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Abstract: Many arid and semi-arid areas around the world are projected to experience 

increasing aridity levels throughout the 21st century. The increase in the frequency and 

severity of droughts and changing precipitation patterns will likely intensify the water 

shortages. The widening gap between water availability and demand in arid and semi-arid 

areas necessitates better understanding of water quantity and quality issues in these 

regions. The objectives of this dissertation are: (1) reviewing the challenges of applying 

Soil and Water Assessment Tool (SWAT) watershed hydrology and water quality model 

in arid/semi-arid regions with irrigated agriculture; (2) robust analysis of water 

availability in an example desert river basin under plausible future climate conditions; 

and (3) evaluating water and land management interventions for adaptive water resources 

management and agricultural water sustainability. The results show the possibility of 

dryer future and more saline water resources, increasing the risks of crop loss, especially 

for high-value crops like pecan. The current agricultural water management practices that 

support growing pecan orchards will be difficult to implement in the future due to 

growing water shortages. It is timely for agricultural producers to develop preparedness 

to use water with marginal quality or take action to reduce the net consumptive water use 

of their operations by improving agricultural water management. Changing the crop 

pattern and applying deficit irrigation for water intensive crops like alfalfa helps reduce 

the irrigation water consumption while growing more drought resistant crops such as 

pistachio and pomegranate could improve the resilience of agricultural producers to long-

term droughts. Challenges of modeling agricultural watersheds in arid/semi-arid regions 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

1. Background 

Irrigated agriculture produces 40% of global food production and consumes more than 

70% of water resources (Jӓgermeyr, et al., 2017; Word Bank, n.d.). It is estimated that 

agricultural land should expand significantly in order to feed the world’s population in 

the future (Jӓgermeyr, et al., 2017). Sustainability of water resources in arid/semi-arid 

regions around the world is threatened by increasing water and food demands of the 

growing population and climate conditions (AghaKouchak et al., 2015; Tietjen et al., 

2016). Impacts of irrigation water shortage on food security and economy of such regions 

necessitates detailed investigation of drought risks in future and adaptive planning and 

management to ensure sustainable water resources.  
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This dissertation offers a climate impact assessment methodology to characterize future 

water availability and examine the need for adaptation in a water-scarce river basin that 

supports irrigated agriculture. The study area is located in the desert-like climate of the 

southwest US in the US-Mexico border region. Agriculture in this region has faced the 

challenges of water quantity and quality in recent decades. Despite the general knowledge of 

future water stress challenges based on large scale synthesis (Cayan et al., 2010; Seager et 

al., 2013; Cook et al., 2015; Garfin et al., 2013; Dettinger et al., 2015), a robust analysis of 

future states of available water resources is critically needed to guide adaptive agricultural 

water management. This study provides a detailed analysis of plausible future climate 

conditions and water availability for agricultural activities and suggests possible options to 

mitigate the risks of droughts for crop production.  

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) watershed hydrology and 

water quality model is used to simulate the impact of different climate scenarios and water 

conservation operations. The results can be used to initiate the water sustainability dialogue 

between the stakeholders in the watershed to optimize and secure future crop production 

under plausible risks of water shortage and salinization. 

2. Objectives 

The objectives of this dissertation are: 

(1) Provide a thorough review of challenges and limitations of applying SWAT in arid/semi-

arid regions with irrigated agriculture future application of the model; 

(2) Conduct a robust analysis of water availability under plausible future climate conditions 

in the middle section of the Rio Grande Basin; and  
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(3) Analyze practical water and land management interventions for agricultural water 

sustainability in the study area under severe water shortage conditions.  

3. Organization 

This dissertation includes 5 chapters. Chapter I offers a general introduction of the 

dissertation and explains the objectives of the research. Chapter II provides the detailed 

review of literature on the application of SWAT in irrigated watersheds in arid/semi-arid 

regions, analyzes the challenges reported in the literature and suggests practical instructions 

for a reliable modeling in such watersheds. Chapter III studies the water availability and 

reliability of surface water and groundwater resources under plausible climate projections. 

Chapter IV investigates practical series of interventions in irrigated agriculture to conserve 

more water to adapt to a warm-dry future in the region. Chapter V summarizes the 

conclusion and suggests future works. 
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CHAPTER II 

 

 

MODELING ARID/SEMI-ARID IRRIGATED AGRICULTURAL WATERSHEDS 

WITH SWAT: APPLICATIONS, CHALLENGES, AND SOLUTION STRATEGIES 

 

 

 

1. Introduction 

Irrigation is by far the largest single water user worldwide, accounting for more than 70% 

of total freshwater withdrawals in most regions of the world (Khokhar, 2017) in more 

than 300 million hectares of irrigated agricultural lands (Frenken and Gillet, 2012). Many 

arid/semi-arid irrigated agricultural watersheds around the world are projected to 

experience increasing aridity levels throughout the 21st century (e.g., Southwestern North 

America: Seager et al., 2007; Dettinger et al., 2015; Cook et al., 2015; Sub-Saharan 

Africa: Kotir, 2011; Middle East: Chenoweth et al., 2011; Central Asia: Lioubimtseva 

and Henebry, 2009; Southwest Australia: Silberstein et al., 2012). Increasing aridity 

causes concern about water sustainability, which is compounded with growing water  
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demand due to socio-economic development and population growth in the face of hotter 

and drier climatic conditions (AghaKouchak et al., 2015). The increase in the frequency 

and duration of droughts and changing precipitation patterns will likely intensify surface 

water shortages (e.g., Tietjen et al., 2017; Mallakpour et al., 2018). Consequently, 

agricultural groundwater prospects are dire in arid/semi-arid regions in vast areas of the 

world (Gleeson et al., 2012; Amanambu et al., 2020) due to scarcity and variability of 

renewable water (Basso et al., 2013). As water availability diminishes, there  is also a 

rising concern about deteriorating quality of available water resources (Parris, 2011) due 

to excessive sediment and nutrient pollution (US EPA, 2013) and salinity issues (Wurbs, 

2002). The widening gap between water availability and demand necessitates better 

understanding of water quantity and quality issues in irrigated agricultural areas in 

arid/semi-arid climates. 

Watershed models are used as a practical tool to investigate hydrological processes in 

agricultural lands of arid and semi-arid watersheds to improve our understanding of the 

watershed’s response to irrigation and other agricultural management practices under 

changing climate (Singh and Woolhiser, 2002; Mirchi et al., 2010). Realistic 

representations of regional hydrologic fluxes, water management, and irrigation practices 

are a prerequisite for meaningful watershed modeling applications (Arnold et al., 2015), 

especially in agricultural regions where irrigated croplands are the dominant land use. 

Reproducing the hydrologic response of arid/semi-arid agricultural regions that face 

increasing aridity is particularly challenging due to complexities related to human 

interventions to modify the availability and flow of water in highly regulated irrigated 

watersheds. Model calibration in these watersheds can be a time consuming and costly 
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process that involves expert judgment based on practical understanding of the regional 

hydrology, irrigation and agricultural management, quality data, and in some cases, good 

fortune to set up a representative model. A good model requires an accurate model setup 

with a reasonable level of data quality and quantity to represent most of the key 

watershed processes prior to calibration (Faramarzi et al., 2015). Once an accurate model 

is developed, minimum calibration is usually required to improve model performance, 

otherwise calibration will be challenging and subjective as the errors due to the lack of 

accurate model setup are counterbalanced with model parameters (Ahmadzadeh et al., 

2016; Faramarzi et al., 2017; Marek et al., 2017). A “good” calibration requires 

identification of the parameters that govern the hydrological processes and their 

interactions within the given watershed (Kirchner, 2006; Abbaspour et al., 2015; 

Daggupati et al., 2015), and assigning them appropriate values, known as model 

parametrization (Malone et al., 2015). Application of irrigation to maximize crop 

production creates large inter- and intra-annual variations in water consumption, which in 

turn affects key components of the water budget (e.g., streamflow, ET, and groundwater 

recharge) in arid/semi-arid irrigated lands. Watershed models that are capable of 

representing these complexities offer an advantage when investigating hydrologic 

impacts of alternative climate and management scenarios.   

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a widely applied 

public-domain semi-distributed, continuous-time watershed hydrology and water quality 

model (Gassman et al., 2007; Douglas-Mankin et al., 2010). It informs adaptive water 

management by facilitating quantitative analysis of different components of the water 

budget within a watershed. The model’s ability to simulate hydrological processes under 
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the impacts of water and land management practices, and different climate forcings has 

made it applicable in a wide variety of water resources studies. Some examples 

representing a latitudinal pattern of SWAT applications include high and low flows 

(Singh et al., 2005), floods and droughts (Ahn et al., 2018; Ammar et al., 2020), water 

quality (Abbaspour et al., 2007; Niraula et al., 2013; Abbaspour et al., 2015; Xu et al., 

2016; Zarrineh et al., 2018; Du et al., 2020), irrigation (Srivastava et al., 2010; Xie et al., 

2014; Ang and Oeurng, 2018), crop yield (Schierhorn et al., 2014; Wang et al., 2016; 

Heidari et al., 2019), climate impact assessment (Song and Zhang, 2012), water 

availability (Schuol et al., 2008; Ahn et al., 2018), and snow hydrology (Grusson et al., 

2015), among others. SWAT has a global user community with an active technical 

support forum that facilitates its applications worldwide. The model delineates the 

watershed using a digital elevation model (DEM) of topography and divides it into 

Hydrologic Response Units (HRU) based on slope, land use/cover, and soil data (Fig. 

2.1). Other primary inputs include available flow and water quality data, hydro-

meteorological data, and selection of methods to model biophysical processes (e.g., 

potential ET and channel routing). Further, plant growth characteristics and options to 

introduce agricultural operations (application of fertilizers, pesticides, tillage, etc. listed 

under management data) are provided in various built-in databases that can be modified 

based on specific conditions of a given modeling application. Outputs can be reported in 

daily, monthly, and annual time scales for HRUs and sub-basins. 

This paper offers a comprehensive review of SWAT applications in arid/semi-arid 

irrigated agricultural watersheds from 2000 to 2020. We provide an overview of different 
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modeling applications in irrigated agricultural lands under the broad themes of water 

quantity, water quality and a combination of these themes, providing a sub-thematic  

 

 

 

 

 

 

 

 

Figure 2.1. A general schematic of SWAT inputs (i.e., data and/or methods), processes, 

and outputs. 

synthesis of the multitude of hydrologic and water resources problems investigated with 

SWAT. We highlight modeling challenges such as data availability and quality issues, 

accuracy of results, and limitations in agricultural dominated watersheds, where irrigation 

is the major water management practice that governs the water balance. Further, we 

present example approaches reported in the literature to address these challenges, 

providing a synthesis of SWAT parametrizations for heavily irrigated arid/semi-arid 

agricultural areas to inform model set-up and calibration in future modeling efforts. 

Finally, we provide a critical discussion of the reviewed SWAT applications, calibration 
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strategies, interpretation of results, and a roadmap for future model advancements and 

applications to expand the utility of SWAT for addressing water and food security 

questions. 

2. Article Selection Process for Literature Review 

We reviewed SWAT applications to arid/semi-arid irrigated agricultural watersheds from 

among >3000 papers on SWAT published in the last two decades (2000-2020). Papers 

were selected for inclusion in this synthesis if they: (i) were published in peer-reviewed 

scientific journals; (ii) applied SWAT in arid and/or semi-arid climates; (iii) explicitly 

mentioned a focus on the simulation of agricultural watersheds; and (iv) took irrigation 

into account. As illustrated in Figure 2.2, the paper selection process began with a general 

online search and targeted search of “water and environmental science journals” and 

determining the climate type and presence of agricultural lands. Many papers did not 

mention the climate type, requiring checking the study area’s precipitation and 

evaporation and other sources of climate information to determine aridity (e.g., Köppen 

climate classification map (Kottek et al., 2006)). We initially identified 160 papers based 

on the first three criteria but eventually narrowed down the selection to 102 papers that 

offered substantial discussions about irrigation modeling using SWAT. We subsequently 

classified the papers that were selected for detailed review based on the primary 

modeling theme, including (1) water quantity analysis, (2) water quality analysis, and (3) 

a combination of both water quantity and quality issues. We also synthesized the 

literature in terms of modeling challenges and solutions, calibration parameters, and 

model performance. 
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Figure 2.2. Selection of papers for inclusion in the literature review. 

3. Applications of SWAT to Arid/Semi-Arid Irrigated Agricultural Watersheds 

The reviewed SWAT arid/semi-arid irrigated agricultural watershed applications 

illustrate the global distribution and thematic foci of the selected studies (Fig. 2.3). The 

majority of the applications focused on water availability concerns, especially in East 

Asia, North America, and Middle East and North Africa (MENA). The second largest 
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group of applications focused on a combination of water quantity and quality issues (e.g., 

MENA region, Europe, and North America). Only a few studies applied SWAT 

exclusively for water quality modeling of irrigated agricultural settings in arid/semi-arid 

regions (e.g., East Asia). 

 

Figure 2.3. SWAT applications in arid/semi-arid irrigated agricultural regions in 24 

countries, showing the global distribution and thematic foci of the selected studies. 

SWAT applications that focused on various water quantity issues around the world are 

summarized in Table 2.1. A common SWAT application is to quantify the water budget 

components and examine the impacts of different watershed attributes (e.g., soil type and 

land use) on hydrologic processes under baseline business-as-usual conditions (Yu et al., 

2011; Brouziyne et al., 2018; Aouissi et al., 2016; Tarawneh et al., 2016; Worqlul et al., 

2018; Luan et al., 2018). SWAT has also been applied to investigate water availability 

(surface water and groundwater recharge) under demand growth (Perrin et al., 2012; 

Reshmidevi and Nagesh Kumar, 2014; Faramarzi et al., 2017; Chen et al., 2017 & 2018a; 

Luan et al., 2018), climate change (Van Liew and Garbrecht, 2003; Abbaspour et al., 

2009; Awan and Ismaeel, 2014; Ronco et al., 2017; Naderi, 2020), adaptive management 

(Ahmadzadeh et al., 2016; Ahn et al., 2018; Chen et al., 2019b), mitigating groundwater 
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depletion (Hu et al., 2010; Marek et al., 2017), and different combinations of these issues 

(Molina-Navarro et al., 2016; Jordan et al., 2018).  

