
Design, Simulation, and Construction of a Hot-Gas Bypass Chiller for a Commercial

Scale Psychrometric Coil Testing Facility

By

Khurram K. Makhani

Bachelor of Science in Mechanical Engineering.
Oklahoma State University

Stillwater, OK
2018

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
Master of Science
December, 2020



Design, Simulation, and Construction of a Hot-Gas Bypass Chiller for a Commercial

Scale Psychrometric Coil Testing Facility

Thesis Approved:

Dr. Christian K. Bach

Thesis Advisor

Dr. He Bai

Dr. Daniel E. Fisher

ii



ACKNOWLEDGMENTS

I am so grateful to have made it this far in my academic career. It would not have

been possible without the support from all the people that helped throughout the

years. I am blessed to be surrounded by such a strong support system. I would like

to thank my family for always believing in me and pushing me towards excellence.

Without their love and support, I would not have made it this far.

I would like to thank Dr. Bach for letting me join his research group back in

2017. I would not have even considered a Master’s program if it were not for my

participation in the lab during my undergrad. Dr. Bach has taught me so much

through his lab and classes. With his guidance and thoughtful feedback, I have been

able to improve my skills as an engineer. It is an honor to have such a great advisor.

I am so thankful for Aaron Bell and his dedication to my project. His help with

brazing, wiring, and tubing is the reason I was able to complete the construction of

the chiller. Working by his side, I gained a lot of useful knowledge that will last a

lifetime. Additionally, I would like to thank Gary Thacker for his electrical expertise

and for working with me on a tight schedule. I have learned a lot about electricity

from Gary over the years and am eternally grateful.

I would like to thank all the members of BETSRG, past and present. The students

within the group have helped and supported me since I joined back in 2017. A special

thank you to Imran Chowdhury for working so well in coordination with me on our

interconnect and dependent projects.

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

iii



I would also like to give a special thank you to my girlfriend, Alex. She helped me

so much this past year and I would not have finished this Master’s program without

her unconditional love and support.

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

iv



Name: Khurram K. Makhani

Date of Degree: December, 2020

Title of Study: Design, Simulation, and Construction of a Hot-Gas Bypass Chiller for
a Commercial Scale Psychrometric Coil Testing Facility

Major Field: Mechanical and Aerospace Engineering

Abstract: In recent years, there has been a large effort from industry and researchers
to improve the efficiency of HVAC&R systems. At Oklahoma State University (OSU),
the Building & Environmental Systems Research Group (BETSRG) has been devel-
oping a psychrometric coil testing facility to test commercial fin and tube heat ex-
changers. The facility has an array of subsystems; this thesis is focused primarily on
the Hot Gas Bypass Chiller (HGBC) subsystem. The objective is to provide a source
of cooling capacity for the pumped refrigerant loop and develop a controls strategy
that will allow the chiller to adjust to quick changes in test points with minimal
overshoot and settling time. To achieve the objective, a steady-state model was de-
veloped first for component sizing and parametric analysis. And second, development
of a dynamic model to determine an optimal controls strategy for the HGBC and to
establish a workflow on how to implement the controls strategy in the field.

v



TABLE OF CONTENTS

Chapter Page

1 Introduction & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Psychrometric Coil Testing Facility . . . . . . . . . . . . . . . . . . 3
2.2 Thermodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Dynamic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 System & Component Control Approaches . . . . . . . . . . . . . . 6
2.5 Examples of Hot-Gas Bypass in Application . . . . . . . . . . . . . . 6

3 Steady State Thermodynamic Model & Component Selection . . 8
3.1 Model Overview & Description . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Provided Components . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Overview of Employed Modelling Tools . . . . . . . . . . . . . . . . 11
3.3 Modelling and Selection of Additional Components . . . . . . . . . . 12

3.3.1 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2.1 Condenser . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2.2 Subcooler . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2.3 Evaporator . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Expansion Valves . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3.1 Liquid Expansion Valve . . . . . . . . . . . . . . . . 19
3.3.3.2 Hot-Gas Bypass Valve . . . . . . . . . . . . . . . . 19

3.4 HGBC Operating Range . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Controls Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Dynamic Model in Modelica . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Liquid Expansion Valve . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 Hot-Gas Bypass Valve . . . . . . . . . . . . . . . . . . . . . . 25
4.1.5 Superheat Controller . . . . . . . . . . . . . . . . . . . . . . 27
4.1.6 Bypass Valve Controller . . . . . . . . . . . . . . . . . . . . . 28

vi



Chapter Page

4.2 MIMO Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 LQR Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 MIMO Control Results . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Current Status of Construction . . . . . . . . . . . . . . . . . . . . . 39
5.3 Simulation Improvements . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A EES Steady State Modeling and Component Selection Code . . . 47

B MATLAB System ID Code . . . . . . . . . . . . . . . . . . . . . . . . 53

C MATLAB LQR Controller Code . . . . . . . . . . . . . . . . . . . . 56

D Modelica MIMO Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

E Modelica Diagram Window . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 RefProp for Property Calculations with TIL Library Using Dymola . 61

F Compressor Operating Envelope . . . . . . . . . . . . . . . . . . . . 64

vii



LIST OF TABLES

Table Page

3.1 Condensing and Evaporating Temperature Envelope for 20-120 Hz Op-

eration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Cross Validation of Critical Output Parameters between EES and Hexact 17

3.3 Parametric Study of Different Refrigerants Across Evaporator (Con-

densing Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Parameter Limitations @ n = 120Hz, Tcon = 32°C, SH = 9K, &

SC = 8.3K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Boundary Conditions for all Heat Exchangers . . . . . . . . . . . . . 24

4.2 Heat Transfer & Heat Transfer Coefficient Comparison @ n = 120Hz,

Tcon = 32°C, Tevap = −3°C, SH = 9K, & SC = 8.3K . . . . . . . . . 24

4.3 Steady State Comparison @ 30% Bypass . . . . . . . . . . . . . . . . 27

4.4 RMSE Comparison Between Control Structures @ Tcon = 32°C, SH =

11K, & SC = 8.3K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



LIST OF FIGURES

Figure Page

2.1 Airside Schematic - (Kincheloe et al., 2021) . . . . . . . . . . . . . . . 4

3.1 Preliminary HGBC & Pumped Refrigerant Loop P&ID . . . . . . . . 9

3.2 Steady State Model Workflow Chart . . . . . . . . . . . . . . . . . . 12

3.3 EES - Pressure vs Enthalpy Plot @ n = 120Hz, Tcon = 32°C, SH =

11.1K, & SC = 8.3K . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Cooling Capacity vs Evaporating Temperature @ n = 90Hz, Tcon =

32°C, SH = 11.1K, & SC = 8.3K . . . . . . . . . . . . . . . . . . . . 14

4.1 AutomotiveACCycle R134a- TIL Suite (2019) . . . . . . . . . . . . . 22

4.2 HGBC Model, No Bypass, Fixed Liquid Line Valve . . . . . . . . . . 23

4.3 P-h Plot Comparison EES to Modelica, No Bypass, Fixed Liquid Line

Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Superheat vs.Time Before Tuning, @ 30% Bypass . . . . . . . . . . . 28

4.5 Superheat vs.Time After Tuning, @ 30% Bypass . . . . . . . . . . . . 29

4.6 Suction Pressure vs.Time After Tuning, @ 30% Bypass . . . . . . . . 30

4.7 Superheat vs.Time, 2 PI Controllers, @ 30% Bypass . . . . . . . . . . 30

4.8 Superheat & Suction Pressure vs.Time, 2 PI Controllers, @ 100% By-

pass (i.e. no load across evaporator) . . . . . . . . . . . . . . . . . . . 31

4.9 Open Loop I/O Results, Modelica Model @ 100% Bypass . . . . . . . 34

4.10 Comparison Results Between State-Space Model and Simulated Data,

Modelica Model @ 100% Bypass . . . . . . . . . . . . . . . . . . . . . 35

4.11 Signal-flow Graph of MIMO Controller for HGBC in Modelica . . . . 36

ix



Figure Page

4.12 Superheat & Suction Pressure vs.Time, MIMO Control, @ 100% Bypass 37

5.1 Senior Design Stopping Point (left), Current Status of Construction as

of 11/16/2020 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

E.1 SISO PI Controls - Dymola Diagram Window . . . . . . . . . . . . . 59

E.2 MIMO LQR Controller - Dymola Diagram Window . . . . . . . . . . 60

E.3 SIM Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

E.4 Redeclare Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

E.5 Edit Array Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F.1 Compressor Performance Envelope - (Emerson-Copeland, 2020b) . . . 64

x



ABBREVIATIONS

BETSRG Building & Environmental Systems Research Group

EES Engineering Equation Solver

EPC Emerson Performance Calculator

EXV Electronic Expansion Valve

GWP Global Warming Potential

HGBC Hot-Gas Bypass Chiller

MFG Manufacturer

MIMO Multiple Input Multiple Output

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

OSU Oklahoma State University

PID Proportional Integral Derivative

PI Proportional Integral

PRL Pumped Refrigerant Loop

PV Process Variable

SC Subcool

SH Superheat

SISO Single Input Single Output

TEWI Total Equivalent Warming Impact

VI Virtual Instrument

xi



NOMENCLATURE

VARIABLES UNITS DESCRIPTION

cp J kg K Specific heat

e - Control set point error

Kp - Proportional gain

Ki - Integral gain

Kd - Derivative gain
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CHAPTER 1

Introduction & Motivation

In recent years there has been a push from environmental conservation groups to

reduce the environmental impact of HVAC&R systems. From 1990 to 2009 the emis-

sion of high Global Warming Potential (GWP) gases into Earth’s atmosphere has

more than tripled EIA (2011). To quantify the total impact of these emissions a

value of Total Equivalent Warming Impact (TEWI) is used. TEWI is a measure of a

refrigerant system’s total environmental impact by including leakage, recovery losses,

and energy consumption, as a function of GWP. Refrigerants such as R410A and

R134a have GWPs in orders of magnitude above Carbon Dioxide. Therefore, when

systems leak, their TEWI is increased by over 25% relative to the emissions caused

by power production Bitzer (2014). With such a large impact on the environment,

new low GWP refrigerants must replace high GWP Hydrofluorocarbons (HFCs). The

performance of these new refrigerants must be tested in existing equipment and new

technologies to ensure that their TEWI is lower than current HFCs. Oklahoma State

University (OSU) is developing a unique facility to be able to test these new refrig-

erants. Kincheloe et al. (2021) developed and constructed a facility, referred to as a

Psychrometric Coil Test Facility. The purpose of the facility is to provide researchers

with the capability to test commercial size evaporative fin and tube heat exchangers.

