
AN EXTENSION AND IMPLEMENTATION OF THE MOD

WITHOUT MOD ALGORITHM TO EFFICIENTLY COMPUTE

THE MODULUS OF A NUMBER IN HARDWARE

By

RYAN SWANN

Bachelor of Science in Electrical Engineering
Oklahoma State University

Stillwater, Oklahoma
2019

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 2020



AN EXTENSION AND IMPLEMENTATION OF THE MOD

WITHOUT MOD ALGORITHM TO EFFICIENTLY COMPUTE

THE MODULUS OF A NUMBER IN HARDWARE

Thesis Approved:

Dr. James E. Stine, Jr.

Thesis Adviser

Dr. Keith Teague

Dr. John Hu

ii



ACKNOWLEDGMENTS

I would like to sincerely thanks my adviser Dr. James E. Stine, Jr., for the

tremendous amount of time and support he has given me during this research as well

as providing a good role model for an ethical and fun outlook towards education and

design.

I would like to thank my Parents, Rayce and Laila Swann for their never ending

support in my endeavors and instilling within me the drive to do better.

I would like to thank my grandparents, Calvin and Louise Ellis and Pat and Tony

Valentino for instilling within me good moral values and a positive outlook on the

world.

I would like to express my thanks to my sister, Trayce Swann for keeping me

fashionable and sane along my journey

I would like to express my immense appreciation to my long time friends Dustin

Caples, Blake Loftin, Brady Loftin, Trevor Taylor, Jeff Lee, and John Allen for never

giving up on me, regardless of how many times I tell them I’m busy.

I would like to thank Alex Underwood, Teo Ene, and Brett Mathis for keeping

every day fun.

And to those I love, thanks for sticking around.

Acknowledgments reflect the views of the author and are not endorsed by com-

mittee members or Oklahoma State University.

iii



Name: RYAN SWANN

Date of Degree: DECEMBER, 2020

Title of Study: AN EXTENSION AND IMPLEMENTATION OF THE MOD
WITHOUT MOD ALGORITHM TO EFFICIENTLY COMPUTE
THE MODULUS OF A NUMBER IN HARDWARE

Major Field: ELECTRICAL ENGINEERING

Abstract: This thesis discusses a hardware implementation of modulo that does not
require a multiplication. This implementation is based on the algorithm proposed
in Mark A. Will’s ”Mod without mod” in which the an algorithm is presented to
calculate the modulus of large values using shifting and adding. This allows our
implementation to be comparable in clock cycles to other implementations without the
need for a multiplier’s delay. This algorithm is compared with others, such as Barret
reduction, Montgomery reduction, and fast modular reduction. Our implementation
of this modulo algorithm is shown to be faster in many cases. This paper proposes
both a hardware implementation of this algorithm as well as synthesis results in
soi12s0 45nm IBM Multi-threshold CMOS (MTCMOS) technology and ARM-based
standard cells.

iv



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III. IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.0.1 Architecture Improvement . . . . . . . . . . . . . . . . . . . . 22

IV. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.0.1 Proposed Reducer compared to Barrett Reducer . . . . . . . . 26

4.0.2 Proposed Reducer + Multiplier compared to DAR multiplier . 29

4.0.3 Parallel Reducer Results . . . . . . . . . . . . . . . . . . . . . 31

V. CONCLUSION AND FUTURE RESEARCH . . . . . . . . . . . 34

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

APPENDICIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

APPENDIX A : 8 BIT EXAMPLE OF MOD WITHOUT MOD ALGO-

RITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

APPENDIX B : 384 Bit Python Example of Mod Without Mod Algorithm 43

APPENDIX C : HDL FOR 384-bit REDUCER . . . . . . . . . . . . . . 46

APPENDIX D : HDL FOR 384-bit Parallel REDUCER . . . . . . . . . . 54

v



LIST OF TABLES

Table Page

4.1 Critical path comparison of the Barrett and proposed reducers designs

with P-384 modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Area comparison of the Barrett and proposed reducer with P-384 modulus 27

4.3 Comparison of cell counts in Proposed Reducer vs Barrett . . . . . . 27

4.4 Average Cycle comparison of the Proposed reducer and the Barrett

Reducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Power comparison of the Barrett and proposed reducer with P-384

modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Average cycle comparison for 384-bit design based on 10, 000 random

input vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Critical path comparison for proposed design vs DAR . . . . . . . . . 31

4.8 Power Comparison for proposed design vs DAR . . . . . . . . . . . . 31

4.9 Comparison of cell counts for proposed design vs DAR multiplier . . . 31

vi



LIST OF FIGURES

Figure Page

2.1 Example Implementation of Barrett Reducer . . . . . . . . . . . . . . 8

2.2 Example implementation of a DAR modular multiplier . . . . . . . . 11

3.1 The primary datapath of the proposed reducer . . . . . . . . . . . . . 18

3.2 Finite State transitions of the FSM . . . . . . . . . . . . . . . . . . . 20

3.3 Signal values based on FSM state . . . . . . . . . . . . . . . . . . . . 20

3.4 The primary datapath of the 2 bit parallel reducer . . . . . . . . . . . 23

4.1 Cycle and critical path comparison of the proposed reducer, Barrett

reducer, and 2k − a reducer . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Parallel Results of a 768 to 384 bit reducer . . . . . . . . . . . . . . . 32

vii



CHAPTER I

INTRODUCTION

Modular reduction is an important piece of arithmetic in modern designs the corner-

stone of modular reduction is the modulo operation in which we find the remainder

of a value that is difficult to reverse. The modulo operation’s increase in importance

in recent years is primarily due to the use of the operation in modern encryption

techniques. Generally this operation has been accomplished by devices that are close

in size and design to a full divider. This causes inefficient usage of resources that

could be regained through use of more efficient algorithms.

As the modulo operation merits more usage due to it’s increased occurrence in

modern encryption algorithms that nearly all modern processor designs have speedup

instructions for. Unfortunately, as these processors gain higher speed they can also

better crack some encryption algorithms so we are forced to increase the key and

operation size to keep up with the higher demand for security. One such algorithm

that makes a lot of use of the modulo operations is Elliptic curve cryptography [1]

in which modular arithmetic is used in operations of both point addition and point

doubling which are the cornerstone operations of Elliptic Curve Cryptography.

Elliptic curves work based on the principle of ”Finite Fields”. Finite or Galois

fields are fields that contain a finite number of elements. These fields, especially the

galois fields that have an order of 2n have interesting quirks that we can take advantage

of to create encryption systems which are more efficient with smaller keysizes and

footprint. These key systems use Finite fields to adequately create a public private key

system through use of the difficulty of reversal in the finite field operation. Systems
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like RSA try to take advantage of the fact that it is difficult to factor a large integer

that is comprised of prime factors but systems like elliptic curve cryptography better

take advantage of more modern mathematical techniques to create these systems

without sacrificing speed or security. The security and usability of any specific elliptic

curve is commonly based on the base parameters that are selected to generate the

curves. Generally when we are using Elliptic Curve Cryptography in any modern

implementation we will use one of the standardized curves from places such as NIST.

These curves are generally generated by a prime polynomial, many of the results for

this thesis were generated based on the use of the NIST curve P384. This curve

provides a modern level of security while also being able to accomplish the operation

at a realistic speed. One important point is that modular arithmetic is also used in

a newer technique known as ”Supersingular isogeny key exchange” which has been

touted as an adequate modern solution to the issues presented by quantam computers.

This technique seems to be one of the better solutions for post quantam security as

it is an algorithm that does not have a complexity that is significantly affected by

the way that quantam computers operate. This operation, like ECC, also requires

significant usage of the modulo operation. [2].

To summarize the importance of cryptography, essentially cryptography is what

keeps data that is leaving any given piece of technology a near gurantee that it won’t

be intercepted and interpreted by an outside third party. One of the difficulties with

this is that as more powerful processors become mass-available it is becoming more

realistic for basic and widely available general purpose processors to be able to crack

into some of the more archaic methods of securing our data. The difficulty is that

as we try to combat the increased processing speed of would-be hackers we must

also increase the size of the key that we are using for cryptography. The difficulty

with this is that if we don’t re-adapt our algorithms then the key size will continue

to grow. For this purpose, algorithms have been developed that take advantage of
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interesting mathematical properties in order to create a more secure system without

the need for immensely large key sizes. This fear was further accentuated by the

introduction of quantam computing into the playing field. Quantum computers have

approaches to cracking cryptography that can significantly reduce the total search

space and complexity. For this purpose algorithms have been developed which do not

have this quirk but do still require modular arithmetic such as the use of supersingular

isogeny graphs which do not have the same flaw that allows quantam computers to

take advantage of other such algorithms. Through these endeavors we developed

algorithms such as AES and ECC which allow users to obtain higher security without

having to compute values with significantly larger integer sizes.