The model and its extensions have effectively facilitated the analysis of various water, 

land, and nutrient management practices (e.g., irrigation, cropping change, and fertilizer 

application) on water use and crop production at different scales. Examples include total 

annual irrigation water use in a large, transboundary basin (Cheema et al., 2014) and crop 

yield improvements through fertilization management to alleviate potential water 

conflicts due to the need to increase crop production by changing pasture to croplands in 

a harsh environment in Mongolia (Jordan et al., 2018). The SWAT-SSA model was 

developed for Sub-Saharan Africa to examine the potential for expanding “smallholder 

irrigation” farms in the region (Xie et al., 2014). SWAT-FARS (customized version of 

SWAT model for Fars region), showed water usage decrease by removing rice 

cultivation, and water usage increase by pressurized irrigation (Delavar et al., 2020). 

SWAT’s auto-irrigation function has been applied to estimate optimum irrigation water 

demand irrespective of available water resources to quantify water scarcity (e.g., Mikosch 

et al., 2020). Masud et al. (2018) used SWAT simulated crop yield and crop water 

consumption to investigate impacts of climate change on water footprint. 
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Table 2.1. SWAT applications examining water quantity in arid/semi-arid agricultural 

watersheds. 

Scope Example application Significant results Country (Citation) 

B
as

el
in

e 
w

at
er

 m
an

ag
em

en
t 

an
d

 h
y

d
ro

lo
g

ic
 b

u
d
g

et
 a

n
al

y
si

s 

Improving simulation 

of irrigation 

methods/BMPs (e.g., 

SWAT-MAD)  

Simulated BMPs improved water 

resources; accounting for irrigation 

return flows improved results; 

irrigation values differ by water 

source. 

USA (Chen et al., 2018b); 

USA (Kannan et al., 

2011); Australia 

(McInerney et al., 2018) 

Evaluating and 

improving SWAT 

performance using 

hard data (lysimeter, 

surface soil moisture) 

Underestimated ET; Default LAI 

parameters might cause errors; Soil 

moisture and ET improved mostly for 

upper layers; streamflow and 

groundwater flow were unaffected. 

USA (Marek et al., 2016); 

USA (Chen et al., 2011) 

SWAT/SWAT-

MODFLOW 

calibration and 

validation in 

watersheds with more 

than one outlet, 

diverse crop patterns, 

etc. 

Wet year data impacted 

parametrization more in two-way 

calibration-validation; land use-based 

ET improved calibration; model limits 

in “multiple domains” should be 

considered. 

Canada (Rahbeh et al., 

2011); Pakistan (Becker 

et al., 2019); USA (Acero 

Triana et al., 2019) 

Modeling surface 

water-groundwater 

interaction 

Simulated daily groundwater table 

successfully; estimated seasonal 

recharge, shallow aquifer evaporation, 

and annual water budget; modified ET 

module improved modeling of 

interactions. 

China (Luo and 

Sophocleous, 2011); 

Canada (Melaku and 

Wang, 2019) 

Modeling heavily 

managed watersheds; 

investigating 

sensitivity to soil 

characteristics; 

estimating water 

footprint of crop 

production. 

Soil type and canal seepage impacted 

water balance and hydrology; 

scheduled manual irrigation improved 

flow simulations; detected streamflow 

decline and flow pattern change due to 

groundwater pumping and return flow; 

suggested ways to improve modeling 

LAI, crop yield and soil water; 

improved water yield and ET results 

by simulating crop yield at HRU level.  

China (Wu et al., 2016); 

Ethiopia (Worqlul et al., 

2018); Brazil (Santos et 

al., 2018); USA (Wei et 

al., 2018); USA (Zeng 

and Cai, 2014); China 

(Luo et al., 2008b); India 

(Abeysingha et al., 2015); 

China (Luan et al., 2018) 

Coupling or 

comparing SWAT 

with other models 

(MODFLOW, 

MODSIM, HYDRUS, 

etc.) 

Using results of other models 

enhanced SWAT parametrization and 

simulations; increasing calibration 

parameters improved the coupled 

model’s reliability; coupled SWAT-

Iran (Ashraf Vaghefi, et 

al., 2017); Jordan 

(Rahbeh et al., 2019); 

China (Zhang et al., 

2016); USA (Sophocleous 
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Scope Example application Significant results Country (Citation) 

MODFLOW simulated a complex 

water system, successfully. 

and Perkins, 2000); USA 

(Aliyari et al., 2019) 
H

y
d

ro
lo

g
ic

 i
m

p
ac

ts
 o

f 

d
em

an
d

 
Preparing input data 

for a groundwater 

management plan. 

SWAT results and field surveys were 

used to quantify surface water, aquifer 

recharge rate and water table 

fluctuations.  

India (Perrin et al., 2012) 

Assessing surface 

water and 

spatiotemporal ET 

distribution. 

A model with managed reservoirs 

reproduced the distribution of river 

flow and ET. 

China (Sun and Ren, 

2013) 

Simulating water 

supply for different 

demands; analyzing 

the effects of 

simplifications and 

uncertainties; 

calculating “water 

provisions” in an 

ungauged basin. 

Identified blue water scarcity sources 

and groundwater stressed areas; 

uncertainty sources included 

hydrological features, heterogeneity, 

conflicts of water-food-energy 

resources, and environmental flows. 

Canada (Faramarzi et al., 

2017); East Africa (Notter 

et al., 2012) 

Investigating the 

impacts of 

engineering 

structures, large 

dams, and land use 

change on 

marshlands. 

Major decline in available water 

occurred after building dams due to 

increased ET and infiltration, and 

water diversion for irrigation. 

Iraq and Turkey (Jones et 

al., 2008) 

G
ro

u
n

d
w

at
er

 d
ep

le
ti

o
n

 m
it

ig
at

io
n

 

Evaluating options to 

improve groundwater 

storage for 

agriculture. 

Proof-of-concept for stopping 

groundwater depletion with reduced 

irrigation and crop yield. 

China (Hu et al., 2010) 

Evaluating impacts of 

agriculture water 

management on 

groundwater 

recharge; estimating 

natural and manmade 

recharges. 

Water harvesting improved 

groundwater recharge while increasing 

ET and soil moisture; location of the 

structures was important; ET was the 

dominant hydrologic flux. 

India (Garg and Wani, 

2013) 

Optimizing irrigation 

for an important food 

production region 

with groundwater 

overexploitation 

problems  

Identified optimal irrigation schedules 

based on crop yield and water 

productivity; quantified water 

conservation potential; determined 

trade-offs between limiting 

groundwater withdrawal to revive the 

aquifer and reduced crop yield. 

China (Sun and Ren, 

2014); USA (Gayley, 

2013); China (Zhang et 

al., 2018) 
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Scope Example application Significant results Country (Citation) 

Modeling water use in 

different crop 

rotations in an area 

with declining 

groundwater table due 

to over-pumping and 

small recharge 

Reasonable simulation of irrigation 

water use and crop yield, except for 

cotton; adjusted crop database and 

auto-irrigation parameters. 

USA (Marek et al., 2017) 

C
li

m
at

e 
ch

an
g

e 
im

p
ac

t 
as

se
ss

m
en

t 

Assessing climate 

change impacts on 

plant growth, 

hydrologic processes, 

limited water 

resources, and water 

balance; blue and 

green water resources 

and wheat yield in a 

benchmark river 

basin.  

Scenarios of increased CO2 and 

temperature decreased average ET and 

increased surface runoff, interflow, and 

streamflow; earlier plant growth 

changed timing of water demand and 

streamflow; water availability and 

related parameters (runoff ratio, 

recharge, etc.) decreased in most 

climate scenarios, mostly in 

agricultural parts or arid regions, albeit 

slightly in some cases; larger floods 

projected for some regions. 

USA (Van Liew and 

Garbrecht, 2003); USA 

(Ficklin et al., 2009); 

Jordan (Hammouri et al., 

2017); India (Reshmidevi 

et al., 2018); Italy (Ronco 

et al., 2017); Iran (Ashraf 

Vaghefi, et al., 2014); 

India, (Sahana and 

Timbadiya, 2020); Spain 

(Haro-Monteagudo et al., 

2020); Canada Masud et 

al., 2018 & 2019) 

Simulating 

groundwater 

recharge, crop yield, 

and water 

productivity for 

different climates  

Recharge increased with increased 

average rainfall; detected increased 

yield for most crops. 

Pakistan (Awan and 

Ismaeel, 2014); China 

(Niu et al., 2018) 

Studying climate 

change impacts on 

irrigated and dryland 

crops using modified 

SWAT-MAD.  

Agricultural ET, irrigation water, and 

crop yield fell at different rates with 

increased CO2 emission; crop yield 

decline was mainly from reduced 

maturity period due to higher 

temperature. 

 

USA (Chen et al., 2019a) 

C
o

u
p

le
d

 c
h

an
g

es
: 

cl
im

at
e,

 l
an

d
 

u
se

, 
an

d
 d

em
an

d
 

Projecting future 

water availability and 

groundwater storage 

Climate change may significantly 

reduce runoff, increasing water stress; 

all water budget components declined 

but ET. 

Mexico (Molina-Navarro 

et al., 2016); Mongolia 

(Jordan et al., 2018); Iran 

(Andaryani et al., 

2019a&b)  

Quantifying drivers of 

irrigation demand and 

developing water 

management plan 

Quantified precise irrigation demand; 

climate change, planting scale and 

pattern had greatest impact on demand; 

total water demand increased even 

under efficient irrigation methods. 

China (Zou et al., 2018) 
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Scope Example application Significant results Country (Citation) 

A
d

ap
ti

v
e 

ag
ri

cu
lt

u
ra

l 
w

at
er

 

an
d

 l
an

d
 m

an
ag

em
en

t 

Studying the impacts 

and applicability of 

water conservation 

approaches and water 

harvesting systems; 

evaluating auto-

irrigation function 

when simulating ET, 

water use, and crop 

yield; evaluating 

irrigation based on 

managed allowed 

depletion (MAD) 

On-farm methods saved more water; 

water harvesting reliability was low 

and location-dependent; pressurized 

irrigation did not increase water 

storage or total flow due to reduced 

return flows and groundwater table 

decline; intra-annual variability of ET 

and groundwater recharge are related 

to irrigation, especially in dry years; 

cropping change and “delayed 

planting” gave promising results; 

reducing uncertainties requires detailed 

management data. 

USA (Santhi et al., 2005); 

South Africa (Andersson 

et al.,2009); Tunisia 

(Ouessar et al., 2009); 

Iran (Ahmadzadeh et al., 

2016); Greece 

(Panagopoulos et al., 

2014); USA (Ahn et al., 

2018); USA (Marek et al., 

2020); China (Zou et al., 

2019); USA (Chen et al., 

2017 & 2018a &2019b); 

Spain (Rivas-Tabares et 

al., 2019) 

Assessing impacts of 

upstream water use. 

Irrigating rain-fed farms has a larger 

impact on flow reduction than 

rainwater harvesting. 

Iran (Masih et al., 2011) 

 

Notable SWAT applications focusing on water quality issues and a combination of water 

quantity and quality issues are summarized in Tables 2.2 and 2.3, respectively. While 

modeling watershed hydrology processes is a precursor to applying SWAT for analyzing 

water quality problems, Table 2.2 provides example SWAT applications that focused on 

water quality simulations as the primary objective of the study. Water quality analysis 

applications were predominantly conducted to investigate the impacts of baseline water 

management and hydrologic budget analysis (Santhi et al., 2001& 2006; Luo et al., 

2008a; Özcan et al., 2017), as well as water quality implications of future climate and 

land use scenarios (Records et al., 2014; Nguyen et al., 2017; Ba et al., 2020). On the 

national level, SWAT has been used as the backend model for web-based decision 

support tools such as Hydrologic and Water Quality System (HAWQS) to examine 

potential impacts of climate change on water quality (Srinivasan, 2019). Besides these 

themes, potential vulnerabilities to increased demand and climate change have been 

investigated using combined water quantity and quality applications of SWAT (Bouraoui 

et al., 2005; Setegn, et al., 2010; Zettam et al., 2017) with the ultimate goal of guiding 
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watershed management. Typical water quality concerns included sediment and nutrients 

(Santhi et al., 2001 & 2006; Özcan et al., 2017), pesticides (Luo et al., 2008a), and daily 

nutrient transport patterns (Nguyen et al., 2017). 

Table 2.2. SWAT applications focusing on water quality in arid/semi-arid agricultural 

settings.  

Scope Example application Significant results Country (Citation) 

B
as

el
in

e 
w

at
er

 m
an

ag
em

en
t 

an
d

 h
y

d
ro

lo
g

ic
 b

u
d
g

et
 a

n
al

y
si

s 

Evaluating different 

options to control 

pollution from dairy 

farm manure 

 

Simulated flow, sediment, and nutrients to 

assess permitted discharge volume for 

wastewater treatment plants and population 

growth with fixed crop acreage; water quality 

can be improved while maintaining status quo 

economic condition. 

USA (Santhi et al., 

2001) 

Evaluating BMPs to 

manage non-point 

source pollution and 

sediment transport 

Identified effective BMPs for sediment and 

nutrient loading. Management operations 

performed better at farm level than watershed 

scale. Erosion control reduced nitrogen 

transport, too. 

USA (Santhi et al., 

2006) 

Simulating streamflow, 

sediment loads, and 

spatiotemporal 

distribution of common 

pesticide loads; 

simulating nitrate 

leaching in a 

groundwater-depended 

basin  

Obtained better streamflow results when 

irrigation source was outside the sub-basin; 

streamflow was most sensitive to runoff curve 

number (CN); pesticide load transfer was 

related to surface runoff and pesticide 

application; streamflow simulation errors 

cascaded to pesticide simulation; adjusting 

agricultural operations improved water quality. 

