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Abstract: Although Generative Adversarial Networks (GANs) have achieved much
success in various unsupervised learning tasks, their training is unstable. Another
limitation of GAN and deep neural networks in general is their lack of interpretabil-
ity. To help address these gaps, we aim to improve training stability of GAN and
interpretability of deep learning models. To improve stability of GAN, we propose a
Stable Neighbor Match (SNM) training. SNM searches for a stable match between
generated and real samples, and then approximates a Wasserstein distance based on
the stable match. Our experimental results show that SNM is a stable and e↵ective
training method for unsupervised learning. To develop more explainable neural com-
ponents, we propose an interpretable architecture called the Choice Cell (CC). An
advantage of CC is that its hidden representation can be reduced to intuitive inter-
pretation of probability distribution. We then combine CC with other subgenerators
to build the Choice Generator (CG). Experimental results indicate that CG is not
only more explainable but also maintains comparable performance with other popular
generators. In addition, to help subgenerators of CG learn more homogeneous repre-
sentations, we apply within and between subgenerator regularization to the training
of CG. We find that regularization improves the performance of CG in learning im-
balanced data. Finally, we extend CC to an interpretable conditional model called
the Conditional Choice Cell (CCC). The results indicate the potential of CCC as an
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CHAPTER I

INTRODUCTION

1.1 Motivation

We are in the age of big data. The Indexed Web contained at least 5.53 billion pages

as of September, 2020 [1]; Facebook generated 4 petabytes of data per day as of

October, 2014 [2]; more than 500 hours of video were uploaded to YouTube every

minute as of May, 2019 [3]; on Twitter, there were 500 million tweets generated per

day and around 200 billion tweets generated per year as of August, 2013 [4].

This tremendous amount of data calls for the development of automatic tools to

discover patterns from data, which is what machine learning can deliver. Machine

learning algorithms have produced promising results in various areas, especially the

ones where humans lack the knowledge to devise e�cient algorithms [5]. These areas

include but are not limited to document classification, email spam filtering, face

detection and recognition, as well as handwriting recognition [6, 5, 7].

Traditional machine learning algorithms require a significant amount of domain

knowledge and labor to extract a good representation from raw data, which enables

the learning system to perform well [7]. To reduce labor, deep learning algorithms,

also called deep neural networks, have been proposed to automatically discover suit-

able representations from raw data [7, 8]. More specifically, a deep neural network

consists of multiple neural layers, each of which transforms a representation at a lower

level into a representation at a higher level that is more suitable for solving tasks at

hand [7]. The key appealing feature of neural networks is that these layers do not re-
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quire human labor and are learned automatically from raw data [7]. Neural networks

have achieved start-of-the-art performance in a wide range of machine learning tasks,

such as image recognition, speech recognition, and machine translation [7, 8, 9, 10, 11].

In spite of the ground-breaking success that deep learning algorithms have achieved,

one limitation is that they usually require a large amount of labeled data to achieve

high performance [8]. Labeled data, however, are more scarce than unlabeled data.

It is expensive to obtain labeled data because they usually require much human labor

[8]. Thus, it is desirable to reduce the amount of labeled data needed for neural

networks so that these networks can be applied to a wider range of applications [8].

This is the promise of unsupervised learning.

Unsupervised learning is usually formalized as modeling the joint distribution of

input data [6]. When the input data are high dimensional, unsupervised learning

is confronted with two challenges: a statistical challenge and a computational chal-

lenge [8]. It is statistically challenging because the number of configurations that the

model needs to distinguish grows exponentially as the number of dimensions grows.

Computationally, it is challenging because the number of computations needed for

learning and inference grows exponentially with the number of dimensions. One way

to overcome these two challenges is to approximate high dimensional distribution.

Another way is to design models that avoid the explicit computation of high dimen-

sional distribution [8]. These models are very appealing because they do not require

expensive computation. Generative Adversarial Networks (GANs) proposed in [12]

are designed in this spirit.

GANs have achieved impressive results in various unsupervised learning tasks,

such as image generation and image super-resolution [13, 14, 15]. However, GANs’

minimax formulation introduces new issues, most notable of which are vanishing gra-

dients, training instability, and mode dropping [8, 16]. To address vanishing gradients,

[17] propose the Wasserstein GAN, which is based on a Wasserstein distance rather

2



than the original Jensen-Shannon divergence. The Wasserstein GAN has improved

the original GAN significantly, but the instability of GAN training remains an issue,

largely due to its minimax formulation [16]. To improve the stability of GAN while

following the idea of the Wasserstein distance, [16] proposes the Sliced Wasserstein

Generator (SWG). SWG approximates a Wasserstein distance directly from samples

and formulates GAN as a single minimization instead of a minimax optimization. To

continue this line of research, in Chapter 2 of this dissertation, we propose a Stable

Neighbor Match (SNM) training. SNM searches for a stable match between generated

and real samples, and then approximates a Wasserstein distance based on the stable

match.

Another limitation of deep learning algorithms is their “black box” nature, which

has prevented researchers and engineers from understanding their internal computa-

tion thoroughly. The lack of interpretability limits users’ trust in them, preventing

them from broader adoptions. Researchers have increasingly realized the value of

interpretability of neural networks. They have been working on improving their ex-

plainability [18, 19, 20]. Programs like Explainable Artificial Intelligence (XAI) explic-

itly pursue this goal of creating “a suite of machine learning techniques that: produce

more explainable models, while maintaining a high level of learning performance” [21].

The field of interpretable Neural Network (NN) can be divided into two areas. The

first area mainly seeks to visualize hidden representations learned inside pre-trained

neural networks, especially representations learned in filter maps. With the help of

direct visualization of hidden layers, people can perceive internal states of neural

networks to better understand their internal computation. Di↵erent from visualizing

hidden representations in pre-trained neural networks, the second area tends to focus

on developing explainable networks that can directly learn interpretable representa-

tions during the training. Our work in Chapter 3 of this dissertation is a continuation

of the second line of research. We propose an interpretable neural architecture whose

3



internal representation can be reduced to a more intuitive interpretation of probabil-

ity distribution. We coin this new neural architecture the Choice Cell (CC). Our work

is also inspired by gated units in Long Short-Term Memory (LSTM), whose function

is to control and manipulate information flowing through them. Additionally, our

idea of CC is influenced by a recent development of Attention Model (AM), which

is in turn inspired by human attention. More details about LSTM and AM can be

found in Literature Review of Chapter 3.

Similar to standard neural networks, CC relies on the assumption of independence

among training samples [22]. If data points are related in time or space, this assump-

tion has its limitations. Thus, it is desirable to equip CC with additional capability

of modeling dependency among input samples. To this end, in Chapter 4, we use CC

as building blocks to develop a conditional model, and we coin this new network the

Conditional Choice Cell (CCC). An advantage of CCC is that it is more explainable

and interpretable.

1.2 Roadmap of the Dissertation

This dissertation is organized as follows. In Chapter 2, we present the SNM training.

This chapter also includes information on GAN, Wasserstein GAN, and SWG. In

addition, to demonstrate the stability and e↵ectiveness of SNM, we conduct thorough

experiments to compare its performance with other related generative models. In

Chapter 3, we present an interpretable architecture we developed called CC. We also

review its relevant literature in that chapter. The review covers topics on interpretable

NN, LSTM, and AM. In addition, we demonstrate the e↵ectiveness of CC with results

from various experiments on synthetic and real world datasets. Chapter 4 extends

CC to a conditional model namely CCC, to model dependency among input data

points. Literature related to CCC and experimental results showing its e↵ectiveness

are also presented in Chapter 4. In Chapter 5, we conclude with a summary of main

4



contributions of this work and directions for future research.

1.3 Notation

The following notational convention will be used in this study. A normal face low-

ercase letter, a, represents a scalar. A boldfaced lowercase letter, a, represents a

vector. A boldfaced uppercase letter, M , represents a matrix. A represents a set.

R represents the set of real numbers. G represents the set of generated samples. X

represents the set of real samples. �(x) represents logistic sigmoid, 1
1+e�x . N (µ, �2)

represents a Gaussian distribution with mean µ and variance �
2. a ⇠ P represents

that a random variable has a distribution P. Ex⇠Px [f(x)] represents the expectation

of f(x) with respect to P(x).

In addition, the abbreviation of an experiment uses a scheme of network : problem

: data. For example, an experiment that learns distribution of synthetic data using

a Choice Cell is denoted as CC:LD:SD.
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CHAPTER II

STABLE NEIGHBOR MATCH TRAINING

2.1 Introduction

Deep learning algorithms have achieved impressive success in a wide range of ap-

plications, such as image recognition, speech recognition, and machine translation

[7, 8, 9, 10, 11]. One limitation of deep learning algorithms, however, is that a large

amount of labeled data should be provided, which requires expensive human labor to

obtain in order to achieve high performance [8]. We live in the world where unlabeled

data are far more abundant than labeled data. Thus, it is desirable to advance deep

learning algorithms to achieve more success in unsupervised learning tasks where only

unlabeled data are required. Unsupervised learnings are usually formulated as model-

ing the joint distribution of input data [6]. When input data are high dimensional, the

tasks are confronted with two challenges: a statistical challenge and a computational

challenge [8]. It is statistically challenging because the number of configurations that

model need to distinguish grows exponentially with the number of dimensions [8]. It

is computationally challenging because the number of computations needed for learn-

ing and inference grows exponentially with the number of dimensions [8]. One way to

overcome these two challenges is to approximate high dimensional distribution. An-

other way is to design models that avoid the explicit computation of high dimensional

distribution [8].

Models that follow the second approach are very appealing, because they do not

require expensive computation. Generative Adversarial Networks (GANs) are pro-

6



posed in this spirit [12]. GANs have been widely used in various areas, such as image

generation, image super-resolution, etc [13, 14, 15]. GANs are formulated as a min-

imax game between two players. One player is called discriminator whose job is to

distinguish real samples from fake samples, and the other player is called generator

whose job is to fool the discriminator by generating samples as real as possible. After

GANs are trained to reach a Nash equilibrium, the generator generates samples that

the discriminator is unable to distinguish [23].

Although GANs are able to produce sharp images, even in very complex data

distribution, GANs’ saddle-point formulation inherent to minimax optimization has

caused some issues [8, 16, 23]. Some of the most pressing issues are vanishing gradi-

ents, training instability, and mode dropping [8, 16]. To address the issue of vanish-

ing gradients, [17] proposes the Wasserstein GAN, which is based on a Wasserstein

distance rather than the original Jensen-Shannon divergence. Although impressive

results have been obtained, the instability of GAN training remains an issue, largely

due to its minimax optimization nature [16]. Numerous studies have been conducted

to improve the stability of GAN training [16, 24, 25]. For example, the Sliced Wasser-

stein Generator (SWG) proposed in [16] approximates a Wasserstein distance directly

from samples based on random projections of samples, and the paper shows that the

approximated distance provides a tight upper bound for a Wasserstein distance. Also,

SWG formulates GAN training as a single minimization instead of minimax optimiza-

tion and demonstrates the improvement of the training stability. Following the e↵ort

of improving the stability of GANs, in this chapter, we propose a training method

called Stable Neighbor Matching (SNM). SNM preprocesses generated and real sam-

ples to output a stable match, and then approximates a Wasserstein distance based

on the stable match. Our main contributions of this chapter are:

• We propose a Stable Neighbor Matching (SNM) training method for unsuper-

vised learning. Our goal is to demonstrate that SNM is an e↵ective approxima-
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tion for a Wasserstein distance, and it exhibits training stability.

• We demonstrate the robustness of the SNM training by comparing its per-

formance with relevant generative models on various synthetic and real world

datasets.

Chapter 2 is organized as follows. In Section 2.2, we review previous studies re-

lated to the SNM training. The review includes GAN, Wasserstein GAN, and SWG.

Then, we formally introduce the SNM training in Section 2.3. In Section 2.4, we

present experiments of the SNM training on a 2D synthetic dataset to demonstrate

its training stability. In Section 2.5, we show the robustness of the SNM training from

three perspectives: stability under di↵erent hyper-parameter settings, correlation be-

tween image quality and generator loss, and correlation between a latent variable

and generated samples. Finally, Section 2.6 concludes with a summary of results and

suggests future research directions.

2.2 Literature Review

Generative Adversarial Network (GAN) GAN is a generative model originally

proposed in [12]. Its main goal is to bypass expensive computations of high dimen-

stional distribution [8]. GAN can be viewed as a minimax game between two players

[23]. One player is called the generator, which generates samples as if they come from

the same distribution as the real dataset. The other player is called the discriminator,

which predicts whether samples come from the real dataset or the generator. More

formally, a generator is a di↵erentiable function, G✓(z) that transforms the latent

variable z coming from a known distribution Pz into artificial samples. The genera-

tor is implemented as a multilayer perceptron with parameters ✓. The discriminator

D�(x) takes either generated samples or real samples as its input and outputs a single

scalar, which represents the probability that x comes from the real data. The dis-

criminator is implemented as a multilayer perceptron with parameter �. To perform

8



the classification, the discriminator minimizes the negative log-likelihood, i.e. �D�

on real data and �log(1�D�) on generated samples. The generator tries to fool the

discriminator by maximizing the negative log-likelihood, i.e. �log(1 � D�(G✓(z)).

Together, GANs play the following minimax game

max
✓

min
�

Ex⇠Px [�logD�(x)] + Ez⇠Pz [�log(1�D�(G✓(z))] (2.1)

The Wasserstein GAN and the Sliced Wasserstein Generator (SWG) Al-

though GAN avoids explicit computation of distribution of high dimensional data

and empirically produces impressively high quality images, the minimax optimiza-

tion brings some issues. Vanishing gradients, training instability, and mode dropping

are among the most pressing issues [8, 23, 16]. [17] proposes the Wasserstein GAN

to primarily address the vanishing gradients issue. The main idea of the Wasserstein

GAN is to replace the Jensen-Shannon divergence in the original GAN framework

with the Wasserstein distance, which is a metric for measuring distance between two

distributions. The minimax formulation in Equation 2.1 then becomes

max
w

min
✓

Ex⇠Px [fw(x)]� Ez⇠Pz [fw(G✓(z))], (2.2)

where fw is a 1-Lipschitz function: X! R and is typically implemented by a neural

network parameterized by w.

Although the Wasserstein GAN addresses some issues of GAN, especially van-

ishing gradients, the instability of training GAN remains challenging because of the

saddle-point objective [16]. Inspired by the Wasserstein GAN but motivated by the

stability argument, [16] proposes an approach that approximates a Wasserstein dis-

tance directly from the samples. The approximation of the Wasserstein distance is

based on random projections of samples, which leads to the sliced Wasserstein dis-

tance. Besides the di↵erent method for computing the Wasserstein distance, SWG
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formulates the training as searching for a global minimizer to avoid instability of the

saddle-point optimization.

