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Abstract: Organic-rich shales have become increasingly important to unconventional 

petroleum reservoirs, and tools such as the gamma-ray have been used to locate them due 

to the radioactivity of elements such as uranium, potassium, and thorium present within 

shales.  Complex sedimentary processes of organic-rich black shales are responsible for 

highly variable geochemical signals.  Generally, there is a strong correlation between 

gamma-ray signature, as a result of radioactive uranium (U), and total organic carbon 

(TOC) in many Devonian black shales due to similar depositional processes of U and 

TOC.  However, this strong correlation between U and TOC does not seem to be present 

within the Cleveland Shale interval based on gamma-ray data.  

 

In order to interpret ancient ocean conditions, trace metal uranium and 

molybdenum (Mo), and total organic carbon inventory of the Cleveland Shale and Lower 

Huron members of the Devonian Ohio Shale Group of eastern Kentucky were evaluated 

in order to determine the degree of basin restriction and paleoredox state of the 

Appalachian Basin at the time of deposition. The Ohio Shale Group provides a 

remarkable study area for this investigation along the basin margin of the Appalachian 

Basin, as trace metal U and Mo data give insight on the opening and closing of the basin 

throughout the Devonian Period. The Cleveland member of the Ohio Shale Group 

displays a weak to moderate correlation between TOC and trace metal U and Mo.  In 

contrast, the two subdivisions that are defined in this study of the Lower Huron of the 

same stratigraphic group has a much stronger correlation between TOC and trace metal U 

and Mo.   In fact, many sections throughout the lower and uppermost Cleveland Shale 

interval have greater organic carbon contents (up to 6.0 wt.%) than that of sections in the 

Lower Huron that have more radioactivity as a result of higher U contents.  This 

discrepancy between U, Mo, and organic carbon accumulation along the basin margin 

setting is a result of trace metal availability in the water column, basin geometry, location 

within the basin, and a fluctuating sea level that impacted the degree of restriction and sill 

depth dividing the water masses surrounding the Appalachian Basin.  
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CHAPTER I 

 

 

 INTRODUCTION 

 

The gamma-ray tool is a non-destructive method used on core or outcrop samples that 

involves reading the radioactivity of certain trace metals that have been incorporated into the 

sediment.  Typically, the gamma-ray tool has a relatively high response in black shales due to the 

natural radioactivity of uranium that is present within black shales (Schmoker, 1981; Lüning and 

Kolonic, 2003).  Black shales are defined as dark gray or brown to black mudrocks containing 

organic matter and silt- and clay-sized particles that accumulated together (Swanson, 1961; 

Tourtelot, 1979; Schmoker, 1981; Wignall and Myers, 1988; Lüning and Kolonic, 2003).  These 

organic-rich black shales form where large quantities of organic matter accumulated as a result 

of high productivity and where oxygen-depleted water conditions are present (Schmoker, 1981; 

Spirakis, 1996; Lüning and Kolonic, 2003). Due to the accumulation of organic matter (OM) and 

uranium under anoxic conditions, the gamma-ray log response is typically high in black shales 

with high TOC (Schmoker, 1981; Wignall and Myers, 1988; Spirakis, 1996; Lüning and 

Kolonic, 2003). Reduction of uranium occurs under anoxic conditions and is intensified under 

euxinic conditions when free sulfides are present (Klinkhammer and Palmer, 1991; Lovely et al., 

1991; Lovely, 1993; Spirakis, 1996; Algeo and Maynard, 2004).  High organic carbon 

preservation in sediments can occur due to processes such as high particle sinking velocities, 
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aggregational processes in the water column, rapid burial, or during periods of intense 

productivity (Hedges et al., 2001; Calvert and Pedersen, 1992). 

Gamma-ray techniques have been reliable for finding economically profitable, high TOC 

zones in ancient basins by reading high radioactivity as an indicator for high organic content due 

to the assumed linear relationship between U and TOC (e.g. Bell et al., 1940).  Uranium 

concentration is important to the petroleum industry due to this association between uranium and 

organic carbon, and thus gamma-ray and organic carbon.  Gamma-ray based isopach mapping is 

a technique used by researchers to predict the extent of source rocks within ancient basins 

(Schmoker 1980, 1981; Fertl and Rieke, 1980; Herron, 1991; Lüning and Kolonic, 2003). For 

example, the Upper Devonian Woodford Shale of Oklahoma displays a strong correlation 

between gamma-ray and TOC (e.g. Lüning and Kolonic, 2003), while the similar-aged members 

of the Ohio Shale Group of Eastern Kentucky exhibits a decoupling between gamma-ray 

response and TOC.  Although there are similar depositional environments within these shale 

groups, U as an indicator of organic-richness through gamma-ray response cannot always be 

used reliably as some black shales do not have a strong correlation between TOC and U content 

(Lüning and Kolonic, 2003).  The decoupling of a stable U/TOC relationship may be due to 

oxidation of reduced U during oxic periods or in the presence of phosphate (Lüning and Kolonic, 

2003).  
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1.1 Trace Metal Geochemistry 

Seawater is a major geochemical reservoir that has a variety trace metals that can be used 

as geochemical proxies.  The analysis of trace metal data can be reliably used to identify ocean 

current and redox conditions (Brumsack, 1980; Calvert and Pederson, 1993; Algeo and Maynard, 

2004; Algeo and Rowe, 2012) and to determine the variation in redox conditions in organic-rich 

black shales (Vine and Tourtelot, 1970; Pratt and Davis, 1992; Algeo and Maynard, 2004; 

Brumsack, 2006).  Trace elements exhibit considerable enrichment in organic-rich black shales 

(Calvert and Pedersen, 1993; Algeo and Maynard, 2004).   

Variability in trace metal concentrations within a vertical section of rock indicate 

evolution of watermass geochemistry as a result of differential rates of trace metal uptake by the 

sediment. High productivity and oxygen depleted environmental conditions are required in order 

to create an environment in which large quantities of organic matter and U can be preserved in 

black shales (Swanson, 1961, Tourtelet, 1979; Schmoker, 1981; Lüning and Kolonic, 2003; 

Piper and Calvert, 2009).  Basin geometry has a significant influence on trace metal 

accumulation.  For example, a large basin with a shallow sill such as the Black Sea will be 

renewed in trace metals less readily than a smaller basin with deeper sills such as the Saanich 

Inlet (Figure 1) (Algeo and Lyons, 2006; Algeo and Rowe, 2012).  Within a restricted basin 

environment, such as the Michigan Basin, the basin margin and deeper basin settings have 

drastically different geochemical signatures as a result of a shifting pycnocline, or layer in which 

water density rapidly increases with depth, that fluctuated during the rise and fall of sea level 

(Formolo et al., 2014).  Sea level fluctuated throughout the Devonian, and the Ohio Shale Group 

has varied trace metal concentrations as a result of restriction and sill variability (Algeo and 

Rowe, 2012).  At times when eustatic levels are high, the silled margins of basins are deep sills, 
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allowing for more trace metals to be delivered into the system, however during eustatic falls 

marginal sills are more shallow and restricts circulation of trace metals into the system (Figure 1) 

(e.g., Algeo and Lyons, 2006; Algeo and Rowe, 2012).  Under basinal geometries that are 

considered restricted or silled basins, large amounts of organic matter in the sediment and poor 

circulation of oxygenated waters allows for oxygen-depleted bottom water conditions (Algeo and 

Rowe, 2012). 

 

 

Figure 1. Models of different basin geometries that influence trace metal accumulation.  A) 

continental shelf upwelling zone. B) anoxic basin with deep sill.  C) anoxic basin with shallow 

sill (Algeo and Rowe, 2012). 

 

1.2 Uranium Geochemistry 

Uranium content has been a useful indicator for bottom water anoxia in ancient sediments 

(Wignall and Myers, 1988; Anderson et al., 1989; Jones and Manning, 1994; Tribovillard et al., 

2006).  Uranium is present as either soluble U(VI) or as insoluble U(IV) oxidation states 

(Langmuir, 1978; Klinkhammer and Palmer, 1991; Calvert and Pedersen, 1993). The 

incorporation of U into the rock record can occur under a variety of conditions/mechanisms:  
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active biological uptake of U by organisms that eventually become part of the rock record in 

organic-rich sediments; chemically dissolved state of U(VI) that is incorporated in sediments on 

the ocean floor is preserved; chemical reduction in anoxic water columns of soluble U(VI) to 

insoluble U(IV); or diffusion of dissolved U(VI) into anoxic sediments where it is reduced and 

then precipitated  (Anderson et al., 1989; Lovley et al., 1991). 

