

DEVELOPMENT OF A SOFTWARE IN THE

LOOP SIMULATION APPROACH FOR RISK

MITIGATION IN UNMANNED AERIAL

SYSTEM DEVELOPMENT

By

CHARLES PRESTON JOHNSON

Bachelor of Science in Mechanical Engineering

Bachelor of Science in Aerospace Engineering

Oklahoma State University

Stillwater, Oklahoma

2018

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2020

ii

DEVELOPMENT OF A SOFTWARE IN THE

LOOP SIMULATION APPROACH FOR RISK

MITIGATION IN UNMANNED AERIAL

SYSTEM DEVELOPMENT

Thesis Approved:

Dr. Andy Arena
__

Thesis Adviser

Dr. Rick Gaeta
__

Dr. Imraan Faruque
__

iii
Acknowledgements reflect the views of the author and are not endorsed by committee members or
Oklahoma State University.

ACKNOWLEDGEMENTS

I would first like to thank my parents started me on the path to becoming an engineer and

have helped me and encouraged me to achieve something more each step of the way. My brother

has always been there and without him many of the electrical or coding knowledge we learned

would have been lost on me. They also took on the task of helping me form clearer messages so

that the reader might have an easier time understanding what I am trying to say.

The wonderful and awesome members of my committee for listening to my questions and

for pushing the bar just a little bit higher. Dr. Arena continues to push for the best and expects even

more leading to discovering incredibly rewarding adventures. Dr. Gaeta and Dr. Faruque have

taught many lessons that will stay with me for a long time to come and broadened my knowledge

to new horizons during every lecture and conversation.

My fellow students that have helped me in some way are too numerous for me to list them

all. Jeff, Aron, Thomas, Colton, and Zac who were there at every moment to listen to me babble

about computers and code. Our pilot Marc who took time out of his way for a short series of flights

with one small aircraft. Collin who keeps the world turning and all of us in line.

A special thank you goes to Dr. Tridgell who graciously answered every question I asked

about ArduPilot. Thanks also needs to be given to the vibrant community of users and developers

that believe open source can be as good or better than commercial options.

Finally, a thank you to Pat “Moondog” Hardage for showing that education should be

wildly diverse every day of the week.

iv

Name: CHARLES PRESTON JOHNSON

Date of Degree: DECEMBER, 2020

Title of Study: DEVELOPMENT OF A SOFTWARE IN THE LOOP SIMULATION
APPROACH FOR RISK MITIGATION IN UNMANNED AERIAL
SYSTEM DEVELOPMENT

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: A common method to reduce risk during the development of new designs is
simulation and estimation. The extent to which these simulation and estimation techniques
can be relied upon for small Unmanned Aerial Systems (sUAS) is unknown. Combining
the autopilot together with a simulator for Software in the Loop (SITL) allows designers
to tune and observe autopilot behavior before the design is finished. This thesis extends the
tools provided through SITL to present methodology that can both provide early insight to
the handling qualities of the aircraft and validation of the simulator.
ArduPilot and X-Plane 11 are used as the autopilot and simulator. New features were
developed to extend the functionality of ArduPilot. Additional software was developed to
assist in both identification of aircraft modes and validation of simulation.
With mixed results from validation of X-Plane, the need to perform flight testing of real
aircraft is still more desirable for precision tuning of sUAS for more desirable handling
qualities. What can be gained from SITL is risk mitigation from unconventional additions
to sUAS and detailed analysis of failsafe behavior of the autopilot.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

GOAL AND OBJECTIVES .. 2
AUTOPILOT STRUCTURE .. 4
ARDUPLANE SYSTEM FAILURE ACTIONS .. 8
ARDUPLANE CONTROL STRUCTURE .. 9
CURRENT ARDUPLANE TUNING METHODS ... 13
AIRCRAFT MODE IDENTIFICATION BACKGROUND 15
SIMULATOR TYPES .. 18
COMPUTATIONAL FLUID DYNAMICS AS A DESIGN TOOL 20

II. APPARATUS AND METHODOLOGY ... 26

AIRCRAFT USED FOR EXPERIMENTS ... 26
SOFTWARE USED FOR FLIGHT TESTING ... 29
SOFTWARE FOR VALIDATING ARDUPILOT SITL .. 29
SIMULATION SOFTWARE ... 30
FLIGHT TESTING METHODS ... 32
AIRCRAFT MODE IDENTIFICATION METHODS ... 39
ANALYSIS ... 41
LIMITATIONS ... 42
UNCERTAINTY OF GYROSCOPES ... 43
UNCERTAINTY FROM AN EXTENDED KALMAN FILTER 46

III. RESULTS ... 48

STATIC ANALYSIS .. 48
ANALYTICAL METHODS MODE IDENTIFICATION ... 50
VALIDATION OF ARDUPILOT ATTITUDE CONTROLLER 51
FLIGHT TEST POINTS ... 55

TEST POINT 1 (SHORT PERIOD IDENTIFICATION)............................. 56
TEST POINT 2 (DUTCH ROLL IDENTIFICATION) 60
TEST POINT 3 (FBWA PITCH GAIN TUNING) 63
TEST POINT 4 (FBWA YAW GAIN TUNING) ... 66
TEST POINT 5 (FBWA PITCH PREVIOUS GAIN TUNING) 67
TEST POINT 6 (FBWA YAW PREVIOUS GAIN TUNING) 68
TEST POINT 7 (FBWA PITCH HIGH GAIN TUNING) 69
TEST POINT 8 (FBWA YAW HIGH GAIN TUNING) 71

vi

Chapter Page

TEST POINT 9 (FBWA PITCH INTEGRATOR) 72
TEST POINT 10 (FBWB PITCH INTEGRATOR) 73
ADDITIONAL INTEGRATOR BUILD UP EXAMPLE 74

MODE IDENTIFICATION FROM ATTITUDE DATA ... 76
CASE STUDY OF LOCUST AIRCRAFT ... 77

IV. CONCLUSIONS .. 82

VARIATIONS IN MODE ESTIMATION METHODS ... 82
EFFICACY OF SITL AND FDM WITH REGARD TO RISK MITIGATION 83
SERVO OVERRIDE IMPACT ON CONTROLLERS .. 85
2D COMPUTATIONAL FLUID DYNAMICS IN SOLIDWORKS 86
SUMMARY OF SOFTWARE CREATED .. 87
FUTURE WORK .. 88

REFERENCES ... 89

APPENDICIES ... 92

DOUBLET LUA SCRIPT ... 92
GEOMETRICSTABCON .. 97
3-VIEW DRAWING OF FMS EDGE 540 1300 MM MODEL 106

vii

LIST OF TABLES

Table Page

1. Simulation runs choosen for static stability .. 22
2. Inertia matrix for FMS Edge 540 .. 26
3. SOLIDWORKS Flow Simulation General Settings ... 32
4. SOLIDWORKS Flow Simulation 2D Computational Domain settings 32
5. SOLIDWORKS Flow Simulation Calculation Contorl Options 32
6. Test points ... 35
7. Attitude controller parameter set 1 ... 35
8. Attitude controller parameter set 2 ... 36
9. Attitude controller parameter set 3 ... 37
10. Attitude controller parameter set 4 ... 38
11. Comparisoin of short period mode ... 77
12. Comparison of Dutch roll mode ... 77
13. Parameter changes before Locust flight .. 78
14. Static margin reported by each method .. 83
15. Radius of gyration assumed by each method .. 83

viii

LIST OF FIGURES

Figure Page

1. ArduPilot software and hardware structure .. 6
2. SITL structure block diagram ... 7
3. Mission Planner critical service bulletin ... 9
4. ArduPlane pitch control loop .. 10
5. ArduPlane roll control loop .. 11
6. ArduPlane yaw control loop ... 11
7. ArduPlane scaling speed ... 13
8. Oscillations from PID controller in high alpha flight ... 15
9. Law of the Wall for 𝑘 − 𝜖 ... 24
10. Image of Edge 540 model used ... 27
11. SOLIDWORKS CAD model of Edge 540 ... 28
12. X-Plane model of Edge 540 .. 29
13. Pre-Flight checklist for Edge 540 ... 33
14. Post-Flight checklist for Edge 540 .. 33
15. Flight test points card with procedures ... 34
16. ISC-20948 static sampling data .. 44
17. Allan variance of accelerometers in the ICM-20948 IMU ... 45
18. Allan variance of gyroscopes in the ICM-20948 IMU ... 46
19. Coefficient of Lift from CFD and StabCon-S... 49
20. Coefficient of Moment from CFD and StabCon-S ... 49
21. Roots of longitudinal modes from estimates .. 50
22. Roots of lateral modes from estimates .. 51
23. Incorrect pitch SITL controller validation on physical hardware 52
24. Incorrect roll SITL controller validation on physical hardware 52
25. SITL pitch controller validation.. 53
26. SITL roll controller validation .. 53
27. Physical pitch controller validation .. 54
28. Physical roll controller validation ... 54
29. X-Plane test point 1 in the time domain (25 Hz) .. 55
30. X-Plane test point 1 in the frequency domain (25 Hz) ... 56
31. X-Plane test point 1 multiple trials ... 57
32. One trial of X-Plane test point 1 in the time domain .. 57
33. X-Plane test point 1 in the frequency domain ... 58
34. Physical test point 1 multiple trials ... 58
35. One trial physical test point 1 in the time domain .. 59
36. Physical test point 1 in the frequency domain .. 59
37. X-Plane test point 2 multiple trials ... 60

ix

Figure Page

38. One trial of X-Plane test point 2 in the time domain .. 61
39. X-Plane test point 2 in the frequency domain ... 61
40. Physical test point 2 multiple trials ... 62
41. One trial of test point 2 in the time domain .. 62
42. Test point 2 in the frequency domain ... 63
43. X-Plane test point 3 ... 64
44. Physical test point 3 .. 64
45. Example of PID break down for tuning .. 65
46. X-Plane test point 4 ... 66
47. Physical test point 4 .. 66
48. X-Plane test point 5 ... 67
49. Physical test point 5 .. 67
50. X-Plane test point 6 ... 68
51. Physical test point 6 .. 69
52. X-Plane test point 7 ... 70
53. Physical test point 7 .. 70
54. X-Plane test point 8 ... 71
55. Physical test point 8 .. 71
56. X-Plane test point 9 ... 72
57. Physical test point 9 .. 73
58. X-Plane test point 10 ... 74
59. Physical test point 10 .. 74
60. X-Plane replication of integrator build up .. 75
61. Physical instance of integrator build up .. 75
62. Flight log of Locust crash ... 79
63. Testing Locust crash parameters in X-Plane with ArduPilot SITL 80
64. SITL testing pre-change Locust parameters ... 81
65. Oscillations in CFD solution ... 86
66. 2D slice of mesh for NACA 2412... 87

1

CHAPTER I

INTRODUCTION

Current development of small unmanned aerial systems (sUAS) includes many high-risk

operations to both the aircraft and the operators. For novel designs, there are limited options beyond

development of technology demonstrators to test the new designs. A designer who is provided with

tools that can accurately simulate the design will be able to develop faster, more efficiently, and

reach a completed flight-testing phase earlier than a designer without these tools. Currently, there

are many tools available to these designers, but the question of how accurate the simulations are

has yet to be answered. Comparisons of flight behavior between simulators and real aircraft have

been done but without well-defined methods that would allow comparison across a suite of aircraft

and simulators. This begs the question: how can such comparisons be made repeatedly, safely, and

with lower pilot experience requirements?

For more costly aircraft, the risks of flight testing also come with a much higher

development cost and thus adds to the many risks that must be taken on to develop novel aircraft.

Hamish Willee noted as such in the ArduPilot software in the loop (SITL) documentation in 2016,

“Crashing software planes is a lot cheaper than crashing real ones!” Many of these risks could be

better mitigated with SITL testing and robust development procedures. Including SITL testing

provides early opportunities in the design process to tune controllers and verify design decisions.

The extent to which SITL testing can be relied upon is unknown. To verify where in the design

process of a sUAS a reliable model can be acquired, a study of the efficacy of the models must be

2

done. Due to the variation in dynamics of sUAS this method might not be applicable for all sUAS,

but methodology to check the efficacy for a flight behavior can still be invaluable.

This thesis will present work that demonstrates that the ArduPilot portion of SITL is the

same as that used by the hardware autopilots. This lays the groundwork for determining that any

differences in measured flight behavior, while the autopilot is providing a stability augmentation

system or a control augmentation system, is the results of the flight dynamics model rather than

differences in autopilot output signals. After this is established a set of example maneuvers will be

down that will assist in tuning a virtual aircraft before a physical aircraft is flown. The qualify and

confidence of the virtual tuning process will depend exclusively on the quality of the flight

dynamics model.

GOAL AND OBJECTIVES

First and foremost, an overview of the autopilot and the flight simulation software will be

explored here. These are the core tools of the apparatus which enable the ability to conduct

repeatable and safe validation of simulation tools. This includes any modification or new features

that are added to the autopilot to make adaptation of the methodology easier and more attainable

for future work. These software solutions will be able to be used for both simulation and flight-

testing methods.

Established analytical methods have been used across the industry for decades to provide

insight to the stability and handling qualities of aircraft. These methods will be used as a starting

point for determination of frequency and damping of the aircraft’s flight modes. Computational

Fluid Dynamics will also be explored going so far as to determine how well previously explored

methods to determine aircraft stability performed by others can be used by more accessible tools

today. The characteristics found from these methods will provide guidance on frequency used for

the input signal for mode identification in simulation and flight-testing.

3

Flight testing maneuvers that can exhibit typical aircraft mode identification will also be

explored. Software will be developed which executes safe and repeatable maneuvers for the

purpose of aircraft mode identification. This software takes advantage of features created earlier in

this work. Comparison of these aircraft modes will provide insight to how accurately the dynamic

system of the aircraft has been estimated by the analytical methods and by the simulator. This will

be done with a form of system identification. The comparison will be made easier by using the

same input signals for simulations and real aircraft flight testing.

A case study of a situation where SITL testing could have prevented catastrophe will be

presented in the final section. This work was done with fixed wing sUAS aircraft in mind. The

methodology could feasibly be applied to many other classes of aircraft for the purposes of

simulation efficacy.

 Conduct a literature review on ArduPilot, X-Plane, MAVLink, MAVProxy,

SOLIDWORKS Flow Simulation, and aircraft testing maneuvers for parameter estimation.

Each of these building blocks adds to mitigation of risk through knowledge of the tools

that are used.

