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CHAPTER I

Introduction

Many human diseases cause physiological and morphological symptoms evident at

the tissue and organ level. However, these symptoms are the result of interactions

at the cellular level, which often involves signaling proteins moving between cells.

Furthermore, the actions of the cells are governed by biochemical networks contained

inside the cells. Due to this coupling of biological systems at differing spatial and

temporal scales, multiscale models are needed to properly predict the evolution of

diseases.

Computational modeling is useful for creating multiscale models for multiple rea-

sons. The most straight forward reason is that a computer can find a numerical

solution to a highly complex system of equations that have no analytical solution

or are time consuming to solve. Ordinary differential equations (ODEs) are good for

modeling biochemical networks inside cells. Biochemical network models are typically

complex enough to require a numerical solution. Additionally, computational model-

ing can employ methods such as agent based models (ABMs) that model individual

objects or agents that act using a set of rules. A major advantage offered by the va-

riety of models is that an appropriate model type can be matched to the model scale.

This feature makes ABMs useful for modeling tissues. Beyond the variety of model

types, computational modeling has a second advantage in that multiple models can

be coupled together, e.g., the results of a time step of one model can be fed directly

into another model. Multiscale models can be developed capitalizing on these two

advantages to construct accurate computational models of realistic systems. Despite
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these strengths, the biggest drawbacks of multiscale modeling are the complexity and

development time required.

1.1 The Significance of Study

The theme of generalizable open source code that makes developing multiscale models

easier and faster unifies the aims of this thesis.

1.1.1 Case I: A Generalizable Model

The first branch of this theme discusses the state of a comprehensive virtual kidney

under development. The motivation of the virtual kidney is to explore unanswered

questions about diabetic kidney disease (DKD) by starting from a healthy state and

simulating the kidney’s progression to a diseased state. Through modular code de-

sign, the disease mechanisms specific to DKD can be swapped out for mechanisms

associated with other kidney diseases. As a result, one of the long term goals of the

virtual kidney is to serve as a framework that can be generalized to other diseases.

Chapter II presents Aim I of this thesis: Establishing the Virtual Kidney.

1.1.2 Case II: Generalized Tools

The second branch is the generalization of methods used to solve problems encoun-

tered in Aim I. These problems i) are encountered by other researchers that develop

systems biology models, ii) have existing solutions that are insufficient for our needs,

and iii) leave a gap in solutions that represents a niche to be filled.

Systems Biology Markup Language (SBML) [1] is a popular standard for storing

biochemical models, with thousands available from the BioModels database [2, 3].

While developing the virtual kidney, I explored the possibility of coupling SBML

models into our simulations. Multiple converters exist that turn SBML into a variety

of programming and modeling languages, but Python [4] is not one of the options
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available [5]. Other Python modules that handle SBML models do not suit the needs

of the project. Given the use of Python as the programming language of choice in Aim

I, its rising use in computational science, and a lack of SBML to Python converters,

I created an open source SBML to Python converter. Chapter III presents Aim II of

this thesis: SBMLtoODEpy, An Open Source Systems Biology Markup Language to

Python Converter.

Early work on the virtual kidney focused on examining the effects of cellular

dysfunction at the level of an entire glomerulus. Glomeruli are the initial sites of urine

filtration in the kidney and suffer severe damage in a DKD patient. Due to variance

in the geometry of cross sections in a single glomerulus, we wanted to produce a

wide variety of geometries that represent the glomeruli. The methodology presented

in Aim III incorporates the concepts used in game development to create a highly

flexible algorithm for generating tissue geometry. Chapter IV presents Aim III of this

thesis: Procedural Generation Methods in Tissue Simulation.

Chapter V discusses the future work needed to further these projects beyond their

current state.

1.2 Publications Outside of Thesis Scope

I have authored two publications that have not been included in this thesis. The

primary reason for their exclusion is that the work was either not generalizable or did

not use novel computational techniques.

1.2.1 Mathematical Modeling of Tuberculosis Granuloma Activation

The first paper I was first author on [6] was written by Dr. Minu Pilvankar, Dr.

Ford Versypt, and me. The work discussed in the paper added novel equations to a

preexisting model of tuberculosis (TB) [7]. These equations modeled the regulation

of matrix metalloproteinase-1 (MMP-1), collagen buildup, and bacterial leakage in
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a TB granuloma. MMP-1, commonly referred to as collagenase, breaks down the

collagen membrane of the granuloma. As the membrane deteriorates, containment of

TB bacteria inside the granuloma fails, leading to an active infection.

My contributions to this work were in replicating the model from [7] and imple-

menting the new equations into the model. Recreating the original model proved

to be a difficult task. With 13 ordinary differential equations (ODEs), searching for

even a single error proved to be arduous. This was compounded by the fact that the

original model was not available. Once satisfactory implementation of the original

model was completed, the new portion of the model was added into the code.

The other aspect of my work on this project was developing scripts to analyze

the model. Our paper had several virtual experiments including a local sensitivity

analysis, a gene deletion experiment, and an exploration of the effect of a key variable

added to the model. The local sensitivity analysis searched for the model parameters

that had the greatest effect on TB leakage out of the granuloma by running the model

with a single adjusted parameter. This run was then compared to the results of a

basis parameter set to quantify the effect of the adjusted parameter. Gene deletion

provided insight into how a single part of biological system behaves with that part

removed. For the gene deletion experiments, one of the ODEs in the model was set

to 0, and the difference in model behavior was used to infer the role of the variable

removed. Parameter kC is the rate constant for the degredation of collagen. This

parameter was specifically targeted for analysis because it was the novel parameter

that had the greatest impact on bacterial leakage and was easy to use in tuning the

rate of bacterial leakage when studying the effect of leakage on other model variables

[6].

While the additions to the TB model were novel, the scripts developed for the

project did not solve any new problems from a programmatic perspective. Numerical

methods for solving ODE models is one of the oldest and most explored compuational
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methods, and the virtual experiments were based on analyses of other models. While

this publication falls outside of the scope of this thesis, the experience developing the

code for the ODE model and its analysis gave insight used in Aim II. How SBML-

toODEpy generates Python model implementations was directly influenced by the

needs I had as a researcher during this project.

1.2.2 Building a MATLAB Graphical User Interface to Solve Ordinary

Differential Equations as a Final Project for an Interdisciplinary

Elective Course on Numerical Computing.

The second paper I helped author [8] was written by Jianan Zhao, Dr. Ford Versypt,

and me. In this publication, we detailed a class project of developing a MATLAB [9]

graphical user interface (GUI) for solving a system of ODEs. The project served as

a capstone for an applied numerical computing class. Topics covered in the course

included Python and MATLAB basics, parameter fitting, GUIs, and solving ODEs.

The project required the MATLAB program to have a GUI and solve an arbitrary

system of ODEs, which meant the project required mastery of most of the concepts

covered in the class.

The project requirements stated that students can expect the equations to be

entered into their program in an order such that each equation is only dependent on

previous equations. This kept the complexity of the project down to a manageable

level. My project submission was inspired by Polymath [10], a software program

for common numerical methods used in chemical engineering education. One of the

features of Polymath is that the equations can be entered in an arbitrary order, and

the program will sort out the order to solve the equations. Due to a combination

of ambition and sheer stubbornness, I wanted my submission to handle equations

entered in an arbitrary order. This added back in the complexity Dr. Ford Versypt

tried to keep out of the project.
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Sorting the equations took two steps: parsing and then reordering the equations.

Parsing the equations made use of regular expressions. Regular expressions are used

to define text patterns. For this project, I defined patterns that I expected a user

would enter for their equations. The regular expressions identified variable names,

differentials, functions, and operators from entered text. When the parsing function

finds a matching pattern, it breaks off the matching portion of text, interprets it, and

then recursively calls itself with the remaining text as input. The final output of the

function is an array that has the dependent variable, independent variable for ODEs,

equation type, and a tree representing the variables and order of operations of the

right hand side of the equation [8].

Each variable defined by an ODE has an associated initial value. Therefore, the

columns associated with variables defined in ODEs are zeroed out immediately. Then

an equation with a single 1 in its row is picked, and the column of the variable is zeroed

out. This process repeats until no changes occur in the matrix after an iteration. If

all elements are zero, the equations are properly defined, and the order of the rows is

a valid equation order [8].

Like the TB model discussed in Section 1.2.1, the resulting software pushes no

boundaries; it was an educational contribution, and the experience I gained was

invaluable in developing Aim II. The most important module in SBMLtoODEpy is

the function that generates code from model elements. In that function I rewrote the

Gaussian elimination algorithm I developed in [8] to place Assignment Rules in

the correct order in Aim II.

1.3 Research Objectives

Aim I: Establishing the Virtual Kidney.

• Task 1 - Incorporate a partial differential equations (PDEs) solver and ABM

simulator.
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• Task 2 - Add ability to incorporate ODEs generated from the results of Aim II.

• Task 3 - Develop PDEs to solve the transport of signaling proteins in the

glomerulus.

Aim II: SBMLtoODEpy, An Open Source Systems Biology Markup

Language to Python Converter.

• Task 1 - Interpret SBML files to produce intermediate text files.

• Task 2 - Generate Python models.

• Task 3 - Represent biochemical networks in mesangial cells, podocytes, and

epithelial cells with ODEs.

Aim III: Procedural Generation Methods in Tissue Simulation.

• Task 1 - Develop a algorithm to generate simulation geometry.

• Task 2 - Parameterize the function to enable creation of varied geometries.

• Task 3 - Outline generalizing the algorithm.

1.4 Potential Impact

The majority of the work presented in this thesis is directly connected to the virtual

kidney project. The first aim discusses development of the virtual kidney itself. The

second and third aims solve problems encountered in the project. The most immediate

and direct impacts of the aims of this thesis will be on DKD research; already Aim

II was used to create the Python implementations of podocyte and mesangial cell

models used in Aim I.

It is my hope that the aims of this thesis will be useful beyond the context of

DKD research. As discussed in Section 1.1, I see the possibility for a wider impact

of my work. Development of the virtual kidney will continue beyond my tenure in
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Dr. Ford Versypt’s lab, and the contributions I have already made will continue to

shape its development. The success of Aim I will be measured by the time saved in

further development of the virtual kidney and the applicability of my contributions to

other forms of kidney research. As Python grows in use by computational modelers,

the demand for research oriented Python packages will grow. While other SBML

tools exist for Python, SBMLtoODEpy targets a niche unfilled by other packages

at the time of writing. The success of Aim II will be measured by the flexibility

that generated models provides to other researchers. Procedural generation offers a

way to produce a robust variety of geometries with minimal researcher time. The

methodology in Aim III incorporates an idea from outside of systems biology in an

attempt to improve it. The success of Aim III will be measured by its impact on

other researchers’ ability to develop simulation geometries.

