figure(13),'EstimationResults','png')
130 end
131 end
132

133 %% Graphing of model validation
134 if Validationcase==1
135 [tcalcpt12,ycalcpt12]=Cyclefunction(k,1.8,y0,12,cyclelength,...
136 tlag,kM);
137 figure(14)
138 plot(tcalcpt12,ycalcpt12(:,5),'Linewidth',2)
139 hold on
140 errorbar( 600 , 126.6 , 15,'o','Linewidth',2 )
141 errorbar( 1200 , 136.6 , 29,'s','Linewidth',2 )
142 legend("Simulation Results","Data corresponding to 6 ...

cylces",...
143 "Data corresponding to 12 cycles",'Location',...
144 'Best','FontSize',12)
145 xlabel('time(days)','FontSize',15)
146 ylabel('Relative bone volume (%)','FontSize',15)
147 if savegraphs==1
148 saveas(figure(14),'ValidationResults','png')
149 end
150 end
151

152 %% Graphing important cell population vs Wnt
153 if OCWnt==1
154 N=1.5;
155 [tcalcpt1,ycalcpt1]=Cyclefunction(k,-1,y0,N,...
156 cyclelength,tlag,kM);
157 [tcalcpt0,ycalcpt0]=Cyclefunction(k,0,y0,N,...
158 cyclelength,tlag,kM);
159 [tcalcpt18,ycalcpt18]=Cyclefunction(k,1.8,y0,N,...
160 cyclelength,tlag,kM);
161 [tcalcpt5,ycalcpt5]=Cyclefunction(k,5,y0,N,...
162 cyclelength,tlag,kM);
163 [tcalcpt25,ycalcpt25]=Cyclefunction(k,25,y0,N,...
164 cyclelength,tlag,kM);
165 [tcalcpt50,ycalcpt50]=Cyclefunction(k,50,y0,N,...
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166 cyclelength,tlag,kM);
167 Gwntdose= [-1 0 1.8 5 25 50];
168 figure(15)
169 oc(1)=max(ycalcpt1(:,4));
170 oc(2)=max(ycalcpt0(:,4));
171 oc(3)=max(ycalcpt18(:,4));
172 oc(4)=max(ycalcpt5(:,4));
173 oc(5)=max(ycalcpt25(:,4));
174 oc(6)=max(ycalcpt50(:,4));
175 plot(Gwntdose,oc,'m-o','Linewidth',2);
176 xlabel('Wnt-10b (Fold Change)','FontSize',12)
177 ylabel('Osteoclast Cells','FontSize',12)
178

179 figure(16)
180 PO(1)=max(ycalcpt1(:,2));
181 PO(2)=max(ycalcpt0(:,2));
182 PO(3)=max(ycalcpt18(:,2));
183 PO(4)=max(ycalcpt5(:,2));
184 PO(5)=max(ycalcpt25(:,2));
185 PO(6)=max(ycalcpt50(:,2));
186 plot(Gwntdose,PO,'b-o','Linewidth',2);
187 xlabel('Wnt-10b (Fold Change)','FontSize',12)
188 ylabel('Pre-osteoblast Cells','FontSize',12)
189

190

191 if savegraphs==1
192 saveas(figure(15),'OCWnt','png')
193 saveas(figure(16),'POWnt','png')
194

195 end
196 end
197

198 if barg==1
199 figure(17)
200 bary=[-1,0,1.8,5,50];
201 barx=categorical({'No Wnt-10b','Normal Wnt-10b',...
202 'Wnt-10b increase 1','Wnt-10b increase 2',...
203 'Wnt-10b increase 3'});
204 bar(barx,bary)
205 ylabel('Wnt-10b (Fold Change)','FontSize',12)
206 if savegraphs==1
207 saveas(figure(17),'BarFold','png')
208 end
209 end
210

211

212

213 %% Functions needed to produce graphs
214 %% History functions for the DDE
215 function historyV1 =history1(t,y0,k,xdata,oldsol,kM)
216

217 historyV1=y0'; % Initial conditions in vector
218 if t<0
219 historyV1(1)=200;
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220 else
221 historyV1(1)=180;
222 end
223

224

225 end
226 function historyV2 =history2(t,y0,k,xdata,oldsol,kM)
227

228 historyV2=deval(oldsol,t); % Initial conditions in vector
229 %Refers to function that already resets for next time interval
230 % if t<0
231 % historyV2(1)=200;
232 % else
233 % historyV2(1)=180;
234 % end
235

236

237 end
238 %% Define ODE equations with variable parameters
239 function dydt= ddefun(t,y,Z,y0,k,x,oldsol,kM)%x is a scalar ...

wnt10b dose
240

241 Bone=1;
242 alpha 1=0.5;
243 alpha 2=0.1;
244 alpha 3=0.1;
245 beta 1=0.1;
246 delta=0.1;
247 beta 2=0.1;
248 alpha 4=0.1;
249 K S=200;
250 k1=.69825;
251 k2=0.015445;
252 g 31=1;
253 g 21=2;
254 g 22=1;
255 g 32=1;
256 g 41=1;
257 g 42=1;
258 g 43=-1;
259 g 44=1;
260 f 12=1;
261 f 14=1;
262 f 23=1;
263 f 34=1;
264 epsilon=1;
265 beta 3=0.1;
266 rho=20;
267

268 S =y(1);
269 P =y(2);
270 B =y(3);
271 C =y(4);
272 z=y(5);
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273 ylag=Z(:,1);
274 Blag=ylag(3);
275

