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CHAPTER I

INTRODUCTION

Computing performance has improved dramatically over the last twenty years due to

advances in Very-Large Scale Integration (VLSI) technology and integrated circuit

processing [4]. This has been partially attributed to Moore’s Law which states that

the number of transistors on a computer chip nearly doubles approximately every

18 months [4]. Consequently, the demand for smaller, faster, accurate, and more

reliable computers makes the design of computer systems more complex. This increase

in complexity, along with a myriad of word sizes, rounding modes, and precisions,

motivated researchers to develop the IEEE Standard 754 for binary floating-point

arithmetic [1, 5].

To make things more challenging, silicon-device fabrication of transistors has

changed substantially in the last 20 years [6]. However, this complexity within the

manufacturing process has imposed limitations and a set of challenges that researchers

will have to overcome in order to design future high-performance systems [7]. These

limitations originally dealt with overcoming large amounts of power and energy dissi-

pation for high-speed computer architectures and application-specific integrated cir-

cuits. In other words, complex digital designs are getting faster along with subse-

quently consuming large amounts of energy as designers resort to reducing feature

sizes and supply voltages to meet these constraints. Although this has worked in the

past, it does not solve issues related to optimizing constraints for both energy and

speed [8]. Therefore, there is a need for new designs in IEEE 754 arithmetic that

limit size to reduce energy yet still remain fast.
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Implementations and modifications to IEEE floating-point addition have been,

as a whole, well explored yet not completely documented over the lifespan of the

operation. A variety of architecture improvements and implementations have been

designed (e.g. [9, 10]) since the original IEEE 754 standard was introduced [2].

Many of these publications, however, do not attempt to maintain full IEEE 754

compliance [10, 11, 12] and/or are seldom documented below the level of abstraction

required for microarchitecture operations (e.g. two’s complement adders, shifters,

leading-zero detection, etc.). In addition, many of these implementations seldom

implement or fully verify designs, or they cannot perform this action due to company

liability. Most importantly, this work attempts to take advantage of recent advances

in the use of late-carry enhanced prefix adders to improve upon the speed and energy

of IEEE 754 addition/subtraction [10].

This thesis aims not only to improve on the delay and energy performance of

previously published architectures [13, 3], but to improve upon it by using an end-

around-carry adder along with a flagged-prefix to optimize the computation of the

final result in parallel. The primary adder architecture has received a significant

improvement between iterations, in that it now utilizes an end-around-carry adder

architecture. This allows it to keep the same delay performance as a parallel adder

structure, but at nearly half the area cost with reduced static power consumption.

The exponent rounding structure used for denormalized values has also been com-

pletely reworked with novel use of a flagged-prefix adder architecture. This integrates

an offset value for exponent rounding in denormalized cases, as opposed to applying

the rounding offset after the exponent has been calculated, which significantly de-

creases delay. To further increase the novelty of this design, the exponent subtraction

stage of the adder now performs two separate right shifts for normalized and denor-

malzied exponent differences, while comparison subtractions are performed in parallel.

This decreases the fan-out between exponent subtraction and the primary addition
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performed, which in turn further decreases delay. This thesis also implements an

exact leading-zero anticipator (LZA) for use in post-normalization. Previously, only

a leading-zero detector was used once the sum was produced. Changing to an archi-

tecture that uses a leading-zero anticipator significantly decreases the delay necessary

for post-normalization. Using a leading-zero anticipator is not novel itself, but it is

a necessary improvement to make a competitive design. All of these changes will be

alluded to as they become relevant in this thesis.

This thesis innovates significantly over other implementations, such as the Z990

processor [10]. This thesis performs IEEE 754 denormal alignment early in the dat-

apath during exponent comparison. In addition, two separate alignment shifters for

pre-normalization optimize fan-out, which by proxy optimizes both delay and dynamic

power consumption. This paper also accounts for borderline overflow and underflow

after the primary addition to handle all extreme edge cases denormalized values may

cause. The Z990 does not use either an EAC adder for its primary addition, nor

does it use a flagged-prefix adder to decrease delay for exponent rounding [10]. EAC

adders have been extensively discussed in [14], but no implementation results have

been given.

Some knowledge of the IEEE 754 standard, including terminology for input for-

matting and exception generation, is required to obtain a full grasp on some of the

architectural design decisions made for various applications of floating-point addition.

Therefore, it will be briefly covered in Section II. Design decisions for specific microar-

chitectures used throughout this thesis’s design, as well as a brief introductions to

the microarchitectures themselves, is covered in Section III. The overall architecture

for this design is covered in Section IV along with relevant signals that are difficult to

derive for IEEE 754 compliance. A comparison between the architecture presented

in this thesis and that of previous iterations [3] is included in Section 4.5. Section 5.1

presents post-layout results for this architecture as well as performance differences
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between different components of the current and previous work in cmos32soi 32nm

GlobalFoundries (GF) Multi-threshold CMOS (MTCMOS) technology using ARM-

based standard cells.
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CHAPTER II

IEEE 754 BACKGROUND

IEEE 754 floating-point values consist of three components: a 1-bit sign value, a

5/8/11-bit exponent value, and a 10/23/52-bit mantissa value [15]. These refer to

the radix used for half/single/double precision IEEE 754 formats, respectively [1].

An example double-precision IEEE 754 input vector X[63:0] might look like the

following:

X[63], X[62:52], X[51:0] =

1’h0, 11’h3FF, 52’h7 FFFF FFFF FFFF ,

where X[63] is the input’s sign S, X[62:52] is the input’s exponent E, and X[51:0]

is the input’s mantissa M 1. Using these components, a decimal output value can be

calculated with the following format:

Out(S,E,M) = −1S × 2E ×M .

However, some conversion factors must be applied to both the exponent and mantissa

values before a direct floating-point output can be calculated. The IEEE 754 standard

requires exponents to be represented by an unsigned integer value and a constant

offset, which varies between each precision used. Once this offset is applied, it can be

used to calculate the correct output value. A reference of offsets for precisions used,

as well as conversions between them, is included below:

EF64 = EF32 − 127 + 1023 = EF32 + 896 ,

1To help clarify notation, typical Verilog bit-swizzling usage is employed throughout this work

to improve readability.
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EF32 = EF16 − 15 + 127 = EF16 + 112 ,

EF64 = EF16 − 15 + 1023 = EF16 + 1008 ,

EF64-offset = EF64-unsigned − 1023 ,

EF32-offset = EF32-unsigned − 127 ,

EF16-offset = EF16-unsigned − 15 .

Converting the mantissa into a value that can be directly used to calculate a dec-

imal floating-point output does not require an additional offset value or arithmetic

operation, but the value for the mantissa does have to be mapped onto the domain

of [1, 2). Using these methods, the previous input vector X[63:0] is converted to its

corresponding decimal floating-point representation using the following calculation:

Out(S,E,M) = −11′h0 × 211’h3FF−11’h1FF ×

(1 + 52’h
7 FFFF FFFF FFFF

F FFFF FFFF FFFF
) ,

Out(S,E,M) = 1.348× 10308 ,

where 11’h1FF is the hexadecimal representation of the IEEE 754 double-precision

offset value, and 52’hF_FFFF_FFFF_FFFF is the maximum possible IEEE 754 double-

precision mantissa value, disregarding that it is an exception case. This will allow for

a range of values from 2.225×10−308 to 1.779×10308 without the use of denormalized

inputs.