To me, no success is greater than my work benefiting other researchers.
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CHAPTER II

Establishing the Virtual Kidney

2.1 Introduction

2.1.1 Motivation

Diabetic kidney disease (DKD) is the most common form of end stage renal disease

[11, 12]. According to the 2019 report published by the United States Renal Data

System, 46.9% of patients receiving hemodialysis, peritoneal dialysis, or a transplant

for end stage renal disease had diabetes as the primary cause [13]. Its prevalence in the

US population is increasing due to increasing prevalence of diabetes [12]. However,

DKD is not just a US health issue; DKD incidence has been rising around the globe

[11].

The glomerular tissues are the tissues key to understanding DKD. The glomeruli

(plural of glomerulus) are structures in the kidney that filter waste products from the

bloodstream. Figure 2.1.1 shows the structure and cross section of a glomerulus. Of

note are mesangial cells and podocytes. The mesangium, comprised of the mesangial

cells and their extracellular matrix (ECM), are located inside clusters of capillaries

and provide structure for the glomerular tuft [14]. Podocytes envelope the capillaries

with interwoven protrusions known as foot processes. The foot processes are linked via

a protein mesh to create a size-exclusion filtration barrier known as the slit diaphragm

or slit membrane [15].

Under chronically elevated glucose, the biochemistry inside the mesangial cells

changes and leads to several structural changes [16]. The earliest structural changes
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Figure 2.1: Insert shows a glomerulus and the magnified view shows a cross sectional
slice of a glomerulus [14]

are the thickening of the glomerular, capilliary, and tubular basement membranes.

The next set are mesangial swelling, breaking of linkages between podocytes, and

loss of endothelial fenestrations [11]. The process of podocytes losing the interdig-

itating pattern of their foot processes is known as effacement, which leaves gaps in

the filtration barrier [17, 18]. Parallel to effacement is podocyte dedifferentiation.

When podocytes dedifferentiate, they lose the ability to form the linkages between

foot processes, which in turn further complicates maintenance of the slit diaphram.

The net result is that due to the loss of podocytes, proteins are able to penetrate the

glomerular filtration barrier and pass into the urine, termed proteinuria [18].

The two primary metrics used in diagnosing DKD are the estimated glomerular

filtration rate (eGFR) and the presence of albumen in the urine, also known as albu-

minuria [11, 19]. Both measures have problems associated due to uncertainty inherent

to producing the measure. The uncertainty with measuring eGFR comes from a high

degree of imprecision in the equations used in calculating eGFR. With measuring

albuminuria, the uncertainty lies in the day to day variation of the concentration of
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albumin present in a patient’s urine [19]. Not only is there uncertainty in the mea-

sures themselves, but also in the relationship between these measures and tissue level

damage [11, 19]. Ultimately, we lack a diagnostic tool that is able to detect DKD

early enough and reliably enough [20].

Various modeling, data analysis, and computational techniques have been em-

ployed in the field of systems biology to gain a better understanding of DKD. These

run the range from organ and multiorgan models, data analysis of data sets produced

by omic (genomic, epigenomic, proteomic, etc.) experiments, and tissue level models

focusing on the kidney itself [20]. These tissue level models have considered transport

in the kidney [21, 22, 23, 24, 25, 26], the efficacy of the kidney as a filter [27, 28, 29],

renal bloodflow [30, 31, 32, 33], and the progression of renal interstitial fibrosis [34].

One of the open questions on DKD we seek to answer is “What are the interactions

and temporal relationships among podocyte, mesangial, and endothelial cell injuries”

[20]?

2.1.2 The Virtual Kidney

The work presented in this chapter is the development of a model that seeks to

answer questions about how DKD progression occurs. The overarching goal of the

larger project in our lab is to develop a comprehensive virtual kidney. The conceptual

model used in developing the virtual kidney is shown in Figure 2.2. This conceptual

model leans heavily on two concepts multi-scale modeling and modular code design.

Multiscale modeling analyzes interacting processes that lead to emergent behav-

ior. For example, changes in behavior at the cellular level can cascade into structural

changes at the tissue and organ level. Central to the development of multiscale models

is that an appropriate model type can be matched to the scale of a process. Figure 2.3

shows different types of models and the biological scales they are effective at. Agent

based models (ABMs) are useful for modeling tissues, including the interaction be-
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Figure 2.2: The conceptual model used to develop the virtual kidney. Each of the
three model types used focuses on a set of phenomena. The scale of the partial
differential equations and the agent based model are the same, but the processes
they model can not effectively be modeled by the other. The ordinary differential
equations scale is that of a single cell. Each model is separate from each other, and
coupling the models together is done using each model’s interface.

tween swelling mesangium and podocyte effacement. Ordinary differential equations

(ODEs) on the other hand are better for modeling biochemical networks inside cells

[35]. Multiscale modeling requires coupling together multiple models. For example,

the results of an ODE model representing the biochemical networks of a cell can be

coupled to the behavior of an agent representing a cell in an ABM.

In modular software design, pieces of a software system that can operate indepen-

dently should have their implementation separate from the rest of the system, and

communicate using a standardized interface [36]. For a module containing an ODE

model, the functions that compute differentials and the algorithm used to integrate

the equations are part of that model’s implementation. If an ABM coupled to and

ODE model is independent of how the ODEs are solved, the interface of the ODE

model contains two parts: a function that signals the ODE model to step forward
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Figure 2.3: Recommended guidelines for appropriate modeling technique based on
system scale [35]. While some modeling types may be used in more than one scale,
no single type covers the range from the pathway and signaling scale to the tissue
scale. Bridging this gap may be done by coupling multiple models together.

in time, and the object members that contain the model solution at the new time.

Improvements or complete redesigns of how an ODE model is solved can be made
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without considering how other modules are implemented. Or more abstractly, im-

plementation changes that do not affect the module’s interface can be made without

impacting how other modules function [36].

Modular design principles not only make coupling the models of different scales

together easier, they allow generalizing the virtual kidney beyond analysis of DKD.

The virtual kidney concept seeks to start from a healthy kidney state and progress

towards a diseased state. The diseased state modeled depends on the mechanisms

of disease progression implemented in each model. Standardized interfacing enables

incorporating models of other types of kidney disease with minimal researcher time

invested.

The main factors that drive DKD progression that the model considers are the

effects of hyperglycemia on the biochemistry within glomerular cells, how dysreg-

ulation in cells propagate to other cells through signaling proteins, and the tissue

level damage that emerges from these cells. The biochemistry of interest has two

parts. The first is the renin-angiotensin system (RAS) local to the podocytes and

mesangial cells [37, 38]. The RAS model captures the dynamics of angiotensino-

gen (AGT), angiotensin-I (ANG-I), angiotensin-II (ANG-II), and renin. The second

is upregulation of transforming growth factor beta 1 (TGF-β1) in mesangial cells

that results from dysregulation of the RAS [39, 40, 41, 42, 43]. Elevated levels of

TGF-β1 cause inhibition of matrix metalloproteinase-2 (MMP-2) [44]. MMP-2 is

responsible for breaking down the extracellular matrix in the mesangium. Two ODE

models were developed to capture the effects of glucose on the biochemical networks

involved. One model was for the podocytes ((1.1), (1.2), (1.4), and (1.5) in Appendix

A), and the other captured the mesangial cells ((1.1), (1.2), (1.4), (1.5), (1.9), and

(1.12) in Appendix A). These models were developed by my labmates Dr. Minu

Pilvankar in her PhD studies [45, 46, 47] and Ashlea Sartin in her undergraduate

research project. The ODE models for the podocytes and mesangial cells that they
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developed for our collaborative project are summarized along with their associated

parameters in Appendix A. These models are coupled to a solute transport model to

capture intercelluar signaling and a tissue structure model to capture emerging tissue

damage.

2.1.3 Software Used

CompuCell3D was used to develop the tissue structure model used in this project. At

its core, CompuCell3D uses the Glazier-Graner-Hogeweg (GGH) model to drive time

evolution of a simulation [48]. The GGH model was developed as an extension of the

Potts model [49, 50]. Classically, the Potts model examines a system of spin states in

a lattice. The lattice is subdivided by a regular shape, for example into squares, with

a spin state contained in each square. The number of unique spin states available

depends on the system; a Potts model can be made for a system with an arbitrary

number of available spin states. The spin states interact with neighbors, and each

interaction has an energy associated with it based on the states of the two spins. The

energy of the entire system is the sum of all interactions [51, 52].

In the GGH model, the concept of spin states is equated to cell indexes. Each

unique spin state is directly associated with a cell, and a cell occupies the areas

of the lattice containing that spin state. The next conceptual modification is the

introduction of cell types. Each cell has a cell type, and the energy calculations are

based on cell types instead of spin states [49, 50, 48]. It is important to note that in

the conceptual framework of the GGH model, the effective energies calculated do not

represent physical energy [48].

A classical example of an energy function for a GGH model can be abstractly

viewed as

H =
∑

Contact energy between cells +
∑

Volume constraint energy. (2.1)
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More technically, the equation is [49, 50, 48]

H =
∑

neighbors
−→
i ,
−→
j

J(τ(σ−→
i
), τ(σ−→

j
))(1− δ(σ−→

i
, σ−→

j
))

+
∑
σ

[λvol(σ)(ν(σ)− Vt(σ))2].

(2.2)

The first sum is iterated over all interfaces of the lattice. J is an NxN matrix

containing the contact energies for each possible pairing of N cell types and is indexed

by the cell types, τ , of the cells in positions
−→
i and

−→
j , σ−→

i
and σ−→

j
respectively. The

contact energy is multiplied by term that zeroes out the energy if σ−→
i

and σ−→
j

are the

same cell. The Kronecker delta is

δ(i, j) =

 0 : i 6= j

1 : i = j
(2.3)

which makes the term (1 − δ(σ−→
i
, σ−→

j
)) zero when the same cell occupies

−→
i and

−→
j .

The second sum is iterated over all cells in the simulation. The parameter λvol(σ) is

the resistance of the cell, σ, to deviation from the cell’s target volume, Vt(σ). The

cell’s energy contribution is proportional to the square of the difference between its

volume, ν(σ), and its target volume [48].

On top of this style of energy calculation, CompuCell3D uses a Monte Carlo

method to move a model forward in time. Despite Monte Carlo steps traditionally

having no connection to time stepping, GGH models have empirically shown to have

Monte Carlo steps directly proportional to time steps in biological applications [48].

The random move used in the Monte Carlo method is spin flipping. CompuCell3D

selects a lattice site and one of its neighbors. Provided that the sites are occupied by

different cells, the neighbor is set to be occupied by the cell in the first site chosen.

The energy difference between the two states, ∆H, is computed and used to calculate

a probability of acceptance [48]. The acceptance function used is the Boltzmann
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acceptance function [48, 53]

P (∆H) =

 1 : ∆H ≤ 0

e−
∆H
Tm : ∆H > 0

(2.4)

where Tm is a parameter that acts to modify the rate of acceptance of a Monte Carlo

step [48]. While Tm plays a functionally similar role to temperature, it does not

represent the actual temperature in a model. Additionally, since both ∆H and Tm

are in arbitrary units, this acceptance function can neglect the Boltzmann constant,

which relates temperature and energy. A single Monte Carlo step attempts a random

spin flip and accepts or rejects the result a number of times equal to the total number

of lattice sites [48].