To understand SWG, it is helpful to consider the Wasserstein distance between

two sample sets. Let X be a set of real data and G be a set of data artificially

generated by a generator G. Let Xi and Gi be ith element in X and G, respectively.

The Wasserstein distance between X and G, can be defined as

W (X,G) =
1

|X| min
⌧2⌃X

|X|X

i=1

kX⌧(i) �Gik, (2.3)

where ⌃X is the set of all permutations of elements in X. Equation 2.3 shows that to

find a minimal Wasserstein distance between X and G, we can search for the optimal

permutation ⌧
? such that the bijective mapping between X⌧?(i) and Gi for all i’s

results in the minimal accumulated distance.

Searching for ⌧ ? can be found by solving a linear program and the problem can be

solved in time complexity of O(|X|2.5log(|X|)) with a dedicated linear program solver.

This time complexity is prohibitively expensive for learning algorithms where it is

common to train models with hundreds of thousands of iterations.

To address this complexity issue, the sliced Wasserstein distance is proposed [17].

The main observation is that when X and G are 1-dimensional, the optimal mapping

between them can be obtained easily. Let ⌧X and ⌧G be permutations of X and G

such that

X⌧X(1)  X⌧X(2)  ...  X⌧X(|X|)

G⌧G(1)  G⌧G(2)  ...  G⌧G(|G|)

Then, the Wasserstein distance between the 1-dimensional X and the 1-dimensional

10



G, W1d(X,G), can be easily computed as

W1d(X,G) =
1

|X|

|X|X

i=1

kX⌧X(i) �G⌧G(i)k (2.4)

Equation 2.4 can be proved inductively. Thus, the optimal mapping between X and

G for calculating their Wasserstein distance can be found in O(|X|log(|X|)) by sorting

X and G.

The sliced Wasserstein distance can be built upon Equation 2.4 by randomly

projecting original datasets X and G onto 1-dimensional space. Let u be a random

unit vector representing projection direction. Let Xu be the set formed by projecting

data points in X unto u, i.e. Xu = {uTx|x 2 X}. Let Gu be the set formed by

projecting data points in G unto u, i.e. Gu = {uTg|g 2 G}. The sliced Wasserstein

distance between X and G, Ws(X,G), can then be defined as

Ws(X,G) =
1

|U|
X

u2U

W1d(Xu
,Gu), (2.5)

where U is a set of random unit directions, usually sampled from the Gaussian dis-

tribution at every iteration. Building upon Equation 2.5, the optimization procedure

can be formulated as minimizing the sliced Wasserstein distance between real sam-

ples X and generated samples G through adjusting the set of parameters ✓ in the

generator, i.e.

min
✓

Ws(X,G)

Similar to SWG, the SNM training that we propose also aims to improve the

stability of GAN and approximate the Wasserstein distance from samples, but there

is an important di↵erence. SWG approximates the Wasserstein distance by pro-

jecting original datasets into 1-dimensional space and then calculating average 1-

dimensional Wasserstein distance between projected sets. SNM, however, approxi-
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mates the Wasserstein distance by searching for a good approximation for the optimal

permutation ⌧
? and then calculating the distance based on the approximation.

2.3 The Stable Neighbor Match Training Method

In this section, we describe our Stable Neighbor Match (SNM) training method. As

mentioned in Section 2.2, the minimum Wasserstein distance between two sets of

samples can be found by searching for the optimal mapping ⌧
? between two sets,

but it is computationally prohibitive for any typical learning algorithm to be trained

e�ciently, which usually involves more than hundreds of thousands of iterations [16].

Thus, we propose to find a stable match between two sets, which can be computed

more e�ciently than the optimal mapping. The Wasserstein distance is then calcu-

lated based on the stable match.

Intuitively, a match between two sets of samples is stable, if for every pair in the

match at least one of its partner is satisfied with the pairing. Formally, stable match

is defined below.

Definition II.1 Let X be a set of real samples and G be a set of generated samples,

and we assume that |G|  |X|. Let g 2 G and x 2 X. Let d(g,x) be the distance

between samples g and x. A match M between G and X is a set of (g,x) pairs such

that any g and x appears at most once in M. If a sample g and a sample x forms

a matched pair in M, we say M(g) = x or M(x) = g. A pair g and x forms a

blocking pair in M, if M(g) 6= x and d(g,x) < d(g,M(g)) and d(g,x) < d(M(x),x).

A match M is stable if there is no blocking pair. Denote a stable match as Ms.

The main idea of SNM is to search for a stable match Ms between G and X by

searching for nearest (g,x) pairs in a greedy manner. More specifically, we start the

search with empty M, i.e., M = {}. At each subsequent iteration, we search for a

nearest pair (g,x) that is not in M. Then we add the pair (g,x) into M, if neither g

nor x is already in M. We repeat this process until every sample g 2 G appears in the
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match M. It can be shown that the final match M of SNM is stable by observing that

M is stable at the end of each iteration. Since we search for a nearest pair at every

iteration of constructing a stable match Ms, we name the process Stable Neighbor

Match.

After applying SNM to find a stable match Ms between the generated samples G

and the real samples X, we calculate the generator loss between G and X below.

L(G,X) = 1

|G|
X

(g,x)2Ms

loss(g,x), (2.6)

where loss is a loss function that measures loss between two samples.

2.4 Experiment: Learning Encodings of Synthetic Data Using

Generators Trained with SNM (SNM:LE:SD)

The main purpose of the experiment SNM:LE:SD is to demonstrate the e↵ectiveness

of the SNM training by using a synthetic dataset. More specifically, we train a

generator using the SNM training on a 2D mixture of 8 Gaussian distributions, and

we expect that the generator can learn to generate samples as if they come from true

distributions. In addition, we compare the performance of SNM with that of GAN

and SWG to show its e↵ectiveness.

Dataset Drawing upon the literature [24, 26], we design the dataset of the ex-

periment SNM:LE:SD. The samples in the dataset are drawn from a mixture of 8

Gaussian distributions. Each Gaussian distribution in the dataset is characterized

by a mean matrix and a diagonal covariance matrix. The samples drawn from this

mixture of 8 Gaussian can be found in Figure 2.1.

Network Architecture As a fair comparison, we use the same generator struc-

ture in all models. Each generator is a 4-layer fully connected network. The latent
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Figure 2.1: The 8 Gaussian dataset. Each cluster contains 1250 data points.

dimension is 20. Each hidden layer contains 128 nodes and uses the rectifier as an

activation function. The output layer has dimensionality of 2 and uses tanh func-

tion as an activation function. For GAN, the discriminator is also a fully connected

network, and the minimax optimization follows the original formulation.

In terms of generator losses, GAN uses Cross Entropy loss as the origin setting.

Both SNM and SWG use L1-based Mean Absolute Error (MAE), so that their approx-

imated Wasserstein distances are comparable. In addition, for the generator trained

with SNM, SNM is first applied to generated and real samples to output a stable

match Ms. The generator loss is then computed based on the match Ms.

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001

through out the experiment. Each value in latent variable z comes from a Gaus-

sian N (0, 1). Batch size is set to 512. We train each model on the dataset for 1000

epochs.

Result We first look at samples generated by GAN and SWG. The results of GAN

are shown in Figure 2.2, where we plot the samples generated by GAN in every

200 epochs. As we can see from the figure, after 200 epochs, samples generated by

GAN move towards the upper-left corner of the space. After 400 epochs, GAN biases

towards the clusters in the left half of the space, and this trend maintains until the

end of the training. At the end, GAN roughly learns five of eight Gaussians in the

left half of the space, but we can clearly observe the common phenomenon of mode
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(a) Epoch 0 (b) Epoch 200 (c) Epoch 400 (d) Epoch 600

(e) Epoch 800 (f) Epoch 1000 (g) 8 Gaussian

Figure 2.2: Evolution of samples generated by GAN on the 8 Gaussian dataset

(a) Epoch 0 (b) Epoch 200 (c) Epoch 400 (d) Epoch 600

(e) Epoch 800 (f) Epoch 1000 (g) 8 Gaussian

Figure 2.3: Evolution of samples generated by SWG on the 8 Gaussian dataset
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(a) Epoch 0 (b) Epoch 200 (c) Epoch 400 (d) Epoch 600

(e) Epoch 800 (f) Epoch 1000 (g) 8 Gaussian

Figure 2.4: Evolution of samples generated by the generator trained with SNM on the 8 Gaussian dataset

dropping in GAN. Mode dropping is a severe and well-documented issue of GAN

[23, 27]. It refers to the phenomenon where the generator disregards some modes

of data, and the discriminator is not able to detect it [23, 27]. In our case, the

distribution that the generator generates concentrates on the five clusters in the left

half of the space, but the discriminator fails to detect the fact that this distribution

comes from the generator. Many researchers have attempted to explain the mode

dropping issue, and they suggest that the issue is caused by a combination of factors,

such as the polynomial capacity of the discriminator and the optimization of KL-

divergence [27, 28, 29]. Next, we move to samples generated by SWG, and the results

are plotted in Figure 2.3. As we can see from the figure, after 200 epochs, samples

spread over the space. After 400 epochs, SWG learns concentric circles which roughly

correspond to the orbit of eight true clusters. At the end of the training, we can

see that SWG roughly learns 8 true Gaussians. However, we observe a blending

phenomenon of SWG: there are many points lying between adjacent clusters learned

by SWG, and there are some points in the middle of the circle. We suspect that

this blending is due to the nature of random projections used in SWG. For some

projections, adjacent clusters are projected into the inseparable vectors, which causes

data points to be pulled between them. For some projections, some clusters are

projected into opposite directions, which causes data points to be pulled into the

middle of the circle.
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Figure 2.5: Evolution of generator losses on 8 Gaussian

We next look at samples generated by the generator trained with SNM, and the

results are shown in Figure 2.4. We can observe a few improvements of the SNM

training, compared with GAN and SWG. First, SNM learns the true distribution

faster than GAN and SWG. After only 200 iterations, we observe that the generator

learns a pattern of concentric circles where eight true clusters reside. With the same

amount of training, GAN only learns one cluster at the upper-left corner, and SWG

only learns a rectangular spreading over the space. Second, the generator trained by

SNM learns the true distribution more accurately than GAN and SWG. At the end

of the training, GAN only learns five clusters. SWG learns eight clusters, but there

are many points lying between clusters. Although there are still a few points lying

between adjacent clusters, the generator trained by SNM learns all eight clusters at

the end of the training. Finally, the SNM training does not su↵er the mode dropping

issue of GAN, and its blending phenomenon is much less severe than SWG.

Next, we look at the evolution of the generator loss of the generator trained with

SNM. We plot the generator loss of the SNM training in Figure 2.5. We can observe

a few good indicators for the stability of the SNM training. First, its generator loss

steadily decreases (from loss value of 0.498 all the way to the loss value of 0.045), as

the training proceeds. This behavior of generator loss is similar to that of SWG. Also,

the generator loss of SNM converges as fast as SWG, both of which take only 200

epochs to reduce their generator losses to around 0.09. The generator loss in GAN,
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however, fluctuates throughout the training process, because it depends on both the

quality of the discriminator and the quality of samples. Second, from Figures 2.4

and 2.5, we can see that sample quality of the SNM training correlates well with its

generator loss. When the samples are clustered around the origin prior to the training,

the loss value is at its peak which is 0.498. When the generator loss is reduced to

0.09, a pattern of concentric circles is formed. As the generator loss further decreases

to 0.065, generated samples form eight clusters that agree with the true distributions,

but there are many points lying between clusters. As the loss decreases below 0.05

at the end, the generator trained by SNM learns all eight Gaussians, and there are

only a few points between adjacent clusters. Similar training stability from this

perspective is also observed in the training of SWG. As the generator loss of SWG

decreases, the quality of samples generated by SWG improves. GAN, however, does

not exhibit the training stability from this perspective. It is more di�cult to observe

correlated patterns between sample quality and generator loss, because the quality

of discriminator also plays a significant role. Finally, we also want to highlight the

quality of the approximation of the true Wasserstein distance calculated based on

SNM. [16] shows that SWG provides a tight upper bound for the Wasserstein distance.

As we can see from Figure 2.5, empirically, SNM provides an upper bound as tight

as that of SWG.

Finally, some data points generated by the SNM training are scattered towards ad-

jacent clusters. We conjecture that this is due to the mismatch between the frequency

of generated samples and that of real samples. We therefore conduct post-training

with |G| < |X| to train all generated samples to their closest clusters. More specifi-

cally, after the 1000 epochs of training, we train the generator with SNM for another

200 epochs with |G| = 256 and |X| = 512. We also train SWG for another 200 epochs

to compare the results, which are shown in Figure 2.6. The empirical evidence sup-

ports our conjecture. As we can see from Figure 2.6b, the generator learns clusters
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(a) SWG epoch 1200 (b) SNM epoch 1200 (c) 8 Gaussian

(d) Evolution of generator losses in post-
training

Figure 2.6: E↵ects of post-training for the generator trained with SNM using |G| < |X|

that are more compact and closer to the original distribution. In addition, as shown

in Figure 2.6d, training for additional 200 epochs does not reduce the generator loss

of SWG any further, but SNM with |G| < |X| reduces its generator loss significantly

and yields a tighter upper bound for the Wasserstein distance.

2.5 Experiments: Learning Encodings of Real World Data Using

Generators Trained with SNM (SNM:LE:RD)

The goal of this section is to demonstrate the stability of generators trained with

SNM. We analyze its stability by conducting various experiments, which are pre-

sented in the following four subsections. In the first subsection, we show the training

stability of SNM across di↵erent hyper-parameter settings. In the second subsection,

an experiment showing correlation between latent variable and generated samples is

presented to indicate the stability of generators trained with SNM. In the third ex-

periment, we demonstrate the robustness of the SNM training by showing correlation

between sample quality and generator loss. In the last subsection, we present an

experiment that attempts to further improve the SNM training.
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2.5.1 Experiment: Showing Training Stability of SNM across Di↵erent

Hyper-parameter Settings (SNM:HP:RD)

In this experiment, we demonstrate the robustness of the SNM training across various

hyper-parameter settings. We also compare its performance with that of GAN and

SWG. The experiment is performed on the MNIST and Fashion-MNIST datasets

[30, 31]. The comparison method is inspired by [16, 24].

Dataset The datasets used in this experiment are the MNIST and Fashion-MNIST

datasets. The sizes of training data in both datasets are 60K.

Network Architecture To have a fair comparison, all models adopt the same gen-

erator archetype. The basic generator archetype is Deep Convolutional GAN (DC-

GAN) [13]. Each layer in the generator, except the last one, applies a leaky rectifier.