1.1 Background

The Psychrometric Coil Test Facility is in its later stage of development and is planned

to be completed by May 2021. The facility is split into two sections, the conditioning
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side, and the test side. The conditioning side consists of the following components:

humidifier, blowers, conditioning coils, and heating elements. The conditioning side

will have effective airside control. On the test side, there will be a pumped refrigerant

loop connected to the test coil. This refrigerant loop will carry the new low GWP

refrigerants for testing. However, effective control of the refrigerant loop is still in

development. For the refrigerant loop to be able to reject heat following the test

section, it will require a dedicated chiller.

1.2 Project Objectives

This project focuses on the design, control development, and construction of the

Hot Gas Bypass Chiller (HGBC). The objective is to provide a source of cooling

capacity for the pumped refrigerant loop and develop a controls strategy that will

allow the chiller to adjust to quick changes in test points with minimal overshoot and

settling time. To achieve the objective, a steady-state model was developed first for

component sizing and parametric analysis. Second, development of a dynamic model

to determine an optimal controls strategy for the HGBC and to establish a workflow

on how to implement the controls strategy in the field.
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CHAPTER 2

Literature Review

2.1 Psychrometric Coil Testing Facility

The design and construction of the airside subsystem of the Psychrometric Coil Test-

ing Facility was completed by Kincheloe et al. (2021). The design of the airside must

be taken into consideration when developing the chiller. In addition, the placement

of the chiller and pumped refrigerant loop is heavily dependent on the layout of the

facility. The closed-loop airside subsystem contains both the test section of the fa-

cility and the conditioning section. Kincheloe’s thesis also gave a detailed channel

reference for the Psychrometric Coil Testing Facility Data Acquisition system. This

was used to determine the input and output channels the HGBC can use.

Shown in Figure 2.1 is a schematic of the airside subsystem. The air flows across

the test coil and is then guided by turning vanes to the conditioning section. The

conditioning section adjusts the temperature, humidity, and flow rate of the air back

to the coil inlet test condition. The air is guided back to the test coil completing the

closed airside loop.

3



Figure 2.1: Airside Schematic - (Kincheloe et al., 2021)

2.2 Thermodynamic Model

To properly size components for the HGBC, a steady-state model must first be devel-

oped to represent the physical behavior of the system. Schmidt et al. (2019) developed

a steady-state model for the Hot-Gas Bypass Compressor Load Stand at Oklahoma

State University before selecting components. The software used was Engineering

Equation Solver (EES) Klein and Alvardo (2020). The EES model was used to esti-

mate system limitations and operating parameters. It is important to investigate a

steady-state model because it will provide insight on how to size critical components

such as heat exchangers, expansion valves, and tubing.

2.3 Dynamic Simulation

Different simulation environments such as MATLAB, Modelica, and GT-Suite were

considered before developing a model. Tanveer and Bradshaw (2020) showed that af-

ter model initialization, Modelica was more computationally efficient (e.g., shorter

computation time) than MATLAB and GT-Suite when using numerical differen-
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tial equation solvers. Additionally, the acausality of Modelica makes models more

reusable than traditional object-oriented programming languages (Fritzson, 2014).

Modelica offers a vast amount of third-party libraries, 30 of which listed on

https://www.modelica.org/libraries/ModelicaLibrariesOverview, that allow

the user to easily connect acausal models together. An example of this can be seen

by Kaiser et al. (2018) in the development of a complex omnibus refrigeration cycle

in Modelica, using the TIL Suite (2018) Library. The TIL Suite (2019) Library ‘offers

many robust models for vapor-liquid equilibrium (VLE) fluids in thermal components

and systems. In addition, the TIL suite uses the geometry-based heat transfer and

pressure drop correlations. The TIL Suite Library has many standard components for

thermodynamic modeling such as compressors, heat exchangers, expansion devices,

and separators. Therefore, it was determined to develop the HGBC dynamic model

in Modelica. The integrated development environment (IDE) used was Dymola, pro-

vided by Dassault Systems. Dymola offers the entire model development process from

model creation, simulation, and result analysis (Dassault Systèmes, 2019).

Winkler (2009) showed how the components of his model interacted with one

another. Although Winkler did not use Modelica, his simulation model used many

of the same principles that Modelica uses to solve the simulation. For example, the

use of simultaneous evaluation of model equations. Winkler also gave tips on how

to reduce simulation times, such as proper estimated initial values conditions and a

limited number of segments for complex geometries such as heat exchangers. The

trade off with a limited number of segments is accuracy versus computational time.

The segment number should be enough to capture physical phenomena but not to

the point where it negatively impacts simulation time.

5
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2.4 System & Component Control Approaches

Many forms of control have been investigated for vapor compression cycles. The most

prominent is the Proportional Integral Derivative (PID) feedback control. Marcinichen

et al. (2008) claims that PI control is optimal for thermal systems because it is simple

to implement, can minimize steady-state error, and can compensate for disturbances.

Singleton et al. (2020) implemented a Single Input Single Output (SISO) PI feed-

back control to a hot-gas compressor load stand. Singleton explains how difficult it

is to achieve steady-state for the load stand. The problem stems from SISO feedback

control for the expansion valves and hot-gas bypass valves. The process variables are

connected, therefore, when one variable changes, it causes a change in another. Once

the PI controllers detect this change, they attempt to compensate for the deviation

to the process variable. The PI controls begin to fight each other when the process

variable reaches near the setpoint.

With the limitations of SISO feedback control, other options such as Multiple-

Input Multiple-Output (MIMO) become more attractive. Jain and Alleyne (2009)

show a MIMO control structure with a Linear Quadratic Gaussian (LQG) controller

was able to achieve similar results compared to the SISO controller when applied

to a vapor compression cycle. The difference between the controllers is when the

setpoint changes across the operating range, the LQG controller has better setpoint

tracking than the SISO controller. Furthermore, the LQG controller incorporates a

cost function to relate all inputs to all outputs. This is beneficial because it allows the

user to determine a weighted relationship between control variables and the process

variables they are affecting.

2.5 Examples of Hot-Gas Bypass in Application

The HGBC is the source of cooling capacity for the pumped refrigerant loop. There-

fore, the HGBC will need to make quick adjustments to capacity as the test points
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change for the pumped refrigerant loop. According to global HVAC&R manufac-

turer Trane (2003), commercial chilled water systems that require instantaneous load

changes will benefit from the incorporation of a hot-gas bypass valve. Benefits in-

cluded quick neutralization of the refrigeration effect, continuous system operation,

and sustains higher gas velocities which ensure adequate oil return to the compressor.

On-off cycling of the compressor is the method used in traditional HVAC&R sys-

tems. This method is easy to implement and works well when the setpoint tempera-

ture does not have a tight limit, such as the residential cooling applications. However,

the downside is no precise control of capacity. Additionally, the cyclic behavior of the

system causes wear and tear on the compressor. Therefore, with the incorporation

of hot-gas bypass, refrigeration systems can operate continuously which reduces the

cyclic fatigue on the compressor (Yaqub et al., 2000).

Experimental setups using hot-gas bypass in academia typically are compressor

load stands. A 40-ton Hot-Gas Bypass Compressor Load Stand developed by Orosz

et al. (2016) used a series of valves to control the suction pressure and superheat

of the load stand. Additionally, Bradshaw (2014) summarized best practices of hot-

gas bypass compressor load stand design and operation. There is no evaporator

in compressor load stands. However, it is assumed that the thermodynamic design

remains the same with an evaporator. Therefore, the best practices established from

these setups were used as guidance for developing the HGBC.
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CHAPTER 3

Steady State Thermodynamic Model & Component Selection

To fully understand the physical limitations of the HGBC in conjunction with a

pumped refrigerant loop, a thermodynamic steady-state model was developed. Phys-

ical limitations such as minimum and maximum suction and discharge pressures are

of interest when sizing components. In addition, important parameters such as mass

flow rate and cooling capacity must also be considered when sizing. Simplifications

and assumptions were made to be able to solve for all state points and additional

parameters of the thermodynamic cycle.

3.1 Model Overview & Description

A multitude of software was used to achieve a reliable steady-state model for the

HGBC. An EES (Klein and Alvardo, 2020) model was developed to solve for state

points and parameters of the HGBC. The compressor performance map provided

by Emerson-Copeland (2020b) was used to cross-validate the mass flow rates and

isentropic efficiencies calculated in EES. Additionally, Hexact (Danfoss, 2018b), a

heat exchanger sizing tool, was used to properly size braze plate heat exchangers

and as another means to cross-validate the EES model. In relation to sizing, Hexact

was the bridge between the HGBC and pumped refrigerant loop. This is because

the HCBC provides the capacity to the pumped refrigerant loop via a refrigerant to

refrigerant braze plate heat exchanger, otherwise referred to as a cascade condenser.