Modular arithmetic, is considered to be a system of arithmetic that ”wraps around”

once it reaches the modulus value [3]. This form of arithmetic is very common to

many forms of cryptography and important as a common case for modern designs in

the field of computer architecture due to the increasing focus on processor security

and security speedup.

While computation of the remainder of a division without doing the actual division

seems simple at first glance it can actually be quite mathematically complex. There

are many methods proposed to compute the remainder on it’s own, but it is important

to create evaluate th efficiency of a hardware implementation of these algorithms to

avoid wasteful energy and time dependence. Although there are methods that are

quite efficient utilizing Montgomery multiplication, they tend to be more complicated

and area/energy intenstive [4, 5]. Other methods, such as double-add-reduce (DAR)

methods are simplistic and slow [6].

One method that was discovered during the research for this thesis is ”Mod With-

out Mod” [7] which utilizes only shifting, adding, and subtracting in order to accom-

plish the remainder calculation. While the algorithm in [7] is promising, the original

work does not propose any sort of hardware specific implementation or consideration.

3



This thesis proposes an architecture that accomplishes the algorithm proposed in [7]

as well as extensions that can be made to the base algorithm in order to take ad-

vantage of some quirks available only to hardware design. Simulation and synthesis

results are presented that show the performance of the proposed design against it’s

other contemporaries. These results are presented for 14nm, 32nm, and 45nm CMOS

technologies using a standard-cell library and industry standard tools to calculate the

critical path, area, and energy performance of the designs.

These results show that the proposed reducer has an approximately 10% decrease

in critical path delay over it’s contemporaries as well as a cycles wise comparison of the

proposed reducer with it’s contemporaries. To conclude, the newly designed reducer

is shown to be a contender against other design options as well as an immensely viable

design choice alongside in larger designs alongside other hardware with it’s ability to

reach speeds upwards of 2GhZ.
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CHAPTER II

BACKGROUND

Modular arithmetic is a long standing and widely used form of arithmetic in which

the numbering system ”wraps around”. The modulo is the process of finding the

remainder from a given division operation. For example, if you have 100 divided by

9 in quotient and remainder form, which is 11 remainder 1, then the result of the

modulo operation is 1 [9]:

100 mod 9 = 1

Modular arithmetic is a great match for the world of cryptography for a couple of

reasons [10]. First, when performing modular arithmetic we can keep our values in

a certain range which is useful when we have a limited hardware size such as 64 bit

for many modern day systems. Therefore, through the use of specific values for the

modulus a ”limit” can be placed on the number of binary digits required to represent

a number. Second, the complicated computation of the modulo operation is difficult

to reverse especially when it is done many times through an implementation of a

modular arithmetic system in something like an elliptic curve encryption system.

An elliptic curve encryption system is able to provide a public private key system

that is more secure per bit than other more common algorithms such as RSA. When

calculating the encrypted output of an elliptic curve operation the arithmetic opera-

tion which gets the most use is the modulo operation. The use of this operation comes

from the point addition and point doubling operations that make up the majority of

the elliptic curve encryption system. While this is one example of a cryptography
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operation that uses modulo there are many other alternative encryption systems that

also are heavily reliant on the modulo operation.

One type of reduction that is quite simple is the 2k−a reduction [11]. The 2k−a

reducer is very simple in hardware but requires quite a few cycles and uses hardware

components that require a lot of time for calculation. The pseudocode below shows

the basic execution principle of the 2k−a reduction.

Algorithm 1 2k−a reduction [11]

a = 2k −m

r = x mod 2k

q = int( x
2k
− 2)

while q 6= 0 do

while q 6= 0 do

r = r + (q ∗ a) mod 2k

q = int( q∗a
2k

)

end while

q = int( r
2k

)

r = r mod 2k

end while

return r

As shown by the pseudocode in Algorithm 1, the algorithm operates primarily

on r and q throughout the execution of 2k−a reduction. The first thing that you

may notice is that this algorithm uses mod 2k within the while loop, which is a useful

function when using binary arithmetic by which modulo by a power of 2k is equivalent

to dropping the bits more significant than index k. This allows us to have this as

an operation with little logic in a hardware implementation. In this algorithm two

loops are seen, an outer and an inner, that both operate on r and q. Within the inner

loop we generate a number that is less than x and still gives the ”correct” answer
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when a mod m operation is performed. We then, using the outer loop, run the inner

loop multiple times to achieve x mod m. The calculation of x mod m using 2k − a

reduction also requires the use of a multiplier which is one of the slower operations in

hardware arithmetic and thus will require approximately n(n− k + 1)Tmult[11] where

Tmult is the amount of time required for a calculation using the multiplier, n is the

size of the input, and k is the size of the reduced output.

Another great reduction algorithm is Barrett reduction, which is considered to be

the gold standard for fast reduction [10, 12]. With Barrett reduction, there is interest-

ing mathematical quirks that are utilized in order to calculate x mod m without the

need for looping which allows designers to make a reduction module that takes a small

number of clock cycles. Unfortunately, the underlying arithmetic operations required

for the calculation of x mod m using this form of reduction are quite complicated and

require the use of a multiplier as shown in Algorithm 2.

Algorithm 2 Barrett reduction [11]

if b = 2 then

t = 2

else

t = 1

end if

c = int( b
n

m
)

y = int( x
bk−1 )

w = y ∗ c

q = int( w
bn−k+1 mod bk+t)

r = (x mod bk+t)− (q ∗m mod bk+t) mod bk+t

The Barrett reduction algorithm is one of the best there is when it comes to num-

ber of clock cycles needed to achieve the result. Unfortunately, the calculation of

x mod m using Barrett reduction uses complicated operations. As we can see from

7



Figure 2.1, even the most basic implementation of Barrett reduction requires a multi-

plier, which is generally one of the slower arithmetic operations in an implementation.

The Barrett reducer is a reducer with great performance in terms of number of cycles

per operation but at the cost of a longer critical path through the multiplier.

The Barrett reducer shown makes use of both a multiplier and subtractor in order

to calculate the modulus of the input value x. A multiplier implementation, especially

one of sizes such as 256 and 384 bits, require a large amount of logic, area, routing,

and delay in order to place and route into a design. The multiplier, as shown in

the results section, bloats the area and power dissipation of the barrett reducer quite

considerably and leads to a slower critical path delay and large energy usage than the

proposed design, discussed later in this work.

When discussing real world applications of modulo it is hard to get around the

use of modular multiplication. Modular multiplication is the most commmon process

used in the aforementioned encryption techniques where a number is multiplied and

then the modulo is taken of this post-multiplication value multiplied by the scalar

prod[n+2:n−k+1]

mul[n+2:0]

0 0

011 0

m c

k+2 bit register

n+3 bit register

n1 by n2 multiplier

x[k+1:0]

x[n−1:k−1]

m prod[k+1:0]

prod[k+1:0]

result

k + 2 bit subtractor

1 1

Figure 2.1: Example Implementation of Barrett Reducer
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then it’s modulus taken [13]. As a result of the modular multiplication’s importance,

there are a few interesting implementations.

One modular multiplication unit, the Double, add, and reduce (DAR) modular

multiplier is an algorithm that accomplishes the multiplication and reduction at the

same time. It accomplishes this through the use of modular addition inside the

multiplication process.

In algorithm 3 the pseudocode for modular addition is shown. The DAR modular

multiplication process using the modular addition function is then shown in algorithm

4.

Algorithm 3 Modular addition (x,y,m,k) [11]

# This method will add x and y mod m

z1 = x + y

z2 = (z1 mod 2k) + (2k −m)

c1 = int( z1
2k

)

c2 = int( z2
2k

)

if c1 = 0 and c2 = 0 then

return z1 mod 2k

else

return z2 mod 2k

end if

Within a modular addition implementation, hardware can take advantage of some

interesting mathematical quirks by dropping the highest-order bit. This operation is

the equivalent of a modulus by 2k where k is the location of the dropped bit. Through

use of this helpful piece of binary arithmetic x + y mod m is easily calculated using

this algorithm, as shown in Algorithm 4.

Through examination of the DAR modular multiplication operation, not only

does it accomplish the calculation in relatively few operations but it also does not
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Algorithm 4 DAR modular multiplication (x ∗ y mod m) [14]

m = modulus

k = size of the reduced output

p = 0

i = 0

# x[i] is binary digit in x at position i

for x[i] in binary(x) do

# Double operation (p + p mod m)

p = modAdd(p, p,m, k)

if x[k − i− 1] = 1 then

# Add operation (p + y mod m)

p = modAdd(p, y,m, k)

end if

i = i + 1

end for

require the use of a multiplier. This is great because a multiplier is a relatively slow

component so the DAR modular multiplier can operate on a somewhat higher clock

speed.