Denormalized inputs, which increase the exponent value range by extending it into

the mantissa, further extend the minimum range of values that can be represented

from 2.225× 10−308 to 4.941× 10−325. This process in which the low range precision

is increased is called gradual underflow [16], [5]. This helps to reduce issues caused

by truncation at small values, which becomes especially prevalent when comparing

similar input vectors. To demonstrate this, a subtraction example of two similar

IEEE 754 inputs is provided. Considering inputs A and B to both be IEEE 754
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double precision values set to the following:

A,B(S, E, M) =



(1’h0, 11’h002,

52’h0_0000_0000_000F),

(1’h0, 11’h001,

52’hF_F000_0000_0003)

.

Without support for denomalized values, the subtraction of A - B results in a value

of zero, since the value of the resulting exponent is less than 1. This obviously is not

the case, and leaves room for a significant amount of truncation error when similar

values are compared. With denormalized value support, significantly different results

can occur:

Result(S, E, M) = (1’h0, 11’h000,

52’hF_EFFF_FFFF_FFF4) .

This particular example demonstrates the edge case between the normalized and

denormalized range for IEEE 754 support, however, denormalized values can have

exponents propagate down nearly all of the mantissa’s vector size without issue. The

need for denormalized implementations in floating-point hardware also goes beyond

exclusively floating-point addition [10].

The IEEE 754 standard has support for a variety of exceptions that occur during

floating-point operations, as well as instructions for how to propagate them through

into output vectors. Table 2.1 provides a reference for IEEE 754 exceptions and

their descriptions. Table 2.2 provides a brief reference of examples for binary vectors

that trigger certain exception cases in IEEE 754 floating-point addition, including

signaling and quiet Not-a-Numbers (i.e., sNaN and qNaN). The examples provided

are formatted as binary32 input vectors.

A total of five different rounding modes are supported by the 2019 IEEE 754 stan-

dard [1]. These include: round-to-nearest-even, round-towards-away, round-towards-
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Table 2.1: IEEE 754 Exception Description

Exception Type Description

Invalid
Occurs for non-usable results,

such as NaN and +/−∞

Division by Zero
Infinite result is created

from non-finite input vectors -

Non possible for floating-point addition

Overflow
Result exceeds largest possible

finite output - can be negated by rounding

Underflow
Result is small enough and non-zero so that

it lies between bound of +/− 2exponent−min

Inexact
The rounded result differs from

calculation with unbounded precision -

results can still be used

Table 2.2: IEEE 754 Vector Exception Cases

Exception Case Examples (binary32 Verilog - ’x’ is don’t care)

qNaN
Exponent is set to all 1’s

and mantissa is a non-zero value

1’bx,8’hFF,23’h7xxxxx

sNaN
All conditions for qNaN exceptions

and MSB of mantissa is set to 0

1’bx,8’hFF,23’h3xxxxx

+∞
Exponent is set to all 1’s,

mantissa is set to all zeroes,

and a non-subtracting operand is +∞

1’bx,8’hFF,23’h000000

−∞
Exponent is set to all 1’s,

mantissa is set to all zeroes,

and a subtracting operand is +∞

1’bx,8’hFF,23’h000000

Denormalization
Either input operand is already denormalized,

or operation is effective subtraction

and the difference between operands

is less than 2exponent−min
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Table 2.3: Absolute Error for round-to-nearest-even
(L,R,S) Result Absolute Error

000 0 +0.00

001 0 +0.25

010 0 +0.50

011 1 -0.25

100 0 +0.00

101 0 +0.25

110 1 -0.50

111 1 -0.25

Avg. - +0.00

Table 2.4: Absolute Error for round-towards positive infinity

(L,R,S) Result Absolute Error

000 0 +0.00

001 1 -0.75

010 1 -0.50

011 1 -0.25

100 0 +0.00

101 1 -0.75

110 1 -0.50

111 1 -0.25

Avg. - -0.38

9



positive-infinity, round-towards-negative-infinity, and round-towards-zero. These sep-

arate rounding options are provided for extra utility in use cases where certain opera-

tions may want to always round in a particular direction, or where particular rounding

scenarios may be more frequent. Round-to-nearest-even has the lowest average error

for each rounding case and is utilized as default within the IEEE 754 standard [1].

Tables 2.3 and 2.4 are included to demonstrate the absolute error found in using

different rounding modes for each configuration of rounding bits. These rounding

bits, Least (L), Round (R), and Sticky (S) are used to determine if a value should

be rounded one ulp up or down. The specifics of how these bits are calculated is

covered in more detail in Section 4.4. The goal of different rounding modes is to

provide a minimized error for different input domain intervals. In the case where the

distribution across a given input domain is uniform, round-to-nearest-even typically

gives the best performance, as is shown in Table 2.3. For domain intervals with more

known values skewed with positive rounding intervals than negative, or vice versa,

other rounding modes can provide lower average error.
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CHAPTER III

MICROARCHITECTURE BACKGROUND

3.1 Prefix Adder Topologies

One of the primary pieces of microarchitecture used throughout this design is a Kogge-

Stone prefix adder [17]. It goes to mention that any of the ideas presented throughout

this paper can be applied to other prefix adders. A prefix adder is a modified ver-

sion of a carry-look-ahead adder that instead uses arbitrary operators to compute

the generate and propagate signals between each stage of the adder network [15].

These are often called gray or black cells [18], the former of which only produces a

generate/carry signal. The outputs of gray or black cells can be easily defined as:

gi = gk + pk · gk-1 ,

pi = pk · pk-1 ,

where gi and pi are the corresponding bitwise generate and propagate signals produced

by gray or black cells, and gk and pk are the input signals to the gray or black cell.

These can be arranged in a variety of configurations to produce high performance

adders for various design specifications [15].

To keep delay at an absolute minimum throughout this design, a Kogge-Stone

tree is utilized. Kogge-Stone trees have both a minimized critical path delay and the

lowest fanout for any current prefix tree. However, this does come at the cost of higher

power consumption and large area, since the raw number of gray and black cells used

are highest in a Kogge-Stone design. However, since floating-point addition is such a

fundamental operation to scientific computation [15], the power cost for using Kogge-
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Stone was deemed a necessary trade off. These prefix adders are used throughout this

architecture in a variety of bit-widths. Moreover, 12-bit prefix subtracters are used

for exponent comparison and exponent rounding, a 64-bit end-around-carry prefix

adder is used to perform the primary addition or subtraction operation, and 52-bit

prefix adders are used to round the mantissa correctly at the end of this architecture’s

datapath, as well as detect denormalized underflow and overflow.

Modified versions of prefix adder designs are also used to improve rounding per-

formance, particularly for denormalized cases. Specifically, a flagged prefix adder [18,

19], also implemented with a Kogge-Stone prefix tree design, is used to handle de-

normalized offsets for modifying exponent values. Flagged prefix adders differ from

normal prefix adders by the inclusion of a flag signal, which based on the sum gen-

eration for the prefix adder Rk, as well as an unsigned constant offset Mk [18]. Both

of these can be used to generate a flag signal Fk to combine with the normal sum

generated by the prefix adder, which generates a modified sum with the offset of Mk.

A list of equations showing the initial calculations for necessary signals are included

below.

Flag prefix architectures take advantage of late-increment operations by modifying

cells within the main prefix tree so that group generate (Gi−1
0) and group kill (Ki−1

0
)

signals are produced. Consequently, carry-out signals emerging from the prefix tree

can be updated to form the appropriate late-carry signals. This is shown as a block

diagram in Figure 3.1 where the Mk signal can augment the operation of the addition

late. Essentially, a flag-prefix adder is a form of merged arithmetic [20]. The necessary

logic for generating both the flagged prefix adder’s carry and flag signals is shown

here:

Rk = xk ⊕ yk ⊕ ck ,

ck+1 = Rk · Mk + Rk · ck + Mk · ck ,

12



Carry Tree

Pre−processing (bitwise p, g)

Modified Prefix

Post−processing + Flag Enabling

K
i−1:0 i−1:0

Sum
n−1:0

M
k

g p

y
n−1:0

x
n−1:0

n−1:0

G

n−1:0

Figure 3.1: Block diagram of a flagged prefix adder

Fk =


ck if Mk = 0

ck if Mk = 1
.