 Perform parameter estimations of the test aircraft using analytical methods. These methods

will be used the baseline measure to determine to what extent each method can be relied

on to predict the modes of the aircraft.

 Develop and test a software solution to command maneuvers to a SITL aircraft. This should

be able to create a repeatable servo output and be easily adaptable to apply any input signal.

 Develop and test a software solution to command maneuvers to a real aircraft with identical

inputs to SITL. This can be the same as the software developed in the previous objective

with additional debugging through ground testing.

 Analyze data from SITL maneuvers and real aircraft maneuvers and identify aircraft modes

from each utilizing methods found through the literature review.

4

 Demonstrate that improper risk mitigation can lead to catastrophe through lack of testing

and prior knowledge. Provided detailed examples from past flight testing where past

methodology surrounding the autopilot produced dangerous or unexpected results.

AUTOPILOT STRUCTURE

The term autopilot must first be defined. The traditional definition is typically taken from

the perspective of a controls engineer. The autopilot is the system that provides guidance,

navigation, and control for the aircraft. This definition includes all hardware and software needed

to make this goal happen. When looking from the current perspective of sUAS development, the

term has come to refer to either the hardware, excluding sensors, or the software that is running on

the hardware. The term is used both ways throughout the documentation. The autopilot, hardware

and software together, communicates with Ground Control Software (GCS) using a protocol

common to both autopilot and GCS called MAVLink. Knowing what is in the stack of parts that

allows the autopilot to perform its job of flying an aircraft mitigates risk from choosing improper

parts or incompatible parts.

A brief overview of some of the parts of the autopilot and related components will be

presented. This is by no means comprehensive and should only be considered a very short gist of

the ArduPilot documentation. In order to really understand the nuances of the autopilot, the reader

will find the reference to the ArduPilot documentation and forums invaluable

MAVLink is a data transfer protocol that is designed to operate with minimal data structure

size and with reliable data packet transfer while also being secure. There have been numerous

published articles that look at the pieces of the current generation autopilot systems. Several have

looked at the MAVLink protocol and its security vulnerabilities [1]. A few have looked at autopilot

systems that use the MAVLink protocol to communicate both to a ground control station (GCS)

and to other aircraft [2].

5

There are two major open source autopilot software packages being actively developed as

of this writing for traditional and complex fixed wing aircraft. Much of the creation was born out

of development focused on using hardware from the open source Arduino project. PX4 and

ArduPilot have become the go-to open source autopilot projects on which many in the community

have focused on developing. Each has pros and cons which are detailed, in a somewhat older

perspective, by Hood [3]. ArduPilot has emerged as the most feature rich autopilot system with

many new sensors and vehicle types being added on a regular basis [4]. Chao et al. did a survey of

closed source and open source autopilots in 2016 that did not include PX4 nor ArduPilot [5]. They

did cover the basics of how this class of autopilot does guidance, navigation, and control (GNC).

The ArduPilot open source project is constantly updating with support for new hardware

and new features. Currently the project supports several vehicle types as well as several autopilot

boards. The architecture of the autopilot is large compared to simple stabilization systems or

simpler autopilots [6]. Much of the architecture of the controller has remained the same as more

features such as Lua scripting and Independent Watchdog (IWDG) have been added to take

advantage of ever improving small scale hardware. An overview of the structure of a typical

implementation of an ArduPilot supported hardware and software stack is shown in Figure 1.

ArduPilot’s ArduPlane version 4.0.5 will be used for all examples in this work. A fork of the

ArduPilot master branch will be used for flight testing [7]. Any and all modifications to the

firmware will be explicitly communicated where it is relevant and also viewable in thesis branch

of the fork.

6

Figure 1: ArduPilot software and hardware structure

Autopilot hardware has seen many rapid development advancements in recent years thanks

to increased demands from other consumer electronics companies pushing for smaller, faster, and

lower power consumption components. ProfiCNC designs and manufactures, in partnership HEX

Technology, the CubePilot series of autopilots. Other supported autopilot hardware designs are

available from companies such as Matek, CUAV, mRobotics, and Holybro. While these other

options are supported and have good features, many of the latest features and redundancy checks

are available first and foremost on the fully featured Cube series autopilots. Many other open source

7

autopilot hardware designs are also available on the market with many included in a 2018 review

of autopilot hardware available on the market at the time by Ebeid et al. [8]. Since the publication

of that article, ArduPilot has added support for the STM32H7xx series of processors and new pieces

of hardware from Global Navigation Satellite System (GNSS) sensors to laser rangefinders. This

has opened the doors for many memory-intensive features to be added to the autopilots.

Software in the loop testing (SITL) with ArduPilot is a good way to tune an aircraft quickly

and cheaply for stabilized flight. As the ArduPilot developer documentation says, “crashing virtual

vehicles is a lot cheaper than crashing real ones!” [6]. There are several flight dynamics models

(FDM) that are supported and detailed in the ArduPilot documentation. Together a flight dynamics

model, autopilot, and ground control software form what is called SITL. Figure 2 shows how each

piece is connected and what information is transmitted between each piece. This set up is not unlike

how the autopilot would be used with a real aircraft, autopilot, and ground control software.

Ground
Control

Software

Flight
Dynamics

Model

USB Joystick/
Control input

Uplink

Downlink

Servo Output

Attitude,
Rates, etc.

OR

ArduPilot

Figure 2: SITL structure block diagram

Hardware in the Loop (HIL) is not currently supported by ArduPilot. The benefit of this

style of simulation is the ability to check the behavior of the aircraft with the hardware that would

be used during a flight test. Support for HIL was dropped for several reasons. Bringing back support

for HIL has been a frequent request on the ArduPilot forums [9]. One of the biggest limitations of

HIL is the latency and consistency of USB. High Speed USB would not solve this problem though.

8

After a discussion with Dr. Andrew Tridgell, the issue lies with the operating system of the host

computer, specifically Windows, not parsing data from the drivers for time gaps of up to 20 ms.

Due to this latency, the full ArduPilot sensor estimation methods, the Extended Kalman Filter

(EKF), cannot be used. This diminishes the distinctions between useful cases where HIL can

perform actions that SITL cannot. As Dr. Tridgell explained, the issue is not a lack of bandwidth

from the USB technology used by the majority of the autopilot hardware supported by ArduPilot.

ARDUPLANE SYSTEM FAILURE ACTIONS

Risk mitigation from knowing what to expect when something does go wrong with the

aircraft allows for operators to prepare standard operating procedures proactively rather than be

caught off guard. There are several categories of failure that can cause unexpected behavior from

the aircraft. The main categories being software failure and hardware failure.

Many of the software failures that ArduPilot could encounter in flight are

compartmentalized to small groups of features. Such as if the software for a sensor gets an error,

the most likely outcome is that the sensor will be dropped from contributing to the EKF. However,

if ArduPilot is unable to continue operating for any reason, a WATCHDOG_RESET event occurs

and reboots the autopilot inflight. During the time that the autopilot is still booting, the IOMCU

chip that is present on some of the autopilots allows the aircraft to continue to be controlled in

MANUAL mode. This failure behavior, as well as many others, can be tested trough tools provided

by MAVProxy, pymavlink, and RC switch options. Hardware failure behavior can be tested with

SITL as well. Many of the question that start with what if can be answered by changing parameters

that start with SIM_. GPS, IMU, RC, and GCS failure, drift, and erroneous sensing can all be tested

using SIM_ parameters in SITL.

During a recent manufacturing issue by an autopilot hardware vendor, it was found that

ArduPlane was not always applying the proper Inertial Measurement Unit (IMU) failure behavior.

Thanks to renewed attention to the failover mechanics of the autopilot, the intended behavior of

9

triple redundant IMU sensors was reimplemented. With the new update, the GCS will display a

warning to the user of the failure. An example of the dialog is shown in Figure 3. A feature to test

this behavior was added through a radio control (RC) input channel option. When the pilot

commands the RC channel from a low pulse width modulation (PWM) to a high PWM, the selected

IMU data is stopped from being used by the autopilot [4]. This RC input channel option can be

done by anyone without any custom-built firmware or modification to the hardware.

Figure 3: Mission Planner critical service bulletin

This issue as well a few others over the course of 2019 have led to the proposal presented

at the 2020 ArduPilot Unconference for a critical alert bulletin being sent to all users that are

impacted by the fault [10]. A Github repository has since been created to log each of the critically

important bulletins that should be presented to users by GCS.

ARDUPLANE CONTROL STRUCTURE

In continuing to better understand how ArduPilot works and where the root of the tuning

process must focus, an overview of the attitude and GNC controllers is presented. When applying

methods to reduce risk during controller tuning, knowing what part of the controller needs to be

changed can be made easier by know how the controller is designed.

10

The control structure for ArduPlane follows the general guidelines for typical proportional-

integral-derivative (PID) control used by many textbooks for attitude control of fixed wing aircraft

[11] [12] [13]. There are a few details that should be considered when tuning the aircraft that are

not readily apparent on the surface but do become apparent when looking at the control diagrams

for the roll and pitch controllers. The code for these control loops can be found in the APM_Control

folder [4]. For the pitch control loop,

𝑘௉ = (PTCH2SRV_P − PTCH2SRV_I * PTCH2SRV_TCONST)

∗ PTCH2SRV_TCONST − PTCH2SRV_D
(1)

 𝑘ூ = PTCH2SRV_I ∗ PTCH2SRV_TCONST (2)

This is such that 𝑘ிி is proportional to the error of the pitch rate. The 𝑘௉ and 𝑘ூ of the roll

controller are calculated in similar manners.

Figure 4: ArduPlane pitch control loop

11

Figure 5: ArduPlane roll control loop

Figure 6: ArduPlane yaw control loop

ArduPlane includes a feature to use the airspeed of the vehicle, either from synthetic

estimate or differential pressure measurement from a pitot probe, to scale the proportional,

derivative, and integral gains. The scaling equation that is used is based on the inverse of the

airspeed.

kୱ୮ୣୣୢ =

V

SCALING_SPEED
 (3)

12

This can be very beneficial as control surfaces can have the same effectiveness at higher

speeds with smaller deflections. There is more detail to the speed scaling that can be gathered from

looking at the ArduPilot source code file ArduPlane/Attitude.cpp [4].

if (aspeed > auto_state.highest_airspeed) {

 auto_state.highest_airspeed = aspeed;

}

if (aspeed > 0.0001f) {

 speed_scaler = g.scaling_speed / aspeed;

} else {

 speed_scaler = 2.0;

}

// ensure we have scaling over the full configured airspeed

float scale_min = MIN(0.5, (0.5 * aparm.airspeed_min) / g.scaling_speed);

float scale_max = MAX(2.0, (1.5 * aparm.airspeed_max) / g.scaling_speed);

speed_scaler = constrain_float(speed_scaler, scale_min, scale_max);

Of note from this piece of code is the inclusion of minimum and maximum bounds on the

scaler. The parameter that has the largest impact on this part of the autopilot is aptly named

SCALING_SPEED. A graphical visualization of the impact this parameter has on the scaling of

the PID values can be seen in Figure 7. For this plot ARSPD_FBW_MAX is 50 m/s and

ARSPD_FBW_MIN is 20 m/s.

13

Figure 7: ArduPlane scaling speed

For airspeed and altitude control ArduPilot uses the Total Energy Control System (TECS)

and for navigation the L1 controller is used. TECS has many parameters to that can be tuned to

control longitudinal behavior. As the name TECS implies, the controller trades kinetic energy from

airspeed and potential energy from altitude to achieve the desired flight condition. ArduPilot

provides a way to use each of the control loops in an “added layer” sort of method. The ArduPilot

documentation shows the control loops that are used by each flight mode. This can be useful for

selectively tuning each of the controllers. TECS also includes parameters for deepstall and

glideslope landing methods.

CURRENT ARDUPLANE TUNING METHODS

The documentation for ArduPilot provides methods for tuning aircraft by in-flight methods

such as Autotune mode or manual parameter changes. These methods are excellent for traditional

aircraft with predictable flight characteristics. When looking at aircraft that might be higher risk or

require takeoff with a control loop turned on, these flight-testing methods no longer work. Using

14

these same methods in SITL can be done, but the question, “How well does a simulator work?”

arises.

Internally at the Oklahoma State University Department of Mechanical and Aerospace

Engineering, we have developed a method to estimate tunes for aircraft control loops without SITL

and before maiden flight. This method arose from a lack of having the information this thesis is

searching for as well as multiple issues with understanding the scope of the impact of improper

PID tuning. Many of our aircraft require at least some level of stability augmentation to assist the

Pilot in Command. Most of our aircraft are designed to operate with full control authority at landing

and takeoff as dictated by the Code of Federal Regulation (CFR) Part 25 and as guided by countless

other authorities of aircraft controls.

The standard process: Set the ArduPilot SCALING_SPEED to approach speed. Either

disable the use of the airspeed sensor or apply a consistent flow to the airspeed sensor to achieve

approach speed. Adjust the P gain such that full deflection of the control surface in Manual mode

is also applied in FBWA mode. This ensures that full deflection of the control surface is possible

during landing approaches in control loop enabled modes. The contribution from the integral gain

can be watched from the steady behavior of the control surfaces after holding the aircraft at a non-

level attitude and returning to level pitch and roll. Derivative gain can be tuned by observing the

aircraft moving at consistent rates. This method has provided adequate results for maiden flights

and additional tuning has been done by looking at the flight logs for the PID controller outputs.

There have been a few cases where this method has proven to be inadequate for flight

outside of the linear regime. For example, a swept delta-wing aircraft entering a high alpha vortex

lift maneuver exhibited a pitch oscillation during flight testing after the initial tuning procedure.

This can be observed in Figure 8 from the logs for the PID pitch controller and the pitch attitude

from the log stored on the internal SD card called the dataflash log. As the 𝜃 of the aircraft reaches

near 45 degrees, the oscillations begin. This aircraft had previously flown with an Aura 8 rate

15

controller with no oscillations in high alpha. After further tuning during flight testing, the aircraft

did not exhibit the same oscillations in high alpha.

Figure 8: Oscillations from PID controller in high alpha flight

AIRCRAFT MODE IDENTIFICATION BACKGROUND

To reduce comparison of flight characteristics between flight testing and simulation to just

aerodynamic modeling, aircraft modes will be excited and measured. These modes can be measured

at the same flight conditions in simulation and flight testing by allowing the autopilot to do most

of the hard work including trimming the aircraft and deflecting the control surface. To effectively

tune an attitude controller prior to flight testing the real aircraft, predictions of the flight

characteristics of the aircraft must be done. These predictions come from analytical methods and

the flight characteristics are shown through aircraft modes. Having estimations of modes available

can better prepare the designer for flight testing of the aircraft.