One of the most commonly used and amazing forms of modular multiplication

is Montgomery reduction. Montgomery reduction has many different versions and

implementations that could not possibly be covered in the scope of this thesis. Mont-

gomery reduction is commonly used in many implementations of encryption, the pri-

mary reason for this is that Montgomery reduction implements a scalar multiplication

10



load

step_type

y

mod m adder

k bit shift register

10

x(i)

en

reset

ce_p

load

m

result

x

update

Figure 2.2: Example implementation of a DAR modular multiplier

naturally and, therefore, does not require a multiplier to multiply by a scalar [5]. This

feature allows for an implementation that accomplishes both the multiplication and

reduction at the same time. In algorithm 5 a simplified form of montgomery reduc-

tion is shown As can be seen from the simplified form of the Montgomery algorithm

shown in Algorithm 5. The reason that this algorithm is commonly used is that there

are many methods in both software and hardware that can make use of this algo-

rithm. This allows Montgomery multiplication to be both cycle and time efficient.

The primary issue with montgomery reducers is that they are complicated and still

often have a large critical path delay as well as a high complexity and area [5]. Con-

sequently, there is a need for something better than both Barrett and DAR methods

as shown in this thesis.

The background for the implementation proposed in this thesis is primarily based

on the algorithm originally proposed in [7] in which an algorithm is discussed by

the authors that is based primarily on shifting the initial value and adding a pre-

11



Algorithm 5 Summarized Montgomery Reduction [15]

x = Multiplicand

Y = Multiplier

n = bit length of modulus

m = modulus

m’ = −m[0]−1 mod r

n is the size of the multiple of x and y

Z = 0

for i = 0 to n− 1 do

Z = Z + XY [i]

qM = (Z mod r)M ′ mod r

Z = (Z+qMM)
R

end for

if Z >= M then

Z = Z −M

end if

12



calculated value based on the result of the shift. As one can see from Algorithm 6,

the algorithm is very simple and has hardware implementable mathematical quirks

that would seem to produce an efficient hardware implementation. On the other hand,

there is no hardware implementation given in the original paper [7] by the authors.

A lot of the magic of this algorithm is accomplished by taking advantage of hard-

ware’s ability to drop a high order bit in order to modulo by the 2index where the

index is the index at which we drop the bit. We then repeatedly add in the difference

between this value and our modulus, these mathematical phenomena lend themselves

well to an application-specific implementation for encryption as one can use many

different types of approaches in hardware to accomplish these calculations, therefore,

the user can make a judgment call as to if the prefer area, critical path, or cycle-wise

performance.

The original paper suggests that the algorithm appears to have real world ben-

efits over previous algorithms when it comes to software implementation. In the

original paper [7] the authors compared their new algorithm with Montgomery re-

duction,Barrett reduction, fast modular reduction, and a real world test where the

proposed algorithm was compared with a GNU multiple precision algorithm that is

common to many Linux systems and thus widely used. To summarize the findings of

the original work [7], comparison with the Barrett reduction found that the proposed

algorithm had a significant performance increase not in the number of operations re-

quired but in the operational complexity as Barrett reduction requires a large sized

multiplication while the mod without mod algorithm does not. When compared with

Montgomery reduction the original paper states that based on half of the bits in

the input vector being high , a normal case if you’re normalizing your RNG output,

Montgomery modular multiplication would require more addition operations than the

proposed mod without mod algorithm and also sometimes requires a few extra cycles

for correction. Lastly, the paper in which this algorithm is proposed [7] states that

13



Algorithm 6 Mod without mod reduction algorithm [7]
m = modulus value

modLength = length in bits of modulus value

z = input value

n = size of z in bits

k = size of reduced output

modVal = 2modLength mod m

shiftcnt = 0

result = z[n : n2 ] # (upper half in bits)

# Shift an equal amount to the number of bits in m

while shiftcnt < modLength do

# If result[n+1] is not a 1

if mod.bit length() >= result.bit length then

result = result << 1

shiftcnt = shiftcnt + 1

else

result = result[n2 − 1 : 0] # in bits

result = result + modV al

end if

end while

# Add back the bottom half of z

result = result + z[n2 − 1 : 0]

while result >= mod do

result = result−mod

end while

# Check for overflow one last time

if mod.bit length() > result.bit length then

result = result[n2 : 0] # in bits

result = result + modV al

end if

14



the fast modular reduction method is similar as it only requires processing the upper

half of the bits and, therefore, only requires radix/2 operations, but the fast modular

reduction method, as stated in [7] requires more clock cycles on average despite it

being unsubstantiated.

Through examination of the algorithm we can see that a lot of the iterations are

being used in the shift and add section. It would appear at face value that it would be

possible to take further advantage of the shift and add quirk that is provided by the

algorithm. Through further examination it is simple to extrapolate that it is possible

to shift out multiple bits at a time. And then if we recalculate a modulus value based

on the two highest order bits shifted out past the index at length of modulus. For

example, if we have a modulus length of 384 bits then we would be able to calculate

modVal = 2384 mod MOD and modVal2 = 2385 mod MOD. Here we can see that we

can simply calculate these multiple modVals based on any number of extended bits

that we would like to calculate in parallel. In algorithm 7 you can see that we can take

advantage of this quirk in order to decrease the approximate number of iterations by

1
#ofparallelbits
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Algorithm 7 Mod without mod with 2 bit parallelization [7]
m = modulus value

modLength = length in bits of modulus value

z = input value

n = size of z in bits

k = size of reduced output

modVal = 2modLength mod m

shiftcnt = 0

result = z[n : n
2

] # (upper half in bits)

# Shift an equal amount to the number of bits in m

while shiftcnt < modLength − 1 do

# If result[n+1] is not a 1

if mod.bit length() >= result.bit length then

if shiftcnt + 2 ¡= modLength then

result = result << 2

shiftcnt = shiftcnt + 2

else

result = result << 1

shiftcnt = shiftcnt + 1

end if

result = result << 1

shiftcnt = shiftcnt + 1

else

result = result[ n
2

− 1 : 0] # in bits

result = result + modV al

end if

if (result[modlength] == 1)and(result[modlength + 1] == 1) then

result = result & 0xFF

result = result + 2modlength

result = result + 2modlength+1

else if result[modlength + 1] == 1] then

result = result & 0xFF

result = result + 2modlength+1

else if result[modlength] == 1] then

result = result & 0xFF

result = result + 2modlength

end if

end while

# Add back the bottom half of z

result = result + z[ n
2

− 1 : 0]

while result >= mod do

result = result − mod

end while

# Check for overflow one last time

if mod.bit length() > result.bit length then

result = result[ n
2

: 0] # in bits

result = result + modV al

end if
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CHAPTER III

IMPLEMENTATION

The implementation proposed by this thesis is comprised of a control system and a

datapath, where the control is namely the finite state machine (FSM) that manages all

of the system’s control signals.. In the Finite State Machine, a counter is implemented

in order to count the number of shifts that have happened through the use of a flag

which has been output from the datapath. This allows the design to keep track of

how many shifts are performed such that it can ensure that the design will complete

size/2 shifts. In the following section there are diagrams for these key components as

well as an explanation of their function and how they connect. One of the primary

operations in this design is that anytime there is a 1 in the most significant bit

position it is dropped in order to essentially take mod 2n. After this bit dropping, the

module will perform an addition of modVal which is precalculated using the equation

modV al = 2mod length % mod. Due to the nature of this value it will need to be

recalculated every time the modulus changes, which is also required for a value in the

barrett implementation. This course of action essentially accomplishes a modulo by

2n followed by an adding of the different between 2n and mod.

Figure 2.2 the datapath of the reducer. This datapath is comprised of two distinct

sections. These sections are the initial shifting and adding section as well as the final

correction section.

In the shifting and adding section the design utilizes a multiplexer that is selects

between loading of a new input value or the output of the shift and add section. After

the initial value is loaded into the register this multiplexer then selects the output of

17
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Figure 3.1: The primary datapath of the proposed reducer

the shift and add section to be looped back into the flop with enable This flop has

it’s enable signal to shift_done where it will only save values flag is 0 meaning that

the requisite number of shifts has not been reached. The shift_done flag becomes a

1 when the counter signals to the datapath that the module has completed a number

of shifts that is equal to the size of the reduced output in bits. When disabled, after

the requisite number of shifts has been reached, the register will hold the final value

calculated by the shift and add section. When enabled, and not accepting new values,

the shift and add loop is fed into the next set of multiplexers that will decide what

portion of the shift and add section needs to be used to compute the next result.

Although the datapath within Figure 2.2 is designed for a 384-bit implementation, it

can be easily adapted to any size.