The last layer uses sigmoid as an activation function. In addition, following the liter-

ature [24] that compares stability, we adopt two types of generator architectures. The

first one has batch normalization in the generator (BN for short), and the other one

excludes batch normalization in the generator (NoNB for short). Also, following the

argument that selecting optimizer is critical to the modeling performance [17], each

generator type has two di↵erent optimizers: Adam [32] and RMSprop [33]. Thus, in

total we compare the SNM training with GAN under four di↵erent settings: BN with

Adam, NoNB with Adam, BN with RMSprop, and NoBN with RMSprop.

Hyper-parameters For each training setting, all models use the same hyper-

parameters. The details of hyper-parameters are summarized in Table 2.1. Batch

size is set to 256. We train each model under each setting for 100 epochs as a fair

comparison.

20



Figure 2.7: Comparing qualities of MNIST digits generated by SNM, GAN, and SWG using di↵erent regularizations
and optimizations. Samples are obtained from training each model under each hyper-parameter setting for 100 epochs.

Figure 2.8: Comparing qualities of Fashion-MNIST samples generated by SNM, GAN, and SWG using di↵erent
regularizations and optimizations. Samples are obtained from training each model under each hyper-parameter setting
for 100 epochs.
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BN-Adam NoNB-Adam BN-RMSprop NoBN-RMSprop
learning rate 0.0001 0.0001 0.001 0.001

Table 2.1: Details of the hyper-parameter setting in the experiment SNM:HP:RD

Result We present qualities of images produced by generators trained with SNM

under di↵erent hyper-parameter settings in Figures 2.7 and 2.8. As we can see from

these figures, GAN fails to generate any meaningful images in both the MNIST and

Fashion-MNIST datasets under the NoNB-Adam setting. SWG indicates its strong

stability by being able to produce meaningful digits and apparels under all hyper-

parameter settings. SNM performs as stable as SWG because it also succeeds in

generating meaningful images for both datasets under all hyper-parameter settings.

2.5.2 Experiment: Showing Robustness of Generators Trained SNM by

Correlation between a Latent Variable and Generated Samples (SNM:LV:RD)

The goal of this experiment is to demonstrate the stability of the SNM training by

showing a correlation between a latent variable and generated images. The main

design of the experiment is to assess whether samples generated from the same latent

locations are consistent during the training. Following the procedure used in the

previous experiments, we also compare results with GAN and SWG on real world

data.

Dataset The datasets used in this experiment is MNIST, where the size of training

data is 60K.

Network Architecture The basic generator archetype is DCGAN. All models

follow the same generator archetype. Each layer in the generator, except the last one,

applies batch normalization and leaky rectifier. The last layer uses sigmoid activation.

Hyper-parameters All models use the same hyper-parameters. We use Adam as

the optimizer and set the learning rate to 0.0001. Batch size is set to 256. We train
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Figure 2.9: Comparing correlation between latent variable and generated samples during trainings of SNM, GAN,
and SWG

each model for 50 epochs.

Result To quantify the correlation between the latent variable and generated sam-

ples, we define Fraction of Change (FoC) to measure the fraction of samples with

changed labels. FoC is calculated as follows. First, we pre-train a classifier to predict

labels of generated samples, and we specify a test latent variable with 1000 fixed

locations. At the end of each epoch, we generate 1000 samples using the test latent

variable. Then we use the classifier to predict their class labels and calculate the frac-

tion of samples whose labels di↵er from the previous epoch. We calculate FoC from
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epoch to epoch. The results are shown in Figure 2.9. As we can see from the figure,

GAN performs well. Although its FoC fluctuates throughout its training process,

the overall trend is decreasing. SWG demonstrates a strong stability. It maintains

a low FoC score throughout its training. Also, its FoC drops from around 50% at

the first epoch to below 15% at the last epoch. SNM is as consistent as SWG. Its

FoC decreases from around 30% to below 13%, which means that more than 70% of

samples generated from the same latent locations remain consistent in nature.

2.5.3 Experiment: Demonstrating Stability of SNM by Correlation be-

tween Sample Quality and Generator Loss (SNM:GL:RD)

In this experiment, we aim to demonstrate the robustness of the SNM training from

another perspective, i.e., correlation between sample quality and generator loss. Fol-

lowing the previous experiments, we also compare its performance with that of GAN

and SWG.

Dataset The experiment is performed on the MNIST dataset. The size of training

data is 60K.

Network Architecture The basic generator archetype is DCGAN. All models

adopt the same generator archetype. Each layer in the generator, except the last one,

applies batch normalization and leaky rectifier. The last layer uses sigmoid activation.

Hyper-parameters All models use the same hyper-parameters. The optimizer

used is the Adam optimizer and the learning rate is set to 0.0001. Batch size is set

to 256. We train each model for 100 epochs.

Result Figure 2.10 shows the correlation between image quality and generator loss

during the SNM training. As we can see from this figure, the generator loss of GAN

fluctuates throughout the training process. Although the improvement of its sample
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Figure 2.10: Comparing correlations between image quality and generator loss during trainings of SNM, GAN, and
SWG
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quality is clearly observed, it is hard to observe a correlated pattern between the

generator loss and sample quality. SWG indicates its robustness during the training.

Its generated images become sharper and better, as its generator loss decreases. SNM

performs as robust as SWG, and a similar pattern can be observed from Figure 2.10.

2.5.4 Experiment: Attempts to Further Improve the SNM Training

In this final experiment, we explore possibilities of improving the SNM training in

high dimensional space. The first attempt is Semantic SNM (S-SNM). The S-SNM

training is similar to SNM, except the dissimilarity of samples is measured based

on their hidden representations instead of raw data. After applying SNM to hidden

representations, the loss is then applied on the original data space. To obtain se-

mantic representation of samples, we first pre-train a classifier on the training data.

The generated samples and the true samples are then fed to the classifier, and the

representations in the second last layer are used as their semantic representations.

For the classifier, all layers except the last two layers in the classifier use rectifiers

as activation functions. Its second last layer uses sigmoid function as the activation

function, and its last layer uses a softmax activation function. More details about

the classifier can be found in Figure A.1 in the Appendix. The second attempt is

to use the SNM training with (|G| < |X|), which is introduced in the experiment

SNM:LE:SD.

The experimental results are shown in Figure 2.11. Based on the results, we can

see that the improvement brought by semantic distance is not so obvious for SNM.

However, we can observe improvements brought by training with |G| < |X| for SNM.

First, SNM with |G| < |X| finds better matching between generated and real samples,

which is indicated by the reduced loss values. Second, because of the better matching,

its sample quality improves. More specifically, SNM with |G| < |X| produces images

that are sharper than those produced by the generator trained with the regular SNM.
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Figure 2.11: Attempts for improving SNM with semantic distance and training with |G| < |X|
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2.6 Conclusion

In this chapter, we propose the SNM training method for unsupervised learning. We

demonstrate that SNM is an e↵ective and stable training method. Detailed analysis

on its performance of synthetic data shows that SNM is e↵ective. We demonstrate

its robustness by three experiments on real world data. First, we show its robust

performance across di↵erent hyper-parameter settings. Second, the stability of the

SNM training is also indicated by a strong correlation between the latent variable

and generated samples. Lastly, its robustness is suggested by the correlation between

sample quality and generator loss. In future work, we would like to make SNM more

e�cient. Future studies should also investigate the combination of the SNM training

and the adversarial training.
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CHAPTER III

CHOICE CELL ARCHITECTURE

3.1 Introduction

Deep learning algorithms have been successfully applied to various applications, such

as speech recognition, machine translation, object recognition, and drug discovery

[7, 8, 9]. It is, however, challenging to understand the computation hidden inside

these deep neural networks [18]. Thankfully, in recent years, researchers have in-

creasingly realized the significant value of highly interpretable structure within the

network, and significant e↵orts have been made to improve the interpretability of

neural networks [18, 19, 20, 21]. The goal of this chapter is to improve interpretabil-

ity of neural networks. We propose an explainable neural architecture and coin the

newly developed architecture Choice Cell (CC). An advantage of CC is that its in-

ternal representations have an explainable meaning of probability distribution. In

addition, we train CC with Stable Neighbor Match (SNM) introduced in Chapter II

to demonstrate its e↵ectiveness in learning various synthetic and real world datasets.

The main contributions of this chapter are:

• We develop a new neural architecture called CC. The internal representation of

CC has an intuitive interpretation of probability distribution.

• We train CC with SNM on various datasets, and the results demonstrate that

CC can e↵ectively learn distribution and encodings of input data. We also show

that even in some cases of extremely imbalanced data, CC trained with SNM

still shows its e↵ectiveness in learning distribution of input data.
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• We use regular generators as subnetworks and combine them through CC to

form Choice Generator (CG). Our experimental results show that CG is not

only a more interpretable generator but also generates meaningful data with

comparable qualities with other popular generators. In addition, CG has an

advantage of having its sub-generators learn a small set of classes of objects,

which in turn enhances the transparency of its sub-generators.

• We also apply regularization to CG and show that regularization can make sub-

generators of CG more homogeneous representations and further improve their

transparency.

• The CC architecture that we propose in this chapter makes it much easier to

quantify interpretability because its hidden representation can be reduced to

probabilistic interpretation.

The organization of this chapter is as follows. In Section 3.2, we present previous

studies related to CC. Then, we formally introduce CC architecture in Section 3.3.

In Section 3.4, we report experimental findings of CC on synthetic datasets, which

successfully demonstrates the e↵ectiveness of the model that we build. We then

further demonstrate the performance of CC by applying it to real world data in

Section 3.5. The results show that CC can e↵ectively learn distribution and encodings

of real world data. Finally, we conclude with a summary of results in Section 3.6.

3.2 Literature Review

3.2.1 Interpretable Neural Network (NN)

The first line of research relevant to our work is interpretable NN. Significant progress

has been made to understand NN representations and develop more interpretable NN

architectures [18, 19, 20, 34, 35]. Interpretable NN can be divided into the following

categories.
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Understanding hidden representation of pre-trained NN The first category

is the visualization of hidden representations of NNs, especially those representations

encoded in filters. This is the most direct method that has been used to understand

meanings inside blackbox neural units. There are di↵erent types of visualization tech-

niques. The most frequently used approach is the gradient-based method [36, 37, 38],

which computes gradients of filter units with respect to input pixels and then uses the

gradient information to estimate input image. Another popular visualization tech-

nique is to invert visual representations with CNN. For example, [39] trains a network

to predict the weighted average of all natural images which could have produced the

given feature vector.

Explainable network component The second category is to build explainable

network components whose goal is to learn meaningful and interpretable representa-

tions during the training of NNs. One of the most important studies in this direction

is interpretable CNN [19]. The main rationale behind this approach is that each filter

in the convolution layer is expected to be activated only by a certain part of objects

of a certain class. Let F a feature map, which is a n⇥n matrix with Fi,j > 0. During

the forward pass, the CNN computes a feature map F of a filter f on a given image

I. The interpretable CCN estimates the position, µ, of the feature map F with the

strongest activation. Then, a mask is assigned to F to produce a masked feature

map Fmask based on the position µ. Since there are n
2 possibilities for µ, the paper

designs a set of n2 templates T = {Tµ1 ,Tµ2 , ...,Tµn2 }, where each template Tµi is a

n⇥ n matrix representing the ideal distribution of activation for the feature map F

whose (i, j) position has the strongest activation.

During the back-propagation, the author designs an additional regularization loss,

Lf , to push a filter f towards representing a specific object part of a specific class

c. The regularization works as follows. Let I be a set of training images and Ic

be a set of training images of a specific class c. Let F = {F |F = f(I), I 2 I}
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be a set of feature maps of f for di↵erent training examples. Given an image I 2

Ic, the feature map F is expected to be activated exclusively at a certain object

part. In addition, the author adds a negative template T� to the original templates

become T = {Tµ1 ,Tµ2 , ...,Tµn2 ,T
�}. When I /2 Ic, the author hopes that the feature

map x would match with the negative template T�. The regularization loss, Lf , is

formulated as negative mutual information between F and T.

Although the CC architecture that we develop is a continuation of this line of

research, our work does have a few unique features. First, its internal encoding can

explicitly be reduced to probability interpretation. Second, CC can be used in either

supervised learning tasks or unsupervised learning tasks, while most of the other

interpretable architectures are only designed for supervised learning.

3.2.2 Long Short-Term Memory

Our work also draws upon the concept of Long Short-Term Memory (LSTM), which is

the modern architecture for Recurrent Neural Network (RNN). LSTM was introduced

by Hochreiter and Schmidhuber to primarily overcome the problem of vanishing gra-

dients [40]. Its main feature is that it adds a memory cell to the hidden layer in RNN.

A memory cell consists of five basic elements: input node, input gate, internal state,

forget gate, and output gate.

• input node (g): This is a standard neural unit that takes an input at current

time step xt and the hidden layer from the previous step ht�1. Typically, the

activation function is tanh [22].

• input gate (i): This is also a neural unit that takes an input at current time step

xt and the hidden layer from the previous step ht�1, but its activation function

is sigmoid. It is a gate because its value is used to modify other nodes. When

its value is one, the value of other nodes can pass through the gate. When
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its value is zero, it cuts o↵ the flow of other nodes. As the name suggests, it

modifies the value of input node.

• internal state (s): This is where the information about the memory cell retains.

It is a state because information can flow across time steps. It is the main

mechanism for multi-gating gradient vanishing and exploding.

• forget gate (f): It was introduced by [41]. Its main purpose is to control the

amount of information that can be forgotten in the internal state. Similar to

input gate, it uses sigmoid as its activation function. When its value is one, it

allows the information of the internal state to pass through. When its value is

zero, it cuts o↵ the flow of the internal state.

• output gate (o): The output value of the memory cell is typically an element-

wise product of internal state with tanh activation and output gate. Thus, this

unit is termed output gate.

Thus, at any given time step t, a whole memory cell can be summarized below.

Bias terms are omitted for brevity.

gt = tanh(Ugh ht�1 +Wgx xt ) (3.1)

it = �(Uih ht�1 +Wix xt ) (3.2)

ft = �(Ufh ht�1 +Wfx xt ) (3.3)

ot = �(Uoh ht�1 +Wox xt ) (3.4)

st = gt � it + st�1 � ft (3.5)

ht = tanh(st )� ot , (3.6)

where the vector ht is the value of the hidden layer and the output value of the

memory cell at time t.
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3.2.3 Attention Model

A third area of research related to our work is Attention Model (AM) [42]. AM can

be viewed as an extension of LSTM. The definitions of st and ht remain the same,

while the definitions of gt, it,ft,ot are extended to include a context term zt . So

Equations 3.1 - 3.6 become

gt = tanh(Ugh ht�1 +Wgx xt +Wgz zt )

it = �(Uih ht�1 +Wix xt +Wiz zt )

ft = �(Ufh ht�1 +Wfx xt +Wfz zt )

ot = �(Uoh ht�1 +Wox xt +Woz zt )

st = gt � it + st�1 � ft

ht = tanh(st )� ot

Intuitively, zt dynamically represents the relevant parts of images with respect to

output ht at time t. It can be computed from the annotation vectors ai , i = 1, 2, ..., L,

which corresponds to the features extracted from raw input, and a positive score ↵i

representing relative importance of feature ai for predicting next output ht. The

set of annotation vectors {a1 ,a2 , ...,aL } are extracted from input data using lower

layers of CNN. The relevance score at time t, ↵ti, is computed as softmax of outputs,

eti for i = 1, ..., L, of an AM, fatt. The output, eti, is defined as

eti = fatt(ai ,ht�1 ),

where fatt is implemented as a multilayer perceptron.