The primary source of uranium that is concentrated in marine black shales is attributed to 

the availability of uranium present within the water column at the time of deposition (Swanson, 

1961; Spirakis, 1996).  The uranium/ TOC ratio in black shales is influenced by many factors 

such as the primary uranium content of the water body, carbonate content, and the sedimentation 

rate at the time of deposition (Lüning and Kolonic, 2003).  Uranium (U) is removed from sea 

water by diffusion across the sediment-water interface of organic-rich sediments and is the 

largest single sink of U in the global U budget (Schmoker, 1981; Klinkhammer and Palmer, 

1991; Lüning and Kolonic, 2003).  This process is more intense during euxinic conditions, when 

the water column is fully depleted in oxygen, and has the presence of free hydrogen sulfide 

(Anderson et al., 1989; Algeo and Maynard, 2004; Brumsack, 2006; Tribovillard et al., 2006 ).  

Since U is enriched in anoxic/euxinic sediments, it is therefore used as a proxy indicator of 

sediment deposition under such conditions (Figure 2) (Algeo and Maynard, 2004; Tribovillard et 

al., 2006). 

Uranium has been a useful proxy for determining the organic-richness in shales through 

the use of the gamma-ray tool due to the response to the radioactivity given off from U and the 

relationship with highly organic sections of shale that tend to contain an abundance of U, 

however this approach would be problematic for zones that have a depleted amount of uranium, 

despite having high organic content, such as the Ohio Shale Group of Eastern Kentucky. 
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1.3 Molybdenum Geochemistry 

Sedimentary Mo has been used in studies as a proxy for benthic redox potential.  

Molybdenum generally has a strong correlation to organic-richness in marine black shale facies 

that are deposited during oxygen-depleted conditions and is affected by the areal extent of 

bottom water anoxia (Emerson and Huested, 1991; Jones and Manning, 1994; Algeo and Lyons, 

2006; Algeo, 2007).  Under reducing conditions, the stable oxidation state of molybdenum is Mo 

(IV), while in the presence of H2S, insoluble molybdenum sulfide complexes form, leading to an 

enrichment of Mo under euxinic conditions (Emerson and Huested, 1991; Tribovillard et al., 

2006).   Restricted basins generally exhibit lower concentrations due to rates of Mo uptake by the 

sediment surpassing the resupply rate of Mo by deepwater renewal (Emerson and Huested, 1991; 

Algeo et al., 2007; Algeo and Maynard, 2008).  Deepwater Mo concentrations and renewal times 

are ultimately reflected by the rate of deepwater exchange relative to basin volume, which is 

strongly influenced by basin and sill geometry (Algeo et al., 2007). 
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Figure 2. Redox threshold scale for trace metal enrichment, divided between anoxic (non-

sulfidic) and euxinic (sulfidic) facies.  Both U and Mo experience increased enrichment and 

preservation under euxinic conditions (Modified from Algeo and Maynard, 2004) 
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CHAPTER II 

 

BACKGROUND 

 

 

 

 

2.1 Acadian Orogeny 

The Acadian Orogeny (411-315 Ma) developed as a product of oblique convergence 

along a large strike-slip fault zone between the Laurussian and Avalon terrane (Ettensohn, 1987).  

Throughout the Devonian, widespread deposition of thick intervals of black and gray shales were 

deposited across many parts of present-day North America.  Throughout the Late Devonian 

(Famennian), the regionally extensive Huron and Cleveland Shale Members of the Ohio Shale 

Group were deposited within the Appalachian Basin (Ettensohn, 1987).  The Ohio Shale is age-

equivalent to other Upper Devonian shales such as the New Albany (Illinois Basin), the Antrim 

(Michigan Basin), Chattanooga (Tennessee), and the Woodford (Oklahoma).  During the time of 

deposition, Kentucky was divided between the Illinois Basin, Cincinnati Arch, and the 

Appalachian Basin and roughly two thirds of Kentucky is underlain by Devonian strata (Nuttall, 

2005).  Five major tectonic depositional cycles of fine- to course-grained sediment occurred 

throughout the Devonian Acadian tectophase, each cycle beginning with rapid subsidence within 

the basin (Ettensohn, 1987). 
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2.2 Eustatic influences and basinal restriction 

 Eustasy plays a significant role in restricted or silled marine basins; an overall fall of 

eustatic level would result in further restriction of the basin setting due to lowered water depths 

over a basin’s marginal sills, while on the other hand a rise in eustatic levels would increase 

water depths of a basin’s marginal sills thus increasing inflow and outflow of surface waters 

(Algeo and Lyons, 2006; Algeo and Rowe, 2012).  Sill variability impacts organic carbon and 

deepwater redox conditions by limiting the inflow of nutrient-rich waters into a basin setting.   

As an example, in the Cariaco Basin during a glaciation event (~16 - 6 kyr B.P.), the marginal 

sills of the basin were deepened and an influx of nutrient-rich intermediate waters stimulated 

primary productivity and deepwater anoxia ensued (Haug et al., 1998; Yarincik et al., 2000). The 

Devonian Ohio Shale group provides a case study of the relationship of eustasy to basinal 

restriction and trace metal accumulation patterns.  Throughout the Devonian, the Appalachian 

Basin was in communication between the Michigan and Illinois basins as well as the Rheic 

Ocean across shallow marginal sills (Figure 4) (Algeo and Maynard, 2008; Algeo and Rowe, 

2012).  Overall, eustatic elevations were rising through the Middle and Late Devonian, followed 

by a significant short-term eustatic falls at the Frasnian/Famennian boundary and the Devonian-

Carboniferous boundary (Figure 3) (Johnson et al., 1985; Pashin and Ettensohn, 1995).  These 

eustatic falls are linked to an episode of continental glaciation in South America (Isaacson et al., 

2008) and a piedmont glaciation in Laurussia (Pashin and Ettensohn, 1995; Brezinski et al., 

2008; Ettensohn et al., 2020).  Glaciation in Cleveland seas was made evident by a large 

granitoid boulder that was embedded in the upper section of the Cleveland Shale in northeastern 

Kentucky (Lierman and Mason, 2007; Ettensohn et al., 2007; Ettensohn et al., 2020). 
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Figure 3.  Paleogeography of eastern North America in the Late Devonian (~360 Ma) showing 

marginal sills and Appalachian Basin in relation to surrounding basins and the Rheic Ocean.  

Location designated with the orange star illustrates an estimated location of the well for this 

study: Well 566765 Letcher County, KY.  Location designated by a red circle indicates a deeper 

basin setting from previous studies such as Algeo and Maynard, 2008.  (modified from 

Ettensohn, 1997; Algeo and Maynard, 2008). 

 

2.3 Study Area  

 This study is focused on the Late Devonian Ohio Shale of eastern Kentucky within the 

central Appalachian Basin.  The Devonian Ohio Shale Group of the western Appalachian Basin 

has been an economic gas resource for Kentucky due to the group’s organic richness.  The early 

division of the Ohio Shale was originally based off outcrop samples, well cuttings, and gamma-

ray logs (Lewis and Schwietering, 1971; Provo et al., 1978).  In eastern Kentucky, the Cleveland 
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and Huron members are black to dark gray shales that are divided by the gray to greenish gray 

silty-shale Three Lick Bed and overlain by the Berea Sandstone and Bedford shale.   

 

 

Figure 4.  Paleogeography of Kentucky displaying the location of Well 566765 (orange star and 

circled in black) in Letcher County, KY, the well used for this study.  Displayed in red are the 

estimated locations of the study locations used in Algeo and Maynard (2008) study.  Paleo-

reconstruction based off Blakey (2013). 

 

 

2.4 Stratigraphic Framework 

 In eastern Kentucky, the Famennian Ohio Shale is the stratigraphic interval that resides 

above the marine Olentangy Shale, and below the fluvial Bedford Formation and the Berea 

Sandstone sequence (Figure 5).  The Ohio Shale Group has two carbonaceous black shale 

sequences, the Huron and Cleveland Shale members that are separated by a westward thinning 

tongue of gray-to dark gray silty-shale of the Chagrin Member (Lewis and Schwietering, 1971; 
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Schwietering, 1979; Hohn et al., 1980; Roen, 1980; Roen, 1984).  Due to the extensiveness of 

Late Devonian black shale deposition, these units have been used as a regional stratigraphic 

reference. 