The implementation of a flag prefix structure using an arbitrary constant Mk can

be seen in Figure 3.2. To take advantage of using an unknown constant value, it is

necessary to update the late-carry equations from the carry value produced by the

prefix tree. This value, along with the flagged signal Fk generated from it, can be

combined with the pseudosum of the two addends and Mk. This is used to produce

the output flag logic specified in [19], which can be XOR’d with the sum normally

generated from the carry prefix adder to produce an output offset by the constant Mk.

This is shown in the select logic block of Figure 3.2, where the XOR’d pseudosum and

carry Rk and Fk are used to generate the potential combinations of the flag output

signal. The constant value Mk is used to choose which value is selected for flag output.

This implementation is used in the proposed design to properly round the exponent

value as quickly as possible. By incorporating a constant offset into the exponent

rounding adder, it is possible to consider every potential rounding case in a single
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Prefix Carry Tree

F_k Generation

Carry

Addend_A Addend_B

Sum Output

M_k

Prefix Sum

Prefix XOR Stage

n n

n

F_kn n

Select Logic

1 0 1 0

1 0

1 0 1 0

1 0

M_n−1

M_n M_k

M_k−1

R_n−1 F_n−1 R_k−1 F_k−1 M_0

Pseudosum_k

Flag Output

Flag_Output_n Flag_Output_k Flag_Output_0

Figure 3.2: Diagram of a flagged prefix adder implementation for adding a constant

M
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operation. This is done by generating the offset for all the cases in an single value

used in place of Mk. The calculation of this is further discussed in Section 4.4. This

removes a significant amount of additional delay and power consumption that would

otherwise be required by performing this operation with multiple sequential adders,

as was done in previous work [3].

3.2 End-Around-Carry and Leading-Zero Anticipation

An end-around-carry (EAC) adder [14] is used for the primary addition and subtrac-

tion operations. This adder structure does not offer any significant increases in terms

of delay performance, but it significantly reduces the area footprint of what would

otherwise require two parallel 64-bit prefix adders for addition and subtraction. In

many implementations [3], two parallel prefix adders are used to minimize delay. If

there is a case where the result of effective subtraction would be negative (i.e. A - B if

B > A) then the two’s complement of the difference must be taken in order to achieve

the correct result. Two parallel prefix adders are used to simultaneously compute

both results, with a significant decrease in delay at the expense of area and power

consumption. This can be combined together to form something called a compound

adder. Overall, the idea is to integrate the carry within the carry chain so that it

does not propoagate twice the length of the adder [14].

An EAC adder provides nearly the same delay results in the tree structure of a

single adder by combining the carry equations for a two’s complement comparator,

as well as the normal carry equations for a prefix adder. The end effect is that this

maintains the same critical path length through the prefix adder, at the expense

of expanding the delay for any other carry bits. This does increase the number

of transistors used in an EAC adder over a normal adder, but the reduced fan-out

between stages makes the power cost for an EAC adder worth the implementation

difficulty. An example of how the carry equations between a single carry bit of a
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two’s complement comparator and prefix adder can be combined into an EAC adder

as shown below. The width of both the comparator and prefix adder are 4 bits for

clarity:

C0_comp = G0 + (P0 · G1) + (P0 · P1 · G2) +

(P0 · P1 · P2 · G3) +

(P0 · P1 · P2 · P3) ,

C2_prefix = G2 + (P2 · G3) + (P2 · P3 · Cin) ,

where Cout_comp is the carry out from a two’s complement comparator, and C2_prefix

is the third carry bit in a normal prefix adder. When these Boolean equations are in-

tegrated together, the overall length of the carry chain for the third carry bit becomes

the same as the worst-case scenario carry chain for the normal prefix adder:

C2_ECA = G2 + (P2 · G3) + (P2 · P3 · G0) +

(P2 · P3 · P0 · G1) +

(P0 · P1 · P2 · P3) ,

C0_prefix = G0 + (P0 · G1) + (P0 · P1 · G2)

+ (P0 · P1 · P2 · G3) +

(P0 · P1 · P2 · P3 · Cin) ,

where C2_ECA is the third carry bit for an EAC prefix adder, and C0_prefix is the

first carry bit for a normal prefix adder.

To further decrease the power consumption of an EAC adder, at the cost of delay,

the carry out of the adder can instead be selectively integrated into the sum instead

of back into the carry chain. This eliminates the need for the additional EAC logic

present in the carry chain, as all the additional logic can be considered after the carry

chain has been generated. The cost of this is an additional AND and XOR delay on

top of the delay for the carry out of the adder. This methodology works regardless
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of the carry chain generation system used, and is as follows:

B_EAC[n] = (Cout · SUB_OP)⊕ B[n],

Where B[n] correspond to each of n bits of the second addend B, Cout is the carry-out

of the carry chain, SUB_OP refers to whether a subtraction operation is occurring, and

B_EAC[n] corresponds to each of n bits of the pseudosum to be XOR’d with the first

addend and carry chain, which produces the final sum. This requires a significantly

smaller amount of logic to implement, especially at higher radicies, making this an

excellent choice to save power. This architecture uses this EAC methodology in its

implementation.

Leading-zero detectors and anticipators (LZD’s and LZA’s) are also extremely

important to floating-point addition. Leading-zero detectors, as their name describes,

are able to accurately detect a count of the number of continuous zeroes on a binary

input string, starting at the MSB [21, 22, 23]. These are used in floating-point

addition to detect the proper shift amount needed for pre-normalization and post-

normalization of the mantissa. For the post-normalization stage, since the correctly

formatted inputs are already known prior, a leading-zero anticipator is used instead.

This is used in parallel with the primary addition and subtraction operations, which

reduces the critical path delay by removing a LZD directly after the primary addition

in this architecture’s datapath.

LZD’s of any width are typically composed of smaller binary trees of LZD’s,

recurring down to the smallest input bit pattern that can be considered (i.e. 2 bits).

For each LZD, both a signal for the validity of the LZD input pattern and a signal

detecting the desired bit pattern need to be produced. The implementation of this

for a 2-bit LZD is:

V = A0 + A1 ,

P = A0 · A1 ,
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where A0 and A1 are the input signal to the LZD. The output for an LZD is invalid

if all inputs throughout the LZD tree are zero. By using an OR operator for each

node of the LZD tree, it is only necessary to simply invert the signal for the final

output and achieve a correct valid signal. In this case, since it is necessary to detect

a string of leading zeroes, a one in the LSB of the 2-bit LZD is used. This allows a

leading-zero bit pattern on the odd numbered bits for an input string to be detected.

Even numbered positions are considered during subsequent stages in the tree. The

bit pattern can be manually detected for even strings, but it was found to be more

efficient in this implementation to use the valid signals already generated from 2-bit

stages. The implementation for this is as follows:

V4 = V0 + V1 ,

P40 = V0 ? P0 : P1 ,

P41 = V0 ,

where P4 is the pattern detection output for a 4-bit LZD, V 4 detects the validity

of the 4 bits it is considering, and both V and P are the outputs from a 2-bit LZD

defined above. In this case, P41 is set to one if the two bit binary string from the

least significant LZD is all zeroes, which is the same case for an invalid string when

only considering the same LZD. An invalid signal for bit detection, instead of looking

for specific bit patterns on even numbered bits in the binary input string for the LZD,

is used. This concept can be used throughout the tree to make a LZD with minimal

extraneous logic.