There are five modes for fixed wing aircraft: phugoid, short period, roll, Dutch roll, and

spiral. These modes are defined by the system dynamics of the aircraft and can be estimated as well

as measured. For linear flight regimes these modes can be estimated based on the geometry of the

aircraft. Geometry based estimation details are covered by Nelson and McCormick based on

16

methods presented in the USAF Stability and Control DATCOM [12] [14] [15]. There has been

extensive research into identification of flight modes from flight test data using various techniques

that fit the intended flight regime of interest.

MathCAD programs for the method presented by Nelson were created by the author and

Dr. Andy Arena for the purpose of streamlining analytically based mode identification methods for

various aircraft. Nearly all the inputs necessary to find the stability derivatives can be done without

charts from other sources. Places where manual lookups need to be done were noted next to the

equations with the location in the text and information needed to find an answer from the chart.

This method was used with the intention of presenting what many aerospace engineers use as a first

glance to classify the handling qualities of an aircraft. The outputs of this program were compared

to those presented in the textbook as well as another MathCAD program created by Dr. Andrew

Arena called 6DoF. 6DoF, six degrees of freedom, takes the derivatives as inputs and outputs

longitudinal and lateral roots.

Arena also created two MathCAD programs that went back to the original equations

presented by McCormick and Nelson in their textbooks that made assumptions of typically

negligible terms and made calculations for those terms [14]. These methods were separated into

two programs, StabCon-S and StabCon-D, which perform similar tasks but provide different

information in the end. StabCon-S provides information about aerodynamic center, neutral point,

and trim conditions with and without propulsion effects, whereas StabCon-D provides information

about the dynamic behavior of the aircraft including handling qualities and dynamic response to

inputs.

There are many variations of input signals for identifying aircraft flight modes. Babcock

explored many options when testing them in STARS [16]. Their use of the DC chirp was more

geared towards wide range identification of frequency response. Many flight programs use the

singlet or doublet signal to identify short period and Dutch roll modes [17]. Phugoid, roll, and spiral

are typically found from constant inputs signals rather than time dependent inputs. Other signals

17

with varying frequency have also been used in previous experiments. O’Neill analyzed several

options for his work and ended up using a DC chirp for his work frequency sweep work [18]. This

thesis uses a doublet input signal as the goal is excitation of modes for identification of short period

and Dutch roll. Considerations to reduce putting the aircraft out of trim will be done.

Identification of aircraft parameters from flight data has been a long-studied topic with

several methods published for various flight-testing techniques. Dorobantu et al. and O’Neill used

frequency information from flight data to find where the roots of the aircraft’s dynamic system [19]

[18]. Their information gathered does provide many good insights to the behavior of the aircraft

but requires an input signal that covers a larger range of frequencies. Seamans et al. showed a

method that also used a Fourier Transform [17]. Their method relied on discretizing the data to fit

into the memory space of their mechanical calculator. The 1974 conference on “Parameter

estimation techniques and application in aircraft flight testing” included methods using root mean

square, Kalman Filter, and maximum likelihood techniques for nonlinear models [20]. While very

informative for the historical significance for the field, these methods are not fully applicable to

this thesis. Kimberlin provides methods to determine natural frequency and damping from each of

the aircraft modes [21]. These methods are very applicable to this thesis assuming that data of the

aircraft attitude can be captured at a high enough rate. Casiano shows several methods for

determining the damping ratio from output signals including the common log decrement method

[22].

Using a combination of frequency domain techniques as well as time domain techniques

from Kimberlin and Casiano will provide a best of both worlds option. Since ArduPilot can log

attitude at up to 25 Hz by enabling ATTITUDE_FAST, the Nyquist frequency from the dataflash

log is 12.5 Hz. The typical short period and Dutch roll frequencies are about one tenth of the

Nyquist frequency making capturing of the desired output signal within the capabilities of

ArduPilot.

18

SIMULATOR TYPES

Choosing an appropriate simulator for the aircraft being designed can be critical to effective

SITL testing. Use of a simulator that oversimplifies aircraft characteristics can lead to misguided

ideas of how the real aircraft might behave.

Each FDM that is supported by ArduPilot has a purpose that is defined when the simulator

is created. Some are geared heavily towards inertial models for rotary wing vehicles while others

make largely linear fixed wing flight assumptions. The ideal simulator would be a lock step

simulator where the simulation time steps could be controlled to account for the time to process

instructions by the microprocessor. This would effectively simulate the time taken for each

processor instruction and provide insight to better control the aircraft by processing lag. This would

also be ideal from the perspective of the ArduPilot scheduler. Since the default main loop rate is

50 Hz for ArduPlane, a lock step simulator would allow for precise time steps between control

outputs. For the Extended Kalman Filter (EKF) this would be able to provide data at the expected

rates from real hardware. Since most FDMs are not easily capable of lock step simulation,

ArduPilot created different EKF types do handle less consistent data streams and time steps.

For rapid development and testing of new features, ArduPilot includes a built-in simulator.

This built-in FDM is used by default when running the “sim_vehicle.py” script and is adequate for

simple modeling of the supported vehicle types. At the top of the file “SIM_Plane.cpp” is a code

comment that states, “[V]ery simple plane simulator class. Not aerodynamically accurate, just

enough to be able to debug control logic for new frame types.” The aerodynamics of the built-in

FDM are based on the last_letter project [23]. The aircraft used by default is a Skywalker 2013.

Other aircraft models can be added with ease.

Another free and open source software FDM is the open source simulator JSBSim [24].

JSBSim modeling is based on the textbook “Aircraft Control and Simulation” by Stevens and Lewis

as well as other papers published by AIAA, NASA, and the FAA. FlightGear, another open source

19

project, can be used to visualize what is happening inside the JSBSim FDM. As with the built-in

FDM, a few example aircraft are provided in the ArduPilot repository and more can be easily added.

There are two commercial flight simulators that are of interest to rapid prototyping,

autopilot development, and the scope of this thesis. RealFlight is a simulator specifically marketed

as a sUAS simulator. The developers of RealFlight, Knife Edge Software, provide many high

fidelity, commercially popular model aircraft. The second is X-Plane. X-Plane is used by many

hobbyist flight simulator users as well as a pilot training tool. There are several common general

aviation aircraft provided at full scale models. X-Plane does have its own peculiarities, of which

static margin and inertia will be discussed. Typical aircraft define an inertia matrix based on the

second area moment of inertia, 𝐼. This can also be expressed as a radius of gyration, 𝑅௚.

𝑅௚ = ඨ

𝐼

𝑚
 (4)

where 𝑚 is the mass of the object.

Some recent work has been done to find methods to quantify efficacy of FDMs. This work

is usually relevant to what are typically referred to as replay methods. Replay used when the inputs

from that flight are replayed in a simulator to observe efficacy, sensor variations, and sources of

error. Nguyen et al. used this method with X-Plane using a scale model of a KLA-100 [25]. Their

flight was to show X-Plane response to inputs from a standard flight. No comparison of aircraft

modes was done. Kamal and Aly used a Tiger-Trainer model aircraft and compared characteristics

of their own FDM with results from Digital DATCOM [26]. In 2014 Dorobantu et al. showed a

method using the Theil inequality coefficient (TIC) to quantify differences between linear time

invariant system outputs. Previously in 2013, Dorobantu et al. showed TIC being used to verify

controller performance between a flight test inputs and the simulated results [27] in a replay format.

20

COMPUTATIONAL FLUID DYNAMICS AS A DESIGN TOOL

Computational Fluid Dynamics (CFD) has been used to identify and tune minute details of

aircraft design. This allows for quick feedback in the design loop without spending time creating

prototypes or models to be tested in wind or water tunnels. SOLIDWORKS Flow Simulation is a

widely used and highly regarded numerical solving program that has been extensively validated

[28]. Static derivatives are relatively easy to find and are reliable enough to be used for validation

[16]. Getting dynamic stability derivatives with an aeroservo method is not possible in

SOLIDWORKS Flow Simulation, but a step towards them from a design point is with quasi-

stability. In theory, simulating the quasi-steadiness can be done with rotation of the flow to

simulate, for example, a constant pitch rate, 𝑞.

After an extensive search, no validation work for rotating flow regions around airfoils in

SOLIDWORKS Flow Simulation has been found. Since this level of validation work is outside the

scope of this thesis, a general overview of what SOLIDWORKS Flow Simulation offers for

rotational flow is given. More information about the options for rotational flows can be found in

the SOLIDWORKS Flow Simulation Technical Reference [29]. Babcock used the simulation

package STARS, which is capable of aeroservoelastic simulation, and described methods for

finding the quasi-steady derivatives of aircraft [16]. Babcock used ALE2D in STARS with an

NACA 0012 with varying magnitude of flow rotation and position of the center of rotation. This

provided excellent insights into how well the data from ALE2D matches the data found through X-

Foil. While SOLIDWORKS Flow Simulation does have many advanced features and can handle a

large number of different problem styles appropriate for the 𝑘 − 𝜖 (pronounced k-epsilon)method,

it does not have a good way to provide timed inputs to the mesh to mimic control surfaces like

STARS does. This would provide a much clearer picture of the unsteady aerodynamics as well as

dynamic stability..

21

CFD simulation runs to determine static stability derivatives is done by changing angle of

attack, α, and sideslip angle, β, in the inputs to the flow parameters. Where

 𝛼 ≡ tanିଵ
𝑤

𝑢
 (5)

and

𝛽 ≡ sinିଵ

𝑢

𝑉
 (6)

where

 𝑉 ≡ ‖〈𝑢, 𝑣, 𝑤〉‖
(7)

where 〈𝑢, 𝑣, 𝑤〉 are the velocities of the aircraft in the body frame.

Velocity for the flow is usually selected near the trim or cruise condition of the aircraft,

and the same is used for analytical parameter estimation methods. Derivatives with respect to

velocity can be approximated from changes in angle of attack, α, or sideslip angle, β, within the

linear flight dynamics region.

22

Velocity
[kts]

Alpha
[degrees]

Beta
[degrees]

Aileron
[degrees]

Rudder
[degrees]

Elevator
[degrees]

30 -5 0 0 0 0

30 -2 0 0 0 0

30 0 0 0 0 0

30 2 0 0 0 0

30 5 0 0 0 0

30 10 0 0 0 0

30 15 0 0 0 0

30 0 5 0 0 0

30 0 10 0 0 0

30 0 15 0 0 0

30 0 0 5 0 0

30 0 0 10 0 0

30 0 0 15 0 0

30 0 0 0 5 0

30 0 0 0 10 0

30 0 0 0 15 0

30 0 0 0 0 -10

30 0 0 0 0 -5

30 0 0 0 0 5

30 0 0 0 0 10

Table 1: Simulation runs choosen for static stability

As can be noted in Table 1, computation time can usually be saved by the port-starboard

symmetry of the aircraft for changes in β. Derivatives with respect to control surface deflection can

be done with model configurations in SOLIDWORKS. As with the velocity based CFD runs,

computation time can be saved by using the symmetry of the ailerons and rudder deflections.

The preferred approach to analyzing dynamic stability in CFD would be to begin a time

dependent flow and allow the parameters to come to a steady state before applying the deflection

of the control surface. A quasi form of this can be done in STARS where the area of the control

surface can apply a local velocity to the flow. This change in flow approximates a control surface

deflection and is done in a time stepped solver. SOLIDWORKS CFD has a similar set of features,

but time dependent parameter functions for deflection of a control surface are not available. Quasi-

steady cases can be used in place of the fully time dependent solver. Setting up a run for rotational

23

flow about the center of gravity (CG) of the aircraft can approximate a change in a body rotation

rate. This is not fully representative of the unsteady aerodynamics of an aircraft, but as a design

tool quasi-steady cases can be helpful to point out possible issues with the aircraft.

Validation for 2D airfoils in SOLIDWORKS with 𝑘 − 𝜖 has been previously explored by

Wallace [30]. Wallace concluded that if more computation power were available, convergence

could be found for a wider range of conditions. Continuing that work briefly with more computing

resources will be presented later in this thesis.

One of the critical parameters for turbulent models such as the 𝑘 − 𝜖 solver used by

SOLIDWORK CFD is 𝑦ା. This parameter gives the position within a boundary layer and provides

insight as to what part of the boundary layer is being resolved by the solver. From this information

the height of the first cell away from a wall can be found. From White’s textbook, the height of the

first cell away from the wall can be found from

Δ𝑠 =

𝑦ାμ

𝑈௙௥௜௖ρ
 (8)

where

𝑈௙௥௜௖ = ඨ

τ௪௔௟௟

ρ
 (9)

where

 τ୵ୟ୪୪ =
C୤ ρUஶ

ଶ

2
 (10)

where

𝐶௙ =

0.026

𝑅𝑒௫
ଵ/଻

 (11)

where

𝑅𝑒௫ =

ρ𝑈ஶ𝐿

μ
 (12)

24

for a flat plate boundary layer [31]. ρ is the density of the fluid, 𝑅𝑒௫ is the Reynolds

number, 𝐶௙ is the coefficient of friction from an approximation of the Moody diagram, 𝜏௪௔௟௟ is the

shear stress of the fluid, and Δ𝑠 is the size of the cell. Assuming that the upper or lower surfaces of

an airfoil are approximately a flat plate, these equations hold true. This closeness and size of cells

is referred to as the Law of the Wall. Each type of solver has a range of 𝑦ା values that the solver

can resolve. SOLIDWORKS Flow Simulation uses boundary layer approximations when the 𝑦ା of

the cell is below the minimum for 𝑘 − 𝜖 [29]. Other more computationally expensive solvers can

solve the boundary layer close to the wall and achieve more accurate results.

Figure 9: Law of the Wall for 𝑘 − 𝜖

Another important parameter for turbulent models is the free-stream turbulence intensity,

𝑇𝑢. Those who are familiar with the program X-Foil will know of or have seen the parameter 𝑁௖௥௜௧

at some point. Coder provided a link between these 2 parameters, based on previous work by Drela,

to facilitate similarity of inputs between the different solvers they were focused on [32]. Coder

25

states that the relationship is highly dependent on the mechanics of the chosen solver, but for this

case of exploration it is a convenient starting point.