CompuCell3D’s energy calculations are not limited to just contact energy and

volume. It supports energy terms that can drive chemotaxis, apply surface area

constraints to cells, create links that represent physical connections between cells,

and more [54]. This model creates a changing geometry that is not captured by

multiphysics or computational fluid dynamics software. Further, CompuCell3D allows

users to incorporate Python [4] scripts into their simulations using an application

programming interface [48, 55]. This enables coupling a tissue model developed in

CompuCell3D with an arbitrary Python based model. While CompuCell3D does

have PDE solvers built in, they primarily use the forward Euler method [54]. For this

project, the forward Euler method does not provide enough numerical stability or

accuracy when handling convection terms. Due to these issues, the transport model

was developed using the partial differential equation (PDE) package FyPi [56].

FiPy is a Python based PDE solver that uses the finite volume method (FVM) to

solve equations of the form

∂ρΦ

∂t
− [∇ · (Di∇)]n Φ−∇ · (uΦ)− SΦ = 0 (2.5)
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where Φ is the solution variable and the terms from left to right are the transient

term, the diffusion term, convection, and source terms. In the transient term, ρ is

an arbitrary rate factor. In the diffusion term, Di, is the diffusivity of Φ and can

be either a scalar if the diffusivity is isotropic or a matrix in anisotropic cases. The

variable n is the order of the diffusion term. In the convection term, u is a vector

field of a velocity moving Φ. The last term SΦ abstractly represents processes like

reaction or decay that directly add or remove Φ at a location. SΦ can be a function

of Φ. FiPy provides the ability to solve equations like (2.5) by implementing the four

terms, meshes, variables, and solvers as Python classes [56]. This means that FiPy

has done the majority of the low level coding needed to set up and solve PDEs. The

first major advantage of FyPi is that it allows for the rapid development of scripts to

solve PDEs without the user getting caught up in the difficult work of implementing

the FVM. Since FiPy was developed with the approach of solving arbitrary equations,

the resulting Python package is extremely flexible. FiPy offers support for more types

of terms than the ones that appear in (2.5) that are easily added into an equation.

The classes provided by FiPy are flexible in a way that allows the same problem to be

solved in multiple ways, and these classes support coefficients that vary over space,

time, or with respect to another solution variable in a system of PDEs [57].

2.2 Agent Based Model

While we are interested in how cellular dysregulation propagates to tissue damage at

the scale of the whole glomerulus, we focused on a smaller scale to maintain a finer

resolution. Here we investigated a region just large enough to capture the effects of

the bloodstream glucose on the mesangial cells, podocytes, and glomerular basement

membrane. To this end, the glomerular tissue simulation models a small section of

the mesangium adjacent to a capillary. The initial conditions for this simulation are

visualized in Figure 2.4, and the measurements used to design the geometry are in
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Table 2.1.

Figure 2.4: Visualization of the tissue model after the first time step. CompuCell3D
produces the first image of the simulation after the first Monte Carlo step rather
than at the initial condition. The yellow cells represent the mesangium, the blue
cells represent the glomerular basement membrane, and the light and dark green
cells represent the foot processes. The light green portions of the foot processes
serve as anchors for the links between the foot processes. The black area is the
medium, which represents the Bowman’s space. The numbered labels correspond to
the boundaries of the domain.

Table 2.1: Measurements used in designing the initial conditions of
the CompuCell3D simulation. A basis of 0.02 µm per pixel length is
used in our simulations.

Parameter Value Units Pixel Lengths Sources

Mesangium width 5 µm 2551 [23]
Mesangium height 0.5 µm 25 [23]

GBM thickness 0.1 µm 5 [23, 58]
Foot process width 0.29 µm 15 [59]
Foot process height 0.3 µm 15 [58]

Nephrin width 390 Å 2 [27, 60]
Simulation space height - - 100 -

1 250 pixel lengths would capture this measurement better, but 255
was chosen because it is an integer multiple of 17 (foot process
width + nephrin width).
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2.3 Solute Transport Model

The concentration fields in the simulation are governed by

dCi
dt

= ∇ · [Di0KDi(x, y)]∇Ci −∇ · [~v(x, y)KCi(x, y)]Ci + fi(~p[x, y], ~C) (2.6)

where Ci is the concentration of species i, Di0 is the diffusivity of species i through

the blood plasma, KD is diffusive hindrance due to transport through porous media,

~v is the velocity field of the blood plasma, KC is the convective hindrance of porous

media, fi is a function that solves the biochemical model developed for podocyte

cells, ~p is the parameters of the biochemical model, and ~C is the concentrations

of all species. The generation and consumption of signaling proteins for each foot

process was adapted from the podocyte model described in Appendix A. Inside of the

podocytes, ~p contains the appropriate values for the podocyte model. Outside of the

cells, the value for each parameter is set to zero, aside from parameters that appear

in denominators to avoid divide by zero errors.

Boundary 1 (Figure 2.4) is at the bottom of the mesangium and is assumes to be

the interface at an mesangial cell membrane. For glucose, it is assumed to be a no flux

boundary. For the other solutes, the concentrations at this boundary are determined

by the mesangial cell model. A copy of the mesangial cell model (Appendix A) is

instantiated for each face along the bottom. The x dimension is 255 pixels long. This

means a total of 255 copies of the mesangial cell model. The glucose concentration for

each model is sampled from the center of the pixel adjacent to the model’s face. For

each time step, the ODE models are progressed forward before solving the PDEs. At

each face, the concentration of the non-glucose solutes are set to the corresponding

instance of the mesangial cell model. Boundary 2 is at the left side of the mesangium

where the mesangium contacts a capillary. The concentration at the capillary bound-
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ary is set to bloodstream concentrations for all species. Currently the bloodstream

concentrations for solutes other than glucose are assumed to be governed by the same

model used for the mesangial cells. This assumption is unrealistic but usable to show

the model’s current functionality. The right side of the mesangium and both sides of

the GBM are boundaries 3, 4, and 5. These boundaries are set as no flux conditions.

While these boundaries are symmetry boundaries, we assume that any local fluxes

are parallel to the boundaries. Boundaries 6, 7, and 8 for the Bowman’s space are

set to ~n · ∇Ci, where ~n is the unit vector normal to the face. When the gradient at

the boundary is explicitly constrained, FiPy treats the boundary as an inlet or outlet

condition as appropriate for the convection terms [57].

Currently, the parameters for energy calculations are arbitrarily chosen. Our end

goal is to couple the transport and biochemical models with the parameters used for

effective energy calculations in CompuCell3D. The effective energy parameters drive

the behavior of the cells and we hypothesize that the coupling will be able to capture

the physiological changes of tissues due to dysregulation of biochemical networks.

Here, the scope is limited to looking at the chemical crosstalk and transport between

cells. In addition to serving as a basis for future inquiry, CompuCell3D is used to

represent the cells as physical objects in our simulation space and to visualize solute

concentration fields.

For glucose, D0 was calculated using the Stokes-Einstein equation,

D0 =
kBT

6πµsolventai
(2.7)

where kB is the Boltzmann constant, T is the temperature in Kelvin, µsolvent is the

viscosity of the bulk fluid, and ai is the hydrodynamic radius of the molecule. For the

other solutes, their D0 and ai were computed using HYDROPRO [61]. HYDROPRO

starts its evaluation of hydrodynamic properties by constructing a geometric model

from a protein structure. The geometric model is used to simulate the interactions
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between the protein and the solvent [61]. HYDROPRO requires the partial specific

volume of the protein as input. This measure is not readily available for the species in

our models, so it was assumed to be equal to the inverse of density. Data on density

are not readily available either, so the density was approximated from the correlation

[62]

ρ = 1.410 + 0.145e−
MW
13 (2.8)

where ρ is the density in g cm−3, and MW is the molecular weight in kDa. The values

of Di0 and ai used in the simulation are in Table 2.2.

Table 2.2: Values of Di0 and ai used for each species.
The value of a and method for computing D0 of glu-
cose are from [23]. For the other species, [62] and [61]
were used to compute D0. The sources for the protein
structure files are listed.

Species D0 a Sources

Glucose 853 µm2 s−1 3.8× 10−4 µm [23]
ANG-I 297 µm2 s−1 1.09× 10−3 µm [63]
ANG-II 307 µm2 s−1 1.05× 10−3 µm [63]

AGT 103 µm2 s−1 3.15× 10−3 µm [64]
Renin 91.1 µm2 s−1 3.22× 10−3 µm [65]

TGF-β1 121 µm2 s−1 3.62× 10−3 µm [66]
MMP-2 89.5 µm2 s−1 2.67× 10−3 µm [67]

The value of KD depends on the medium through which a solute diffuses through

and the hydrodynamic radius of the solute. Three media are present in the simulation:

the mesangium, glomerular basement membrane, and the Bowman’s space. The

Bowman’s space is not modeled as a porous media, therefore KD is 1 in the Bowman’s

space. In the mesangium and glomerular basement membrane, each species has a

different value of KD. KDi is calculated by [23]

[KDi = e−πφ
b

e−0.84f1.09

(2.9)
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b = 0.174 ln

(
59.6

λi

)
(2.10)

and

f =
(
1 + λ2

i

)
φ] (2.11)

where φ is the fraction of volume occupied by fibers in the matrix and λi is the ratio

of solute radius to fiber radius [23]. For regions occupied by the foot processes, Di

is set to 0 inside of the foot processes except for the pixels where the foot process

contact the glomerular basement membrane. This approximates foot processes only

secreting into and uptaking from the GBM.

KC is the convective hindrance caused by a porous media on the solute [68]. The

results presented in this chapter uses the same assumptions as the model of [23];

the mesangium has no effect on convection, and the glomerular basement membrane

is a perfect filter. This equates to KD = 1 in the mesangium and KD = 0 in the

glomerular basement membrane.

2.4 Computational Fluid Dynamics Simulation

The velocity field in (2.6) is solved using a 2D computational fluid dynamics simu-

lation in Star-CCM+ [69] that models the flow through the mesangium, glomerular

basement membrane, and Bowman’s space. The geometry used in this simulation is

shown in Figure 2.5. The properties of the porous media used in the simulation are

the same as the work of Hunt et al. [23].

The mesangium and glomerular basement membranes were modeled as porous

media, and the flow through the Bowman’s space was modeled as laminar flow. For

flow through porous media, pressure and velocity are related using
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Figure 2.5: Geometry used in the computational fluid dynamics simulation to rep-
resent the combined mesangium, glomerular basement, and Bowman’s space. The
top image shows the full scale of the geometry, and the bottom is a close up of the
mesangium and glomerular basment membrane in the computational fluid dynamics
simulation. The voids represent the foot processes, which block flow.