Then, the context vector zt is computed as blending the set of relevance scores at
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Figure 3.1: Abstract View of a Binary Choice Cell

Figure 3.2: Detailed View of a Binary Choice Cell

time t and the set of annotation vectors together, i.e.,

zt = fble({↵t1,↵t2, ...,↵tL}, {a1 ,a2 , ...,aL }).

A typical choice of blending function, fble, is to take zt to be the weighted average of

its inputs [43], i.e. zt =
PL

i=1(↵tiai ).

3.3 The Choice Cell Architecture

Intuitively, a Binary Choice Cell (BCC) behaves like the input gate, forget gate,

and internal state introduced in Section 3.2. BCC is a gate-like mechanism that

manipulates information flowing through it. A BCC can be represented graphically

in Figure 3.1 and Figure 3.2. We now formally define BCC below.
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Figure 3.3: An example of a BCC

Definition III.1 [Binary Choice Cell (BCC)] Let x0 , x1 be input tensors and z be

a scalar. Let bias and scale be the internal parameters. A BCC is a function

bc(x0 ,x1 , z; bias, scale) = ↵ ⇤ x0 + (1� ↵) ⇤ x1 , (3.7)

where

↵ = �((bias� z) ⇤ scale) (3.8)

and ↵ can be outputted optionally.

We design a BCC to behave like a fuzzy selection function that outputs a noisy

version of one of its two input tensors x0 and x1 . To do so, additional constraints

are imposed in BCC. First, the parameter scale is set to a relatively large number.

Second, the random variable z is constrained to real numbers in the half-open unit

interval [0, 1). Figure 3.3 shows an example of BCC with �(0.7, 40) and z 2 [0, 1).

The blue and red lines show the evolution of the weights of x0 and x1 as z goes from

0 to 1. The green line shows a case where z = 0.8. In that case, the weight of x0 ,

↵, equals to 0.02, and the weight of x1 , 1-↵, equals to 0.98. The final output of the

BCC is then 0.02 ⇤ x0 + 0.98 ⇤ x1 . As we can see from Figure 3.3, when z < bias

the BCC outputs a noisy version of x0 , and when z > bias it outputs a noisy version

of x1 . Since z is restricted to [0, 1), bias also behaves like a probability threshold.

The BCC has a probability of bias of ”choosing” x0 and a probability of 1� bias of
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Figure 3.4: Abstract View of a Choice Cell

Figure 3.5: Detailed View of a Choice Cell

”choosing” x1 . For this reason, the architecture is named Binary Choice Cell.

The formulation of BCC can be extended to the general case, Choice Cell (CC).

A CC is a Complete Binary Tree where internal nodes provide a tournament of BCCs

with input tensor placed in leaf nodes. Like BCC, it is also a gate-like mechanism

that controls and modifies the information flowing through it, but it takes n input

tensors instead of two. A CC can be represented graphically in Figures 3.4 and 3.5.

We now define CC formally as below.

Definition III.2 [Choice Cell (CC)] Let {x0 ,x1 , ...,xn�1 } be a set of input ten-

sors. A CC is a Complete Binary Tree with 2n � 1 nodes. Each input xi is

placed on the leaf node n + i. Each of its internal node j (j  n � 1) represents
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a BCC bc(out2j ,out2j+1 , zj; biasj, scalej) where out2j and out2j+1 are outputs

from nodes 2j and 2j + 1. The whole cell thus can be represented as a function

cc(x, z; bias, scale), with ↵ as its optional output.

Like BCC, we also design CC to behave like a fuzzy selection function that outputs

a noisy version of one of its n input tensors. Thus, each internal parameter scalej

is set to a relatively large number. Also, each value z in the random vector z is

constrained to real numbers [0, 1). Similar to BCC, the parameter vector bias forms

a probability distribution. According to the distribution encoded internally, a CC

outputs a noisy version of one of n input tensors. Formally, let P be a path from

the root node of a CC to a leaf node n + i, excluding the leaf node n + i. Let

L(j), R(j) be a 0, 1 indicators along the path, which indicate left branch and right

branch, respectively. The probability of selecting the input tensor xi is calculated as

P (xi ) =
Y

j2P

(biasj )
L(j) ⇤ (1� biasj )

R(j) (3.9)

CC is closely related to the gated mechanism LSTM and the attention mechanism

in AM, but there are some fundamental di↵erences. In LSTM, outputs of the input

gate and forget gate are combined to produce the value in the internal state, and

both gates can be on and o↵ at the same time. In CC, however, we only allow one of

its leaf nodes to be on at a time. In AM, the annotation vectors and their weighting

scores are blended together to produce context vectors. CC, on the other hand,

implements a fuzzy selection which produces a noisy version of one of outputs of its

leaf nodes. Furthermore, both gated mechanism in LSTM and attention mechanism

in AM are not transparent, while choice mechanism in CC can be reduced probability

distribution which is human understandable.
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3.4 Experiments of Choice Cell on Synthetic Data

In this section, we present experimental results from training CC on synthetic data.

Experiments in this section are divided into four subsections. In the first subsection,

we train CC to learn the distribution of input data. In the second subsection, we

train CC to learn the encodings of input data. In the third subsection, we train

CC to learn the distribution and the encodings of input data simultaneously. In the

last two subsections, we combine CC with generators to form the Choice Generator

(CG) where generators are placed on leaf nodes of CC as subnetworks. In the fourth

subsection, we show that CG can learn encodings of 2D mixtures of Gaussian dataset.

In the last subsection, we show that CG can learn both encodings and distribution

of the 2D dataset.

3.4.1 Experiment: Learning Distribution of Synthetic Data Using Choice

Cell (CC:LD:SD)

The goal of the experiment CC:LD:SD is to show that CC can learn the probability

distribution of synthetic datasets. We assume that the generator knows the encodings

of the input data before the training. Ideally, after the training, CC can learn to

encode the probability distribution of input data in its internal nodes.

Dataset In the experiment CC:LD:SD, we use four synthetic datasets: 2E-1hot,

2E-Gen, 4E-1hot, and 4E-Gen. They are briefly described below.

• 2E-1hot: The sample space contains two one-hot encodings in 2D space, and

the encodings obey a certain probability distribution. The dataset is formed by

drawing encodings from the distribution.

• 2E-Gen: The sample space contains two general encodings in 2D space, and

the encodings obey a certain probability distribution. The dataset is formed by

drawing encodings from the distribution.
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• 4E-1hot: The sample space contains four one-hot encodings in 4D space, and

the encodings obey a certain probability distribution. The dataset is formed by

drawing encodings from the distribution.

• 4E-Gen: The sample space contains four general encodings in 4D space, and

the encodings obey a certain probability distribution. The dataset is formed by

drawing encodings from the distribution.

Each dataset contains 6400 samples. Details about these datasets are summarized in

Table A.1 in the Appendix.

Network architecture The network architecture of BCC follows Definition III.1.

The network architecture of 4-nary CC follows Definition III.2 with n = 4. True

encodings are placed on the leaf nodes of CCs. In all four cases, Cross Entropy

is chosen as loss functions. Also, we adopt the SNM training method introduced in

Chapter II to facilitate the training of CC. Thus, the SNM is first applied to generated

samples and real samples to form matched pairs. The loss is then calculated based

on matched samples according to Equation 2.6.

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001

throughout the experiment CC:LD:SD. In addition, z is uniformly distributed over

the half-open unit interval [0, 1). Batch size is set to 64, and scale is set to 40. We

train each network for 100 epochs.

Result We use Mean of Absolute Error (MAE) as a measurement for the perfor-

mance of our CCs. The MAE is defined as

MAE(P̂ , P ) =
1

|P |

n�1X

i=0

(P̂xi � Pxi ), (3.10)
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Figure 3.6: Errors of distribution learned by CC in the experiment CC:LD:SD. Each network is trained for 100 epochs.

where P̂ and P are the estimated and true distributions, respectively, and P̂xi is

extracted from the bias in a CC according to Equation 3.9.

We first look at errors of learned distributions encoded in the internal nodes of CCs

with the SNM training in Figure 3.6. As shown in the figure, in all four cases, CCs

are able to learn the underlying probability distribution of the input data e↵ectively.

The MAEs of learned distributions in all four cases are below 0.1%. Considering the

stochastic e↵ect of the batch process, this number shows that the learned distribution

is a fairly good approximation for the true distribution.

3.4.2 Experiment: Learning Encodings of Synthetic Data Using Choice

Cell (CC:LE:SD)

The goal of the experiment CC:LE:SD is to show that CC can learn the encodings

of synthetic datasets. We assume that encodings in the dataset are uniformly dis-

tributed, and the internal nodes of CC are fixed, not trainable during the training.

Ideally, after the training, CC can learn to encode the encodings of input data in its

leaf nodes.

Dataset Encodings in datasets used in this experiment are the same as those used

in the experiment CC:LD:SD. However, all encodings are assumed to be uniformly

distributed, and the main task of CC is to learn the encodings of input datasets.
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Network architecture The network architecture of BCC follows Definition III.1.

The network architecture of 4-nary CC follows Definition III.2 with n = 4. Instead

of having true encodings placed on the leaf nodes, we place vector variables on the

leaf nodes of CCs, and each of them is trained to learn the encoding of input data.

Detailed information about network architectures can be found in Figure A.2 in the

Appendix. SNM is applied to generated and real samples to produce the stable match

Ms, and then the final loss is calculated based on Ms. Mean Absolute Error (MAE)

is chosen as the loss function in Equation 2.6.

Hyper-parameters We use Adam as the optimizer, and the learning rate is set

to 0.001 throughout the experiment. In addition, z is uniformly distributed over the

half-open unit interval [0, 1), and we set scale to 40. Batch size is set to 64, and we

train each network for 100 epochs. Internal nodes are set to be non-trainable.

Result We use Relative Encoding Error (REE) as the performance measure for

encoding learning. Since CCs do not control which vector variable would learn which

target encoding, a mapping between learned encodings and true encodings is required

in order to calculate error. We apply SNM to learned encodings and true encodings

to form matched pairs. REE is defined based on the stable match as

REE(a, b) =
ka� bk2
kbk2

, (3.11)

where a, b are learned and true encodings, respectively, and (a, b) is a pair in the

stable match produced by SNM.

The experimental results for encoding learning are shown in Figure 3.7. The

orange bar in the middle of each box refers to the median of REEs for each dataset.

As shown in Figure 3.7, in all cases the CCs are able to learn encodings of input data

successfully. For the 2E-Gen and 4E-Gen datasets, all REEs are below 0.1% of true
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Figure 3.7: REEs in the experiment CC:LE:SD. Each network is trained for 100 epochs.

encodings. For the 2E-1hot and 4E-1hot datasets, the worst of REEs is about 0.5%

of the target vector.

3.4.3 Experiment: Learning Distribution and Encodings of Synthetic

Data Using Choice Cell (CC:LDE:SD)

The goal of the experiment CC:LDE:SD is to show that CC can simultaneously

learn the probability distribution and encodings of synthetic input datasets. We

assume that CC does not know encodings of the input data before the training. After

the training, ideally the probability distribution of input data can be extracted and

encoded in the internal nodes of CC, and the encodings of the input data can be

learned in the leaf nodes of CC.

Dataset Datasets used in this experiment are the same as those used in the exper-

iment CC:LD:SD. However, CCs do not know the true encodings of data in advance.

Detailed information about the datasets can be found in Table A.1 in the Appendix.

Network architecture The network architecture of BCC follows Definition III.1.

The network architecture of 4-nary CC follows Definition III.2 with n = 4. Instead

of having true encodings placed on the leaf nodes, we place vector variables on the

leaf nodes of CCs, and each of them is trained to learn the encoding of input data.

Detailed information about network architectures can be found in Figure A.2 in the
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Figure 3.8: Errors of learned distribution in the experiment CC:LDE:SD. Each network is trained for 100 epochs.

Appendix. SNM is applied to match generated and real samples, and then the final

loss is calculated based on matched samples. Mean Absolute Error (MAE) is chosen

as the loss function in Equation 2.6.

Hyper-parameters We use Adam as the optimizer, and the learning rate is set

to 0.001 throughout the experiment. In addition, z is uniformly distributed over the

half-open unit interval [0, 1), and we set scale to 40. Batch size is set to 64, and we

train each network for 100 epochs.

Result Like the previous experiment, SNM is applied to match leaf nodes and true

encodings before error calculations. We start with the performance of distribution

learning of CCs. As in the experiment CC:LD:SD, we use MAE in Equation 3.10 as a

measurement for distribution errors. The result is presented in Figure 3.8. As shown

in the figure, in all four cases above, CCs are able to successfully learn the underlying

probability distribution of the input data, even though now they are learning distri-

butions and encodings of simultaneously. For the two binary datasets, the error rates

are below 0.4%. For the 4E-1hot and 4E-Gen datasets, CCs can reach error rates

around 0.8% and 1.2%, respectively.

Next, we turn to the result for encoding learning. Still, we use REE defined in

Equation 3.11 as the performance measure. The experimental results are shown in

Figure 3.9. As shown in the figure, in all cases CCs are able to learn encodings of
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Figure 3.9: REEs in the experiment CC:LDE:SD. Each network is trained for 100 epochs.

input data successfully. For all four datasets, the medians of REEs are around 0.5% of

true encodings. The largest REE is about 2% of the target vector, which is observed

in learning the more complicated 4E-Gen dataset.

3.4.4 Experiment: Learning Encodings of 2D Synthetic Data Using

Choice Generator (CG:LE:SD)

The goal of this experiment is to show that CG with fixed internal nodes can learn

encodings of 2D mixtures of Gaussian dataset. We assume that Gaussian clusters in

the dataset are uniformly distributed and the internal nodes of CC are fixed, i.e., the

internal nodes are not trainable during the training. Ideally, after the training, CC

can learn to encode the encodings of all clusters in its leaf nodes.

Dataset We train CG to learn encodings of two synthetic datasets with di↵erent

complexity: 8C-Ban-Sep and 8C-Ban-Insep. Each dataset contains 8 evenly dis-

tributed clusters, and each cluster consists of 2D data points drawn from a multivari-

ate normal distribution characterized by a mean matrix and a diagonal covariance

matrix. More detailed descriptions of 8C-Ban-Sep and 8C-Ban-Insep are presented

below.

