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CHAPTER I

Introduction

1.1 Fischer-Tropsch Synthesis

Energy sustainability is one of the most significant issues in modern society. The

US Energy Information Administration (EIA) reported in 2013 that global energy

consumption would increase by 56 percent between 2010 and 2040 if current economic

trends continue1. Along with this increase in energy consumption, the EIA estimates

that global carbon emissions will increase by 46 percent in the same time frame1. Due

to these issues and the increasing price of crude oil, there has been considerable effort

to reduce the use of petroleum-based fuels1;2;3. As a result of these efforts, renewable

energy production is increasing significantly with a 2.5 percent increase per year1.

Even with this increase in renewable energy resources, current predictions state that

fossil fuels will supply up to 80 percent of the world’s energy by 20401.

One approach to combat these issues is to develop materials capable of Fischer-

Tropsch synthesis (FTS), which is a catalytic process that converts syngas to energy-

storing hydrocarbons2;3;4. The FTS process was developed by Franz Fischer and Hans

Tropsch in 19265. The first step in that process is coal hydrocracking, which happens

by reacting coal with steam which produces a synthesis gas (mix of carbon monoxide

and hydrogen). The second step is to convert that synthesis gas into a petroleum-like

liquid, which is done in the presence of a cobalt catalyst5. This process was highly

successful and resulted in the FTS fuels being used to produce 9.1% of Germany’s

oil supply as early as 19366. In recent years FTS has drawn a lot of attention since

creating liquid hydrocarbons from this method is a clean process that can solve the
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shortage of liquid transport fuels5.

The FTS process generally includes four chemical reactions as shown in equations

1-42;3. The two main reactions of FTS are shown in equation 1-2; these two reactions

produce the energy-storing hydrocarbons used for fuel production. The hydrocarbons

produced through these reactions can be sulfur and nitrogen-free, and generally have

low aromaticity. Removal of toxic chemicals along with low aromaticity results in fuels

made from these chemicals to be environmentally safe and of a higher quality than

petroleum-based fuels2;3. The side reactions in equations 3-4 showcase the Water-Gas

Shift (WGS) reaction and alcohol production3. The WGS reaction is critical in FTS

since it can balance H2/Co ratios. It can take CO, which is a byproduct of steam

reforming reactions, and produce H2 which is used for the main FTS reactions3;7.

These four chemical reactions in the presence of a catalyst are the basis of FTS.

(2n+ 1)H2 + nCO → CnH2n+2 + nH2O (1.1)

2nH2 + nCO → CnH2n + nH2O (1.2)

CO +H2O → CO2 +H2 (1.3)

2nH2 + nCO → CnH2n+2 + (n− 1)H2O (1.4)

FTS has come a long way since 1936 and has many economic and environmental

benefits. Economically, FTS can provide an excellent alternative to crude oil in the

form of hydrocarbons2;3. This is especially relevant today since it was estimated that

the FTS process would be economically preferable over crude oil when oil prices were

over US$20 per barrel2, which has been the case for many years now1;2. The environ-
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mental benefits of FTS are that there are green methods of producing syngas8;9;10.

One green procedure of producing syngas is through steam and dry reforming of hy-

drocarbon feedstock and biomass2;11. With FTS processes becoming more sustainable

and reliable, the next significant effort in FTS research is to find new novel catalysts

that are both cost-friendly and environmentally safe.

1.2 Research on FTS and why ZnO as a Catalyst

Environmental and economic concerns regarding the future state of fuel production

have resulted in a surge in FTS research in the past decade. This surge has re-

sulted in considerable research on the creation of FTS catalysts with high activation

rates2;4;12;13. A catalyst is a material that increases the chemical process’s reaction

rate without being consumed itself14. In FTS, the most common catalysts are group

VIII materials, namely Cobalt (Co), Ruthenium (Ru), and Iron (Fe)3;15. FTS cata-

lysts are not limited to these materials; several other metals have been used including

Rhodium and Nickel2;3. Among the most common catalysts, Ru is the most active

and can work effectively at low temperatures (<150 °C) without the aid of promot-

ers2. As an added interest to scientists, Ru catalysts have been shown to produce

the highest molecular weight hydrocarbons; however, prohibitive costs and limited

resources prevent Ru from being used in industry2;3;15. On the other hand, Co and

Fe both have lower prices than Ru and have been utilized2;3. Fe is the cheapest of

the two materials, but Co is generally more active and more resistant to degradation

by water2.

There have also been studies on various promoter materials to improve the acti-

vation rates of these FTS catalysts. Promoters added to FTS catalysts can increase

the activity of materials by either a structural or electronic change2. Unlike Ru, Fe

and Co-based catalysts need promoters to reach optimal catalytic performance2. The

most common types of promoters used with Fe and Co materials are noble metals,

3



alkali metal ions, and transition metal oxides2. Platinum (Pt), Copper (Cu), and

Ru are some of the most widely used noble metal promoters; however, many of these

metals (Pt and Ru in particular) are expensive to produce3;12;13;16. Alkali metal ions

like Potassium (K) and Sodium (Na) as well as transition metals oxides such as Mag-

nesium Oxide (MgO) have also been examined as FTS promoters. However, their

effectiveness is still debated2;17. These two types of promoters increase catalytic ac-

tivity in some cases, but reduce activity in others2;17. One explanation of this is the

vast array of different catalyst systems used and the effects of these different modifiers

interacting with each other2;17.

In addition to the research on the promoter effects on commonly used catalysts,

there have also been studies on copper-cobalt (CuCo) alloys and18 and metal oxides

like iron-oxide (FeO) and zinc-oxide (ZnO)19;20 as FTS catalysts. These materials

have been studied due to the promising catalytic effects of defects, such as step-

sites for CuCo and oxygen vacancies for the metal oxides18;19. In particular, ZnO

nanoparticles/nanowires are promising since they are environmentally-safe and cost-

effective to produce21. One green method for producing ZnO nanoparticles is through

biosynthesis, where the nanoparticles can be synthesized by using microorganisms and

plants. This synthesis method can make ZnO without the excessive use of expensive

and toxic chemicals while being renewable21. These ZnO surfaces have also been

found to have high CO adsorption rates22;23, which make them prime candidates as

an FTS catalyst.

1.3 Defects on ZnO surfaces

Zinc-oxide has many attractive bulk and surface properties, and as a widegap semi-

conductor, it is a suitable candidate for a variety of applications24. However, pristine

ZnO surfaces generally do not have sizeable catalytic activities24;23. It has been con-

cluded that catalytic activity over pristine ZnO surfaces does not increase with surface
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area24. These results show that catalysis with ZnO is a structure-sensitive reaction.

Structure-sensitive means that defects on the surface and the material’s crystalline

structure can play a vital role in catalytic activity. Oxygen vacancy defects, in partic-

ular, have been found to have a substantial effect on the catalytic activation rates for

ZnO23. As a result of this finding, the polar (un-stable) surface of ZnO, specifically

ZnO (0001), have been heavily studied25;26;27.

On the other hand, there has not been much work done on how defects in ZnO sur-

faces (1010) & (1120) affect activation rates. Through scanning tunneling microscopy

(STM) and scanning tunneling spectroscopy (STS) analysis, it was shown that the

most likely defect on a (1010) face is a ZnO dimer-defect22. It was also discovered

that grove and terraces are also commonly found in (1010) & (1120) ZnO surfaces28.

Knowing the effect of defects on the catalytic activation rates for ZnO, we explore

whether the stable ZnO (1010) & (1120) surfaces would make suitable FTS catalysts

while investigating the role that dimer defects, groves, and terraces in those surfaces

play in the catalysis.

To study the effects of these various defects, calculations of the adsorption prop-

erties3 of syngas need to be performed. Adsorption is the adhesion process of liquid

or gas molecules on the surface of a solid29. In the case of FTS, the molecules are

the syngas and the solid is the catalyst. There are two main types of adsorption, ph-

ysisorption and chemisorption. Chemisorption is very similar to a traditional chemi-

cal bond, while physisorption does not change the chemical structure of the molecule.

The fundamental force that guides physisorption is the Van der Waals (VdW) force29.

This is the crux of my project: to study syngas’ adsorption properties on a ZnO cat-

alyst using Density Functional Theory (DFT) while including the VdW interactions.

Prior DFT studies have been done at the VdW-corrected level30;31, but not with

molecular dynamics (MD) on ZnO surfaces.
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1.4 Molecular Dynamics

Molecular dynamics is a powerful computational technique that is used to study many

physical and chemical systems. Here I will use MD to analyze the interactions between

syngas and other various molecules with ZnO catalysts. With MD, we can elucidate

the kinetics of the adsorption process on ZnO slabs, capturing how the molecules and

bonds change over time and the thermodynamics properties of the system32, which

can be used to find where on the ZnO surface adsorption takes place. These MD

calculations will not give a complete picture of VdW interactions in adsorption. Still,

with MD, we can better understand how these various surface defects in ZnO affect

how well these ZnO slabs can be used in the FTS process. In addition to the system’s

thermodynamic properties, MD can visualize the physical interactions between the

syngas and the catalyst in an accessible format. The movies and data taken from the

various MD simulations run in this project will showcase these molecules’ adsorption

properties and give us a good idea of the FTS capabilities of defect ZnO surfaces.
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CHAPTER II

Computational Theory and Methodology

2.1 The Many-Body Problem

All of the calculations in this project are done with DFT, and the molecular dynamics

simulations use the Car-Parrinello method. In this chapter, I will discuss the the-

ory behind the DFT and DFT-MD and the computational methodology used via the

Siesta program33. The power of DFT is that it is a method of obtaining the solution

for the many-body problem by only using the electron density of the system as a vari-

able. Here we will discuss the many-body problem up to the Hartree-approximation,

and then detail how the Kohn-Sham equation and DFT solve this many-body prob-

lem. We will first start with the many-body problem, explicitly trying to find the so-

lutions for the non-relativistic time-independent Schrödinger equation34, as depicted

in equation 2.1.

H |Φ〉 = ε |Φ〉 (2.1)

H = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2)

Where the Hamiltonian (H) represents a system of nuclei and electrons which are

described by two position vectors ri and RA, which represent the position vectors for

the ith electron and the Ath nuclei34. The Hamiltonian represents all the kinetic and

potential energy interactions between this system of N electron and M nuclei, as seen
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in equation 2.2. The first term and second terms of the Hamiltonian represents the

kinetic energy of the electrons and the nuclei, where MA is the ratio of nuclei mass

to that of an electron34. The Third term defines the Coulomb attraction between

the N electrons and M nuclei, where ZA represents the atomic number of nuclei A.