The overall goal presented in utilizing leading-zero antcipators is to move the

normalizer prior to the adder. Moving the normalizer prior to the adder is not new.

It has been done many times for fused-multiply and add (FMA) designs [24]. The

reason FMA designs do this is the rounding is faster. However, the need for using

LZAs combined with an EAC optimizes efficiency and speed while reducing energy,
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especially for IEEE 754 addition and subtraction.

LZA’s are, in basic terms, modified LZD’s that instead take two inputs and pro-

duce a binary string with the correct number of leading zeroes to send into a standard

LZD. There are two different classes of LZA’s, exact and inexact [22]. Both classes of

LZA’s, before error correction, can produce a binary string that will allow a LZD to

predict the correct number of leading zeroes within two bits. Two bits, however, is not

good enough accuracy for the purposes of this design, so the correction logic from an

exact or inexact LZA must also be implemented. Inexact LZA’s typically have lower

delay than exact LZA’s, but they relay on prediction logic that is not always correct

(i.e. has an error rate). This makes the use of inexact LZA correct logic a non-viable

solution for this architecture. The binary correction tree used in [22] proved useful in

the implementation of an exact LZA for this design, since it maintains an heavy bias

towards reducing delay, albeit at the expense of power consumption.
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CHAPTER IV

ARCHITECTURE DESIGN

4.1 Design Methodology and Input Handling

The philosophy of this article’s architecture differs significantly in design from that of

previous implementations [13, 3]. Overall, the goal is to provide the fastest single-cycle

floating-point adder/subtracter possible, whereas, before design trade-offs were made

to keep a balance between delay performance and power consumption. This is not to

say that power consumption is not considered throughout this design, hence the use

of EAC adders, but rather it takes a lower priority to delay performance in most all

scenarios. On the other hand, the reduced area content of the EAC adder contributes

to an overall lower energy footprint. This section will attempt to document the

architecture design process as clearly as possible, making particular note to manually

demonstrate some of the more complex Boolean equations required throughout the

design. A top-level reference to the architecture can be found in Figure 4.1. Although

this architecture can also be pipelined, the design is not pipelined so that it may be

better compared against in the future.

Before the datapath flow is discussed in more detail, it is good to the components

used in this architecture and what performance benefits they offer. The exponent

comparison operation performed uses LZD’s as a necessity to account for denormal-

ized values, and the comparison between the normalized and denormalized exponent

operands are run in parallel with four 12-bit Kogge-Stone prefix adders. These prefix

adders offer the lowest fan-out and therefore smallest delay of nearly any prefix adder
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architecture. Two parallel shifters for pre-normalization are used to reduce the fan-

out between the exponent comparison and pre-normalization shift operations, further

decreasing delay. An EAC adder with a Kogge-Stone carry prefix tree is used to

maintain a very small delay and keep power-consumption levels within a reasonable

domain (i.e. within 20% of leading designs). An ELZA is used to compute the post-

normalization shift value in parallel with the primary addition operation. An ELZA

tree is large, but necessary to not rely on inexact predictions of the post-normalization

shift value. The power consumption is mostly offset by the EAC adder. Two com-

parators used for denorm edge cases and the adder used for mantissa rounding are

also Kogge-Stone prefix adders. This is again to minimize critical path delay. The

exponent rounding architecture uses a flagged Kogge-Stone prefix adder to keep delay

small and account for all rounding cases in a single addition.

IEEE 754 compliant floating-point addition requires certain operands be per-

formed regardless of the implementation specifics. Following the datapath from input

to output [15]: a pre-normalization stage has to correctly align the mantissa values

for both operands, the primary addition or subtraction operation occurs on the nor-

malized mantissas, and the result of said addition or subtraction then has to be

post-normalized to account for any leading zeroes in the result’s mantissa, which fi-

nally has to be appropriately rounded. The structure of this section will mirror the

flow of the datapath wherever possible.

Beginning to detail the datapath, this architecture takes binary64 values as in-

puts, both as a two’s complement integers and as any supported IEEE 754 precision

input. Although this design can easily be configured, as is done later, for only IEEE

754 addition or subtraction, the architecture works for both designs in an efficient

implementation. In the event that an IEEE 754 input is given that uses any precision

lower than IEEE 754 double-precision, all of the least-significant bits that are not used

by that precision are simply set to zero. For example, if an IEEE 754 single-precision
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input is given, the exponent bits 0 through 2 are zeroed, as IEEE 754 single-precision

exponents uses 8 exponent bits, instead of 11. These input values are initially fed into

an input-conversion module. This module decodes both the input operands them-

selves as well as the opcodes provided to the architecture. It checks for whether the

operation is a precision conversion, type conversion, and easily recognizable patterns

for some exception cases. There are two opcodes provided to the input conversion

module, and as necessary for specific cases throughout the rest of the architecture.

These are P[1:0] and op_type[3:0]. The former of which controls the precision to

be used for each piece of microarchitecture, and the latter controls the operation to

be completed, be it an arithmetic or conversion operation. A full list of instructions

that can be performed by both opcodes can be found in Table 4.1. The logic used for

determining when conversion operations are active is shown below, where conv_SP

determines if a single-precision conversion is occuring, and conv_HP determines the

same for half-precision:

conv_SP = op type[3]⊕ P[1] ·

P[0] · (op type[2] + op type[1]) ,

conv_HP = op type[3]⊕ P[0] · P[1] ·

(op type[2] + op type[1] +

op_type[0]) .

A few other useful aspects of the operations supported, including negation, are also

computed and shown here:

negate = op_type[3] · op_type[2] ·

op type[1] · op_type[0] ,

abs_val = op_type[3] · op_type[2] ·

op type[1] · op type[0] ,
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Float1[63] = (op1[63]⊕ negate) · abs val ,

Float2[63] = op2[63] .

The effective signs of the operands are also calculated in Float1[63] and Float2[63].

In parallel to the input conversion module, a dedicated exception module is used

to detect any input vector considered invalid or denormalized, as was previously

described in Table 2.1. This allows a few different number formats to be checked,

namely: infinity, signaling (sNaN) or quiet NaN’s (qNaN), and zero. Operations are

declared invalid if either input is a sNaN, or if both inputs are infinite and effective

subtraction takes place. Operations are considered denormalized if operand A is

itself denormalized and conversion is not occurring, or if operand B is denormalized

and either an addition or subtraction operation is occurring. Operations can be

determined to be positive infinity if operand A is positive or if operand B is negative

infinity and a subtraction operation is occurring, and the same can be determined for

negative infinity by inverting the signs of both operands. This, however, requires that

neither operand is a sNaN or qNaN. All of this is covered by the equations included

below, using the operand nomenclature from Table 4.1:

add_sub = op type[2] · op type[1] ,

Invalid = ASNaN + BSNaN +

(add_sub · AInf · BInf ·

(A[63]⊕ B[63]⊕ op_type[0])) ,

Denorm = ADenorm · (op_type[2] +

op type[1]) + BDenorm · add_sub

ZQNaN = Invalid + ANaN +

(BNaN · add_sub) ,

ZPInf = (AInf · A[63] +
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add_sub · BInf · (B[63]

⊕op_type[0]) · ZQNaN ,

ZNInf = (AInf · A[63] +

add_sub · BInf · (B[63]

⊕op_type[0]) · ZQNaN .