• 8C-Ban-Sep: This is a 8 Cluster dataset where clusters are balanced and sep-

arated. To help form separated clusters, its mean and covariance matrices are

hand-coded. The design of this dataset is inspired by the literature [26].
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(a) the 8C-Ban-Sep dataset. Each cluster con-
tains 1250 data points.

(b) the 8C-Ban-Insep dataset. Each cluster
contains 1250 data points.

Figure 3.10: Sample data used in the experiment CG:LE:SD.

• 8C-Ban-Insep: This is a 8 Cluster dataset where clusters are balanced and some

clusters are inseparable. In addition, we apply each cluster with a random

rotation matrix to further increase the complexity of this dataset.

Sample data for the datasets are presented in Figure 3.10.

Networks We use a simple architecture for the generator of CG, following the liter-

ature [26]. The generator is a 4-layer fully connected network. The latent dimension

is 20. Each hidden layer contains 48 nodes and uses the rectifier as activation func-

tion. The output layer has dimensionality of 2 and uses hyperbolic tanh function

as its activation function. As presented in previous sections, the SNM algorithm is

applied to generated and real samples to form a stable match Ms, and then the final

loss is calculated based on Ms. The loss function in Equation 2.6 uses MAE.

Hyper-parameter We use Adam optimizer with learning rate equal to 0.001. In

addition, z is uniformly distributed over the half-open unit interval [0, 1), and we set

scale to 40. Batch size is set to 512. We train each model on each dataset for 500

epochs.

Results We start with the qualitative measure of performance for CG. Generated

samples are presented in Figure 3.11, where samples generated by CG are plotted in

the last two columns, and samples generated by the same subnetwork are presented
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(a) 8C-Ban-Sep (b) samples from CG
(c) samples from subnet-
works of CG

(d) 8C-Ban-Insep (e) samples from CG
(f) samples from subnet-
works of CG

Figure 3.11: Samples generated by CG. (b)-(c): samples generated for 8C-Ban-Sep; (e)-(f): samples generated for
8C-Ban-Insep. Each of the aforementioned sub-figure contains 4096 generated samples. Each model is trained for 500
epochs.

(a) errors of encoding mean (b) errors of encoding variance (c) errors of encoding rotation

Figure 3.12: Quantitative error measure of learned encodings of CG. Encodings are from eight generators placed in
leaf nodes of CG.

by the same color. From Figures 3.11b and 3.11e, we can see that CG can successfully

learn encodings of all 8 clusters of data. In addition, in Figures 3.11c and 3.11f, we

can see that each subnetwork of CG focuses on learning encoding of one cluster of

samples. Even for the inseparable clusters (blue, pink, brown) for the 8C-Ban-Insep

dataset, CG successfully makes each of the subnetworks (red, purple, pink) learn

encoding of a specific cluster.

Next, we look at various quantitative error measures of learned encodings of CG.

Since a specific goal is to have each subnetwork focus on a specific cluster, we incorpo-

rate the mismatch between subnetwork and cluster into our error measure. To do so,

we first calculate centroids of generated samples and true samples. Then, we apply

SNM to produce a stable match between learned and true centroids. After matching

subnetworks with clusters, we calculate cluster mean error, cluster variance error,
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and cluster rotation error. The measurement of cluster mean error is based on REE

in Equation 3.11, where a refers to a centroid learned by a subnetwork and b refers

to its partner in the stable match. To calculate cluster variance error and cluster

rotation error, we first compute covariance matrices of generated and real samples.

Then we apply Singular Value Decomposition to the covariance matrices to find the

largest variances and the angle between axes associated with the largest variances.

After that, we calculate MAE of the largest variances as variance error and MAE of

the angle as rotation error.

The encoding errors are shown in Figure 3.12. We can see that CG successfully

models the clusters in both datasets, as shown by low errors with respect to encoding

means, variances, and rotations. The median errors of encoding means and variances

for both datasets are below 5% and 0.003, respectively. The median MAEs of encoding

rotation are around 10�.

3.4.5 Experiment: Learning to Generate 2D Synthetic Data Using Choice

Generator (CG:LDE:SD)

In this experiment, we combine CC with generators to form CG where generators are

placed on leaf nodes of CC as subnetworks. The goal of the experiment is to show

that CG can learn to generate 2D synthetic data with increasing complexity. We

would like CG to learn encodings and distribution of synthetic data simultaneously.

In addition, we would like each subnetwork of CG to generate a specific class or

a small set of classes of samples in input data. However, since both generators in

subnetworks of CC and internal nodes of CC have much extra freedom, additional

regularization is needed to gear each generator towards a smaller set of classes of

objects. We propose two regularization techniques to achieve this goal, and we also

show the e↵ects of adopting these regularizations. Note that the regularizations that

we propose is only an initial exploration for regulating CG, and there are many
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other possible regularization methods. Since our main focus of this chapter is not on

regularization, we only show that regularization would help CG learn to model data

more e↵ectively and do not attempt to exhaustively test all regularizations to find

the best one for CG.

The regularization consists of between-class regularization and within-class regu-

larization, and we propose two ways to perform regularization. Two methods di↵er

only in how we form matched samples for calculating regularization loss. The first

matching method is defined below. Let U be a set of tuples (a, i), i.e. U = {(a, i)},

where a is a sample generated by a subnetwork of CG and i is the index of the

subnetwork. Note that U contains samples from all subnetworks. Let MT ⇢ U ⇥ U

be a temporary set of pairs after matching U with itself using SNM but excluding

self-matching, i.e. MT = {((a, i), (b, j))|(a, i) 2 U^ (b, j) 2 U^a 6= b^Ms(a) = b}.

Then based on MT , we define Mwithin to be a set of sample pairs coming from the

same subnetwork, i.e. Mwithin = {(a, b)|((a, i), (b, j)) 2 MT ^ i = j}. Mbetween is de-

fined as a set of sample pairs coming from the di↵erent subnetworks, i.e. Mbetween =

{(a, b)|((a, i), (b, j)) 2MT ^ i 6= j}. Since the matching happens among all samples,

we call the first method all-to-all (a2a) regularization.

The second matching method is defined below. The sample set U follows the same

definition. Let TWi be a temporary set of all pairs within class i, excluding self pairs,

i.e. TWi = {(a, b)|(a, i) 2 U ^ (b, i) 2 U ^ a 6= b}. Let Mwithin be the union of the

sets of matched samples within a class using SNM, i.e. Mwithin =
n�1S
i=0

{(a, b)|(a, b) 2

TWi ^Ms(a) = b}. Let TB be a temporary set of all between class pairs, i.e. TB =

{(a, b)|(a, i) 2 U^(b, j) 2 U^i 6= j}. LetMbetween be the union of the sets of matched

samples between classes using SNM, i.e. Mbetween = {(a, b)|(a, b) 2 TB^Ms(a) = b}.

Since the matching for between class happens between one subnetwork with all other

subnetworks, we call the second method one-to-other (o2o) regularization. Notice the

di↵erence between the two matching methods. In the first method, every sample is
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either in the Mwithin set or the Mbetween set, while in the second method, every sample

is both the Mwithin set and the Mbetween set.

After the matching, the regularization loss is calculated based on matched samples.

Let the distance between two vectors be d(a, b) = ka� bk1. Define the within-class

loss, Lwithin, as

Lwithin =
1

|Mwithin|
X

(a,b)2Mwithin

d(a, b)

dmax
, (3.12)

where dmax is the maximum distance in Mwithin. Define the between-class loss,

Lbetween, as

Lbetween =
1

|Mbetween|
X

(a,b)2Mbetween

e
�d(a,b) (3.13)

The final regularization loss, Lreg, is defined as

Lreg = �between ⇤ Lbetween + �within ⇤ Lwithin, (3.14)

where �between and �within are scale constants.

Dataset We train CG on four synthetic datasets with increasing complexity: 8C-

Ban-Sep, 8C-Ban-Insep, 8C-Imban-Sep, and 8C-Imban-Insep. Each dataset contains

8 clusters of 2D data points, and each cluster is drawn from a multivariate normal

distribution characterized by a mean matrix and a diagonal covariance matrix. To

make the dataset imbalanced, the number of samples in each cluster is determined

by a geometric distribution

nc = n ⇤ p ⇤ (1� p)c, (3.15)

where c = 0, 1, 2, ... is a cluster or class label, and p is a scalar parameter. n is the

number of samples in a dataset. To summarize, the four datasets have the following

characteristics.

• 8C-Ban-Sep: This is a 8 Cluster dataset where clusters are balanced and sepa-
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rated, and it is the same as the one in the previous subsection.

• 8C-Ban-Insep: This is a 8 Cluster dataset where clusters are balanced and some

clusters are inseparable, and it is the same as the one in the previous subsection.

• 8C-Imban-Sep: This dataset is like 8C dataset but clusters are imbalanced.

To make the dataset imbalanced, the number of samples in each cluster is

determined by Equation 3.15. n is set to 10000, and p is set to 1/2.

• 8C-Imban-Insep: This is a 8 Cluster dataset where clusters are imbalanced and

some clusters are inseparable. Its mean and covariance matrices are drawn from

random uniform distributions. To make the dataset imbalanced, the number of

samples in each cluster is determined by Equation 3.15. n is set to 10000, and p

is set to 1/2. In addition, we apply each cluster with a random rotation matrix

to further increase the complexity of this dataset.

Sample data for the datasets are presented in Figure 3.13.

Networks We follows the literature [26] for the architecture of generators. For

GAN, the generator is a 4-layer fully connected network. The latent dimension is

20. Each hidden layer contains 128 nodes and uses the rectifier as an activation

function. The output layer has dimensionality of 2 and uses hyperbolic tanh function

as activation function. In addition, the discriminator is also a fully connected network,

and the minimax optimization follows the original formulation. For CG, generators

are placed on the leaf nodes of CC. Each generator on the leaf node has the same

structure as the generator in GAN, except that the number of nodes in each hidden

layer is reduced to 48 so that the total number of parameters in generators of CG

is comparable to the number of parameters in the generator of GAN. Like previous

experiments, the SNM algorithm is applied to generated and real samples to output

the stable match Ms, and then the final loss is calculated based on the matched
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(a) the 8C-Ban-Sep dataset. Each cluster con-
tains 1250 data points.

(b) the 8C-Ban-Insep dataset. Each cluster
contains 1250 data points.

(c) the 8C-Imban-Sep dataset. number of
points in each cluster: [5000 (blue), 2500, 1250,
625, 312, 156, 78, 39 (red)]

(d) the 8C-Imban-Insep dataset. number of
points in each cluster: [5000 (blue), 2500 (or-
ange), 1250 (green), 625 (pink), 312 (brown),
156 (purple), 78 (grey), 39 (red)]

Figure 3.13: Sample data used in the experiment CG:LDE:SD.

samples. MAE is used in the place of the loss function in Equation 2.6.

Hyper-parameter We use Adam optimizer with learning rate equal to 0.001 through

out the experiment CG:LDE:SD. In addition, z is uniformly distributed over the half-

open unit interval [0, 1), and we set scale to 40. Batch size is set to 512. We train the

each model on each dataset for 500 epochs. For regularization, �between is set to 0.05,

and �within is set to 0.5, so that the regularization does not overshadow the original

loss.

Results without regularization We start with the qualitative measure of perfor-

mance for CG and compare it with GAN. Generated samples are presented in Figure

3.14, where samples generated by CG are plotted in the two middle columns, and

samples generated by the same subnetwork are presented by the same color. We first

look at the results for the balanced datasets 8C-Ban-Sep and 8C-Ban-Insep, shown
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in Figures 3.14a - 3.14h. From Figures 3.14b and 3.14f, we can see that CG can suc-

cessfully generate all 8 clusters of data. In addition, in Figures 3.14c and 3.14g, we

can see that each subnetwork of CG focuses on generating samples of one cluster. We

argue that this is a great advantage of CG that its subnetwork tends to learn more

homogeneous representations. On the other hand, the samples generated by GAN are

presented in Figure 3.14d. We can see that GAN su↵ers the issue of mode dropping

[8, 16] and only generates samples belonging to one cluster. Moving to the next case,

the 8C-Imban-Sep dataset, the results are presented in Figures 3.14i - 3.14l. From

Figure 3.14j, we can see that CG can successfully generate top five most frequent

clusters but fails to generate the three least frequent ones. Looking closer at samples

from its subnetworks in Figure 3.14k, we find that some subnetworks (e.g. green one)

focus on multiple clusters while some subnetworks (e.g. orange and grey) conform

to the same cluster. This is the experimental evidence that shows regularization is

needed for subnetworks to learn more homogeneous representations. For GAN, again

we can see from Figure 3.14l that GAN only generates samples belonging to one clus-

ter. Further, notice that the cluster that GAN learns to generate is the most frequent

cluster (blue cluster) among all. It means that its generator learns a cluster that

is most likely to fool the discriminator. Lastly, the results of the most complicated

case, the 8C-Imban-Insep dataset, are shown in Figures 3.14m - 3.14p. We observe a

similar phenomenon as in the case of 8C-Imban-Sep, that is subnetworks successfully

learn top five most frequent clusters (blue, orange, green, pink, brown) but fails to

learn the three least frequent clusters (purple, grey, pink). For GAN, we observe the

same result, that is it only learns to generate the most frequent cluster.

Next, we look at quantitative measures of performance of CG. We still apply SNM

to subnetwork encodings and cluster encodings to build a stable match between sub-

networks and clusters. The distribution error is measured by MAE in Equation 3.10

and is calculated based on the stable match. In addition, to better assess the perfor-
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(a) 8C-Ban-Sep (b) samples from CG
(c) samples from subnet-
works of CG

(d) samples from GAN

(e) 8C-Ban-Insep (f) samples from CG
(g) samples from subnet-
works of CG

(h) samples from GAN

(i) 8C-Imban-Sep (j) samples from CG
(k) samples from subnet-
works of CG

(l) samples from GAN

(m) 8C-Imban-Insep (n) samples from CG
(o) samples from subnet-
works of CG

(p) samples from GAN

Figure 3.14: Samples generated by CG without regularization and GAN. (b)-(d): samples generated for 8C-Ban-Sep;
(f)-(h): samples generated for 8C-Ban-Insep; (j)-(l): samples generated for 8C-Imban-Sep; (n)-(p): samples generated
for 8C-Imban-Insep. Each of the aforementioned sub-figure contains 4096 generated samples. Each model is trained
for 500 epochs.

(a) MAE of learned distribution (b) MRE of learned distribution

(c) errors of encoding mean (d) errors of encoding variance (e) errors of encoding rotation

Figure 3.15: Quantitative measures of the performance of CG without regularization
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mance in imbalanced datasets, we introduce another error measure, Mean Relative

Error (MRE), to measure distribution error. MRE is defined as

MRE(P̂ , P ) =
1

|P |

n�1X

i=0

(P̂i � Pj)

Pj
, (3.16)

where P̂ , P are the estimated and true distributions, respectively, and (i, j) is a pair

in the stable match between subnetworks and clusters.