The fourth and fifth terms showcase the Coulomb repulsion between each of the N

electrons with each other and each of the M nuclei with each other. The units used

in equation 2.2 are atomic units for simplicity.

The solution for the many-body problem is extremely difficult to solve analytically;

however, it can be solved using iterative methods. Even with iterative methods, the

Schrödinger equation for this problem becomes impossible to solve for large systems.

This is where the Born-Oppenheimer approximation (BOA)35 comes into play. The

basis of the BOA is that since the nuclei are much more massive than electrons, we

can approximate the positions of the nuclei to be fixed34. This allows us to view this

many-body system as a system of electrons moving in the potential field of fixed nuclei.

With this approximation, the kinetic energy term for the nuclei goes to zero, and the

Coulomb repulsion between nuclei becomes a constant34, which can be dropped as

well. This new simplified Hamiltonian is called the electronic Hamiltonian (equation

2.3), which describes the motion of N electrons in a field of M nuclei charges.

H = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(2.3)

εtot = εelec +
M∑
A=1

M∑
B>A

ZAZB
RA

(2.4)

When this Hamiltonian is applied to the Schrödinger equation (equation 2.1),

the total energy from the electron-electron interactions is given; however, this is not

the total energy of the system. There is still a constant factor of the nuclei-nuclei

repulsion dropped from the electronic Hamiltonian. This total energy (equation 2.4)
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can then be used to help solve the Hamiltonian for the nuclei-nuclei interactions34;

thus, the BOA greatly simplifies the many-body problem. However, the BOA only

considers the spatial position of the electrons while neglecting the spin34. In order

to get the full picture of the electron-electron interactions, the effects of spin needed

to be taken into consideration. This leads to the introduction of Slater determinants

and the Hartree-Fock Approximation (HFA).

Before introducing Slater determinant and the HFA, the idea of a spin orbital

must be discussed. The spin of a fermion is an intrinsic value that is vital in under-

standing the properties of electrons. To include the spin in this new formalism, an

additional spin coordinate ω is added to the set of spatial coordinates r. This new set

of coordinates will be defined as x, and is described in equation 2.534. The electronic

Hamiltonian given in equation 2.3 does not have any spin dependence; however, this is

okay as long as our wave function has spin dependence and satisfies the antisymmetry

principle. The antisymetry principle is a generalization of the Pauli exclusion princi-

ple. It states that a many-electron wave function must be antisymmetric with respect

to the interchange of the coordinate x of any two electrons34. This principle is stated

in equation 2.6. From this we see that the exact wave function for the many-electron

system must both satisfy the Schrödinger equation and the antisymmetry principle.

The slater determinant solves this issue by using spin orbitals.

x = {r, ω} (2.5)

Φ(x1, ..., xi, ..., xj, ..., xN) = −Φ(x1, ..., xj, ..., xi, ..., xN) (2.6)

An orbital is a wave function that defines a single particle. A spatial orbital

(ψi(r)) is a function of position only and can be used to find the probability of

finding an electron in an infinitesimal volume element dr. Spatial orbitals will form
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an orthonormal set, and if that set is complete, then any arbitrary function can be

expanded, as shown in equation 2.734, where ai are constants. In general, a set can

only be complete if it is infinite, but in reality, that is an impossibility. Therefore, we

will look at finite sets, where i spans from 1 to K orbitals34. A spin orbital (χ(x)) is

a wave function of that describes both the spatial distribution and spin of a particle.

The spin orbital is defined in equation 2.8 and is a function of the spatial orbital along

with two orthonormal spin functions α(ω) and β(ω), where α(ω)) and β(ω) represent

the spin-up and spin-down configurations respectively34. Given a set of K spatial

orbitals, we can see from equation 2.8 that we will have a set of 2K spin orbitals.

Additionally, since the spatial orbitals and the spin-functions are orthonormal, so

will the spin orbitals.

f(r) =
∞∑
i=1

aiψi(r) (2.7)

χ(r) =


ψ(r)α(ω)

or

ψ(r)β(ω)

(2.8)

Now that the spin orbital has been defined for a single particle, we now consider

what the wave functions will look like for a collection of particles (N electrons). Before

considering the exact wave function of an interacting system of electrons, we will look

at a system of non-interacting particles. In this system, the Hamiltonian will be

described by equation 2.9, where the h(i) operator denotes the kinetic and potential

energy of electron i34. An effective h(i) can also be used that includes electron-electron

interaction, as long as the repulsion is denoted in some average way34. These h(i)

operators will have a set of eigenfunctions that we take to be a set of spin orbitals

(equation 2.10)34. From equation 2.10, the set of eigenfunctions of the Hamiltonian
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H can be deduced. Since H is a sum of the operator h(i), the eigenfunction/wave

function of this Hamiltonian can be described by a product of the spin orbitals for

each of the electrons, as seen in equation 2.1134. Since ΨHP is an eigenfunction of H,

the eigenvalue E as seen in equation 2.12 can be written as the sum of the spin orbital

energies of each χi as seen in equation 2.1134. This many-electron wave functionΨHP

is known as the Hartree-Product (HP), and describes the wave function for non-

interacting electrons, but neglects the antisymmetry principle. This is handled by

the Slater determinant.

H =
N∑
i=1

h(i) (2.9)

h(i)χj(xi) = εjχj(xi) (2.10)

ΨHP (x1, x2, ..., xN) = χi(x1)χj(x2)...χk(xN) (2.11)

HΨHP = EΨHP (2.12)

To modify the HP, antisymmetry needs to be satisfied. The basis for antisymmetry

is that when the coordinate x is interchanged for two electrons, the corresponding

wave functions will need to be antisymmetric. Consider a system of two electrons,

where equations 2.13 and 2.14 represent the HP-wave function for electron 1 in χi

and electron 2 in χj and vice-versa for equation 2.1434. The issue with the wave

functions in equations 2.13 and 2.14 are that they distinguish between electrons, and

electrons are indistinguishable. They also do not follow the antisymmetry principle.

However, if a linear combination of the two are taken, both of these issues can be

solved. This new antisymmetric wave function is detailed in equation 2.15, where C
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is a normalization constant34. From equation 2.15 we can see that an interchange

of coordinate x does lead to the new wave function to be antisymmetric, due to the

negative sign within equation 2.15. It also satisfies the Pauli exclusion principle, since

if i=j then the wave function vanishes. From here, equation 2.15 can be written in

terms of a determinant, the Slater determinant (equation 2.16)34. Equation 2.16 can

then be generalized for a system of N electrons (equation 2.17). Antisymmetrizing

the HP results in the Slater determinant, which also introduces exchange effects. To

be more specific, the Slater determinant incorporates exchange correlation, which

means that two electrons with parallel spins will be correlated with each other while

electrons with opposite spins will not34.

ΨHP
1,2 (x1,x2) = χi(x1)χj(x2) (2.13)

ΨHP
2,1 (x1,x2) = χi(x2)χj(x1) (2.14)

Ψ = C(χi(x1)χj(x2)− χi(x2)χj(x1)) (2.15)

Ψ(x1, x2) = C

∣∣∣∣∣∣∣
χi(x1) χj(x1)

χi(x2) χj(x2)

∣∣∣∣∣∣∣ (2.16)

Ψ(x1, x2) = C

∣∣∣∣∣∣∣∣∣∣
χi(x1) . . . χk(x1)

...
. . .

...

χi(xN) . . . χk(xN)

∣∣∣∣∣∣∣∣∣∣
= |χ1χ2...χN〉 (2.17)

2.2 Hartree-Fock Approximation

The HFA has been one of the essential approximation methods for the many-electron

problem since its conception. Most computational techniques in quantum chemistry
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and physics use the HFA as a starting point, including DFT. The ground state wave

function of an N-electron system can be described by a single slater determinant

(equation 2.18)34. The variation principle from quantum mechanics tells us that the

best possible wave function for this ground state is the one that gives us the lowest

possible energy. This is stated in equation 2.19, whereH is the electronic Hamiltonian.

In equation 2.19, the variation term is the choice of spin orbital. Therefore, the

minimization of E0 is done by varying the spin orbitals34. In doing this minimization,

the Hartree-Fock (HF) equation can be derived (equation 2.20)34.

|Ψ0〉 = |χ1χ2...χN〉 (2.18)

E0 = 〈Ψ0|H|Ψ0〉 (2.19)

f(i)χ(xi) = εχ(xi) (2.20)

Within the HF equation the operator f(i) is denoted as the Fock operator, and is

an effective single-electron operator with the form described in equation 2.21. Due to

the HF equation representing a single equation, equation 2.21 will look at the operator

f in terms of a single electron, electron 1. In equation 25 a/b represent spin orbitals

χa and χb. The operators h(i), Jb(i), and Kb(i) are described in equations 2.22-2.24,

respectively34. The operator h(i) represents the one-electron core Hamiltonian, which

is the kinetic and potential energy of a single electron with the nuclei-core. Operator

Jb(i) is called the Coulomb operator, representing the average potential at xi from the

electron denoted by χb. The operator Kb(i) is defined as the exchange operator. The

exchange operator is a non-local operator, meaning that unlike the coulomb operator,

there does not exist an average potential due to Kb(i) at xi. Operator Kb(i) acting on

a spin orbital ( χa(i) ) depends on the value of the orbital in all space, not just locally
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around xi
34. The coulomb operator and exchange operator are sometimes denoted

together as the HF-potential (equation 2.25)34.

f(1) = h(1) +
∑
b6=a

Jb(1)−
∑
b6=a

Kb(1) (2.21)

h(1) = −1

2
∇2

1 −
∑
A

ZA
r1A

(2.22)

Jb(1) =

∫
dx2χ

∗
b(2)r−1

12 χb(2) (2.23)

Kb(1) =

∫
dx2χ

∗
b(2)r−1

12 χa(2) (2.24)

vHF (1) =
∑
b6=a

Jb(1)−Kb(1) (2.25)

As seen in equations 2.21-2.25, the HF-potential is dependent on the spin orbitals

of other electrons. As a result, the HF-equation is non-linear and must be solved

using iterative methods. One of the procedures to solve the HF-equation is called the

self-consistent field (SCF) method34. The SCF method starts by taking a guess of the

spin orbitals and then calculating the HF-potential for each electron in the system.