There are two distinct cases that the shift and add section is designed to deal

with. First, we have the case that there is no overflow on shadd_reg in which case a

shift operation is required that selects the output of the shifter to be the input of the

adder, which splits itself into two other subcases. One subcase is that a 1 is shifted
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out in the shift process, in this case the multiplexer selects the result of the adder and

that value is saved to the register. In the second subcase, where the shifter shifts out

a 0, the multiplexer pair selects the shift_result to be saved to the register. The

second case is that the register saves a value that has an overflow itself, usually as

the result of the add. In this subcase the datpath chooses the output of the register

that allows the design to perform an add without a shift to handle the overflow. This

set of operations takes place in State 2 until the desired number of shifts has been

reached. After this, the register stops accepting new values and the second stage

begins operating.

Beginning from the 3rd state, the primary calculation takes place in the bottom

half of the design. To begin, there is an adder that reads the bottom half of the

input back in. Then, a multiplexer utilizes the value of subFlag (from the FSM)

to decide between the output of the second register or the adder. Initially, subFlag

selects the output of the aforementioned adder. It then subtracts the value of mod

and checks the output of the subtraction for a negative sign [16]. This subtraction

and register stage is utilized to make sure that the value of the result is less than the

value of mod. When the output of the subtraction is negative this symbolizes that the

current result is less than mod. In the case that the output is not negative, the second

multiplexer selects the output of the subtractor and saves it into the register. This

value is then fed back into the first multiplexer and then goes through the subtraction

stage again until the value is negative. Once the value is negative, the final mux and

adder will add modVal one last time in the case of an overflow. The result of the final

multiplexer select is then taken as the final reduced result z mod m

Figure 3.2 shows the state transitions of the FSM. This specific finite state machine

has six states that have their own function. State 0 waits for the start signal to become

0 in order for the machine to start a new operation. State 1 is the setup that waits for

the start signal to be asserted again. State 2 is the state that waits for the counter to
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complete the amount of shifts required by the system. State 3 sets up the subtraction

stage for its operation and performs the initial add of the lower half and the initial

subtract. State 4 allows the subtraction stage to subtract until the result of the

subtract becomes negative. Finally, state 5 asserts the done signal and returns to the

ready state to await new inputs. In Figure 3.3, the state transition table is given to

S0

S1

S2

S3

S4

S5

~ start

start

start

~start

shift_done

~shift_done

subNeg

subNeg

Figure 3.2: Finite State transitions of the FSM

State reset count load z done subFlag

S0 0 0 0 0

S1 start 1 0 0

S2 0 0 0 0

S3 0 0 0 0

S4 0 0 0 1

S5 0 0 1 0

Figure 3.3: Signal values based on FSM state
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reveal the the value of each signal.

Algorithm 8 N bit counter’s function on clock

n = length of reduced output

if reset = 1 then

shift done = 0

count = n

end if

if reset count = 1 then

count = n

end if

if count decrement & !shift done then

count = count - 1

end if

if count = 0 then

shift done = 1

end if

Algorithm 8 displays the function of the counter in the FSM. This counter is used

to count down the amount of shifts that have taken place (including accounting for

when we shift and do not add) as well as being able to reset from within the state

machine. This algorithm describes the equivalent function of the counter that will

take place on every clock cycle.
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3.0.1 Architecture Improvement

The base design for this implementation is quite simple but a diligent designer can

choose to use particular improvements such as replacing some of the simple compo-

nents with more complex ones that compromise in a particular area. For example,

compounding operations that take multiple cycles into operations that take only one

or replacing the carry propagate adders with faster prefix adders. One example that

has been implemented for this thesis is the use of a leading zero detector (LZD) [17].

A leading zero detector can be implemented to shift out all of the leading zeroes of

the result at once. This addition allows the reducer to reduce computation time by

one cycle for every recurring leading zero. For example, if the result value saved in

the register has 7 leading zeros then the implementation will save 7 cycles by shifting

out all 7 of these zeros in a single cycle using the output of the LZD to signal a

variable shifter. The LZD itself resides inside the counter so that it can easily signal

how many shifts are going to happen so the counter can subtract that value from it’s

remaining count. The number of shifts needed to shift out all of the zeroes is then

passed over to the datapath. This allows for considerable speedup on large operations

as displayed in the results section.

Another improvement is the possibility of processing multiple bits in parallel. Through

the addition of a couple of multiplexers to the base datapath we can accomplish the

multiple bits in parallel operation as outlined in the background. The 2 bit parallel

version of the implementation is shown in figure 3.4.

Examination of figure 3.4 shows that through adding a couple of multiplexers we

can significantly reduce the number of cycles required by the shift and add section.

As outlined in the results section, this provides a significant reduction to the number

of total cycles required for the implementation to accomplish a reduction operation.
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Figure 3.4: The primary datapath of the 2 bit parallel reducer
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The additional interesting quirk of this parallel implementation is that it requires very

little hardware for a significant reduction in cycles. In theory, we would parallelize

an infinite number of bits by creating a lookup table that holds the modVal entries

at each possible value of the shifted out tag. Using the leading zero detector we can

shift out the leftmost zero to the Size + (# of bits) space. Which then allows us

to up the counter by (# of parallel bits) + (# of zeroes). This lookup table scales

exponentially with the number of bits in parallel that it processes. For example, a

3 bit parallel table will require 23 entries and a 4 bit parallel table will require 24

entries. This shows that there should be an ideal number of bits of parallelization

that can be obtained without adding a large amount of area or delay. This is further

explored in the results section.

Overall, the proposed implementation is generally more simple and straight for-

ward than other implementations while still maintaining good speed and performance.

The proposed design also has the ability to be further expanded and upgraded and

has high modularity which you can use to tailor the new design to your needs such

as adding new logic in order to further improve on the performance of the device or

minimize the area for example. This versatility and upgradability are a good reason

why this design is more versatile than its peers while maintaining good performance.
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CHAPTER IV

RESULTS

In order to compare this module with others we must first discuss some alternative

designs that are close in function to the proposed design. To adequately measure the

performance compared to its peers for a reduction, the design will be compared with

the DAR multiplier as well as the Barrett reducer in order to test it’s abilities in both

the modular arithmetic and pure reduction use cases.

The flow used to obtain these results requires a couple of different industry stan-

dard tools and libraries using typical PVT conditions.

First, the design was implemented into HDL in order to test functionality. We

then passed the HDL over to Cadence Design System (CDS) Genus
TM

synthesis engine

which is utilized in order to synthesize the design and get basic timing and area

results. We then used the standard cells to get a rough estimate of the design’s

real world performance this place and route was accomplished by Cadence Design

System’s Innovus which used the 14, 32, and 45nm ARM standard-cell libraries that

were provided to it. Innovus
TM

then probes the placed and routed circuit in order to

find the critical path of the design and estimates the power usage and based on the

parameters defined by the standard cell kit. The result of this design flow with each

of the aformentioned designs is presented and analyzed in the following section.Cycle-

wise performance was obtained using Mentor Graphics Corporation Modelsim
TM

in

order to cycle-wise simulate the HDL version of the design we used over 10, 000 of

the same vectors on each of the designs for the comparsion. algorithmically as seen

by Tables 4.2, 4.4, and 4.6
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4.0.1 Proposed Reducer compared to Barrett Reducer

Initially , the proposed reducer is compared against the Barrett reducer which is one

of the most common implementations in the field and is currently considered the

”Gold Standard” of modular reduction hardware. The Barrett reducer is a very well

designed piece of hardware which requires few clock cycles to calculate the modular

reduction operation. Unfortunately for the Barrett reducer this is a difficult tradeoff

as the use of a large sized multiplier (384 bit ∗ 384 bit in this case) causes high area,

complexity, and critical path delay. Tables 4.1 and 4.2 demonstrate the comparison

between the new reducer design and the Barrett reducer in both area and critical path

delay. Both the Barrett and the proposed reducer are implemented in a 768 to 384 bit

reduction form and are verified using the NIST P-384 curve modulus values [18]. The

Barrett reducer, as anticipated, outperforms the newly proposed reducer in cycle-wise

performance as shown in Table 4.4, however, as seen in the other tables this is at the

expense of a significant area and energy cost.