The results of distribution errors are shown in Figures 3.15a and 3.15a. As we can

see from these figures, for the 8C-Ban-Sep and 8C-Ban-Insep datasets, CG learns the

cluster distribution successfully, with MAE and MRE of distributions for the 8C-Ban-

Sep dataset are around 0.22% and 1.9%. For the 8C-Ban-Insep dataset, MAE and

MRE of distributions are around 0.7% and 6%, respectively. For the two imbalanced

datasets, CG can learn the distribution in more frequent clusters, which is indicated

by the moderate MAE of distribution. As indicated by MRE of distribution, CG fails

to learn the distributions of less frequent clusters.

The REE for encodings are shown from Figure 3.15c to Figure 3.15e. From these

three figures, we can see that CG accurately models the clusters in the 8C-Ban-Sep

and 8C-Ban-Insep datasets. Errors with respect to mean, variance, and rotation

are fairly low. For the 8C-Imban-Sep and 8C-Imban-Insep datasets, we can observe

increases in all three error terms. We can also observe from Figure 3.15c that the

most frequent clusters are learned pretty well by subnetworks, as indicated by errors

under the orange bars. The increase of encoding errors is mainly driven by those less

frequent clusters that are not learned by CG.

The experimental results show that the extremely imbalanced nature of the 8C-

Imban-Sep and 8C-Imban-Insep datasets causes CG to fail to recognize the least

frequent clusters, therefore increasing both distribution and encoding errors. Next,

we present the results of applying regularization to the training of CG and show that
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regularization helps subnetworks of CG learn more homogeneous representation and

improve its performance.

Results with regularization We now turn to the results of CG with regulariza-

tion. Since results of the 8C-Ban-Sep and 8C-Ban-Insep datasets are fairly good, we

only demonstrate regularization on the 8C-Imban-Sep and 8C-Imban-Insep datasets.

Again, we start with sample quality of CG. The results are shown in Figure 3.16. In

Figure 3.16h, we can see that the o2o regularization gives a significant performance

improvement in learning the 8C-Imban-Sep dataset. Now six subnetworks have one-

to-one match with the true cluster. One subnetwork (orange) is a bit o↵ the target

(grey), which is the second least frequent cluster. Only one subnetwork (grey) is

o↵ the target, and only one cluster (red), which has extremely low probability, is

not learned by any subnetwork. The reason for the mismatch might be that the

regularization error overshadows the original sample distance for the least frequent

pairs.

For the task of learning the 8C-Imban-Insep dataset, samples generated by subnet-

works are presented in Figure 3.16o and 3.16p. As we can see from the figures, both

regularizations help make subnetworks more homogeneous. For a2a regularization,

we can observe an improvement for having one-to-one learning between subnetworks

and true clusters for the most frequent clusters (orange to blue, grey to orange, purple

to green, red to pink). For o2o regularization, we can also observe an improvement

for having one-to-one learning (blue-purple, purple-grey, green-orange, grey-green,

orange pink-blue, red-brown pink) between subnetworks and true clusters. Only one

cluster (red), which is the least frequent cluster, is not learned by any subnetwork,

and only one subnetwork (brown) is o↵ the target. As with the previous case, the rea-

son might be that the regularization error overshadows the original samples distance

for the least frequent pairs.

Next, we turn to quantitative measures for the performance of CG with regular-
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(a) 8C-Imban-Sep (b) samples from CG (c) samples from CG with
a2a regularization

(d) samples from CG with
o2o regularization

(e) 8C-Imban-Sep (f) samples from subnet-
works of CG

(g) samples from subnet-
works of CG with a2a reg-
ularization

(h) samples from subnet-
works of CG with o2o reg-
ularization

(i) 8C-Imban-Insep (j) samples from CG (k) samples from CG with
a2a regularization

(l) samples from CG with
o2o regularization

(m) 8C-Imban-Insep (n) samples from subnet-
works of CG

(o) samples from subnet-
works of CG with a2a reg-
ularization

(p) samples from subnet-
works of CG with o2o reg-
ularization

Figure 3.16: Samples generated by CG with/without regularization. (b)-(d),(f)-(h): samples generated for 8C-Imban-
Sep. (j)-(l),(n)-(p): samples generated for 8C-Imban-Insep. Each of the aforementioned sub-figure contains 4096
generated samples. Each model is trained for 500 epochs.
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(a) MAE of learned distribution (b) MRE of learned distribution

(c) errors of encoding mean (d) errors of encoding variance (e) errors of encoding rotation

Figure 3.17: Quantitative measures of the performance of CG with and without regularization

ization and the results are plotted in Figure 3.17. All metrics are the same as those

used in cases without regularization. First, in the distribution errors shown in Figure

3.17a, we can see a significant improvement in performance brought by both regular-

ization methods. The reduction of distribution can be observed more clearly in terms

of MRE presented in Figure 3.17b. The main driving force is that the subnetworks of

CG better focus on learning those more frequent clusters. Second, from the encoding

mean errors presented in Figure 3.17c, we can also observe a dramatic reduction in

the overall error bars. It means that each subnetwork better focuses on a specific

cluster. More specifically, in the learning of the 8C-Imban-Sep dataset, only the least

frequent cluster (red) is not learned by any subnetwork, and thereby the encoding

error for this cluster remains high. For the learning of the 8C-Imban-Insep dataset,

we also see the decrease of the whole error bars, which implies that subnetworks of

CG are now targeting better at specific clusters. Finally, for errors measured by en-

coding variance and rotation, the improvement is not obvious, as shown in Figures

3.17d and 3.17e.
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3.5 Experiments of Choice Cell on Real World Data

In this section, we demonstrate the e↵ectiveness of CC with experiments on real

world data. Experiments gradually increase in complexity. In the first subsection, we

show that CC can e↵ectively learn distribution of real world data, even when data is

extremely imbalanced. In the second subsection, we combine CC with generators to

form Choice Generator (CG) and demonstrate that the subnetworks of CG can learn

the encodings of input data. In the third subsection, we show that CG can learn

distribution and encodings of real world data simultaneously.

3.5.1 Experiment: Learning Distribution of Real World Data Using CC

with Pre-trained Subnetworks (CC:LD:RD)

The goal of the experiment CC:LD:RD is to show that CC with pre-trained generators

(CCG) can learn the distribution of object classes in real world data. We first train

generators independently, each of which is responsible for learning to generate objects

of one class in the input data. Then these generators are placed on the leaf nodes

of CC. Using these pre-trained generators, CC tries to learn the true probability

distribution of classes of input data and encode it in its internal nodes. In addition,

for high dimensional data, it would be beneficial to apply SNM on a hidden layer which

carries more semantic meaning instead of raw input data. We call this training method

Semantic-SNM (S-SNM). We show that S-SNM can further improve the performance

of CCG.

Dataset We train CC with pre-trained generators to learn distribution of classes

on the MNIST dataset and its imbalanced version [30]. The size of training data for

the balanced dataset is 60K. To make the dataset imbalanced, the number of samples

in each class is determined by Equation 3.15. n is set to 60K, and p is set to 1/2. The

size of imbalanced training data is 6149. For pre-training generators, we partition
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data according to their classes and feed only one class of data into one generator.

Networks The pre-trained generators are placed on leaf nodes of CC to form CCG.

We compare the performance CCG with two other popular generative models, Varia-

tional Auto-encoder (VAE) [44] and GAN [12]. The generator archetype of CCG fol-

lows VAE. The model archetype of GAN follows DCGAN [13]. Detailed information

about network architectures of VAE can be found in Figure A.3 in the Appendix. In

all models, we use Cross Entropy as loss functions. Like previous experiments, SNM

is applied to generated samples and real samples to form matched samples, and then

the loss function is calculated based on matched pairs.

The S-SNM training is similar to SNM, except the dissimilarity of samples is

measured based on their hidden representations h(g) and h(x), i.e. kh(g) - h(x)k,

instead of raw data. After matching samples based on their semantic distance, the

loss is applied on original data space. To get semantic representation of samples,

we first pre-train a classifier on the training data. Then, the generated samples and

the true data samples are fed to the classifier, and the representations in the second

last layer are used as their semantic representations, h(g) and h(x), respectively. For

the classifier, all layers except the last two layers in the classifier use rectifier as

activation functions. Its second last layer uses sigmoid function as the activation

function, and its last layer uses a softmax activation function. Detailed information

about the structure of the classifier can be found in Figure A.1 in the Appendix.

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001

throughout the experiment CC:LD:RD. In addition, z is uniformly distributed over

the half-open unit interval [0, 1). We set scale to 40 for training and 80 for reporting.

Batch size is set to 512. We pre-train each subnetwork of CCG for 1000 epochs and

then train CC for 100 epochs. For VAE and GAN, we also train them for 1000 epochs

for a fair comparison.
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(a) CCG with SNM on bal-
anced MNIST

(b) CCG with S-SNM on bal-
anced MNIST

(c) VAE on balanced
MNIST

(d) GAN on balanced
MNIST

(e) CCG with SNM on imbal-
anced MNIST

(f) CCG with S-SNM on im-
balanced MNIST

(g) VAE on Unbalance
MNIST

(h) GAN on imbalanced
MNIST

Figure 3.18: Comparing image qualities of CCG with SNM, CCG with S-SNM, VAE, and GAN on MNIST. (a)-(d)
samples generated for the balanced MNIST. (e)-(h) samples generated for the imbalanced MNIST.

Result We start with quality of sample images produced by di↵erent network ar-

chitectures for the MNIST dataset. Images are presented in Figure 3.18. First, We

look at samples generated for the original MNIST dataset. As we can see from Fig-

ure 3.18a and Figure 3.18b, both CCG with SNM and CCG with S-SNM can produce

high quality images. Compared with images generated by the original VAE shown in

Figure 3.18c, digits generated by CCG are even sharper. Compared with digits gen-

erated by GAN shown in 3.18d, digits generated by CCG appear to be less sharper.

However, most of the digits generated by CCG are meaningful, while GAN is more

likely to generate images that do not look like digits. Move on to the case for the

imbalanced MNIST dataset. As we can see from Figure 3.18e and Figure 3.18f, both

CCG with SNM and CCG with S-SNM can still produce high quality images even

in the extremely imbalanced case. As shown in Figure 3.18g, the original VAE can

also produce good quality images for the imbalanced MNIST, but its images are blur-

rier and it is more likely to produce images that are not meaningful. As we can see

from Figure 3.18h, GAN can generate high quality and even sharper images for high

frequent digits. However, for the low frequent digits, their quality is not appealing.
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Next we turn to the quantitative analysis of the performance of distribution learn-

ing. We still use MAE and MRE defined in Equations 3.10 and 3.16 as the measure-

ments of distribution errors. Since VAE and GAN have no explicit component that

allows us to access the distribution of digits directly, we use the pre-trained classifier

to estimate the distribution of digits generated by four models. Each model gener-

ates 512 sample images, and these sample images are classified by the classifier to

produce an estimate of distribution of digits. Then MAE and MRE of distributions

are estimated based on predictions produced by the classifier.

The results of distribution errors are shown in Figure 3.19. As shown in Figure

3.19a, in both balanced and imbalanced MNIST datasets, CCG are able to learn

the underlying distribution of digit classes successfully. The MAE of distributions

for both balanced and imbalanced cases are about 0.85% for CCG with SNM. With

better matching brought by S-SNM, CCG arrives at the MAE around only 0.55%.

The benefits of S-SNM can be seen more clearly from the improvement of MRE for the

imbalanced MNIST, as shown in Figure 3.19b. The MRE measure amplifies errors

from low frequent digits. With S-SNM, the MRE of distribution is reduced from

around 50% to below 30%. It demonstrates that semantic matching helps CCG learn

distributions in less frequent branches better.

Next, we compare performance of CCG to VAE and GAN. The results are shown

in Figures 3.19c and 3.19d. As we can see from these figures, both CCG with SNM

and CCG with S-SNM perform significantly better than VAE and GAN in both error

measures, and CCG with S-SNM has the best performance among all. In terms of

MAE measure, its error rate is only about one-third of that of VAE and one-fourth

of that of GAN. In terms of MRE measure, its error rate is also about one-third of

that of VAE and one-third of that of GAN for the balanced MNIST. But for the

imbalanced MNIST, its error rate is also about one-seventh of that of VAE and one-

ninth of that of GAN. This result shows the advantage of CCG in learning distribution
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(a) MAE of distribution calculated from inter-
nal nodes of CCG

(b) MRE of distribution calculated from inter-
nal nodes of CCG

(c) MAE of distribution estimated by generated
samples

(d) MRE of distribution estimated by gener-
ated samples

Figure 3.19: Comparing distribution errors of CCG with SNM, CCG with S-SNM, VAE, and GAN on MNIST

for imbalanced datasets.

3.5.2 Experiment: Learning Encodings of Real Data Using Choice Gen-

erator(CG:LE:RD)

In the experiment CG:LE:RD, we combine CC with generators to form Choice Gen-

erator (CG) where generators are placed on leaf nodes of CC as its subnetworks. The

goal of the experiment is to show that CG can learn encodings of real world data.

We fix the internal nodes of CG and only train its subnetworks to learn encodings.

After training, we would like each subnetwork to encode a specific class or a small set

of classes of input data.
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(a) samples from CG-
SNM

(b) samples from subnet-
works of CG-SNM

(c) samples from CG-S-
SNM

(d) samples from subnetworks
of CG-S-SNM

Figure 3.20: Encodings learned by CG. In the second and fourth columns, each row represents samples generated by
the same subnetwork of a CG. Each CG is trained for 100 epochs.

Dataset We train CG to learn encodings of MNIST [30], where the size of training

data is 60K.

Network architecture We use decoders from VAE as generators and place them

on leaf nodes of CC. The architecture of decoders can be found in Figure A.3 in the

Appendix. We train CG with SNM (CG-SNM) and CG with S-SNM (CG-S-SNM)

to compare results of encoding learning.

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001

throughout the experiment CG:LE:RD. In addition, z is uniformly distributed over

the half-open unit interval [0, 1). We set scale to 40 for training and 200 when re-

porting results. Batch size is set to 128. We train each network for 100 epochs.

Result We first look at quality of sample MNIST images produced by CG. We

present sample images generated by CG in Figure 3.20. As we can see from this

figure, CG is able to learn meaningful encodings of input images. In addition, we

also show MNIST encodings learned by individual subnetwork in Figure 3.20. Each

row of subfigures in the second and last columns of Figure 3.20 represents samples

generated from the same subnetwork of a CG. We can see that each subnetwork of

CG learns encodings of a specific class or a small set of classes of input data. We

also observe that encodings learned by CG-S-SNM is blurrier than CG-SNM, but its
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Figure 3.21: Distraction scores of subnetworks of CG

subnetwork concentrates more on a smaller set of classes objects.