276

277 %Set parameter definitions
278 beta1adj = k(1);
279 beta2adj = k(2);
280 k2adj=k(3);
281

282 %Setting k2 relationship to wnt
283 knew=k2+((k2adj*x)/(x+kM));
284

285

286 %Algebraic equations needed for the ODEs
287 Differentiation of Osteoblast to Osteocytes = Bone*alpha 1*...
288 power(B,g 31)*max((1-S/K S),0);
289 Differentiation of MSC cells to PreOsteoblast cells = Bone*...
290 alpha 2*power(S,g 21)*max((1-S/K S),0)ˆg 22;
291 Proliferation of preosteoblasts = Bone*alpha 3*power(P,g 32)...
292 *max((1-S/K S),0);
293 Differentiation of PreOsteoblast to mature osteoblast = Bone*...
294 (beta 1+(beta1adj*x))*power(P,f 12)*power(C,f 14);
295 Apoptosis of preosteoblast = Bone*delta*P;
296 Apoptosis of osteoblasts = ...

Bone*(beta 2-(beta2adj*x))*power(B,f 23);
297 Differentiation of preosteoclast to osteoclasts = Bone*alpha 4...
298 *power(S,g 41)*power(P,g 42)*power(epsilon+B,g 43)*...
299 max((1-S/K S),0)ˆg 44;
300 Apoptosis of osteoclasts = Bone*beta 3*power(C,f 34);
301 Resorption of bone = Bone*k1*C;
302 Formation of bone = Bone*((knew*Blag));
303

304 %ODEs
305

306 %d([Osteocytes (S)])/dt = 1/Bone*
307 %Differentiation of Osteoblast to Osteocytes;
308 dydt(1)=1/Bone*Differentiation of Osteoblast to Osteocytes;
309

310 %d([Pre-Osteoblasts (P)])/dt = 1/Bone*
311 %(Differentiation of MSC cells to PreOsteoblast cells +
312 %Proliferation of preosteoblasts -
313 %Differentiation of PreOsteoblast to mature osteoblast -
314 %Apoptosis of preosteoblast)
315 dydt(2)=1/Bone*...
316 (Differentiation of MSC cells to PreOsteoblast cells...
317 + Proliferation of preosteoblasts - ...
318 Differentiation of PreOsteoblast to mature osteoblast...
319 - Apoptosis of preosteoblast);
320

321 %d([Osteoblasts (B)])/dt = 1/Bone*
322 %(-Differentiation of Osteoblast to Osteocytes +
323 %Differentiation of PreOsteoblast to mature osteoblast -
324 %Apoptosis of osteoblasts)
325 dydt(3)=1/Bone*(-Differentiation of Osteoblast to Osteocytes...
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326 + Differentiation of PreOsteoblast to mature osteoblast...
327 - Apoptosis of osteoblasts);
328

329 %d([Osteoclasts (C)])/dt = 1/Bone*
330 %(Differentiation of preosteoclast to osteoclasts - ...

Apoptosis of osteoclasts)
331 dydt(4)=1/Bone*(Differentiation of preosteoclast to osteoclasts...
332 - Apoptosis of osteoclasts);
333

334 %d([Bone volume (z)])/dt = 1/Bone*(-Resorption of bone +
335 %Formation of bone)
336 dydt(5)=1/Bone*(-Resorption of bone + Formation of bone);
337

338

339 dydt=[dydt(1)
340 dydt(2)
341 dydt(3)
342 dydt(4)
343 dydt(5)];
344

345 end
346

347 %% Solve ODE using variable parameters
348 function yout = Graham2013(k,xdata,y0,N,cyclelength,tlag,kM)
349

350 for i = 1:length(xdata)
351

352 [~,ycalc] = ...
Cyclefunction(k,xdata(i),y0,N,cyclelength,tlag,kM);

353

354 yBV(i,1)=ycalc(end,5);
355 yout(i,1)=yBV(i,:)-100;
356

357

358 end
359 yout = yout';
360 end
361 %% Cycle Function
362 function [combined tcalc N cycles, combined ycalc N cycles] ...

= ...
363 Cyclefunction(k,xdata,y0,N,cyclelength,tlag,kM)
364 startindex=1; %Indices are used to combine the loops into a
365 %single column
366 finalindex=1;
367 oldsol=[];
368 for j= 1:N
369 tspan = [(j-1)*cyclelength,j*cyclelength];
370 if j==1
371 %Uses initial condition vector as history
372 sol = dde23(@ddefun,tlag,@history1,tspan,[],y0,k,...
373 xdata,oldsol,kM);
374 oldsol=sol; %saves solution as a history solution
375 else
376 %Uses history solution as history function
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377 sol = dde23(@ddefun,tlag,@history2,tspan,[],y0,k,...
378 xdata,oldsol,kM);
379 oldsol=sol; %saves solution as a history solution
380 end
381 tcalc=sol.x';
382 ycalc=sol.y';
383 ycalc(:,1);
384 %Reset for next time interval
385 y0=ycalc(end,:);
386 idx=(y0<1);
387 y0(idx)=0; %Sets fractions of cells to zero
388 y0(1,1)=y0(1,1)-20; %Reduces osteocytes to initate ...

next cycle
389 oldsol.y(:,end)=y0';
390 finalindex=finalindex+length(tcalc)-1;
391 combined tcalc N cycles(startindex:finalindex,1)=tcalc;
392 combined ycalc N cycles(startindex:finalindex,:)=ycalc;
393 startindex=startindex+length(tcalc)-1; %equals ...

previous final
394 %index
395 end
396

397 end
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