Comparison of the proposed design with the Barrett reducer in terms of critical

path delay shows that the proposed design wins outright with or without the added

leading zero detector. This large difference in other areas is due mostly to the critical

path introduced by the 384× 384-bit multiplier in the Barrett reducer. Comparison

of the proposed design with the proposed design with the LZD shows an increase in

delay and area due to the use of both a variable shift shifter as well as the leading zero

detector itself. Overall the proposed design without the LZD is able to run at over

Technology Proposed [ps] Proposed w/ LZD [ps] Barrett Reducer [ps]

14nm 437.4 655.2 1,103.4

32nm 359.6 515.0 1,018.1

45nm 438.0 617.0 1,040.0

Table 4.1: Critical path comparison of the Barrett and proposed reducers designs

with P-384 modulus
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Proposed Proposed Reducer Barrett Reducer

Technology Reducer [µm2] w/LZD [µm2] [µm2]

14nm 10.426 16.308 186.326

32nm 16.633 38.605 452.643

45nm 42.396 92.065 1,226.104

Table 4.2: Area comparison of the Barrett and proposed reducer with P-384 modulus

Proposed Reducer Proposed Reducer Barrett Reducer

Technology w/LZD

14nm 14,667 25,894 254,228

32nm 11,363 25,308 153,151

45nm 11,878 25,197 268,819

Table 4.3: Comparison of cell counts in Proposed Reducer vs Barrett

double the speed of the Barrett reducer on average while the design with LZD is able

to remain ahead of the Barrett reducer with a critical path savings of approximately

25percent.

While area is a good metric to compare different reducer designs in the same tech-

nology, another important metric is to look at the number of cells used for this design

as that gives an idea of the size of the reducer regardless of the specific technology

used. It also demonstrates a value proportional to the overall static and dynamic

power utilization for each design. Table 4.3 again demonstrates the large difference

in number of cells used in the proposed reducer compared to the Barrett reducer.

By examining the area results it is once again obvious that the proposed design

wins outright, this is likely, again, due to the 384 × 384-bit multiplier that takes a

large amount of routing and space to do the multiplication logic. When comparing the

values between the proposed design without the LZD and the barrett reducer the large

multiplier size causes the barrett reducer to unreasonably scale at larger radix sizes.

That is, with a large size the area of the proposed design scales relatively linearly

whereas, the Barrett reducer has trouble with the large area required to accomodate

the multiplier required for Barrett reduction. When comparing the design with LZD
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Vectors Proposed Reducer Proposed reducer w/LZD Barrett Reducer

ECP384 390 cycles 104 cycles 6 cycles

Table 4.4: Average Cycle comparison of the Proposed reducer and the Barrett Re-

ducer

Proposed Reducer Proposed Reducer Barrett Reducer

Technology [mW ] w/LZD [mW ] [mW ]

14nm 0.3167 0.6664 8.9051

32nm 4.7443 13.7276 104.5652

45nm 2.9356 8.6443 157.8278

Table 4.5: Power comparison of the Barrett and proposed reducer with P-384 modulus

to the Barrett reducer it is again obvious to see that the design scales much better

than the Barrett reducer. Unfortunately, as a result of the logic required for a shifter,

the proposed design with LZD is quite a bit larger than the original design but this

once again shows that the proposed design is able to increase its performance at the

expense of area.

Cycle-wise comparison of each reducer, shows evidently that Barrett reducer still

has a clear advantage over the proposed design. This is the trade off that the Barrett

reducer takes in exchange for a high critical path and area impact. path. When

comparing the LZD and non-LZD version of the proposed reducer it is shown that, as

expected, the LZD significantly decreases the number of cycles required on average for

the reducer to complete an operation.This set of results shows that the improvement

expected from the leading zero detector can be readily applied to a real world use

case as a more than viable upgrade to the base design.

Another important design consideration when comparing two implementations is

the amount of power used as this shows the efficiency of the design when compared

to its peers. The amount of synthesis estimated power is shown in Table 4.5.

By examining the power figures given by the synthesis engine we can draw the

conclusion that the dsign proposed in this thesis also consumes significantly less power

than the barrett reducer. This is largely due to the poor scalability of the Barrett
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reducer at large sizes. Table 4.2 indicates a 94.40% and 91.25% area reduction for

the Barrett reducer compared to the proposed algorithm and the modified proposed

algorithm with LZD, respectively.

When considering only cycle-wise performance the Barrett reducer is an obvious

winner.But on the other hand, for implementations that require low area and energy

requirements, the proposed architecture can be a significantly better choice than the

barrett reducer.

4.0.2 Proposed Reducer + Multiplier compared to DAR multiplier

Next, the proposed design and the DAR modular multiplier are compared using

random data. All designs are coded using Register-Transfer Language Verilog to

take advantage of synthesis and any intellectual property (e.g., ChipWare) that is

inserted. All designs are completely verified using hundreds of thousands of test

vectors generated by python scripts. In both timing and cycle-wise performance the

proposed design beats the DAR implementation. Specifically, clock-cycle wise, a

384-bit (i.e., a 384 bit output as for example 384 × 384 bit mod 384 bit) the DAR

implementation uses on average 772 clock cycles while the multiplier + 768 bit to 384

bit proposed reducer comes in at an average of only 580 clock cycles. This is tested

through HDL simulation across 10, 000 fully random (non-P384) vectors.

It is important to note that the DAR implementation includes modular multipli-

cation as opposed to the reducer alone. Therefore, this subsection deals with adding

modular multiplication along with the proposed algorithm in this thesis which will

be larger in area/energy. The proposed algorithm is compared versus modular mul-

tiplication using several random vectors (not P-384) against the DAR architecture.

Table 4.8 demonstrates the difference in power consumption between the proposed

reducer and the DAR modular multiplier. This data shows that while the proposed
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reducer offers significant improvements in areas other than power there is a tradeoff

required for that increased performance.

Table 4.8 shows again, that the new design uses only slightly more cells than the

DAR modular multiplier and thus is a great design alternative with only very small

drawbacks.

The results presented in Tables 4.6, 4.7, 4.8, and 4.9 show that, while being

combined with a standard cell multiplier, the proposed implementation beats the

DAR modular multiplier in both critical path delay and clock cycles. This data

shows that the proposed implementation can outperform other implementations in a

real world use case.

Next, it is important to compare the new reducer directly with other reducers. As

some of the reducers do not function as well at a higher radix then to better compare

the proposed reducer with some of the other reducers it was concluded that the best

option is to use a lower radix to give an advantage to the other reducers. Since this

is the case, a 16 bit to 8 bit comparison was chosen for this comparison. In figure 4.1

the comparison in clock cycles and critical path delay using the same technologies as

the comparison with the DAR is shown.

The data shown in Figure 4.1 shows that the proposed reducer performs an opeara-

tion in a similar amount of cycles as some of it’s contemporaries. While this operation

takes a similar average amount of cycles the delay per cycle is obviously improved.

The performance of the proposed reducer is approximately 10% better than the other

compared reducers, this performance increase is likely due to the proposed reducer

not requiring the use of a complicated operation, namely multiplication. Critical path

Proposed Design + Multiplier DAR modular multiplier

580 cycles 772 cycles

Table 4.6: Average cycle comparison for 384-bit design based on 10, 000 random input

vectors
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Technology Proposed Design [ps] DAR modular multiplier [ps]

14nm 661.1 939.9

32nm 667.3 964.4

45nm 826.0 1,013.0

Table 4.7: Critical path comparison for proposed design vs DAR

Technology Proposed [mW] DAR mult. [mW]

14nm 0.2598 0.1364

32nm 3.3118 3.1438

45nm 1.7163 2.4945

Table 4.8: Power Comparison for proposed design vs DAR

Technology Proposed DAR mult.

14nm 13,167 8,805

32nm 7,914 8,617

45nm 8,130 9,027

Table 4.9: Comparison of cell counts for proposed design vs DAR multiplier

Reducer Avg Cycles 14nm 32nm 45nm

Proposed 12 186 ps 132 ps 385 ps

Barrett 12 212 ps 183 ps 390 ps

2k − a 13 210 ps 200 ps 404 ps

Figure 4.1: Cycle and critical path comparison of the proposed reducer, Barrett

reducer, and 2k − a reducer

delay is very important as it will allow a system using this design to have a higher

overall clock speed without being bottlenecked by the reducer.

4.0.3 Parallel Reducer Results

This section displays results for different amounts of parallel calculation for the pro-

posed reducer. These results show the performance of an implementation with 2, 3,
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4, 8, and 16 bits in parallel. These different amounts of parallelization adequately

show the scaling factor based on more or less bits of parallelization and their effects

on cycle, critical path, and area performance. These results are shown in figure 4.2.

# of parallel bits Avg Cycles Critical Path Area

2 71 481 6981

3 53 480 7060

4 45 476 7700

8 28 473 6795

16 18 700 10033

Figure 4.2: Parallel Results of a 768 to 384 bit reducer

Examination of these results suggests that up to approximately 8 bits processed

in parallel there is very little effect on critical path and area. This is due to only

requiring the addition of a small LUT to calculate the additional addition parameters

required for the calculation. This results in a significant reduction in required cycles

without much of a tradeoff on any of the other fronts. An 8 bit table significantly

reduces the number of cycles required for calculation down to the point where it is

nearly comparable to that of the gold standard Barrett reducer. These results show

very promisingly that the reducer with this addition is both capable of modularity as

well as very competitive with the performance of it’s contemporaries.