Seen in Figure 3.1 is the preliminary piping and instrumentation diagram (P&ID) of

the HGBC and the pumped refrigerant loop. The diagram illustrates the connections

8



between the test coil, pumped refrigerant loop, and the HGBC.
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Figure 3.1: Preliminary HGBC & Pumped Refrigerant Loop P&ID

3.1.1 Design Constraints

The first major design constraint for the HGBC was the Psychrometric Coil Testing

Facility’s operating envelope. Kincheloe et al. (2021) specified that the facility can

operate with a test coil air inlet temperature from 0°F to 140°F, with a maximum air-

flow rate of 8,000 CFM. In the commercial building setting, refrigerant-to-air systems

typically are designed with an airflow rate proportional to the rated cooling capacity

(e.g., 400 cfm/ton) (Cai and Braun, 2018). Therefore, the maximum cooling capacity

that the HGBC should provide to the pumped refrigerant loop is 20 tons. The second

design constraint is the pumped refrigerant loop. The loop must mimic the inlet and

exit conditions an fin and tube evaporator will encounter in normal operating condi-

tions. Table 1 of AHRI-Standard-540-2015 (2015) specifies the standard conditions
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for commercial compressors, conditions such as suction dew point temperatures and

return gas temperatures. The exit of the evaporator must match these suction/dew

point temperatures to meet design requirements. With these required conditions in

mind, the maximum design evaporating temperature of the HGBC is limited to -

3 °C. Any higher evaporating temperature will cause the pumped refrigerant loop to

operate outside of its specified design constraint, because return gas temperatures

from the evaporator will be higher than design requirements. The final main design

constraint is the condensing water inlet temperature. During the summer the lab

chilled water can increase in temperature to around 18°C. Therefore, the worst case

transient condition of 18°C was used in sizing the condenser.

3.1.2 Provided Components

Emerson Climate Technologies, Inc donated a Copeland ZPV0962E-7E9, a 20 ton

(nominal) variable speed scroll compressor to OSU Building & Environmental Ther-

mal Systems Research Group (BETSRG). There are many benefits to having a vari-

able speed compressor such as precise control of capacity, increased Coefficient of

Performance (COP) at part load, and oil boost. Oil boost means to ramp up com-

pressor speed to increase oil return from low-speed operational conditions. Although,

the HGBC will have precise control through the hot gas bypass, having another com-

ponent that offers precision control will guarantee optimal control of capacity. Also,

Danfoss donated a water control valve for flow control of the condensing water. The

valve is rated for a maximum of 33 GPM.

3.1.3 Assumptions

The EES model requires making thermodynamic assumptions when calculating state

point. These include constant compressor volumetric efficiency, a linear relationship

between compressor curves for mass flow rate and isentropic efficiency, adiabatic
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mixing, isobaric heat exchangers, and isenthalpic expansion valves. Furthermore,

mass and energy balance equations within the model neglect kinetic and potential

energy losses.

3.2 Overview of Employed Modelling Tools

To better understand the complex workflow of the steady-state model development,

refer to Figure 3.2, which shows the coordination between multiple pieces of software.

The reason for this type of workflow is due to the scope of work being split between

the HGBC and the pumped refrigerant loop. Imran Chowdhury, a fellow graduate

student at OSU, is responsible for the development of the pumped refrigerant loop.

The results from both EES programs are used in Hexact to determine the appro-

priate heat exchanger. Once unknown heat exchanger parameters are calculated in

Hexact, they are compared to the results from EES. If the parameter values in Hexact

are not matching within 2% of the parameter values calculated in EES, the process

is repeated by trying new input parameters within the EES models. Inputs such

as superheat, subcooling, condensing temperature, and evaporating temperature are

altered to match with the Hexact software.
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Figure 3.2: Steady State Model Workflow Chart

3.3 Modelling and Selection of Additional Components

The HGBC model in EES has a various amount of inputs and outputs. User-specified

inputs include evaporating temperature, condensing temperature, subcooling, super-

heat, compressor speed, and refrigerant type. The output of the model includes all

main cycle state points and various critical parameters. Parameters such as mass

flow rate, cooling capacity, and heat rejection. Additionally, the model outputs a

Pressure versus Enthalpy (P-h) plot for the user to visualize the changes they make

to cycle inputs. Figure 3.3 shows a P-h plot for the HGBC. The state point references

match the state points in the P&ID seen in Figure 3.1. State point 7 is currently

plotted with bypass ratio of 20%. As the bypass ratio increases the cooling capacity

decreases. At 100% bypass ratio state point 7 will be equal to state point 1. The

EES model does calculate the energy and mass balance between the hot-gas and the

liquid line when mixing at state point 7 and will be discussed in detail in subsection

3.3.3.2
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Figure 3.3: EES - Pressure vs Enthalpy Plot @ n = 120Hz, Tcon = 32°C, SH =
11.1K, & SC = 8.3K

3.3.1 Compressor

To correctly map the mass flow rate, the EES model needs to account for the compres-

sor’s operating speed range. The ZPV0962E-7E9 is rated for 20 to 120 revolutions per

second (Hz) at 3-phase 480 VAC. A ten-coefficient model was utilized to determine the

mass flow rate at specific condensing and evaporating temperatures (AHRI-Standard-

540-2015, 2015). The Emerson Performance Calculator (EPC) (Emerson-Copeland,

2020a) was used to determine the ten coefficients for 20 and 120 Hz. Then, the EES

model used linear interpolation to determine the mass flow rate at any frequency

based on the minimum and maximum speed of ten coefficient models. Equation 3.1

shows the linear interpolation method used in the model. Where n is the compressor

speed in Hertz (Hz), ṁtot,20 and ṁtot,120 in (kg/s) are the mass flow rates from both

coefficient models of 20 and 120 Hz, respectively.

ṁtot,n − ṁtot,20

ṁtot,120 − ṁtot,20

=
n− 20

120− 20
(3.1)
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Figure 3.4: Cooling Capacity vs Evaporating Temperature @ n = 90Hz, Tcon = 32°C,
SH = 11.1K, & SC = 8.3K

The linear model was able to map the mass flow rate with a maximum error

of 2.12% with respect to the compressor map provided by Emerson at 90 Hz. The

maximum error occurred at the highest condensing and evaporation conditions at 90

Hz. Seen in Figure 3.4 is the cooling capacity vs evaporating temperature at 90 Hz

operation. The manufacturing data taken from the compressor map was compared

to the linear interpolated data calculated in EES.

Table 3.1: Condensing and Evaporating
Temperature Envelope for 20-120 Hz Op-
eration.

Temperature MAX (°C) MIN (°C)
Condensing 35 10
Evaporating 16 -29

To achieve the maximum range of compressor speed (20-120 Hz) the condensing

and evaporation temperatures must be within the compressor operating envelope.

Table 3.1 shows the minimum/maximum allowable evaporating and condensing tem-
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peratures to achieve the full range of compressor speed. Additionally, Appendix F

shows the full operating envelope of the ZPV0962E-7E9. With the compressor enve-

lope in mind, the maximum design condensing temperature will be 32°C to ensure if

the condensing temperature fluctuates at 120 Hz, it will not exceed the 35°C temper-

ature limit.

The mapping of overall isentropic efficiency is similar to mapping the mass flow

rate in relation to the linear interpolation for a range of frequencies. Although,

the EPC did not directly output the ten-coefficient model for the overall isentropic

efficiency, the EPC did output a ten-coefficient model for variable speed drive output

power. The drive output power was treated as the electrical input power to the

compressor. The electrical input power was linearly interpolated within EES the same

as the mass flow rate shown above. Then, using the isentropic power calculated in

EES the overall isentropic efficiency was determined. The overall isentropic efficiency

is calculated as

ηoi,comp =
Ẇisn

Ẇelc

(3.2)

Where Ẇisn is the isentropic power and Ẇelc is the electrical input power to the

compressor, both in kilowatts (kW).

3.3.2 Heat Exchangers

Brazed plate heat exchangers were selected for all three heat exchangers because they

are more compact in design than coaxial heat exchangers.

3.3.2.1 Condenser

To properly size the condenser, Danfoss provides a heat exchanger sizing calculator,

Hexact (Danfoss, 2018b). The calculator requires inputs such as refrigerant mass flow

rate, required load, inlet and outlet water temperatures, and more. The primary de-
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sign constraint is the condensing water inlet temperature. Lab Chilled Water(LCW)

will be used as the cooling water for this application. As seen in Equation 3.3 an

energy balance is used to determine the temperature rise of the LCW. Where (ṁr)

and (ṁw) are the mass flow rates of refrigerant and LCW, respectively. An LCW inlet

temperature of 18°C was assumed to guarantee the chiller can operate even during

hot days in the summer. The chiller’s design condensing temperature will be 32°C

to ensure that there is an adequate temperature difference to promote heat transfer

to the LCW. To properly size the condenser, the maximum (ṁr) must be taken into

account. The maximum (ṁr) of 0.3 kg/s occurs at 120 Hz with a condensing and

evaporating temperature of 32°C and -3°C, respectively.

ṁr(h1 − h7) = ṁwcp(Tw,out − Tw,in) (3.3)

Using these inputs within EES, the energy balance gave a maximum LCW outlet

temperature of 28°C. With all the parameters defined, the Hexact software output

multiple heat exchangers that met the required parameters. The selection of the

condenser was determined by the lowest surface margin and lowest pressure drop

across the refrigerant side of the condenser. The surface margin is represented as a

percent difference between the calculated required heat transfer surface area actual

heat transfer surface area of the selected heat exchanger. A surface margin closest to

0% is selected to ensure the proper sizing of the condenser. C62L-C-80, an 80 plate,

microplate heat exchanger was the selected condenser, with a positive margin of 6%

and a pressure drop of 2.1 kPa across the refrigerant side. To validate the EES model

the Hexact software outputs were cross-referenced. There is less than a 1% difference

between the EES model and Hexact with respect to output parameters. Shown in

Table 1 are the outputs from Hexact compared to EES.
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Table 3.2: Cross Validation of Critical Output Parameters between
EES and Hexact

Parameter EES Output Hexact Output
Refrigerant Mass Flow Rate 0.30 (kg/s) 0.30 (kg/s)

Refrigerant Outlet Temperature 32.0 (°C) 31.9 (°C)
Water Outlet Temperature 27.6 (°C) 27.5 (°C)

3.3.2.2 Subcooler

The purpose of the subcooler is to ensure only liquid enters the expansion valve.