 

USA (Luo et al., 

2008a); Iran 

(Akhavan et al., 

2010) 

Assessing the impact 

of irrigation return 

flows on nitrate loads 

Estimated monthly and annual streamflow and 

nitrate concentration for subbasins. 

Spain (Comín et al., 

2014) 

Finding an effective 

BMP set to manage 

lake eutrophication 

Selected a combination of fertilizer reduction, 

slope modification (“terracing”), and soil 

conservation (“no tillage”); detected no 

significant sediment and nutrients loads 

reduction.  

Turkey (Özcan et al., 

2017)  

 

C
o

u
p

le
d

 c
h

an
g

es
: 

cl
im

at
e,

 l
an

d
 

u
se

, 
an

d
 d

em
an

d
 

Studying downstream 

impacts of prolonged 

drought and nutrient 

loads from upstream 

livestock grazing areas  

 

Quantified nutrient loads and possibility of 

algal growth under current condition and 

combined future land use and climate change 

scenarios; Estimated current and future 

amounts of phosphate, nitrate and Chlorophyll-

a 

Australia (Nguyen, et 

al., 2017) 

Simulating non-point 

source pollution under 

different climate and 

agricultural 

management scenarios 

Reduced streamflow would result in decreased 

irrigation water use and increased total 

nitrogen and phosphorus loads in drainage 

canals.  

China (Ba et al., 

2020) 
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Table 2.3. Studies examining both water quantity and quality in arid/semi-arid 

agricultural regions. 

Scope Example application Significant results 
Country 

(Citation) 

B
as

el
in

e 
w

at
er

 m
an

ag
em

en
t 

an
d

 h
y

d
ro

lo
g

ic
 b

u
d
g

et
 a

n
al

y
si

s 

Studying the impact of heavy 

irrigation on return flows and 

watershed water quality, 

especially diffuse 

phosphorous (P) pollution  

SWAT-IRRIG improved irrigation 

simulations; selected BMPs based on farm 

profitability and surface water quality 

included optimum irrigation to decrease 

irrigation return flow, conservation tillage to 

reduce total suspended sediments, and 

reduced phosphorous application to decrease 

total phosphorous loads.  

Spain (Dechmi et 

al., 2012; Dechmi 

and Skhiri, 2013) 

 

Investigating the impacts of 

soil and water conservation 

structures on water quantity 

and quality (sediment) 

Quantified water balance using rainfall and 

irrigation data as well as model results; 

contour ridges (simulated as potholes) 

decreased runoff, river discharge, and 

sediment yield, while increasing groundwater 

recharge significantly (i.e., 50%) 

Tunisia 

(Abouabdillah, et 

al., 2014) 

Modeling river water quantity 

and quality as one of 

Adelaide’s drinking water 

sources 

 

Calibrated a model of quantity and quality of 

the river flow; multi-site calibration was 

preferred for sediment and nutrient load while 

single-site calibration was appropriate for 

flow calibration.  

Australia 

(Shrestha et al., 

2016) 

Assessing the impact of new 

dam construction and land 

use change on drinking 

groundwater 

Coupled SWAT-MODFLOW-MT3DMS 

quantified the concentration response to the 

changes and projected increasing salinity in 

drinking wells. 

Iran (Ehtiat et. 

al., 2018) 

Assessing the ability of 

modified SWAT-AG in 

modeling agricultural 

watersheds with shallow 

groundwater tables 

Successful simulation of soil water content, 

water table changes, salt movement in soil, 

crop growth, and water usage. 

China (Xiong, et 

al., 2019) 

Im
p

ac
ts

 o
f 

d
em

an
d

 

Evaluating SWAT 

performance in predicting 

quantity and quality of water 

under different water 

resources management 

scenarios 

 

Flow simulation was satisfactory but, overall, 

the simulation was not accurate due to a lack 

of rainfall data and reservoir operation 

information; The model predicted that 

increase in irrigated area would not 

deteriorate the water quality for drinking 

purposes.  

Tunisia 

(Bouraoui et al., 

2005) 

C
li

m
at

e 
ch

an
g

e 

 i
m

p
ac

t 
as

se
ss

m
en

t 

Examining the deterioration 

of Lake Tana due to poor 

management and droughts. 

Estimated water balance components for four 

rivers in a basin; groundwater was the major 

contributor to the basin’s water yield.   

Ethiopia (Setegn, 

et al., 2010) 
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Scope Example application Significant results 
Country 

(Citation) 

C
o

u
p

le
d

 c
h

an
g

es
: 

cl
im

at
e,

 l
an

d
 u

se
/c

o
v

er
, 

an
d

 

d
em

an
d

 

Evaluating the impact of 

climate change and human 

activities on hydrology and 

sediment yield. 

DEM resolutions and delineation thresholds 

did not impact streamflow simulations, but 

the difference between sediment transport 

results was significant. 

China (Li et al., 

2013) 

Using SWAT, MODFLOW, 

and MT3DMS models to 

model groundwater, stream-

aquifer interaction, and 

nitrate concentration. 

Scenario-based modeling captured the impact 

of land use changes on recharge, pumping, 

and groundwater level; nitrate concentration 

in groundwater increased in all scenarios. 

Spain (Pulido-

Velazquez et al., 

2015) 

Assessing the impact of 

reservoirs on water resources 

and sediment yield; 

estimating surface water 

components, and addressing 

the impacts of demand 

pressures and prolonged dry 

seasons 

 

Estimated the contribution of each water 

resource; surface runoff and lateral flow 

contributed more to the flow; estimated 

average annual sediment load; reservoirs 

detained a large amount of water and 

sediment. 

Algeria (Zettam 

et al., 2017) 

 

The growing number of SWAT applications over the last 20 years have contributed to 

better understanding of various long-standing and trending agricultural water 

sustainability challenges under different drivers of change and associated implications for 

water and food security and environmental quality (e.g., possibility of algal growth). 

Papers that examined the impact of demand increase, climate change or different 

management operations, mainly, pointed to the possibility of declining water resources 

and deteriorating water quality such as increasing salinity issues in the future (e.g. Masih 

et al., 2011; Molina-Navarro et al., 2016; Hammouri et al., 2017; Nguyen, et al., 2017; 

Jordan et al., 2018; Zou et al., 2018; Masud et al., 2018&2019). In most cases, model-

based analysis of water management practices (e.g., BMPs) showed positive impact on 

water quantity and quality, especially for on-farm methods such as long-term fallowing, 

dryland farming, early plant growth, conservation tillage, and reduced phosphorous 

application (e.g. Santhi et al., 2005&2006; Ficklin et al., 2009; Dechmi and Skhiri, 2013; 

Garg and Wani, 2013; Chen et al., 2017 & 2018a&b). Other methods such as crop 
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replacement or increasing canal conveyance efficiency had less impact on water 

conservation (Santhi et al., 2005). The simulated management scenarios did not always 

render promising results (Özcan et al., 2017). For example, saving irrigation water led to 

decreased crop yield (Hu et al., 2010) or pressurized irrigation methods, despite 

increasing crop productivity, did not result in saving water for downstream lake 

(Ahmadzadeh, et al., 2016).  

4. Modeling Challenges, Solutions, and Performance Evaluation  

A number of challenges to simulate arid/semi-arid watersheds with highly regulated 

water resources systems prompted analysists to use a number of innovative approaches 

and practical techniques to accomplish their objectives (Table 2.4). The main reported 

modeling challenges are lack of data (Perrin et al., 2012; Faramarzi et al., 2017; Chen et 

al., 2017 & 2018a), poor data quality (Marek et al., 2017; Chen et al., 2017 & 2018a), 

concerns about simulation accuracy (Setegn, et al., 2010; Faramarzi et al., 2017; Marek et 

al., 2017), and technical limitations of the existing versions of the model (Santhi et al., 

2005 & 2006; Perrin et al., 2012; Sun and Ren, 2014; Wu et al., 2016; Marek et al., 2017; 

Chen et al., 2017 & 2018a; Wei et al., 2018) despite numerous advancements of the 

model code in the last two decades. 

Data issues are a classic challenge in watershed modeling applications. Data availability 

and quality are especially important for arid/semi-arid agricultural watersheds, which 

experience extreme hydrologic events (e.g., droughts and flash floods) and human 

impacts. Successful application of SWAT in such settings requires detailed information 

about management operations such as irrigation, fertilizer application, cultivation, 
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harvest, and other agricultural operations (e.g., tillage), as well as good information about 

watershed attributes (curve number (CN), soil hydraulic conductivity, etc.). In a number 

of applications, SWAT’s performance was improved through augmenting data 

availability by combining data from different sources with SWAT’s existing databases 

(Van Liew and Garbrecht, 2003; Perrin, et al., 2012; Molina-Navarro et al., 2016; Yu et 

al., 2011; Bressiani, et al., 2015). SWAT’s capability to fill missing data using weather 

generator, auto-irrigation, and auto-fertilization functions are frequently used to cope 

with data unavailability issues (Zeng and Cai, 2014; Aouissi et al., 2016; Faramarzi et al., 

2017; Rahbeh et al., 2019). The main issue with using auto-irrigation and auto-

fertilization is that these functions may not represent on-the-ground operations, 

significantly simplifying the actual conditions. The uncertainty of using auto-irrigation 

and auto-fertilization functions instead of actual fertilization or irrigation practices can be 

reduced by verifying the results against available field data (e.g. Masud et al., 2018; Ahn 

et al., 2018).   

It is also common to use supplemental tools to estimate missing data and evaluate model 

performance (Luo et al., 2008a; Perrin, et al., 2012; Awan and Ismaeel, 2014; Nguyen, et 

al., 2017; Ehtiat et. al., 2018; Qiu et al., 2019; Aliyari et al., 2019), cross-examine data 

from different sources (Marek et al., 2017; Chen et al., 2017 & 2018a), or manipulate 

built-in databases and parameters to improve simulation of certain parameters (e.g., ET) 

in drylands (e.g., Marek et al., 2017). In some studies, modelers traded off the accuracy 

of simulation of some parameters for simplicity of application when those inferior results 

did not affect the major aim of the study (Setegn, et al., 2010; Perrin, et al., 2012; Marek 

et al., 2017). 
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Since SWAT is open source, an active community of model developers have 

continuously contributed to expanding the model’s capabilities and improving process 

representations. This has been done by developing modular codes, tools, and algorithms, 

including model improvements to better represent agricultural operations in arid/semi-

arid regions (Ouessar et al., 2009; Notter et al., 2012; Dechmi and Skhiri, 2013; Wei et 

al., 2018; Zhang et al., 2018). Examples of specific technical developments to improve 

SWAT performance in arid/semi-arid irrigated agricultural settings include adding crop 

rotation simulation capability (Marek et al., 2017), developing an algorithm to simulate 

managed allowed depletion (MAD) irrigation in SWAT’s auto-irrigation function (Chen 

et al., 2018a), using the modified plant growth module of winter wheat to estimate crop 

yields (Sun and Ren, 2014), and SWAT-Salt to model the fate and transport of major salt 

ions which is a major concern in irrigated croplands using surface water or groundwater 

sources that are rich in total dissolved solids (Bailey et al., 2019). Furthermore, coupling 

SWAT with other models has allowed taking advantage of the strengths of different 

models. Notably, developing integration frameworks for linking SWAT with 

MODFLOW (Guzman et al., 2015a) or coupling them (Bailey et al., 2016) has facilitated 

the simulation of groundwater characteristics and surface water-groundwater dynamics in 

arid/semi-arid agricultural regions (e.g., Ehtiat et al., 2018). 
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Table 2.4. Example challenges of applying SWAT to arid/semi-arid agricultural 

watersheds and applied solutions. 

Challenge Solution Example(s) 

Unavailable 

or 

incomplete 

data 

Using supplemental 

data sources and 

methods to estimate 

missing data 

Estimating missing rainfall data from closest gauges using inverse distance 

weighting (Van Liew and Garbrecht, 2003); using meteorological data from 

the same station (Chen et al., 2017 & 2018a) or nearby stations (Perrin et al., 

2012); calibrating aquifer recharge using field studies (Perrin et al., 2012); 

combining data from sparse rain gages with radar data (Yu et al., 2011); 

using linear regression to fill missing data (Molina-Navarro et al., 2016); 

approximating daily data from monthly averages (Jones et al., 2008); 

estimating groundwater pumping data from annual irrigated crop acreages 

(Zeng and Cai, 2014)  

 Using SWAT to fill 

missing data 
Applying auto-irrigation and auto-fertilization functions (Jordan et al., 2018, 

Chen et al., 2017 & 2018a; Özcan et al., 2017; Faramarzi et al., 2017; 

Ashraf Vaghefi, et al., 2017); Filling missing weather data using WXGEN 

weather generator (Aouissi et al., 2016) 

 Using supplemental 

tools to estimate 

missing data or 

evaluate model 

performance 

Estimating groundwater recharge for model calibration using a separate 

watershed scale groundwater balance model (Perrin et al., 2012); using 

Darcy’s law to estimate lateral groundwater flow between subbasins and 

across the watershed (Perrin et al., 2012); estimating missing monthly 

sediment loads using USGS’ ESTIMATOR program (Luo et al., 2008a); 

comparing SWAT-simulated ET values with the results of calibrated surface 

energy balance algorithm (SEBAL) (Awan and Ismaeel, 2014); using ET 

data from MODIS for calibration (Qiu et al., 2019) 

Data 

quality 
Cross-examination, 

quality 

assurance/control, 

and combining data 

Checking climate data against comparable climate data, as well as lysimeter 

data (Marek et al., 2017; Chen et al., 2017 and 2018a); calibrating NOAA’s 

Climate Forecast System Reanalysis (CFSR) precipitation based on local 

rainfall data and combining CFSR with local rain gauge data (Bressiani et 

al., 2015) 

Inaccurate 

results* 
Choosing methods 

that improve results 
Muskingum routing method produced more accurate time to peak compared 

to variable storage coefficient method (Van Liew and Garbrecht, 2003) 