Then the SCF method used equation 24 to solve for a new set of spin orbitals, and

thus a new HF-potential34. This process is repeated until self-consistency is reached,

meaning that the HF-potential no longer changes. The HF-equation solution gives a

set of k orthonormal spin orbitals, with orbital energies εk.From these k orbitals, the

N orbitals with the lowest energies are defined as the occupied spin orbitals34. These

N orbitals can be used to form a Slater determinant which can provide the HF-ground

state wave function. This is the basis of the HFA, a very powerful approximation to

the many-electron quantum system.
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2.3 Density Functional Theory and the Kohn-Sham Equations

One of the issues with HFA is that it does not take into account the correlation energy

between electrons. As a result, the HFA always overestimates the actual energy of

a many-electron system; this, is where DFT comes into play. Density functional

theory is a theory of correlated many-body systems36 and is one of the most utilized

computational methods of solving the many-body problem. The original theorems on

DFT were published by P. Hohenberg and W. Kohn in 196437, but they had no idea

on how to implement these theorems. In 1965, W. Kohn and L.J. Sham published a

paper that provided a way to implement DFT, this paper outlines the basis of modern-

day DFT38. The original article by Hohenberg and Kohn37 stated that DFT was a

formulation that could work with any system of interacting particles in some external

potential. This includes a problem with electrons and fixed nuclei, as stated in the

Hamiltonian in equation 736. DFT is based on two main theorems which were proved

by Hohenberg and Kohn37. The first theorem states for any system of interacting

particles in an external potential, the external potential can be determined uniquely

(apart from a constant) by the ground state particle density. The second theorem

states that a universal energy functional of the particle density can be defined for

a valid external potential, and that the density that minimizes the functional is the

ground state density for that system36;37. What follows from these theorems is that

all the properties of a many-body system can be determined from the ground state

particle density. The energy functional alone can determine the ground state density.

From the two theorems of DFT, the issue becomes how to solve the ground state

particle density in an interacting system. The approach in the Kohn-Sham paper38

states that the ground state density for an interacting system is the same as for an

auxiliary non-interacting system36;39. Since this auxiliary system is non-interacting,

the Hamiltonian of the system can be described as in equation 2.26, where V σ rep-

resents the effective local potential acting on an electron of spin σ at point r36. This
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Hamiltonian in equation 2.26 and its respective energy functional represent all the

effects of a non-interacting system. All the interaction-energy contributions are then

wrapped up in an exchange-correlation energy function (Exc[n] )36;39. Therefore, the

total Kohn-Sham energy functional can be described as in equation 2.2736. Where

Ts represents the independent-particle kinetic energy, EHartree (equation 2.28) is the

Coulomb interaction of the particle density ( n(r) ) with itself, and EII is the interac-

tion energy between nuclei36.

Hσ
aux = −1

2
∇2 + V σ(r) (2.26)

EKS[n] = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] (2.27)

EHartree[n] =
1

2

∫
d3rd3r

′ n(r)n(r
′
)

|r− r′ |
(2.28)

From the Kohn-sham energy function (equation 2.27), all that is needed to find

the ground state particle density is to minimize this functional with respect to the

particle density. To do that the exchange-correlation functional needs to be ap-

proximated. Long-range interactions are encompassed within the Hartree energy

functional. Generally, the exchange-correlation functional is dependent on the local

particle density39. This local exchange-correlation energy functional is represented

in equation 2.2936. Where εXC represents the energy per electron at a point r that

depends only on the particle density in the neighborhood of that point36. This type

of exchange-correlation approximation is called local density approximation (LDA).

Another approximation is called the generalized gradient approximation (GGA), and

is represented in equation 2.3036. GGA allows for the exchange-correlation functional

to depend on the gradient of the local density and is generally more accurate than

LDA36;39. Depending on the problem at hand, there are many different types of LDA
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and GGA exchange-correlation functional by various authors, each of them with a

basis in either equation 2.29 or 2.30, but then altered to satisfy the needs of the

specific problem.

EXC [n] =

∫
drn(r)εXC(n(r)) (2.29)

EGGA
XC [n] =

∫
drn(r)εXC(n(r),∇n(r)) (2.30)

Solving the Kohn-Sham equation (equation 2.31) is achieved by a SCF iterative

cycle, similar to the one used with HFA. This method is used to calculate the electron

density of a many-body system, and then that can be used find the ground state

energy of that system. The first step in the DFT-SCF cycle involves an initial guess

of the electron density n(r)36. The effective potential (as in equation 2.26) can be

calculated from the Kohn-Sham energy functional as in equation 2.3236. Once V σ

is calculated, the Kohn-Sham equation can be solved. The wave function from the

Kohn-Sham equation can then be used to calculate a new electron density (equation

2.33). If the initial guess and the final result for the electron density are not consistent

with each other to a certain degree, the process is repeated until self-consistency is

achieved36. Once self-consistency is reached, the physical properties of the system

can be calculated. For example, in a DFT geometry optimization calculation the

forces acting on the system will be calculated. If these forces are not below a certain

threshold, then the coordinates are slightly altered and a new SCF cycle is started.

[−1

2
∇2 + V σ(r)]ψσi (r) = εσi ψ

σ
i (r) (2.31)

V σ(r) = Vext(r) +
δEHartree
δn(r, σ)

+
δEXC
δn(r, σ)

= Vext(r) + VHartree(r) + V σ
XC (2.32)
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n(r) =
∑
σ

∑
i

fσi |ψσi (r)|2 (2.33)

2.4 Pseudopotentials

There are many computational packages that utilize DFT. The one used in the re-

search covered in this paper is the Siesta program33. Most modern DFT programs

utilize pseudopotentials in their calculations. The primary use of a pseudopotential

is to replace the strong coulomb effects of the atom nuclei and core electrons with

an effective ionic potential that acts on the valence electrons36. This can be done

since an atom’s core electrons and nuclei do not play a huge role in electronic struc-

ture calculations. This simplification significantly reduces the computation time in

DFT calculations, and therefore is widely used. The two main types of pseudopoten-

tials are norm-conserving and ultrasoft36. Here I will briefly discuss norm-conserving

pseudopotentials, as they were used in all Siesta calculations. Norm-conserving pseu-

dopotentials (NCPP) have two significant conditions, that the NCPP must equal the

atomic potential outside a certain radial-cutoff value and that inside the radial cutoff

value the norm of each NCPP wave function must be equal to the all-electron norm36.

These two conditions are stated in equations 2.34 and 2.35 respectively, and the gen-

eral form of a NCPP is stated in equation 2.3636. The all-electron wave function

represents the atom without the pseudopotential approximation, and this wave func-

tion is an important reference to check against pseudopotentials. In equation 2.36,

δVl will equal zero when r is greater than the cutoff value, satisfying equation 2.3436.

In terms of norm-conservation with equation 2.35, there is freedom in the choice of

Vl. This is because there is no one perfect pseudopotential for a given element. Each

pseudopotential will need to be optimized for their particular use.

ψPSl (r) = ψAEl (r), r > rc (2.34)
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∫ rc

0

r2
∣∣ψPSl (r)

∣∣2dr =

∫ rc

0

r2
∣∣ψAEl (r)

∣∣2dr (2.35)

VSL = Vlocal(r) +
∑
lm

|Ylm〉 δVl(r) 〈Ylm| (2.36)

2.5 Car-Parrinello Molecular Dynamics

Molecular dynamics is a powerful method in chemical physics used to understand the

motion and kinetics of molecules and atoms. Within the DFT formalism, there is a

method of running these MD simulations, and that is Car-Parrinello MD (CPMD)40.

The basis of CPMD is that it uses the Lagrangian formalism in classical MD but

describes the interaction potential using the Kohn-Sham energy functional (equation

2.27)41. In Newtonian mechanics, the equations of motion for a set of particles {RI

} with interaction energy E[{RI}] are defined in equation 2.3736. Equation 2.37 is

generally solved via numerical methods, one of the most common being the Verlet

Algorithm (equation 2.38). The benefits of the Verlet algorithm is that the errors

per time-step do not accumulate, and that energy is conserved over long simula-

tions36? . For simple problems, the interaction energy can be described by effective

potentials like the Lennard-Jones potential; however, for MD on advanced materials

this approach cannot be used.

MIR̈I = − ∂E

∂RI

= FI [{RJ}] (2.37)

RI(t+ δt) = 2RI(t) + RI(t− δt) +
(δt)2

Mi

FI [{RJ(t)}] (2.38)

There have been other first-principles or quantum molecular dynamics (QMD)

methods done before CPMD, the most well-known being Born-Oppenheimer MD

(BOMD). One of the early advantages of BOMD was that it untangled the motion of
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electrons and nuclei41. In BOMD, each time one of the nuclei was displaced from its

original position, a new optimization of the electronic structure was calculated. Al-

though effective, this method was computationally taxing requiring the Kohn-Sham

equation to be solved for each time step41. In CPMD, the electrons and the nuclei

evolve simultaneously. The way this is done is by treating the energy of the total sys-

tem as a function of classical coordinates {RI} for the nuclei and quantum coordinates

{ψi} for the electrons36. CPMD is a DFT-MD method, as it uses the Kohn-Sham

energy as the potential energy of the system. The total Lagrangian for CPMD is

denoted in equation 2.3936, and the first term on the RHS of the equation repre-

sents a fictitious kinetic energy for the electrons. This term is fictitious since what

is truly represents is the update of the wave functions during the calculation41. The

term E[ψi,RI] represents the Kohn-Sham energy functional. The last term defines

the orthonormality constraint for the electronic wave functions, with Λij as Lagrange

multipliers for that constraint36.

L =
1

2
[
N∑
i=1

(2µ)

∫
dr
∣∣∣ψ̇i(r)

∣∣∣2 +
∑
I

MIṘ
2

I ]− E[ψi,RI ] +
∑
ij

Λij[

∫
drψ∗i (r)ψj(r)− δij]

(2.39)

Solving the Lagrangian in equation 2.39 with generalized coordinates {ψi,RI}, the

equations of motion for CPMD can be found (equations 2.40 and 2.41). In equation

2.41, the variation of the Kohn-Sham energy functional with respect to the wave

functions is the same as solving the Kohn-Sham equation. Therefore, we can simplify

equation 2.41 using the Hamiltonian. In these equations of motion, the mass of the

nuclei is physical while the mass of the electrons (µ) is fictitious and can be optimized

for a specific problem36. From equations 2.40 and 2.41 the Verlet algorithm can be

applied (equations 2.42 and 2.43), where the constraint conditions (Λij) are solved

at each step so that the electron wave function is orthonormal throughout the MD
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simulation36. The method of CPMD is a very powerful DFT-MD formulism that has

been used effectively in many DFT programs, and was essential in all the calculations

done in all the MD simulations done in this paper.