For ease of use outside the exception module, all of the exception signals are output

into a single vector format sel_inv[3:0], or ’select invalid’. The encoding for this

output vector is shown in Table 4.2, which is used in necessary scenarios throughout

the rest of the architecture.

The conversion to double from single or half precision occurs inside the logic of

the input converter, while the conversion from double precision to either single or

half precision occurs during rounding. This is necessary since the primary adder for

this architecture is 64 bits wide, and thus all operations that occur within the archi-

tecture have to be double precision. The conversion between precision types occurs

in a number of steps. The sign of the original operand is kept the same and directly

transferred to the new value. The exponent must be converted between precisions as

well, and unfortunately is the most complex part of precision conversion. The MSB is

kept the same between exponents, no matter the specific precision conversion. When

increasing precision (e.g. converting from half to single precision), three bits of the

opposite value of the MSB are buffered between the MSB and the bit immediately

preceding it. For decreasing precision, these three bits are truncated. Otherwise, bits

are directly transferred between precisions for converting exponents. This effectively

adds or subtracts the difference between conversion factors for exponent values, us-

ing techniques discussed in [1]. For example, when converting between single and

double precision, the three addition bits buffered in the exponent are equivalent to

adding 89610 to the exponent. This is the difference between conversion factors for
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Table 4.1: Operations for Adder/Subtracter

Operation op type P Description

add.d 0000 00 Add two 754 double precision numbers

add.s 0000 01 Add two 754 single precision numbers

add.h 0000 10 Add two 754 half precision numbers

sub.d 0001 00 Subtract two 754 double precision numbers

sub.s 0001 01 Subtract two 754 single precision numbers

sub.h 0001 10 Subtract two 754 half precision numbers

cvt.w 0010 00 Convert a 64-bit two’s complement integer to a 754 double precision number

cvt.w 0010 01 Convert a 64-bit two’s complement integer to a 754 single precision number

cvt.w 0010 10 Convert a 64-bit two’s complement integer to a 754 single precision number

cvt.b 0011 00 Convert a 32-bit two’s complement integer to a 754 double precision number

cvt.b 0011 01 Convert a 32-bit two’s complement integer to a 754 single precision number

cvt.b 0011 10 Convert a 32-bit two’s complement integer to a 754 half precision number

cvt.h 0110 00 Convert a 16-bit two’s complement integer to a 754 double precision number

cvt.h 0110 01 Convert a 16-bit two’s complement integer to a 754 single precision number

cvt.h 0110 10 Convert a 16-bit two’s complement integer to a 754 half precision number

abs.d 0100 00 Absolute value of a 754 double precision number

abs.s 0100 01 Absolute value of a 754 single precision number

abs.h 0100 10 Absolute value of a 754 half precision number

neg.d 0101 00 Negate a 754 double precision number

neg.s 0101 01 Negate a 754 single precision number

neg.h 0101 10 Negate a 754 half precision number

cvt.s.d 0111 00 Convert from a single precision number to a 754 double-precision number

cvt.d.s 0111 01 Convert from a double precision number to a 754 single-precision number

cvt.h.d 0111 10 Convert from a half precision number to a 754 double-precision number

cvt.d.h 0111 11 Convert from a double precision number to a 754 half-precision number

cvt.s.h 1111 10 Convert from a single precision number to a 754 half-precision number

cvt.h.s 1111 11 Convert from a half precision number to a 754 single-precision number
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Table 4.2: IEEE 754 exception detection

sel inv[3:0] Output State

0000 Normal

0001 Quiet NaN

0010 Negative Infinity

0011 Positive Infinity

0100 +Bzero and +Azero (and vice-versa)

0101 +Bzero and -Azero (and vice-versa)

1000 Convert SP to DP or HP

double precision (102310) and single precision (12710). A graphical version of this can

be found in Figure 4.2. When converting between floating-point formats, mantissa

conversion is easy to do. The mantissa is either truncated to the proper size when

decreasing precision, or the LSB is buffered with zeroes when increasing in precision.

In order to make sure the architecture comparisons are as accurate as possible, the

required hardware for these conversion instructions is removed. The results without

this hardware is presented in Section 5.1.

Figure 4.2: IEEE 754 Single-Precision to Double Precision Conversion

27



4.2 Exponent Comparison and Pre-normalization

For non-conversion operations, the exponent and mantissa values for both operands

are immediately compared to determine the correct shift amount necessary for the pre-

normalization stage of floating-point addition. The exponent values themselves are

sent through a pair of parallel 12-bit carry-prefix subtracters using the Kogge-Stone

tree structure covered earlier. The exponent inputs are swapped between adders, so

that comparisons of both exp1 - exp2 and exp2 - exp1 are done at the same time.

However, this neglects how to handle the case of denormalized exponents. Since

denormalized input operands have an exponent value of zero, the leading zeroes in

the mantissa have to be used for exponent comparison instead. To implement this, a

pair of leading zero detectors are used on both mantissa values. The results of which

are then immediately send to another pair of Kogge-Stone prefix adders, in parallel

with those used for normal exponent values. Both of these sets of prefix adders

provide separate shift amounts for both the normalized and denormalized range of

exponent values. The calculation for the potential denormalized shift values are:

lz_diff1 = ZP_exp1− ZP_exp2 ,

lz_diff2 = ZP_exp2− ZP_exp1 ,

where ZP_exp1 and ZP_exp2 are the leading zeroes from both mantissas. In order to

determine which shift values are used for pre-normalization, the differences of both

sets of prefix adders are each sent through a MUX. The select signals for both are

defined as:

zeroB = op_type[2] + op_type[1] ,

swap_norm = expdiff_12[11] · zeroB ,

swap_denorm = lz_diff_12[11] · zeroB .
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The output swap_denorm is used to determine which exponent difference should be

used for denormalized cases, and swap_norm does the same for normalized cases.

The MSB for the first of both sets of prefix subtracters is used to determine which

exponent is the appropriate shift value for pre-normalization. This is also used to

determine which input operand is smaller, and therefore which mantissa needs to be

right shifted.

Once both shift amounts are provided from the exponent comparison stage of the

architecture, the pre-normalization of both input vectors can begin. This is done by

taking the exponent from the smaller mantissa and right shifting it by the differences

between exponents. A right shift is performed for both the normalized exponent dif-

ference and denormalized exponent difference. Two 57-bit barrel shifters are used to

perform the right shift operations, which is referred to as RBS in Figures 4.1 and 4.3.

Mantissas that are shifted by only normalized exponent comparison and mantissas

that are shifted by both normalized and denormalized exponent comparison are cal-

culated. swap_denorm, in combination with the carry out from the first denormalized

exponent, is used to determine which normalized shift value is used for the rest of

the datapath. A block diagram detailing exponent comparison and pre-normalization

operations can be referenced in Figure 4.3. Mantissa integer conversion also happens

at this stage in the architecture, but it is not on the critical path. Integer conversion

for all supported precisions is relatively simple, as the mantissa only needs to be sign

extended to the corresponding width needed:

IntValue[15:0] = op1[15:0] ,

IntValue[31:16] = P[1] ? {16{op1[15]}} :

op1[31:16] ,

IntValue[63:32] = P[1] ? {32{op1[15]}} :

(P[0] ? {32{op1[31]}} :
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op1[63:32]) .

For ease of implementation, the operand that needs to be converted is always set to

the first operand.