Next, we turn to a quantitative measure of encodings learned by CG. We would

like each subnetwork of CG to learn a small set of classes of objects. To better assess

this performance, we define Distraction Score (DS). DS of a subnetwork i measures

the percentage of non-dominant objects generated by the subnetwork, i.e.,

DS(i) = 1.0�max(P̂i), (3.17)

where i is the index of a subnetwork of CG, and P̂i is its distribution over object

classes, which is estimated by samples that it generates. The result is shown in Figure

3.21. As we can see from this figure, the median DS for CG-SNM is below 0.5, which

means more than half of its subnetworks gear towards learning one dominant class of

objects. CG-S-SNM performs even better. More than half of its subnetworks focus

on learning one specific class of objects. We argue that this is another advantage of

CG. Its subnetworks can focus on learning more homogeneous representations, which

in turn makes subnetworks more transparent.

3.5.3 Experiment: Learning Encodings and Distribution of Real Data

Using Choice Generator (CG:LED:RD)

The experiment CG:LED:RD is to show that CG can learn real world data such that

its internal nodes can learn the distribution of object classes, and its subnetwork

generators can generate samples that are similar to input data. Our goal of this
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experiments is two-fold. First, we aim to train CG to learn to generate input data.

Second, we would also like each subnetwork to learn to generate a specific class or a

small set of classes of objects.

Dataset We apply CG to learn encodings and distributions on MNIST, as well as

its imbalanced version. The size of training data for the balanced dataset is 60K. To

make the datasets imbalanced, the number of samples in each class is determined by

Equation 3.15. n is set to 60K, and p is set to 1/2. The size of imbalanced training

data is 6149.

Network architecture We use decoders from VAE as generators and place them

on leaf nodes of CC. The architecture of decoders can be found in Figure A.3 in the

Appendix. We train CG with SNM and S-SNM training methods to compare results.

In addition, we train CG with a2a regularization and o2o regularization, both of

which are introduced in the experiment CG:LDE:SD. Thus, in total we have four CG

models: CG-SNM, CG-S-SNM, CG-a2a, and CG-o2o. Like previous experiments, we

also compare performance of CG with two benchmark models: VAE and GAN.

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001

throughout the experiment. In addition, z is uniformly distributed over the half-open

unit interval [0, 1). We set scale to 40 for training and 200 when reporting results.

Batch size is set to 128 for training balanced datasets. For imbalanced datasets, it

is set to 512 to allow less frequent classes of images to show up during the training.

For regularization, �between is set to 1.0, and �within is set to 0.2. We also apply reg-

ularizations to the training of CG every five epochs. For balanced datasets, we train

each network for 100 epochs. For imbalanced datasets, each network is trained for

200 epochs.
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(a) samples from CG-
SNM

(b) samples from subnet-
works of CG-SNM (c) samples from CG-S-

SNM
(d) samples from subnetworks
of CG-S-SNM

(e) samples from CG-
a2a

(f) samples from subnetworks
of CG-a2a

(g) samples from CG-
o2o

(h) samples from subnetworks
of CG-o2o

(i) samples from VAE (j) samples from GAN

Figure 3.22: Comparing CG v.s. VAE, GAN on balanced MNIST. Each network is trained for 100 epochs. In
(b),(d),(f),(h), each row represents samples generated by the same subnetwork of a CG.
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(a) samples from CG-
SNM

(b) samples from subnet-
works of CG-SNM

(c) samples from CG-S-
SNM

(d) samples from subnetworks
of CG-S-SNM

(e) samples from CG-
a2a

(f) samples from subnetworks
of CG-a2a

(g) samples from CG-
o2o

(h) samples from subnetworks
of CG-o2o

(i) samples from VAE (j) samples from GAN

Figure 3.23: Comparing CG v.s. VAE, GAN on imbalanced MNIST. Each network is trained for 200 epochs. In
(b),(d),(f),(h), each row represents samples generated by the same subnetwork of a CG.
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(a) comparing MAE of distributions of CG v.s.
VAE and GAN

(b) comparing MRE of distributions of CG v.s.
VAE and GAN

(c) distraction scores of subnetworks of CG

Figure 3.24: Quantitative measures of performance of CG on MNIST. Results are obtained by training models for
100 and 200 epochs for balanced and imbalanced datasets, respectively.

Result We first look at the quality of sample MNIST images produced by CG.

We present sample images generated by CG, VAE, and GAN in Figure 3.22 and

Figure 3.23. We can observe a few things about the e↵ectiveness of CG from these

figures. First, compared with VAE and GAN, CG is able to generate digits with

comparable quality. Second, as shown in Figure 3.23, diversity of digits learned by CG

is comparable with VAE and better than GAN. Lastly, we also show MNIST samples

generated from individual subnetwork in Figure 3.22 and Figure 3.23. Each row in

the second and fourth columns contains samples generated from a single subnetwork.

We can see that some subnetworks learn homogeneous representations. We argue

that this is an advantage of CG. CG helps its subgenerators learn more homogeneous

representations, making the subnetworks more transparent.

We now turn to the quantitative analysis of the performance of CG. As in previ-

ous sections, we use MAE and MRE defined in Equation 3.10 and Equation 3.16 as
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error measurements. Following the method adopted in the experiment CC:LD:RD,

we use a pre-trained classifier to estimate the distribution of object classes generated

by four CG models and two benchmark models. Each model generates 512 sample

images, and these sample images are classified by the classifier to estimate the distri-

bution of object classes. MAE and MRE are then calculated based on the estimated

distribution.

The quantitative results are shown in Figures 3.24a and 3.24b. As we can see from

these two figures, CG can achieve comparable performance with VAE and GAN in

the balanced dataset. For the imbalanced dataset, CG outperforms VAE and GAN

in terms of MRE, as shown in Figure 3.24b. The high MRE errors for VAE and

GAN mean that they do not learn distribution of less frequent classes well. CG,

however, is able to achieve lower MRE errors. It is mainly because through its choice

mechanism, its subgenerators learn more homogeneous representations, which helps

CC detect less frequent classes of objects. Finally, we use DS defined in Equation

3.17 to evaluate subnetworks of CG, and we present results in Figure 3.24c. The

results obtained so far show that regularizations help more subnetworks focus on a

specific class of objects, but the overall benefits that they bring to CG have not been

as impressive as what they have achieved in low dimensional space.

3.5.4 Experiment: Showing Flexibility of Choice Generator

In this experiment, we show that CG has a greater flexibility and finer control over

subnetworks through controlling its bias parameters. More specifically, CG can

control what kinds of objects it wants to generate by manipulating its internal bias.

For example, in Figure 3.25, we show that after training a CG, we are able to direct

CG to generate samples excluding “6” and “7” (shown in Figure 3.25a) and samples

excluding “4” and “9” (shown in Figure 3.25b).
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(a) samples generated by CG without “6” and
“7”

(b) samples generated by CG without “4” and
“9”

Figure 3.25: Flexibility of CG in controlling its subnetworks

3.6 Conclusion

We introduce and formulate an interpretable neural architecture called CC. CC’s in-

ternal representations can be reduced to an explainable interpretation of probability

distribution. We also show that CC can e↵ectively learn class distribution in both

synthetic and real world data. Furthermore, CC can e↵ectively learn class distribu-

tion even in the case of extremely imbalanced data. Last, we build CG by placing

generators on the leaf nodes of CC as its subnetworks. Our experimental results show

that CG is not only a more interpretable generator but also maintains a comparable

performance with popular generators like VAE and GAN. In addition, it has an ad-

vantage of making its subnetworks learn more homogeneous representations, making

them more transparent. We further demonstrate the flexibility of CG by controlling

it to produce certain classes of objects through manipulating its internal bias.

We also found that subnetworks and internal nodes of CG have too much freedom

in learning encodings and distribution of input data. This freedom causes some

within generators to learn heterogeneous representations and some between generators

subnetworks to learn homogeneous representations. Thus, as a future study, we would

like to explore the use of regularization to improve the performance of CG and have

each of its subnetwork focus on learning a specific class of objects.
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CHAPTER IV

CONDITIONAL CHOICE CELL ARCHITECTURE

4.1 Introduction

In Chapter III, we formulate Choice Cell (CC), and the results show that CC can

e↵ectively learn encodings and distribution of input data. In this chapter, we use

CC as building blocks to develop a conditional network. We coin this newly built

architecture Conditional Choice Cell (CCC). CCC not only inherits the interpretabil-

ity of CC but also models order, relation, and dependency among events. The main

contributions of this chapter are:

• We extend CC to build a new neural architecture CCC, which is a conditional

model with an advantage of being more interpretable and transparent.

• We combine CCC with the Stable Neighbor Matching (SNM) training to show

its e↵ectiveness in learning conditional distribution and encodings of input data.

The chapter is organized as follows. In Section 4.2, we provide a literature review

most relevant to CCC. The review covers information about RNN, Bidirectional RNN,

Bidirectional LSTM, Conditional GAN, and Auxiliary Classifier GAN. In Section 4.3,

we provide a formal introduction to CCC. In Section 4.4, we show the e↵ectiveness of

CCC in learning synthetic datasets. An experiment showing that CCC can e↵ectively

learn the conditional distribution of input data is presented in Subsection 4.4.1. With

the goal of showing the e↵ectiveness of CCC in learning both distribution and en-

codings, we conduct another experiment in Subsection 4.4.2. Finally, we summarize
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main contributions of this chapter and suggest future work in Section 4.5.

4.2 Literature Review

RNN, Bidirectional RNN, and Bidirectional LSTM Recurrent Neural Net-

work (RNN), a class of neural networks, is able to model data consisting of sequences

of elements that are not independent [22]. Given an input sequence (x1 ,x2 , ...,xT ),

an RNN computes current state ht based on its current input and its past information

ht�1. It then produces current output yt based on ht. More specifically,

ht = �(Wxhxt +Whhht�1 ) (4.1)

yt = Whyht , (4.2)

where bias terms are omitted for brevity.

One notable issue of RNN is the vanishing gradient. To solve this issue, Hochreiter

and Schmidhuber proposed Long Short-Term Memory (LSTM), which introduces

memory cells to overcome di�culties encountered by the conventional RNN [40].

More details about LSTM can be found in Section 3.2. Another shortcoming of the

conventional RNN is that it only exploits past information [45]. To help address

this issue, Bidirectional RNN (BRNN) extends RNN to take into consideration the

dependency on future information as well [46]. A BRNN extends Equation 4.1 to

compute a forward hidden sequence
�!
h and a backward hidden sequence

 �
h . Then it

calculates the output sequence y based on
�!
h and

 �
h . More specifically,

�!
ht = �(W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1)

 �
ht = �(W

x
 �
h
xt +W �

h
 �
h

 �
h t�1)

yt = W�!
h y

�!
ht +W �

h y

 �
ht ,
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Combining BRNN and LSTM yields Bidirectional LSTM, which solves the vanishing

gradient issue and allows modeling long-range dependency in both input directions

[45].

4.2.1 Attention Model

Another research area to CCC is Attention Model (AM) [42]. AM can be viewed as an

extension of LSTM. It extends the formulation of LSTM to the following equations.

gt = tanh(Ugh ht�1 +Wgx xt +Wgz zt )

it = �(Uih ht�1 +Wix xt +Wiz zt )

ft = �(Ufh ht�1 +Wfx xt +Wfz zt )

ot = �(Uoh ht�1 +Wox xt +Woz zt )

st = gt � it + st�1 � ft

ht = tanh(st )� ot ,

where zt is a context vector. Intuitively, zt dynamically represents the relevant parts

of images with respect to output ht at time t. It can be computed from the annotation

vectors ai , i = 1, 2, ..., L, which corresponds to the features extracted from raw input,

and a positive score ↵i representing relative importance of feature ai for predicting

next output ht. The set of annotation vectors {a1 ,a2 , ...,aL } are extracted from

input data using lower layers of CNN. The relevance score at time t, ↵ti, is computed

as softmax of outputs, eti for i = 1, ..., L, of an AM, fatt. The output, eti, is defined

as

eti = fatt(ai ,ht�1 ),

where fatt is implemented as a multilayer perceptron.
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Then, the context vector zt is computed as blending the set of relevance scores at

time t and the set of annotation vectors together, i.e.,

zt = fble({↵t1,↵t2, ...,↵tL}, {a1 ,a2 , ...,aL }).

A typical choice of blending function, fble, is to take zt to be the weighted average of

its inputs [43], i.e. zt =
PL

i=1(↵tiai ).

Conditional GAN and Auxiliary Classifier GAN Another line of research that

is related to CCC is Conditional GAN, which is a variant of GAN. GAN represents

a promising avenue for unsupervised learning, because it sidesteps the di�culty of

approximating many intractable probabilistic computations [12, 47]. More informa-

tion about GAN can be found in Section 2.2. As an unconditional generative model,

GAN has no control on modes of the data being generated. To incorporate this

capability into GAN, [47] proposes Conditional GAN to direct the data generation

process by conditioning the GAN model on additional information [47]. Conditional

GAN achieves this goal by feeding additional information y into the generator and

the discriminator. On the generator side, extra information y is concatenated with

the original latent vector z to form a joint hidden representation. This joint repre-

sentation is then fed to the generator as its input. On the discriminator side, extra

information y is concatenated with real sample x and they are presented as input to

the discriminator. Thus, the minimax formulation in Equation 2.1 is modified to

max
✓G

min
✓D

Ex⇠Px [�logD✓D(x|y)] + Ez⇠Pz [�log(1�D✓D(G✓G(z|y))]

Auxiliary Classifier GAN (AC-GAN) represents an alternative way of utilizing

side information in GAN [48]. In AC-GAN, the generator uses both class information

and the latent variable to generate samples. The discriminator tries to predict both
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Figure 4.1: Abstract View of a Conditional Choice Cell

the probability distribution of sample sources and the probability distribution over

sample classes. The objective of the discriminator is to maximize the log-likelihood

of the correct source and the log-likelihood of the correct class. The objective of the

generator is to maximize the log-likelihood of the correct class while minimizing the

log-likelihood of the correct source.

4.3 The Conditional Choice Cell Architecture

As introduced in Section 3.3, a CC functions as a selection gate which outputs a noisy

version of one of its input tensors placed on its leaf nodes. CCC uses a Fixed Choice

Cell (FCC) to combine multiple CCs together to form a conditional network. A FCC

behaves like CC, producing a noisy version of one of its input tensors placed on its

leaf nodes, but its internal ↵ values are pre-determined. Formally, FCC is defined as

the following.

Definition IV.1 (Fixed Choice Cell (FCC)) Let x be a set of input tensors and

cc(x, z; bias, and scale) be a CC. A FCC is a CC, except its ↵ is given instead of

being determined by z, bias, and scale, i.e.,

y = cc(x,↵) (4.3)
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Figure 4.2: Detailed View of a Conditional Choice Cell

To distinguish it from an ordinary CC, denote FCC as ccf (x,↵).