Otherwise, if the refrigerant liquid flashes it can cause a decrease in the refrigerant

mass flow rate and system pressures (Kang et al., 2008). The decrease in system mass

flow rate and pressures will cause the HGBC to fall out of steady-state conditions.

Consequently, the pumped refrigerant loop will fall out of steady-state conditions.

The deviation from steady-state could void experimental results. Therefore, to ensure

only liquid enters the expansion valve the subcooler will decrease the high-pressure

refrigerant’s temperature to 8 K below the saturation temperature. Balancing LCW

between the subcooler and condenser was an iterative process that involved matching

parameters between EES and Hexact. EES and Hexact converged with 2 GPM of

LCW through the subcooler and 31 GPM through the condenser.

3.3.2.3 Evaporator

The primary purpose of the evaporator in the HGBC is to absorb heat from the

pumped refrigerant loop. The evaporator will be an intermediate heat exchanger to

the pumped refrigerant loop. The evaporator is downstream of the test coil, and exit

temperatures from the test coil must match the conditions stated in Table 1 of AHRI-

Standard-540-2015 (2015) to meet design requirements. Consequently, the evapora-

tion temperatures of the HGBC side were determined based on conditions required

by the pumped refrigerant loop. Using Hexact and both EES models, an iterative

method was applied to determine the appropriate evaporation temperatures. Addi-
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tional limitations to the evaporation temperature were due to the operating envelope

of the compressor. It was determined that the maximum and minimum evaporating

temperatures will be -3 °C and -23 °C, respectively. These evaporation temperatures

were selected with the compressor operating envelope and pumped refrigerant loop

design constraints in mind. Additionally, when iterating between the EES models

and Hexact, it was determined to lower the HGBC superheat to 9 K. This change in

superheat will ensure that the pumped refrigerant loop will be at desired discharge

conditions leaving the cascade condenser. When sizing the appropriate evaporator,

multiple variables were taken into consideration. One being to minimize pressure drop

through the heat exchanger because pressure drop plays a role in reduced capacity.

And two, to keep the channel velocity through the evaporator side high enough (e.g.,

0.7-0.8 m/s) to ensure adequate oil return (Kennedy, 2019). The design was also

based around R410A on both sides of the evaporator, but a parametric study was

conducted to see how the evaporator will perform with different refrigerants on the

pumped refrigerant side. Seen in Table 3.3 are the results of the parametric study

conducted on the D118L-E-70, a 70 plate, microplate evaporator.

Table 3.3: Parametric Study of Different Refrigerants Across Evaporator
(Condensing Side)

Parameter R410A R1234ZE R134a R407C
PRL Outlet Temperature (°C) 2.0 -1.2 -1.0 -1.7
PRL Dew Temperature (°C) 3.5 4.7 4.5 9.5
PRL Mass Flow Rate (kg/s) .25 .27 .25 .24

3.3.3 Expansion Valves

The EES model assumes that both the Hot-Gas Bypass Valve (HGBV) and the

liquid line expansion valve are isenthalpic and adiabatic. There are 2 primary forms

of expansion valves used in refrigeration applications, thermostatic and electronic

expansion valves. Thermostatic expansion valves are purely mechanical systems with

no control from the user. On the other hand, electronic expansion valves can take
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multiple inputs to adjust the position of the valve. For the HGBC both expansion

valves will be electronic because the electronic valve type allows the user to specify

the valve position. Additionally, electronic valves also allow implentation of custom

controls such as SISO or MIMO controls specifically tuned for the system.

3.3.3.1 Liquid Expansion Valve

The purpose of the liquid expansion valve is to bring the refrigerant to suction pressure

before the liquid refrigerant is mixed with the expanded hot gas from the bypass.

Danfoss has a large variety of liquid electronic expansion valves (EXV). Danfoss

provides a set of instructions on their data sheet to appropriately size the expansion

valve (Danfoss, 2018a). Following these instructions, the ETS 12.5 was selected for

the liquid EXV.

3.3.3.2 Hot-Gas Bypass Valve

The bypass valve expands the hot gas to suction pressure before it mixes with the

liquid refrigerant. The mixing process brings the refrigerant to suction conditions.

The following energy balance and mass balance were used to determine the mass flow

rate required by the bypass valve to bring the refrigerant to suction conditions after

mixing. Equation 3.4 is the energy balance for the hot gas bypass and liquid line,

and Equation 3.5 is the mass balance between the two flows. Where (ṁr) is the total

refrigerant mass flow rate, (ṁby) is the bypass mass flow rate, (ṁc) is the mass flow

rate through the liquid line, and (ε) is the normalized bypass flow rate.

ṁby(h6 − h1) = εṁc(h1 − h5) (3.4)

ṁr = ṁc + ṁby (3.5)
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As ε is varied from 0 to 1, the change in the capacity of the evaporator can be

determined. When ε is equal to 1, the evaporator will have no load across it. The

HGBC will have the capability to have no load across the evaporator, which needs

to be considered when sizing the bypass valve. The size of the valve was determined

from sizing tables provided on the Sporlan website (Sporlan, 2018). Sporlan requires

that the discharge dew temperature is no lower than 27°C to ensure sufficient head

pressure. This requirement acts as another design constraint for the HGBC. Using

Sporlan’s provided tables, the SDR-3 was selected as the hot-gas bypass valve for the

HGBC (Sporlan, 2018).

3.4 HGBC Operating Range

Based on the design constraints and selected components the condensing temperature

will remain fixed at 32°C. The minimum and maximum evaporating temperatures

are -3°C and -23°C, respectively. Additionally, it is assumed that the compressor will

operate at 120 Hz. Table 3.4 summarizes critical parameter limitations within the

conditions stated above.

Table 3.4: Parameter Limitations @ n = 120Hz,
Tcon = 32°C, SH = 9K, & SC = 8.3K

Parameter Minimum Maximum
Evaporation Temperature (°C) -23 -3

Suction Pressure (Bar) 3.6 7.3
Mass Flow Rate (kg/s) 0.14 0.30
Cooling Capacity (tons) 7.5 16
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CHAPTER 4

Controls Development

4.1 Dynamic Model in Modelica

After the steady-state model and design were complete, the next step in developing the

HGBC was to determine an optimal control strategy. However, a steady-state model

cannot provide the capability to do control investigations because of the absence of

transience. Therefore, a dynamic model must be developed in Dymola.

To build a model of the HGBC cycle in Dymola, the example cycle AutomotiveAC-

Cycle R134a from the TIL Suite (2019) Library was used as a starting point. Figure

4.1 shows the unedited version of the AutomotiveACCycle R134a. The first step was

focused on the replacement of components, specifically heat exchangers in the ex-

ample cycle. The example cycle has VLEFluid to Gas Micro-Plate Extruded Tube

(MPET) heat exchangers. To match the HGBC cycle, the MPET heat exchangers

were replaced with plate heat exchangers. The condenser and subcooler were changed

from VLEFluid to liquid Plate heat exchangers. The evaporator was changed to a

VLFFluid to VLEFluid Plate heat exchanger. In addition, a temperature sensor at

the outlet of the evaporator (condensing side) was replaced from a gas temperature

sensor to a VLEFluid temperature sensor.

After the replacement of components, an investigation was conducted to deter-

mine which parameters, initial conditions, sub-models, and variables that need to be

changed to match the physical dimensions and conditions of the HGBC. For example,

the Plate heat exchangers have physical dimensions: pattern angle, wall thickness,

pattern amplitude, and pattern wavelength. Unfortunately, these physical dimen-
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Figure 4.1: AutomotiveACCycle R134a- TIL Suite (2019)

sions are proprietary information to the manufacturer of the plate heat exchangers.

Therefore, the default values for pattern angle, wall thickness, pattern amplitude,

and pattern wavelength from the TIL Suite (2019) were used. Figure 4.2 shows the

HGBC model after components were replaced. Note, Figure 4.2 does not include the

bypass valve or controls. The bypass valve was added after the steady-state solution

in Dymola was cross-validated with the EES model’s results at 0% bypass ratio. Fur-

thermore, controls were incorporated after the bypass valve was added and results

cross-validated with the EES model.

With new components in place, the next step was to change parameters within the

sub-models to achieve the steady-state values seen in the EES model. A simulation of

1,000 seconds was set up to test the following changes in parameters. The simulation

number of intervals was set to 1,000 (e.g. 1 interval/sec) and LSODAR was the solver
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Figure 4.2: HGBC Model, No Bypass, Fixed Liquid Line Valve

used.

4.1.1 Heat Exchangers

The sizing of heat exchangers was first determined in EES. With the conditions

specified and outputs from EES, the Hexact software provided by Danfoss was utilized

in determining the appropriate physical size of the heat exchangers. The height,

width, and the number of plates is part of the output from the Hexact software. These

dimensions were used when specifying the heat exchanger geometry in Modelica.

Additionally, boundary conditions for the condenser/subcooler liquid side and pump

refrigerant loop were all specified. These boundary conditions can be seen in Table 4.1.

Following the specification of heat exchanger geometries and boundary conditions, the

next step was the determination of heat transfer and pressure drop correlations for

the heat exchangers.
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Table 4.1: Boundary Conditions for all Heat Exchangers

Boundary Condition Condenser Subcooler Evaporator
Liquid Tw,in (°C) 18 18

VLEFluid Tin (°C) 18
ṁw (kg/s) 1.87 0.13

PRL ṁV LE (kg/s) .25

Since the EES model did not consider pressure drop through the heat exchangers,

the Modelica model also ignored pressure drop. In respect to heat transfer models,

The TIL Suite (2019) Library offers a variety of empirical correlations for determining

the heat transfer coefficient. However, when attempting to utilize these correlations

in the model, Dymola would either crash or output heat transfer coefficients that

were unrealistically small. Therefore, the constant alpha correlation was utilized; al-

pha stands for a fixed heat transfer coefficient. The average heat transfer coefficients

were provided as outputs from the Hexact software. Initially, the exact average heat

transfer coefficients from the Hexact software were used in the Modelica model. How-

ever, the overall heat transfer still did not match the EES model. Consequently, the

heat transfer coefficients were increased or decreased to match as best as possible to

the EES model heat transfer values. Table 4.2 shows the Hexact heat transfer coef-

ficients compared to the final heat transfer coefficients used in the Modelica model.