MIR̈I = − ∂E

∂RI

(2.40)

µψ̈i(r, t) = − δE

δψ∗i (r)
+
∑
k

Λijψk(r, t) = Hψi(r, t) +
∑
k

Λijψk(r, t) (2.41)

Rn+1
I = 2Rn+1

I −Rn−1
I +

(δt2)

MI

FI (2.42)

ψn+1
i (r) = 2ψni (r)− ψn−1

i (r)− (δt2)

µ
[Hψni (r)−

∑
k

Λijψk(r, t)] (2.43)

2.6 Computational Methodology

All density functional theory (DFT) and MD calculations were carried out with the

Siesta package33 utilizing relativistic norm-conserving Troullier-Martins42 pseudopo-

tentials, with the VdW-DF correlation43 and the C09 exchange functional44 (C09-

VdW-DF). These pseudopotentials were generated using the ATOM program45.

To understand the adsorption properties of the molecules used in this study, we

first looked at the disassociation energy of their bonds. The molecules investigated

were H2, H2O, O2, CO, CO2, and CH4. Multiple single-point calculations were done

via Siesta with the C09-VdW-DF pseudopotentials with one atom in the molecule

being displaced from its equilibrium position, with all the other atoms being held

fixed. The disassociation energy was obtained from these single-point calculations

with equation 2.44, where Etot is the total energy of the system, Eatom is the energy
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of the atom that is being pulled away, and Efixed is the energy of the partial molecule

that is fixed in place.

Edis = Etot − (Efixed + Eatoms) (2.44)

All initial DFT relaxations were done on 2x4x2 super-cells of ZnO, with the ad-

dition of a hydrogen termination layer which was fixed in position along with the

next lowest layer of ZnO. This was done to simulate the bulk properties of the ZnO

surfaces, as well as preserve the coordination number of the bottom layer of ZnO

atoms. To reduce interactions between repeated slabs, a 20 Åvacuum layer was in-

troduced along the z-direction. The conjugate gradient (CG) relaxations were done

with a plane wave cutoff of 200 Ry, force convergence threshold of 0.02 eV/ Å, and

a 2-dimensional 8x8 k-point grid. The final xyz coordinates of the ZnO slabs after

relaxation were used for all the MD simulations and calculations of the electrostatic

potential.

To gain a better understanding of the relaxed surfaces, which part of the slab

the molecules will interact with, the electrostatic potential of each ZnO slab was

calculated. The third-party Siesta package Contour33 was used to determine the

electrostatic potential for each of the ZnO surfaces. The electrostatic potential at the

surface of each slab was calculated and the potential of various points within the top

layer of ZnO. For the grove/terrace defect slabs, the electrostatic potential was taken

at both the uppermost surface of the slab, and at the surface of the defect.

All MD calculations were done with a Nose mass of 1500 Ry*fs2, a target tem-

perature of 300 K, and a 2x2 k-point grid. A time resolution of 1fs was used, and

each system was allowed to evolve for a total of 20ps. The molecules used in these

MD computations are the same as in the disassociation energy calculations discussed

above. The pressure, temperature, and total energy of the systems were plotted over

the 20ps time range, as well as the molecules’ geometric position relative to the surface
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of the ZnO slab and with the other atoms in the molecule.
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CHAPTER III

ZnO Surfaces

3.1 Structure of ZnO Slabs

The two ZnO surfaces used in all the calculations are described by the (1010) and

(1120) Miller indices. ZnO has a hexagonal wurtzite structure with unit vectors a

and c as 3.25Å and 5.206Å respectively28. These type of crystal structures can be

described as alternating planes of zinc and oxygen atoms stacked along the c-axis28.

The (1010) and (1120) surfaces are two different cuts of the hexagonal wurtzite crystal

structure, these cuts create slabs of ZnO that are perpendicular to the c-axis. The

calculations were done in surfaces that are pristine, contain a dimer-defect, or slabs

with edge-defects. The edge surface defects of each slab were either in the (0001) or

(1010) and (1120) directions. The eight non-polar ZnO surfaces are listed in table

3.1 along with the corresponding identifier that will be used throughout this paper.

Surface geometries of each of the slabs are shown in figures 3.1-3.8, where lower layers

of the ZnO are semi-transparent.

Slab Identifier
1010 Dimer Defect S1

1010 Pristine S2
1120 Dimer Defect S3

1120 Pristine S4
1010-Edge-0001 S5
1010-Edge-1100 S6
1120-Edge-0001 S7
1120-Edge-1210 S8

Table 3.1: Table states the coding used to describe the 8 ZnO surfaces used

24



Figure 3.1: 1010 surface with dimer-
defect (S1) Figure 3.2: Pristine 1010 surface (S2)

Figure 3.3: 1120 surface with dimer-
defect (S3) Figure 3.4: Pristine 1120 surface (S4)
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Figure 3.5: 1010 surface with Edge-
0001 defect (S5)

Figure 3.6: 1010 surface with Edge-
1100 defect (S6)

Figure 3.7: 1120 surface with Edge-
0001 defect (S7)

Figure 3.8: 1120 surface with Edge-
1210 defect (S8)

3.2 Electrostatic Potentials

The electrostatic potential of the slabs is critical in understanding the dynamics of

molecules approaching them. The electrostatic potential on/near the surfaces of ZnO

shapes how the molecules will move in and interact. The electrostatic Coulomb

force is directly proportional to the gradient of the electrostatic potential. Therefore,
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wherever the gradient of the potential is highest, it is where the molecule’s bonds

are more likely to break. This process is the most important for assesing catalytic

activity. Figures 3.1-3.8 represent the electrostatic potential near the surface of the

ZnO slabs. These contour plots show the potential in the x-y plane for each ZnO

surface, with a fixed origin and spanning vectors per slab. Appendix D, table D.1

specifies the exact origin point and spanning vectors per slab. Appendix D also

showcases the electrostatic potential at various planes within the surface of the ZnO

slab. The dotted line in the electrostatic potential plots represents the contours of

zero potential, as to help distinguish areas of high potential gradients. The points of

interest in these electrostatic potential plots are near the Zn-O dimer defect and edge

defects, where bond splitting is more likely to occur.

The effect of a Zn-O dimer defect is clearly presented in figures 3.1-3.4. The (1120)

defect surface (figure 3.1) shows a larger potential gradient at the defect than at any

other point on the slab. Whereas in the pristine (1120) surface the potential gradient

is generally uniform throughout. This effect can also be seen to a certain extent with

other surfaces, though it is much more subtle. These potential catalytic points will be

of great interest in the MD calculations, especially with polar molecules like CO, H2O,

and CH3Cl, as polar molecules will be more likely to interact with areas with high

potential gradients. The edge defect surfaces (figures 3.5-3.8) provide a drastically

different potential surface compared to the pristine and dimer-defect slabs. An edge

defect results in a “trench” in the surface of the material, large areas of near zero

potential are seen where the “trench” begins. Here the most significant catalytic

effects are predicted to take place along the edge, as that is where the potential

gradient is highest.
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Figure 3.9: Electrostatic Potential
for1010 surface (S1)

Figure 3.10: Electrostatic Potential for
Pristine 1010 surface (S2)

Figure 3.11: Electrostatic Potential for
1120 surface with dimer-defect (S3)

Figure 3.12: Electrostatic Potential for
Pristine 1120 surface (S4)

Figure 3.13: Electrostatic Potential
for 1010 surface with Edge-0001 defect
(S5)

Figure 3.14: Electrostatic Potential
for 1010 surface with Edge-1100 defect
(S6)
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Figure 3.15: Electrostatic Potential
for 1120 surface with Edge-0001 defect
(S7)

Figure 3.16: Electrostatic Potential
for 1120 surface with Edge-1210 defect
(S8)
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CHAPTER IV

Molecular Dynamics

4.1 Dissasociation Energy of Molecules

The FTS process is based on building hydrocarbons and alcohols from various syngas

molecules near the surface of a catalytic material2;3. In order for these processes to

happen (equations 1.1-1.4), the bonds of the molecules need to be broken. Therefore,

the interaction energy of a molecule and a catalytic site needs to be sufficient enough

to overcome the binding energy of the molecule. To understand the binding energy of

these molecules, disassociation energy with respect to bond length plots were created.

For diatomic molecules like H2, O2, and CO, the disassociation energy was calculated

by increasing the separation length between the two atoms and calculating the binding

energy at each step. For H2O and CO2, a single hydrogen and oxygen atom were

separated from the molecule respectively, hence calculating the disassociation of a

hydrogen from H2O and an oxygen from CO2. For CH4 and CH3Cl disassociation

calculations, a single hydrogen and the chlorine atom were separated from CH4 and

CH3Cl respectively. For H2, O2, CO, H2O, and CO2 plots single-point calculations

were utilized via siesta, to avoid the separation distance between the atoms to change.

For CH4 and CH3Cl, geometry optimization calculations were used instead. The

reason geometry optimization calculations were used for these two molecules was

to allow the hydrogen atoms in the molecule to find their optimum geometry while

probing the bond energy between two specific atoms (C-H and C-Cl). Figures 4.1-4.7

represent the disassociation plots with the calculated binding energy. The binding

energies ranged from -5.14 eV to -14.17 eV, with CH3Cl having the lowest binding
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energy and CO having the highest. Here these plots are used in reference with the

geometric and thermodynamic results of the CPMD simulations, where if adsorption

of the molecule with ZnO occurs then the amount of energy supplied to the molecule

can be estimated.