The Cleveland Shale Member is the uppermost unit of the Ohio Shale Group.    Based off 

of a well log from Well 566765 from Letcher County, KY, the average gamma ray across the 23 

m (75 ft) thick Cleveland Shale interval is ~220 API.  According to a thesis  by Otto (2015), the 

average TOC of the Cleveland Shale in eastern Kentucky is 6.1 wt. %; this average includes the 

lower portion of the Cleveland that has significantly lower TOC levels, reaching a TOC of 9.4 

wt.% (Otto, 2015).  The Cleveland Member of the Ohio Shale Group has been correlated from 

eastern Kentucky into West Virginia and to the north into Ohio and has equivalent age and 

nomenclature across the Appalachian Basin.  The Cleveland Member was deposited parallel to 

strike of the paleo-slope of the Appalachian Basin in a north-south direction from Ohio, through 

eastern parts of Kentucky, and into Tennessee (Schmoker, 1981; Pashin and Ettensohn, 1995). 
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Figure 5. Stratigraphic column for Eastern Kentucky Devonian and Mississippian system tracts 

(From Repetski et al., 2008). 

  

The Three Lick Bed consists of three greenish-gray shale beds separated by fissile, 

brownish to black shale units and is correlated to the Chagrin Shale Member and has been used 

as a widespread marker bed via gamma-ray log across states of Ohio, Tennessee, and into 

Indiana through correlative beds (Provo et al., 1977).  Characteristics of the Three Lick Bed 

include burrows that are both horizontal and vertical, some that are filled with pyrite (Provo et 

al., 1977).  Due to the presence of pyrite-filled burrows within the unit, the Three Lick Bed was 

likely deposited during a period of oxygen-rich bottom waters that allowed for the presence of 

oxygen-dependent organisms.  The Three Lick Bed in Letcher County, KY displays a gamma ray 

response of 200-250 API and is 17.4 meters (57 ft) thick.  According to Otto (2015) from a study 

on a nearby well, the Chagrin of his investigation has TOC averages at 0.8 wt.%.   
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The Huron Members exist as two black shale intervals of the Upper and Lower Huron, 

and are divided by a gray silty-shale facies of the Middle Huron.  The Huron Member within the 

Ohio Shale Group is one of the thickest, most extensive, and most proliferous black shale 

hydrocarbon reservoirs in the Appalachian Basin, spanning from western New York, through 

eastern Kentucky, and into Tennessee (Roen, 1984).  The Huron Members range from low to 

moderate to high TOC. The Upper Huron is a black to dark gray organic rich shale.  In Well 

566765, the Upper Huron displays an average gamma ray of 280 API and is 44 feet thick.  

According to Otto (2015), the average TOC for the Upper Huron is 3.1 wt.%. The Middle Huron 

is a light to dark gray siltstone.  In Well 566765, the Middle Huron has an average gamma ray 

response of 225 API and is 67.7 m (222 ft) thick.  The average TOC across this interval is 1.5 

wt.% (Otto, 2015). 

In comparison to the Cleveland interval, the Lower Huron Member of the Ohio Shale 

Group has significantly higher gamma-ray signatures and displays the characteristic linear 

relationship between uranium and TOC preservation (Figure 5).  Based off well logs for well 

566765, the Lower Huron interval is 37.8 m (124 ft) thick and the average gamma ray across the 

interval is 400 API.  The average TOC of the Lower Huron according to the Otto study of a 

nearby well is 5.7 wt.%, which is similar to the TOC of the Cleveland interval, despite the 

depletion of U and thus lower gamma ray response (Otto, 2015).   

The Cleveland Shale in Ohio and parts of Kentucky displays a much lower gamma 

response in comparison to the Lower Huron, yet has a relatively high total organic carbon 

content.  The particular well that was sampled is in Letcher County, Kentucky. This study site is 

southwest of the well used in Otto (2015), and south-southeast of the wells used in Algeo and 

Maynard (2008).  Samples were gathered from the overlying Lower Mississippian-age Berea 
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Sandstone as well as the Devonian-age Cleveland, Three Lick Bed, and Lower Huron Members 

in order to assess the climatic differences during this period of time.  Based off of previous core 

descriptions and with respect to the other members of the Ohio Shale Group, the uppermost 

member, the Cleveland Shale, exhibits high organic carbon content despite the suppressed 

gamma response.   
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CHAPTER III 

 

METHODOLOGY 

 

 

 

 

3.1 Sampling 

The research analyzes well core samples from Letcher County, Kentucky (well record 

number 566765) (Carter Coordinates: 8-I-82 1125N, 1170E).  Well 566765 has a completed 

drilling date of December 10th, 2007 with a vertical depth of 1380 m (4,526 ft). The cored 

interval of this well is from 1134-1354 m (3720-4441 ft), which is 220 m (721 ft) of core.  The 

cored unit contains the Ohio Shale Group which is subdivided into the Lower Huron, Middle 

Huron, Upper Huron, Three Lick Bed, and Cleveland shale members. 

Sixty rock core samples were collected at a sampling rate of 1 sample per 5 feet (1.5 

meters) from the Berea Sandstone, Cleveland, the Three Lick Bed, and Lower Huron members 

of the Ohio Shale group (Figure 6) in order to assess the differences in trace metal accumulation 

during the Devonian and into the beginning of the Mississippian.  This rock core provided 3 

samples for the Berea Sandstone, 17 samples for the Cleveland Shale, 6 samples for the Three 

Lick Bed, and then 34 samples were taken from the Lower Huron Shale unit.  The sampled well 

is located southwest of the study site discussed by Otto (2015) and southeast of the study areas 
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investigated by Algeo and Maynard (2008) (Figure 4).   The cored well for this investigation had 

portions of missing core, specifically in the Upper and Middle Huron Shale units of the Ohio 

Shale Group, which allowed for higher resolution sampling of the intervals of interest.  The 

intervals of interest were primarily the Cleveland and Lower Huron shales.  A significant amount 

of pyrite was observed throughout the Lower Huron Unit I and II, however pyrite was not 

included in sampling.   Writing and markings were present on the outside of the core, thus 

samples were taken from the inner portion of the core to avoid potential contamination. 

 

3.2 Geochemical Analyses 

Samples were crushed and homogenized with a ball mill using a tungsten carbide vial and 

then divided into two splits and stored in Teflon vials.  One split was used to measure total 

carbon (TC) and total inorganic carbon (TIC) content with a Carbon Sulfur Analyzer (Eltra CS-

2000) at Oklahoma State University in order to calculate total organic carbon (TOC).  Samples 

that were used to measure TC were weighed on ceramic boats and then transferred into a 

horizontal resistance furnace for combustion within the analyzer.  Typical analysis time for total 

carbon (TC) is 60 to 180 seconds depending on the sampling material.  Corresponding samples 

that were used to measure total inorganic carbon (TIC) were measured in the induction furnace 

of the carbon sulfur analyzer.  During the measurements of total carbon and total inorganic 

carbon, several samples were duplicated in order to maintain confidence in data and to detect any 

potential drift in data within the analyzer.   
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The measurement for TOC was estimated using the calculation: 

 

Total Carbon (TC) – Total Inorganic Carbon (TIC) = Total Organic Carbon (TOC)  

 

The second sample split was ashed at 900°C for 8-10 hours in order to remove all organic 

material followed by a three-acid heat and pressure digestion using trace metal grade acids: 3 mL 

nitric (HNO3), 2 mL hydrochloric (HCl) and 2 mL hydrofluoric (HF) using a pressure and 

temperature digestion system (PicoTrace) until fully digested. This digestion process consisted of 

a five phase heating program from 70°C up to 190°C, heating up no faster than 50°C/hour, and 

then maintained that maximum temperature of 190°C for 5 hours in order to assure complete 

digestion.  Samples were then placed back on the heat plate and evaporated until dry.  The 

evaporation process consists of a six phase program starting at 20°C up to 170°C and then 

maintaining that maximum temperature for 2.5 hours.  The evaporated samples within the Teflon 

canisters were then removed from the heat plate, and checked for complete sample evaporation.  