Additionally, Table 4.2 shows the overall heat transfer of the Modelica model when

the model reaches a steady-state compared to the EES model.

Table 4.2: Heat Transfer & Heat Transfer Coef-
ficient Comparison @ n = 120Hz, Tcon = 32°C,
Tevap = −3°C, SH = 9K, & SC = 8.3K

HTC (W/m2K) Hexact Modelica % Diff
hcon 1860 1860 0
hsc 1650 1650 0
hevap 930 1100 16.75

Heat Transfer (kW) EES Modelica
Qcon 83.1 84.1 1.2
Qsc 4.3 3.7 15
Qevap 57.6 58.1 .86
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4.1.2 Compressor

The EES model used a ten-coefficient regression model to map compressor mass flow

and isentropic efficiency as a function of evaporating and condensing temperature

AHRI-Standard-540-2015 (2015). Based on the ten-coefficient compressor model, at

120 Hz the compressor has an isentropic efficiency of 62%. When using 62% in the

EffCompressor model from the TIL Suite (2019) Library, the compressor discharge

temperature was 75 °C. The compressor discharge temperature in Modelica was 35%

less than the EES model discharge temperature. Therefore, to match the EES com-

pressor discharge temperature, the isentropic efficiency in the EffCompressor model

was decreased to 32%. The isentropic efficiency is one of the only input parameters

not matching the EES model.

4.1.3 Liquid Expansion Valve

For expansion valve modeling, the TIL Suite (2019) Library offers an orifice valve

with an optional input for an effective flow area. An effective flow area for expansion

valves is another proprietary piece of information for manufacturers. Therefore, a

guess and check method was used to determine the effective flow area for the steady-

state model case with a bypass ratio of 0%. The effective flow area was changed

until the high-pressure and low-pressure side of the Modelica model matched those

of the EES model within a 5% margin of error. The resulting effective flow area of

for the liquid expansion valve was 5.57 µm2. After the Modelica simulation reaches

steady-state, the state properties are documented and compared with EES. Figure

4.3 shows a P-h plot comparison of the EES and Modelica Models with no bypass.

4.1.4 Hot-Gas Bypass Valve

After the steady state-model without bypass was validated with EES, the hot-gas

bypass valve (HGBV) was added to the model. The orifice valve from the TIL Suite
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Figure 4.3: P-h Plot Comparison EES to Modelica, No Bypass, Fixed Liquid Line
Valve

(2019) Library was used as the model for the HGBV. The same guess and check

method was used to determine the effective flow area of the HGBV. A bypass ratio

of 30% was selected to be the test condition for cross-validation between EES and

Modelica. Table 4.3 shows the percent differences between the EES model and the

Modelica model at 30% bypass. Note, the heat rejection from the condenser in the

Modelica model is not matching the EES model, this is due to the mass flow through

the condenser being higher in the Modelica model. The discrepancies between results

are caused by the bypass valve. The EES model does not incorporate a change in

suction pressure due to the bypass flow rate. The EES model assumes the isenthalpic

bypass valve brings the superheated high-pressure refrigerant down to suction pres-

sure. Additionally, the EES model assumes an isobaric mixing process. However,

the total mass flow rate, subcooling, and superheat all match with the EES model.

Therefore, it is determined that the model has successfully been cross-validated at
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30% ratio with exception of heat rejection and mass flow ratios.

Table 4.3: Steady State Comparison @ 30% Bypass

Parameter EES Modelica % Diff
ṁcon (kg/s) 0.19 0.22 14.6
ṁbypass (kg/s) 0.11 0.08 31.5
TSC (K) 8.3 8.1 2.50
TSH (K) 9.0 9.4 4.35
Qcon (kW) 52.6 63.5 18.8
Qsc (kW) 2.7 2.4 11.8
Qevap (kW) 36.4 36.5 0.27

4.1.5 Superheat Controller

Once the Modelica model with a 30% bypass ratio was cross-validated with EES, the

control loops were added to the Modelica model. To control the outlet superheat from

the evaporator, a PI controller was added to the model. The change in superheat is

due to inlet conditions at the evaporator. Inlet evaporator conditions are affected by

the expansion valve effective flow area and bypass ratio. Therefore, the PI controller

output signal is the effective flow area for the expansion valve. The process variable

is the evaporator superheat and the setpoint is a constant input signal.

The control structure for the superheat PI controller is

u(t) = Kp[e(t) +
1

Ti

∫ t

0

e(t)dt] (4.1)

With u(t) being the output signal with units (m2), e(t) is the error between the

setpoint and process variable, (Kp) is the proportional gain, and (Ti) is the controller

time constant.

Tuning rules were applied to properly tune the controller for minimum overshoot

and settling time. The Ziegler and Nichols (1985) tuning method was the approach

used for the superheat controller. The 30% bypass ratio condition was used as the

test condition for comparison before and after tuning. The simulation starts with the
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initial value for the effective flow area of the expansion valve, then the controller is

activated at (t = 400 sec) with a setpoint of 9 K. The superheat response to the

setpoint change is analyzed for controller effectiveness. Figure 4.4 shows superheat

as a function of time before tuning rules were applied and Figure 4.5 shows the same

plot but with tuning rules applied. The steady-state error was compensated for with

the tuning rules.

Figure 4.4: Superheat vs.Time Before Tuning, @ 30% Bypass

4.1.6 Bypass Valve Controller

The outlet pressure of the evaporator is affected by the bypass flow rate. The higher

the bypass flow rate, the higher the outlet evaporator pressure. It was determined

to add a second PI controller to the Modelica model, to control outlet evaporator

pressure. The output signal of the PI controller is an effective flow area to the HGBV.

The process variable for the controller is the evaporator outlet pressure. The same
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Figure 4.5: Superheat vs.Time After Tuning, @ 30% Bypass

PI control structure shown in Equation 4.1 was used for the bypass valve controller.

Additionally, the Ziegler and Nichols (1985) tuning method was also applied to the

bypass valve controller. The same test method for controller performance was also

applied by delaying the controller start time to (t = 400 sec). Figure 4.6 shows

the suction pressure as a function of time, with tuning rules applied to the bypass

valve controller at 30% bypass. The suction pressure reaches the setpoint with no

overshoot.

The simulation results did raise concerns about the effect of two separate PI

controls. The superheat controller activates at (t = 0 sec) and once the bypass valve

activates at (t = 400 sec), the superheat deviates from the setpoint. Figure 4.7 shows

the superheat to drop to 0 K (e.g. two-phase vapor). If two-phase vapor enters the

compressor in the application, it can cause damage to the scroll compressor. However,

the superheat controller was able to eventually compensate for the deviation.
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Figure 4.6: Suction Pressure vs.Time After Tuning, @ 30% Bypass

Figure 4.7: Superheat vs.Time, 2 PI Controllers, @ 30% Bypass
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Additional testing was conducted with both PI controllers by simulating the Mod-

elica model at 100% bypass. Furthermore, step changes to the compressor speed were

used as a means of external disturbance for the Modelica model. The change in op-

erating conditions caused the PI controllers to fight each other when they were near

their setpoints. However, the compressor speed disturbance does not seem to be re-

flected in the superheat and suction pressure. Therefore, further investigation will be

needed on why the compressor speed does not cause fluctuations in the superheat and

suction pressure. Figure 4.8 shows the superheat, suction pressure, and compressor

speed versus time. With the PI controllers being SISO, they cannot compensate for

another. The PI controllers have no information on the other controller’s response be-

havior or the effect on the process variable. Consequently, the need for investigating

a form of MIMO control becomes necessary for the HGBC.

Figure 4.8: Superheat & Suction Pressure vs.Time, 2 PI Controllers, @ 100% Bypass
(i.e. no load across evaporator)
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4.2 MIMO Control

When investigating MIMO controllers in relation to thermal systems, there were two

major types of controllers that stood out in relation to disturbance rejection and

the cross-coupling of inputs to outputs. The H∞ controller approaches the control

problem as a mathematical optimization problem, and solves the optimization by

analyzing the Hardy Space of matrix-valued functions of the system. The downside

to the H∞ controller is the level of mathematical knowledge needed to create such a

controller (Rahman et al., 2017). The second MIMO controller type that was investi-

gated was the Linear Quadratic Gaussian (LQG) controller. The LQG controller is a

combination of the Linear Quadratic Regulator (LQR) controller and the Kalman Fil-

ter (Rahman et al., 2017). The advantage of the LQG controller is the incorporation

of the Kalman Filter, allowing the controller can account for linear uncertainty and

white noise. However, the Modelica model does not simulate white noise. Therefore,

it was determined to use the LQR control design for the Modelica model. The LQR

control implementation in Modelica will establish a workflow that can be applied

to the actual HGBC. The only difference in application will be to apply the LQG

controller to account for noise and uncertainty, but the established workflow from

simulated data will remain the same.