Figure 4.1: Dissasociation energy for
H2 molecule

Figure 4.2: Dissasociation energy for
O2 molecule

Figure 4.3: Dissasociation energy for
CO molecule

Figure 4.4: Dissasociation energy for
CO2 molecule
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Figure 4.5: Dissasociation energy for
H2O molecule

Figure 4.6: Dissasociation energy for
H2O molecule

Figure 4.7: Dissasociation energy for
CH3Cl molecule

4.2 CPMD Simulations

The following sub-sections cover the most promising results of the CPMD simulations

done over the eight ZnO surfaces used. These results show adsorption and/or bond-

breaking within the molecules used in this study. In general, we are looking for

evidence that any or all of these surfaces can be used as a catalyst in FTS. To be

a viable catalyst in FTS, one of the four main reactions covered in the introduction

(equations 1.1-1.4) need to occur over ZnO. The molecules used in these four reactions

are H2, CO, H2O, and various hydrocarbons. If we see adsorption or bond-breaking

within these types of molecules, that shows that there is promise for ZnO to be used

as an FTS catalyst. Molecules not explicitly covered in the FTS reactions (CH3Cl,
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CO2, and O2) were tested to probe the adsorption effects of the ZnO surfaces, in

order to better understand how ZnO interacts with a variety of molecules. The full

results, including those that show no catalytic promise, can be found in Appendix E.

4.2.1 Dimer-Defect Surfaces

This section covers the CPMD simulations over the 1010 and 1120 surfaces. In par-

ticular, the dimer-defect surfaces of 1010 and 1120 ZnO.

4.2.1.1 1010 Surface

As seen in Chapter 3, the 1010 dimer-defect surface (S1) has the most prominent

electrostatic potential gradient. We see the greatest potential gradient above the

defect-point, so it is assumed this dimer-defect would show ample catalytic activity

in our CPMD simulations. This is shown in figures 4.8-4.15, with H2, O2, CO, and

CO2. In figure 4.8 we see that the surface S1 breaks and adsorbs the H2 molecule

within 10ps. Figure 4.9 presents snapshots of when the H2 molecules was adsorbed

into the dimer-defect and when the H-H bonds break apart. This result is very

promising, as the splitting of H2 is a vital step in FTS.
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Figure 4.8: MD results for S1 with H2

(a) t = 8.4ps (b) t = 8.49ps

Figure 4.9: H2 breaking its bond at dimer-defect on surface S1

However, bond-breaking was not explicitly found in the other molecules tested.

For O2 and CO2 (figures 4.10-4.11 and 4.14-4.15) we see that the molecules were ad-

sorbed into the dimer-defect, but their respective bonds did not break. This adsorp-

tion effect is still note-worthy, as this interaction fixed the molecules to the defect site
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for the remainder of the simulation. The CO simulation (figures 4.12-4.13) is unique

in that the molecule interacted weakly with the surface nearly from the start of the

simulation, and it did not travel far from its original position. We also see that the

azimuthal angle of the CO molecule was on average constant, while the polar angle

oscillated greatly. This result will be studied in more detail in the near future, as this

weak interaction with the surface (regardless of if there was a defect or not) is seen

in some of our other simulations.

Figure 4.10: MD results for S1 with O2
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(a) t = 4.01ps (b) t = 4.1ps

Figure 4.11: O2 adsorbs to dimer-defect on surface S1

Figure 4.12: MD results for S1 with CO
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(a) t = 0.0ps (b) t = 6.91ps

Figure 4.13: CO weak interaction with Surface S1

Figure 4.14: MD results for S1 with CO2
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(a) t = 6.51ps (b) t = 7.26ps

Figure 4.15: CO2 adsorbs to dimer-defect of Surface S1

4.2.1.2 1120 Surface

Due to the calculated electrostatic potential, the 1120 dimer-defect surface (S3) also

showed promise with catalytic activity. The CPMD simulations for S3 showed a

similar result as S1 in the case of H2. From figures 4.16-4.17, we see that the S3

surface interaction with H2 broke its bond and adsorbed the molecule within the

defect site, again within 10ps. From this and the previous result we can verify that

these dimer-defects are able to split H2. These results also show that the dimer-

defects also cause weak-interactions between various other molecules, in the case of

S3, this can be seen with O2 (figures 4.18-4.19). Here we see that the O2 molecule

was attracted to the defect-site and then subsequently stayed fixed around the defect

for the rest of the simulation.
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Figure 4.16: MD results for S3 with H2

(a) t = 8.15ps (b) t = 8.2ps

Figure 4.17: H2 breaking its bond at dimer-defect of Surface S3
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Figure 4.18: MD results for S3 with O2

(a) t = 0.0ps (b) t = 10ps

Figure 4.19: O2 weak interaction with Surface S3

4.2.2 Edge-Defects

This section cover the results from the CPMD simulations of the edge-defects surfaces.

The surfaces covered here are the 1010 and 1120 edge-defects (S5-S8), the 1120-0001

edge-defect surface (S7) was omitted from this section as the data did not show
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significant results, only CO weak interactions (appendix E). As seen in figures 3.5-

3.8, these edge-defect surfaces are drastically different from the dimer-defect surfaces.

Along with the differences in electrostatic potential, the edge-defect surfaces create a

physical trench which provides an additional physical barrier for the molecules which

is not found in with surfaces S1-S4.

4.2.2.1 1010-Edge-0001 Surface

For the 1010-Edge-0001 Surface (S5), there were a few significant results that pertain

to the FTS process. The most prominent being that CO2 adsorbed into the interface

between the edge and the top of S5. The bond between the carbon and the oxygen

did not break, but the adsorption itself is significant as this was seen in with the

dimer-defect surfaces as well. With this result seen in both edge and dimer-defect

surfaces, additional research on this interaction could be worthwhile. Observing the

interactions betwen the surface, CO2, and another molecule like H2 would be the next

step to take, to see if more catalytic activity can be observed. In addition to CO2,

O2 was observed to have weak interactions with the S5 edge. As with O2 in S3, there

was no clear evidence of adsorption, but the interaction with the S5 surface fixed the

position and stabilized the oscillations of O2.
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Figure 4.20: MD results for S5 with CO2

(a) t = 0.0ps (b) t = 1.01ps

Figure 4.21: CO2 adsorbs surface of Surface S5
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Figure 4.22: MD results for S5 with O2

(a) t = 0.0ps (b) t = 10.72ps

Figure 4.23: O2 weak interaction with Surface S5

4.2.2.2 1010-Edge-1100 Surface

The 1010-Edge-1100 Surface (S6) results showed promise in regards to H2 and H2O

(figures 4.24-4.27). Near the walls of the edge-defect, the bond of H2 and H2O were
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broken. In regards to H2 (figures 4.24-4.25), the edge-defect split the molecule between

the wall of the defect and the surface of the edge within 5ps. This resulted in one of

the largest separation lengths (distance between H atoms in H2) of any other the runs.

H2O provided similar results, where the bond between OH-H was split near the walls

of the edge-defect. This result is significant because S6 is the only ZnO defect/surface

combination with the ability to split water molecules. There have been studies on

doped/hybrid ZnO crystals and materials that can split water, but not for non-polar

ZnO 1010 and 1120 defect-surfaces46;47;48;49.

Figure 4.24: MD results for S6 with H2
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(a) t = 4.83ps (b) t = 4.89ps

Figure 4.25: H2 breaking its bond with edge-surface of S6

Figure 4.26: MD results for S6 with H2O
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(a) t = 5.30ps (b) t = 5.70ps

Figure 4.27: H2O breaking its bonds with edge-surface of S6

4.2.2.3 1120-Edge-1210 Surface

As found in the 1120 dimer-defect surface (S3), the 1120-Edge-1210 Surface (S8)

showcased bond-breaking of H2 and weak interactions of O2 with the surface. In

figures 4.28-4.29 we see the H2 bond being broken at the edge surface, not at the

wall of the defect. The O2 run (figures 4.30-4.31) show similar weak interactions of

O2 with the surface as seen before. However, there is a clear preference for the O2

molecule to stay near the wall of the edge-defect.
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Figure 4.28: MD results for S8 with H2

(a) t = 11.39ps (b) t = 11.59ps

Figure 4.29: H2 breaking its bond with edge-surface of S8
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Figure 4.30: MD results for S8 with O2

(a) t = 0.0ps (b) t = 3.76ps

Figure 4.31: O2 weak interaction with edge-surface of S8

4.2.3 Discussion of MD results

From our CPMD simulations, we have established the potential for ZnO as a catalyst

in FTS. With both the dimer and edge-defect surfaces, there were many cases of bond-
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breaking and adsorption. This is particularly true with H2, which is a vital component

in all four of the main FTS reactions. There were also plenty of cases of weak-

interactions between molecules and the defect sites, which under the right conditions

may lead to adsorption and bond-breaking. Nearly all of the defect surfaces showcased

the ability to break bonds and adsorb molecules, which is a promising start. However,

for these non-polar surfaces of ZnO to effectively utilized, the catalytic rates need to

be improved upon. In terms of what can be tested with further MD simulations, there

are a few options available. All the CPMD simulations were ran at a temperature

of 300K, the catalytic rates of these surfaces could change drastically with a change

in termperature. For the molecules which only showed weak interactions with the

surfaces, a change in temperature could result in adsorption or bond breaking.

Other options for increasing the catalytic rates of the ZnO surfaces would be to

add promoters. As previously mentioned, promoters have been used extensively in

FTS research; however, there has not been much research on promoters specifically

for ZnO catalytic surfaces. Even though ZnO promoters have not been researched for

FTS, there has been work on Cu-based catalysts doped with ZnO50;51;52 that show

that metal-oxide based promoters (ZnO) have been beneficial to the catalytic activity

of these Cu-based catalysts. As seen in Chapter 1, Cu has been used as a promoter

in FTS extensively. With the evidence that Cu and ZnO complement each other,

promoting ZnO with Cu could be an effective way of improving catalytic rates.