Using FCC, CCC combines multiple CCs together. Figures 4.1 and 4.2 show

graphical representations of CCC. The top two nodes in Figure 4.2 are FCCs. Based

on pre-determined ↵, the top-right node outputs a noisy version of one of outputs

produced by the leaf nodes, and the top-left node outputs a noisy version of one of the

optional outputs generated by the leaf nodes. The leaf nodes in Figure 4.2 are CCs

that share a set of input tensors. Each of the leaf node models a separate conditional

distribution P (outt |outt�1 ), where outt�1 is a noisy version of one of input tensor

in the shared input set. Formally, CCC is defined as the following.

Definition IV.2 [Conditional Choice Cell (CCC)] Let x = {x0 ,x1 , ...,xn�1 } be a

set of input tensors. Let {cc0(x, z; bias0 , scale0 ), cc1(x, z; bias1 , scale1 ), ...,

ccn�1(x, z; biasn�1 , scalen�1 )} be a set of CCs. A CCC is a n-nary tree with n+ 2

nodes, where a cci is placed on a leaf node i for i = 0, ..., n-1. Let outt,i and ↵t,i

be outputs produced by the leaf node i at step t. Two internal nodes n, n+ 1 of CCC
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contain FCCs, and their outputs at step t are

outt = ccf ({outt,0 , ...,outt,n�1 };↵t ), for node n (4.4)

↵t+1 = ccf ({↵t,0 , ...,↵t,n�1 };↵t ), for node n+1, (4.5)

where ↵0 will be given at the initial step t=0, and outt is the final output of the

CCC at step t.

We design CCC to be a conditional model. The overall desired behavior of CCC

is to output a fuzzy version of one of input tensors of its leaf node according to

conditional probability P (outt |outt�1 ), where outt�1 ,outt 2 {x0 ,x1 , ...,xn�1 }.

At each step t, a leaf node i produces one of the input tensors, outt,i , based on its

internal probability distribution, and the FCC at node n then selects an output from

outputs of its leaf nodes based on its previous selection outt�1 . The FCC at node

n+ 1 updates its ↵t to ↵t+1 to prepare for the next selection.

4.4 Experiments of Conditional Choice Cell on Synthetic Data

In this section, we show the performance of CCC on synthetic datasets. Experiments

in this section are divided into three subsections. In the first subsection, we show

that CCC can learn the distribution of input data. In the second subsection, we

demonstrate that CCC can learn the encodings of input data. In the last subsection,

we present the e↵ectiveness of CCC in learning the distribution and the encodings of

input data simultaneously.

4.4.1 Experiment: Learning Conditional Distribution of Synthetic Data

Using Conditional Choice Cell (CCC:LD:SD)

The goal of the experiment CCC:LD:SD is to show that CCC can learn conditional

distribution of input data. We would like each leaf node of CCC to learn a sepa-
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rate conditional distribution P (out1 |out0 = xi ). We assume that CCCs know the

encodings of input datasets prior to the training, and we only train CCCs to learn

conditional distribution of input data.

Dataset In this experiment, we use four synthetic datasets with increasing com-

plexity: 2E-1hot-Con, 2E-Gen-Con, 4E-1hot-Con, and 4E-Gen-Con. To have the

datasets exhibit conditional dependency, each dataset is formed by following the pro-

cess below. First, a long sequence S is generated by drawing encodings from the set

of true encodings, i.e., Si 2 x, based on the initial distribution and the conditional

distribution. Then, a sliding window w slides through the sequence S to form a train-

ing dataset S with n samples, each of which is of length |w|. That is, the ith sample in

S is Si...i+|w|�1. Additional information about the datasets is briefly described below.

• 2E-1hot-Con: x ⇢ R2 and |x| = 2. Each encoding in x is one-hot encoded.

• 2E-Gen-Con: x ⇢ R2 and |x| = 2.

• 4E-1hot-Con: x ⇢ R4 and |x| = 4. Each encoding in x is one-hot encoded.

• 4E-Gen-Con: x ⇢ R4 and |x| = 4.

Each dataset contains 6400 samples, and |w| is set to 2. More details about these

datasets can be found in Table A.2 of the Appendix.

Network Architecture The basic architecture of CCC follows the formulation

presented in Figures 4.1 and 4.2. To facilitate the learning of conditional distribution,

we partition datasets and conduct training as follows. Let s 2 S be a training sample.

Let s0 and s1 be the first and second encodings of s. Let X be a batch of real samples.

At each batch iteration, we first partition real samples according to their conditions

s0 . That is, Xxi = {s1 |s0 s1 2 X ^ s0 = xi }. For each partition Xxi , we specify

↵0 corresponding to xi . Then, using the pre-determined ↵0 , CCC generates a set
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Figure 4.3: MAEs of P (out1 |out0 ) learned by CCC in the experiment CCC:LD:SD. Each network is trained for 100
epochs.

of samples, Gxi , according to Equation 4.4 with t = 1. After that, for each condition

xi 2 x, we apply SNM to Gxi and Xxi to produce a stable match with respect to that

condition. A loss, Lxi , is then calculated based on the stable match for each condition

according to Equation 2.6, and MAE is used in the place of the loss function. The

final loss is the average of Lxi for xi 2 x.

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001. In

addition, z is uniformly distributed over the half-open unit interval [0, 1) for all leaf

nodes of CCC. We set scale to 40. Batch size is set to 512. We train each model on

each dataset for 100 epochs.

Result To assess the quality of conditional distribution learned by each branch of

CCC, we use MAE defined in Equation 3.10. Since each CCC has multiple branches

of CC, we use a box plot to visualize the results in Figure 4.3. Each box in the plot

represents the spread of MAE of conditional distributions learned by leaf nodes of

CCC for a specific dataset. The orange bar in the middle of each box represents the

median of MAE of conditional distributions learned by leaf node CCs. As we can

see from Figure 4.3, CCC successfully learns conditional distribution of all datasets.

The medians of MAEs of conditional distributions for 2E-1hot-Con and 2E-Gen-Con

datasets are below 0.1%. For 4E-1hot-Con and 4E-Gen-Con datasets, they are only

around 0.2% and 0.9%, respectively. The MAE of conditional distribution in the

worst case is also below 1% error rate.
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4.4.2 Experiment: Learning Conditional Distribution and Encodings of

Synthetic Data using Conditional Choice Cell (CCC:LDE:SD)

The goal of the experiment CCC:LDE:SD is to show that CCC can learn conditional

distribution and encodings of input data simultaneously. We assume that CCCs know

neither distributions nor encodings of input datasets prior to the training. After

training, we expect that each CC at a leaf node should learn a separate conditional

distribution P (out1 |out0 = xi ), without knowing true encodings in advance.

Dataset The datasets used in this experiment are the same as those used in the

experiment CCC:LD:SD.

Network Architecture The basic architecture of CCC follows the formulation

presented in Figures 4.1 and 4.2, except that for each CC on the leaf node of CCC,

no input tensor is fed to it. Instead, each CC learns encodings using its hidden

variables placed on its leaf nodes. Like the experiment CCC:LD:SD, we partition a

batch of real samples into Xxi for xi 2 x. For each partition CCC uses ↵0 specified

xi to generate samples Gxi . SNM is then applied to Gxi and Xxi to produce stable

matches under each condition xi . After that, a loss, Lxi is calculated for each stable

match according to Equation 2.6, and loss in the equation uses MAE. The final loss

is then calculated based on average of Lxi .

Hyper-parameters We use Adam optimizer with learning rate equal to 0.001. In

addition, z is uniformly distributed over half-open unit interval [0, 1) for all branches

of CCC. We set scale to 40. Batch size is set to 512. We train each model on each

dataset for 400 epochs.

Result Like the experiment CCC:LD:SD, we use MAE to assess conditional distri-

butions learned by CCC. Since CCC does not know true encodings, we apply SNM to
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(a) MAEs of P (out1 |out0 )
(b) MREEs of encodings learned by leaf nodes
of CCC

Figure 4.4: Quantitative error measures for P (out1 |out0 ) and encodings learned by leaf nodes of CCC in the
experiment CCC:LDE:SD. Each network is trained for 400 epochs.

match encodings learned by a leaf node with true encodings following the same con-

dition, xi , before calculating errors of conditional distribution. To assess the quality

of encodings learned by each leaf node of CCC, we define Mean Relative Encoding

Error (MREE) on top of Equation 3.11. MREE is defined as

MREE(x̂xi ,x) =
1

|x|
X

REE(a, b), (4.6)

where x̂xi are encodings learned by the leaf node i of CCC, x is the set of true

encodings, and (a, b) is a pair in the stable match outputted by applying SNM to

x̂xi and x.

Results are shown in Figure 4.4. As shown in this figure, CCC can e↵ectively

learn the conditional distribution and encodings at the same time. For 2E-1hot-Con

and 2E-Gen-Con datasets, both distribution errors learned by CCC are below 1%.

The encoding errors are below 5% for the 2E-1hot-Con dataset and 2.5% for the 2E-

Gen-Con dataset, respectively. For 4E-1hot-Con and 4E-Gen-Con datasets, CCC can

achieve the distribution errors below 5%.

4.5 Conclusion

In this chapter, we extend CC to CCC, which is a conditional neural architecture

that has an advantage of being more interpretable and explainable. In addition,
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we demonstrate the e↵ectiveness of CCC in learning conditional distribution and

encodings of synthetic data. We acknowledge this study has a few limitations. First,

due to its exploratory nature, this study only focuses on applying CCC to synthetic

data. It does not apply CCC to real world data to compare its performance with

other frequently used conditional models. Second, the number of neural units in

current CCC grows exponentially with the number of configurations in the input

space. Despite those limitations, the results of this study indicate the potential of

CCC as a conditional neural model with rare and valuable merit of interpretability

and transparency. In future work, we would like to apply CCC to real world data

to demonstrate its broader applicability. We would also suggest that future work be

conducted to investigate methods that would collapse leaf nodes of CCC based on

conditional distribution.
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CHAPTER V

CONCLUSION

5.1 Main Contributions of the Dissertation

A list of main contributions of the dissertation are summarized below.

• In Chapter 2, we propose the Stable Neighbor Match (SNM) training to ap-

proximate the Wasserstein distance in the context of generative modeling. Like

Generative Adversarial Network (GAN), the proposed SNM training does not

require expensive calculations of joint distributions in high dimensional space.

• To investigate the stability of generators trained with SNM, we conduct four

experiments to compare its performance with other related generative models.

The experimental results indicate that the SNM training not only avoids ex-

pensive computation of high dimensional distribution, but also exhibits valuable

training stability.

• In Chapter 3, we propose an interpretable neural architecture called Choice Cell

(CC). Like gated units in Long Short-Term Memory, CC controls and manip-

ulates information flowing through it. It has an additional advantage of being

able to reduce its hidden representations to more explainable interpretation of

probability distribution.

• In Chapter 3, we combine other generators with CC to build the Choice Genera-

tor (CG). Results from both synthetic and real world data demonstrate that CG
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is not only more explainable and transparent than standard neural networks,

but also maintains comparable performance with other models.

• We also conduct experiments that use the SNM training with semantic repre-

sentation of input data, and the results indicate further improvement of perfor-

mance in learning input data.

• In Chapter 3, we apply all-to-all and one-to-other regularization during the

training of CG. The experimental results indicate that using regularization

helps subgenerators in CG learn more homogeneous representations, further

improving the interpretability of these subgenerators.

• In Chapter 4, we present an extension of CC called Conditional Choice Cell

(CCC). CCC is a conditional model with an advantage of being more inter-

pretable and transparent.

5.2 Future Research Directions

Some of the future research directions are listed below.

• It is suggested that future studies be conducted to improve the running time

of SNM so that the SNM training could be more applicable to higher dimen-

sional space. Faster SNM could also a↵ord matching between two batches with

larger sizes, which would result in a more accurate approximation for optimal

Wasserstein distance.

• Another research direction is to explore the combination of the SNM training

and the adversarial training. This might lead to a new discovery of more e�cient

SNM training and more robust adversarial training at the same time.

• We also suggest that future work investigate more regularization techniques to

help each subnetwork of CG focus on a specific class of object. Then both
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subnetworks of CG and CG as a whole might become more transparent.

• Experiments that apply CCC to real world datasets could be conducted to

further study its strengths and weaknesses.

• It would also be beneficial to investigate the possibility of collapsing subbranches

of CCC so that the number of leaf nodes do not grow exponentially with the

number of conditions.
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APPENDICES

settings 2E-1hot 2E-Gen 4E-1hot 4E-Gen

true encoding [1.0, 0.0],
[0.0, 1.0]

[0.8, 0.1],
[0.3, 0.7]

[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]

[0.8, 0.1, 0.2, 0.4],
[0.3, 0.7, 0.3, 0.3],
[0.5, 0.1, 0.9, 0.4],
[0.3, 0.6, 0.3, 1.0]

true distribution [0.8, 0.2] [0.8, 0.2] [0.1, 0.5, 0.1, 0.3] [0.1, 0.5, 0.1, 0.3]
number of samples 6400 6400 6400 6400

Table A.1: Datasets used in the experiment CC:LD:SD

settings 2E-1hot-Con 2E-Gen-Con 4E-1hot-Con 4E-Gen-Con

encodings [1.0, 0.0],
[0.0, 1.0]

[0.8, 0.1],
[0.3, 0.7]

[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]

[0.8, 0.1, 0.2, 0.4],
[0.3, 0.7, 0.3, 0.3],
[0.5, 0.1, 0.9, 0.4],
[0.3, 0.6, 0.3, 1.0]

P (out0 ) [0.8, 0.2] [0.8, 0.2] [0.1, 0.5, 0.1, 0.3] [0.1, 0.5, 0.1, 0.3]
P (outt |outt�1 ) 0: [0.9, 0.1],

1: [0.1, 0.9]
0: [0.9, 0.1],
1: [0.1, 0.9]

0: [0.7, 0.1, 0.1, 0.1],
1: [0.1, 0.7, 0.1, 0.1],
2: [0.1, 0.1, 0.7, 0.1],
3: [0.1, 0.1, 0.1, 0.7]

0: [0.7, 0.1, 0.1, 0.1],
1: [0.1, 0.7, 0.1, 0.1],
2: [0.1, 0.1, 0.7, 0.1],
3: [0.1, 0.1, 0.1, 0.7]

n 6400 6400 6400 6400

Table A.2: Datasets used in the experiment CCC:LD:SD

Figure A.1: Architecture of pre-trained classifier on MNIST
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(a) BCC in experiment of learning
distribution and encodings of syn-
thetic data

(b) 4-nary CC in experiment of learning distribution and
encodings of synthetic data

Figure A.2: Network architectures in the experiment CC:LDE:SD

Figure A.3: Encoder-decoder structure of the VAE for training CC with pre-trained VAEs on MNIST
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