26

CHAPTER II

APPARATUS AND METHODOLOGY

AIRCRAFT USED FOR EXPERIMENTS

The aircraft that was used for testing is an Edge 540 1300 mm model from the manufacturer

FMS. Stock servos, batteries, and linkages were used. The manual for the airframe states that the

center of gravity (CG) of the model should be located at 80 mm from the leading edge. The location

of the CG was held constant as other components were added to the airframe. The stock 3948 760

KV motor with a 2 blade APC 11x5.5E propeller was used for propulsion. Table 2 shows the inertia

matrix of the aircraft in the modified configuration as measured using a bifilar pendulum method

[33]. Coupled terms were assumed to be negligible and are not used by X-Plane.

Axis
Inertia

[slug-ft2]
Radius of Gyration

[ft]
X 9E-03 0.262

Y 3.60E-02 0.524

Z 2.60E-02 0.445

Table 2: Inertia matrix for FMS Edge 540

27

Figure 10: Image of Edge 540 model used

A Cube Orange with a standard ADSB carrier board was used as the autopilot. An RFD

900x was used for telemetry connection to the ground control station (GCS). 128-bit AES

encryption was turned on and power output was set to 20 dB. Stock quarter wave antennas were

used in the aircraft. The RFD 900x modem used firmware version 3.15.

A SOLIDWORKS model of the Edge 540 was created using simple features as would be

used for a preliminary model for a new aircraft. Control surfaces were placed and hinged along the

outside surface of the skin.

28

Figure 11: SOLIDWORKS CAD model of Edge 540

This model was used to quickly gather measurements to be used in equations for mode

estimation methods and in SOLIDWORKS Flow Simulation. A standard 3-view drawing of the

model is included in the Appendix. SOLIDWORKS 2019 SP 4.0 was used to model the aircraft.

SOLIDWORKS 2019 SP 5.0 was used for CFD as there were a few stability fixes.

An X-Plane model of the aircraft was also created. This model included dimensionally

accurate versions of the control surfaces, motor, and propeller. The fuselage was held approximate

as the shape of the fuselage does not have a significant role in the FDM beyond calculating skin

friction and frontal area drag. There is a consideration for fitness ratio for transonic flight, but this

aircraft will not be flown outside of the incompressible region below Mach 0.3.

29

Figure 12: X-Plane model of Edge 540

SOFTWARE USED FOR FLIGHT TESTING

Ground control software (GCS) is used to connect to vehicles to receive telemetry and

transmit commands. Since ArduPilot uses the MAVLink protocol to send and receive data from

ground stations and other aircraft, there are a few options for ground control software. Mission

Planner was selected as the GCS for flight testing because of the author’s familiarity with the

interface. MAVProxy is a ground control software that is primarily used for development of

features and rapid testing of the autopilot software. MAVProxy can be used to access features not

yet available in third party GCS programs. Mission Planner version 1.3.72 and MAVProxy version

1.8.19 were used.

SOFTWARE FOR VALIDATING ARDUPILOT SITL

A rigid body simulator was created using MATLAB and the ArduPilot JSON interface in

order to assist in validation of the attitude controllers. The purpose was to make use of the attitude

controller with a rotation error and track the servo output from ArduPilot. This can be used to show

that ArduPlane SITL running on an x86 processor provides the same outputs as running ArduPlane

on an STM32 processor. Initially, a procedure of tiling the physical autopilot on a wood block with

two flat faces cut at an angle was used to match what the MATLAB simulation was used. After a

discussion with Andrew Tridgell and Peter Barker, a procedure where just the AHRS_TRIM

30

parameters needed to be changed in order to measure the validation outputs was created. Adjusting

the AHRS_TRIM parameters would also be used when performing a typical pre-flight procedure

of an aircraft that is too large to be picked up and rotated by hand. The default parameters for SITL

include some amount of noise and drift for the sensors. Normally these parameters are helpful for

attempting to imitate what happens with physical sensors, but for validation it can cause issues.

These features were turned off via various parameters starting with “SIM_”. This was done for

consistent values during the validation process between the virtual and the real.

For physically testing the same procedure, the autopilot must have a 3D GPS lock. This is

because of the code path taken to determine what gains to use for the attitude controllers. If no GPS

is connected, then no airspeed estimate is calculated. The fakegps module from MAVProxy was

used to speed up the testing process as waiting for a GPS position to be reported from a physical

module takes longer. The speed scalar without any airspeed estimate is different from the speed

scalar with an airspeed of zero. During the discussion with some of the ArduPilot developers, Peter

Barker added the airspeed scalar value to the AETR dataflash log message.

SIMULATION SOFTWARE

The software in the loop (SITL) configuration used is partially documented on the

ArduPilot wiki [6]. As X-Plane 11 has received updates, parts of the documentation for X-Plane 10

have to be used creatively to work correctly. With a little bit of inferring on where the settings from

X-Plane 11 have been moved in the menus, the X-Plane 10 instructions can be used without issue.

Windows Subsystem for Linux version 1 with Ubuntu 18.04 and the build environment set up by

the bash script in the ArduPilot repository was used to compile ArduPlane and to start the SITL

environment. The ArduPilot developer section of the online documentation includes thorough

instructions on how to setup an environment for SITL testing. X-Plane version 11.33 was used. The

software Steam by Valve provides ways to roll back to previous versions of software should that

be necessary.

31

Part of the background operations of X-Plane is called datarefs. These datarefs provide

many parameters that change controls, throttles, landing gear, and many other parts of the aircraft

being modeled. Normal operation of ArduPilot SITL for X-Plane does not use these datarefs. This

is because the dataref for throttle, as an example, contains 8 different indices for throttle. From a

user perspective, the index of the throttle that is used for the propeller might not be the one that is

expected, but it would still work as intended if control is set for all throttles rather than a singular

throttle. As an alternative, generalized commands to control the aircraft can be sent, but are applied

to all parts of the aircraft under the same category. For aircraft with multiple throttles, multiple

ailerons, and custom controls, datarefs are the way to control those with ArduPilot SITL and X-

Plane running together. These unique controls can be added to the SIM_XPlane.cpp file and

mapped to controls output from ArduPilot. Tridgell created mappings from Mixture3 and Mixture4

controlled in X-Plane to RC channels 6 and 7, respectively. Small snippets of code were added as

well as changing parameters in ArduPlane to map Mixture3 to the SERVO6 output channel. This

allowed the control of a second engine in X-Plane while SITL was running.

CFD for the Edge 540 model aircraft provided static stability parameters. More than

enough CFD runs were performed with runs taking between 10 and 20 hours to reach convergence.

An Intel i9 9900K with 64 GB of 3200 MHz RAM was used to run the CFD simulations. Typically,

convergence of the flow parameters for a full aircraft happened around 7 to 10 million cells with

some cases requiring 14 million cells when near a flow separation condition. 6 to 12 hours were

needed to complete each case. Table 3, Table 4, and Table 5 detail the settings used for

SOLIDWORKS Flow Simulation.

32

General Settings

Analysis Type
Fluids Wall Conditions Turbulence

Parameters
Project

Fluid Flow Type Thermal
Condition Roughness Intensity Length

External Not time-
dependent Air

Laminar
and

Turbulent
Adiabatic 0 μin 0.10% 0.01 in

Table 3: SOLIDWORKS Flow Simulation General Settings

Computational Domain Global Mesh

Type Forward Aft Span Upper Lower Initial Ratio

3D 3b 7b 5b 5c 5c 4 1

Table 4: SOLIDWORKS Flow Simulation 2D Computational Domain settings

Calculation Control Options

Finishing Refinement

Criterion
to stop

Goals Refinements
Analysis
Interval

Global
Domain

Maximum
Cells

Strategy

All All 6
1.5

Travels
6 14 million Periodic

Table 5: SOLIDWORKS Flow Simulation Calculation Contorl Options

FLIGHT TESTING METHODS

Flight and safety standard operating procedures for the Edge 540 model follow procedures

used for many other aircraft at the OSU MAE department. The aircraft undergoes a complete

system check before being placed on the flight line and handed over to the Pilot in Command. A

detailed list of preflight checks follows.

33

Figure 13: Pre-Flight checklist for Edge 540

Figure 14: Post-Flight checklist for Edge 540

Just as with testing manned aircraft, the test points that will be targeted during the flight

testing are provided in flight data card format. These include many of the details for what conditions

34

allow the test point to be performed safely and what data is important [21]. Transparent

communication from designers to pilot is critical for reducing the risk during flight. Awareness of

what actions the autopilot will take as well as what actions to take should the autopilot fail or act

unexpectedly will be shown to have enormous potential to mitigate risk.

Figure 15: Flight test points card with procedures

These flight test conditions were decided based on data provided by the analytical methods.

The aircraft was trimmed at 30 kts airspeed for both simulations and flight testing. The altitude of

300 feet was chosen as a safety precaution should the aircraft enter an unsafe state. The altitude

would provide at least a longer amount of time to attempt recovery of the aircraft.

35

Table 6: Test points

 Axis Mode Parameter set Purpose
1 Pitch

MANUAL N/A Mode identification
2

Yaw and
Roll

3 Pitch

FBWA

1
Current controller

gains 4 Yaw

5 Pitch
2

Previous controller
gains 6 Yaw

7 Pitch
3

Controller oscillation
gains 8 Yaw

9 Pitch
4 Integrator build up

10 Pitch FBWB

Table 7: Attitude controller parameter set 1

Parameter Name Value

PTCH2SRV_D 0.07

PTCH2SRV_FF 0

PTCH2SRV_I 0.1

PTCH2SRV_IMAX 1000

PTCH2SRV_P 1.5

PTCH2SRV_RLL 1

PTCH2SRV_RMAX_DN 0

PTCH2SRV_RMAX_UP 0

PTCH2SRV_TCONST 0.5

RLL2SRV_D 0.06

RLL2SRV_FF 0

RLL2SRV_I 0.09

RLL2SRV_IMAX 1000

RLL2SRV_P 0.8

RLL2SRV_RMAX 0

RLL2SRV_TCONST 0.5

YAW2SRV_DAMP 0.05

YAW2SRV_IMAX 1500

YAW2SRV_INT 0

YAW2SRV_RLL 1

YAW2SRV_SLIP 1

36

Table 8: Attitude controller parameter set 2

Parameter Name Value

PTCH2SRV_D 0.05

PTCH2SRV_FF 0

PTCH2SRV_I 0.12

PTCH2SRV_IMAX 3000

PTCH2SRV_P 1

PTCH2SRV_RLL 1

PTCH2SRV_RMAX_DN 0

PTCH2SRV_RMAX_UP 0

PTCH2SRV_TCONST 0.5

RLL2SRV_D 0.06

RLL2SRV_FF 0

RLL2SRV_I 0.09

RLL2SRV_IMAX 1000

RLL2SRV_P 0.8

RLL2SRV_RMAX 0

RLL2SRV_TCONST 0.5

YAW2SRV_DAMP 0.1

YAW2SRV_IMAX 1500

YAW2SRV_INT 0

YAW2SRV_RLL 1

YAW2SRV_SLIP 1

37

Table 9: Attitude controller parameter set 3

Parameter Name Value

PTCH2SRV_D 0.07

PTCH2SRV_FF 0

PTCH2SRV_I 0.1

PTCH2SRV_IMAX 1000

PTCH2SRV_P 1.5

PTCH2SRV_RLL 1

PTCH2SRV_RMAX_DN 0

PTCH2SRV_RMAX_UP 0

PTCH2SRV_TCONST 0.5

RLL2SRV_D 0.06

RLL2SRV_FF 0

RLL2SRV_I 0.09

RLL2SRV_IMAX 1000

RLL2SRV_P 0.8

RLL2SRV_RMAX 0

RLL2SRV_TCONST 0.5

YAW2SRV_DAMP 0.3

YAW2SRV_IMAX 1500

YAW2SRV_INT 0

YAW2SRV_RLL 1

YAW2SRV_SLIP 1

38

Table 10: Attitude controller parameter set 4

Parameter Name Value

PTCH2SRV_D 0.4

PTCH2SRV_FF 0

PTCH2SRV_I 0.15

PTCH2SRV_IMAX 3000

PTCH2SRV_P 1

PTCH2SRV_RLL 1

PTCH2SRV_RMAX_DN 0

PTCH2SRV_RMAX_UP 0

PTCH2SRV_TCONST 0.5

RLL2SRV_D 0.06

RLL2SRV_FF 0

RLL2SRV_I 0.09

RLL2SRV_IMAX 1000

RLL2SRV_P 0.8

RLL2SRV_RMAX 0

RLL2SRV_TCONST 0.5

YAW2SRV_DAMP 0.05

YAW2SRV_IMAX 1500

YAW2SRV_INT 0

YAW2SRV_RLL 1

YAW2SRV_SLIP 1

Each test point was chosen to test characteristics of the aircraft and partially demonstrate

the procedures proposed in this thesis. Test points 1 and 2 are for gathering data on the

characteristics of the short period and Dutch roll of the aircraft. Test points 3 through 9 use the

FBWA mode with different sets of gains to demonstrate how the controllers behave in comparison

between virtual and real. The parameter set 1 values are not yet perfect, but they are much closer

than those provided as the defaults for ArduPlane and have been handed tuned for the desired

handling qualities. Parameter set 2 a set of gains that was used previously in the process of tuning

the aircraft. This is to show a different set of outputs with the same inputs and in the same mode.

Test points 5 and 6 were chosen to demonstrate pitfalls that can be encountered during the tuning

39

process. Parameter set 3 will attempt to show oscillation produced by the controller and parameter

set 4 will attempt to show sluggish vehicle controlled due to too much integrator control.

AIRCRAFT MODE IDENTIFICATION METHODS

Hood hypothesized during the analysis of his results that, “a pristine input function is not

necessary as long as enough energy is placed evenly into the band of frequencies that are intended

for system identification.” He also noted that it would be, “extremely difficult to get a clean control

input without resorting to programming an autopilot’s flight control routine to command one.” [3]

His coherence data showed that this hypothesis was true, but there might still some room for

improvement by having the autopilot command a pristine input function. Programming the

autopilot to do this is now well within reach and no longer extremely difficult.

To excite the desired Dutch Roll flight mode, a rudder doublet control input was used. For

the short period mode, an elevator doublet was used. Seamans et. al. covered some methods of

static and dynamic control inputs for traditional, linearly dependent aircraft [17]. Kimberlin details

control inputs and flight data analysis methods to determine frequency and damping of aircraft

modes [21]. Kimberlin also provides insight to how to isolate modes for easier identification from

flight test logs by using a doublet rather than something that would have a greater disturbance on

the trimmed flight of the aircraft.