 Using existing 

capabilities 

innovatively, 

practical techniques, 

or better data 

Snow fall temperature adjustments improved calibration (Jones et al., 2008); 

applying additional auto-irrigation with zero water stress threshold during 

winter wheat’s dormancy (Marek et al., 2017); separating subbasins with 

glaciers for spatially distributed monthly glacial contribution to streamflow, 

defining elevation bands and detailed snow parameters, and using location 

map and calibrating geo-spatial parameters to simulate potholes and lakes 

(Faramarzi et al., 2017);  

 Manipulating inputs Changing annual crop parameters in SWAT database to improve ET results 

(Marek et al., 2017) 

 Trading off 

accuracy for 

simplicity of 

application; 

accepting results if 

inaccuracy is not 

critical  

Using Hargreaves ET calculation method based on temperature due to lack 

of wind and radiation data despite potentially larger errors in areas with 

significant wind speed (Setegn et al., 2010); results for some crops (e.g., 

cotton, sunflower) are not as accurate as others, possibly due to default plant 

parameters (Marek et al., 2016); accepting mediocre cotton yield results 

(due to not representing certain management operations) (Marek et al., 

2017)   
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Challenge Solution Example(s) 

Technical 

limitations 
Simplifying 

assumptions 
Static croplands due to inability to capture the variations of irrigated areas 

(Santhi et al., 2005)  
Developing modular 

codes, tools, and 

algorithms 

Accounting for ecosystem service in the form of water provision (Notter et 

al., 2012); adding crop rotation simulation capability to SWAT’s source 

code (Marek et al., 2017); developing an algorithm to simulate managed 

allowed depletion (MAD) irrigation in SWAT’s auto-irrigation function 

(Chen et al., 2018a); using a modified plant growth module to estimate 

winter wheat yields (Sun and Ren, 2014); calculating seepage from earthen 

irrigation canals (Wei et al., 2018); setting individual HRUs for each farm 

(Wei et al., 2018); modifying the shallow groundwater module to simulate 

aquifer depletion (Zhang et al., 2018); developing a module to simulate salt 

ion fate and transport in agricultural watersheds (Bailey et al., 2019) 

Updating built-in 

databases 
Correcting plant growth parameters (including observed LAImax) for each 

year to adjust crop yield parameters (Chen et al., 2017) 
Using existing 

capabilities 

innovatively, 

applying practical 

modeling 

techniques, or using 

soft data 

Using maximum cultivated land along with adjustments in daily irrigation 

water use based on historical records to account for changes in irrigated 

areas (Perrin et al., 2012); using daily irrigation operation in a farm with 

small runoff coefficient to simulate rice paddy fields (Perrin, et al., 2012); 

simulating large dams, small dams, and contour ridges, respectively, as 

reservoirs, ponds, and potholes that are filled with water and increase aquifer 

percolation (Abouabdillah et al., 2014); simulating surface and pressurized 

irrigation systems by adjusting irrigation operation parameters (Ahmadzadeh 

et al., 2016); using field based estimates as soft data to calibrate irrigation 

volumes (Wu et al., 2016); simulating furrow diking as potholes (Marek et 

al., 2016)  
Using supplemental 

models and data  
Applying SALMO model to simulate nutrients inside a reservoir (Nguyen et 

al., 2017); using results of RiverWare for reservoir operation (Qiu et al., 

2019); using remote sensing data to estimate groundwater withdrawal for 

irrigation (Cheema et al., 2014) 

 Coupling SWAT 

with other models 
Developing coupled SWAT-MODFLOW models to capture surface water-

groundwater dynamics (Ehtiat et al., 2018; Luo and Sophocleous, 2011); 

Coupled SWAT-MODSIM to estimate water productivity of wheat and 

maize with dynamic irrigation requirements  (Ashraf Vaghefi, et al., 2017); 

applying pumped groundwater in MODFLOW to SWAT HRUs, combining 

surface water and groundwater irrigation in SWAT’s auto-irrigation 

function, and applying MODFLOW-PSB for numerous groundwater sources 

and sinks (Aliyari et al., 2019)  

* Theoretical method does not fully represent the actual condition or simulation algorithms affect 

results. 

 

SWAT uses numerous parameters to simulate different hydrologic processes within 

watersheds. Some of these parameters are related to physical characteristics such as soil 

type, crop type, climate, etc. (Neitsch et al., 2011). The selection of sensitive parameters 

and determination of possible range of change is critical for calibrating the model. 

Modelers have used different ways to calibrate SWAT, including attempting a single 

parameter value, a range of parameter values, or changing default value of model 

parameters within an interval. The most common parameters extracted from the reviewed 



25 
 

papers are summarized in Table 2.5. The parameters were broadly grouped under surface 

runoff, ET, soil water, and groundwater based on parameter definitions and their effect. 

An extensive table of the parameters reported in the reviewed literature is available in the 

appendix 1. Tables 2.5 and S1 provide useful suggestions about parameter values that can 

inform the calibration process. However, it should be emphasized that the list of 

parameters and the general range of calibrated parameters in these two tables are merely 

based on what has been reported in the literature. The sensitive parameters and their 

range for a particular SWAT application in an arid/semi-arid irrigated agricultural 

watershed should be selected based on the characteristics of the watershed, regional data, 

and modeling objectives. Modelers should use caution when defining the range of 

parameter values and they should examine the final values of calibrated parameters to 

ensure that parameter values are physically possible based on the theoretical definition, 

and they are reasonable considering the watershed characteristics.  

It is recommended that parameter definitions and values be closely compared with those 

published in SWAT’s theoretical documentation to avoid errors of oversight. In some 

instances, differences between the model interface and documentation can create 

confusion for SWAT users. For example, a value between 0-100 should be used for auto-

irrigation efficiency (IRR_EFF) according to SWAT documentation but the model 

interface takes numbers between 0-1. Although this may appear to be a trivial 

discrepancy, it can become a source of error if modelers do not fully examine the 

theoretical underpinnings of irrigation representation in SWAT to use reasonable 

parameter values. A common error when using auto-irrigation is caused when the 

irrigation trigger is selected as “soil water content”. According to SWAT documentation, 
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the parameter value determining the start of auto-irrigation (i.e., AUTO_WSTRS) should 

be between 0-1, if the threshold is defined by “plant water demand”, which refers to the 

allowable fraction of potential plant growth before model triggers irrigation. However, 

when the threshold is based on “soil water content” the AUTO _WSTRS parameter value 

is the amount of soil water below field capacity in mmH2O. Yet, the model interface’s 

pop-up message for AUTO _WSTRS only states that this parameter should be between 0-

1, despite the fact that modelers should use much larger values of soil water content if the 

objective is to simulate actual irrigation conditions in arid/semi-arid regions where soil 

water content may drop many millimeters below field capacity between irrigation 

applications. The plant available water below field capacity, a parameter which is used in 

determining irrigation depth through scientific irrigation scheduling, could range from 40 

mmH2O per meter of crop root zone in coarse sand to 180 mmH2O in clay loam (Evett et 

al., 2008). In addition, except for drip irrigation systems, which account for only 10% of 

irrigated area within the U.S. (USDA, 2019), other types of irrigation systems cannot 

physically apply such a small amount of water. Further, if unchecked, unreasonable 

parameter values may be obtained by automatic calibration (e.g., SWAT-CUP). In one 

application, the calibrated Manning’s roughness coefficient (n) for tributary channels was 

reported to be 5.54 (Rivas-Tabares et al., 2019), which is significantly larger than the 

largest Manning’s number in TR-55 (0.8 for sheet flow over dense underbrush (TR-55, 

1986)) and other well-known references (e.g., Chow, 1959). 

Table 2.6 summarizes common calibration components and model performances broadly 

classified as poor, moderate, and good based on widely used goodness-of-fit factors. 

Common calibration methods include manual calibration (Jones et al., 2008; Reshmidevi 
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et al., 2018; Ahn et al., 2018; Fallatah et al., 2019; Epelde et al., 2016), using SUFI-2 

algorithm provided by SWAT-CUP (Abbaspour et al., 2011 & 2015) or dynamically 

dimensioned search (DDS; Tolson and Shoemaker, 2007) for automatic calibration and 

uncertainty analysis (Abbaspour et al., 2009; Masih et al., 2011; Ashraf Vaghefi, et al., 

2017; Becker et al., 2019; Aliyari et al., 2019), and a combination of these approaches 

(e.g., Ficklin et al., 2013). 

The majority (~ 80%) of the reviewed SWAT applications in arid regions calibrated the 

model only for streamflow and used this parameter for model performance evaluation. 

SWAT has also been calibrated for a combination of hydrologic components besides 

streamflow (e.g., ET, sediment, and nutrients) based on the aim of the study (Santhi et al., 

2005; Perrin et al., 2012; Pulido-Velazquez et al., 2015; Ahmadzadeh et al., 2016; Jordan 

et al., 2018). Faramarzi et al. (2017) verified the model results for ET and groundwater 

recharge by calibrating it for streamflow and crop yield to simulate the regional 

watershed hydrology. Pulido-Velazquez et al. (2015) calibrated SWAT for streamflow, 

groundwater recharge, crop yield, and nitrate leaching. They used previous studies (i.e. 
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Table 2.5. Commonly used SWAT model parameters, initial parameter values, and 

calibrated values in the reviewed publications (see note below). 

 SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated Values 

(Relative Change)b  
Example Papersc 

S
u

rf
a

ce
 r

u
n

o
ff

 

CN2: SCS curve 

number for moisture 

condition II 

35–98 35-98 (-35% – 32%)  

Chen et al. (2011); Ficklin et al. (2013); Ahn et al. 

(2018); Reshmidevi et al. (2018) 

SURLAG: Surface 

runoff lag coefficient 

(days) 

4 0.001–15 

Chen et al. (2011); Reshmidevi and Kumar (2014); 

Dechmi et al. (2012); Aliyari et al. (2019) 

CH_N2: Manning’s n 

value for the main 

channel 

0.008–

0.5 
0–0.2 (-32%–30%) 

Jones et al. (2008); Reshmidevi and Kumar (2014); 

Fallatah et al. (2019) 

CH_K2: Effective 

hydraulic conductivity 

in main channel (mm/h) 

-0.01–

500* 
0–406 

Jones et al. (2008); Akhavan et al. (2010); Ficklin et 

al. (2013); Reshmidevi and Kumar (2014); 

Abeysingha et al. (2015); Reshmidevi et al. (2018) 

E
T

 

EPCO: Plant uptake 

compensation factor 
0.01–1 0–1 (39%–99%) 

Akhavan et al. (2010); Chen et al. (2011); 

Abeysingha et al. (2015); Reshmidevi et al. (2018) 

ESCO: Soil 

evaporation 

compensation 

coefficient 

0.01–1 0–1 (23%–55%) 

Chen et al. (2011); Dechmi et al. (2012); Ficklin et 

al. (2013); Ahn et al. (2018); Reshmidevi et al. 

(2018) 

S
o

il
 w

a
te

r
 

SOL_AWC: Soil 

available water capacity 

(mmH2O/mmSoil) 

0–1* 
0– 0.91 (-50%–62%) 

(default + 0.01) 

Jones et al. (2008); Chen et al. (2011); Reshmidevi 

and Kumar (2014); Abeysingha et al. (2015); Ahn 

et al. (2018); Reshmidevi et al. (2018) 

SOL_K: Saturated 

hydraulic conductivity 

(mm/hr) 

0–2000* 
0.13–180 (-50%–

62%) 

Akhavan et al. (2010); Chen et al. (2011); Ficklin et 

al. (2013); Reshmidevi and Kumar (2014); Ahn et 

al. (2018) 

G
ro

u
n

d
w

a
te

r
 

GW_DELAY: 
Groundwater delay 

time (days) 

0–500* 0 – 365 

Abbaspour et al. (2007); Jones et al. (2008); 

Dechmi et al. (2012); Fallatah et al. (2019) 

GWQMN: Threshold 

depth of water in 

shallow aquifer for 

return flow to occur 

(mmH2O) 

0–5000* 
0 – 4772 (default 

+1002.25) 

Jones et al. (2008); Reshmidevi and Kumar (2014); 

Abeysingha et al. (2015); Epelde et al. (2016); Ahn 

et al. (2018); Aliyari et al. (2019); Andaryani, et al. 

(2019b); Bressiani et al. (2015); Fallatah et al. 

(2019); Delavar et al. (2020) 

ALPHA_BF: Base 

flow recession factor 

(1/days) 

0.1–1 0.001–1 

Jones et al. (2008); Reshmidevi et al. (2018); 

Fallatah et al. (2019) 

REVAPMN: 
Threshold water level 

in shallow aquifer for 

“revap” (mm) 

0–8000* 0.65–2000 

Jones et al. (2008); Akhavan et al. (2010); 

Reshmidevi and Kumar (2014); Abeysingha et al. 

(2015); Ahn et al. (2018); Aliyari et al. (2019); 

Andaryani, et al. (2019b) 

GW_REVAP: 
Groundwater “revap” 

coefficient 

0.02–0.2 0.02–0.4 

Jones et al. (2008); Abeysingha et al. (2015); 

Aliyari et al. (2019); Andaryani, et al. (2019b); Ba 

et al. (2020) 



29 
 

 SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated Values 

(Relative Change)b  
Example Papersc 

RCHRG_DP: Deep 

aquifer percolation 

fraction 

0–1 0–0.972 

Dechmi et al. (2012); Reshmidevi et al. (2018); 

Aliyari et al. (2019); Andaryani, et al. (2019b) 

 

a Initial value is based on the range of default parameter values in SWAT documentation. In cases where a 

default value was unavailable (marked with an asterisk), the range is based on the lowest and highest values 

of initial attempts among all applications.  
b Relative change indicates the range over which the parameter values were varied.  
c A full list of papers is provided in Table S1 in Supplementary Material.  

NOTE: The list of parameters, initial ranges, and the range of calibrated parameter values are given to 

provide an idea about initiating model parametrization and calibration. Model parametrization and 

calibration should be performed based on region-specific data (if available) and characteristics of the 

watershed. Readers are referred to Table S1 in Supplementary Material for a full list of parameter values 

reported in the literature in different parts of the world.   
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soft data) to evaluate simulated groundwater recharge rate, stream-aquifer interactions, 

and nitrate leaching, and calibrated the model for irrigation water and crop yield based on 

crop surveys and experimental data (Pulido-Velazquez et al., 2015).  