In conclusion, the new reducer design is very comparable with it’s contemporaries.

The new design shows significant improvement in the areas expected through analysis

of the original algorithm. More precisely, in comparison with the gold standard

Barrett reducer the design shows significantly better performance with respect to

both critical path and area. Specifically, area is in the order of 10x better and

critical path performance is 2x better than the Barrett reducer but requires a larger
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amount of clock cycles. When compared behaviorally to it’s other contemporaries

in the modular arithmetic space the proposed reducer also shows significant benefits,

boasting a significantly lower critical path and cycle requirement with a slightly larger

size than the DAR modular multiplier.
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CHAPTER V

CONCLUSION AND FUTURE RESEARCH

This work demonstrates a new implementation of a modular reduction algorithm as

presented in [7] in which an algorithm is presented that is able to calculate the re-

mainder of an operation without the use of multiplication or division operations. An

important element of this paper is that it demonstrates an architecture for implemen-

tation of this algorithm, whereas, the original paper [7] did not have an architecture

or discuss its potential implementation. A newly designed implementation of this

algorithm is proposed as well as results suggesting that it is a viable improvement

for other alternative reducer designs. Synthesis and simulation results are shown

which represent the idea that the new implementation of this algorithm shows im-

provements in both critical path delay and amount of clock cycles required for an

operation. The new implementation uses a shifter and adder but does not require a

multiplier or divider for the reduction which allows for a low critical path delay. This

implementation has uses in fields such as encryption for modular arithmetic which

will get more complicated as the encryption standards get more strict. The current

implementation manages to keep a relatively low completixy while still performing

the remainder calculation with better performance than it’s contemporaries in cycle

count, critical path delay, or area.
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APPENDICES

APPENDIX A

8 BIT EXAMPLE OF MOD WITHOUT MOD ALGORITHM

#################### To run
#####################################

# To run this program you can change the x and y values
# to your hearts content and then run the progam by using
# ‘ python3 fastmod.py ‘
# This should output the amount of adds and if the modulo

succeeded
# then it should also print the modulo from python ’s built

in function
# and also the modulo calculated with the implemented

function.
#
# Sidenote: The number should work regardless of x and y

as it is 0 extended
# during the program but this means that if you

change the number that you
# are moduloing by or the "mod" variable then it

will not run as
# the zero extension will no longer be the correct

length
#

##################################################################

#Calculate the multiplied value
z = 0x71f3

#Calculate the P-384 modulo value
mod = 0x8a
#mod = 0xe0
modlength = mod.bit_length ()
#print(bin(mod))

#Force strZ to correct size and get its proper length
strZ = bin(z).strip(’0b’).zfill (16)
lenZ = len(strZ)

#Split into top and bottom
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topZ , botZ = int(strZ[:int(len(strZ)/2)],2), int(strZ[int(
len(strZ)/2):],2)

print(hex(topZ))
print(hex(botZ))

#Set the end variable to the top half in bits of the
multiplied number

result = topZ
#This is the value that you add to result when an overflow

occurs
modVal = (2** mod.bit_length () % mod)
print("Modval: " + str(hex(modVal)))

#Initialize shift counter we basically want to shift an
equal amount of times

#To the radix of the number we are moduloing by. As this
modulo number will be

#static we can make a very ASIC style modulo module that
has the values for

#modulo "hard coded" as modulo value / radix isn’t dynamic
. We right shift until

# there is a 1 in the "overflow" slot and then we get rid
of the 1 in that position

# and add modVal for each overflow
#The rest of this is based on https :// eprint.iacr.org

/2014/755. pdf
shiftcnt = 0
addcnt = 0
print("Start Shifting")
while(shiftcnt < modlength):

if(result.bit_length () <= mod.bit_length ()):
result = result << 1
shiftcnt = shiftcnt + 1

else:
result = int(bin(result)[3:] ,2)
result = result + modVal
addcnt = addcnt +1
print(str(hex(result)))

print("The shifting resulted in about " + str(shiftcnt) +
" cycles")

print("Result after shift and add : " + hex(result))
#Add the least significant half to the result
print(hex(result))
result = result + botZ
print(hex(result))

#Subtract the P384 value out of the result until the
result is less than the P384mod

while(result >= mod):
result = result - mod

#Check for overflow one last time
if(result.bit_length () > mod.bit_length ()):

print("Add\n______")

41



print(hex(result))
result = int(bin(result)[3:] ,2)
result = result + modVal

#Check if the result matches up with python ’s inbuilt
modulo operation.

if(result == (z%mod)):
print("Modulo operation matches with python ’s modulo

!!!!!!")
print("Python ’s Modulo : " + hex(z%mod))
print("Calculated Modulo : " + hex(result))

else:
print("Modulo operation did not match with python ’s

modulo :(")
}
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APPENDIX B

384 Bit Python Example of Mod Without Mod Algorithm

#################### To run
#####################################

# To run this program you can change the x and y values
# to your hearts content and then run the progam by using
# ‘ python3 fastmod.py ‘
# This should output the amount of adds and if the modulo

succeeded
# then it should also print the modulo from python ’s built

in function
# and also the modulo calculated with the implemented

function.
#
# Sidenote: The number should work regardless of x and y

as it is 0 extended
# during the program but this means that if

you change the number that you
# are moduloing by or the "mod" variable then

it will not run as
# the zero extension will no longer be the

correct length
#

##################################################################

# initialize z as a 768 bit value like we would see out of
our multiplier

x = int("
aa87ca22be8b05378eb1c7ffff20ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7
" ,16)

y = int("3617
de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da311ffff0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f
", 16)

#Calculate the multiplied value
z = x*y
print(hex(z))
#Calculate the P-384 modulo value
mod = ( 2**384 - 2**128 - 2**96 + 2**32 - 1 )
print(hex(mod))
modlength = mod.bit_length ()
#print(bin(mod))
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#Force strZ to correct size and get its proper length
strZ = bin(z).strip(’0b’).zfill (768)
lenZ = len(strZ)

#Split into top and bottom
topZ , botZ = int(strZ[:int(len(strZ)/2)],2), int(strZ[int(

len(strZ)/2):],2)

#Set the end variable to the top half in bits of the
multiplied number

result = topZ
#This is the value that you add to result when an overflow

occurs
modVal = (2** mod.bit_length () % mod)
print(hex(modVal))

#Initialize shift counter we basically want to shift an
equal amount of times

#To the radix of the number we are moduloing by. As this
modulo number will be

#static we can make a very ASIC style modulo module that
has the values for

#modulo "hard coded" as modulo value / radix isn’t dynamic
. We right shift until

# there is a 1 in the "overflow" slot and then we get rid
of the 1 in that position

# and add modVal for each overflow
#The rest of this is based on https :// eprint.iacr.org

/2014/755. pdf
shiftcnt = 0
addcnt = 0
while(shiftcnt < modlength):

if(result.bit_length () <= mod.bit_length ()):
result = result << 1
shiftcnt = shiftcnt + 1

else:
result = int(bin(result)[3:] ,2)
result = result + modVal
addcnt = addcnt +1

print("The shifting resulted in " + str(addcnt) + " adds")

#Add the least significant half to the result
result = result + botZ

#Subtract the P384 value out of the result until the
result is less than the P384mod

while(result >= mod):
result = result - mod

#Check for overflow one last time
if(result.bit_length () > mod.bit_length ()):

result = int(bin(result)[3:] ,2)
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result = result + modVal

#Check if the result matches up with python ’s inbuilt
modulo operation.

if(result == (z%mod)):
print("Modulo operation matches with python ’s modulo

!!!!!!")
print("Python ’s Modulo : " + hex(z%mod))
print("Calculated Modulo : " + hex(result))

else:
print("Modulo operation did not match with python ’s

modulo :(")
}
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APPENDIX C

HDL FOR 384-bit REDUCER

module top;
reg clk ,reset ,start ,shift_done;
reg [767:0] z;
reg [383:0] result , mod;
reg [383:0] modVal;
// load_z is the flag from the fsm that tells the mnd

module to load a new value
reg load_z;

//The done signal is asserted when the fsm has fully
cycled

reg done;

// Count_decrement is a signal from mnd to signal the
counter in the FSM to countdown

reg count_decrement;

// subNeg is 1 when the subtraction portion subtracts
resulting in a negative number

reg subNeg;

/* subFlag selects between the registered input and
previous stage

* input into the subtraction portion
*/

reg subFlag;