The dried samples were treated with 5% trace metal grade nitric and returned back to the heat 

plate for approximately 60 minutes to fully dissolve. The dissolving process consisted of a 

program ranging from 40°C up to 60°C.  Each dissolved sample was subjected to 1 mL of 50% 

nitric and 9 mL of Mili-Q reference water.  Samples then underwent a 30-fold dilution with 2% 

trace metal grade nitric acid.   

 

The diluted samples were analyzed using a ThemoScientific iCapQc inductively coupled 

plasma-mass spectrometer (ICP-MS) at Oklahoma State University in order to measure trace 

metal concentrations such as uranium (U), molybdenum (Mo), vanadium (V), nickel (Ni). 
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Standard reference material USGS SDO-1 was measured alongside the investigation samples in 

order to establish analytical accuracy in the assessment of organic-rich Ohio Shale Group.  

Analytical accuracy from the standard reference material USGS SDO-1 has a margin of error of 

3.47% for U and 5.30% for Mo, which are well within the USGS accepted margins of error. 

 

 

Figure 6. Gamma-ray log for Well 566765, Letcher County, Kentucky.  Intervals that are boxed 

in red are the Cleveland, and Lower Huron Units I and II in which trace element (TE) data and 

total organic carbon (TOC) data were recorded. 
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CHAPTER IV 

 

RESULTS 

 

 

Results of elemental concentrations for molybdenum (Mo), uranium (U), as well as total organic 

carbon (TOC) were measured and shown below along with general core descriptions.  A table 

with averages of data used in this study for each stratigraphic unit is available in Table 1.  Tables 

with all other geochemical data and core descriptions are located in the Appendix section (Tables 

A1 and A2).  

 

4.1 Geochemical Results and Core Description: Lower Huron Shale Unit II 

 The Lower Huron Shale Unit II is characterized as a dark gray to black shale with 

frequent pyritization.  Pyrite frequency and thickness of pyrite bedding increased towards the 

base of the observed interval.  At the base of the observed section, a significant burrow (~2.5 cm 

thick) occurs in black shale.  This burrow pyritized. 

Uranium values range from 1.3 ppm to 37.3 ppm.  The average U values for this interval 

is 8.9 ppm.  Molybdenum values for the Lower Huron Shale Unit II range from 1.7 ppm to 190.4 

ppm.  The average Mo value for this interval is 36.6 ppm.  Total organic carbon values range for 

the Lower Huron range from 0.1 wt.% to 8.5 wt.%, and average to 2.1 wt.%. The average value 

for the U/TOC ratio across the Lower Huron Shale Unit II interval is 9.1.  The Mo/TOC ratio of 

the Unit II interval is 18.2.  The Lower Huron Unit II interval is low in U and TOC. 
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4.2 Geochemical Results and Core Description: Lower Huron Shale Unit I 

 The Lower Huron Shale Unit I is characterized as a dark gray to black shale occasional 

interbedding of gray shale, with sparse sections of pyrite laminae. Pyrite nodules and laminae 

were noted throughout the whole Unit I interval, as well as pyrite-filled fractures.  During 

geochemical analysis, pyrite was not included in sampling. No marine fossils or evidence of 

burrowing were observed in the Lower Huron Unit I interval. 

 

Uranium values range from 5.8 ppm to 34.1 ppm.  The average U values for this interval 

is 20.5 ppm.  Molybdenum values for the Lower Huron Shale Unit I range from 16.9 ppm to 

144.8 ppm.  The average Mo value for this interval is 83.3 ppm.  Total organic carbon values 

range for the Lower Huron Shale Unit I range from 0.7 wt.% to 8.5 wt.%, and average to 4.8 

wt.%.  The average value for the U/TOC ratio across the Lower Huron Shale Unit I interval is 

5.2, and the average Mo/TOC ratio is 18.4.  The Lower Huron Shale Unit I is very high in U and 

TOC relative to the other observed units. 

 

4.3 Geochemical Results and Core Description: Three Lick Bed 

The Three Lick Bed interval is observed to consist of green to brown shales with 

interbedded thin gray siltstones. No shelly marine fossils or evidence of burrowing were 

observed in the cored interval.  The presence of the Three Lick Bed provided a useful marker bed 

in between the Cleveland and Lower Huron units. 

Moving into the Three Lick Bed interval, there is a large decrease in uranium 

concentration.  Uranium for this interval ranges from 1.3 ppm to 8.7 ppm and averages at 3.8 

ppm.  Molybdenum values for the Three Lick Bed interval ranges from 0.5 ppm to 19.8 ppm and 

averages at 18 ppm.  Total organic carbon values for the Three Lick Bed range from 0.5 wt.% to 

4.8 wt.% with an average of 1.5 wt.%.  The average value for the U/TOC ratio across the Three 

Lick Bed interval is 3, and the average Mo/TOC ratio is 20.3.  The Three Lick Bed interval is 

low in U and TOC.  

 

4.4 Geochemical Results and Core Description: Cleveland Shale Member 

 The Cleveland Shale is characterized as a dark brown to black clay shale with thin 

interbedding of thin dark gray to light gray siltstones.  Gray interbedding ranged from a 1-2 cm 
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to as large as approximately 10 cm, with an increasing frequency and thickness of interbedding 

at the base of the Cleveland interval.  Increasing thin pyrite laminae occurs at the base of the 

Cleveland interval, along with the presence of a small pyrite nodule within the last meter of the 

Cleveland interval.  Marine invertebrate fossils were not apparent in hand sample and burrowing 

or post-depositional alterations were not observed. 

Uranium values range from 4.6 ppm to 22.9 ppm.  Throughout the sampled interval, the 

average value for U is 12.3 ppm.  Molybdenum (Mo) values range from 2.9 ppm to 84.8 ppm.  

The average Mo values for the Cleveland Shale interval is 52.5 ppm.  Total organic carbon 

values for the Cleveland Shale interval ranges from 1.5 wt.% to 5.4 wt.%.  Average TOC for this 

interval is 3.8 wt.%.  The average value for the U/TOC ratio across the Cleveland Shale interval 

is 3.3, and the average Mo/TOC ratio is 13.51.  Throughout the Cleveland interval, the 

concentration of U is relatively stable.  The Cleveland Shale interval is moderately high in U and 

TOC relative to the other observed intervals of the Ohio Shale Group. 

 

4.5 Geochemical Results and Core Description: Berea Sandstone 

 The Berea Sandstone is dominantly dark gray to brown siltstone with interbedded fine- to 

medium-grained sandstone with possible pyrite.  Sampled sections were found to be 

unfossiliferous and did not have the presence of any burrowing. 

Uranium (U) values for this interval range from 3.8 ppm to 7.0 ppm.  The average U 

values for the Berea Sandstone is 5.1 ppm. Molybdenum (Mo) values for the Berea Sandstone 

range from 14.5 ppm to 41.8 ppm with an average value of 24.1 ppm.  Total organic carbon 

(TOC) values range from 2.4 wt.% to 7.9 wt.% and average at 4.5 wt.%.  The average value for 

the U/TOC ratio across the Berea Sandstone interval is 1.33, and the average Mo/TOC ratio is 

5.51.  The Berea Sandstone interval is relatively high U and TOC. 
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Table 1. Comparison of the average TOC, U, Mo, U/TOC and Mo/TOC for Berea Sandstone, 

Cleveland Shale, Three Lick Bed, and Lower Huron Shale Units I and II. 