Marek et al. (2016) concluded that ET simulated by SWAT for irrigated crops in an arid 

watershed was reasonable, although using the default crop growth model and default 

values for parameters controlling plant behavior in some cases like cotton and sunflower 

could introduce inaccuracies (generally underestimation). In another study, SWAT was 

calibrated for recharge based on a groundwater balance equation due to the lack of 

continuous flow time series in seasonal rivers (Perrin et al., 2012). Jones et al. (2008) 

applied a step by step manual calibration procedure to model the differences in flow 

regime and watershed characteristics of Tigris-Euphrates River system in mountainous 

and plain parts. They first adjusted snowpack and snowmelt parameters to account for the 

snowmelt-runoff regime of the river flow. In the next step, they calibrated soil water and 

groundwater parameters for high and low flow conditions in downstream gauges, and 

finally adjusted channel routing parameters. Ignoring the snowmelt and frozen soils may 

weaken the model’s ability to simulate low flows in areas where these processes occur 

(Zhang et al., 2016). 

In an effort to facilitate objective model evaluation, Moriasi et al. (2007 and 2015) 

summarized a number of quantitative goodness-of-fit factors (e.g., Nash-Sutcliffe 

efficiency (NSE) and percent bias (PBIAS)) and offered guidelines for systematic 

watershed simulation assessment based on a comprehensive literature survey. It is 

interesting to note how modelers interpret the goodness-of-fit factor values using a 
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variety of verbal descriptors to demonstrate simulation quality. For example, a model 

calibration can be deemed “good” over a wide range of NSE values for streamflow  

simulations (0.20-0.99) described as “fairly well”, “very good”, and “above satisfactory” 

(Table 2.6). This finding is not unique to models of irrigated agricultural watersheds as it 

can be seen elsewhere as well (Douglas‐Mankin et al., 2010; Tuppad et al., 2011; 

Krysanova and White, 2015). 

5. Discussion 

Capturing the adaptive nature of agricultural practices in arid/semi-arid regions to cope 

with drastic surface water variability is a formidable modeling challenge (Niraula et al., 

2012) that involves tradeoffs between data requirement, calibration effort, and model 

performance. As such, simulating arid/semi-arid irrigated agricultural watersheds with 

SWAT requires innovative approaches that utilize multi-component model calibration, 

account for irrigation, and report current limitations to guide future model advancements.  

The Need for Multi-Component Calibration. As a model that provides numerous 

parameters to simulate a variety of biophysical processes in watersheds, estimating 

appropriate/realistic parameter values to build SWAT models is generally difficult due to 

equifinality or non-unique parameter values, meaning that different sets of parameter 

values may produce equally good results for a particular water budget component 

(Khatami et al., 2019). In heavily irrigated agricultural lands, all the major water budget 

components should be quantified and interpreted with a particular attention to irrigation 

and land management.  
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Multi-component calibration and validation of major hydrologic components can 

improve the reliability of results or pinpoint areas where field data are most needed. 

Deliberate calibration of components such as streamflow, ET, and groundwater recharge 

based on “hard” and “soft” data and knowledge of the watershed hydrology can help 

account for the water budget impacts of agricultural management decisions in arid and 

semi-arid climates (Arnold et al., 2015). Despite a satisfactory streamflow calibration 

(NSE=0.61-0.91), Acero Triana et al. (2019) recalibrated SWAT based on both 

groundwater recharge and streamflow to avoid coupled SWAT-MODFLOW model 

instability caused by excessive zonal recharge simulated by SWAT in some parts of the 

basin. Although NSE values of SWAT simulated streamflow dropped from 0.64 to 0.54, 

the multi-component calibration was necessary to ensure SWAT-MODFLOW 

simulations matched groundwater heads, as well as measured streamflow (Acero Triana 

et al., 2019).  

Based on our review, the majority of models of irrigated agricultural watersheds are 

typically calibrated and validated for streamflow without checking the model’s reliability 

in reproducing other components, a finding that is consistent with other reviews of 

SWAT to simulate watershed hydrology in general (Wellen et al., 2015). Only a very 

small fraction (5%) of the applications calibrated SWAT for more than two water 

quantity or quality components. While model calibration for streamflow only is often 

practical and time saving, neglecting other important natural or anthropogenic hydrologic 

components can undermine realistic regional water budget analyses in irrigated 

agricultural areas in arid/semi-arid regions. In these areas, agricultural evapotranspiration, 

soil water content, groundwater recharge, and return flows are actively managed through 
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irrigation to maximize crop production. Representation of these processes and model 

calibration issues in irrigated agricultural settings need further investigation to guide 

agricultural water management at the spatial scales smaller than course regional water 

budget analyses.   

The argument in favor of multi-component calibration does not mean that serendipitous 

outcomes based on streamflow calibration are impossible. For example, in one 

application, SWAT simulated biomass well although the model was calibrated to capture 

peak flows (Jordan et al., 2018). However, caution should be used in evaluating water 

budget components generated with SWAT models of arid/semi-arid irrigated agricultural 

watersheds that are calibrated based on streamflow alone. A good streamflow calibration 

does not necessarily render realistic results when evaluating other important, managed 

components of the water budget. Thus, additional effort to complete a multi-component 

calibration is recommended when quantifying hydrologic fluxes that govern water 

availability in managed systems such as irrigated agricultural watersheds in dry regions. 

The lack of sufficient observational data for ET and groundwater recharge pose a great 

challenge for multi-component calibration to quantify the water budget of irrigated 

agricultural systems in arid/semi-arid climates (Masud et al., 2018 & 2019). The ability 

of SWAT to simulate watershed processes using built-in databases is a reason for 

popularity of the model use in data-scarce regions (e.g., Aouissi et al., 2016). Literature 

values and parameter estimates based on expert judgments can provide useful soft data 

for use along with observational records to facilitate multi-component calibration of 

SWAT. Abbaspour et al. (2009) suggest a combination of streamflow and crop yield as a 

more reliable representation for the main water budget components than only using 
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streamflow because crop yield represents ET as well as nutrient uptake. The combination 

of reasonable streamflow and ET results should theoretically translate into improved soil 

moisture and GW recharge simulations. Leveraging global databases, remote sensing, or 

models to fill the data gaps can improve the data sets required for more accurate model 

set up and calibration (Luo et al., 2008a; Githui et al., 2012; Awan and Ismaeel, 2014; 

Reshmidevi et al., 2018; Bressiani et al., 2015; Qiu et al., 2019; Becker et al., 2019).  

Accounting for Irrigation. The importance of irrigation and associated processes (e.g., 

return flow) that affect water budget calculations for arid/semi-arid regions has been 

documented (Kannan et al., 2011; Githui et al., 2012). In arid regions with insignificant 

rainfall, crop ET and groundwater recharge are typically directly related to irrigation. It 

has been shown that incorporating irrigation using groundwater changes streamflow 

pattern (Zeng and Cai, 2014) and including irrigation return flows can improve model 

calibration (Kannan et al., 2011). In another application, recharge was found to be higher 

in irrigated perennial pastures compared to non-irrigated areas (e.g., Githui et al., 2012).  

Often, lack of detailed information on agricultural operations (irrigation, planting, 

fertilizing, etc.) necessitates simplifying the model, which requires additional checks 

(Sinnathamby et al., 2017; Masud et al., 2018 & 2019). SWAT’s auto-irrigation function 

is commonly used to simulate irrigation based on plant water demand or heat units or soil 

water content which might be quite different from what happens in reality (Luo et al., 

2008a; Ficklin et al., 2009; Kannan et al., 2011; Bressiani et al., 2015; Faramarzi et al., 

2017; Marek et al., 2017; Chen et al., 2017 & 2018a; Jordan et al, 2018; Ahn et al., 

2018). Inevitably, the auto-irrigation function introduces some uncertainties by over-

estimating surface water withdrawal in areas where surface water and groundwater are 
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conjunctively used for irrigation (Ahn et al., 2018).  It is essential to verify the simulated 

irrigation against available observed or soft data (e.g., monthly or daily irrigation) or 

calibrate crop ET as a surrogate for irrigation (e.g., Faramarzi et al., 2017) to ensure 

reasonable consistency between simulated and actual conditions. 

Reporting Model Limitations, Sensitivity, and Uncertainty. While watershed modeling 

inherently involves some level of subjectivity regarding parametrization decisions based 

on circumstantial considerations (e.g., purpose, time, cost, setting, and data availability), 

objective evaluation of model performance in simulating the hydrological fluxes is an 

indispensable modeling activity that is sometimes overlooked. There appears to be a 

general lenience to interpret model performance as “good” (Table 2.6) with minimal 

scrutiny of model performance and limitations. Details of irrigation simulation, the most 

important agricultural water management activity, are often not discussed in many 

applications (e.g., Wagner et al., 2012; Gebremicael et al., 2013; Epelde et al., 2016; 

Fallatah et al., 2019). Likewise, there is very limited coverage of regional relevance of 

model parameter values and associated uncertainties in the growing body of literature on 

SWAT applications in arid/semi-arid irrigated agricultural watersheds. Of the 102 

reviewed applications, only 5 explicitly reflected on the concerns about the adequacy of 

simulated regional hydrologic fluxes, and used both streamflow and crop yield (surrogate 

for ET) in an attempt to produce regionally meaningful results (Faramarzi et al., 2017; 

Abbaspour et al., 2009; Ahn et al., 2018; Akhavan et al., 2010; Acero Triana et al., 2019). 

Articulating modeling assumptions, simplifications, and possible errors (e.g., Masud et 

al., 2018) contribute to insightful model applications by other users. Reporting limitations 

(e.g., data availability, technical capabilities, and model performance) explicitly can help 
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put the watershed modeling results in the appropriate context. It can encourage efforts to 

address the data challenges by developing much needed monitoring programs and 

improving SWAT processes/algorithms to better quantify different components of the 

water budget in arid/semi-arid agricultural watersheds.  

Several factors can impact the calibration and model reliability besides model 

capabilities, data issues and modeler’s knowledge of regional natural or managed 

hydrologic characteristics. The combination of data issues, multitude of interactive 

biophysical processes, and equifinality makes parameter estimation of highly managed 

irrigated watersheds very difficult. Arnold et al. (2012) offered the most sensitive 

parameters in SWAT for different water quantity and quality components. Yuan et al. 

(2015) identified the most sensitive parameters for runoff simulation, base flow, and 

sediment and nutrient transport. Neglecting “important processes”, the choice of 

objective function and optimization algorithms when using automated calibration, and 

model conditionality are other factors that affect model reliability (Guzman et al., 2015b; 

Abbaspour et al., 2018). Different objective functions and optimization algorithms might 

calibrate and validate the model well regardless of the reasonable range of the parameters 

(Abbaspour et al., 2018). Sensitivity and uncertainty analysis are recommended for 

hydrological models as exploratory and diagnostic tools to support calibration efforts and 

ensure credible results (Abbaspour et al., 2015 & 2018).  

Remaining Challenges and Ideas for Future development and Applications. Over the last 

twenty years, SWAT has continually evolved to accommodate the need to simulate 

diverse natural and managed watershed processes in irrigated lands. Nonetheless, a 

number of remaining challenges should be addressed to expand the applicability of 
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SWAT to irrigated agricultural settings in arid/semi-arid regions to capture management 

uncertainties during the transition from wet to dry years (Table 2.7). Adaptive 

agricultural water and land management decisions in these areas are closely related to 

surface water variability and groundwater sustainability. The extent and magnitude of 

water scarcity and associated pumping costs and economic value of crops affect 

agricultural water management decisions such as inter-annual changes in pumping, 

irrigation schedule (frequency and amount) and method (surface (gravity), sprinkler, 

and/or drip irrigation), cropping pattern, and in extreme cases land retirement. 

Advancements such as conjunctive use of surface water and groundwater, explicit 

simulation of different irrigation systems, and dynamic land use would significantly 

enhance the flexibility and applicability of the model for arid/semi-arid irrigated 

agricultural lands. The conjunctive use of surface water and groundwater resources, a 

common drought adaptation measure, and effectiveness of irrigation technologies (e.g., 

drip) cannot be simulated directly by the current versions of SWAT. Further, the 

reviewed SWAT applications typically used static land use/cover conditions during long-

term hydrologic simulations, which does not capture hydrologic impacts of drought-

adaptive agricultural practices despite their significance (Ahn et al., 2018). Recent 

developments to include dynamic land use data is a notable progress that requires testing 

worldwide (Moriasi et al., 2019).  

Future advancements can expand the crop database and improve auto-irrigation (Table 

2.7). SWAT’s crop database can be expanded through collaborations with agronomists to 

develop parameter sets for crops that are cultivated in arid/semi-arid regions (e.g., 

apricot, pecan, pistachio, pomegranate, etc.). Applying auto-irrigation scheduled by date 
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and soil water content threshold in the current versions of SWAT can lead to continued 

irrigation of crops even after the harvest (Chen et al., 2017).  As long as there is enough 

water in the source (reach, aquifer, or other watersheds), the auto-irrigation function 

keeps irrigating the fields until soil water content reaches the specified water stress 

threshold below field capacity. This issue can be addressed by providing options in the 

auto-irrigation module to stop irrigation based on the crop maturity and harvest time. The 

problem of continuous irrigation is not the case for setting auto-irrigation based on heat 

units, likely because conditions prompting irrigation will no longer prevail once the heat 

units for crop maturity are met. 

Our review of the applications of SWAT in arid/semi-arid irrigated agricultural 

watersheds reveals strict dominance of the model's use to better understand water 

quantity aspects of water management. While this is to be expected given the reality of 

water scarcity and associated challenges for agricultural production in these regions, the 

capabilities of SWAT to model water quality have been underutilized. SWAT can be 

improved with respect to simulation of water quality aspects of irrigated agriculture in 

arid/semi-arid regions. Representation of salinity issues of irrigated agriculture can be 

advanced by providing capabilities to account for soil salinity and water salinity stress on 

crop growth and yield in SWAT-Salt, the salinity module of SWAT (Bailey et al., 2019). 