From the results of this project, there is definietly promise for ZnO as an FTS

catalyst. Out of the eight surfaces, four of them broke the bonds of H2, and all of

the surfaces showcase weak interactions with at least one of the other molecules, CO

being the most common. The interactions between the surfaces and H2/CO show

that the four main reactions of FTS (equations 1.1-1.4) are probable over ZnO, given

the right conditions. From Appendix E there is also much data on the interactions

between CH3Cl and CH4 with the surfaces, which were not covered in the body of this
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paper but could be utilized for future studies. The data from the CH3Cl, CH4 and

all of the other molecules gives us a very good understanding of the van der Waal’s

interactions and adsorption properties of these non-polar ZnO surfaces. Changing

the initial conditions of the MD simulations like temperature, or promoting the ZnO

surface with Cu or another effective material could also improve our understanding

of these materials. This project provided a good framework for understanding the

dynamics of molecules over non-polar syngas, and gives us a good starting point for

future CPMD and DFT reserach on these materials in order to create an effective

FTS catalyst.
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CHAPTER V

Other related work

From this study on FTS with ZnO surface, we have created a good framework for

studying adosrption via CPMD. This same framework can be used in future reserach

to study FTS or other realted processes over a multiude of different surfaces and ma-

terials. One project that I am currently working on is studying how silicon-nanotubes

interact with various atomospheric molecules in order to test the effectiveness of these

materials in real-world situations. One component of this project involves using the

MD fomalism created for the ZnO study in order to see how various molecules inter-

act with pristine and defect silicon-nanotubes. The reserach done on ZnO described

in this paper was vital in starting this silicon-nanotube project, as the MD in the

nanotube project utilizes much of the same formalism that was created over much of

my time at OSU. The format of the optimizations, input-files, and pythons scripts

described in Appendices A-C have been vital in the silicon-nanotubes project. My

analysis method for the electrostatic potential and dissassociation energy plots have

also be utilized for silicon-nanotubes. The CPMD formalism that I have created dur-

ing my time here at OSU can also be used by future members of the Borunda group

in their own reserach projects.

I have also been involved in research regarding photovoltaics, specifically metal-

halide perovskites. I have been apart of a reserach team here at OSU headed by

Dr. Borunda which studies how perovskites can function as deep-space photovoltaic

devices. My current reserach involves studying how to properly calculate the defect

formation energies of various metal-hailde perovskites using the Siesta package. My
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work on CPMD in Siesta was vital in understanding the program as a whole, and as

a result improved my research efficiency for the perovskite project. I will continue to

work on the silicon-nanotubes and solar-cell perovskite projects in the coming months,

and use the expertise gained from studying FTS on ZnO surfaces to continue to study

the physical properties of advanced materials.

52



References

[1] A. E. Outlook, “Us energy information administration: Washington,” 2013.

[2] Q. Zhang, J. Kang, and Y. Wang, “Development of novel catalysts for fischer–

tropsch synthesis: tuning the product selectivity,” ChemCatChem, vol. 2, no. 9,

pp. 1030–1058, 2010.

[3] G. P. Van Der Laan and A. Beenackers, “Kinetics and selectivity of the fischer–

tropsch synthesis: a literature review,” Catalysis Reviews, vol. 41, no. 3-4,

pp. 255–318, 1999.

[4] A. Alayat, E. Echeverria, D. N. Mcllroy, and A. G. McDonald, “Enhancement

of the catalytic performance of silica nanosprings (ns)-supported iron catalyst

with copper, molybdenum, cobalt and ruthenium promoters for fischer-tropsch

synthesis,” Fuel Processing Technology, vol. 177, pp. 89–100, 2018.

[5] H. Mahmoudi, M. Mahmoudi, O. Doustdar, H. Jahangiri, A. Tsolakis, S. Gu, and

M. LechWyszynski, “A review of fischer tropsch synthesis process, mechanism,

surface chemistry and catalyst formulation,” Biofuels Engineering, vol. 2, no. 1,

pp. 11–31, 2017.

[6] D. Leckel, “Diesel production from fischer- tropsch: the past, the present, and

new concepts,” Energy & Fuels, vol. 23, no. 5, pp. 2342–2358, 2009.
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APPENDIX A

Siesta Optimiztions

Before all major calculations were carried out through Siesta, optimization tests were
done for both geometry relaxation (Conjugate gradient) and MD calculations. Fig-
ures A.1-A.3 represent optmization test for relaxation, and A.4-A.6 for MD. For the
relaxation plots, the optimization of the meshcutoff, unit cell size, and force con-
vergence threshold were done with respect to the total energy and walltime of the
calculation. An optimized value for each would have the shortest possible walltime at
an energy value that has asymptotically converged to a certain value. The meshcutoff
value represents the finess of the 3D grid in which Siesta runs all its plane wave calcu-
lations, the lower to meshcutoff the finer the grid. The optmized value used found for
meshcutoff was around 200Ry. The unit cell size is the size in Åof the simulation box,
this optimization was used for the dissasociation energy calculations. The unit cell
value chosen was a 30x30x30 cell. The force convergence threshold (otherwise known
as the max force tolerance) is the value of the atomic force per Åthat is required for
a geometry relaxation calculation to be converged. The value chosen for this project
is 0.02 ev/ Å .

Figures A.4-A.6 optmize the denisty matrix (DM) mixing weight, pulay number,
and number kick. The DM mixing weight value represents the percentage of the
output density matrix to be used in the input of the new density matrix. The mixing
weight along with pulay number and number kick directly effect the SCF cycle of the
Siesta calculations. The mixing weight chosen for the MD calculations was 0.15. The
pulay number represents how non-linear the density matrix mixing will be, where a
pulay number of 0 or 1 is linear mixing. The value chosen was 10. The number kick
represents hw many SCF cycles a non-linear pulay mixing goes through before the
SCF goes back to linear mixing. The value chosen for this project was 30; however,
in general the SCF cycles never got that high.
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Figure A.1: Meshcutoff vs Walltime/Total Energy

Figure A.2: Unit Cell Size vs Walltime/Total En-
ergy

Figure A.3: Force Convergence Threshold vs Wall-
time/Total Energy
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Figure A.4: DM Mixing Weight vs Walltime

Figure A.5: DM Pulay Number vs Walltime

Figure A.6: DM Number Kick vs Walltime
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APPENDIX B

Siesta FDF files

Example FDF (Siesta input files) data for the MD and slab relaxation calculations
are listed below.

The following contains all the input variables for the Siesta FDF files that was
used to relax S1:

SystemName 1120-Slab-Defect

SystemLabel 1120-Slab-Defect

NumberOfAtoms 78

LatticeConstant 20 Ang

PAO.EnergyShift 0.005 Ry

%block LatticeVectors

0.5206 0.0000 0.0000

0.0000 0.6588 0.0000

0.0000 0.0000 1.0000

%endblock LatticeVectors

XC.functional VDW

XC.authors C09

MeshCutoff 200 Ry

MaxSCFIterations 200

NumberOfSpecies 3

%block ChemicalSpeciesLabel

1 30 Zn

2 8 O

3 1 H

%endblock ChemicalSpeciesLabel

%block AtomicMass

1 65.380

2 15.999

3 1.008

%endblock AtomicMass

%block Ps.lmax

Zn 2
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O 1

H 0

%endblock Ps.lmax

AtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies

3.102290000 7.162600000 -5.039460000 2

-0.086550000 7.162600000 -5.039460000 1

3.102290000 3.922600000 -5.039460000 2

-0.086550000 3.922600000 -5.039460000 1

3.013903477 8.837774510 -2.234661839 2

2.348949323 8.836650749 -4.153928197 1

0.406091322 8.836703315 -3.993814063 2

-0.189427679 8.837725717 -2.000157098 1

3.014855173 5.543757047 -2.186539429 2

2.343683414 5.542750013 -4.093977711 1

0.403804297 5.542669445 -3.941915188 2

-0.189906894 5.543672195 -1.947228143 1

2.208419558 7.200251483 -1.506737907 1

0.379652922 7.202029582 -1.114695182 2

3.095462793 7.144652231 -6.030951589 3

-0.066748651 7.159206947 -6.660670286 3

3.095784864 3.942344025 -6.030958250 3

-0.067356548 3.927568883 -6.660860248 3

3.102290000 13.750600000 -5.039460000 2

-0.086550000 13.750600000 -5.039460000 1

3.102290000 10.510600000 -5.039460000 2

-0.086550000 10.510600000 -5.039460000 1

3.013903069 15.425725364 -2.234668702 2

2.348967146 15.424737190 -4.153881557 1

0.406089718 15.424740071 -3.993824838 2

-0.189448145 15.425650772 -2.000108289 1

3.014857484 12.131772191 -2.186572673 2

2.343685891 12.130569786 -4.094075554 1

0.403811746 12.130649285 -3.941933780 2

-0.189903080 12.131665544 -1.947282713 1

2.208424059 13.788197072 -1.506676411 1

0.379659803 13.789993858 -1.114620896 2

2.208415096 10.475272488 -1.506775519 1

0.379665919 10.473275006 -1.114645628 2

3.095462793 13.732652231 -6.030951589 3

-0.066748651 13.747206947 -6.660670286 3

3.095784864 10.530344025 -6.030958250 3

-0.067356548 10.515568883 -6.660860248 3

8.308290000 7.162600000 -5.039460000 2

64



5.119450000 7.162600000 -5.039460000 1

8.308290000 3.922600000 -5.039460000 2

5.119450000 3.922600000 -5.039460000 1

8.219736208 8.837775140 -2.234854483 2

7.554651878 8.836648340 -4.154089138 1

5.611692199 8.836701640 -3.993900766 2

5.016434630 8.837725000 -2.000226069 1

8.220695300 5.543757377 -2.186739149 2

7.549415246 5.542752754 -4.094158115 1

5.609461423 5.542668757 -3.941963106 2

5.015966574 5.543670971 -1.947261706 1

7.414098626 7.200243763 -1.506888172 1

5.585353594 7.202038646 -1.114836953 2

7.414094831 3.887230629 -1.506875990 1

5.585350923 3.885218763 -1.114797839 2

8.301462793 7.144652231 -6.030951589 3

5.139251349 7.159206947 -6.660670286 3

8.301784864 3.942344025 -6.030958250 3

5.138643452 3.927568883 -6.660860248 3

8.308290000 13.750600000 -5.039460000 2

5.119450000 13.750600000 -5.039460000 1

8.308290000 10.510600000 -5.039460000 2

5.119450000 10.510600000 -5.039460000 1

8.219734605 15.425725758 -2.234860935 2

7.554668891 15.424741363 -4.154043911 1

5.611690422 15.424738244 -3.993909296 2

5.016413145 15.425648059 -2.000173000 1

8.220699103 12.131771890 -2.186774205 2

7.549411634 12.130567516 -4.094260942 1

5.609468582 12.130648421 -3.941978521 2

5.015966843 12.131663928 -1.947310235 1

7.414103149 13.788186882 -1.506826135 1

5.585359074 13.790001335 -1.114759227 2

7.414093071 10.475282740 -1.506926403 1

5.585364912 10.473263635 -1.114785720 2

8.301462793 13.732652231 -6.030951589 3

5.139251349 13.747206947 -6.660670286 3

8.301784864 10.530344025 -6.030958250 3

5.138643452 10.515568883 -6.660860248 3

%endblock AtomicCoordinatesAndAtomicSpecies

%block kgrid_Monkhorst_Pack

8 0 0 0.0

0 8 0 0.0

0 0 1 0.0
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%endblock kgrid_Monkhorst_Pack