 

  

Stratigraphic Unit TOC Avg. U Avg. Mo Avg. U/TOC Mo/TOC

wt.% ppm ppm

Berea Sandstone 4.5 5.1 24.1 1.33 5.51

Cleveland Shale 3.8 12.3 52.5 3.30 13.51

Three Lick Bed 1.5 3.8 18.0 3.00 20.30

Lower Huron Shale Unit I 4.8 20.5 83.3 5.20 18.37

Lower Huron Shale Unit II 2.1 8.9 36.6 9.07 18.19
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CHAPTER V 

 

DISCUSSION 

 

 

 

 

 

In many typical Devonian black shales across North America, such as the Woodford and 

Antrim shales, there is a general understanding that gamma-ray response to the radioactivity of 

uranium has a strong correlation to organic richness within shales (Schmoker, 1981; Lüning and 

Kolonic, 2003).  However, throughout the Cleveland Shale and parts of the Lower Huron 

interval there exists a decoupling of U and TOC (Figure 8).  Within the Lower Huron Unit II, U 

and TOC have a positive correlation of r=0.91, and the Lower Huron Unit I has a relatively 

strong positive correlation of r=0.75 (Figure 8).  However, the Cleveland Shale interval exhibits 

a positive but moderate correlation of r=0.50.  Within the upper portion of the Cleveland Shale 

interval is a decoupling of U and TOC between 1150-1140 m.  Throughout this interval, U 

concentration is low for a black shale and remains relatively stable until the end of the interval 

where there is an increase in concentrations of U and Mo, implying greater drawdown of these 

trace metals.  Throughout the middle stages of the Cleveland, TOC gradually increases and does 

not have a strong correlation with the U profile (Figure 7).  This disconnect could be tied to 
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increased deepwater restriction due to a lowering of sea level during climatic cooling and ice 

sheet formation in the Southern Hemisphere (Streel et al., 2000), resulting in the shallowing of 

silled margins and a restricted supply of trace metals from the open Rheic Ocean to the 

Appalachian Basin, which would also affect the resupply rate of nutrients that provide for the 

production of organic matter (Johnson et al., 1985; Pashin and Ettonsohn, 1995; Algeo et al., 

2007; Algeo and Maynard, 2008).     

 Location within a basin, such as deep within the basin or on the basin margin, plays a 

significant role in the accumulation of trace elements due to potential variation in the location of 

the pycnocline (Algeo and Rowe, 2012; Formolo et al., 2014).  In cored locations that are 

thought to be within the basin margin setting, such as the study well, it is more likely that this 

environment would be more susceptible to geochemical alterations due to a shifting pycnocline 

than that of a core that is located in a deeper, more stable setting (e.g. Lyons et al., 1993; 

Formolo et al., 2014).  In a deeper basin setting, redox conditions are likely to be more stable, 

whereas the basin margin may experience fluctuations in redox conditions based on the location 

of the pycnocline.  The result of fluctuations in pycnocline location on the basin margin trace 

metal profiles has been observed in shifting trace metal signatures in other locations (Figures 7, 

8) (e.g. Lyons et al., 1993; Formolo et al., 2014).  The high variability of U in shale is evident in 

the Cleveland Member, where U content ranges from 4.64 ppm up to 22.87 ppm (Figure 9).  

Similar variability within data is also shown in the Lower Huron Unit I ranging from 5.77 ppm to 

34.07 ppm; and Unit II ranging from as low as 1.30 ppm to 37.27 ppm.  This high trace metal U 

variability on the basin margin is influenced by sea level fluctuating throughout the Famennian 

stage during the deposition of the Ohio Shale Group, impacting location of the pycnocline and 

degree of sill between the Appalachian Basin and surrounding basins and the Rheic Ocean 



26 

(Johnson et al., 1985; Algeo and Maynard, 2008; Algeo and Rowe, 2012).  Due to the redox-

sensitivity of U and other trace metals, post-depositional alteration due to changes in bottom 

water redox conditions may change the oxidation state of metals like U and result in the release 

of U back into the water column (Abshire et al., 2020).  Post-depositional oxidation may result in 

sediments in the geologic record that are enriched in organic carbon without the enrichments of 

redox-sensitive trace metals such as U and Mo (Abshire et al., 2020).  Unlike other studies that 

have looked into the Cleveland Shale of Kentucky (e.g. Algeo and Rowe, 2012), Well 566765 

provides four general trends present within the Cleveland member.  Overall, the variability 

within U and TOC along the marginal setting of the Appalachian Basin is not only limited to the 

Cleveland. For example, within the Lower Huron Unit I and II are six major trends that have 

been established for this study (Figure 7).  These U concentration variations during the Late 

Devonian signify long periods of restriction that resulted in extended periods of deepwater 

residence times (Algeo et al., 2007; Algeo and Tribovillard, 2009). 
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Figure 7. Gamma-ray, total organic carbon (TOC), and trace metal content uranium (U) data 

from cored Well 566765 from Letcher County, Kentucky.  Trace metal measurement U are 

represented by the orange line with general data trends labeled by black arrows.  Dotted Lines 

divide conventional stratigraphic units. BREA = Berea Sandstone, CLVD = Cleveland Shale, 

TLBD = Three Lick Bed, HURNL I = Lower Huron Unit I, HURNL II = Lower Huron Unit II. 

Diagonal line with blank along y-axis indicates a significant jump in depth. Gamma-ray data 

courtesy of the Kentucky Geological Survey. 
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Figure 8. Trace metal content uranium (U) plotted against total organic carbon (TOC) for the 

major study intervals for this study: the Cleveland Shale, and Lower Huron Units I and II.  Trend 

lines for the study intervals shown to distinguish trends in data. Pearson correlation coefficient 

(r) values displayed to show the difference between selected shale units, with a typical, organic-

rich Devonian black shale having a strong correlation value close to r = 1.0. 

 

Based on the molybdenum (Mo) content of the Ohio Shale Group, general trends 

throughout the entire dataset have similar shifts in U and Mo, although shifts in Mo 

concentration are much more drastic than the shifts in U content (Figure 9).  This similarity 

between U and Mo is not unpredicted, as both U and Mo are enriched under anoxic-euxinic 

conditions.  Molybdenum in the sediment reflects the availability of trace metal Mo in the 

watermass, so when bottom waters are well connected during less restrictive conditions, the 

concentration of Mo will be high (Algeo and Lyons, 2006; Algeo and Maynard, 2008).  The Mo 
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proxy data shows that at the time of the Lower Huron Unit II deposition, the Appalachian Basin 

ranged from a semi-restricted to restricted basin with non-static bottom water conditions, with a 

majority of concentrations for this interval not exceeding 50 ppm, while some samples show 

extraordinarily high Mo enrichment values that are also supported by enrichments in TOC and 

U, indicating that basin geometry fluctuated between semi-restrictive to restrictive (Figure 9) 

(Robl et al., 1983; Algeo et al., 2007).  This contrast in trace metal concentration in the upper 

and lower sections compared to the middle section of the Lower Huron Unit II is likely due to 

post-depositional re-oxygenation, which would drastically decrease the concentration of trace 

metal Mo and U seen in the upper and lower sections (e.g. Abshire et al., 2020).  The 

introduction of oxygen can be attributed to burrowing organisms based on the observed 

bioturbation in the lower portions, and increased frequency of interbedded gray siltstones in the 

upper sections of the Lower Huron Unit II interval (Figure 9). Molybdenum content of the Lower 

Huron Unit II suggests that the Appalachian Basin became increasingly restricted and anoxic-

euxinic throughout the beginning of the Famennian stage, as indicated by a majority of 

concentrations not exceeding 50 ppm, with a brief interval of high concentrations that signify a 

period of increased circulation of bottom waters (Figure 9).  Molybdenum content of the Lower 

Huron Unit I interval indicates that the Appalachian Basin developed into a mostly semi-

restricted basin, shown by an overall enrichment of Mo as a result of increased circulation 

between nearby basins and the open ocean in comparison to the Lower Huron Unit II interval 

(Figure 9) (Robl et al., 1983; Algeo et al., 2007).    Our Mo proxy data show that deepwater 

conditions along the Appalachian Basin margin during the lower Cleveland Shale interval were 

anoxic-euxinic, as concentrations exceed 50 ppm and up to 104 ppm (Figure 9).  Depositional 

settings became increasingly restrictive and anoxic/euxinic conditions continued throughout the 
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middle and upper Cleveland deposition, as Mo values are decreased to below 50 ppm and remain 

low until the end of the Cleveland interval (Figure 9).  Molybdenum data suggest that there was a 

brief resupply of trace metals into the basin at the end of the Cleveland, with a large input of Mo 

to ~105 ppm at the Cleveland-Berea Sandstone boundary (Figure 9). 

Before and during the deposition of the Lower Huron at the Frasnian/Famennian 

boundary, eustatic fall occurred, resulting in further restriction of the Appalachian Basin 

(Johnson et al., 1985; Pashin and Ettensohn, 1995; Algeo et al., 2007; Algeo and Rowe, 2012).  