There is also a need for improved modeling of the fate and transport of pesticides, 

especially for the prevailing low streamflow conditions in arid/semi-arid regions (Table 

2.7). SWAT+, which is the revised version of the model aims to improve the model 

structure for easier code development and better spatial representation of the watershed 

features such as interaction of rivers and landscape (Bieger et al., 2017). With mounting 
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concerns about reaching the limits of good quality water resources in many regions 

(Gleick and Palaniappan, 2010; de Graaf et al., 2019), using SWAT to examine water 

quality for various combinations of agricultural land and water management will be an 

important area of future model applications. 

Table 2.7. Remaining challenges and potential solutions for applying SWAT to irrigated 

agricultural settings in arid/semi-arid climates.  

Remaining Challenge Solution 

Modeling adaptive 

agricultural water 

management  

Updating the model source code to: (1) simulate conjunctive use of water 

from different sources for irrigation, including surface water, shallow 

groundwater, and deep groundwater; (2) simulate different irrigation 

systems (surface (gravity), drip, sprinkler, and subsurface irrigation) 

Modeling adaptive 

agricultural land 

management  

Updating the model to simulate dynamic land use to represent changes in 

cropping pattern ***  

Expanding the plant 

(i.e., crop) growth 

database* 

Developing parameter sets for crops that are currently not included in the 

crop database such as nuts (pecan, pistachio), fruits (apricot, 

pomegranate, cherry), cucurbits (pumpkin, squash, zucchini)  

Improving auto-

irrigation function 

Providing options to stop auto-irrigation post-harvest or at the end of the 

growing season 

Modeling the effects of 

soil and water salinity 

Updating the model to account for soil salinity and water salinity stress 

on  

crop growth and yield  

Modeling the fate and 

transport of 

pesticides** 

Improving the original code to better simulate the fate and transport of 

pesticides, especially for low flows and account for the effect of drift in 

pesticide application 

*Users can add any plants to the model database. However, including the characteristics 

of common crops in the model database will facilitate the model’s application and 

reduces the possibility of input errors. 

**See Wang et al. (2019) for more information.  

*** See Moriasi et al. (2019) for more information. 
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6. Conclusions 

This paper provided a review of SWAT applications in irrigated agricultural watersheds 

in arid/semi-arid climates in the last two decades. The applications fall into three broad 

categories listed as follows in the order of prevalence: (1) water quantity analysis, (2) a 

combination of water quantity and quality issues, and (3) water quality analysis (only a 

few). The main modeling challenges are lack of data, poor data quality, concerns about 

simulation accuracy, and technical limitations of the existing versions of the model. 

Researchers have used a number of innovative approaches and practical techniques to 

deal with the modeling challenges, including augmenting data availability by combining 

data from different sources with those provided in the  existing SWAT databases, using 

supplemental tools to estimate missing data and evaluate model performance, trading off 

the accuracy of simulation of some parameters for simplicity of application where those 

inferior results did not affect the major aim of the study, and developing modular codes, 

tools, and algorithms.  

Simulation of physical characteristics of agricultural watersheds in arid and semi-arid 

climates requires insightful model parametrization, model setup, and calibration using 

soft data along with available field measurements (i.e., hard data). While a wide array of 

existing and emerging capabilities make SWAT the watershed model of choice in 

different settings, fine-tuning SWAT to model key hydrologic attributes (e.g., 

streamflow, ET, and groundwater recharge) of arid/semi-arid irrigated agricultural 

watersheds remains time consuming and challenging. We synthesized SWAT 

parametrizations for heavily irrigated arid/semi-arid agricultural areas to inform model 

set-up and calibration in future modeling efforts. It is essential that users carefully 
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examine what the model can or cannot provide in relation to the objectives of the study 

based on practical understanding and theoretical underpinnings of simulating irrigation to 

avoid potential errors, especially when using auto-irrigation function and auto-calibration 

tools. Reporting modeling limitations explicitly can help put the watershed simulation 

results in appropriate context. Future advancements such as conjunctive use of surface 

water and groundwater, dynamic annual land use, explicit capabilities to model irrigation 

management interventions, and simulation of salinity impacts on crop growth would 

significantly enhance the flexibility and performance of the model for addressing water 

and food security questions in the context of arid/semi-arid irrigated agricultural areas. 
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CHAPTER III 

 

 

CLIMATE CHANGE IMPACTS ON WATER AVAILABILITY IN A SEMI-ARID, 

AGRICULTURE-DOMINATED BASIN IN THE US SOUTHWEST 

 

 

 

1. Introduction 

Many areas around the world face water sustainability challenges tied to variability of 

renewable water and growing water demand due to population growth and higher 

standards of living (Döll et al., 2012; Wada et al., 2014; AghaKouchak et al., 2015; 

Grafton et al., 2017). Overexploitation of limited, non-renewable water resources to cope 

with water shortages in arid/semi-arid regions makes these regions particularly vulnerable 

to severe water stress under plausible hotter and drier conditions in the future (Castle et 

al., 2014; Ward et al., 2019). In the U.S., rising aridity is generally observed in the 

southwest (Cayan et al., 2010; Seager et al., 2013; Cook et al., 2015) and it is expected to 

become more severe in future decades, reducing headwater snowpack and watershed  
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soil moisture, increasing evapotranspiration (ET), and altering the magnitude and timing 

of streamflow (Garfin et al., 2013; Dettinger et al., 2015). Understanding the implications 

of these hydroclimatic changes is essential for adaptive water resources planning and 

management in drought-prone basins in the southwestern U.S., including the Rio Grande 

Basin. 

Water in the upper Rio Grande Basin is shared between the three states of Colorado, New 

Mexico, and Texas based on the 1938 Rio Grande Compact (RGC 1938). In addition, the 

1906 treaty between the U.S. and Mexico governs surface water deliveries of an annual 

total of about 74 million cubic meters (MCM) (60,000 acre-feet) to northern Chihuahua, 

Mexico in a normal year (IBWC 1906). The decreasing snowpack in the Rio Grande 

headwaters in Colorado is already evident in historical data (Elias et al., 2015; Chavarria 

and Gutzler 2018) with a significant corresponding decline in streamflow associated with 

rising temperature in the headwaters (Llewellyn and Vaddey 2013; Udall and Overpeck 

2017; Lehner et al., 2017). The river, the main surface water source in the middle Rio 

Grande region, is fully allocated and net groundwater storage is declining (Sheng 2013; 

Fuchs et al., 2018). Agricultural activities in this region are predominantly concentrated 

along the main stem of the Rio Grande where surface water and groundwater are 

conjunctively used to sustain irrigation. Although domestic water demands are primarily 

met by groundwater resources (McCoy and Shomaker 2017), growing water shortages 

can increase the competition between urban and agricultural water users in the future. 

The ecological functions of the Rio Grande are also at risk because of the difficulty of 

providing environmental flows in this heavily managed, fully appropriated water system 

(Lane et al., 2015; Blythe and Schmidt 2018).  
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Stakeholder groups (e.g., agricultural, urban, and environmental) in the middle section of 

the Rio Grande Basin have been alarmed by the prospect of adverse impacts of climate 

change on regional water availability. This paper provides a thorough assessment of 

water availability for irrigated agriculture, the largest single water user in the New 

Mexico-Texas portion of the basin, under plausible surface water projections throughout 

the 21st century. The climate impact assessment framework is comprised of three 

components: (1) climate-based Rio Grande flow projections at the upstream boundary of 

the study watershed derived from bias-corrected intrabasin climate projections (i.e., 

temperature and precipitation) provided by the U.S. Bureau of Reclamation (USBR 

2016); (2) a calibrated spatially distributed watershed hydrology model developed using 

the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998); and (3) a relationship 

between reservoir releases and groundwater withdrawal to represent the conjunctive use 

of surface water and groundwater for irrigation. We evaluate the impacts of surface water 

conditions on different components of the surface water budget, as well as groundwater 

storage. Sustainability of irrigated agriculture in this water-scarce region will increasingly 

depend on preparing to use slightly saline to marginal quality groundwater due to 

mounting pressure on the already-strained fresh groundwater to cope with diminishing 

river flows. 

2. Materials and Methods 

2.1. Study Area 

The study watershed occupies about 6000 km2 in the middle section of the Rio Grande 

Basin (Fig. 3.1) with approximately 400 km2 of agricultural lands. The region is 
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arid/semi-arid with an average annual precipitation of approximately 270 mm and 

maximum and minimum mean daily temperatures of 33°C and -7°C, respectively. Rio 

Grande water is stored in the Elephant Butte reservoir (completion: 1916, capacity: 

2,713.6 MCM (2.2 million acre-feet)) for irrigation and hydropower generation. Elephant 

Butte reservoir releases are regulated by Caballo reservoir with a capacity of 424.3 MCM 

(343,990 acre-feet) located 40 kilometers (25 miles) downstream. In normal years, water 

is released from the Caballo regulatory reservoir from March to September to meet 

irrigation demands. Two upstream US Geological Survey (USGS) gauging stations 

(08358300 and 08358400) record inflow to the Elephant Butte reservoir and two 

downstream gauging stations record releases from Elephant Butte (08361000) and 

Caballo (08362500) reservoirs. USGS gauge at El Paso (08364000) measures flow at the 

watershed outlet. 

 

Figure 3.1. Study watershed in the New Mexico-Texas portion of the Rio Grande Basin. 
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The Mesilla groundwater basin (Mesilla Basin), the main groundwater resource in the 

watershed, is used in conjunction with reservoir releases to support irrigated agriculture. 

The area is known for pecan production, a major cash crop in the Elephant Butte 

Irrigation District (EBID). Three main diversion dams and five main diversion canals 

distribute water among irrigated lands. The historical variation of croplands shows 

significant drops in the acreages of different crops during drought periods except high-

value perennial pecan. For example, drastically reduced reservoir releases during the 

2011-2013 drought mostly affected cotton, corn, alfalfa, and other crops while pecan 

orchards remained relatively unaffected (Fig. 3.2). The acreages of crops do not decline 

at the same rate as the reduced reservoir releases because extensive groundwater pumping 

from Mesilla Basin compensates for surface water shortages (Fig. 2). The groundwater 

quality varies from fresh water in the deep zone to more saline in the shallower zones and 

towards the south. Estimates of fresh groundwater storage vary significantly (Sheng 

2013), ranging up to 123 billion cubic meters (BCM) (Wilson et al., 1981). Hawley and 

Kennedy (2004) estimated the volume of recoverable fresh to slightly saline groundwater 

(i.e., Total Dissolved Solids (TDS) < 3000 mg/L) storage in the Mesilla Basin to be about 

55.5 BCM. Overexploitation of fresh groundwater has also caused intrusion or upwelling 

of brackish water, deteriorating the quality of water in the aquifer (Ashworth and 

Hopkins 1995; Sheng 2013). 
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Figure 3.2. Water withdrawal and irrigated crop production in the study area: (a) 

conjunctive use of surface water and groundwater during wet and dry years characterized 

by standardized precipitation index (SPI; McKee et al., 1993) using PRISM rainfall data 

(Dally et al., 2008): extremely dry (ED: -2.00 or less), severely dry (SD: -1.50 to -1.99), 

moderately dry (MD: -1.00 to -1.49), near normal dry (NND: -0.99 to 0.00), near normal 

wet (NNW: 0.00 to 0.99), moderately wet (MW: 1.00 to 1.49), very wet (VW: 1.500 to 

1.99), extremely wet (EW: 2.00 and more); and (b) variation of crop acreages in response 

to renewable water availability. 
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2.2. Climate Change Impact Assessment Framework 

We used projected Rio Grande flows to calibrate a SWAT model of the study area to 

evaluate the impacts of future climate conditions on surface water and groundwater 

resources, taking into account the conjunctive use of water from these sources for 

irrigation (Fig. 3.3). The components of the climate change impact assessment framework 

are discussed in this section. 

 

Figure 3.3. A general schematic of the climate impact assessment framework. 
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Climate-based Surface Water Projections. Global climate models (GCMs) have been 

used to generate 97 different streamflow projections on the main stem of the Rio Grande 

(USBR 2016) using the variable infiltration capacity (VIC) rainfall-runoff model (Liang 

et al., 1994 and 1996). These GCM-based projections describe natural river flows, with 

no simulation of human impairments upstream that would affect the flows into Elephant 

Butte Reservoir. To account for upstream developments, Townsend and Gutzler (2020) 

developed a statistical normalization procedure that parameterizes upstream water 

manipulation by calculating constants that force the first and second moments of model-

simulated annual flows for a 50-year historical period at the San Marcial gauge just 

upstream of Elephant Butte Reservoir to match the equivalent moments of observed 

flows during the same period. The parameterization constants are then applied to 

projected naturalized flows to obtain projected flows that account for upstream 

management. The effect of this normalization procedure is to reduce simulated natural 

flows into Elephant Butte Reservoir during the historical period by 70-75%, a reduction 

that closely matches the naturalization of observed flows estimated by Blythe and 

Schmidt (2018).  

The 97 normalized Rio Grande flow projections (2020-2099) cover a variety of flow 

conditions as can be seen in the exceedance probability plots of the projections and the 

observed historical flow at San Marcial (Fig. 3.4). The majority of projections have a 

median flow that is 20-60% lower than the historical median flow, indicating increasing 

future surface water scarcity. A few scenarios include smaller flows in the early years and 

larger flows toward the end of the century (e.g., bcc-csm1-1_rcp26 and bcc-csm1-

1_rcp45). Four projections were selected to represent Rio Grande flow scenarios (Table 
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1), namely Dry1 (access1-0_rcp85), Dry 2 (hadgem2-es_rcp85), Wet1 (fio-esm_rcp45), 

and Wet2 (cnrm-cm5_rcp85). In addition, at the request of agricultural water 

stakeholders, a no reservoir release scenario (NR) was also simulated, which represents 

the most extreme case of future surface water scarcity for downstream irrigation. The 

differences of monthly flows in the four selected streamflow scenarios relative to the 

average historical Rio Grande flows are shown in Fig. 3.5 to offer a visual comparison of 

the relatively dry and wet projections. Dry 1 scenario has the largest number of drier-

than-average months while the Wet 2 scenario has largest number of wetter-than-average 

months. The two other projected scenarios, i.e., Dry 2 and Wet 1, respectively, represent 

moderately dry and wet conditions that are consistent with the observational record. All 

the selected scenarios indicate declining streamflows based on the Mann-Kendall test (Z-

values range between -2.74 to -6.27). 