ArduPilot recently added the ability to write Lua scripts to perform many functions that

have typically been done by devices other than the autopilot. Tasks such as payload data gathering,

vehicle state reactions, more advanced failsafe, and non-native device drivers have all been

delegated to a companion computer, external microcontroller, or a script on a ground station. With

Lua scripting available in ArduPilot version 4.0 and newer, many of these tasks can now be done

internally on the autopilot. Lua scripts are run as the lowest priority task in the scheduler as their

originally intended usage is non-flight-critical tasks.

40

One feature of ArduPilot Lua scripting that is very useful for mode identification is the

ability to set servo outputs at precise times and positions. This can be used to input a precise and

repeatable control surface deflection or other PWM driven action. The problem with the feature as

it is implemented in ArduPlane 4.0 is that to move an elevator servo a parameter that defines the

parameter that defines the function of the servo output as an elevator must be changed to a script

output and then returned to an elevator after the Lua script is done. If the script were to fail by an

internal-to-Lua error or external factor from the autopilot, the aircraft would be left without control

of the elevator. As a workaround to this, a script from a GCS could be used to sense for status text

messages signaling the start and end of servo function reassignment in a Lua script. This GCS script

could then send correct parameters to the aircraft if the Lua script fails. This requires that a high

quality, high speed telemetry link with low packet loss be maintained and that there is enough

bandwidth available to send and parse the now emergency priority MAVLink commands.

Adding a new function to the ArduPilot source code and Lua script bindings to access the

new function were done. This new feature allows ArduPilot to set a servo position for a set amount

of time and then returning to the intended function provides a safer way to control any servo output

of the autopilot. After discussing the changes with the ArduPilot developers during their weekly

online call-in meeting and fixing some bugs, the code for this change was merged into the ArduPilot

master branch with pull request #14366 [4]. Documentation for the new scripting bindings was also

included in the ardupilot_wiki repository.

void SRV_Channels::set_output_pwm_chan_timeout(uint8_t chan, uint16_t value,

uint16_t timeout_ms)

{

 WITH_SEMAPHORE(_singleton->override_counter_sem);

 if (chan < NUM_SERVO_CHANNELS) {

 const uint32_t loop_period_us = AP::scheduler().get_loop_period_us();

41

 // round up so any non-zero requested value will result in at least

one loop

 const uint32_t loop_count = ((timeout_ms * 1000U) + (loop_period_us -

1U)) / loop_period_us;

 override_counter[chan] = constrain_int32(loop_count, 0, UINT16_MAX);

 channels[chan].set_override(true);

 channels[chan].set_output_pwm(value,true);

 }

}

This was quickly put to use by Dr. Andrew Tridgell for demonstrating control of a

quadruped limb in the pybullet simulator [34]. Using this new tool in ArduPilot, a Lua script was

written to perform consistent control surface inputs. The same script was used for SITL and flight

testing. The complete version of the script is included in the Appendix.

Just as a pilot would have the flexibility of providing different inputs to the aircraft, the

Lua script can be changed to provide different inputs. Parameters for doublet or singlet inputs such

as magnitude and period can be quickly changed and uploaded to the aircraft before flight. To

command the start of the maneuver, the PWM of an RC input channel is switched to higher than

1700 µs. As a safety measure, if the RC channel is switched to a lower PWM before the maneuver

is completed servo override timers are cleared and the vehicle is returned to a safe flight mode from

which the PIC may command the aircraft as normal.

ANALYSIS

Several methods of determining aircraft parameters from flight exist. Seamans et al. detail

a triangular graphing method that captures a Fourier Transform which they also used with a

mechanical calculator designed for Fourier Transforms [17]. These methods proved to be very

valuable for the 1950s and laid the groundwork for more advanced methods to be created.

42

Additional advanced methods have been developed since then that include the use of the Fast

Fourier Transform (FFT), the Discrete FFT (DFFT), and Kalman Filters [20].

Typical visualizations for input-output systems are the Bode plot and Root-Locus plot.

Typically, these plots are acquired a priori from a model of the system. The Root-Locus plot allows

quick identification of the roots, or modes, of the system. This provides information such as

frequency and damping for each mode.

With the ArduPilot dataflash logging system, the time between data points can change. The

approximate frequency of attitude data in ArduPilot is 50 Hz. Variability in the logging rate does

have an impact on DFFT methods and leads to the need for a Non-Uniform FFT (NUFFT). The

MATLAB function nufft provide implementations of this variation of the Fast Fourier Transform.

Methods such as measuring periods of local maxima and minima from the attitude of the aircraft

are also used. Damping ratio can be calculated from decay of the peaks or from methods described

by Kimberlin [21].

LIMITATIONS

The servos used on the model aircraft have limitation such as update rate and movement

speed. This will not be shown in the input or output data as no sensor to measure the angle of

deflection of the control surface was used.

The main scheduler loop for ArduPlane runs at 50 Hz by default. This can be adjusted with

the parameter SCHED_LOOP_RATE, but for stable aircraft higher loop rates are not necessary.

Lua scripts in ArduPilot run with a minimum callback time of 1 ms with some background

processing time or about 1000 Hz. Both loops have built in sleep or delay timers that allow other

flight critical tasks which the autopilot is expected to perform the necessary time to complete.

Only stick fixed actions can be taken with this current apparatus. There is no telemetry link

from the servos to the autopilot nor any way to measure the load being applied to the servo. Future

43

work could be done to create a sUAV system that is capable of stick free dynamics, but that is

outside of the scope of this thesis.

UNCERTAINTY OF GYROSCOPES

Definitions of uncertainty will be taken from Figliola and Beasley as well as Kline [35]

[36]. Further details specific to micro-electromechanical system (MEMS) gyroscope uncertainty is

taken from Woodman as well as El-Sheimy et al. [37] [38].

The primary sensor that will be used at the time scales for short period and Dutch roll are

the gyroscopes. The Cube Orange has an ICM-20948 from TDK Invensense as its primary source

of attitude rates. As with many rate gyros of this class, the primary source of error is the noise.

ArduPilot samples the gyroscopes at 8 kHz and the accelerometers at 4 kHz before applying a 1

pole low pass filter at 188 Hz and downsampling the data to 1 kHz. The relevant code for this can

be seen in “AP_InertialSensor/AP_InertialSensor_Invensensev2.cpp” [4]. The full sampling rate

of the inertial measurement unit (IMU) can be written to an SD card by ArduPilot using the inertial

navigation system (INS) batch sampler feature. These batches will be contiguous within a set of

samples, but there can be time gaps between sets due to limitations with the data logger used by

ArduPilot.

44

Figure 16: ISC-20948 static sampling data

A method that has been widely used to measure the noise and other parameters of IMUs is

the Allan Variance [37] [39] [40]. From this method information such as random walk and bias

instability can be found using long term data. A recommendation of several hours is made in several

literature sources. The Allan Variance also provides insight to the variance from the noise that

would be present after downsampling.

15 million samples of data of each axis were taken. This equates to about 32 minutes of

gyroscope data and 1 hour of accelerometer data. The limitation to logging additional data is the

size of the dataflash file on the SD card. ArduPilot uses the FAT32 file system which has a

maximum file size of about 4 gigabytes (GB). IMU data must be logged for both the accelerometer

and gyroscope at the same time in ArduPilot as well as some other logging data that cannot be

disabled by a parameter change. To maximize the current logging abilities of ArduPilot, all other

options in the LOG_BITMASK parameter were disabled. A custom firmware could be created to

make better use of the 4 GB file size limit.

Figure 16 shows that the data for the x and y axes follow a general normal distribution

while the z axis has a different kurtosis and skewness than a normal distribution. From Figure 18 it

45

can be found that the expected variance from the noise of the gyroscopes downsampled at 1 kHz is

5.8E-3 °2/s2 and a standard deviation of 0.076 °/s. All other information from the datasheet is

explicitly or assumed to be reported at about 3σ or about 99% probability. This makes the

uncertainty from the Allan Variance ±0.228 °/s (P99%). Since the noise is closely Gaussian, the

Extended Kalman Filter that ArduPilot uses is a good fit to filter the data, but the uncertainty will

still be present.

Figure 17: Allan variance of accelerometers in the ICM-20948 IMU

46

Figure 18: Allan variance of gyroscopes in the ICM-20948 IMU

The autopilot is equipped with a heater and maintains a constant temperature of 45 °C. The

autopilot is also rebooted after reaching a constant temperature so that any bias from temperature

effects is learned. The sensor is setup by ArduPilot at boot to have a range of ±2000 °/s.

Quantization error for the ICM-20948 is based on the 16-bit sensor output and is 0.031 °/s (P99%).

This is less than half of the uncertainty from the Allan Variance.

UNCERTAINTY FROM AN EXTENDED KALMAN FILTER

Using a Kalman Filter to determine states of an aircraft from sensors has been done for

many years [20]. This is the uncertainty of a measurement from a single or a group of measurement

sources rather than uncertainty as defined by Kline. Since part of the Kalman Filter deals with

statistical variation of the sensors, the uncertainty of the measurement can be found from the filter.

ArduPilot provides the one standard deviation uncertainty from the Extended Kalman Filter in the

dataflash logs under the message NKF4 which has most of the EKF2 variance information. The

data is logged as the square root of the variance which is equal to the standard deviation. As

Eichstaedt shows, this is a form of uncertainty under the Internal Organization for Standardization’s

47

Guides to the expression of uncertainty in measurement (ISO GUM) [41]. Therefore, taking YCS

from the NKY0 dataflash log message provides the uncertainty of the yaw measurement. For roll

and pitch the answer is more ambiguous for EKF2. The value of errRP in the NKF4 message

combines the roll and pitch axes. EKF3 provides the same errRP data as well as the full variances

from the EKF states in the XKV messages. Since EKF3 is still considered to be in an experimental

stage of testing and intended for tailsitter or other non-traditional aircraft, it will not be used.

48

CHAPTER III

RESULTS

STATIC ANALYSIS

SOLIDWORKS Flow Simulation static analysis was used to verify data found using the

analytical methods. Information such as coefficient of lift and coefficient of moment closely

matched 2D to 3D approximations used with StabCon-S. Static Margin was also found from the

CFD data and is included in Table 14. As should be expected, the linear region of the coefficient

of lift curve matches very closely between theoretical data. As the aircraft stalls, there is a

divergence in the coherence of the data. While not desirable to see, it is expected as stall is a very

complex characteristic. Detailed characterization of the stall characteristics is outside of the scope

of this thesis.

49

Figure 19: Coefficient of Lift from CFD and StabCon-S

For the coefficient of moment data from CFD, there is again clear agreement in a linear

region between -2° and 3° angles of attack. The coefficient of moment from each is for the full

aircraft. There are no solid hypothesizes for why the CFD data appears to have a larger linear

region.

Figure 20: Coefficient of Moment from CFD and StabCon-S

50

For determination of the static margin from the CFD data the derivative of coefficient of

lift with respect to alpha and the derivative of coefficient of moment with respect to alpha were

found from the slopes of the linear regions of the previously presented data. The static margin from

the CFD was found to be 14% and 3% from StabCon-S. A comparison of static margin from the

various other methods is presented in Table 14.

ANALYTICAL METHODS MODE IDENTIFICATION

The full method followed to create the GeometricStabCon program is detailed by Nelson

[12]. The methods used in Arena’s StabCon-D program come from McCormick’s textbook [14].

The longitudinal roots are visualized in Figure 21 and lateral roots in Figure 22. The identified

mode characteristics for short period and Dutch roll are included in Table 11 and Table 12,

respectively.

Figure 21: Roots of longitudinal modes from estimates

51

Figure 22: Roots of lateral modes from estimates

VALIDATION OF ARDUPILOT ATTITUDE CONTROLLER

The first set of plots, Figure 23 and Figure 24, show the issue of testing without suing the

same code paths for the airspeed scalar. This is presented as an example of what experiments should

be wary of while working with complex and deep code paths. As can be seen in Figure 23 and

Figure 24, the pitch and roll controllers are providing an output to the servo rail due to and error in

the desired angle and the actual angle. These results did not have an estimate for the airspeed of the

vehicle. The value that is shown in these plots is not the same as the servo output value that is

shown in Figures 25-28. This is due to the lack of a GPS position and has been discussed further in

a previous section. Having a GPS position is important because it allows ArduPilot to estimate

airspeed of the vehicle. Even if the airspeed estimated from GPS is zero rather than unknown due

to lack of GPS, a different speed scalar value is used. By default, in SITL testing the GPS position

is taken from the FDM. With physical testing however, either a physical GPS must be connected

with a position lock or GPS data needs to be provided over MAVLink. In the spirit of repeatability

and faster testing, the fakegps module provided with MAVProxy was used to provide the GPS data

for the physical validation testing.

52

Figure 23: Incorrect pitch SITL controller validation on physical hardware

Figure 24: Incorrect roll SITL controller validation on physical hardware

The SITL simulator, using either the MATLAB simulator or the ArduPilot built-in

simulator, produced the following outputs in Figure 25 and Figure 26. These results were created

by adjusting the AHRS_TRIM parameters, but the simulator created in MATLAB would also

53

provide validating results. The physical corollary for the virtual SITL tests is shown in Figure 27

and Figure 28. Both the input and output values are the same for each axis.

Figure 25: SITL pitch controller validation

Figure 26: SITL roll controller validation

54

Figure 27: Physical pitch controller validation

Figure 28: Physical roll controller validation

From this validation result, the extent of code utilized for the attitude controllers and speed

scalar produce the same results from the same inputs and therefore are the same between a physical

ArduPilot autopilot and ArduPilot SITL. This is significant as this provides confidence that any

differences seen in later results are not due to differences in mathematics in the attitude controllers.

55

FLIGHT TEST POINTS

Each test point will be presented separately. The X-Plane 11 version of the maneuver will

be shown first and the physical flight test data second. This is to allow for easier comparison of the

characteristics of the FDM and actual flight dynamics.

Before getting too deep into the experiments, it was found that better data logging might

be more useful. The first series of X-Plane testing with test point 1 was done using the default

logging rate of attitude data at 25 Hz. This resulted is a lower number of data points for analyzing

the period of any oscillation peaks and troughs than was desirable. In Figure 29 the data from a

rudder doublet in X-Plane logged at a rate of 25 Hz is shown.

Figure 29: X-Plane test point 1 in the time domain (25 Hz)

56

Figure 30: X-Plane test point 1 in the frequency domain (25 Hz)

The scheduler rate for the Log_Write_Task function was changed from 25 Hz to 50 Hz.

This had no impact on the autopilot performance and is well below the default 400 Hz logging that

is used on the same hardware by ArduCopter. This provided much clearer peaks and troughs in the

time domain and more data points for the frequency domain.