Within anoxic silled basins, such as the Late Devonian Appalachian Basin, large-scale deepwater 

renewal tends to have an initial rapid increase in sedimentary Mo concentrations that are later 

followed by a trend toward lower Mo and high TOC values (Figure 9, Figure 10) (Algeo and 

Lyons, 2006).  The ratio of Mo/TOC in the sediment reflects the availability of trace metal Mo in 

the watermass; when bottom waters are well connected to an open system of water, the Mo/TOC 

ratios are high (Algeo and Lyons, 2006).    Mo/TOC ratio data for this study suggests that the 

Lower Huron Units I and II were not strongly restricted at the time of deposition, with a ratio 

between 10 and 25 for a majority of the sampled intervals, indicating a semi-restricted 

environment throughout the Lower Huron (Figure 9) (Robl et al., 1983; Algeo and Lyons, 2006; 

Algeo et al., 2007).  The Mo/TOC ratios suggest that the eustatic fall decreased the degree of sill 

on the basin, further restricting it resulting in lowered Mo/TOC ratios to ~10, but slowly 

rebounded to values of ~16-19 throughout the middle Lower Huron as sea level continued to rise 

(Figure 9) (Johnson et al., 1985; Algeo et al., 2007; Algeo and Rowe, 2012).  The Appalachian 

Basin continued to be semi-restricted with surrounding basins and the open Rheic Ocean as sea 

levels continued to rise, increasing cyclicity of deepwater renewal, thus increasing Mo/TOC 

ratios to ~20-25 in the upper Lower Huron Unit I interval (Figure 9).  A large eustatic fall at the 
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Devonian/Carboniferous boundary occurred during the deposition of the upper Cleveland Shale 

(Pashin and Ettensohn, 1995; Algeo et al., 2007; Algeo and Rowe, 2012).  This eustatic fall 

during the upper Cleveland Shale lowered the Mo/TOC ratio to values to below 11, indicating 

further but not complete restriction and slowing the renewal of trace metals into the watermass in 

the Appalachian Basin (Figure 9, Figure 10).    This restriction of the Appalachian Basin during 

Cleveland time was fairly stable, as most Mo/TOC ratios at this interval do not fluctuate above 

~11.  During the deposition of the Cleveland Shale, the Appalachian Basin became further 

restricted as sea level continued to fall, with a momentary shift in U, Mo, and TOC values at the 

boundary between the upper Cleveland Shale and the Bedford-Berea Sandstone boundary 

(Figure 9). 

The eustatic fall during the Cleveland Shale interval increased the degree of restriction of 

the Appalachian Basin, however according to the U, Mo, and TOC data, conditions along the 

basin margin where the study site for this investigation is located was not completely restricted.  

Uranium and molybdenum data suggest that bottom water conditions and the availability of these 

trace metals in the water column remained fairly consistent throughout the middle to upper 

Cleveland interval (Figure 9).  However, this was not evident in the TOC data.  After the initial 

eustatic event at the beginning of the Cleveland interval, the amount of organic carbon gradually 

increased from less than 2 wt. % up to a maximum of 6 wt. % at the end of the Cleveland 

interval (Figure 9).  The conundrum between TOC and trace metal U and Mo in the Cleveland 

interval is impacted by a fluctuating location of the pycnocline as a result of sea level change, as 

well as the remobilization of trace metals as a result of post-depositional oxidation due to 

dissolved oxygen (e.g. Jaminski, 1997; Jaminski et al., 1998).  This discrepancy could also be 

linked to a global decrease of U and Mo that coincides with a trend toward generally more 
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reducing conditions, resulting in the drawdown of these dissolved trace metals during the Late 

Devonian and a weaker correlation to TOC (Algeo, 2004; Algeo and Maynard, 2008).  It is also 

possible that glacial dilution in the Cleveland seas could result in the observed conundrum 

between TOC and trace metal accumulations.  Recent work suggests that glaciers may be major 

resources of terrestrial nutrients and dissolved organic matter through glacier meltwater, 

stimulating organic productivity (Syvitski et al., 1990; Hood et al., 2009, Martínez-García et al., 

2014; Ettensohn et al., 2020).  The introduced meltwater would likely cause a dilution of, or 

mixing with, the seawater trace metal composition, especially near the basin margins, thus 

strongly impacting the redox-sensitive metals (e.g., Herbert et al., 2020).  Furthermore, 

increasing watermass restriction due to eustatic fall during Cleveland deposition resulted in the 

shallowing of silled margins and limited the circulation of deep waters from surrounding water 

masses into the Appalachian Basin, further limiting the availability of Mo and U and potentially 

exposing previously anoxic sediments to oxygenated waters (Jaminski, 1997; Jaminski et al., 

1998; Algeo and Maynard, 2008; Abshire et al., 2020). 
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Figure 9. Total organic carbon (TOC) and trace metal molybdenum (Mo) and uranium (U) 

concentration and Mo/TOC ratio profiles from Well 566765. Dotted line divides conventional 

stratigraphic units.  BREA = Berea Sandstone, CLVD = Cleveland Shale, TLBD = Three Lick 

Bed, HURNL I = Lower Huron Unit I, HURNL II = Lower Huron Unit II. Diagonal line with 

blanks along y-axis indicates a significant jump in depth. Shaded regions indicate general basin 

restriction conditions of restricted, semi-restricted, and open (adapted from Robl et al., 1983; 

Algeo et al., 2007) 
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Figure 10. Trace metal content molybdenum (Mo) plotted against total organic carbon (TOC) 

for the major study intervals: the Cleveland Shale, and Lower Huron Units I and II. Generalized 

patterns of sedimentary Mo-TOC covariation that is associated with deepwater renewal in silled 

anoxic basins (adapted from Algeo and Lyons, 2006). 
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CHAPTER VI 

 

CONCLUSION 

 

 

 

 The uranium (U) content in black shales has been historically used as a proxy for 

organic-richness, however there are some exceptions in which the correlation between U and 

TOC is not always dependable as an indicator for economically-productive sedimentary rocks.  

Our Ohio Shale data show that lower concentrations of U does not equate to low amounts of 

TOC.  In fact, many sections throughout the Cleveland Shale interval have higher TOC despite 

having much lower concentrations of U than that of the more radioactive, higher U content 

Lower Huron that resides several hundred meters below within the same stratigraphic group. 

Both subdivisions of the Lower Huron that were evaluated exhibit a strong positive correlation 

between U/TOC, while the Cleveland Shale has a moderate relationship.  This differentiation 

between the two Devonian shales is tied to water conditions that were influenced by basin 

geometry, sea level change at the time of deposition, and location within the basin setting. This is 

captured in the different U and Mo concentrations, as well the ratio between Mo/TOC.  The 

Cleveland Shale interval is a snapshot in time that likely shows the closing of the Appalachian 

Basin during the Devonian.  At the onset of the Cleveland deposition, the basin was semi-

restricted and allowed for deepwater renewal of trace elemental U and Mo.  Proxy data showing 

large differences in trace metal concentration in both studied subdivisions of the Lower Huron 
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and the Cleveland Shale interval likely suggests that throughout the Lower Huron deposition, the 

degree of sill and restriction varied, due to basin settings.  In addition, glaciation also impacted 

the local to regional tectonic settings and thus the basin morphology, and caused meltwater 

pulses.  The introduced freshwater, high in nutrients and low in transition metals, potentially 

enhanced the observed differences in the redox-metal proxies to organic matter content, 

especially along the basin margins.  Our results show that the trace metal to organic carbon 

correlation in the Appalachian Basin was linked to multiple mechanisms including tectonic basin 

settings and glaciation, and concurrent water level changes strongly impacting the basin margin 

with a shifting pycnocline and local changes in water composition.  In contrast, the deeper basin 

setting was likely less impacted with changes in trace metal composition and organic carbon 

burial at much slower rates. 
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APPENDICES 

 

 

 

Table A1. Total organic content (TOC), U, Mo, Mo/TOC from the Ohio Shale Group 

 