Previous iterations of this architecture [3] had a critical path which involves two

sequential comparison subtractions and one right shift. Through further implementa-

tion and testing, it has been discovered that a critical path involving one comparison

subtraction and two right shifts has a lower critical path delay when combined with

larger pieces of microarchitecture. This is most likely due to the decreased fanout of

two separate barrel shifters, which unfortunately comes at the cost of increased static

power consumption due to the larger number of MUX’s used in synthesis.
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4.3 Primary Addition/Subtraction and Post-normalization

Once both mantissas have been normalized with each other, they can be sent to

the primary adder/subtracter for the architecture. A particularly useful component

of this architecture is the introduction of an adder/subtracter structure that uses a

64-bit end-around-carry prefix adder (EAC) to simultaneously compare the sums of

the two input values and compute the corresponding necessary output to keep the

result between the range of [1, 2). As mentioned in the previous section, an EAC

prefix adder can take the place of a prefix adder-subtracter pair. This provides an

obvious decrease in device area and power consumption, but it also provides some

delay performance benefits as well. For one, only having one large adder to drive in

the datapath significantly decreases the necessary fan-out of other microarchitectures.

The output sign is also unnecessary to calculate, since the proper mantissa is always

selected from the EAC adder, reducing the logical path delay by a MUX.

To prepare the sum of the EAC prefix adder for rounding, the two mantissa inputs

sent to the EAC prefix adder are also fed into a pair of exact leading-zero anticipators

(ELZA). In the case where the EAC’s result is based on the two’s complement of the

smaller mantissa, the same mantissa value is inverted before it reaches the second

ELZA. This way, no matter whether the two’s complement result is used, the appro-

priate post-normalization shift value for the sum of the EAC can be computed. This

will detect the number of leading zeroes needed to post-normalize the sum produced

by the EAC prefix adder. This shift value, along with the sum produced from the

EAC, is immediately moved into a 64-bit left barrel shifter, referenced as LBS in Fig-

ures 4.1 and 4.4. The extra bit width is to ensure none of the data produced from the

EAC adder is lost until the mantissa is rounded. This produces a mantissa within the

required fixed domain values for IEEE 754 support, and the shift amount required to

reach this domain is kept to later adjust the final exponent value during rounding.
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Figure 4.4 shows the datapath flow for this, as well as some of the exponent underflow

logic. The reason this underflow logic is necessary is to account for exponent round-

ing due to denormalized edge cases. In other words, it needs to be determined if the

sum from the EAC is small enough to be designated as denormalized, or conversely,

if the sum from the EAC is large enough to result in a normalized value from two

denormalized inputs. If the criteria for either of these cases are met, the norm_ovflow

or norm_unflow signal will be set high.

For either case, the rounded exponent may need to be offset by one if ’norm_ovflow’

or ’norm_unflow’ occurs, as the value for this exponent would translate from zero to

one in the case of ’norm_ovflow’ or one to zero for ’norm_unflow’. The value for

’norm_ovflow’ is easy to determine. It can be seen without any extra operations by

using the 52nd bit of the pre-normalized sum, where the LSB for a double-precision

exponent would change to one, thus making the result normalized. This is only used

in the event of denormalized operands increasing to the normalized range, so other

scenarios where this might occur do not need to be considered.

The case for the ’norm_unflow’ signal is unfortunately difficult to compute, since

it only occurs during edge cases where the difference between two values results in

a denormalized number. This edge case only happens during effective subtraction,

and there has to be a magnitude decrease between the largest original operand and

the sum the EAC adder produces. To check all cases where this occurs, two 52-bit

subtraction comparators have to be used to fall under the critical path delay used

during mantissa rounding. The logical equation for this is shown below:

norm_unflow = ((opA_Norm + opB_Norm) ·

(Float1[63]⊕ Float2[63]))

? mantissa_comp : 1’b0 ,

where mantissa_comp is the Boolean result of the comparison between the EAC’s
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Figure 4.4: EAC Prefix Adder and Post-normalization Datapath

sum and the largest input mantissa value. To select between comparisons, the

swap_denorm signal is used. Just like with ’norm_ovflow’, this value is only neces-

sary for calculations on denormalized edge cases, so whether normalized values will

set this signal high does not have to be considered. This will allow exponent values

to be correctly rounded, no matter the edge case. If ’norm_unflow’ is detected, the

exponent value is decreased by one, and if ’norm_ovflow’ is detected, the exponent

value is increased by one. This is all taken into account during the computation of

the denomalized offset, which is used for the final exponent value before rounding.

4.4 Rounding

In order to be fully IEEE 754 compliant, the rounding process must consider all

exception cases and invalid results supported and produce rounding flags in addition
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Table 4.3: IEEE 754 rounding mode bits

rm[2:0] IEEE 754 Rounding Mode

000 round-to-nearest-even

001 round-towards-zero

010 round-towards positive infinity

011 round-towards minus infinity

100 round-towards away

to a final result [2]. The encoding used for each rounding mode is shown in Table 4.3,

using rm[2:0] as the signal name. Rounding must be able to normalize the mantissa

if it exceeds its maximum value (i.e., ≥ 2.0), typically called post-normalization [1].

In Figure 4.5, rounding is effectively divided into two datapaths. One datapath

handles mantissa rounding while the other handles rounding for the exponent. The

rounding for the exponent is dependent on the carry out of the adder used for mantissa

rounding, forcing both adds to be part of the critical path.

Mantissa rounding for IEEE 754 compliance is handled by using a least-significant

bit (L), round digit (R), and a sticky bit (S). The bits are set accordingly by the

following where SHP , SSP , and SDP represent the appropriate sticky bits for half,

single and double precision, respectively [25]:

(L, R, S) =


A[53], A[52], SHP if P = 10

A[40], A[39], SSP if P = 01

A[11], A[10], SDP if P = 00

.

The SHP , SSP , and SDP sticky bit values represent the logical OR of all bits preceding

the round digit for each precision. All of these values are computed in the L, R, S-

bit Generation block of Figure 4.5, and the correct version is chosen based on the

precision needed by the operation. A signal HP_output is set high if the rounding

module’s output needs to be half precision, based on the P[1:0] vector. All of these

rounding bits are used to determine whether the value of one needs to be added to the
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post-normalized mantissa in order to correctly round up or down. A one is required to

add to the result if ((the rounding mode is round-to-nearest) and (R is one) and (S or

L is one)) or ((the rounding mode is towards plus or minus infinity (rm[1] = 1)) and

(the sign and rm[0] are the same) and (R or S is one)) or (R is one) and (rounding

mode is towards away). This can be written by the following Boolean logic:

add_one = (rm[1] · rm[0] ·R · (L + S)) +

(rm[1] · (Asign⊕ rm[0]) · (R + S))

+ (rm[2] ·R) .

This value is the output of the B Mantissa Generation block found in Figure 4.5.

This is used in combination with necessary precision logic to generate a vector B[63:0]

to add to A[63:0]. The one is added where the LSB of the mantissa is for each pre-

cision, normalized to a 64-bit vector:

B[63:0] = {{10{1’b0}},

add_one · HP_output, {12{1’b0}},

add_one · P[0], {28{1’b0}},

add_one · P[0] + HP output}.

After this value is known, the carry-out from this sum can be utilized in combina-

tion with values from underflow logic, referenced in Figure 4.4. This can be used to

adjust the value of the exponent, along with the number of bits that were required to

post-normalize the sum produced from the EAC (i.e. norm_shift) per the following

equation:

Texp = {1’b0, Aexp}−

{{6{1’b0}}, norm_shift}

+ denorm_OS ,
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denorm_OS = normal_underflow ?

(cout_mantB ?

({{9{VSS}},VSS,VDD,VSS} :

{{9{VSS}},VSS,VSS,VDD}) :

(cout_mantB ?