//Test vector signals
reg [1919:0] kmem [100000:0];
reg [100:0] tvnum;
reg [8:0] errors;
reg [383:0] correctResult;

logic [9:0] countAmt;
logic [384:0] shAdd_reg;

integer i;

/* The mnd module is the primary arithmetic module to
accomplish

* modulo through the use of primarily shifting and
adding

*/
mnd384 mnd(.clk(clk),

.reset(reset),
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.load_z(load_z),

.shift_done(shift_done),

.z(z),

.result(result),

.mod(mod),

.modVal(modVal),

.count_decrement(count_decrement),

.subNeg(subNeg),

.subFlag(subFlag),
.countAmt(countAmt),
.shAdd_reg(shAdd_reg));

/* The fsm module is used to control the mnd module and
* sets the flags and keeps track of the cycles in the
* mnd module
*/

fsm384 fsm(.start(start),
.reset(reset),
.clk(clk),
.shift_done(shift_done),
.count_decrement(count_decrement),
.load_z(load_z),
.done(done),
.subNeg(subNeg),
.subFlag(subFlag),

.countAmt(countAmt),

.shAdd_reg(shAdd_reg));

//Run the clk signal
initial

begin
i = 0;

clk = 1’b1;
forever #5 clk = ~clk;

end

/* Read in test vectors to kmem , you can uncomment
* the appropriate readmemh line to change between
* tv.txt : 10 ,000 test vectors with random modulo

values
* tv_ecp384.txt : 10,000 ecp384 test vectors
* tv_ecp256.txt : 10,000 ecp256 test vectors
*/

initial
begin
// Uncomment one of these lines to change test vectors
// $readmemh ("tv/tv.txt", kmem);
$readmemh("tv/tv_ecp384.txt",kmem);
// $readmemh ("tv/tv_ecp256.txt",kmem);

// Initiate device values
tvnum =1’b0;
#20 reset = 0;
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#10 reset = 1;
#20 reset = 0;
#10 start = 0;
#20 start = 1;
modVal = {kmem[tvnum ][1919:1536]};
mod = {kmem[tvnum ][1535:1152]};
z = {kmem[tvnum ][1151:384]};
correctResult = {kmem[tvnum ][383:0]};
errors =0;
end

always @(posedge clk)
begin

if(start)
begin

i = i +1;
end
if(done)

begin
//If incorrect result then notify through console
if(correctResult == result) begin end
else

begin
$display("Error in vector %d",tvnum +1);
errors = errors +1;
end

// Increment test vector value and set new input values
tvnum = tvnum + 1;
modVal = {kmem[tvnum ][1919:1536]};
mod = {kmem[tvnum ][1535:1152]};
z = {kmem[tvnum ][1151:384]};

//Grab the correct result from test vectors
correctResult = {kmem[tvnum ][383:0]};

//Reset device with new input parameters
start = 0;
#100
#20 reset = 1;
#20 reset = 0;
#20 start = 1;
end

end

//Check if the test vector set is done and exit
always @(done)

begin
if(tvnum == 10000)

begin
$display("Completed all test vectors with %d errors",
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errors);
$display("The average amount of cycles is %d", i/tvnum

);
$stop;
$finish;
end//if(tvnum == 100001)

end
//Print the progress through the test vectors
always @(posedge done)

begin
if( tvnum % 100 == 0)

begin
$display("Completed %d test vectors with %d errors",

tvnum ,errors);
end //if(tvnum % 100 == 0)

end

endmodule

/*
This file contains the new mod module that does not
use division but rather a shift and add methodology
*/
module mnd384

( input logic clk , reset , load_z , shift_done , subFlag ,
input logic [767:0] z,
input logic [383:0] mod ,modVal ,
output logic [383:0] result ,

output logic [384:0] shAdd_reg ,
input logic [9:0] countAmt ,

output logic count_decrement ,subNeg);

wire [384:0] shMuxed;
wire [384:0] shadd_result;
wire [385:0] subVal;
wire [385:0] postSub_reg;
wire [385:0] aIn;
wire [385:0] a;
wire [385:0] postSub;
wire [384:0] subAdd;
wire [384:0] shift_res;
wire [384:0] add_res;
wire [383:0] addend;

//LZD logic
logic [384:0] LZDdec;
logic [9:0] LZDenc;

//Input mux to select between the top half of z and
the result of the shift or add

mux2 #(385) shMux (.d0(shadd_result),
.d1({1’b0,z[767:384]}) ,
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.s(load_z),

.y(shMuxed));
// Register to keep the shifted result
flopenr #(385) shaddReg (.d(shMuxed),

.q(shAdd_reg),

.clk(clk),

.reset(reset),

.en(~ shift_done));

// Shifter for the shift/adding operations
assign shift_res = shAdd_reg << countAmt;

//If current shadd_shAdd_reg has carry out then add to
it otherwise do a possible shift and add

//We then need to change shAdd_mux to select based on
shift_res [8] | shAdd_reg [8]

//Adder for adding modval when necessary
mux2 #(384) addMux (.d0(shift_res [383:0]) ,

.d1(shAdd_reg [383:0]) ,

.s(shAdd_reg [384]) ,

.y(addend));
assign add_res = addend + modVal;

//Mux to select between the output of the shifter and
the output of the adder

mux2 #(385) shaddMux (.d0(shift_res),
.d1(add_res),
.s(shift_res [384] | shAdd_reg [384]) ,
.y(shadd_result));

//Any time we select the shift result we want to
decrement the FSM counter

assign count_decrement = ~( shAdd_reg [384]);

//Adder that is used once the shifting is done to add
the bottom half back in

assign aIn = shAdd_reg + z[383:0];
mux2 #(386) aMux(.d0(aIn),

.d1(postSub_reg),

.s(subFlag),

.y(a));
// Subtractor to check if result is greater than mod

and subtract once if it is
assign subVal = a - mod;
flopenr #(386) subReg (.clk(clk),

.reset(reset),

.d(postSub),

.q(postSub_reg),

.en(~ subVal [385] | ~subFlag ));
//mux to select between the subtracted and non

subtracted values
//we need to pass out subVal [7] in order for the FSM
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to signal to do the subtract state
//and disable subReg whenever the value goes negative.
assign subNeg = subVal [385];
mux2 #(386) subMux (.d0(subVal),

.d1(a),

.s(subVal [385]) ,

.y(postSub));
//Adder to add modval one last time if necesary
assign subAdd = postSub + modVal;
// multiplexer to choose between the sub output and the

last modval add
mux2 #(384) resultMux (.d0(postSub_reg [383:0]) ,

.d1(subAdd [383:0]) ,

.s(postSub [384]) ,

.y(result));

endmodule

module fsm384
(input logic start , reset , clk ,count_decrement , subNeg

,
output logic [9:0] countAmt ,
input logic [384:0] shAdd_reg ,

output logic shift_done ,load_z , done , subFlag);

//We need a signal to reset the counter to the correct
amount when we hit state 2

reg reset_count;

logic [3:0] CURRENT_STATE;
logic [3:0] NEXT_STATE;

parameter [2:0]
S0=4’h0, S1=4’h1, S2=4’h2 ,
S3=4’h3, S4=4’h4, S5=4’h5;

always @(posedge clk)
begin

if(reset == 1’b1)
CURRENT_STATE <= S0;

else
CURRENT_STATE <= NEXT_STATE;

end

always_comb
begin

case(CURRENT_STATE)

//Begin State 0
S0:

begin //S0
reset_count = 1’b1;
load_z = 1’b0;

done = 1’b0;
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subFlag = 1’b0;
if(start == 1’b0)

begin
NEXT_STATE = S1;
end

else
begin
NEXT_STATE = S0;
end

end //S0

//Begin State 1 load z and get ready to shift
S1:

begin //S1
reset_count = 1’b1;
load_z = 1’b1;
done = 1’b0;

subFlag = 1’b0;
if(start == 1’b1)

begin
reset_count = 1’b1;

NEXT_STATE = S2;
end

end //S1

//Begin State 2 or the state that does all the
shifts

S2:
begin //S2

reset_count = 1’b0;
load_z = 1’b0;
done = 1’b0;
subFlag = 1’b0;
if(shift_done == 1’b1)

begin
NEXT_STATE = S3;
end

else
begin
NEXT_STATE = S2;
end

end //S2

//Begin State 3 which is where the first subtract
and lower half add

S3:
begin //S3

reset_count = 1’b0;
load_z = 1’b0;

done = 1’b0;
subFlag = 1’b0;
NEXT_STATE = S4;
end //S3
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//Begin State 4 which is where the remaining mod
subtractions take place