Sample ID Depth Stratigraphic Interval TOC U Mo U/TOC Mo/TOC

m Name wt % ppm ppm

1 1133.9 Berea Sandstone 7.9 7.0 41.8 0.89 5.27

2 1135.4 Berea Sandstone 3.2 3.8 14.5 1.18 4.48

3 1136.9 Berea Sandstone 2.4 4.6 16.1 1.92 6.77

4 1138.4 Cleveland Shale 6.0 22.3 104.9 3.74 17.60

5 1140.0 Cleveland Shale 4.6 11.0 37.2 2.39 8.06

6 1141.5 Cleveland Shale 4.9 11.3 47.7 2.33 9.81

7 1143.0 Cleveland Shale 3.7 7.7 25.9 2.06 6.95

8 1144.5 Cleveland Shale 4.8 9.0 47.1 1.88 9.85

9 1146.0 Cleveland Shale 3.6 11.3 36.3 3.12 10.05

10 1147.6 Cleveland Shale 2.7 4.8 15.3 1.76 5.60

11 1149.1 Cleveland Shale 2.7 10.4 40.1 3.79 14.68

12 1150.6 Cleveland Shale 3.7 7.7 37.0 2.08 10.02

13 1152.1 Cleveland Shale 2.3 4.9 12.6 2.18 5.56

14 1153.1 Cleveland Shale 2.6 4.6 16.2 1.80 6.29

15 1154.3 Cleveland Shale 1.5 11.0 34.5 7.14 22.37

16 1155.2 Cleveland Shale 4.2 22.9 104.0 5.46 24.84

17 1156.7 Cleveland Shale 3.6 20.5 86.8 5.63 23.80

18 1158.2 Cleveland Shale 5.4 17.1 75.9 3.17 14.04

19 1159.8 Cleveland Shale 4.7 20.4 95.8 4.33 20.32

20 1161.6 Cleveland Shale 3.8 12.4 75.5 3.26 19.79

21 1162.8 Three Lick Bed 4.8 7.5 21.5 1.55 4.44

22 1164.3 Three Lick Bed 0.5 1.3 12.9 2.72 26.57

23 1165.6 Three Lick Bed 0.6 1.8 14.7 3.26 26.13

24 1166.5 Three Lick Bed 0.5 1.8 13.5 3.71 28.28

25 1167.4 Three Lick Bed 0.6 1.7 13.5 2.74 21.56

26 1168.9 Three Lick Bed 2.1 8.7 31.8 4.04 14.82

Sample ID Depth Stratigraphic Interval TOC U Mo U/TOC Mo/TOC

m Name wt % ppm ppm

27 1262.8 Lower Huron Shale 6.6 34.1 138.6 5.17 21.03

28 1263.4 Lower Huron Shale 5.5 19.8 113.0 3.62 20.65

29 1264.9 Lower Huron Shale 5.2 23.7 77.1 4.57 14.89

30 1266.4 Lower Huron Shale 4.8 20.3 87.8 4.23 18.32

31 1268.0 Lower Huron Shale 5.6 20.6 144.8 3.68 25.87

58 1269.2 Lower Huron Shale 0.5 5.8 12.5 11.10 24.05

32 1269.5 Lower Huron Shale 4.1 15.4 83.4 3.78 20.54

33 1271.0 Lower Huron Shale 0.8 8.7 19.0 10.86 23.81

34 1273.0 Lower Huron Shale 0.7 7.6 16.9 11.16 24.96

35 1274.1 Lower Huron Shale 5.5 21.1 89.8 3.81 16.22

36 1275.6 Lower Huron Shale 6.6 20.5 81.3 3.12 12.38

60 1276.4 Lower Huron Shale 8.5 22.8 106.6 2.68 12.54

37 1277.4 Lower Huron Shale 6.4 20.2 82.9 3.14 12.90

38 1278.6 Lower Huron Shale 6.1 29.4 102.5 4.81 16.77

39 1280.2 Lower Huron Shale 6.7 20.2 90.9 3.01 13.58

40 1282.0 Lower Huron Shale 5.9 23.3 96.4 3.92 16.24

41 1283.5 Lower Huron Shale 4.8 27.2 107.6 5.64 22.33

42 1284.7 Lower Huron Shale 5.6 29.9 110.8 5.30 19.67

43 1286.6 Lower Huron Shale 4.6 24.0 74.5 5.24 16.26

44 1287.8 Lower Huron Shale 2.6 19.3 44.8 7.29 16.92

45 1289.3 Lower Huron Shale 5.0 20.0 76.1 4.03 15.35

46 1290.8 Lower Huron Shale 4.0 17.0 76.0 4.22 18.85

47 1337.5 Lower Huron Shale 1.1 3.9 19.2 3.56 17.64

48 1338.1 Lower Huron Shale 0.8 3.1 13.0 4.04 16.92

49 1339.6 Lower Huron Shale 1.0 - - - -

50 1341.1 Lower Huron Shale 0.8 7.3 15.6 9.69 20.65

51 1342.6 Lower Huron Shale 1.0 2.7 13.5 2.76 14.02

52 1344.2 Lower Huron Shale 0.9 2.3 14.3 2.55 16.21

53 1348.0 Lower Huron Shale 8.5 37.3 190.4 4.39 22.43

59 1349.0 Lower Huron Shale 2.5 10.8 24.0 4.30 9.52

54 1349.3 Lower Huron Shale 5.4 12.5 87.8 2.32 16.24

55 1350.3 Lower Huron Shale 0.1 7.0 6.5 58.67 54.15

56 1351.8 Lower Huron Shale 1.3 1.3 1.7 1.01 1.32

57 1353.6 Lower Huron Shale 1.6 10.0 17.0 6.43 10.94

* Horizontal line separates stratigraphic intervals

* - indicates value not reported; horizontal line separates stratigraphic intervals of Lower Huron Units I and II as discussed in text
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Table A1 (continued) Total organic content (TOC), U, Mo, Mo/TOC from the Ohio Shale 

Group 

 

  