With simulated data being discrete, the discrete LQR controller was chosen. The

discrete LQR controller uses the state-feedback law shown in Equation 4.2. The state-

feedback is input into a quadratic cost function shown in Equation 4.3. The matrices

Q and R are user-defined weighted relationships between states and control inputs,

respectively MATLAB (2020). This is one downside of the LQR controller in that

it requires the user to have an understanding of the relationship between inputs and

outputs.

u = −Kx[n] (4.2)
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J =
∞∑
n=0

[xTQx+ uTRu+ 2xTNu] (4.3)

4.3 System Identification

To apply the LQR controller in Modelica a state-space model is necessary. Following

the example given by Jain and Alleyne (2009) the System Identification (ID) method

was used to determine relationships between inputs and outputs. Input and output

data were collected from the Modelica model and then imported into MATLAB. The

System Identification Toolbox in MATLAB offers a function (ssest) that takes input

and output data and determines a linear relationship with a state-space model. The

form of the state-space model is shown in Equation 4.4 MATLAB (2020).

x[n+ 1] = Ax[n] +Bu[n]

y[n] = Cx[n] +Du[n]

(4.4)

The capacity across the evaporator is heavily dependent on the suction pressure

and superheat. Therefore, the suction pressure and superheat were the two outputs

selected for System ID. The inputs relating to the suction pressure and superheat

are the expansion valve effective flow area and the bypass valve effective flow area,

respectively. Another version of the Modelica model was created with the same

acausal models. However, instead of having PI controllers outputting the effective

flow area to the valves, the stepInput block was used. A random Gaussian sequence

for both effective flow areas was used as inputs to the valves. The open-loop Model

results are shown in Figure 4.9.

The outputs of suction pressure and superheat were recorded along with the inputs

in an Excel file. The Excel file was then read into MATLAB and the data was

converted into a iddata object. The iddata object is the input to the (ssest) function.
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Figure 4.9: Open Loop I/O Results, Modelica Model @ 100% Bypass

The (ssest) function can either provide a best fit state-space model or the user can

specify the order of the system. It is assumed that the model of the HGBC is a 2nd

order system. Only the first half of the data set is used for System ID. The second

half of the data is used to compare the created state-space model to the output

data. The comparison is done by taking the second half of the data set inputs and

entering them into the state-space model. The outputs from the state-space model

are then compared to the actual outputs from the data set. Shown in Figure 4.10 is

the comparison plot generated in MATLAB.

The percentages displayed in Figure 4.10 are the normalized root mean square

error (NRMSE) of the Goodness of Fit (GOF) between the state-space model and

simulated data (MATLAB, 2020). At first, the suction pressure GOF was above 70%.

However, concurrently the superheat GOF was below 40%. To resolve this issue the

inputs and outputs were normalized around their nominal operating condition. This

allowed the inputs and outputs to be within the same order of magnitude. With

normalized inputs and outputs, the GOF of both suction pressure and superheat

were above 50%. The reduced order model is limited because it only considers two
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Figure 4.10: Comparison Results Between State-Space Model and Simulated Data,
Modelica Model @ 100% Bypass

states, superheat and suction pressure. To achieve a more robust state space model,

more states must be taken into consideration. However, the goal of developing a

workflow for experimental data is still satisfied because the process will remain the

same for System ID.
4.4 LQR Controller

MATLAB provides a discrete LQR function (dlqr) that has inputs of the state-space

model, Q and R matrices, and the disturbance input. The state-space model with

a GOF over 50% for both suction pressure and superheat was selected for controller

development. Q is the weighted relationship of states, therefore, it was determined

that Q will be the full state matrix of the system. Seen in Equation 4.5 shows how

the Q matrix was determined. The R matrix was left as an identity matrix and can

be changed after a relationship is determined on the weighted relationships of control

input effects to the process variables.
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I =

1 0

0 1


Q = CT IC

(4.5)

After cost function analysis, the (dlqr) function outputs the gain matrix K for

the LQR controller. With a gain matrix for the LQR controller selected, a controller

block was created in Modelica. Shown in Figure 4.11 is the Signal-flow graph of

the implemented MIMO controller in Modelica. To mitigate steady-state error, an

integral feedback control loop is added.

Figure 4.11: Signal-flow Graph of MIMO Controller for HGBC in Modelica

The proportional gain matrix K is multiplied by the states of the system – su-

perheat and suction pressure. To accomplish this controller in Modelica a MIMO

block was created for the LQR calculations. The created MIMO block extends from

the base Modelica MIMO block. Inputs to the block are the superheat and suction

pressure which are then converted to their full states. The gains solved for in MAT-

LAB are then matrix multiplied to the full state matrix giving the output control

signal. The output control signal is the effective flow area and is summed with the

integral feedback control signal. The integral feedback loops were modeled using the

PI control block from the TIL Suite (2019) Library. However, the proportional gain

of the PI block was set to zero. The outputs from the MIMO block and PI blocks
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were summed together and sent as inputs for the effective flow area of the expansion

and bypass valves. The structured text for the MIMO block and the diagram window

of the MIMO Modelica model can be seen in Appendix D.

4.5 MIMO Control Results

With the LQR controller successfully implemented in Modelica, a test was conducted

to determine controller effectiveness in relation to settling time and mitigation of

steady state error. The benchmark to compare to was the PI controller test condition

seen in Figure 4.8. The LQR controller results are seen in Figure 4.12. Note, the

superheat had less steady-state error than the PI controller benchmark. However,

the suction pressure had larger steady-state error than the PI controller. Therefore,

a parametric study must be conducted on the effects of control inputs on process

variables.

Figure 4.12: Superheat & Suction Pressure vs.Time, MIMO Control, @ 100% Bypass

Root Mean Square Error (RMSE) is the unit of measure used to compare the

effectiveness of the SISO PI controllers versus the MIMO LQR controller. Shown in

Table 4.4 the RMSE between the process variable and the setpoint for both control
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structures. The MIMO controller shows an almost one order of magnitude reduc-

tion in superheat error. However, it lead to a more than 60% increase in suction

pressure fluctuations. The main reason for this is suspected to be a limited GOF of

the MATLAB model. Future work should include utilizing a Functional Mock-Up

Unit (FMU) (Blochwitz et al., 2019) that uses the Modelica code directly. However,

the developed current process is directly applicable for the physical setup and can

therefore be applied with minimal changes. This workflow can be implemented with

actual data once the HGBC construction phase is complete.

Table 4.4: RMSE Comparison Between Control
Structures @ Tcon = 32°C, SH = 11K, & SC =
8.3K

RMSE SISO PI Controller MIMO LQR Controllor
Superheat (K) 2.2 .23

Suction Pressure (Bar) .16 .26
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

System components were properly sized and selected with a steady-state model devel-

oped in EES. A dynamic model was developed with Modelica to investigate different

control strategies. Additionally, a MATLAB workflow was established for a MIMO

controller for the HGBC. Although the MIMO control structure was applied with

simulated data, the controls development workflow will remain the same with exper-

imental data, other than minor rescaling of variables. However, the addition of the

Kalman Filter will be the only difference when applying the MIMO control structure

to the physical HGBC. Construction of the HGBC is complete in relation to piping,

tubing, sensors, safety circuit, valve controls, and LabVIEW. The programming of the

compressor variable frequency drive (VFD) is all that remains before the HGBC can

be tested. However, the objective of experimental validation of the different control

strategies will not be accomplished due to time constraints.

5.2 Current Status of Construction

To assist with the large scope of the project, it was decided to make the construction

of the HGBC a Senior Design Project at OSU. The scope of the Senior Design team

was to build the HGBC with industry standard compliance, develop a LabVIEW

program for HGBC that works with the existing Psychrometric Coil Testing Facility

LabView program, and to develop a Standard Operating Procedure (SOP) (Richey

et al., 2020). However, due to outbreak of a global pandemic the Senior Design Project
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scope was limited to a Solid Works model, LabVIEW code, and SOP development.

Figure 5.1 shows the progress the Senior Design team made on construction of the

HGBC versus the current status of construction. The Senior Design team’s P&ID

along with a detailed Solid Works model was used to continue construction when the

University reopened. With the assistance of Advanced Technological Research Center

(ATRC) personnel, the construction of the HGBC chiller was completed November

2020. Currently, controls and instrumentation wiring are being terminated. The goal

is to test the HGBC with the LabView Virtual Environment (VI) developed by the

Senior Design team. The LabView code currently is designed to incorporate PID

control. The PID control will be the benchmark for controls testing of the HGBC.

To achieve a LQG controller in LabView, the user must combine the LQR VI and

Kalman Filter VI National Instruments (2009).

Figure 5.1: Senior Design Stopping Point (left), Current Status of Construction as
of 11/16/2020 (right)
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5.3 Simulation Improvements

Multiple steps can be taken to increase the fidelity of the Modelica model. For exam-

ple, the incorporation of RefProp (Lemmon et al., 2018) to the model will allow for

the calculation of refrigerant Transport Properties. And thus, allowing for calculation

of heat transfer coefficients using the correlations available in the TIL Suite (2019).