MD.TypeOfRun CG

MD.NumCGsteps 200

MD.MaxForceTol 0.02 eV/Ang

DM.MixingWeight 0.1

WriteCoorXmol .true.

save-rho T

save-delta-rho T

save-total-potential T

save-neutral-atom-potential T

save-hs T

The following contains all the input variables for the Siesta FDF that was used
for the MD simulation of an H2 molecule over S1:

SystemName MDSlab1

SystemLabel MDSlab1

## Lattice, Element and Atomic Structure Data

NumberOfAtoms 80

NumberOfSpecies 3

LatticeConstant 20 Ang

%block LatticeVectors

0.5206 0.0000 0.0000

0.0000 0.6588 0.0000

0.0000 0.0000 1.0000

%endblock LatticeVectors

%block ChemicalSpeciesLabel

1 30 Zn

2 8 O

3 1 H

%endblock ChemicalSpeciesLabel

%block AtomicMass
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1 65.380

2 15.999

3 1.008

%endblock AtomicMass

%block Ps.lmax

Zn 2

O 1

H 0

%endblock Ps.lmax

AtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies

3.102290 7.162600 -5.039460 2

-0.086550 7.162600 -5.039460 1

3.102290 3.922600 -5.039460 2

-0.086550 3.922600 -5.039460 1

3.031225 8.847592 -2.209306 2

2.348949 8.836651 -4.153928 1

0.363264 8.833933 -3.990293 2

-0.058053 8.838680 -2.052407 1

2.963852 5.360348 -2.115920 2

2.485449 5.544224 -4.052852 1

0.417335 5.519520 -3.865998 2

-0.167588 5.546289 -1.944340 1

2.255843 7.082439 -1.499504 1

0.325951 7.164310 -0.898175 2

3.095463 7.144652 -6.030952 3

-0.066749 7.159207 -6.660670 3

3.095785 3.942344 -6.030958 3

-0.067357 3.927569 -6.660860 3

3.102290 13.750600 -5.039460 2

-0.086550 13.750600 -5.039460 1

3.102290 10.510600 -5.039460 2

-0.086550 10.510600 -5.039460 1

3.042696 15.419898 -2.268289 2

2.348967 15.424737 -4.153882 1

0.336524 15.441356 -3.973223 2

-0.057144 15.425429 -2.054162 1

3.092908 12.166830 -2.181265 2

2.484649 12.133115 -4.056717 1

0.460899 12.135014 -3.878212 2

-0.169116 12.133527 -1.942473 1

2.254369 13.783367 -1.498680 1

0.341859 13.870798 -0.882284 2

2.253752 10.591951 -1.498248 1

67



0.367432 10.476648 -0.915312 2

3.095463 13.732652 -6.030952 3

-0.066749 13.747207 -6.660670 3

3.095785 10.530344 -6.030958 3

-0.067357 10.515569 -6.660860 3

8.308290 7.162600 -5.039460 2

5.119450 7.162600 -5.039460 1

8.308290 3.922600 -5.039460 2

5.119450 3.922600 -5.039460 1

8.276787 8.886624 -2.242256 2

7.554652 8.836648 -4.154089 1

5.574055 8.837801 -3.990981 2

5.146736 8.838869 -2.052545 1

8.322987 5.576035 -2.206824 2

7.576899 5.544691 -4.057654 1

5.600844 5.547309 -3.884718 2

5.029695 5.544179 -1.942013 1

7.460498 7.194112 -1.498430 1

5.598524 7.207981 -0.916159 2

7.458833 4.005194 -1.498238 1

5.632047 3.880751 -0.909852 2

8.301463 7.144652 -6.030952 3

5.139251 7.159207 -6.660670 3

8.301785 3.942344 -6.030958 3

5.138643 3.927569 -6.660860 3

8.308290 13.750600 -5.039460 2

5.119450 13.750600 -5.039460 1

8.308290 10.510600 -5.039460 2

5.119450 10.510600 -5.039460 1

8.315438 15.508801 -2.219052 2

7.554669 15.424741 -4.154044 1

5.596227 15.421998 -3.995352 2

5.144506 15.427411 -2.052545 1

8.299553 12.192710 -2.228405 2

7.576422 12.132748 -4.057982 1

5.588236 12.127189 -3.885860 2

5.036585 12.133176 -1.941911 1

7.460506 13.782714 -1.498390 1

5.607279 13.786592 -0.905382 2

7.460153 10.593160 -1.498388 1

5.592205 10.469808 -0.916849 2

8.301463 13.732652 -6.030952 3

5.139251 13.747207 -6.660670 3

8.301785 10.530344 -6.030958 3

5.138643 10.515569 -6.660860 3
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1.8868559960 5.5590057778 0.7898579432 3

1.6321559962 6.2195057778 0.7898579432 3

%endblock AtomicCoordinatesAndAtomicSpecies

%block GeometryConstraints

position from 1 to 4

position from 15 to 22

position from 35 to 42

position from 55 to 62

position from 75 to 78

%endblock GeometryConstraints

## Kgrid

%block kgrid_Monkhorst_Pack

2 0 0 0.0

0 2 0 0.0

0 0 1 0.0

%endblock kgrid_Monkhorst_Pack

## Functional Data

XC.functional VDW

XC.authors C09

## Optimization Flags

PAO.EnergyShift 0.005 Ry

MeshCutoff 200 Ry

MaxSCFIterations 200

DM.NumberPulay 10

DM.MixingWeight 0.15

DM.NumberKick 30

## MD Description Flags

MD.TypeOfRun Nose

MD.NoseMass 1500 Ry*fs**2

MD.FinalTimeStep 20000

MD.InitialTemperature 300.0 K

MD.TargetTemperature 300.0 K
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## Output Data

WriteMDhistory .true.

WriteForces .true.

WriteCoorInitial .true.

WriteCoorStep .true.

WriteMDXmol .true.

WriteCoorXmol .true.

SaveElectrostaticPotential .true.

save-rho T

save-delta-rho T

save-total-potential T

save-neutral-atom-potential T

save-hs T
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APPENDIX C

Python Scripts

The following is the script I created to pull all the relevant data from the Siesta
output files. The Siesta output files needed for this code are the ANI, MD-CAR, and
the MDE. For the MDE-file, it is output from Siesta in microsoft-access form, it must
first be saved in a text file to run this code. This particular code is used specifically
for any two atom molecule (CO, O2, and H2). The codes used for the three-atom
and five-atom molecules follow the same format with slight modifications.

# -*- coding: utf-8 -*-

"""

Created on Fri Sep 4 13:54:32 2020

@author: chari

"""

# Full 2_atom Plotter

#MDE plotter file

import numpy as np

import matplotlib.pyplot as plt

import math

import matplotlib.ticker as ticker

# directories

Slab="8"

Run="H2_defectR"

file_MDE="MDSlab"+Slab+"_txt.txt"

file_ANI = "MDSlab"+Slab+".ANI"

open_MDE = "S"+Slab+"/"+Run+"/"+file_MDE

open_ANI = "S"+Slab+"/"+Run+"/"+file_ANI

open_MD_CAR = "S"+Slab+"/"+Run+"/"+"MDSlab"+Slab+".MD_CAR"

save = "S"+Slab+"/"+Run+"/"

num_MD_atoms = 2

MD_atom1 = "H1"

MD_atom2 = "H2"

molecule = "H2"
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#

time_steps = np.array([])

temperature = np.array([])

pressure = np.array([])

energy = np.array([])

#

Read_MDE = open(open_MDE,"r")

lines = Read_MDE.readlines()[1:]

time_steps = np.array([])

temperature = np.array([])

pressure = np.array([])

energy = np.array([])

for aline in lines:

value = aline.split()

time_steps = np.append(time_steps,float(value[0]))

temperature = np.append(temperature,float(value[1]))

energy = np.append(energy,float(value[3]))

pressure = np.append(pressure,float(value[5]))

Read_MDE.close()

#

Read_ANI = open(open_ANI,"r")

lines = Read_ANI.readlines()

num_atoms = int(lines[0])

Read_ANI.close()

multi = [num_atoms+(n)*(num_atoms+num_MD_atoms) for n in range(0,19999+1)]

index1 = np.array([])

index2 = np.array([])

A1_position = np.zeros([20000,3])

A2_position = np.zeros([20000,3])

# Code

count = 0

Read_ANI = open(open_ANI,"r")

lines = Read_ANI.readlines()

for i in range(len(lines)-1):

A1 = multi[count]

if i == A1:

index1 = np.append(index1,lines[A1])

else:

continue

count = count +1

count = 0

for j in range(len(lines)):
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A2 = 1 + multi[count]

if j == A2:

index2 = np.append(index2,lines[A2])

else:

continue

count = count + 1

Read_ANI.close()

count_pos = 0

for i in index1:

value = i.split()

A1_position[count_pos,0] = value[1]

A1_position[count_pos,1] = value[2]

A1_position[count_pos,2] = value[3]

count_pos = count_pos +1

count_pos = 0

for j in index2:

value = j.split()

A2_position[count_pos,0] = value[1]

A2_position[count_pos,1] = value[2]

A2_position[count_pos,2] = value[3]

count_pos = count_pos +1

time_range = np.arange(1,20001)

L_A1A2 = np.array([])

for i in range(len(A1_position)):

L = np.sqrt((A2_position[i,0]-A1_position[i,0])**2 + (A2_position[i,1]-A1_position[i,1])**2 + (A2_position[i,2]-A1_position[i,2])**2)

L_A1A2 = np.append(L_A1A2,L)

Z_vals_Slab = np.array([])

Read_ANI = open(open_ANI,"r")

lines = Read_ANI.readlines()[2:multi[0]]

for aline in lines:

value = aline.split()

Z_vals_Slab = np.append(Z_vals_Slab,float(value[3]))

Read_ANI.close()

high_val = (0)*(time_range)+(np.max(Z_vals_Slab))

low_val = (0)*(time_range)+(np.min(Z_vals_Slab))

defR_val_S5 = (0)*(time_range)+(-2.8915570000)

defR_val_S6 = (0)*(time_range)+(-3.2959550000)

defR_val_S7 = (0)*(time_range)+(-2.6467980000)

defR_val_S8 = (0)*(time_range)+(-3.0000)