Sample ID Depth Stratigraphic Interval TOC U Mo U/TOC Mo/TOC

m Name wt % ppm ppm

1 1133.9 Berea Sandstone 7.9 7.0 41.8 0.89 5.27

2 1135.4 Berea Sandstone 3.2 3.8 14.5 1.18 4.48

3 1136.9 Berea Sandstone 2.4 4.6 16.1 1.92 6.77

4 1138.4 Cleveland Shale 6.0 22.3 104.9 3.74 17.60

5 1140.0 Cleveland Shale 4.6 11.0 37.2 2.39 8.06

6 1141.5 Cleveland Shale 4.9 11.3 47.7 2.33 9.81

7 1143.0 Cleveland Shale 3.7 7.7 25.9 2.06 6.95

8 1144.5 Cleveland Shale 4.8 9.0 47.1 1.88 9.85

9 1146.0 Cleveland Shale 3.6 11.3 36.3 3.12 10.05

10 1147.6 Cleveland Shale 2.7 4.8 15.3 1.76 5.60

11 1149.1 Cleveland Shale 2.7 10.4 40.1 3.79 14.68

12 1150.6 Cleveland Shale 3.7 7.7 37.0 2.08 10.02

13 1152.1 Cleveland Shale 2.3 4.9 12.6 2.18 5.56

14 1153.1 Cleveland Shale 2.6 4.6 16.2 1.80 6.29

15 1154.3 Cleveland Shale 1.5 11.0 34.5 7.14 22.37

16 1155.2 Cleveland Shale 4.2 22.9 104.0 5.46 24.84

17 1156.7 Cleveland Shale 3.6 20.5 86.8 5.63 23.80

18 1158.2 Cleveland Shale 5.4 17.1 75.9 3.17 14.04

19 1159.8 Cleveland Shale 4.7 20.4 95.8 4.33 20.32

20 1161.6 Cleveland Shale 3.8 12.4 75.5 3.26 19.79

21 1162.8 Three Lick Bed 4.8 7.5 21.5 1.55 4.44

22 1164.3 Three Lick Bed 0.5 1.3 12.9 2.72 26.57

23 1165.6 Three Lick Bed 0.6 1.8 14.7 3.26 26.13

24 1166.5 Three Lick Bed 0.5 1.8 13.5 3.71 28.28

25 1167.4 Three Lick Bed 0.6 1.7 13.5 2.74 21.56

26 1168.9 Three Lick Bed 2.1 8.7 31.8 4.04 14.82

Sample ID Depth Stratigraphic Interval TOC U Mo U/TOC Mo/TOC

m Name wt % ppm ppm

27 1262.8 Lower Huron Shale 6.6 34.1 138.6 5.17 21.03

28 1263.4 Lower Huron Shale 5.5 19.8 113.0 3.62 20.65

29 1264.9 Lower Huron Shale 5.2 23.7 77.1 4.57 14.89

30 1266.4 Lower Huron Shale 4.8 20.3 87.8 4.23 18.32

31 1268.0 Lower Huron Shale 5.6 20.6 144.8 3.68 25.87

58 1269.2 Lower Huron Shale 0.5 5.8 12.5 11.10 24.05

32 1269.5 Lower Huron Shale 4.1 15.4 83.4 3.78 20.54

33 1271.0 Lower Huron Shale 0.8 8.7 19.0 10.86 23.81

34 1273.0 Lower Huron Shale 0.7 7.6 16.9 11.16 24.96

35 1274.1 Lower Huron Shale 5.5 21.1 89.8 3.81 16.22

36 1275.6 Lower Huron Shale 6.6 20.5 81.3 3.12 12.38

60 1276.4 Lower Huron Shale 8.5 22.8 106.6 2.68 12.54

37 1277.4 Lower Huron Shale 6.4 20.2 82.9 3.14 12.90

38 1278.6 Lower Huron Shale 6.1 29.4 102.5 4.81 16.77

39 1280.2 Lower Huron Shale 6.7 20.2 90.9 3.01 13.58

40 1282.0 Lower Huron Shale 5.9 23.3 96.4 3.92 16.24

41 1283.5 Lower Huron Shale 4.8 27.2 107.6 5.64 22.33

42 1284.7 Lower Huron Shale 5.6 29.9 110.8 5.30 19.67

43 1286.6 Lower Huron Shale 4.6 24.0 74.5 5.24 16.26

44 1287.8 Lower Huron Shale 2.6 19.3 44.8 7.29 16.92

45 1289.3 Lower Huron Shale 5.0 20.0 76.1 4.03 15.35

46 1290.8 Lower Huron Shale 4.0 17.0 76.0 4.22 18.85

47 1337.5 Lower Huron Shale 1.1 3.9 19.2 3.56 17.64

48 1338.1 Lower Huron Shale 0.8 3.1 13.0 4.04 16.92

49 1339.6 Lower Huron Shale 1.0 - - - -

50 1341.1 Lower Huron Shale 0.8 7.3 15.6 9.69 20.65

51 1342.6 Lower Huron Shale 1.0 2.7 13.5 2.76 14.02

52 1344.2 Lower Huron Shale 0.9 2.3 14.3 2.55 16.21

53 1348.0 Lower Huron Shale 8.5 37.3 190.4 4.39 22.43

59 1349.0 Lower Huron Shale 2.5 10.8 24.0 4.30 9.52

54 1349.3 Lower Huron Shale 5.4 12.5 87.8 2.32 16.24

55 1350.3 Lower Huron Shale 0.1 7.0 6.5 58.67 54.15

56 1351.8 Lower Huron Shale 1.3 1.3 1.7 1.01 1.32

57 1353.6 Lower Huron Shale 1.6 10.0 17.0 6.43 10.94

* Horizontal line separates stratigraphic intervals

* - indicates value not reported; horizontal line separates stratigraphic intervals of Lower Huron Units I and II as discussed in text
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Table A2. Core description for Well 566765 from Letcher County, Kentucky, focused primarily 

on the Ohio Shale Group.  

  

KGS Call #: C-5668 County: Letcher

Operator Name: EQT Formation: Ohio Shale

Well # 566765 Date: 1/17/2019

Geologist: John M. Clymer

Depth (ft) Comment Formation

3720 Dark gray shale - Bedford Shale? Sunbury Shale

3722
Black shale shift, sulfur, yellow film (drilling mud?)  possible 

pyrite nodules
Sunbury Shale

3723-3725.3
Black shale shift, sulfur, yellow film (drilling mud?)  possible 

pyrite nodules
Berea Sandstone

3727.3-37293.9 Black shale - top as yellow film (drilling mud?) Berea Sandstone

3729.9-3732.2 Black shale Berea Sandstone

3732.2-3734.6 Black shale Berea Sandstone

3734.6-3736.8 Black shale Berea Sandstone

3736.4-3737.8 Missing core Berea Sandstone

3737.8-3740.7 Yellow film (drilling mud) - Black Shale - Cleveland Cleveland Member, Ohio Shale

3740.3743.3 Yellow film (drilling mud) - Black Shale - Cleveland Cleveland Member, Ohio Shale

3743.2-3746 Yellow film (drilling mud) - Black Shale - Cleveland Cleveland Member, Ohio Shale

3746-3748.4 Yellow film (drilling mud) - Black Shale - Cleveland Cleveland Member, Ohio Shale

3748.4-33751.1 Yellow film (drilling mud) - Black Shale - Cleveland Cleveland Member, Ohio Shale

3751.1-3752.1 Missing core Cleveland Member, Ohio Shale

3753-3756 Black shale with thin gray siltstone interbedded Cleveland Member, Ohio Shale

3756-3759 Black shale Cleveland Member, Ohio Shale

3759-3761.5 Black shale with thin gray siltstone interbedded Cleveland Member, Ohio Shale

3761.5-3764.5 Missing core Cleveland Member, Ohio Shale

3764.5-3767.5 Black shale with thin gray siltstone interbedded Cleveland Member, Ohio Shale

3767.5-3770.5
Stained blue from t-shirt - black shale, thin gray siltstone 

interbedded
Cleveland Member, Ohio Shale

3770.5-3773.5 Black shale - thin gray bedding Cleveland Member, Ohio Shale

3773.5-3776.4
Thicker gray bedding at top of section, ~8in into core (3783 

ft)
Cleveland Member, Ohio Shale

3776.4-3779.5 Cleveland Member, Ohio Shale

3779.5-3782.4 Black shale with crystals leeching to surface Cleveland Member, Ohio Shale

3782.4-3785.05
Lower portion of core missing - black shale with thin gray 

bedding
Cleveland Member, Ohio Shale

3785.05-3786 Missing core Cleveland Member, Ohio Shale

3786-3789 Pyrite nodule; increase in thin gray bedding Cleveland Member, Ohio Shale

3789-3792 Increase in thickness and frequency of gray bedding Cleveland Member, Ohio Shale

3792-3795 Increase in thickness and frequency of gray bedding Cleveland Member, Ohio Shale

3795-3796.5 Missing core Cleveland Member, Ohio Shale

3796.5-3799.4 Partial missing core - black and gray interbedding Cleveland Member, Ohio Shale

3799.4-3802.2 Black shale and gray interbedding Cleveland Member, Ohio Shale

3802.2-3805.1 Black shale with gray interbedded Cleveland Member, Ohio Shale

3805.1-3806.7 Partial missing core , black shale Cleveland Member, Ohio Shale

3806.7-3809 Black shale with gray interbedded Cleveland Member, Ohio Shale

3809-3811.9 Red/Tan bed at 3810.9 Cleveland Member, Ohio Shale

3810-3813 Cleveland/Three Lick Bed contact Cleveland Member, Ohio Shale

3811.9-3814.85 Black shale with thin gray laminations Three Lick Bed, Ohio Shale

3813-3816 Black shale with thin gray laminations Three Lick Bed, Ohio Shale

3814.85-3817.8 Black shale with a single gray lamination Three Lick Bed, Ohio Shale

3816-3819 Black shale, partial missing core Three Lick Bed, Ohio Shale

3817.8-3819.9
Mostly missing core - black shale, interbedded gray 

laminations
Three Lick Bed, Ohio Shale

3819-3822 Dark gray shale Three Lick Bed, Ohio Shale

3822-3824.4 Black shale Three Lick Bed, Ohio Shale

3824.4-3825.4 Missing core Three Lick Bed, Ohio Shale

3825.4-3827 Missing core Three Lick Bed, Ohio Shale

3827-3829 Dark gray shale Three Lick Bed, Ohio Shale

3829-3831
Reddish brown color appearing throughout dark gray shale 

interval, white streak on streak plate
Three Lick Bed, Ohio Shale

3831-3832.4 Dark gray shale Three Lick Bed, Ohio Shale

3832.4-3833.4 Missing core Three Lick Bed, Ohio Shale

3833.4-3836.5 Thick red lamination in black shale Three Lick Bed, Ohio Shale

3836.5-4143.4 Missing core Three Lick Bed, Ohio Shale
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Table A2 (continued). Core description for Well 566765 from Letcher County, Kentucky, 

focused primarily on the Ohio Shale Group. 
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Table A2 (continued). Core description for Well 566765 from Letcher County, Kentucky, 

focused primarily on the Ohio Shale Group. 
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