TEST POINT 1 (SHORT PERIOD IDENTIFICATION)

For this test case the full SITL stack is running: X-Plane is the FDM, ArduPilot is the

autopilot, and the doublet Lua script is running. The aircraft is allowed to trim using FBWB mode

between trials and that trim position is used as the stead state value after the doublet input is

completed. For most of these plots the attitude data will be on the left axis and the PWM value of

the servo output will be on the right axis. The value of the PWM should not be considered

significant as during a doublet the deflection of the control surface from the trim point is the same

between the virtual and the real.

Figure 31 shows the multiple trials done for test point 1 and Figure 32 shows a detailed

view of one of those trials. From these figures it can be seen that there is hardly any evidence of an

57

underdamped short period and leans heavily towards being critically damped. Figure 33 shows the

frequency domain for the pitch output signal which does not have much significance.

Figure 31: X-Plane test point 1 multiple trials

Figure 32: One trial of X-Plane test point 1 in the time domain

58

Figure 33: X-Plane test point 1 in the frequency domain

For the physical testing of test point 1, Figure 34 shows several of the trials that were done

for test point 1 and Figure 35 shows a detailed view of one of these trials. From this plot it can be

seen that there is no clear evidence of an underdamped short period. Figure 36 shows the frequency

domain of the physical trails of test point 1 with an expected low significance.

Figure 34: Physical test point 1 multiple trials

59

Figure 35: One trial physical test point 1 in the time domain

Figure 36: Physical test point 1 in the frequency domain

One curious part of the results of this test point is the sharpness of the change of pitch

attitude at the start of the doublet response. This is predicted to be due to differences in the inertia

model that X-Plane uses. This is troubling because the radius of gyration was measured on the real

60

aircraft and input into X-Plane. This seems to indicate that a deeper analysis needs to be done of

the closed source FDM X-Plane.

TEST POINT 2 (DUTCH ROLL IDENTIFICATION)

Test point 2 is a very similar set up to test point 1 with the major difference being the

change in axes from pitch to yaw. This was done to capture the Dutch roll behavior of the aircraft

just as test point 1 was done the capture the short period behavior.

Figure 37 shows some of the trials done in X-Plane done for test point 2 and Figure 38

highlights one of the responses. In these plots there is a yaw dominant response which does hold

constant for both X-Plane and physical testing. Figure 39 does not show anything too interesting in

the frequency domain. As was seen in test point 1, the inertia model for X-Plane seems to be oddly

different from that of the real aircraft. The same evidence from the sharpness of the start of the

response is shown in this test point as well.

Figure 37: X-Plane test point 2 multiple trials

61

Figure 38: One trial of X-Plane test point 2 in the time domain

Figure 39: X-Plane test point 2 in the frequency domain

For the rudder deflections there was a clearly observable oscillation from the Dutch roll

mode in the physical trials. Several trials are shown in Figure 40 and a detailed view of one trials

in Figure 41. This is a textbook, classic Dutch roll response though. Clear peaks and troughs with

a decaying response.

62

In Figure 42, the frequency of the response is shown to assist in determining the dominant

frequencies. The frequency domain was only partially useful as determining what was from the

input and what was from the response was difficult to determine with such a large delta between

frequency points. For this test point it was also easy to measure the period of the response to assist

in determining the frequency. Damping was determined by a log decrement method.

Figure 40: Physical test point 2 multiple trials

Figure 41: One trial of test point 2 in the time domain

63

Figure 42: Test point 2 in the frequency domain

TEST POINT 3 (FBWA PITCH GAIN TUNING)

Test points 3 and beyond are done with the ArduPlane attitude controller running. The

same input signal is used to better evaluate the controller response for tuning purposes. The input

signal, ATT.DesPitch, is the target angle for the aircraft and the that is shown in the attitude of the

aircraft. If there is a need to tune the output of the servos that information could be plotted as well,

but for most cases tuning the attitude of the aircraft is the priority. The parameters shown in Table

7 are used for test point 3 and test point 4.

Figure 43 again shows the sharps changes in attitude in the X-Plane simulator. It also shows

a clean response that could be considered well-tuned for the pitch controller. Figure 44 shows that

the tuning carries over to the real aircraft well with a few small points that could be improved on.

What improvements to make and how they were spotted is at the end of this section.

64

Figure 43: X-Plane test point 3

Figure 44: Physical test point 3

Looking at each of these figures in particular the impact that atmospheric turbulence has

on the attitude of the aircraft between trials of the test point. X-Plane does have a turbulence model

than can be turned on, but for the purposes of this work it is not very relevant.

65

The X-Plane result appears to suggest that the flap effectiveness of the elevator is much

lower than that of the physical aircraft. The deflection and size of the elevator of the X-Plane model

was verified to match the physical aircraft as well. This could also be a difference in the estimation

of the propeller wash by X-Plane 11.33. The 11.50 update for X-Plane included a change to the

modeling of control surfaces, but the update was released while experiments for this thesis were

already underway.

In the response to the input for the physical aircraft, there are oscillations when the aircraft

is in the process of pitching up and near level pitch. These were tracked down to the derivative gain

which is to be expected as the tuning of the aircraft can continue to be tweaked to reach more

desirable outputs. This tune would be adequate for moving on to tuning other control loops that

wrap around the pitch attitude controller, but if acrobatic flight using this controller is desired then

more tuning will be needed. In particular, Figure 45 shows that the D gain for the pitch controller

is oscillating which could be solved by decreasing that gain slightly. For most flights, this level of

handing qualities would be more than acceptable for most pilots. Figure 45 also shows that the P

gain is behaving as expected and that the aircraft is well trimmed because of the small I gain.

Figure 45: Example of PID break down for tuning

66

TEST POINT 4 (FBWA YAW GAIN TUNING)

In a very similar vein as test point 3, this test point is looking at the tuned response of the

yaw attitude controller. Figure 46 shows the X-Plane response to several yaw doublets. The shape

of the response is interesting for this case as it indicates greater differences with the inertia model

in X-Plane as well as the

Figure 46: X-Plane test point 4

Figure 47: Physical test point 4

67

TEST POINT 5 (FBWA PITCH PREVIOUS GAIN TUNING)

This test point is the same as test point 3 with the only difference being a different set of

gains that are listed in Table 8.

Figure 48: X-Plane test point 5

Figure 49: Physical test point 5

68

The results of this test point can be compared to the results shown in test point 3. This result

shows a similar oscillation from the derivative controller in Figure 49, but also does a less than

desirable job of reaching the positive pitch command. There is also excessive overshoot on the nose

down pitch command that should be tuned out of the pitch controller. Comparing the results of this

test point to the results of test point 3, especially from the X-Plane result in Figure 48, shows that

the pitch rate of the aircraft is lower for this test point. This is expected as the P gain from parameter

set 2 is lower than the gain used in parameter set 1.

TEST POINT 6 (FBWA YAW PREVIOUS GAIN TUNING)

This test point does not have much difference shown in the tuning of the yaw controller for

a yaw doublet input. Differences in the gains for the yaw controller from parameter set 2 to

parameter set 1 were due to targeting more coordination. Comparing Figure 50 and Figure 51 to

their counter parts in test point 4 shows only small differences.

Figure 50: X-Plane test point 6

69

Figure 51: Physical test point 6

TEST POINT 7 (FBWA PITCH HIGH GAIN TUNING)

This test point and the following test point 8 were done with parameter set 3, listed in Table

9, as an attempt to show a different set of results that could come up while tuning a fixed wing

aircraft. Figure 53 shows the need for the pitch D gain to be lowered. As has continued to be seen

throughout the results, the affect of the X-Plane inertia model can be seen in Figure 52.

70

Figure 52: X-Plane test point 7

Figure 53: Physical test point 7

71

TEST POINT 8 (FBWA YAW HIGH GAIN TUNING)

Figure 54: X-Plane test point 8

Figure 55: Physical test point 8

For this test point there is a small, but consistently present, oscillation present in the X-

Plane result that is not present in the physical result. There is also a difference in the rate induced

72

by the control surface deflection. This might again be related to the differences in how flap forces

are calculated by X-Plane.

TEST POINT 9 (FBWA PITCH INTEGRATOR)

This test point was done to try to show the impact that having too much integrator wind up

has on reaching target attitudes. Figure 56 from X-Plane does not have much difference from the

other test points. Figure 57 shows that there is not much impact for the rapid doublet that is the

input signal. Choosing a different input signal for this test point or having a different test point with

a different input signal might have been a better choice. This was inadvertently done at the end of

the flight and will be shown after test point 10.

Figure 56: X-Plane test point 9

73

Figure 57: Physical test point 9

TEST POINT 10 (FBWB PITCH INTEGRATOR)

This test point was done in an attempt to show sluggish attitude tracking due to dominant

control from the integrator. While that goal was not explicitly shown this test point does show that

the aircraft is well trimmed and tuned to be used with the TECS. This sort of well-tuned behavior

is exemplified in Figure 59 where the pilot is inputting doublets to the commanded climb and

descent rates. This causes the TECS to choose a target attitude and throttle to achieve the command.

This is also shown as an example of adding on additional control loops and tuning using those after

the lower level loops are tuned. This stacked tuning is critical for more advanced, reliable, and

trustworthy control of the aircraft in AUTO mode.

74

Figure 58: X-Plane test point 10

Figure 59: Physical test point 10

ADDITIONAL INTEGRATOR BUILD UP EXAMPLE

This test point was inadvertently done at the end of the flight and was not planned, but

actually showed a key importance to limiting the integration of control surface controllers. In order

to remain consistent with the presentation of other test points, the X-Plane simulator results is

75

shown before the physical test results. For this example though the physical results, Figure 61,

occurred first and the X-Plane test, Figure 60, was done to try to replicate what a pilot would do in

a similar scenario and to show where problems with how the aircraft is operated with default

parameters might lead to undesirable results.

Figure 60: X-Plane replication of integrator build up

Figure 61: Physical instance of integrator build up

76

After the pilot completed each test point, they started setting up for a landing. Before the

tuned set of parameters was able to be sent to the autopilot to make landing as easy as possible. The

pilot dropped the throttle down in order to drop altitude to hit the standard downwind a turn base

point. The autopilot attempted to hold the attitude of the aircraft level which lead to an increase in

the pitch controller integrator. As previously shown in the parameters used for test point 10, the

IMAX parameter for the pitch controller was set to the default value of 30. This would not be too

big of a problem if the aircraft actually did need that much trim on the elevator in a long distance

cruise, but for doing short and maneuverable flights this much integrator build up will only cause

issues with allowing the proportional and derivative parts of the pitch controller from being

expressed within the hard limits of the controller output. After the correct parameters were sent to

the aircraft, the value of integrator immediately dropped to

A similar scenario was set up in X-Plane just to demonstrate that this scenario could be

checked and tested before flying a physical aircraft. The X-Plane version showed a similar rapid

increase in the pitch controller integrator that also hit the integrator limit of 30 out of 45. Had the

pilot attempted to do a doublet or other rapid maneuver while the integrator was maxed out at 30,

the other parts of the controller would not be strongly expressed, and the output attitude changes

would be sluggish.

MODE IDENTIFICATION FROM ATTITUDE DATA

Previously described methods of flight data mode identification were used to extract

information about the frequency and damping of the short period and Dutch roll where applicable.

Data from multiple excitations of each mode were taken an averaged together to get the clearest

picture of what the damping and response frequency were. The flight-testing data for the short

period exhibited a deadbeat behavior. This was not entirely unexpected given the results from the

analytical methods being only slightly underdamped and very close to being critically damped.

This could be considered a desirable characteristic for a highly maneuverable, pylon racing aircraft

77

that frequently uses step inputs on the elevator when flying around a course. For those kinds of

maneuvers any oscillation that is not quickly dampened out would require more work be done by

the pilot to counter the oscillations and less predictability of the ending steady state pitch of the

aircraft after a maneuver.

Method Real Imaginary wn zeta wn%diff zeta%diff

GeometricStabCon -19.832 3.216 20.09 0.99 Baseline

StabCon-D -18.342 5.932 19.28 0.95 4.1 3.7

StabCon-D with propulsion -18.345 5.992 19.30 0.95 4.0 3.8

X-Plane - - Deadbeat - -

Flight Test - - Deadbeat - -

Table 11: Comparisoin of short period mode

The Dutch roll results show that the analytical solutions are closer in agreement to each

other. Comparing the analytical methods to the simulation and flight testing however, larger

differences in the natural frequency can be seen.

Method Real Imaginary wn zeta wn%diff zeta%diff

GeometricStabCon -8.75 18.23 20.22 0.43 Baseline

StabCon-D -13.90 22.82 26.72 0.52 27.7 18.3

StabCon-D with propulsion -13.90 22.85 26.75 0.52 27.8 18.3

X-Plane -30.14 30.75 43.05 0.7 72.2 47.2

Flight Test -12 29.971 32.28 0.37 38.9 15.2

Table 12: Comparison of Dutch roll mode

CASE STUDY OF LOCUST AIRCRAFT

A case study of detailing the importance of SITL testing using the aircraft that Caster wrote

his thesis about will be made [42]. This aircraft includes a turbojet mounted vertically to augment

lift for Very Short Takeoff and Landing (VSTOL). The aircraft has successfully flown many times,

but some aspects of the ArduPlane control structure were part of the design process. The aircraft

was flown in AUTOTUNE mode to get initial parameters for the ArduPlane PID controllers. These

parameters were tuned slightly after successive flights to improve the handling qualities of the

aircraft. SITL was not used with this aircraft prior this thesis. An X-Plane model did exist but was

78

only flown in what ArduPilot considers MANUAL mode as there was no autopilot involved in the

control of the aircraft.

There had been a few flights that had resulted in crashes prior to the one that will be

explored in detail. The cause of these crashes seemed to indicate power failures and having the

center of gravity (CG) in the wrong location. These faults were corrected, and the program

continued with several more successful flights. During pre-flight checks of the aircraft one day, a

member of the flight team noted that the ailerons were deflecting nearly three quarters of the max

deflecting when the aircraft was bumped slightly. The concern was brought up with the other flight

team members and a course of action was chosen to correct for the apparent fault. Table 13 shows

the changes to the parameters that were done to correct the observed behavior. No other parameter

changes were made.