{{9{VSS}},VDD,VSS,VSS} :

({{9{VSS}},VSS,VDD,VDD}) :

{{10{VSS}},VDD,cout_mantB} .

The cout_mantB signal is what comes from the final carry out of the adder next to

the BMantissaGeneration block. normal_underflow selects between offset values of

one through four, depending on cout_mantB. This offset value is used as the arbitrary

value of M for a flagged prefix subtracter. This allows all denormalized exponent

rounding scenarios to be accounted for within the delay of a single carry prefix adder.

This can be seen in the subtracter structure found in Figure 4.5. This is significantly

faster than using underflow or overflow in boundary solutions, as is shown in [10].

A few more rounding considerations must be taken into account before the com-

putation of the final rounded exponent. The normalized exponent Texp is set to all

ones during NaN and Infinite exception cases, and all zeros during zero and some

denormalized value cases. To implement an overflow trap on the normalized expo-

nent, the two MSB’s of the exponent are inverted during an operation where overflow

occurs. The bits that are actually inverted will vary based on precision. For example,

bits 7 and 8 are inverted during a single precision operation.

Fortunately, rounding for the mantissa is much easier to account for than either

the sign or exponent value. The mantissa is set to all ones during exception cases

where the result is equal to the largest floating point value representable, or during

NaN’s. The mantissa also has to be set to all zeros during either zero or Infinity
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exception cases.

By far, the more difficult part of an IEEE 754 value to correctly round is the

sign. The final sign value output depends on the rounding mode and any overflow

or underflow cases. Specifically, the sign of the final result is one if the result is not

zero and the sign of A is one, or if the result is zero and the rounding mode is round-

to-minus infinity. The final result must also be considered zero if exp_valid is zero

(i.e., the exponent is not a valid exponent). If underflow occurs into the denormal

range, the original sum and unmodified exponent values (i.e., the exponent values

immediately preceding exponent comparison) are used to determine the resulting

sign. During an addition operation, if the original sum has a MSB of one, any one

of the input operands were originally normalized, and the original exponents have

different MSB’s, then the sign of A is set to zero. For subtraction operations occurring

during underflow, if exclusively either original operand is normalized, and the signs

of original exponents are the same, then the sign of A is set to zero. Otherwise,

A is left as it would be regardless of underflow. This is summarized in Table 4.4,

where descriptions of the vectors included are as follows: A_Norm and B_Norm indicate

if the original operands were normalized. exp_A_unmod and exp_B_unmod refer to

the original input operand’s exponents. Asign is the sign of A determined after

the primary addition/subtraction operation occurs, and sum is the mantissa output

immediately before post-normalization occurs.

Finally, in order to be IEEE 754 compliant, the architecture must output the

correct five IEEE 754 flags. These flags are Inexact, Underflow, Overflow, Divide by

0, and Invalid. Since a Division by 0 cannot occur, this is always deasserted. Overflow

only occurs if the exponents produce its maximum value. Similarly, underflow occurs

if the exponent produces a binary value of 0 or below. The overflow and underflow

flags should not be set if the input was infinite or NaN, or if the output of the adder is

zero. The final result is Inexact if any rounding occurs ((i.e., R or S is one), or (if the
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Table 4.4: Rsign Expression Table

Result Case Subcases

Denormalized

Subcase Boolean Expression

Addition

sum[63] · (ANorm+BNorm) ·

(expAunmod[11]⊕

expBunmod[11])

Subtraction

sum[63] · (ANorm+BNorm) ·

(expAunmod[11]⊕

expBunmod[11])

Norm Unflow ∼ Asign

Normalized

Zero Exception

& rm -∞ 1’b1

Invalid Exception

& rm -∞ 1’b1

Conversion Asign

All Others Asign · exp valid

Table 4.5: Invalid/Valid IEEE 754 [1, 2] Operations

Operation (+/-) sNaN qNaN Normalized Number Infinity Zero

sNaN qNaN qNaN qNaN qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN

Normalized Number qNaN qNaN IEEE 754 1 Infinity IEEE 754

Infinity qNaN qNaN Infinity qNaN/Infinity qNaN

Zero qNaN qNaN IEEE 754 Infinity Zero
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B Mantissa
Generation

L,R,S Bit
Generation

Figure 4.5: Simplified Block Diagram of Rounding Module

result overflows) or (if the result underflows and the underflow trap is not enabled))

and (the value of the result was not previously set by an exception case). A summary

of Invalid vs. Valid operations is shown in Table 4.5.

4.5 Comparison to Previous Work

The architecture implementation presented in this thesis has been directly iterated

upon from previous publications, namely [3]. Most of the architecture’s datapath

has been changed, but I will highlight the most significant and impactful changes

to the architecture that have been made, following the same datapath order used

in Section IV. This includes a subsection on the novel exponent rounding structure

introduced for this thesis only.

In previous work, the structure of the subtractors used for exponent comparison
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Figure 4.6: Exponent Comparison Architecture from [3]

were less parallelized. An initial set of subtractors were used to account for exponent

differences that would occur in denormalized values. The results produced from this

were moved into a second set of subtractors, which would compare the denormalized

differences with the values the exponent operands provide directly. The current ar-

chitecture takes this subtractor structure and performs both the denormalized and

normalized exponent comparison in parallel. The cost for performing this operation

in parallel is that the pre-normalization shift has to occur sequentially. Since the nor-

malized shift value can be computed much faster than the denormalized shift value,

the initial normalization shift can occur much earlier. This means the critical path for

the exponent comparison stage follows through the LZD’s, denormalized subtractors,

and finally the second of the sequential pre-normalization shifters. This effectively

saves the delay of an entire subtractor for the critical path. Figure 4.6 shows the

architecture used for exponent comparison to previous work, while Figure 4.3 shows
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Figure 4.7: Primary Addition Architecture from [3]

the architecture used in this thesis.

There are also significant differences in the structure for which the primary addi-

tional operation occurs. Beforehand, parallel adders were used in order to produce

the two’s complement value for each addition or subtraction. Then, based on the sign

of the addition, the correct value would be chosen. Following that, it is necessary to

find the number of leading zeros in the mantissa and perform a post-normalization

shift after that. This process has been heavily parallelized, in that now the post-

normalization shift value is computed in parallel with the primary addition by use of

an ELZA, and the primary addition itself is made much more power efficient by the

use of an EAC adder architecture. The critical path now only follows the EAC carry

chain and the post-normalization shift, as opposed to a normal prefix adder, a LZD,

and then a post-normalization shift. Figure 4.7 shows the architecture used for the

primary addition in previous work, while Figure 4.4 shows the architecture used in

this thesis.

A novel iteration has been made in terms of the exponent rounding structure,

which has led to significant performance benefits over the previous architecture used.
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Initially, two sequential adders were used to first compute the rounded exponent,

and then either round up or down depending on the presence of norm_unflow or

norm_ovflow. In the current architecture, these are used in combination with the

carry out from the adder used to round the mantissa to produce a single constant to

use as input to the flagged adder. This allows exponent rounding to be performed in

a single addition operation, as opposed to two. The exponent rounding critical path

follows through the least, round, and sticky bit generation, which is used to produce

a constant B to add to the mantissa. The carry out is combined with norm_ovflow

and norm_unflow to produce a constant in the flagged prefix adder, the sum of which

is finally rounded. Figure 4.8 details the previously used architecture and Figure 4.5

shows the architecture used in this thesis.
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CHAPTER V

RESULTS

5.1 Results and Conclusion

The proposed design is implemented in RTL-compliant Verilog and designs are then

synthesized using an ARM 32nm CMOS library for Global Foundries (GF) cmos32soi

technology optimizing on delay. To verify the correctness, all implementations are

tested against random test vectors generated by TestFloat [26] and passed completely.