S4:
begin //S4

reset_count = 1’b0;
load_z = 1’b0;

done = 1’b0;
subFlag = 1’b1;
if(subNeg == 1’b1)

begin
NEXT_STATE = S5;
end

else
begin
NEXT_STATE = S4;
end

end //S4

//Begin State 5 where we hold the value and assert
done

S5:
begin //S5

reset_count = 1’b0;
load_z = 1’b0;

done = 1’b1;
subFlag = 1’b0;
NEXT_STATE = S0;
end //S5

endcase; //case(CURRENT_STATE)

end// always @(CURRENT_STATE or start)

counter384 countdown (.clk(clk),
.count_decrement(count_decrement),

.countAmt(countAmt),
.shift_done(shift_done),
.reset_count(reset_count),
.reset(reset),

.shAdd_reg(shAdd_reg),

.load_z(load_z));

endmodule
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APPENDIX D

HDL FOR 384-bit Parallel REDUCER

module fsm384
(input logic start , reset , clk ,count_decrement , subNeg

,
input logic [384:0] shAdd_reg ,
output logic [7:0] shiftAmt ,
output logic shift_done ,load_z , done , subFlag);

//We need a signal to reset the counter to the correct
amount when we hit state 2

reg reset_count;

logic [3:0] CURRENT_STATE;
logic [3:0] NEXT_STATE;

parameter [2:0]
S0=4’h0, S1=4’h1, S2=4’h2 ,
S3=4’h3, S4=4’h4, S5=4’h5;

always @(posedge clk)
begin

if(reset == 1’b1)
CURRENT_STATE <= S0;

else
CURRENT_STATE <= NEXT_STATE;

end

always_comb
begin

case(CURRENT_STATE)

//Begin State 0
S0:

begin //S0
reset_count = 1’b0;
load_z = 1’b0;

done = 1’b0;
subFlag = 1’b0;
if(start == 1’b0)

begin
NEXT_STATE = S1;
end

else
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begin
NEXT_STATE = S0;
end

end //S0

//Begin State 1 load z and get ready to shift
S1:

begin //S1
reset_count = 1’b0;
load_z = 1’b1;
done = 1’b0;

subFlag = 1’b0;
if(start == 1’b1)

begin
reset_count = 1’b1;

NEXT_STATE = S2;
end

end //S1

//Begin State 2 or the state that does all the
shifts

S2:
begin //S2

reset_count = 1’b0;
load_z = 1’b0;
done = 1’b0;
subFlag = 1’b0;
if(shift_done == 1’b1)

begin
NEXT_STATE = S3;
end

else
begin
NEXT_STATE = S2;
end

end //S2

//Begin State 3 which is where the first subtract
and lower half add

S3:
begin //S3

reset_count = 1’b0;
load_z = 1’b0;

done = 1’b0;
subFlag = 1’b0;
NEXT_STATE = S4;
end //S3

//Begin State 4 which is where the remaining mod
subtractions take place

S4:
begin //S4

reset_count = 1’b0;
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load_z = 1’b0;
done = 1’b0;
subFlag = 1’b1;
if(subNeg == 1’b1)

begin
NEXT_STATE = S5;
end

else
begin
NEXT_STATE = S4;
end

end //S4

//Begin State 5 where we hold the value and assert
done

S5:
begin //S5

reset_count = 1’b0;
load_z = 1’b0;

done = 1’b1;
subFlag = 1’b0;
NEXT_STATE = S0;
end //S5

endcase; //case(CURRENT_STATE)

end// always @(CURRENT_STATE or start)

counter384 countdown (.clk(clk),
.count_decrement(count_decrement),
.shift_done(shift_done),
.reset_count(reset_count),
.reset(reset),
.shiftAmt(shiftAmt),
.shAdd_reg(shAdd_reg));

endmodule

module counter384 (clk , count_decrement , reset_count ,
shift_done , reset , shiftAmt , shAdd_reg);

input clk , reset_count , count_decrement , reset;
input [384:0] shAdd_reg;
output reg [7:0] shiftAmt;
output reg shift_done;

reg [8:0] count;
wire LZDdec;
wire [7:0] LZDenc;

lz256 lzd(.B({1’b0 ,shAdd_reg [384:130]}) ,
.ZP(LZDenc),
.ZV(LZDdec));
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always @(*)
begin
if(LZDenc > count)

begin
shiftAmt = count;
end

else
begin
shiftAmt = LZDenc;
end

end

always @(posedge clk)
begin

if(reset == 1’b1)
begin

shiftAmt = 0;
shift_done = 1’b0;
count = 9’h180;
end

if(reset_count == 1’b1)
begin

//Set this to radix
count = 9’h180;
end //if(load == 1’b1)

else if(( count_decrement & ~shift_done) == 1’b1)
begin
count = count - shiftAmt;
end//else if update == 1’b1)

else
begin
count = count;
end

if(count == 9’h000)
begin
shift_done = 1’b1;
end

else
begin
shift_done = 1’b0;
end

end
endmodule

/*
This file contains the new mod module that does not
use division but rather a shift and add methodology
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*/
module mnd384

( input logic clk , reset , load_z , shift_done , subFlag ,
input logic [767:0] z,
input logic [383:0] mod ,modVal ,modVal2 ,
input logic [384:0] modValC ,
input logic [7:0] shiftAmt ,
output logic [384:0] shAdd_reg ,
output logic [383:0] result ,
output logic count_decrement ,subNeg);

wire [384:0] shMuxed;
wire [384:0] shadd_result;
wire [385:0] subVal;
wire [385:0] postSub_reg;
wire [385:0] aIn;
wire [385:0] a;
wire [385:0] postSub;
wire [384:0] subAdd;
wire [383:0] addend;

// Parallelization wires
wire [384:0] add_res;
wire [385:0] shift_res;

wire [385:0] addP1;
wire [385:0] addP2;
wire [385:0] p1p2Res;

wire [385:0] addP3;

//Input mux to select between the top half of z and
the result of the shift or add

mux2 #(385) shMux (.d0(shadd_result),
.d1({1’b0,z[767:384]}) ,
.s(load_z),
.y(shMuxed));

// Register to keep the shifted result
flopenr #(385) shaddReg (.d(shMuxed),

.q(shAdd_reg),

.clk(clk),

.reset(reset),

.en(~ shift_done));
// Shifter for the shift/adding operations
assign shift_res = shAdd_reg << shiftAmt;

//If current shadd_shAdd_reg has carry out then add to
it otherwise do a possible shift and add

//We then need to change shAdd_mux to select based on
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shift_res [8] | shAdd_reg [8]
//Adder for adding modval when necessary
mux2 #(384) addMux (.d0(shift_res [383:0]) ,

.d1(shAdd_reg [383:0]) ,

.s(shAdd_reg [384]) ,

.y(addend));

//Logic for the parallelization
assign addP1 = addend + modVal;
assign addP2 = addend + modVal2;
assign addP3 = addend + modValC;

assign p1p2Sel = (~ shAdd_reg [384]) & (shift_res
[385]);

assign p1p2p3Sel = (~ shAdd_reg [384]) & (shift_res [385]
& shift_res [384]);

mux2 #(386) p1p2mux (.d0(addP1),
.d1(addP2),
.s(p1p2Sel),
.y(p1p2Res));

mux2 #(385) p1p2p3mux (.d0(p1p2Res [384:0]) ,
.d1(addP3 [384:0]) ,
.s(p1p2p3Sel),
.y(add_res));

//Mux to select between the output of the shifter and
the output of the adder

mux2 #(385) shaddMux (.d0(shift_res [384:0]) ,
.d1(add_res),
.s(shift_res [385] |shift_res [384] |

shAdd_reg [384]) ,
.y(shadd_result));

//Any time we select the shift result we want to
decrement the FSM counter

assign count_decrement = ~( shAdd_reg [384]);

//Adder that is used once the shifting is done to add
the bottom half back in

assign aIn = shAdd_reg + z[383:0];
mux2 #(386) aMux(.d0(aIn),

.d1(postSub_reg),

.s(subFlag),

.y(a));
// Subtractor to check if result is greater than mod

and subtract once if it is
assign subVal = a - mod;
flopenr #(386) subReg (.clk(clk),

.reset(reset),

.d(postSub),

.q(postSub_reg),
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.en(~ subVal [385] | ~subFlag ));
//mux to select between the subtracted and non

subtracted values
//we need to pass out subVal [7] in order for the FSM

to signal to do the subtract state
//and disable subReg whenever the value goes negative.
assign subNeg = subVal [385];
mux2 #(386) subMux (.d0(subVal),

.d1(a),

.s(subVal [385]) ,

.y(postSub));
//Adder to add modval one last time if necesary
assign subAdd = postSub + modVal;
// multiplexer to choose between the sub output and the

last modval add
mux2 #(384) resultMux (.d0(postSub_reg [383:0]) ,

.d1(subAdd [383:0]) ,

.s(postSub [384]) ,

.y(result));

endmodule
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