Additionally, to improve controls development a Functional Mock-Up Interface (FMI)

should be created of Modelica model. The FMI standard sets forth a standardized

method on how to exchange dynamic models between software. Software such as

Simulink and LabView. This is powerful tool because the full dynamics of the model

are captured within the FMU.
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EES Steady State Modeling and Component Selection Code
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"Inputs"
 
"Temperatures"
//T_sup=11.1[C]
//T_sub=8.3[C]
//T_con=32[C]
//T_evap=-3[C]
 
"Cooling Water Temps"
 
//Tc_in=converttemp(F,C,70)
//Tc_out=converttemp(F,C,80)
 
"Compressor Speed"
//n=120 "Hz"
 
"Modelica Array Table Comparison"
"Compressor suction"
P_m[1]=730.2
h_m[1]=430.5
 
"Condenser inlet"
P_m[2]=2068
h_m[2]=528.3
 
"Subcooler inlet"
P_m[3]=2068
h_m[3]=251.6
 
"Expansion Valve inlet"
P_m[4]=2068
h_m[4]=239.4
 
"Evaporator inlet"
P_m[5]=730.2
h_m[5]=239.4
 
"Evaporator outlet"
P_m[6]=730.2
h_m[6]=430.5 
 
"Compressor"
 
T[1]=T_evap+T_sup
P[1]=pressure(R$, T=T_evap, x=1) 
h[1]=enthalpy(R$, T=T[1], P=P[1])
s[1]=entropy(R$, T=T[1], P=P[1])
rho[1]=density(R$, T=T[1], P=P[1])
 
P[2]=pressure(R$,T=T_con, x=0)
h_s[2]=enthalpy(R$, P=P[2], s=s[1])
T_s[2]=temperature(R$, P=P[2], s=s[1])+28[C]
h[2]=(h_s[2]-h[1]+ETA_comp*h[1])/ETA_comp_n
T[2]=temperature(R$, P=P[2], h=h[2])
 
s[2]=entropy(R$, T=T[2], P=P[2])
rho[2]=density(R$, T=T[2], P=P[2])
 
"Bypass Valve"
 
h[7]=h[2]
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P[7]=P[2]
T[7]=temperature(R$, P=P[7], h=h[7])
s[7]=entropy(R$, P=P[7], h=h[7])
rho[7]=density(R$, P=P[7], h=h[7])
 
 
h[6]=h[2]
P[6]=P[1]
T[6]=temperature(R$, P=P[6], h=h[6])
s[6]=entropy(R$, P=P[6], h=h[6])
rho[6]=density(R$, P=P[6], h=h[6])
 
"Condenser"
 
T[3]=T_con
P[3]=pressure(R$, T=T_con, x=0)
h[3]=enthalpy(R$,T=T[3], x=0)
s[3]=entropy(R$, T=T[3], x=0)
rho[3]=density(R$, T=T[3],x=0)
 
"Subcooler"
 
T[4]=T_con-T_sub
P[4]=P[3]
h[4]=enthalpy(R$,T=T[4], P=P[4])
s[4]=entropy(R$, P=P[4], h=h[4])
rho[4]=density(R$, P=P[4],h=h[4])
 
"Liquid Expansion Valve"
 
h[5]=h[4]
P[5]=P[1]
T[5]=temperature(R$, P=P[5], h=h[5])
s[5]=entropy(R$, P=P[5], h=h[5])
rho[5]=density(R$, P=P[5], h=h[5])
 
"system"
 
$ifnot Parametric then
 
R$='R410A'
$endif
 
 
 
"Drive Output Power"
w_dot_isn_20 = mdot_tot_20*(h_s[2]-h[1])*convert(kW,W)
w_dot_act_20 = 2.77E+01 - 6.07E+01*T_evap + 7.63E+01*T_con - 2.27E+00*T_evap^2 + 2.33E+00*T_evap*T_con - 1.09E+
00*T_con^2 - 1.62E-02*T_evap^3 + 4.37E-02*T_evap^2*T_con - 2.26E-02*T_evap*T_con^2 + 1.45E-02*T_con^3
 
w_dot_isn_120 = mdot_tot_120*(h_s[2]-h[1])*convert(kW,W)
w_dot_act_120 = 7.15E+03 - 8.01E+01*T_evap + 2.04E+02*T_con - 3.18E+00*T_evap^2 + 4.38E+00*T_evap*T_con + 1.93E-
01*T_con^2 - 1.62E-02*T_evap^3 + 4.37E-02*T_evap^2*T_con - 2.26E-02*T_evap*T_con^2 + 1.45E-02*T_con^3
 
 
 
"Efficiencies"
ETA_comp_20= w_dot_isn_20/w_dot_act_20
ETA_comp_120 = w_dot_isn_120/w_dot_act_120
 
ETA_comp=(1.05546964E+01+3.44817319E+00*T_con-6.24365132E-02*T_con^2+3.56140115E-04*T_con^3-2.85392910E+
00*T_evap-6.36895272E-02*T_evap^2-3.97191250E-04*T_evap^3+1.10087824E-01*T_con*T_evap+9.38065216E-04*
T_con*T_evap^2-8.87149443E-04*T_con^2*T_evap)/100
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"Reference Data" 
 
 
  
"Mass Flow Rate"
mdot_tot_120=(1.18E+03+7.41E-01*T_con-1.13E-02*T_con^2+0.00E+00*T_con^3+3.94E+01*T_evap+5.01E-01*T_evap^2+
2.17E-03*T_evap^3+2.15E-02*T_con*T_evap+0.00E+00*T_con*T_evap^2-1.54E-04*T_con^2*T_evap)*convert(kg/hr,kg/s)
 
mdot_tot_20=(1.91E+02-1.04E-01*T_con-1.88E-03*T_con^2+0.00E+00*T_con^3+6.04E+00*T_evap+1.09E-01*T_evap^2+
2.17E-03*T_evap^3+3.59E-03*T_con*T_evap+0.00E+00*T_con*T_evap^2+-1.54E-04*T_con^2*T_evap)*convert(kg/hr,kg/s)
 
"Variable Speed Interpolation"
 
  
(mdot_tot_n-mdot_tot_20)/(mdot_tot_120-mdot_tot_20)=(n-20)/(120-20)
 
(ETA_comp_n-ETA_comp_20)/(ETA_comp_120-ETA_comp_20)=(n-20)/(120-20)
 
m_dot_tot = mdot_tot_n
m_dot_c = mdot_c
 
"Energy Balance/Bypass Flow Variation"
//epsilon=0 "percent of bypass flowrate"
 
m_dot_bypass=epsilon*mdot_c*((h[1]-h[5])/(h[6]-h[1]))
 
m_dot_bypass=mdot_tot_n-mdot_c
 
Q_dot_bypass=m_dot_bypass*(h[6]-h[1])
 
 
 
"Cooling Capacity"
Q_dot_cool=mdot_c*(h[1]-h[4])
 
"Heat Rejection"
Q_dot_hot=mdot_c*(h[2]-h[3])
 
"Q_dot Subcooler"
Q_dot_sc=mdot_c*(h[3]-h[4])
 
 
 
Din_w=1.05[in]*convert(in,m)
 
cp_w_in=cp(Water,T=Tc_in,P=P[4])
cp_w_out=cp(Water,T=Tc_out,P=P[4])
 
cp_w=(cp_w_in+cp_w_out)/2
 
mdot_w=Q_dot_hot/(cp_w*(Tc_out-Tc_in))
 
rho_w_in=density(Water,T=Tc_in,P=P[4])
rho_w_out=density(Water,T=Tc_out,P=P[4])
 
rho_w=(rho_w_in+rho_w_out)/2
 
Vavg_w=mdot_w/(rho_w*(pi/4)*(Din_w)^2)
V_dot_w=mdot_w/rho_w*convert(m^3/s,gpm)
 
m_dot_w_cond = mdot_w
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"rule of thumb"
 
"refrigerant"
m_dot_r=mdot_tot_n
cp_r_out=cp(R$,T=T[3],P=P[3])
cp_r_in=cp(R$,T=T[2],P=P[2])
cp_r=(cp_r_in+cp_r_out)/2
"water"
V_dot=33[gpm]*convert(gpm,m^3/s) "3 gpm*16.4 tons"
m_dot_w=rho_w*V_dot
m_dot_w*cp_w*(Tc_out_w-Tc_in)=mdot_c*(h[2]-h[3])
 
m_dot_w_sc=Q_dot_sc/(cp_w*(Tc_out-Tc_in))
 
"Suction/dischange line interpolations"
"suction"
T_40=40[F]
T_20=20[F]
T_ss= converttemp(C,F,T_evap)
(T_ss-T_20)/(T_40-T_20)=(X_ton_suc-17.14)/(24.28-17.14) "capacity for 1 
5/8"
Q_s=X_ton_suc 
Q_suc=Q_s*convert(ton,kW)
h_con=enthalpy( 'R410A', T=40[C], x=0) "105F from table 8 ashrae 2018"
h_evap=enthalpy('R410A', T=T_evap, x=1)
m_dot_suc=Q_suc/(h_evap-h_con)
 
"discharge"
(T_ss-T_20)/(T_40-T_20)=(X_ton_dis-22.37)/(22.88-22.37) "capacity for 1 
3/8"
Q_d=X_ton_dis 
Q_dis=Q_d*convert(ton,kW)
h_c=enthalpy( 'R410A', T=40[C], x=0)
h_e=enthalpy('R410A', T=T_evap, x=1)
m_dot_dis=Q_dis/(h_e-h_c)
 
"Liquid Line"
ID=.875[in]
A_in=(pi/4)*ID^2
A_in_m2=A_in*convert(in^2,m^2)
V_dot_ll=mdot_c/rho[4]
v_ll=V_dot_ll/A_in_m2*convert(m/s,ft/min)
 
 
 
 
"Acumulator Sizing"
"mass_100% - mass_0% capacity"
 
V_evap = 6.049E-3 [m^3]
rho_evap_100 = rho[5]
rho_evap_0 = rho[1]
DELTA_m_evap=V_evap*(rho_evap_100 - rho_evap_0)
 
"Receiver Sizing"
"mass_100% - mass_0% capacity"
 
V_cond = 3.96E-3 [m^3]
rho_cond_100 = rho[3]
rho_cond_0 = rho[2]
DELTA_m_cond=V_evap*(rho_cond_100 - rho_cond_0)
 
"Total Volume calculation"
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V_pipe = 0.00246 [m^3]
V_com = 9.636e-5 [m^3]
V_sub = 0.000315 [m^3]
"mass = mass_pipe(liquid) + mass_pipe(gas_l) + mass_pipe(gas_h) + mass_compressor + mass_cond + mass_evap + 
mass_subcooler"
m_tot = rho[4]*(.33*V_pipe) + rho[2]*(.33*V_pipe )+ rho[5]*(.33*V_pipe) + ((rho[1]+rho[2])/2)*V_com + rho_cond_100*V_cond +
 rho_evap_100*V_evap + rho[4]*V_sub
 
"Parker Hannifin Corporation Catalog C-1, Accumlators and Receivers pg. 4"
"Systems with TXV or changing orifice size, the accumlator should be about 50% of system charge"
m_acc = .5*m_tot
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APPENDIX B