−∇P =
µsolvent
kp

~vs + bexpρ|~vs|~vs (2.12)

where P is the pressure, µsolvent is the viscosity of the fluid, kp is the permeability,

~vs is the superficial velocity, and ρ is the density of the fluid. The term bexp is an

experimentally determined term used to capture second order dependence on velocity

[69]. For our simulations bexp was set to 0, which reduces (2.12) to Darcy’s law. Values

of kp are determined with

kp =
3r2

20φ
(− lnφ− 0.931) (2.13)

where r is the radius of the fibers of the porous media [23].

This simulation deviates from [23] in two key ways. We assume that the foot

processes block fluid flow, only allowing fluid to escape out of the glomerular basement
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membrane in narrow channels. The second difference is that instead of modeling

the interactions between the flow in the glomerular basement membrane and the

Bowman’s space with a boundary condition, the CFD simulation explicitly models

bulk flow in the Bowman’s space. One of the limitations of the current fluid flow model

is that it does not account for the effects of oncotic pressure, which was captured in

the previous work using the boundary condition coupling conditions in the glomerular

basement membrane and the Bowman’s space.

Boundary 2 is the inlet to the mesangium is a stagnation inlet with a pressure of

35 mmHg [23]. Boundary 3, opposite of boundary 2, is a symmetry plane. Boundary

1 is a no-slip wall representing the cell membrane of a mesangial cell. Boundaries

4 and 5 are the sides of the GBM and are symmetry planes. The undersides of the

podocytes are no-slip walls. In the Bowman’s space, the podocytes, including the

trimmed cavities in the inlet and outlet regions, are no-slip walls. The inlet, on the

left side of the Bowman’s space is a velocity inlet with a velocity of 392 µm/s. This

was estimated by dividing the average single-nephron glomerular filtration rate of a

healthy adult [70] by the average cross section area of the Bowman’s space [71]. The

outlet of the Bowman’s space is a pressure outlet with a pressure of 1.3 mmHg [23].

The surface on top of the Bowman’s space is a symmetry plane.

For each of the three regions, an automated meshing operation was used to create

a 2D quadrilateral mesh. In the Bowman’s space, the base size of the mesh is 0.1

µm, which is reduced to 0.01 µm near the tops of the foot processes. The top image

in Figure 2.6 shows the mesh generated in the Bowman’s space. In between the foot

processes, the base size is further reduced to 2.5 × 10−3 µm. Two prism layers are

used along the tops of the foot processes, and three layers are used along the sides of

the foot processes. The mesh surrounding the foot processes is the bottom image in

Figure 2.6.

In the glomerular basement membrane, the base size of the mesh is 5 × 10−3

25



µm. Where the fluid exits the glomerular membrane into the Bowman’s space, the

base size is reduced to 2.5 × 10−3 µm (bottom image of Figure 2.6). Along the

underside of the foot processes, three prism layers are used. The mesangium uses

a base size of 5 × 10−3 µm as well and three prism layers along the bottom of the

mesangium. Figure 2.7 shows a representative portion of the mesh in the mesangium

and glomerular basement membrane.

Figure 2.6: The top image is an overview of the mesh generated in the Bowman’s
space. In the zoomed in region, the base size of the mesh is reduced between the foot
processes and in the glomerular basement membrane near the gaps.

A mesh independence study (not shown) was conducted to ensure a sufficiently

refined mesh was created. All sizes for each of the three meshes were reduced to 70%

of their original values. The average velocity of the fluid flowing through the gaps of

the podocytes at 0.1 µm above the glomerular basement membrane was measured.

The average velocity through the gaps was 0.974 µm/s on the base mesh and 0.978

26



Figure 2.7: Representative regions of the mesh generated for both the glomerular
basement membrane and mesangium. Both regions use the same base size for most
of their volume.

µm/s on the refined mesh. The percent difference between the two meshes is 0.478%.

The resulting velocity field (Figure 2.8) was sampled and imported into the tissue

simulation as the field value for ~v in (2.6).

2.5 Simulation Results

2.5.1 Full Transport Model Results

Figure 2.9 shows the results of the entire transport model simulated within the Com-

puCell3D simulation. The artifacts in the glucose field are suspected to be related to

the meshing of the CFD simulation.

2.5.2 Podocyte Model Validation

A concern when incorporating the biochemical model of the podocytes into (2.6) is

that implementation differences in code between sources in (2.6) and their original

ODE form could may lead to appreciable differences in behavior. To ensure imple-

mentation differences did not affect simulation results of the models for both the

podocytes and the mesangium, we compared the results of the Python ODE and

PDE implementations of both models. To achieve this, the diffusion and convection

terms of (2.6) were removed, glucose was set to a fixed concentration in the simula-

27



Figure 2.8: Velocity magnitude for the entire flow domain. The bottom image zooms
in on the mesangium, glomerular basement membrane, and between the foot pro-
cesses. The maximum velocity in the bottom image is set to 2 µm/s to highlight the
slow moving flow in this region.

tion space, and the simulation was run only allowing the PDEs to progress. We also

wanted to determine the effects of diffusive transport on the podocyte model. For this

case, diffusion of all species was allowed, including glucose, and the simulation was

run only allowing the PDEs to progress. Data was recorded from the center of mass

for each cell. Figure 2.10 compares the podocyte model implementations at high and

low glucose conditions.
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Glucose

ANG-I ANG-II

Angiotensinogen Renin

TGF-β MMP-2

Figure 2.9: Concentration fields (mM) for each the CompuCell3D simulation including
all terms of (2.6). The bloodstream glucose concentration is set to 5 mM
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Glucose 5 mM 30 mM

Reaction

only

Diffusion

and reaction

Figure 2.10: Difference of podocyte model behavior between model implementations.

The y-axes are the percent differences between the ODE and PDE implementations

using the ODE model as the basis. The x-axes are simulation time in hours. While

each simulation was run for 500 hours, the graphs generated only show a portion of

that simulation’s run. Each graph reports the difference as the average for all cells of

that type. Each line represents the average concentration of each species across all

podocytes in the simulation. In the diffusion and reaction case, the shaded regions

represent one standard deviation above and below the average.

Aside from a relatively small transient within the first 50 hours of each, the model

implementations appear to be in agreement in the reaction only case. Without con-

vection, the boundary conditions yields a glucose concentration very close to 5 mM

through out the simulation space. The small difference in the diffusion and reaction

case is not unexpected as a PDE of a well mixed system will have no appreciable

difference from an ODE model.
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2.5.3 Time Scale Analysis

An analysis of individual model component response to a step change in glucose was

conducted. For the diffusion of glucose, a simulation was run with only diffusion

enabled. After the first timestep, the blood glucose concentration was changed from

5 mM to 30 mM. Figure 2.11 has the results of this analysis. For the podocyte and

mesangial cell models, their ODE implementations were used to see their response to

an equal step change in local glucose (Figure 2.12). These processes were chosen to

contrast the responses of one of the fastest processes, glucose diffusion, to the slower

processes in the model.

Figure 2.11: The glucose concentration field response to step change in bloodstream

glucose. The bloodstream glucose steps from 5 mM to 30 mM. The time reported is

how long it takes for the concentration increase at that position to reach 95% of the

step size.
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Figure 2.12: The response of the podocyte and mesangial models to a step change in

bloodstream glucose. The y-axis is concentration normalized by the initial concen-

tration. The x-axis is time. The top image shows the response over 36 seconds. The

bottom image shows the response over 100 hours.

Out of the processes analyzed, the fastest is the diffusion of glucose, occurring on

timescales of micro to milliseconds. Reaction of ANG-I and ANG-II occur on time
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scales of seconds, and reactions of the rest of the species occur over hours. MMP-2 is

on the longest timescale, taking hundreds of hours to approach a steady state.

2.6 Conclusions

In the model’s current state, the solute transport model enables considering the effect

of space on cellular crosstalk. The tissue geometry has been coupled to the PDEs

through the convective and diffusive hinderance terms in (2.6). With the geometry

and transport coupled together, I have built a framework for connecting models of

kidney diseases progression from a healthy to diseased state.
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CHAPTER III

SBMLtoODEpy, An Open Source Systems Biology Markup Language to

Python Converter

3.1 Background

While working on Aim I, presented in Chapter II, I wanted to be able to include ar-

bitrary Systems Biology Markup Language (SBML) models as part of the multiscale

model. Adding the ability to incorporate SBML models into the virtual kidney will

help to expand the applications of the framework because SBML is an intermediary

language that facilitates exchanging biochemical reaction network models. A large

number of models are already developed into SBML documents. The largest repos-

itory of SBML models is the BioModels database [2, 3]. The BioModels database

is home to over 8,400 models from literature. These models have been submitted

directly by paper authors and database curators [3]. An additional 140,000 models

have been submitted to the Biomodels database from the Path2Models project, which

automatically generates models from metabolic data [72]. Not all of the models on

the BioModels database are curated. For the models that are curated, part of the

curation process involves annotating and ensuring correctness of models submitted

to the database. The guarantee of correctness means that the curated models may

be used to create a test suite for software developed to use SBML models [2]. The

large number of available models and ease of use makes incorporating existing SBML

models attractive.

SBML helps with model exchange by addressing three main problems. First, since

the language is not specific to a single software or simulator, its flexibility enables

34



researchers to use diverse tools with varying strengths when developing or analyzing

a model. Second, by decoupling the model from the software used to build it, a model

no longer becomes obsolete if the software does. Third, standardizing how models are

defined reduces the confusion that may arise from a researcher working with another

researcher’s model [1].

While SBML is specifically designed for a wide variety of computational biology

models [1], The flexibility of SBML stems from the fact that “it can describe any

model of form:

d

dt
x(t) = f(x(t),p) (3.1)

where x is the state vector of the model, and p is a vector of time-independent param-

eters” [73]. SBML is so flexible that even models of zombie infections developed with

variants of the susceptible infected removed epidemiology model have been described

using the standard [74].

The interoperability and usability of SBML is achieved by it being a declarative

language as opposed to an imperative language. This means that SBML merely

lays out the model components without explicitly implementing how to solve the

model. SBML leaves implementing and solving the model to the simulator or tool

of the researcher’s choice. Furthermore, a researcher need not focus on the details

of implementation when they have software previously developed to read, construct,

and solve SBML models [73].

SBML at its core is built upon Extensible Markup Language (XML) [1]. XML was

developed as a standardized way to store arbitrary data in a document that is human

and machine readable [75]. SBML builds upon the XML standard by implementing

standards for following model components [76, 77]:

• The SBML Container points to the appropriate XML namespace for the

SBML model based on the version and level of SBML used in the document. In

level 3 SBML, additional packages used to expand upon the base functionality
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are declared here.

• The Model object is located within the SBML Container and serves to

contain all other model elements. The base units used in the model may be

defined in the Model element.

• A Function Definition contains a single user-defined function. This function

is limited to only use other functions defined within the model and a subset of

MathML elements, such as arithmetic operators and logical operators.