# Angles
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theta = np.array([])

phi = np.array([])

for i in range(len(A1_position[:,0])):

numerator = A2_position[i,1] - A1_position[i,1]

demoninator = A2_position[i,0] - A1_position[i,0]

theta_add = math.degrees(np.arctan(numerator/demoninator))

theta = np.append(theta,theta_add)

for i in range(len(A1_position[:,0])):

numer = np.sqrt((A2_position[i,0]-A1_position[i,0])**2 + (A2_position[i,1]-A1_position[i,1])**2)

denom = A2_position[i,2] - A1_position[i,2]

phi_add = math.degrees(np.arctan(numer/denom))

phi = np.append(phi,phi_add)

####

cell_values = np.zeros([3,3])

Read_MD_CAR = open(open_MD_CAR,"r")

linesCAR = Read_MD_CAR.readlines()[2:5]

count_CAR = 0

for aline in linesCAR:

value = aline.split()

cell_values[count_CAR,:] = [float(value[0]),float(value[1]),float(value[2])]

count_CAR = count_CAR + 1

Read_MD_CAR.close()

Read_ANI = open(open_ANI,"r")

lines = Read_ANI.readlines()

num_atoms = int(lines[0])

Read_ANI.close()

multi = [num_atoms+(n)*(num_atoms+num_MD_atoms) for n in range(0,19999+1)]

start_chunk = [x - (num_atoms - num_MD_atoms) for x in multi]

end_chunk = [x + (num_MD_atoms) for x in multi]

list1 = np.zeros([num_atoms,20000])

list2 = np.zeros([num_atoms,20000])

Read_ANI = open(open_ANI,"r")

lines = Read_ANI.readlines()

count_m = 0

for j in range(len(start_chunk)):

count_list_1 = 0

start = start_chunk[j]

end = end_chunk[j]

for i in lines[start:end]:

value = i.split()

A1 = lines[multi[count_m]]

A2 = lines[multi[count_m]+1]
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A1_x = np.mod(float(A1.split()[1]),cell_values[0,0])

A1_y = np.mod(float(A1.split()[2]),cell_values[1,1])

A1_z = float(A1.split()[3])

A2_x = np.mod(float(A2.split()[1]),cell_values[0,0])

A2_y = np.mod(float(A2.split()[2]),cell_values[1,1])

A2_z = float(A2.split()[3])

list1[count_list_1,count_m] = np.sqrt((A1_x-float(value[1]))**2 + (A1_y-float(value[2]))**2 + (A1_z-float(value[3]))**2)

list2[count_list_1,count_m] = np.sqrt((A2_x-float(value[1]))**2 + (A2_y-float(value[2]))**2 + (A2_z-float(value[3]))**2)

count_list_1 = count_list_1 + 1

count_m = count_m +1

Read_ANI.close()

######

d_A1 = np.array([])

d_A2 = np.array([])

deleted_atoms = [-(num_MD_atoms)+(num_atoms)+n for n in range(0,num_MD_atoms)]

list_A1 = np.delete(list1,deleted_atoms,0)

list_A2 = np.delete(list2,deleted_atoms,0)

count_LA1 = 0

for i in range(len(list_A1[0,:])):

lowest_A1 = float(min(list_A1[:,i]))

lowest_A2 = float(min(list_A2[:,i]))

d_A1 = np.append(d_A1,lowest_A1)

d_A2 = np.append(d_A2,lowest_A2)
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APPENDIX D

Electrostatic Potential

The data for the electrostatic potential plots was created using a Siesta post-processing
program called Contour. The inputs for Contour are the electrostatic potential file
(VH-file) from the Siesta ground-state calculation along with a particular origin for
the plot and two spanning vectors for the x and y axis. Since the plots were all in
the xy-plane, the origin for Contour was a position in that plane, and the spanning
vectors were vectors in the x and y direction. The table below lists the various origins
and spanning vectors for each of the eight ZnO surfaces.

The figures below represent the electrostatic potential at various points within
the surface of ZnO. For slabs 1-4 the plots represent the potential just within the top
layer of ZnO, where the exact z-coordinates of the plane are stated in the caption.
For slabs 5-8, the plots showcase the change in electrostatic potential between the
uppermost surface of the slab and the surface of the edge defect. For slabs 5-8, the
most interesting area of each slab was within the edge defect, so electrostatic potential
plots lower than the edge defect are not as significant.

Slab Origin point x-axis y-axis
S1 (-2.75, 2.3) (-12, 0, 0) (0, -13.3, 0)
S2 (-2.75, 2.3) (-12, 0, 0) (0, -13.3, 0)
S3 (0, 1.9) (-17, 0, 0) (0, -13, 0)
S4 (0, 1.9) (-17, 0, 0) (0, -13, 0)
S5 (0, -6.3) (20.46, 0, 0) (0, -18.5, 0)
S6 (0, 0) (20.46, 0, 0) (0, -26, 0)
S7 (5.9, 0) (30.46, 0, 0) (0, -30, 0)
S8 (0, 0) (20.46, 0, 0) (0, -20, 0)

Table D.1: Table states the origin of the xy-plane and spanning vectors for the x and
y axis of the electrostatic potential plots. All units in Å
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(a) (b)

(c) (d)

Figure D.1: Slab 1 electrostatic potential. Z value from top left to bottom right:
-0.3,-0.6,-0.9,-1.2

(a) (b)

(c) (d)

Figure D.2: Slab 2 electrostatic potential. Z value from top left to bottom right:
-0.3,-0.6,-0.9,-1.2

77



(a) (b)

(c) (d)

Figure D.3: Slab 3 electrostatic potential. Z value from top left to bottom right:
0.4,0.1,-0.2,-0.5

(a) (b)

(c) (d)

Figure D.4: Slab 4 electrostatic potential. Z value from top left to bottom right:
0.4,0.1,-0.2,-0.5
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(a) (b)

(c) (d)

Figure D.5: Slab 5 electrostatic potential. Z value from top left to bottom right:
0.6,0.5,0.4,0.3

(a) (b)

(c) (d)

Figure D.6: Slab 6 electrostatic potential. Z value from top left to bottom right:
0.6,0.5,0.4,0.3
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(a) (b)

(c) (d)

Figure D.7: Slab 7 electrostatic potential. Z value from top left to bottom right:
0.4,0.3,0.2,0.1

(a) (b)

(c) (d)

Figure D.8: Slab 8 electrostatic potential. Z value from top left to bottom right:
0.4,0.35,0.3,0.2
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APPENDIX E

Additional MD Data

The following plots represent all the data not presented in the body of this paper. The
data included in the body represent the most interesting results from the extensive
amount of MD calculations done. All the rest of the data is stated below:

Figure E.1: S1 CH3Cl MD Data Figure E.2: S1 CH4 MD Data

Figure E.3: S1 H2O MD Data Figure E.4: S2 CH3Cl MD Data
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Figure E.5: S1 CH4 MD Data Figure E.6: S2 CO2 MD Data

Figure E.7: S1 H2 MD Data Figure E.8: S2 H2O MD Data
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Figure E.9: S2 O2 MD Data Figure E.10: S3 CH3Cl MD Data

Figure E.11: S2 CH4 MD Data Figure E.12: S3 CO MD Data
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Figure E.13: S3 CO2 MD Data Figure E.14: S3 H2O MD Data

Figure E.15: S4 CH3Cl MD Data Figure E.16: S4 CH4 MD Data
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Figure E.17: S4 CO2 MD Data Figure E.18: S4 H2 MD Data

Figure E.19: S4 H2O MD Data Figure E.20: S4 O2 MD Data
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Figure E.21: S5 CH3Cl MD Data Figure E.22: S5 CH4 MD Data

Figure E.23: S5 CO2 MD Data Figure E.24: S5 H2 MD Data
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Figure E.25: S5 H2O MD Data Figure E.26: S6 CH3Cl MD Data

Figure E.27: S6 CH4 MD Data Figure E.28: S6 CO MD Data
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Figure E.29: S6 CO2 MD Data Figure E.30: S6 O2 MD Data

Figure E.31: S7 CH3Cl MD Data Figure E.32: S7 CH4 MD Data
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Figure E.33: S7 CO MD Data Figure E.34: S7 CO2 MD Data

Figure E.35: S7 H2 MD Data Figure E.36: S7 H2O MD Data
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Figure E.37: S7 O2 MD Data Figure E.38: S8 CH3Cl MD Data

Figure E.39: S8 CH4 MD Data Figure E.40: S8 CO MD Data
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Figure E.41: S8 CO2 MD Data Figure E.42: S8 H2O MD Data

91



VITA

CHARITH R. DESILVA

Candidate for the Degree of

Masters of Science

Thesis: ASSESSING THE POTENTIAL OF ZNO SURFACES FOR FISCHER-
TROPSCH SYNTHESIS USING CAR-PARRINELLO MOLECULAR DY-
NAMICS

Major Field: Physics

Biographical:

Education:
Completed the requirements for the degree of Masters of Science with a
major in Physics at Oklahoma State University, Stillwater, Oklahoma in
December 2020.
Received a Bachelors of Science in Physics at Oklahoma State University,
Stillwater, Oklahoma in May 2018.

Experience:
Graduate Teaching Assistant 2018-2020
Graduate Research Assistant May 2020 - August 2020

Professional Affiliations:
Phi Kappa Phi


	Introduction
	Fischer-Tropsch Synthesis
	Research on FTS and why ZnO as a Catalyst
	Defects on ZnO surfaces
	Molecular Dynamics

	Computational Theory and Methodology
	The Many-Body Problem
	Hartree-Fock Approximation
	Density Functional Theory and the Kohn-Sham Equations
	Pseudopotentials
	Car-Parrinello Molecular Dynamics
	Computational Methodology

	ZnO Surfaces
	Structure of ZnO Slabs
	Electrostatic Potentials

	Molecular Dynamics
	Dissasociation Energy of Molecules
	CPMD Simulations
	Dimer-Defect Surfaces
	1010 Surface
	1120 Surface

	Edge-Defects
	1010-Edge-0001 Surface
	1010-Edge-1100 Surface
	1120-Edge-1210 Surface

	Discussion of MD results


	Other related work
	References
	Siesta Optimiztions
	Siesta FDF files
	Python Scripts
	Electrostatic Potential
	Additional MD Data