 

Figure 3.4. Exceedance probability plots for monthly streamflow projections and 

observed monthly historical flow rates (1994-2013) recorded at the USGS San Marcial 

gauge. The four climate-based flow scenarios selected for impact assessment include 
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Dry1 (access1-0_rcp85), Dry 2 (hadgem2-es_rcp85), Wet1 (fio-esm_rcp45), and Wet2 

(cnrm-cm5_rcp85). 

 

Table 3.1. Selected climate-based monthly streamflow projections (up to 2099). 

Scenario Projection* Source MK** 

Mean annual 

flow at San 

Marcial (cms) 

No. of years 

with mean 

annual flow > 

historical 

Dry1 ACCESS1-

0_RCP85 

Australian Community Climate 

and Earth System Simulator 

-5.39 12.55 1 

Dry2 HADGEM2-

ES_RCP85 

Coupled Earth system model By 

Met Office Hadley Center, U.K. 

-4.23 18.70 12 

Wet1 FIO-

ESM_RCP45 

First Institute of Oceanography-

Earth System Model (FIO-

ESM), China 

-2.74 44.15 27 

Wet2 CNRM-

CM5_RCP85 

Earth system model by Centre 

National de Recherches 

Meteorologiques, France  

-3.39 61.83 42 

NR - No release from upstream 

reservoir 

- - 0 

 

* RCP stands for Representative Concentration Pathway.es of emissions and mitigation 

pathways. RCP 45 is an intermediate greenhouse gas emission mitigation pathway in which 

radiative forcing is stabilized at approximately 4.5 W/m after 2100. RCP 85 is a high GHG 

emission pathway with radiative forcing exceeding 8.5 W m-2 by 2100 and continuing to rise 

(Flato et al., 2013). 

** Mann-Kendall (MK) non-parametric trend test (Mann, 1945; Kendall, 1975). 
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Figure 3.5. Visualization of projected Rio Grande volumetric flows representing dry (i.e., 

Dry 1 and Dry 2) and wet (Wet 1 and Wet 2) futures relative to the average observed 

historical flows at San Marcial gauge. 
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The projected streamflows were routed through the Elephant Butte-Caballo reservoir 

system to establish upstream flow boundary condition for watershed analysis under 

different flow scenarios. A simple reservoir model was developed based on the water 

balance and downstream demand (annual average of about 974.5 MCM (790,000 acre-

feet) for full allocation) to determine monthly releases. The reservoir operation model 

accounts for elevation-volume-area relations and measured reservoir evaporation (USBR, 

personal communication). In reality, releases from Elephant Butte are based on water 

elevations in Caballo reservoir while Caballo reservoir releases water based on 

downstream demands and volume of available water in the two reservoirs. However, for 

simplicity, the two reservoirs were simulated as a combined system that stores and 

regulates the inflow into the study watershed.  

Watershed Hydrology Model. We used SWAT, a public-domain semi-distributed, 

continuous-time watershed hydrology model (Arnold et al., 1998) to represent watershed 

processes and quantify different components of the water budget. SWAT accounts for the 

impacts of water and land management practices in the water balance calculations and 

simulates relationships between crop yield and soil moisture, which makes it a useful tool 

for agricultural watershed studies (Van Liew and Garbrecht 2003; Abbaspour et al., 2007; 

Ficklin et al., 2009; Schierhorn et al., 2014; Abbaspour et al., 2015; Ahn et al., 2018). 

The model is widely used to simulate arid/semi-arid irrigated agricultural watersheds 

around the world to facilitate diverse water resources investigations (Samimi et al., 

2020), including many climate change impact assessment studies (Abbaspour et al., 2009; 

Tang et al., 2013; Ashraf Vaghefi et al., 2014; Hammouri et al., 2017; Li and Jin 2017; 

Nguyen et al., 2017; Reshmidevi et al., 2018). SWAT divides sub-basins into smaller 
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hydrological response units (HRUs) based on terrain slope, land use, and soil 

characteristics across the watershed (Fig. 3.3). Water quantity and quality are simulated 

based on the water balance in each HRU and then routed along channel network in the 

sub-basins and the watershed. The crop growth is modeled using the plant growth module 

and related databases (Neitsch et al., 2011). 

We used 10 ×10 m digital elevation models (DEM), 2011 land use/cover data (NLCD 

2011), and a combination of STATSSGO and SURGO soil maps to delineate 10 sub-

basins and 7,175 HRUs in the study watershed. The NLCD land use layer for 2011, an 

exceptional drought year based on SPI (Fig.3.2), was used to represent adaptive land 

management to cope with declining surface water availability in the future. Weather data 

(e.g., precipitation, temperature, and humidity), runoff curve numbers, plant growth 

characteristics, and agricultural management operations (e.g., irrigation, fertilization, 

pesticides, tillage, etc.) are available in various editable built-in databases that allow 

capturing the specific conditions of different applications through model calibration 

(Arnold et al., 2012).  

Characterization of streamflow, ET, and groundwater recharge is essential for regional 

water availability assessments in irrigated agricultural watersheds. We calibrated the 

SWAT model for all three components (i.e., multi-component calibration). The lack of 

sufficient observational data for ET and groundwater recharge poses a challenge for 

quantifying these water budget components. We adopted a “hard” and “soft” data 

approach (Arnold et al., 2015) using various measured data sets (i.e., hard data) such as 

streamflow, precipitation, temperature, and land use/cover along with a combination of 

literature values and expert judgements (i.e., soft data). For example, we used annual and 
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monthly ET rates measured on selected pecan orchards in New Mexico for calibrating 

pecan ET (Sammis et al., 2004; Samani et al., 2009, 2011 & 2013) along with water 

requirements for other crops estimated by a CROPWAT model based on information in 

FAO Bulletin 56 (Smith, 1992; Allen et al., 1998).  

Agricultural management information includes planting, irrigation, and harvest, which 

are available to varying extents from field operation reports and literature (Abdul-Jabbar 

et al., 1983; Sammis et al., 2004; Wang et al., 2007; USDA 2010; Ahadi et al., 2013). In 

the absence of recent measurements of recharge rates, literature values and expert 

opinions were used as first estimates of average groundwater recharge amounts (e.g., 

Sheng 2013). We used SWAT’s auto-irrigation function since details of irrigation 

schedule for several crops were unavailable. To account for the conjunctive use of 

surface water and groundwater, estimated monthly groundwater pumping was lumped 

with monthly reservoir releases and introduced to the model as total available water for 

irrigation. A combination of manual calibration and automated SWAT-CUP SUFI2 

calibration (Abbaspour, 2013) was applied for parameter estimations and 

sensitivity/uncertainty analysis to obtain satisfactory model calibration at monthly and 

daily scales (see Section 3.1). The performance of the SWAT model during the 

calibration and validation stages were determined using the NSE, r-squared, and PBIAS 

goodness-of-fit factors (Moriasi et al., 2007).  

Conjunctive Use of Surface Water and Groundwater. The annual groundwater pumping 

data for different purposes (agriculture, urban, industry) from 1961 to 2004 (Papadopulos 

and Associates 2007), including 13,148 agricultural groundwater wells were used to 

characterize the conjunctive use of surface water and groundwater. For irrigation wells, 
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each year was divided into growing season (March to October) and non-growing season 

(November to February). Farmers usually pump groundwater to make up for the surface 

water shortage for irrigation during the growing season (Fuchs et al., 2018), which 

creates an inverse relation between Caballo reservoir releases and groundwater 

withdrawal (Fig. 3.6). The simulated growing-season groundwater pumping during the 

1961-2004 period using the release-pumping regression equation matches the historical 

groundwater withdrawal. Since no trend is detectable for the pumping rates during the 

non-growing season, the maximum of historical pumping at each well during this time 

period was assigned as future pumping rate for the well. Though conservative, this 

assumption does not lead to significant overestimation of groundwater withdrawal 

because agricultural groundwater is predominantly withdrawn during the growing season.  

For the rare extremely wet conditions, historical minimum groundwater pumping rates 

were used. This piecewise approximation of groundwater pumping as a function of 

reservoir release improves estimates of groundwater withdrawals when reservoir releases 

exceed 1,200 MCM per year (Fig. 3.6). 

 

 

 

 

Figure 3.6. Regression relationship between total annual groundwater pumping and 

releases from Caballo reservoir during the growing season. 
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The reservoir release-groundwater withdrawal relationships were used to project 

groundwater withdrawals into the future using the scenario-based reservoir releases. A 

lumped groundwater balance model was set up to evaluate the potential impacts of the 

selected climate-based surface water projections on long-term groundwater availability. 

The groundwater balance accounts for scenario-based SWAT-generated recharge and 

corresponding projected groundwater withdrawals for agricultural and urban purposes 

(i.e., EBID and the City of Las Cruces, New Mexico). Two scenarios of conjunctive use 

of surface water and groundwater were simulated: (1) River + FGW: Rio Grande water 

(i.e., releases from Caballo reservoir) used along with fresh to slightly saline groundwater 

(TDS <3000 mg/L); and (2) River + GW: Rio Grande water used along with fresh to 

slightly saline and marginal quality groundwater (TDS>3000 mg/L). We used an estimate 

of recoverable fresh to slightly saline groundwater storage in the Mesilla Basin (about 

55.5 BCM) by Hawley and Kennedy (2004) to examine the reliability of agricultural 

water availability under these two conjunctive use scenarios and projected reservoir 

releases. Once fresh to slightly saline groundwater storage is depleted, agricultural 

groundwater pumping is assumed to be provided from marginal quality groundwater 

storage in the Mesilla Basin. 

3. Results 

3.1. SWAT Calibration and Validation 

An initial calibration was performed focusing on reproducing monthly and daily flows for 

the time period of 1994-1999. Common goodness-of-fit factors (NSE = 0.73, r-squared = 

0.95, and PBIAS = -15%) indicated satisfactory initial model calibration (Moriasi et al., 
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2007) using a time period that includes both historical low and high flow conditions. The 

model was then calibrated manually for ET and groundwater recharge, consecutively, 

while the impacts of parameter adjustments on the overall model results were closely 

checked to ensure reasonable simulated values for all three water budget components. 

Sensitive parameters for each component were selected based on manual investigations 

and literature review. The parameter values obtained from manual calibration were then 

compared with SWAT-CUP SUFI2 algorithm results for streamflow to further improve 

the calibration (NSE = 0.84, r-squared = 0.96, and PBIAS = 6.2%). The model performed 

comparably well during the validation period (NSE = 0.74, r-squared = 0.90, and PBIAS 

= 0.61%). Parameter values were fine-tuned separately for agricultural and non-

agricultural lands to account for the impact of irrigation and larger infiltration rates in 

agricultural lands. The initial and final values of key calibrated parameters are 

summarized in Table 3.2. 
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Table 3.2- Calibration parameters in the multi-component SUFI-aided calibration. 

Parameters Definition Initial Range Final Estimate 

ALPHA_BF Base flow recession constant (days) 0.1-1 0.9 

GWQMN Return flow threshold depth (mm) 0-5,000 1,000 

IRR_EFF Irrigation efficiency 0-1 
varies based on 

reports 

AUTO_WSTRS Water stress to trigger irrigation 0-field capacity 0.9 

SOL_AWC Available soil water capacity (mm/mm) varies varies (0.04-0.1-0.8) 

EPCO Plant uptake compensation factor 0.01-1 0.85 

ESCO Soil evaporation compensation factor 0.01-1 0.8 

GW_REVAP Groundwater “revap” coefficient 0.02-0.2 
Ag.: 0.1; non-Ag.: 

0.02 

SOL_K Soil saturated hydraulic conductivity varies 
varies (0-1,523 in 

different layers) 

GW_delay Groundwater delay time (days) 31 Ag.: 35; non-Ag.: 300 

CN2 Curve number condition 2 35-98 varies (40-75) 

IRR_ASQ Surface runoff ratio 0-1 0.3 

LAI_INIT Initial leaf area index varies 4 

 

Figure 3.7 shows the simulated flows compared with observed Rio Grande flows at El 

Paso station. The streamflow is governed by upstream dam releases and rainfall in the 

area was practically insignificant in terms of runoff contribution during the droughts of 

2006 and 2012–2013. Validation results confirmed that the calibrated model captured the 

seasonality of the outflow hydrograph during the simulation period. The model 

overestimated peak flows and some low flows, especially towards the end of the 

simulation period. The model also captured the spatial distribution of ET and 

groundwater recharge, which are larger along the main stem of the Rio Grande due to 
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irrigation and river channel seepage losses (Figure 3.8). Comparing the simulated ET of 

pecan and alfalfa with measured values in the study area shows that the multi-component 

calibrated model simulations are close to the observed ET values in the same period. 

Aquifer recharge generated by the model was also compared with available literature 

values and technical reports as “soft data” (Conover 1954; Sheng 2013; Ahn et al., 2018) 

(Fig. 3.9). Based on these performance evaluations, the watershed model was deemed 

suitable for climate impact assessments. 

 

Figure 3.7. Comparison of observed streamflow with SWAT simulations. 

 

Figure 3.8. Spatial distribution of simulated ET and groundwater recharge in the study 

area. 
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Figure 3.9. ET and groundwater recharge calibration compared with measured ET 

(Sammis et al., 2004 & 2013) and estimated recharge values in the Rincon Valley of 

EBID (Ahn et al., 2018). 