• A Unit Definition allows a modeler to define units needed for their model

from a base set of units specified in the SBML specifications. Note that Unit

Definitions are completely optional, and SBML does not specify or require a

check for unit consistency in a model. It is up to the modeler or the software

to ensure units are explicitly accounted for and consistent in their model.

• A Compartment represents an arbitrary space in which a Species exists.

Compartments need not be three dimensional; a surface may be represented

by a two-dimensional Compartment. SBML level 3 even supports Compart-

ments with fractional dimensions. Just like with Unit Definitions, SBML

does not check for unit consistency with respect to Compartment dimension-

ality.

• A Species represents “a pool of entities that (a) are considered indistinguish-

able from each other for the purposes of the model, (b) may participate in

Reactions, and (c) are located in a specific Compartment” [76]. This is a

more abstract implementation of a chemical species, and can represent anything

that fits the above requirements. For example, a population of rabbits can be

a Species in a population model represented in SBML.

• A Parameter is simply intended to be a value with an identifier. Parameters
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can be set to be constant or used as variables in your model. Additionally,

Parameters can have units associated with them, without any unit consistency

checks.

• An Initial Assignment is an optional way to set any value of a model at t ≤ 0.

Each value may have an initial value specified, but an Initial Assignment

allows for a value to be set based on a calculation instead of a specified value.

• Rules are used to provide additional ways to compute variable values in a

model.

– An Algebraic Rule represents an equation of the form

0 = a+ b+ c+ . . .+ z (3.2)

where a through z represent an arbitrary number of model values. Each

value is calculated as appropriate to satisfy the Rule. SBML provides a

set of rules that specifies which variables may not be determined by an

Algebraic Rule.

– An Assignment Rule represents an equation of the form

a = b+ c+ . . .+ z. (3.3)

While the mathematical forms of Algebraic and Assignment Rules are

equivalent in the abstract, they are handled differently. In an Assignment

Rule, it is assumed that the right hand side of the equation may be used

to directly calculate the value of a.

– A Rate Rule represents an equation of the form

d(a)

dt
= b+ c+ . . .+ z. (3.4)
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The Rate Rule is similar to an Assignment Rule. The Rate Rule is

integrated to directly assign the value of a.

• A Constraint defines the assumptions that a model is valid under. A Con-

straint comprises of a math term that determines if the Constraint is satisfied

or not and a message that is displayed to the user if the Constraint is no longer

satisfied.

• A Reaction is “any kind of process that can change the quantity of one or

more Species in a model” [76]. Similar to a Species component, a Reaction

is an abstract implementation of a chemical reaction. As such, a Reaction

can represent any process that is appropriate to the model, including transport

from one Compartment to another.

• An Event is an instantaneous effect on the model. Events are comprised of a

Trigger, an optional Delay, an optional Priority, and a list of assignments that

perturbs the model state.

All of these components are supported by SBML level 3, which has the greatest

number of features [76]. Each iteration of the SBML standard is denoted by a version

and level. Each level represents a increase in features compared to the previous

level, while each version is a refinement of the previous version of that level. The

three different levels of SBML are continuously developed and are intended to serve

a continual purpose [77, 78].

The simulator of use in Aim I is Compucell3D. Compucell3D supports implement-

ing custom Python [4] scripts that can determine cell behaviors [48]. Incorporated

into Compucell3D is libRoadRunner, an SBML model simulator. A key strength of

libRoadRunner is that it compiles an SBML model directly into machine code [73].

As a result, the implemented model is simulated very efficiently, but this implemen-

tation is mostly immutable. Changing the functionality of a model during runtime
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has been useful in my research for model analysis [6]. As a result, the immutability

of an SBML model implemented by libRoadRunner is a negative that outweighs the

benefits of faster execution.

Another tool useful to researchers who want to implement SBML models is the

Systems Biology Format Converter (SBFC). SBFC is directly integrated into the

Biomodels database and is used to automatically convert SBML models into the full

range of formats it supports [5]. The Octave implementations generated by SBFC are

scripts that simply initialize and simulate the model for a certain duration. These

scripts do not take advantage of programming concepts like object oriented program-

ming, which would reduce developer time needed to incorporate these models. At the

time of writing, SBFC does not support Python.

Other tools exist for working with SBML models, such as COPASI or libSBMLsim,

but most tools developed for working with SBML were not designed to be directly

integrated into other programs [73].

3.2 Software Details

The work presented in this section includes sections of the paper, code, and documen-

tation that have been peer reviewed and published in [79]. My contributions to this

work include designing and writing the code and writing the application programming

interface documentation.

3.2.1 Summary

The goal of this aim is to develop a Python package called SBMLtoODEpy to address

the limitations detailed in earlier sections by enabling conversion of SBML models into

Python classes that can be rapidly incorporated into biomedical systems modeling

projects written in Python, such as the project described in Aim I, or used directly

in Python. SBMLtoODEpy generates code that uses object oriented programming
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to create code that users can write their own code to interface with. The program

aims to accelerate construction of multiscale models that import and reuse published

SBML models.

In SBMLtoODEpy, each of the model components are extracted using libSBML.

LibSBML is a key tool that helps support SBML. It is a software library that has an

application programming interface that simplifies reading and editing SBML docu-

ments [78]. The model components can be output to a JavaScript Object Notation

(JSON) file. JSON is a format that is easier for users to read and directly edit than

either the SBML or Python implementations of the model. The extracted model

components are used to create a Python file that defines a class that implements

the model. A method for the class is generated to solve the model using a wrap-

per for the LSODA algorithm in the SciPy Python package [80], and the NumPy

Python package [81] is also used. To verify that SBMLtoODEpy properly interprets

SBML files and converts them into functional differential equations models, we com-

pared the results of SBMLtoODEpy with COPASI, a graphical user interface based

platform for simulating SBML models [82], for a set of representative SBML files

downloaded from the BioModels Database that were deposited for a selection of sys-

tems biology publications [83, 84, 85, 86, 87, 88]. This comparison served purely

to verify that SBMLtoODEpy was properly setting up the equations for the model

as both COPASI and SBMLtoODEpy rely on ODEPACK to solve differential equa-

tions [89]. These files have been included in the SBMLtoODEpy package within the

sbmltoodepy/sbml files subdirectory to serve as examples for users.

The code is split into three main roles. The first is the algorithm that uses libS-

BML to extract the model components from the SBML document. At this point, the

extracted data can either be saved to a JSON file or passed to the second algorithm of

the package. The second algorithm takes the extracted model components and writes

the Python class to a file. This includes ordering Assignment Rules such that none

40

https://github.com/SMRuggiero/sbmltoodepy/tree/master/sbmltoodepy/sbml_files
https://github.com/SMRuggiero/sbmltoodepy/tree/master/sbmltoodepy/sbml_files


of the Rules use undefined values and constructing the system of differential equa-

tions that arise from the Reactions and Rate Rules of the model. SBMLtoODEpy

represents the ODEs as

d

dt
s = Aξ(s) + r(s) (3.5)

where s is a vector representing the model state, A is a matrix of stoichiometric

coefficients, ξ is a vector containing the extents of reaction, and r is a vector containing

the rates of change determined by Rate Rules. Figure 3.1 illustrates the roles of

these algorithms.

Figure 3.1: The two algorithms implemented in the SBMLtoODEpy package are
represented as the two sets of arrows. The first algorithm parses the components of
the SBML model (filled boxes) and stores the results. The second algorithm defines
Python classes and defines methods to solve the model numerically.

.

The third portion of the code includes the classes and functions that help im-

plement specific features of SBML components, such as Compartments and Pa-

rameters. This includes methods that prevent modifying values that are flagged as

constant and that compute the concentration of Species based on Compartment

volume.
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3.3 Tutorial

3.3.1 Interactive Jupyter Notebook

An interactive Jupyter notebook working through the installation and a couple of

examples can be found at https://github.com/SMRuggiero/sbmltoodepy/blob/

master/SBMLtoODEpy.ipynb?short_path=948bbb4

An online version that does not require installation of Python can be found at

https://colab.research.google.com/drive/1yBscTNFwgliOUD10YhdWh-3HvXdj1YUF

3.3.2 Creating a Python Model

The fastest way to create a Python model using SBMLtoODEpy is to open a Python

interpreter in the same folder as the SBML file. Then, run the following lines of

Python code using the name of your model.

import sbmltoodepy

sbmltoodepy.ParseAndCreateModel("YourModelNameHere.xml")

If no errors occur, then a file with the same name as the SBML file but with the

extension .py will be created in the same folder. To have a file created with a different

name, you can use the outputFilePath keyword argument.

sbmltoodepy.ParseAndCreateModel("YourModelNameHere.xml",

outputFilePath = "PythonFile.py")

The new Python module defines a class named SBMLmodel. To customize the

name of the class, use the className keyword argument.

sbmltoodepy.ParseAndCreateModel("YourModelNameHere.xml",

outputFilePath = "PythonFile.py",

className = "ModelName")

The last optional keyword argument of ParseAndCreateModel() is jsonFilePath.

If specified, a JSON file containing all of the model elements parsed from the SBML
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model will be created.

sbmltoodepy.ParseAndCreateModel("YourModelNameHere.xml",

jsonFilePath = "YourModelNameHere.

json", outputFilePath = "

PythonFile.py", className = "

ModelName")

In reality, creating a Python model with SBMLtoODEpy is a two step process

that can be broken up.

dataOfModel = sbmltoodepy.parse.ParseSBMLFile("YourModelNameHere.xml

")

sbmltoodepy.modulegeneration.GenerateModel(dataOfModel , "PythonFile.

py", objectName = "ModelName")

The function ParseAndCreateModel serves as a wrapper for two other functions,

ParseSBMLFile and GenerateModel. ParseSBMLFile returns an instance of the Mod-

elData class with all of the components pulled from the model. While you can use that

instance as input to GenerateModel, there is another feature of SBMLtoODEpy that

the ModelData class provides. The ModelData class has a method, DumpToJSON,

that generates a JSON file with the model components.

sbmltoodepy.dataclasses.ModelData.DumpToJSON(dataOfModel ,"

YourModelNameHere.json")

A JSON file created from the DumpToJSON method can be used a create a new

instance of the ModelData class.

newInstance = sbmltoodepy.dataclasses.ModelData.LoadFromJSON("

YourModelNameHere.json")

A possible use case for this would be to generate a JSON file from an SBML

model, change the JSON file, which is more human readable than an SBML file, and

use the changed JSON file to create the Python model.
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3.3.3 Exploring a Newly Created Python Model

After generating the Python implementation of a model, you can now import the new

class and instantiate it.

from PythonFile import ModelName

modelInstance = ModelName ()

The main components that make up the state of an SBML are Compartments,

Parameters, and Species. Each of these are stored in a dictionary that is a member

of the model class. These members are named c, p, and s respectively. The key

for each dictionary entry is the “id”, as defined by the SBML specification, for the

component. By printing one of these dictionaries keys, you can see the id of each

Compartment, Parameter, or Species.