Additional random denormalized vectors via a Java program were also generated to

give completeness and coverage. The ARM standard-cell library utilizes multiple

values of VT to aid in synthesis (i.e., MTCMOS). Synthesis was optimized for delay

utilizing Synopsys R© (SNPS) Design Compiler
TM

(DC) in topographical mode using

a PVT process at 25◦ C using TT corners. Topographical synthesis, provided by

Synopsys R© DC
TM

(DC) ensures synthesis that accurately predicts timing, area and

power by including information from the standard-cell layouts and underlying inter-

connect.

Table 5.1 shows the post-synthesis results for cmos32soi GF 32nm technology us-

ing the Synopsys R© DC
TM

and Synopsys R© Power Compiler
TM

synthesis software. The

average fanout-of-4 (FO4) delay measured with SPICE is 5.95ps for 32nm technol-

ogy. Table 5.2 shows additional synthesis results for the proposed architecture in

cmos32soi GF 32nm used in combination with architecture from the previous im-

plementation [3]. In these additional results, the architecture for the operations of

exponent comparison, the primary addition, and rounding have been replaced by its
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Table 5.1: Post-synthesis Results for the Proposed IEEE 754 compliant Architecture

in cmos32soi 32nm GF technology

IEEE 754 Adder # Cells Area [um2] Delay [ps/FO4]
Power [mW]

Internal Switching Leakage Total

Proposed IEEE 754 Denormized/ 5,908 7,533.7 469.12/78.84 9.060 11.482 4.125 24.667

Normalized FP Adder (LVT)

IEEE 754 Denormalized/ 8,475 9,585.9 619.19/104.07 10.536 13.698 5.147 29.382

Normalized FP Adder (LVT)

SNPS DW (LVT) 5,269 6,840.1 605.03/101.69 11.035 14.527 3.711 29.274

Proposed IEEE 754 Denormized/ 6,238 7,681.3 481.26/80.88 8.829 11.418 3.835 24.082

Normalized FP Adder (RVT/LVT)

IEEE 754 Denormalized/ 7,168 8,874.1 623.46/104.78 13.420 16.638 4.467 34.525

Normalized FP Adder (RVT/LVT)

SNPS DW (RVT/LVT) 5,151 6,932.4 595.80/100.13 10.652 13.890 3.411 27.953

Table 5.2: Post-synthesis Results with/without Enhancements for the Proposed IEEE

754 compliant Architecture in cmos32soi 32nm GF technology

IEEE 754 Adder # Cells Area [um2] Delay [ps]
Power [mW]

Internal Switching Leakage Total

Proposed Design (LVT) 5,908 7,533.7 469.12 9.060 11.482 4.125 24.667

Proposed Design w/o Exponent (LVT) 7,937 10,218.7 574.49 10.910 13.970 5.542 30.421

Proposed Design w/o EAC (LVT) 6,401 6,746.7 532.96 5.455 7.387 3.546 16.388

Proposed Design w/o Rounding (LVT) 7,895 9,956.5 576.41 13.660 17.705 5.610 36.975

Proposed Design (RVT/LVT) 6,238 7,681.3 481.26 8.829 11.418 3.835 24.082

Proposed Design w/o Exponent (RVT/LVT) 8,207 10,210.5 585.38 10.323 13.674 4.999 28.996

Proposed Design w/o EAC (RVT/LVT) 6,118 6.655.0 544.52 5.632 7.324 2.930 15.886

Proposed Design w/o Rounding (RVT/LVT) 7,051 8.857.8 583.10 11.744 15.140 4.471 31.356
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corresponding implementation in [3]. This shows a direct comparison on the perfor-

mance improvement between designs. It is also informative to show the performance

differences between using exclusively low-threshold MTCMOS cells and cells with a

combination of voltage thresholds, as would normally be seen in practice. These are

referred to as LVT for low-voltage threshold and RVT/LVT for regular-voltage and

low-voltage threshold, respectively. Since LVT generally has better performance for

delay , all subsequent discussion comparing designs shall refer to the LVT results of

either table.

The design is compared against intellectual property generated by Synopsys’

DesignWare
TM

(DW) floating-point adder /subtracter, DW_fp_addsub design. The

DW design is also IEEE 754 compliant, however, it only computes results using IEEE

754 double-precision arithmetic. To make the comparison between designs as direct

as possible, the operational subset during synthesis has been limited to be the same

as DW, i.e., the architecture is limited to exclusively performing double-precision

arithmetic. Taking this into account, all of the results, including those from previous

work, can be directly compared to DW. For delay, this architecture with exclusively

double-precision arithmetic support is 28.97% faster than DW, with a critical delay

time of 469.12 ps. For comparisons between other technologies, a unitless delay can

be calculated based on the FO4 delay. This can be done by dividing the FO4 delay

result from the technology used [4].

The resulting power consumption between the proposed architecture and DW is,

due to the use of EAC adders [13] and fanout optimization, smaller. The proposed

architecture reduces the power to 84.26% of the DW reference design. This can be

observed in the large difference in internal power consumption between architectures.

This design does have a larger leakage power consumption than the DW reference,

due to the increased number of cells.

The increased parallelization the proposed design has over DW does require more
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hardware to implement, although at a comparable level. Looking at the DW reference

the proposed architecture uses 110.14% of area consumed by DW.

Comparing this architecture to the previous work it is based on also shows signif-

icant improvement. In terms of delay performance, the changes that have been made

to each operation’s architecture have yielded improvements. Changing the exponent

structure decreased the delay by 22.46%, swapping the adder structure and adding

a LZA improved it by 13.61%, and putting a flagged-prefix adder in the rounding

structure also improved performance by 22.87%. Power performance is also improved

when the exponent comparison and rounding structures are replaced, by 23.33% for

exponent comparison and 49.90% for rounding. Due to the lack of an exact LZA tree,

the power consumption is worse for the architecture in comparison to previous work,

by 66.23%. The area used in between replacing components of the previous work also

shows improvement, excluding when the primary adder structure is replaced. This

is mainly due to the necessary hardware overlap required when splicing together ar-

chitecture components, and again, the lack of an exact LZA tree reduces area when

addition structure are swapped. Area improvements of 35.64% are found for exponent

comparison and 32.16% for rounding, while a reduction in area by 11.66% is shown

when comparing addition structures.

The key to this implementation is parallelizing all of the adder and subtracter

structures possible in the design and optimizing the load each floating-point operation

has to drive, which allows synthesis to better optimize the critical path through

this architecture. Similar designs use the same idea for three-operand addition [9].

Although earlier articles suggest two parallel computation paths [12], this thesis uses

it to compute other important conversion utilities that may be useful for common

general-purpose and application-specific architectures. This floating-point adder can

still potentially be improved on its delay timing, although not significantly. This

could be done by implementing inexact LZA’s in place of the exact LZA’s used for
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the post-normalization of the EAC adder’s sum. As mentioned previously, this design

can be easily pipelined for additional performance. This design can be made into a

three stage pipeline by placing registers after the exponent subtraction stage as well

as before the post-normalization process in the datapath.

The design of this IEEE 754 compliant floating-point adder shows extremely high

levels of performance while maintaining a substantial level of utility. This architecture

is useful for any floating-point designs that requires high precision and unparalleled

delay and energy performance. Another strong emphasis is that the results can be

further improved by implementing in a complete custom-cell VLSI design. However,

the strong results show that the optimization in a standard-cell design significantly

outperforms IP-based designs as well as previous results.
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