MATLAB System ID Code

1 %% System I d e n t i f i c a t i o n − Khurram Makhani
2

3 %% Read F i l e
4 % NX7 Matrix from e x c e l with a l l va lue s
5 matrix = readmatr ix ( ’Random ’ ) ;
6 % Time [ s ec ] s t a r t at 60 sec in to SIMULATION
7 time = matrix (650 :13250 ,1 ) ;
8 % EXV e f f e c t i v e f low area [mˆ2 ]
9 EXV efa = matrix (650 :13250 ,2 ) ;

10 % HGBV e f f e c t i v e f low area [mˆ2 ]
11 HGBV efa = matrix (650 :13250 ,3 ) ;
12 % Delta Super Heat [K]
13 SH = matrix (650 :13250 ,4 ) ;
14 % Suct ion Pressure [ bar ]
15 P suc = matrix (650 :13250 ,5 ) /1 e5 ;
16 % Mass Flow Pumped Re f r i g e r a n t [ kg/ s ]
17 m dot = matrix (650 :13250 ,6 ) ;
18 % Frequency o f compressor
19 n = matrix (650 :13250 ,7 ) ;
20 % T Con
21 T con = matrix (650 :13250 ,8 ) ;
22 %% Normal iz ing Data
23 % Outputs
24

25 % Super Heat
26 % Set Point = 11 [K]
27 % Max SH = 21 [K] , Min SH = 1 [K]
28 % Super heat normal ized from −1 to 1
29 SH n = (SH−11) /10 ;
30

31 % Suct ion Pressure
32 % Set Point = 725 [ kPa ]
33 % Max P suc = 775 [ kPa ] , Min P suc = 675 [ kPa ]
34 % Suct ion Pressure normal ized from −1 to 1
35 P suc n = ( P suc −7.25) / . 5 0 ;
36

37 % Suct ion Saturated Temp
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38 % Set Point = −2.5 [C]
39 % Max T sat = −.5 [C] , Min T sat = −4.5 [C]
40 % Suct ion Saturated Temperature normal ized from −1 to 1
41 % T sat n = ( T sat +2.5) /2 ;
42

43 % Inputs
44

45 % HGBV EFA
46 % Set Point = 1 .9 e−5 [mˆ2 ]
47 % Max HGBV efa = 2 .1 e−5 [mˆ 2 ] , Min HGBV efa = 1 .7 e−5 [mˆ2 ]
48 % HGBV Pos i t i on normal ized from −1 to 1
49 HGBV efa n = (HGBV efa−1.9e−5) / .2 e −5;
50

51 % EXV EFA
52 % Set Point = .18 e−5 [mˆ2 ]
53 % Max EXV efa = .20 e−5 [mˆ 2 ] , Min EXV efa = .16 e−5 [mˆ2 ]
54 % EXV Pos i t i on normal ized from −1 to 1
55 EXV efa n = ( EXV efa −.18e−5) / .02 e −5;
56

57 % m dot
58 % Set Point = .012 [ kg/ s ]
59 % Max m dot = .013 [ kg/ s ] , Min m dot = .011 [ kg/ s ]
60 % EXV Pos i t i on normal ized from −1 to 1
61 m dot n = ( m dot − .012) / . 0 0 1 ;
62

63 % n
64 % Set Point = 120 hz
65 % Max n = 125 hz , Min n = 115 hz
66 % Frequency normal ized from −1 to 1
67 n n = (n−120) /5 ;
68

69 % T con
70 % Set Point = 295 K
71 % Max T con = 300 K, Min T con = 290 K
72 % T con normal ized from −1 to 1
73 T con n = ( T con −295) /5 ;
74 %% System I d e n t i f i c a t i o n
75 steam = iddata ( [ SH n , P suc n ] , [ EXV efa n , HGBV efa n , n n ] , 1 ) ;
76 steam . InputName = { ’ EXV efa n ’ ; ’ HGBV efa n ’ ; ’ Compressor

Speed n ’ } ;
77 steam . OutputName = { ’ Superheat n ’ ; ’ Suct ion Pres sure n ’ } ;
78

79

80

81 % plo t ( steam ( : , : , : ) )
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82 % hold on
83 % %impluse re sponse
84 % % Note impu l s e e s t ( data , N) , N=[ ] to l e t Matlab f i n d order

o f FIR Model
85 mi = impu l s ee s t ( steam , [ ] ) ;
86 % f i g u r e (2 )
87 % c l f , s t ep (mi )
88 % hold on
89 % f i g u r e (3 )
90 % %Response with Conf idence Region
91 % showConfidence ( impu l sep lo t (mi ) ,3 )
92

93 %MIMO: Estimate State Space Model us ing time domain ” s s e s t ”
94

95 [mp, X0 ] = s s e s t ( steam (1 : 6300 ) ,2 , ’ DisturbanceModel ’ , ’ none ’ , ’
Ts ’ , 1 )

96 f i g u r e (1 )
97

98 %h = s t e p p l o t (mi , ’ b ’ ,mp, ’ r ’ , 2 ) ; % Blue f o r d i r e c t est imate ,
red f o r mp

99 % showConfidence (h)
100 % Compare with v a l i d a t i o n data
101 %f i g u r e (2 )
102 compare ( steam (1 : 12601 ) ,mp)
103 %save ( ’ matrix . mat ’ , ’ steam ’ ) ;
104 % Spec t r a l a n a l y s i s o f data
105 %msp = spa ( steam ) ;
106 %c l f , bode (msp , ’ b ’ ,mp, ’ r ’ )
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APPENDIX C

MATLAB LQR Controller Code

1 A=mp.A;
2 B=mp.B;
3 C=mp.C;
4 D=mp.D;
5 n = length (A) ; % dimension o f the system
6 Bu = B( : , 1 : 2 ) ; % c o n t r o l input
7 Bd = B( : , 3 ) ; % d i s turbance input
8 m = 2 ; % dimension o f the c o n t r o l
9 %% c o n t r o l l e r I : LQR with d i s turbance input

10 Qo = eye (2 ) ; % output dimension i s 2
11 Q = C’∗Qo∗C; % take i t back to the f u l l s t a t e
12 R = eye (m) ; % Q and R can be adjusted
13 [ F ,P , ˜ ] = d lq r (A, Bu ,Q,R) ;
14 S = inv (A∗ inv (P−Q)−inv (P) ) ∗Bd ;
15 G = F∗ inv (A−inv (P) ∗(P−Q) ) ∗Bd ;
16 % implement c o n t r o l as u = −F∗x − G∗d where d i s the

d i s turbance , x i s f u l l
17 % s t a t e ( e a s i e s t to implement when x i s 2−dimensional , in

t h i s case x =
18 % inv (C) ∗ [ super heat ; suc p r e s su r e ] ;
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APPENDIX D

Modelica MIMO Code

1 within ;

2 block MIMO_HGBC "MIMO Block Utilizing LQR Control"

3 extends Modelica.Blocks.Interfaces.MIMO(nin =3, nout =2);

4

5 // parameter Real K[:, :]=[-0.5857, -0.1210; -1.5896,

0.0566; 0.2252, 0.0300]

6 //"Gain matrix which is multiplied with the input ";

7 parameter Real C_inv [:, :]=[0, 0; 0, 0]

8 "C inverse matrix which is multiplied by inputs to

achieve states";

9 parameter Real F[:, :]=[0, 0; 0, 0]

10 "F Matrix";

11 parameter Real G[:, :]=[0, 0; 0, 0]

12 "G Matrix";

13 Real SH = u[1]

14 "Superheat [K]";

15 Real P_suc = u[2]/1e5

16 "Suction Pressure [Bar]";

17 Real n = u[3]

18 "Compressor Speed [Hz]";

19 Real SH_n=(SH-11)/10

20 "SH normalized [-1 to 1]";

21 Real P_suc_n =( P_suc-7.25)/0.5

22 "P_suc normalized [-1 to 1]";

23 Real u_n [:,:]=[ SH_n; P_suc_n]

24 "normalized column vector";

25 Real x[:,:]= C_inv*u_n

26 "State of System";

27 Real d=(n-120)/5

28 "Disturbance nomalized";

29 Real u_out [:,:] = (-F*x)-(G*d)

30 "Output from LQR";

31

32 equation

33

34 y[1] = max (0.1 e-5,u_out [1,1]*(0.02 e-5)+0.18 e-5);

35 y[2] = max(1 e-5,u_out [2,1]*(0.2 e-5)+1.9 e-5);
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36

37 annotation (Icon(coordinateSystem(preserveAspectRatio=

false)), Diagram(

38 coordinateSystem(preserveAspectRatio=false)),

39 Documentation(info="<html >

40 <p>This block provides a LQR Controller for MIMO

Control. </p>

41 </html >

42 "));

43 end MIMO_HGBC;
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APPENDIX E

Modelica Diagram Window

Figure E.1: SISO PI Controls - Dymola Diagram Window
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Figure E.2: MIMO LQR Controller - Dymola Diagram Window

60



5.1 RefProp for Property Calculations with TIL Library Using Dymola

First, select the System Information Manager (SIM) tab to edit fluid definitions.

Figure E.3: SIM Tab

Modify the vleFluidType1 definition to ”Base record for VLEFluid definitions”.
Then select the edit tab to the right of the drop down menu for vleFluidType1 def-
inition. After selecting the edit tab, a new window will appear for re-declaration of
vleFluidType1.

Select the edit tab to the right of vleFluidNames. After selecting the edit tab, a
new window will appear for editing the vleFluidType1 array.

If one fluid is to be selected leave the Row length equal to 1. Then select the drop
down menu to select the vleFluidType.
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Figure E.4: Redeclare Tab
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Figure E.5: Edit Array Tab
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APPENDIX F

Compressor Operating Envelope

Figure F.1: Compressor Performance Envelope - (Emerson-Copeland, 2020b)
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