# get the dictionary keys for the IDs of the species in the model

print(modelInstance.s.keys())

# get the dictionary keys for the IDs of the compartments in the

model

print(modelInstance.c.keys())

# get the dictionary keys for the IDs of the parameters in the model

print(modelInstance.p.keys())

The individual model elements are represented as instances of an appropriate

class. Parameters are instances of the Parameter class, and the value member

contains the Parameter’s value. Species are instances of the Species class, and

the concentration and amount members are used in calculations. Compartments

are instances of the Compartment class, and the size member contains the size of the

Compartment.

# replace compartmentId with one of the dictionary keys returned

from print(modelInstance.c.keys())

print(modelInstance.c[’compartmentId ’].size)

# replace parameterId with one of the dictionary keys returned from
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print(modelInstance.p.keys())

print(modelInstance.p[’parameterId ’].value)

# replace speciesId with one of the dictionary keys returned from

print(modelInstance.s.keys())

print(modelInstance.s[’speciesId ’].concentration)

print(modelInstance.s[’speciesId ’].amount)

Function Definitions and Reactions are stored in a similar manner. Currently,

Rules and Initial Assignments are not handled the same way. Rate Rules are

bound methods of the model class that are called alongside Reactions, and Assign-

ment Rules and Initial Assignments are implemented through a method of the

model class, AssignmentRules(). Algebraic Rules are not completely supported

currently.

In SBML, each model component can have both an id and a name, but only the

id is required. Each of the dictionaries containing Compartments, Parameters,

Species, Reactions, and Function Definitions can be searched by the component

name using the appropriate method. Note that the original model must not have

a blank metadata field for the corresponding entry for the search by name to yield

any results. In SBML, there is no guarantee that names are unique (each component

in a model does have a unique id). If a single component matches, a list with the

component’s id and object is returned. If multiple components match, then a nested

list is returned. Each element in the list is a list with a component’s id and object.

Lastly, if no match is found, the behavior of the function depends on the keyward

argument suppress. If suppress is False, an exception is raised. If suppress is True,

then an empty list is returned.

modelInstance.SearchParametersByName(’parameter name’, suppress =

False)

modelInstance.SearchCompartmentsByName(’compartment name’, suppress

= False)
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modelInstance.SearchSpeciesByName(’species name’, suppress = False)

modelInstance.SearchReactionsByName(’reaction name’, suppress =

False)

modelInstance.SearchFunctionsByName(’function name’, suppress =

False)

The last part of the model’s state is simulation time; the current simulation time

is stored in the time member of the class. The unit of time in the model is treated as

arbitrary by the package. The unit for time is dependent on the units of parameters

set by the modeler. This package does not check if the units in a model are consistent.

print(modelInstance.time)

3.3.4 Simulating the Model

The RunSimulation() method is used to step the ODE model forward in time by

timeinterval. The method updates the value of each model component and the total

elapsed simulation time over all calls to RunSimulation.

modelInstance.RunSimulation(timeinterval)

There are two optional keyword arguments, absoluteTolerance and relativeToler-

ance, which are for tuning the tolerances used to solve the ODE model with LSODA.

modelInstance.RunSimulation(timeinterval , absoluteTolerance = 1e-12,

relativeTolerance = 1e-6)

An important thing to note is that the model only keeps values for the current

time. If you wish to graph the evolution of a Species with respect to time, the

concentration and time will need to be sampled at the appropriate time points.

import numpy as np

times = np.zeros(101)

times[0] = modelInstance.time

concentrations = np.zeros(101)
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concentrations[0] = modelInstance.s[’speciesId ’].concentration

timeinterval = 1

for i in range(100):

modelInstance.RunSimulation(timeinterval)

times[i+1] = modelInstance.time

concentrations[i+1] = modelInstance.s[’speciesId ’].concentration

The results can then be graphed using any method you would like. For graphing

directly in python, matplotlib is a good option.

import matplotlib.pyplot as plt

plt.plot(times ,concentrations)

3.4 Conclusion

SBMLtoODEpy was designed to be extremely researcher friendly; researchers are able

to convert models with a single function call. Even within a single Python script,

a user can convert a model and import it immediately during runtime. The code

and documentations are the peer reviewed products of this work. The project is open

source and may be freely edited and redistributed. The source code can be pulled from

https://github.com/SMRuggiero/sbmltoodepy/tree/master/sbmltoodepy/sbml_

files [90] in addition to PiPy. SBMLtoODEpy has already been incorporated into

my work. In the virtual kidney project described in Chapter II, I instantiated 255

copies of the same model to compute the mesangial cell membrane boundary condi-

tion.
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CHAPTER IV

Procedural Generation Methods in Tissue Simulation

4.1 Background

4.1.1 Procedural Content Generation

Procedural content generation (PCG) broadly refers to the programmatic creation

of game elements. These elements include, but are not limited to, maps, items,

characters, graphical elements, and music within the game [91]. One of the earliest

games that made heavy use of PCG is the 1984 cult classic Rogue. Rogue places you

in the shoes of a novice adventurer delving into a dungeon. If your character dies, the

game ends, and you must restart from the beginning. The catch: since the procedural

generation used by Rogue to create each floor of the dungeon is random, the layouts

of the floors are new each time you play [92]. Figure 4.1 shows the first level from

Rogue from two separate attempts.

In their 2013 submission to The Fourth Procedural Content Generation in Games

workshop, Compton, Osborn, and Mateas proposed coining the titular term “genera-

tive methods” as an umbrella that includes PCG along with other analogous methods

from other fields [93]. The working definition proposed for generative methods is “a

function which produces artifacts” where an artifact has a structure and a context.

If we take a generative method that produces figures in the form of a picture as an

example, the figure is the artifact, how the pixels are encoded is the structure, and

the article that the figure is in is the context. The primary argument for using the

term generative method is to increase the academic visibility of PCG research and
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Figure 4.1: Two separate versions of the first level of the game Rogue [92]. Each of
the game’s elements are represented by a character of text. The brown borders and
green periods represent the walls and interior space of rooms, respectively. The gray
shaded areas are hallways. The player is the yellow face character, and enemies are
represented by gray capital letters: B for a bat in the top image and E for an emu
in the bottom image. The stairs going deeper into the dungeon are represented by a
flashing ≡ with a green background.
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to continue the cross pollination of ideas between fields [93]. PCG borrows solutions

from the fields of “AI, computational intelligence, computer graphics, modeling, and

discrete mathematics” [94]. Compton, Osborn, and Mateas argue that advances in

PCG have little academic visibility to other fields despite the presence of similar

techniques in art, architecture, computer aided design, optimization, and more [93].

Within engineering, there are techniques that fit the definition of a generative

method. A broad range of engineering challenges from logistics to reactor design can

be viewed through the lens of designing a set of problem relevant parameters to find

the best design. Using this lens, the task can distilled down into an optimization

problem [95]. When solving an optimization problem, an algorithm searches a design

space to produce a parameter set that yields an optimal solution [96]. The output of

this algorithm has a structure, typically a list of parameter values, and a context, the

model used in the optimization problem. In other words, optimization techniques fit

the definition of a generative method.

Genetic algorithms are a class of global optimization techniques that attempt to

solve an optimization problem by conceptualizing a models parameter as genes in

a genome. A genetic algorithm puts a population of trial parameter sets through

a process of mimicing mutation, recombination, and natural selection. Populations

start across an wide area of the design space and narrow towards the best optima

encountered [97, 96, 98, 91, 99]. Two examples of problems that can be solved by

genetic algorithms are scheduling and transportation problems [99]. In the context of

biomedical engineering, genetic algorithms have shown success in fitting quasi-linear

viscoelatic models [100] to data generated from a wide variety of soft tissues [101, 102].

Not only are genetic and evolutionary algorithms good choices for engineering

problems with a high number of local minima, they are the methods of choice for

search-based PCG [91]. One use case of search-based PCG is the generation of tracks

of a racing game tuned to a specific player [103]. In this case, core information for
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producing a track is represented as a series of waypoints that form a closed loop. The

generator produces the tracks from these waypoints by drawing curves on either side

of the loop. Figure 4.2 shows two generated tracks and their waypoints.

Figure 4.2: Two example tracks generated by the method presented in [103]. These
examples were generated based on the play style of one of the authors and serve as an
example of the same method producing individualized content for different players.

A model of the player is then used to simulate how the player might perform on the

track. The track was evaluated on the model player’s progress on the track, variance

across trials, and maximum speed achieved on the track. Starting from a random set

of points, the optimization algorithm used was able to design tracks specifically for a

single player [103].

4.1.2 Motivation

In an early stage of the DKD research presented in Chapter II, the focus was on

examining the effects of cellular dysfunction at the level of an entire glomerulus. To

this end we prepared simulations of the cross section of the glomerulus in Compu-

Cell3D [48]. For background information on DKD and CompuCell3D please refer to

Chapter II. Figure 4.3 served as a reference for developing the starting point for our

early simulations as seen in Figure 4.4.

However, looking at the structure of an actual glomerulus (Figure 4.5), questions

about how best to capture the cross section arise. The actual structure of a glomerulus

is highly irregular; cross sections of different glomeruli will have varying numbers of
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Figure 4.3: An illustrated cross section of a glomerulus adapted from [16]. This
illustration served as an initial reference for the first set of initial conditions created.

Figure 4.4: The earliest simulation initial conditions that had the capillaries (red)
placed and podocytes (blue) properly enveloping the mesangium (green) and capil-
laries.
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capillaries, variance in the positioning of capillaries, differences in the volume of the

mesangium relative to the surface, etc. Since patients have thousands of glomeruli

and we expect that the structural failure of the glomerulus is directly affected by

the structure itself, we need to be able to simulate starting from a variety of initial

structures.

Figure 4.5: Microscopy and 3D reconstructions of renal tissue sampled from patients
with mid stage kidney disease without other complications [104]. The spherical struc-
tures in both images are glomeruli. The cross sections and surfaces of glomeruli are
highly variable but do have patterns.

4.1.3 Methods Used in Literature

CompuCell3D provides some rudimentary functions to researchers [55], but the com-

mon ways of initializing CompuCell3D simulations are to use CellDraw, a tool pack-

aged with CompuCell3D, or to sweep through the pixels of the simulation space and

to draw cell objects based on coordinates.

CellDraw provides a graphical user interface for drawing the initial conditions of

a simulation. It takes the completed drawing and converts it into a plain text format

that contains position data for each cell [54]. The main advantage of CellDraw is that

it allows a researcher to develop a complicated tissue structure as a starting point
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for their simulation with minimal programming knowledge necessary. Its biggest

drawback is the large amount of researcher time needed to develop a single starting

geometry. Due to the programming knowledge that was expected to be necessary in

developing the glomerular simulations, the large number of geometries needed, and

the burden on the user’s drawing ability, CellDraw was determined to not be a great

fit for the project.