Parameter Before After

PTCH2SRV_P 1.6716 0.8716

RLL2SRV_P 0.807 0.257

Table 13: Parameter changes before Locust flight

The aircraft took off normally and entered a bank while lowering the throttle on the

turbojet. The pilot in command (PIC) then noted that the aircraft was not coming out of the bank

while even when commanding an opposite bank command. The standard operating procedure

(SOP) for this aircraft stated to fly the aircraft in Fly-By-Wire-A (FBWA). There was no mention

of changing modes if something with the controls was not correct during flight. The aircraft

remained in the bank and overshot the bank limit leading to a spiral mode. The aircraft was also

unresponsive in the pitch axis. In an attempt to gain lift from the wings the throttle of the propeller

was increased. The aircraft crashed into the ground at a reported airspeed of 90 knots. The dataflash

log ends on impact with the ground.

After analyzing the dataflash log, a full learning process for the entire flight team was

started to better understand the control structure of ArduPlane. Focus was given to the scaling of

79

the PID gains based on airspeed and to the PID control structure that ArduPilot uses. The fault of

the crash was a runaway integrator due to the proportional gain being too low. The SOP was also

found to be at fault as changing to MANUAL mode would have increased the chances that the PIC

would be able to return the aircraft to a safe operating condition.

Figure 62: Flight log of Locust crash

To correct the faults, changes to the gains were reverted and tuned again using the method

described previously. The parameters for the maximum limit of the integrator were also changed.

For example, the default value for PTCH2SRV_IMAX is 3000 centidegrees. This translates to 30°

out of 45° of travel. Internally, ArduPilot considers 45° to be equal to the maximum deflection of

the servo and 0° equal to the trim position. Therefore, the default is for 66% of the deflection of the

servo can be used to trim the aircraft. Changing the IMAX parameters to a more reasonable 20%

deflection of the servo prevents the integrator from running away with a large trim value.

To demonstrate the impact that the parameter change had, Locust was recreated in X-Plane

11 and flown in SITL with ArduPlane version 3.9.4. The throttle of the vertical lift jet was

controlled manually and separately from the front propeller. To better demonstrate the impact of

the moment produced by the thrust from the turbojet, the jet was positioned 1 inch off the center

80

line of the aircraft. This has a massive impact on integral control. The model was flown in steady,

level, unaccelerated flight (SLUF) in FBWA with the turbojet on at maximum thrust and an

airspeed of 70 kts. The turbojet throttle was then dropped to minimum and the commanded pitch

and roll angles kept at zero. The same parameters were used as the day of the crash. Figure 63

shows that the roll control has a large amount of overshoot and is very underdamped.

Figure 63: Testing Locust crash parameters in X-Plane with ArduPilot SITL

Another SITL test was done using the parameters from before the change and without

integrator control. Figure 64 shows that the system would have a much more desirable response

with the higher proportional controller value and does not change the trim of the aircraft. There is

a steady state error in the roll angle due to other moments on the aircraft such as the propeller

because there is no trimming being done by the autopilot towards a roll angle of zero with the

ailerons applying a counter moment.

81

Figure 64: SITL testing pre-change Locust parameters

82

CHAPTER IV

CONCLUSIONS

VARIATIONS IN MODE ESTIMATION METHODS

While looking through the many files that X-Plane creates after running any aircraft, it was

found that several useful and interesting pieces of information were near the bottom of the “Cycle

Dump.txt” file. They include the radius of gyrations used for the aircraft that was loaded as well as

the static margin. Neither of these values were close to the values they should be after creating the

model in X-Plane. The radius of gyration error is easy enough to fix since that can be input for the

model in the Plane Maker program. However, the static margin value is a very different case.

Through a series of iterations, the position of the CG that achieved the correct static margin value

in the output file was behind the trailing edge of the mean aerodynamic chord (MAC). This

configuration still flies in X-Plane, but with a much more sensitive control as should be expected

from decreasing the static margin. The aircraft handles closer to what is expected in X-Plane with

the CG in the position specified by the manufacturer of the physical Edge 540 model. A comparison

of calculated static margins of the FMS Edge 540 can be seen in Table 14.

The same issue could be seen with the model of the Cessna 172 Skyhawk that ships with

X-Plane. For the 172, the output file reported a static margin of 59% MAC while the actual value

of the static margin is near 20% MAC. This leads to the conclusion that there most likely a different

method is being used to calculate the static margin output value in X-Plane and is this is not a valid

output measure to rely upon.

83

Method
Static Margin

[MAC]
GeometricStabCon 0.09

StabCon-S 0.03

StabCon-S with propulsion 0.02

StabCon-D 0.12

StabCon-D with propulsion 0.12

CFD 0.14

X-Plane 0.61

Table 14: Static margin reported by each method

The difference in the reported moments of inertia are more of a curious note as all methods

used for estimation allow for the radius of gyration or moment of inertia to be input to replace the

approximated values. Each of assumed radius of gyration values is reported in Table 15. StabCon-

S and StabCon-D use the same method to approximate the moments of inertia

Method
Radius of

Gyration [ft]
X Y Z

StabCon-S/D 0.87 0.99 2.75

X-Plane 0.52 1.08 1.18

Table 15: Radius of gyration assumed by each method

With regard to using SOLIDWORKS Flow Simulation for determining dynamic stability,

there is currently no way to repeat the processes that Babcock and O’Neil used in STARS for

dynamic parameter estimation and therefore aircraft mode estimation. Verification of static

parameters is possible and has been demonstrated through static margin, coefficient of lift, and

coefficient of moment. This agrees with previous work done by Babcock and O’Neil.

EFFICACY OF SITL AND FDM WITH REGARD TO RISK MITIGATION

As can be seen in tables for the short period and Dutch roll modes, there are strong

indicators where different estimation methods are very accurate and others where the estimations

are not as accurate. While GeometricStabCon is well within the ballpark for short period, there is

84

a is a more significant difference in the estimation of Dutch roll. An explanation of why this might

be the case for Dutch roll is not within the scope of this thesis.

For the short period of this aircraft, there were two good indicators that the response would

be nearly critically damped. The predicted damping behavior was clearly seen in both X-Plane and

flight testing. For Dutch roll, X-Plane is nearly dead on for the frequency and damping ratio shown

in flight testing. This is a good indication of the accuracy of the model created in X-Plane as well

as the accuracy of the lateral model used by the simulator.

Using this data of aircraft flight modes, it can be determined that X-Plane is only somewhat

valid as an FDM for sUAS aerodynamic mode identification. This is not comprehensive of all

aircraft configurations or modes and X-Plane or other FDM software could be shown to be very

accurate at predicting other sUAS flight modes. It is merely stating that the lowest level of

controllers for roll, pitch, and yaw can be tuned to acceptable handling qualities prior to any real

aircraft taking to the skies. The major failings that can be seen in the results is the differences in

the rate that the control surface deflections on the aircraft. This could be due to differences in the

way that X-Plane calculates the forces of flap deflection, propeller wash, and inertia. A few of the

major benefits of using virtual testing of aircraft with ArduPilot SITL are shown in the results to

be prevention of excessive integrator build up, reducing possible overshoot, and prediction of risky

flight conditions.

The SITL portion of ArduPilot runs with nearly the same code as a hardware autopilot. The

biggest difference is the approximation form the EKF. This did not have a significant nor noticeable

impact on the behavior of the autopilot during the portions of the flight that were under the control

of the autopilot. Flight dynamics wise, using SITL does provide the opportunity to catch problems

with the parameters and might have prevented the crash of the Locust aircraft. Parameter

adjustments relevant to the failsafe actions or run-away integration could be effectively simulated

by using SITL. It is recommended to at least fly the aircraft in a simulator for the purpose of rough

estimation of PID gains and testing changes to behavior parameters. Using a suite of tools and

85

methods, such as those used here, to predict aircraft behavior can lead to better understanding of

where the unexpected might happen.

Having SITL available for testing and debugging Lua scripts was invaluable during the

work of this thesis. Most functionality available to scripting could be tested with visual results in

the FDM or GCS. As stated previously, with X-Plane these visual indications could be extended

with the utilizations of built-in or custom datarefs. Of note, using SITL to test Lua scripts does not

currently allow for testing memory usage of the script. A script that would overflow the hardware

memory assigned to scripting would not overflow the memory space in SITL. Any script that is

used in flight must be carefully debugged and each code path tested for runtime errors.

For the case of Locust there are many places where risks could have been mitigated. Both

methods of risk mitigation discussed in this thesis, knowledge and simulation, might have played

significant roles in preventing the Locust crash. Showing what would have been found through

using SITL after the fact demonstrates that there are methods of discovering problematic

parameters without placing an expensive aircraft in harm’s way. Practicing risk mitigation in every

aspect of the design process has been proven time and time again to create safer products that

everyone involved with the project can feel more confident in.

SERVO OVERRIDE IMPACT ON CONTROLLERS

Since the control loop calculations are paused in modes where the controllers are not used,

it is the author’s recommendation to use modes that will not continue calculating an overridden

control surface. For this work, MANUAL mode was used as all controls were overridden to be kept

at trim or constant positions while the doublet was performed. While the autopilot is in MANUAL

mode, PID calculations are not performed. In some cases, switching in or out of a mode that uses

a control loop can reset some integrators to zero. These cases are more applicable to quadplane

modes where integration build up could cause undesirable behavior when starting or stopping

transitions between hovering and forward flight.

86

As an additional example, if a new version of altitude control wanted to be tested using the

servo override method, putting the aircraft into STABILIZE or FBWA would reduce the chances

of causing the elevator integrator to ramp up during the time that the

2D COMPUTATIONAL FLUID DYNAMICS IN SOLIDWORKS

While the 3D aircraft CFD data has strong correlations to theoretical data, the 2D CFD

does not show good convergence of data. Wallace’s recommendations for more computing

resources to be applied to the low Reynolds number 2D simulation in SOLIDWOKRS Flow

Simulation were explored. An NACA 2412 airfoil was used with the same solver parameters that

Wallace used. The simulation reached 3 million cells, but the same issues which Wallace observed,

namely oscillations and non-converged solutions, continued. The cell size was well below the

expected minimum 𝑦ା value for a 𝑘 − 𝜖 solver to resolve the boundary layer. At this point it can

be hypothesized that the 𝑘 − 𝜖 solver used by SOLIDWORKS Flow Simulation cannot provide

ideal answers for nuanced analysis of airfoils and no amount of additional computation resources

used will help to converge the solution. This hypothesis could change in the future if different

boundary layer estimation techniques are introduced to the solver.

Figure 65: Oscillations in CFD solution

-0.02

0

0.02

0.04

0.06

0.08

0.1

20 21 22 23 24 25

To
rq

ue
 (Z

) [
lb

f*
in

]

Travels []

87

Figure 66: 2D slice of mesh for NACA 2412

SUMMARY OF SOFTWARE CREATED

This is a summary of the pieces of software that have been created or modified for this

thesis. All of these are freely available on GitHub and have the most important pieces included with

this thesis.

The first piece of software that was created was a modification to ArduPilot. This was

created with a lot of helpful assistance from Dr. Andrew Tridgell. This allowed for any servo output

channel to be overridden with a specified PWM for a fixed amount of time in milliseconds. This

also added a bug that was caught by Peter Hall where the emergency stop for the overridden channel

no longer worked. After this was quickly fixed and the feature has since been shown being used by

several others using ArduPilot for other projects.

For their Google Summer of Code 2020 project, Peter Hall created a JavaScript Object

Notation (JSON) interface for ArduPilot SITL. This allowed for an external simulator to receive

the servo outputs that ArduPilot provided and for the simulator to send back sensor data. Hall

created examples using MATLAB and Python. These were very helpful in creating a new custom

simulator for validating the ArduPilot attitude controllers. This new simulator could be easily

modified to add more validation points for other controllers in ArduPilot.

88

The last piece of software that was created for this thesis was the doublet control input

script. This was created to perform a consistent doublet maneuver safely and quickly. Additional

work could be done to create any signal desired as a control input.

FUTURE WORK

Further development of the control signal input structure used in this thesis could be used

to create a SYSID mode similar to one used in ArduCopter for ArduPlane. This could allow a next

generation of autotune methods to come about for ArduPlane.

Further investigation could be done with other FDMs using the same aircraft and resources

created by this thesis. This would provide a better picture for where some FDMs provide a higher

fidelity model for sUAS fixed wing aircraft.

ArduPilot does include a procedure to tune the lateral navigation controller (L1) and the

total energy control system (TECS), but it does not have the same level of performance-based

tuning that quadcopters in the ArduCopter documentation. Having a set of accurate models of a

variety of aircraft could provide that level of tuning guidance for ArduPlane without a large

monetary investment in aircraft or materials.

Considering the continued work with SOLIDWORKS Flow Simulation, a different flow

solver might be worth exploring assuming that a simple workflow to quickly go from a

SOLIDWORKS model to a mesh can be achieved. This could provide more accuracy in the early

stages of development when flow interactions might play a significant role in the stability of the

aircraft.

89

REFERENCES

[1] A. Koubaa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith and M. Khalgui, "Micro Air
Vehicle Link (MAVLink) in a Nutshell: A Survey," IEEE Access, 2019, 22 6 2019.

[2] S. Arnold, "Towards an Open Instrumentation Platform: Getting the Most From MAVLink,
ArduPilot, and BeagleBone," 2017.

[3] S. Hood, "Development of a Flight Data Acquisition System for Small Unmanned Aircraft,"
2014.

[4] A. Tridgell, R. Mackay, P. Barker, L. D. Marchi, WickedShell, P. Riseborough, T. Pittenger,
Jason4short, P. Kancir, Jschall, L. Hall, G. J. D. Sousa, M. Oborne, J. Walser, P. Hickey, A.
Lucas, S. B. Purohit, R. Lefebvre, k. murata, F. Ferreira, P. Hall, C. M. D. O. Filho, G.
Staroselskii, G. Morphett, A. Piper, M. Denecke, M. Whitehorn, P. J. Pereira, E. Shamaev
and J. BERAUD, ArduPilot master, Github, 2020.

[5] H. Chao, Y. Cao and Y. Chen, "Autopilots for small unmanned aerial vehicles: A survey,"
International Journal of Control, Automation and Systems, vol. 8, p. 36–44, 2 2010.

[6] A. Tridgell, ArduPilot documentation, https://ardupilot.org/ardupilot/, 2020.

[7] A. Tridgell, R. Mackay, P. Barker, L. D. Marchi, WickedShell, P. Riseborough, T. Pittenger,
Jason4short, P. Kancir, Jschall, L. Hall, G. J. D. Sousa, M. Oborne, J. Walser, P. Hickey, A.
Lucas, S. B. Purohit, R. Lefebvre, k. murata, F. Ferreira, P. Hall, C. M. D. O. Filho, G.
Staroselskii, G. Morphett, A. Piper, M. Denecke, M. Whitehorn, P. J. Pereira, E. Shamaev, J.
BERAUD and C. Johnson, ArduPilot fork, Github, 2020.