Sweeping through all of the pixels in the simulation space has its own set of

strengths and weaknesses. Typically the code sweeps along each axis of the sim-

ulation space and places cells at each pixel by running a set of calculations. The

primary strength is the high level of precision the developer has over the resulting

geometry. This method can also be parameterized, allowing the resulting geometry

to be tweaked by changing variables and leaving the rest of the code unchanged.

But parameterization of this method has severe diminishing returns. As a developer

seeks to introduce more complex ways to parameterize their simulation geometry,

the resulting code complexity outpaces the complexity introduced into the starting

geometry.

As an example, consider placing a podocyte cell one pixel below a capillary, or

one pixel lower along the y-axis in the convention of CompuCell3D. Assume that the

placement of the capillary has been parameterized as well. If we choose parameters

to place a capillary at (2, 2), we will place a podocyte at (2, 1). If we start our sweeps

from (0, 0), (2, 1) will be visited first, regardless of which axis is looped along first, and

the capillary will not been placed at (2, 2) yet. Of course, the simplest approach is

to reverse the direction the y-axis is iterated along. Swapping the y-axis works here,

but this is a simplified version of a problem encountered in developing the initial

conditions for the glomerular simulations. The actual problem is placing podocytes

along the surface of the capillary not in contact with the mesangium, which requires

placement above and below the capillary.
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A seemingly straight forward approach to consider is checking if a capillary will be

placed at (2, 2). Since the placement of the capillary itself has been parameterized,

the check at (2, 2) can be as computationally complex as the check in the current

pixel. This alone does not make writing of the code considerably more complex.

Assuming that checking the pixel is its own function, the researcher could just call

the function at (x, y) and (x, y+ 1). However, parameterizing both the podocyte and

capillary can create interactions. Since the capillary is parameterized, its placement

might depend on checking the pixel above or to the right of it. Since we started from

placing a podocyte relative to an object that has a location that is parameterized,

all of these extra checks will need to be done at every pixel visit that could possibly

allow a podocyte and not just a specific location. An approach that avoids chaining

checks would be to simply sweep through the simulation space twice and place the

podocytes on the second pass. The issue is that the same interaction that causes

chaining multiple checks leads to needing multiple sets of loops through the entire

simulation space.

Looping through the simulation space is attractive because CompuCell3D stores

the cell locations in a three-dimensional array, and a nest of three loops is a logical

way to access every element. However, we do not actually need or want to visit every

element; not every pixel is occupied by a cell. If we resolve where all the cells are

before actually placing them, we can skip over the empty elements. Therefore, the

starting point for developing our simulation geometry combined conceptual aspects

of CellDraw and the method of programmatically evaluating what cell goes in a pixel

based on its coordinates.

One method from literature on a different scale of systems biology simulation

involved generating the structure of a cell or tissue using a generative model [105, 106,

107]. In the context of machine learning, a generative model is trained to estimate

the probability distribution of a population [108]. The generative models used in
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these methods predict the distribution by producing simulacra of individuals of the

population. In these cases it is the simulacra themselves that are useful [106]. These

models are trained using massive amounts of data of the population they are trying to

generate, typically in the form of annotated microscopy [105, 106, 107]. While data

sets containing microscopy of glomeruli are available [109], and machine learning

has been applied to studying glomeruli [110], a data set with the level of annotation

needed for our purposes is not available. Further, we do not seek to recreate images of

glomeruli, we are trying to create a representation that may be used in CompuCell3D.

4.2 Generation of Cellular Geometry

4.2.1 Glomerulus Cross Sections

We wanted the ability to statistically sample a population of geometries, produce the

geometry rapidly for each simulation, thoroughly parameterize how the cross sections

are laid out, and do all of this without the data useful to train a generative model.

Inspired by the level generation of games like Rogue [92], an algorithm was developed

to generate the cross section of the glomerulus as if drawing part of a level. The

algorithm places the cells in our simulation by computing the location of each cell

and the exact pixels the cell occupies, and then “paints” them to the array of cells

by writing to all elements the cell occupies. Painting the glomerulus was done in four

steps. Figure 4.6 shows the geometry after each of the steps.
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Step One: Mesangium Step Two: Podocytes

Step Three: Capillaries Step Four: Capillary Podocytes

Figure 4.6: The simulation initial geometry after each step of the algorithm.

The first step starts by drawing in the mesangium. The method CreateBlob()

uses the ratio of the mesangium diameter to cell width to calculate a circle diameter.

If a diameter of 50 and cell width of 5 is chosen, the resulting circle diameter is 10.

Using the midpoint algorithm [111], CreateBlob() calculates the points of the circle

and optionally fills the circle in. For the mesangium, this circle is filled in. The pixels

of the circle are mapped to a cell width by cell width square section of the simulation

space, where a cell is drawn for every pixel. To add in the initial set of podocytes,

CreateBlob() is called again with the fill option disabled. This overwrites the outer
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most layer of mesangial cells with podocytes.

The next step is placement of the capillaries. The CreateCapillaries() method

identifies evenly spaced points in a circle around the center of the glomerulus. At

each of those points, it creates a large circular cell in that position using the midpoint

algorithm. In this case, instead of expanding the circle to draw multiple cells, the

pixels are mapped directly to the simulation space to draw a single cell. This method

can also evenly place the capillaries in a specified segment of the circle around the

mesangium.

The last step has two parts. The PlacePodocytesAroundCapillaries() method

starts by cleaning up after the CreateCapillaries(). An unintended consequence

of CreateCapillaries() is that podocytes end up between capillaries and mesangial

cells. For each capillary, PlacePodocytesAroundCapillaries() finds its neighboring

cells and forces them to be mesangial cells. The method then finds the portion of

each cell’s border in contact with the medium. This exposed region is patched over

with a single podocyte cell that is grown outwards in layers one pixel thick. The giant

podocyte cell is split up into smaller chunks of a volume similar to the cells placed

with the CreateBlob() function.

The final version of the algorithm has nine different parameters that can be ad-

justed to change how the geometry is generated. Examples of geometry produced

after parameterizing this procedure are in Figure 4.7. The procedure makes several

assumptions about how the cells are placed in relation to each other. These assump-

tions limit the amount of variability of the geometries produced by the procedure. As

a result, I sought to generalize producing the geometry further.

4.2.2 Generalizing the Algorithm

The approach proposed in this section to generalize the generation of simulation

geometry is based on the method used to generate outdoor maps in the game Path
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Figure 4.7: Simulations of procedurally generated glomeruli in the preliminary results
for Aim II. In the left column, the capillaries are evenly spaced along the entire outside
of the mesangium. The right column has an arc at the top excluded, and the capillaries
are placed evenly along the included arc. The five capillary case with an excluded
arc (bottom right) mimics the glomerulus of Figure 4.3.

of Exile [112]. Just like in Rogue [92], Path of Exile uses procedural generation to

create the map of every playable area of the game. Unlike Rogue, Path of Exile uses

its method to create variants of the same layout instead of completely randomized

layouts. Each area may have more than one layout, but each time a map is created

from the same layout, the key objectives are placed in the same general area.

Each layout is represented as a graph. A graph is an abstract network of nodes

and edges, and the nodes and edges together represent how objects of a network are

connected. Figure 4.8 is an example of one of these graphs and a map generated from

it. Nodes are used represent key locations of the area such as exits, story objectives,

or intersections. The edges are the paths between these locations and have types

associated with them that determine the terrain that make up the paths, including
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rivers that cannot normally be walked over. Since the edges are straight lines, nodes

can also be used to indicate a bend in the path. The regions are filled in automatically

based on the typing of the edges enclosing it [113].

Figure 4.8: An overhead view of a playable area in Path of Exile [112] and the graph
used to represent the area’s layout presented in [113].

The terrain is built up by piecing together tiles. The tiles are square or rectangular

portions of terrain that have been modeled by an artist. These tiles can be manually

arranged into “rooms”, which can be prearranged tiles of an outdoor area. Typically

rooms are used for the locations denoted by the nodes of the graph but can be included

as interesting features dispersed through the map [113].

To translate the preceding discussion about Path of Exile to constructing geome-

tries for our simulation, each of the elements need to be redefined in terms of drawing

cells. The graph itself is an abstract representation of the tissue structure. The nodes

of the graph represent key features of the tissue or reference points for edges. The

edges represent the cells connecting the key features, or thin features of the tissue,

such as the glomerular basement membrane. The idea of treating the cells as tiles

and puzzling them together is less relevant. The tiles that make up the maps of Path

of Exile need special consideration so the edges of each tile match up, allowing the

terrain to remain continuous from tile to tile [113]. Instead of placing individual cells
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as tiles, painting functions can be used to place cells. The concept of “rooms” is still

useful, as manually arranged cells or custom painting functions allows for complex

features. An example of a “room” in the glomerulus cross section is the function

written to place capillaries and the podocytes around them. A useful extension of

this method is to directly consider the regions of the graph. Instead of filling the

regions based on the surrounding edges, a generalized painting function can be used

to fill the region in with cells.

4.3 Conclusions

The algorithm incorporated into the glomerular tissue simulation is able to produce

a variety of geometries useful for on whole glomerulus scale simulations. There are

nine parameters in the code that may be adjusted to vary the geometry produced.

However, even the current alogrithm is limited in the geometries it can produce. This

method may be generalized to produce varied geometries from an arbitrary graph.

This generalized algorithm may be a useful tool for other researchers developing

tissue simulations. The code for the work discussed in this chapter is available at

https://github.com/ashleefv/GlomSliceGen [114].
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CHAPTER V

Recommendations for Future Work

5.1 Aim I: Establishing the Virtual Kidney

One effect that the transport model neglects is the effect of oncotic pressure on fluid

flow. Modeling oncotic pressure requires coupling the solute transport to the CFD

simulation. Directly coupling the Star-CCM+ [69] simulation with the CompuCell3D

simulation was considerd, but Star-CCM+’s application programming interface made

this too onerous of a task. OpenFOAM [115] is a CFD simulator that seems promising

to incorporate into the virtual kidney project as an alternative to Star-CCM+.

Using the mesangial model to define solute concentrations in the bloodstream was

a stopgap used to produce results that showcased the behavior of the transport model.

Using a global renin-angiotensin system model for the bloodstream is recommended.

My work on the tissue model left off at designing the tissue geometry at the

start of the simulation. The next step is to model the normal behavior of the cells,

how the biochemical and transport models disrupts the cells’ behavior, and how this

propagates to the structural changes that result from cross talk.

5.2 Aim II: SBMLtoODEpy, An Open Source Systems Biology Markup

Language to Python Converter

SBMLtoODEpy currently does not support Events and Constraints. The next

major version update to the package should include supporting these model elements.

These additions are on top of the regular maintenance expected as libSBML [78] and

the SBML specifications [1] are routinely updated.
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5.3 Aim III: Procedural Generation Methods in Tissue Simulation

While a prototype for the generalized algorithm presented in Aim III was started,

Aim I diverged from the need for this prototype. Aim I was prioritized and grew to

be time demanding to finish the prototype. Continuing this work require developing

the prototype into functional software.
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H. Jalanko, C. Holmberg, and K. Tryggvason, “Nephrin is specifically located

at the slit diaphragm of glomerular podocytes,” Proceedings of the National

Academy of Sciences, vol. 96, no. 14, pp. 7962–7967, 1999.

[61] A. Ortega, D. Amorós, and J. G. De La Torre, “Prediction of hydrodynamic

and other solution properties of rigid proteins from atomic-and residue-level

models,” Biophysical Journal, vol. 101, no. 4, pp. 892–898, 2011.

[62] H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density

is a molecular-weight-dependent function,” Protein Science, vol. 13, no. 10,

pp. 2825–2828, 2004.

[63] G. A. Spyroulias, P. Nikolakopoulou, A. Tzakos, I. P. Gerothanassis, V. Magafa,

E. Manessi-Zoupa, and P. Cordopatis, “Comparison of the solution structures

of angiotensin i & ii: Implication for structure-function relationship,” European

Journal of Biochemistry, vol. 270, no. 10, pp. 2163–2173, 2003.

[64] A. Zhou, R. W. Carrell, M. P. Murphy, Z. Wei, Y. Yan, P. L. Stanley, P. E. Stein,

F. B. Pipkin, and R. J. Read, “A redox switch in angiotensinogen modulates

angiotensin release,” Nature, vol. 468, no. 7320, pp. 108–111, 2010.

[65] Y. Imaeda, H. Tokuhara, Y. Fukase, R. Kanagawa, Y. Kajimoto, K. Kusumoto,

M. Kondo, G. Snell, C. A. Behnke, and T. Kuroita, “Discovery of tak-272: a

72



novel, potent, and orally active renin inhibitor,” ACS Medicinal Chemistry

Letters, vol. 7, no. 10, pp. 933–938, 2016.

[66] A. P. Hinck, S. J. Archer, S. W. Qian, A. B. Roberts, M. B. Sporn, J. A. Weath-

erbee, M. L.-S. Tsang, R. Lucas, B.-L. Zhang, J. Wenker, et al., “Transforming

growth factor β1: three-dimensional structure in solution and comparison with

the x-ray structure of transforming growth factor β2,” Biochemistry, vol. 35,

no. 26, pp. 8517–8534, 1996.

[67] E. Morgunova, A. Tuuttila, U. Bergmann, M. Isupov, Y. Lindqvist, G. Schnei-

der, and K. Tryggvason, “Structure of human pro-matrix metalloproteinase-2:

activation mechanism revealed,” Science, vol. 284, no. 5420, pp. 1667–1670,

1999.

[68] K. B. Kosto and W. M. Deen, “Hindered convection of macromolecules in hy-

drogels,” Biophysical Journal, vol. 88, no. 1, pp. 277–286, 2005.

[69] Siemens PLM Software, STAR-CCM+, 2004. https://www.plm.automation.

siemens.com/global/en/products/simcenter/STAR-CCM.html.

[70] A. Denic, J. Mathew, L. O. Lerman, J. C. Lieske, J. J. Larson, M. P. Alexander,

E. Poggio, R. J. Glassock, and A. D. Rule, “Single-nephron glomerular filtration

rate in healthy adults,” New England Journal of Medicine, vol. 376, no. 24,

pp. 2349–2357, 2017.

[71] A. Tobar, Y. Ori, S. Benchetrit, G. Milo, M. Herman-Edelstein, B. Zingerman,

N. Lev, U. Gafter, and A. Chagnac, “Proximal tubular hypertrophy and en-

larged glomerular and proximal tubular urinary space in obese subjects with

proteinuria,” PLoS One, vol. 8, no. 9, p. e75547, 2013.
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APPENDIX A

Podocyte and Mesangial Cell Models

The work presented in this chapter Dr. Minu Pilvankar’s podocyte model [47] and
Ashlea Sartin’s model of TGF-β1 and MMP-2 regulation in the mesangial cell. These
are the biochemical models incorporated into the work presented in ChapterII.

The mass balance for AGT is

d[AGT]

dt
= kAGT − cRenin[AGT]− ln 2

hAGT

[AGT] (1.1)

where kAGT is the constant production rate of AGT, cRenin is the glucose-dependent
rate parameter for renin-catalyzed conversion of AGT to ANG I, and hAGT is the
half-life for the degradation of AGT [46].

The mass balance for renin is

d[Renin]

dt
= sRenin + kf ([ANG II]0 − [ANG II])

(
1− [ANG II]0 − [ANG II]

f

)
− ln 2

hRenin

[Renin]

(1.2)

where sRenin is the constant source of renin in the absence of feedback, the second
term is the influence of ANG II negative feedback on renin production, [ANG II]0 is
the initial concentration of ANG II, kf and f are parameters for the feedback, and
hRenin is the half-life for the degradation of renin [116]. The renin source term is
computed at steady state by

sRenin =
ln 2

hRenin

[Renin]0 (1.3)

where [Renin]0 is the initial concentration of renin [116].
The mass balance for ANG I is

d[ANG I]

dt
= cRenin[AGT] + kRenin([Renin]− [Renin]0)− cACE[ANG I]

− (kNEP + kACE2)[ANG I]− ln 2

hANG I

[ANG I]
(1.4)

where the first term represents the glucose-dependent renin-catalyzed contribution
to the production of ANG I from AGT, the second term represents the change to
ANG I synthesis from AGT due to the feedback of ANG II on renin with rate constant
kRenin, the third term is the ACE-catalyzed conversion of ANG I to ANG II that has a
glucose-dependent rate parameter cACE, the fourth term is the consumption of ANG I
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to form ANG-(1-7) and ANG-(1-9) with the glucose-independent rate parameters
kNEP and kACE2, respectively, and hANG I is the half-life for the degradation of ANG I.
The first and second terms in (1.4) both consider the production of ANG I from AGT
catalyzed by renin. The first term is from glucoseRASpodocytes and includes glucose
dependence in the absence of the ANG II-renin feedback mechanism. The second
term is from ACEInhibPKPD to incorporate the effects of the feedback mechanism
on changing the production rate [46, 116].

The mass balance for ANG II is

d[ANG II]

dt
= cACE[ANG I]− (cAT1 + kAT2 + kAPA + kACE2)[ANG II]

− ln 2

hANG II

[ANG II]
(1.5)

where the first term is the production of ANG II in the presence of ACE that is
subject to inhibition I by the drug; the second term is the consumption of ANG II as
it converts into downstream peptides and binds to AT1 and AT2 receptors; cAT1 is the
glucose-dependent rate parameter for binding of ANG II to AT1 receptor; kAT2, kAPA,
and kACE2 are the glucose-independent rate parameters for binding of ANG II to the
AT2 receptor and conversion of ANG II to ANG III and ANG-(1-7), respectively;
and hANG II is the half-life for degradation of ANG II [46, 116].

Glucose dependency is included in the parameters designated by cx, where x =
Renin, ACE, and AT1. In glucoseRASpodocytes [46] these parameters were found
to be the most sensitive and were each considered to be a linear function of glucose.
The glucose-dependent parameters are calculated using [46]

cRenin = aRenin[GLU] + bRenin (1.6)

cACE = aACE[GLU] + bACE (1.7)

cAT1 = aAT1[GLU] + bAT1 (1.8)

where [GLU] is the concentration of glucose and the coefficients ax and bx in (1.6)–(1.8)
are obtained from parameter estimation detailed in [46].

TGF-β production is upregulated by an increase in the concentration of an-
giotensin II. This change in TGF-β with respect to time is described by

d[TGF]

dt
= BT +

k1([ANGII]− [ANGII]NG)

([ANGII]− [ANGII]NG) + a1

− kT [TGF] (1.9)

where [TGF] is the concentration of TGF-β, BT is the baseline production rate of
TGF-β, k1 is the rate constant of angiotensin II stimulated production of TGF-β,
[ANGII]NG is the concentration of Angiotensin-II at normal glucose levels, a2 is the
half-saturation constant of the same process, and kT is defined as

kT =
ln(2)

hT
(1.10)
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Table A.1: Pharmacodynamic parameter values for the podocyte local RAS model.

Parameter Value Units Sources

kAGT 2.27× 106 nmol/L/h [46]
kRenin 6.44× 104 h−1 [116]
kNEP 0.583 h−1 [46]
kACE2 0.382 h−1 [46]
kAT2 25.1 h−1 [46]
kAPA 43.6 h−1 [46]
hAGT 10.0 h [46, 117]
hRenin 0.250 h [116]
hANG I 1.72× 10−4 h [46, 117]
hANG II 5.00× 10−3 h [46, 117]
aRenin 5.47× 10−4 L/mmol/h [46]
bRenin 6.14× 10−2 h−1 [46]
aACE 0.889 L/mmol/h [46]
bACE 16.3 h−1 [46]
aAT1 2.55 L/mmol/h [46]
bAT1 46.4 h−1 [46]
kf 4.92× 10−5 h−1 [116]
f 5.05× 10−4 nmol/L [116]

[AGT]0 1.70× 104 nmol/L [46]
[Renin]0 2.06× 10−4 nmol/L [116]
[ANG I]0 0.271 nmol/L [46]
[ANG II]0 2.10× 10−2 nmol/L [46]

[ANG II]0, sys NRF 1.65× 10−2 nmol/L [116]
[ANG II]0, sys IRF 2.05× 10−2 nmol/L [116]
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where hT is the half-life of TGF-β. BT is defined as

BT = kT [TGF]NG (1.11)

where [TGF]NG is the concentration of TGF-β at normal glucose levels.
The upregulation of TGF-β in turn causes an down regulation of MMP represented

by
d[MMP]

dt
= BM +

k2

[TGF] + a2

− kM([MMP]) (1.12)

where [MMP] is the concentration of MMP, BM is the baseline production rate of
MMP, k2 is the rate constant of TGF-β inhibited MMP production, a2 is the half-
saturation constant of TGF-β inhibition, and kM is defined as

k[MMP] =
ln(2)

hM
(1.13)

where hM is the half-life of MMP. BM is defined as

BM = kM [MMP]NG −
k2

[TGF]NG + a2

(1.14)

where [MMP]NG is the concentration of MMP at normal glucose levels.

Table A.2: Parameters for equations (1.9) and (1.12).

Parameter Value Units Sources

BT 4.55 ∗ 10−4 mmol/L/h -
k1 3.18 ∗ 10−2 mmol/L/h -
a1 1.08 ∗ 10−5 mmol/L -
kT 0.462 h−1 -
hT 1.5 h [44]
BM 4.55 ∗ 10−4 mmol/L/h -
k2 3.70 ∗ 10−6 mmol2/L2/h -
a2 −2.04 ∗ 10−2 mmol/L -
kM 1.51 ∗ 10−2 h−1 -
hM 46 h [44]
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