[8] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen and U. P. Schultz, "A Survey of Open-
source UAV Flight Controllers and Flight Simulators," Microprocessors and Microsystems,
vol. 61, p. 11–20, 9 2018.

[9] ArduPilot forums, https://discuss.ardupilot.org/, 2020.

[10] J. Pattison and S. Dade, Managing safety notices, 2020.

[11] R. Beard, Small Unmanned Aircraft : Theory and Practice, Princeton: Princeton University
Press, 2012.

[12] R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill Education - Europe,
1997.

[13] B. Stevens, Aircraft control and simulation : dynamics, controls design, and autonomous
systems, Hoboken, New: Wiley, 2015.

[14] McCormick, Aerodynamics, Aeronautics, and Flight Mechanics, John Wiley & Sons, 1994.

[15] D. E. Hoak and R. D. Finck, "USAF Stability and Control DATCOM," 1978.

[16] D. A. Babcock, "Aircraft Stability Derivative Estimation from Finite Element Analysis,"
2002.

90

[17] R. C. Seamans, B. P. Blasingame and G. C. Clementson, "The Pulse Method for the
Determination of Aircraft Dynamic Performance," Journal of the Aeronautical Sciences, vol.
17, p. 22–38, 1 1950.

[18] C. R. O'Neill, "Higher Order and Dynamic CFD for Aeroelastic Simulations," 2011.

[19] A. Dorobantu, A. Murch, B. Mettler and G. Balas, "System Identification for Small, Low-
Cost, Fixed-Wing Unmanned Aircraft," Journal of Aircraft, vol. 50, p. 1117–1130, 7 2013.

[20] "Parameter estimation techniques and application in aircraft flight testing," 1974.

[21] R. Kimberlin, Flight testing of fixed-wing aircraft, Reston, VA: American Institute of
Aeronautics and Astronautics, 2003.

[22] M. J. Casiano, "Extracting damping ratio from dynamic data and numerical solutions," 2016.

[23] G. Zogopoulos-Papaliakos, https://github.com/Georacer/last_letter, 2019.

[24] J. S. Berndt, https://sourceforge.net/projects/jsbsim/, 2020.

[25] L. T. Nguyen, W. N. Tun, N. V. A. N. Nguyen, M. Tyan, S. Kim and J.-W. Lee, "Evaluation
on X-Plane Simulator Using Flight Test Data of Light Aircraft KLA-100 Scaled Model," in
The Korean Society for Aeronautical & Space Sciences, 2016.

[26] A. Kamal, A. M. Aly and A. Elshabka, "Modeling, Analysis and Validation of a Small
Airplane Flight Dynamics," in AIAA Modeling and Simulation Technologies Conference,
2015.

[27] A. Dorobantu, P. J. Seiler and G. J. Balas, "Validating Uncertain Aircraft Simulation Models
Using Flight Test Data," in AIAA Atmospheric Flight Mechanics (AFM) Conference, 2013.

[28] D. A. V. Ivanov, T. V. Trebunskikh and V. V. Platonovich, "Validation Methodology for
Modern CAD-Embedded CFD Code: from Fundamental Tests to Industrial Benchmarks,"
2017.

[29] S. Corporation, "Technical Reference: SOLIDWORKS Flow Simulation," 2019.

[30] J. S. Wallace, "Investigation of Solidworks Flow Simulation As a Valid Tool for Analyzing
Airfoil Performance Characteristics in Low Reynolds Number Flows," 2019.

[31] F. White, Fluid mechanics, 5 ed., New York: McGraw-Hill, 1979.

[32] J. G. Coder, "Further Development of the Amplification Factor Transport Transition Model
for Aerodynamic Flows," in AIAA Scitech 2019 Forum, 2019.

[33] P. E. Klopsteg, THE BIFILAR PENDULUM, vol. 1, AIP Publishing, 1930, p. 3–8.

[34] A. Tridgell, OpenDog demo with ArduPilot and Lua control, 2020.

[35] R. S. Figliola and D. E. Beasley, Theory and Design for Mechanical Measurements, John
Wiley & Sons Inc, 2014.

[36] S. J. Kline, "The Purposes of Uncertainty Analysis," Journal of Fluids Engineering, vol. 107,
no. 2, pp. 153-160, 1985.

[37] O. J. Woodman, "An introduction to inertial navigation," 2007.

[38] N. El-Sheimy, H. Hou and X. Niu, "Analysis and Modeling of Inertial Sensors Using Allan
Variance," IEEE Transactions on Instrumentation and Measurement, vol. 57, p. 140–149, 1
2008.

[39] R. Gonzalez and P. Dabove, "Performance Assessment of an Ultra Low-Cost Inertial
Measurement Unit for Ground Vehicle Navigation," Sensors, vol. 19, p. 3865, 9 2019.

[40] R. Gonzalez, J. I. Giribet and H. D. Patino, "NaveGo: a simulation framework for low-cost
integrated navigation systems," Journal of Control Engineering and Applied Informatics, vol.
17, p. 110–120, 2015.

91

[41] S. Eichstädt, N. Makarava and C. Elster, "On the evaluation of uncertainties for state
estimation with the Kalman filter," 4 5 2016.

[42] G. O. Castor, "Design and Development of a Controllable Wing Loading Unmanned Aerial
System," 2017.

92

APPENDICIES

Doublet Lua Script

-- This script will perform a control surface doublet
-- Charles Johnson, OSU 2020

local DOUBLET_ACTION_CHANNEL = 9 -- RCIN channel to start a doublet when
high (>1700)
local DOUBLET_CHOICE_CHANNEL = 10 -- RCIN channel to choose elevator
(low) or rudder (high)
local DOUBLET_FUCNTION = 19 -- which control surface (SERVOx_FUNCTION)
number will have a doublet happen
-- A (Servo 1, Function 4), E (Servo 2, Function 19), and R (Servo 4,
Function 21)
local DOUBLET_MAGNITUDE = 6 -- defined out of 45 deg used for
set_output_scaled
local DOUBLET_TIME = 500 -- period of doublet signal in ms

-- flight mode numbers for plane
https://mavlink.io/en/messages/ardupilotmega.html
local MODE_MANUAL = 0
local MODE_FBWA = 5
local MODE_FBWB = 6
local MODE_RTL = 11
local K_AILERON = 4
local K_ELEVATOR = 19
local K_THROTTLE = 70
local K_RUDDER = 21

-- store the info between callbacks
-- set at the start of each doublet
local start_time = -1
local end_time = -1
local now = -1

-- store information about the vehicle
local doublet_srv_chan = SRV_Channels:find_channel(DOUBLET_FUCNTION)
local doublet_srv_min = param:get("SERVO" .. doublet_srv_chan + 1 ..
"_MIN")

93

local doublet_srv_max = param:get("SERVO" .. doublet_srv_chan + 1 ..
"_MAX")
local doublet_srv_trim = param:get("SERVO" .. doublet_srv_chan + 1 ..
"_TRIM")
local pre_doublet_mode = vehicle:get_mode()
local current_hagl = ahrs:get_hagl()

function retry_set_mode(mode)
 if vehicle:set_mode(mode) then
 -- if the mode was set successfully, carry on as normal
 return doublet, 1
 else
 -- if the mode was not set successfully, try again ASAP
 return retry_set_mode, 1
 end
end

function doublet()
 local callback_time = 100
 if arming:is_armed() == true and rc:get_pwm(DOUBLET_ACTION_CHANNEL)
> 1700 and end_time ==-1 then
 callback_time = DOUBLET_TIME / 10
 -- start a quick doublet based on some math/logic
 now = millis()
 if start_time == -1 then
 -- this is the time that we started
 start_time = now
 -- notify the gcs that we are starting a doublet
 gcs:send_text(6, "STARTING DOUBLET " .. DOUBLET_FUCNTION)
 -- get info about the doublet channel
 doublet_srv_chan =
SRV_Channels:find_channel(DOUBLET_FUCNTION)
 doublet_srv_min = param:get("SERVO" .. doublet_srv_chan + 1
.. "_MIN")
 doublet_srv_max = param:get("SERVO" .. doublet_srv_chan + 1
.. "_MAX")
 doublet_srv_trim = param:get("SERVO" .. doublet_srv_chan + 1
.. "_TRIM")
 pre_doublet_mode = vehicle:get_mode()
 -- are we doing a doublet on elevator or rudder? set the
other controls to trim
 local doublet_choice_pwm =
rc:get_pwm(DOUBLET_CHOICE_CHANNEL)
 local trim_funcs = {}
 local pre_doublet_elevator =
SRV_Channels:get_output_pwm(K_ELEVATOR)
 if doublet_choice_pwm < 1500 then
 -- doublet on elevator
 DOUBLET_FUCNTION = K_ELEVATOR
 trim_funcs = {K_AILERON, K_RUDDER}

94

 DOUBLET_MAGNITUDE = 12
 DOUBLET_TIME = 500
 doublet_srv_trim = pre_doublet_elevator
 else
 -- doublet on rudder
 DOUBLET_FUCNTION = K_RUDDER
 trim_funcs = {K_AILERON}
 DOUBLET_MAGNITUDE = 15
 DOUBLET_TIME = 500
 -- pin elevator to current position. This is most likely
different than the _TRIM value

SRV_Channels:set_output_pwm_chan_timeout(SRV_Channels:find_channel(K_EL
EVATOR), pre_doublet_elevator, DOUBLET_TIME * 4)
 end
 -- set the channels that need to be still to trim until the
doublet is done
 for i = 1, #trim_funcs do
 local trim_chan =
SRV_Channels:find_channel(trim_funcs[i])
 local trim_pwm = param:get("SERVO" .. trim_chan + 1 ..
"_TRIM")
 SRV_Channels:set_output_pwm_chan_timeout(trim_chan,
trim_pwm, DOUBLET_TIME * 2)
 end
 -- get the current throttle PWM and pin it there until the
doublet is done
 local pre_doublet_throttle =
SRV_Channels:get_output_pwm(K_THROTTLE)
 SRV_Channels:set_output_pwm_chan_timeout(
 SRV_Channels:find_channel(K_THROTTLE),
 pre_doublet_throttle,
 DOUBLET_TIME * 3
)
 -- enter manual mode
 retry_set_mode(MODE_MANUAL)
 end
 -- split time evenly between high and low signal
 if now < start_time + (DOUBLET_TIME / 2) then
 down = doublet_srv_trim - math.floor((doublet_srv_trim -
doublet_srv_min) * (DOUBLET_MAGNITUDE / 45))
 SRV_Channels:set_output_pwm_chan_timeout(doublet_srv_chan,
down, DOUBLET_TIME / 2 + 100)
 elseif now < start_time + DOUBLET_TIME then
 up = doublet_srv_trim + math.floor((doublet_srv_max -
doublet_srv_trim) * (DOUBLET_MAGNITUDE / 45))
 SRV_Channels:set_output_pwm_chan_timeout(doublet_srv_chan,
up, DOUBLET_TIME / 2 + 100)
 elseif now < start_time + (DOUBLET_TIME * 2) then
 -- stick fixed at pre doublet trim position

95

 SRV_Channels:set_output_pwm_chan_timeout(doublet_srv_chan,
doublet_srv_trim, DOUBLET_TIME * 2)
 elseif now > start_time + (DOUBLET_TIME * 2) then
 -- notify GCS
 end_time = now
 gcs:send_text(6, "DOUBLET FINISHED")
 else
 gcs:send_text(6, "this should not be reached")
 end
 elseif end_time ~= -1 and rc:get_pwm(DOUBLET_ACTION_CHANNEL) > 1700
then
 -- wait for RC input channel to go low
 gcs:send_text(6, "RC" .. DOUBLET_ACTION_CHANNEL .. " still high")
 callback_time = 100 -- prevents spamming messages to the GCS
 elseif now ~= -1 and end_time ~= -1 then
 gcs:send_text(6, "RETURN TO PREVIOUS FLIGHT MODE")
 now = -1
 end_time = -1
 start_time = -1
 -- clear all of the timeouts
 control_functions = {K_AILERON, K_ELEVATOR, K_THROTTLE,
K_RUDDER}
 for i = 1, 4 do
 local control_chan =
SRV_Channels:find_channel(control_functions[i])
 SRV_Channels:set_output_pwm_chan_timeout(control_chan,
param:get("SERVO" .. control_chan + 1 .. "_TRIM"), 0)
 end
 retry_set_mode(pre_doublet_mode)
 callback_time = 100 -- don't need to rerun for a little while
 elseif now ~= -1 then
 -- stopped before finishing. recover to level attitude
 gcs:send_text(6, "FBWA RECOVER")
 now = -1
 end_time = -1
 start_time = -1
 -- clear all of the timeouts
 control_functions = {K_AILERON, K_ELEVATOR, K_THROTTLE,
K_RUDDER}
 for i = 1, 4 do
 local control_chan =
SRV_Channels:find_channel(control_functions[i])
 SRV_Channels:set_output_pwm_chan_timeout(control_chan,
param:get("SERVO" .. control_chan + 1 .. "_TRIM"), 0)
 end
 retry_set_mode(MODE_FBWA)
 callback_time = 100
 end
 return doublet, callback_time
end

96

gcs:send_text(6, "doubletv3.lua is running")
return doublet(), 500

97

GEOMETRICSTABCON

98

99

100

101

102

103

104

105

106

3-VIEW DRAWING OF FMS EDGE 540 1300 MM MODEL

VITA

Charles Preston Johnson

Candidate for the Degree of

Master of Science

Thesis: DEVELOPMENT OF A SOFTWARE IN THE LOOP SIMULATION
APPROACH FOR RISK MITIGATION IN UNMANNED AERIAL SYSTEM
DEVELOPMENT

Major Field: Mechanical and Aerospace Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Mechanical and
Aerospace Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2020.

Completed the requirements for the Bachelor of Science in Mechanical
Engineering at Oklahoma State University, Stillwater, Oklahoma in 2018.

Completed the requirements for the Bachelor of Science in Aerospace
Engineering at Oklahoma State University, Stillwater, Oklahoma in 2018.

Experience:

Graduate Research Assistant to Dr. Andy Arena, Department of Mechanical and
Aerospace Engineering, Oklahoma State University, June 2018 – Present.
Responsibilities include designing, manufacturing, and testing composite UAS.
Specializing in electrical and autopilot systems.

Professional Memberships:

Member of Sigma Gamma Tau

Member of American Institute of Aeronautics and Astronautics