3.2. Future States of Elephant Butte-Caballo Reservoir System 

The monthly ranges of reservoir system release and storage for each streamflow scenario 

are shown in Fig. 10. As expected, dry scenarios resulted in lower monthly reservoir 

releases (i.e., up to 0.17 BCM for Dry 1 and 0.41 BCM for Dry 2) compared to wet 

scenarios (i.e., up to 0.42 BCM for Wet 1 and 0.66 BCM for Wet 2, excluding outliers). 

All scenarios include periods of nearly no release even during the irrigation season. The 

reservoir system never reaches full capacity under the extreme Dry1 scenario (the largest 

storage is about 2.8 BCM) and it rarely fills up under Dry 2 scenario. The prospect of a 

full reservoir system in the future is also dim under Wet 1 scenario whereas an extremely 

wet future (Wet 2 scenario) can potentially fill up the reservoirs relatively frequently. The 

storage in the reservoir system is disproportionately affected during dry conditions due to 

continuous evaporation. For example, an average 58% decrease in monthly inflow to EB 

reservoir under Dry 1 would reduce reservoir system storage by about 87% in the future 
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(Table 3.3). As reported in Table 3, the reservoir storage will frequently drop below 10% 

full under dry scenarios and it will be less than 50% full the majority of the time even 

under a plausible relatively wet projected future (Wet 1). 
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a) 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

Figure 3.10. Ranges of Elephant Butte-Caballo reservoir system release (a) and storage 

(b) under selected climate-based flow scenarios through year 2099. 



65 
 

3.3. Impacts on Agricultural Water Availability 

Table 3.3 summarizes the average annual values of major water budget components 

simulated under baseline and future projections. The baseline simulation uses historical 

releases and NOAA weather data (precipitation and temperature) from four weather 

stations inside and around the study area from 1993 to 2013 (with one year warm-up 

period). Future precipitation and temperature conditions are based on hadgem2-es model 

rcp 8.5 projections. Irrigation is drastically reduced under the doomsday no release (NR) 

condition, which means severe agricultural water shortage. Many pecan orchards will not 

survive such conditions in the long-run as suggested by the radical decline of pecan yield 

(Table 3.3). Although the average historical inflow to the watershed is comparable to the 

Dry1 scenario, most water budget components are smaller in the latter, showing the 

adverse impact of higher temperature and lower precipitation in the headwaters in future. 

The Dry1 and Dry2 scenarios generated similar results because of the role groundwater 

plays in alleviating agricultural water scarcity. However, the average annual irrigation is 

slightly smaller when only fresh to slightly saline groundwater is used to supplement 

river water, which causes a proportionate decline in the pecan yield (Table 3.3). The 

largest values of water budget components were obtained using the extreme wet (Wet 2) 

scenario which is least expected based on historical hydro-climatic trends. 
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Table 3.3. Simulated average annual values of major water budget components for 

different projected scenarios (2022-2099). 

Scenario 

Reservoir 

storage 

(% of time) Water 

source 

Flow (m3) 
Deep 

GW 

recharge 

(mm) 

Base 

flow 

(mm) 

Irrigatio

n (mm) 
ET 

(mm) 

Soil 

moisture 

(mm) 

Pecan 

yield*

** 

(ton/h

a) 
<50

% 

full 

<10

% 

full 
In Out 

Baseline 100 38 
River+

GW* 
25 13.3 78 16.4 539 635 10.5 1.08 

NR - -  2 2.8 54 7 255 343 15 0.19 

Dry1 98 87 

River+ 

GW 
25.2 12.3 68.8 12 589 626 11.2 0.98 

River+ 

FGW** 
19 9.3 62.7 10 505 561 11.3 0.93 

Dry2 78 69 

River+ 

GW 
25.2 12.3 68.8 12 589 626 11.2 0.98 

River+ 

FGW 
23.5 13.2 64 11 525 577 11 0.95 

Wet1 62 36 

River+ 

GW 
51 38 72.3 14 605 635 11.2 0.98 

River + 

FGW 
48 36 69.4 13 574 612 11 0.97 

Wet2 21 8 

River + 

GW 
68 53 80.3 19 639 653.5 11.1 0.99 

River + 

FGW 
66 52.6 79.6 18 633 649 12 0.99 

 

*GW= Fresh groundwater to slightly saline (Total Dissolved Solids (TDS)<3000 mg/L) and 

marginal quality groundwater (TDS>3000 mg/L) 

** FGW= Fresh to slightly saline groundwater (TDS<3000 mg/L) 

*** Average pecan yield for the period 2022-2099. 
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A drier future will increase pressure on good quality groundwater to offset the impact of 

reduced surface water availability (Fig. 3.11), likely depleting it in the second half of the 

21st century. This is indicated in the declining reliability of agricultural water supply 

when only fresh to slightly saline groundwater is used for irrigation during the 2060-2099 

period (Table 3.4). Reliability is defined as the probability that water demands are fully 

met (McMahon et al., 2006). The results show that Dry1 and Dry2 scenarios would 

possibly result in depleting 80% of the fresh groundwater storage by 2060, which bears 

critical implications for irrigated agriculture. Fresh groundwater storage will last longer 

(e.g., up to 2070) under a moderately wet scenario (Wet 1) whereas extreme wet future 

conditions (Wet 2), the least likely scenario, would prevent the depletion before the end 

of 21st century. The reliability of meeting agricultural water demand declines in the 

second half of the 21st century under all the simulated future water availability conditions 

(Table 3.4).  River water alone does not meet the agricultural water demand all the time 

even under Wet 2 scenario, which shows that agricultural water demand has significantly 

outgrown renewable water availability. In the absence of agricultural water management 

improvements to prolong fresh groundwater availability, agricultural producers should 

prepare to use marginal quality groundwater in the future to mitigate potential impacts of 

fresh groundwater depletion. 
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Figure 3. 11. Conjunctive use of surface water and groundwater for the selected 

scenarios. 

Table 3.4. Reliability of water resources in different time periods under future scenarios 

Scenario Water source 
Reliability* (%) 

2020-2060 2060-2099 

Dry1 
Surface water and fresh to slightly saline groundwater 49 17 

Surface water and fresh to marginal quality groundwater 49 50 

Dry2 
Surface water and fresh to slightly saline groundwater 54 18 

Surface water and fresh to marginal quality groundwater 54 50 

Wet1 
Surface water and fresh to slightly saline groundwater 62 38 

Surface water and fresh to marginal quality groundwater 62 57 

Wet2 
Surface water and fresh to slightly saline groundwater 75 63 

Surface water and fresh to marginal quality groundwater 75 63 

* Reliability is defined as the probability that water demands are fully met (McMahon et al., 

2006). 
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Figure 3.12 illustrates average annual agricultural ET as an indicator of crop production, 

contrasting baseline ET with simulated ET. Baseline ET is included to provide a basis for 

comparing the variability and magnitude of ET under Dry 1 and Wet 2 scenarios. The 

dry-scenario ET results are shown for two cases, namely (i) when only river water and 

fresh to slightly saline groundwater (FGW) are available for irrigation, i.e., Dry1 

(River+FGW), and (ii) when river water is used in conjunction with both fresh to slightly 

saline and marginal quality groundwater, i.e., Dry 1 (River+GW). The significant drop in 

ET in Dry1 (River+FGW) in the late 2050’s demonstrates the severe vulnerability of 

irrigated agriculture when fresh to slightly saline groundwater is depleted. If marginal 

quality groundwater can be used effectively for irrigation, it will be possible to maintain 

full water allocation reliability at about 50%. However, using marginal quality 

groundwater in the long run would decrease crop productivity and adversely impact soil 

salinity and texture, which were not accounted for in the present assessment. 

 

 

 

 

 

 

Figure 3.12. Simulated Evapotranspiration for Baseline, Wet2 and Dry 1 with all 

available water resources and Dry1 with surface water and fresh groundwater.  
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4. Discussion 

The wide range of managed streamflow projections developed based on 97 downscaled 

bias-corrected GCM products indicates significant uncertainty in future water availability 

in the region. It is essential to account for upstream impacts on flows as a primary input 

for assessing potential impacts of future climate conditions in heavily regulated 

arid/semi-arid basins (e.g., Townsend and Gutzler 2020), and select flow projections that 

are regionally relevant based on the realities of how flow conditions have changed 

historically. The historical Rio Grande flows in the study area (i.e., San Marcial and El 

Paso gauges) display an overall declining trend related to a combination of climate 

conditions and upstream management practices (Fig. 3.13). The declining trend 

underscores the importance of preparing for scenarios of reduced surface water 

availability under hotter and drier conditions in the future. This is particularly important 

for evaluating long-term availability of fresh groundwater and sustainability of irrigated 

agriculture. 
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Figure 3.13. Historical annual variability of Rio Grande flow at San Marcial gauge 

(USGS 08358300) immediately upstream of the watershed (a) and at watershed outlet at 

El Paso gauge (USGS 08364000). 

 

The results should be interpreted in light of a few caveats related to the watershed 

modeling component of the climate impact assessment framework. Calibration of highly 

managed water systems using governing hydrologic parameters is generally challenging, 

especially when detailed management operations data are unavailable (Abbaspour 2013). 
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A good streamflow calibration does not necessarily translate into equally good results for 

other managed components (e.g., ET and groundwater recharge) of the water budget in 

arid irrigated areas. Thus, the multi-component calibration strategy applied in the current 

analysis was necessary to provide a realistic characterization of the water budget 

components in the region to inform adaptive management of regional water resources. 

Other caveats include limited capability for detailed simulation of pecan trees such as 

impacts of irrigation water shortage in different time periods on plant survival and yield. 

A static crop mix and acreage was assumed in the model based on recent land use maps 

(NLCD 2011), which does not capture dynamic land use change in response to water 

availability during wet and dry periods and crop market value. Thus, the reported 

implications of future climate conditions are conservative in that they are based on water 

demands corresponding to agricultural lands during the exceptional drought in 2011. Due 

to higher agricultural activity in average and wetter than average years, which requires 

more irrigation, the impacts of diminished river flow in the future may be even more 

severe. 

It is necessary to improve agricultural water management with the ultimate goal of 

reducing net water consumption in the region. While water storage in the upstream 

reservoirs and increasing groundwater withdrawal can mitigate the negative impacts of 

future droughts, the dominant agricultural water management approach for high-value 

crops is unsustainable. The modeling results show that agricultural activities will 

increasingly rely on groundwater in the future because the dwindling surface water will 

make it difficult to provide full river water allocation to EBID in most years. Based on 

the range of available estimates of good quality groundwater storage in the Mesilla Basin, 
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maintaining the region’s agricultural production is only possible at the expense of 

depleting fresh groundwater within the 21st century and transitioning to using marginal 

quality groundwater. The transition to using marginal quality groundwater for irrigation 

will create a set of new challenges, including increasing energy cost of pumping and 

groundwater desalination, which may weaken the economic attractiveness of irrigated 

agriculture.  

The future availability of irrigation water in the middle section of the Rio Grande will 

depend on the cooperation of all users to develop an integrated regional water plan to 

manage the declining resources. The Elephant Butte-Caballo reservoir system will 

become a much less reliable water source in the future. There is a critical need to better 

understand groundwater availability in the region to inform short-term tactical 

agricultural water management decisions in light of long-term water sustainability 

considerations. Specifically, it is important to update the estimates of fresh and brackish 

groundwater storages based on hydrogeological assessments to develop robust models of 

the aquifer while accounting for mixing of fresh and saline groundwater as result of 

increased pumping. It is time to build consensus about possible regional water 

management improvements needed and take action to prolong fresh groundwater 

availability in the middle section of the Rio Grande. 

5. Conclusions 

We applied a stakeholder-driven climate impact assessment framework consisting of 

projected monthly Rio Grande flows at San Marcial gauge, a spatially distributed 

watershed hydrology model, and a simple model of conjunctive management of surface 
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water and groundwater to support irrigated agriculture. The calibrated and validated 

SWAT model reproduced the major components of the water balance budget (e.g., 

streamflow, ET, and groundwater recharge) in the arid/semi-arid agricultural watershed 

with a heavily managed river system to support irrigation. The results suggest that the 

region will likely become more groundwater-dependent in the future as the reliability of 

the upstream Elephant Butte-Caballo reservoir system declines. Sustaining irrigated 

agriculture in the long run will require adopting more efficient irrigation methods with 

the ultimate goal of reducing net agricultural water consumption in the region. In the 

absence of improved agricultural water management practices, it is highly likely that 

maintaining the region’s agricultural production will lead to fresh groundwater depletion 

within the 21st century. As such, the region should prepare to cope with the challenges of 

transitioning to using marginal quality groundwater for irrigation (e.g., increasing energy 

cost of pumping and groundwater desalination). It is essential to build consensus among 

stakeholders about possible regional water management improvements and take timely 

actions to protect fresh groundwater availability in the region. 
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CHAPTER IV 
 

 

ADAPTIVE AGRICULTURAL WATER MANAGEMENT TO COPE WITH WARM-DRY 

FUTURE IN THE US DESERT SOUTHWEST 

 

 

 

1. Introduction 

Increasing risks of water shortage and deteriorating water quality, especially in arid/semi-

arid regions, raises concerns about water resources management strategies to secure 

future food production and ensure watershed sustainability (Wallace, 2000; English et al., 

2002; Qadir et al., 2003; Jury and Vaux 2005; Ward and Pulido-Velazquez 2008; 

Brinegar and Ward 2009; Al-Ghobari and Dewidar 2018; USDA, n.d.). Applicability of 

the water resources management practices depends on the watershed conditions 

(topography, access to water resources, etc.), economic and social aspects that affect the 

cost of improving and/or shifting away from existing methods. The social and 

environmental impacts of the new water conservation methods should not be overlooked  
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as in some cases these practices may produce counter-intuitive results leading to more 

water consumption (e.g., Ward and Pulido-Velazquez 2008). 

In 2012, irrigated agriculture covered nearly 8% of the U.S. farmlands and rangelands, 

consuming about 80% of the water resources (USDA, n.d.). Most of the irrigated lands 

are located in the western states with arid/semi-arid climate. Increasing aridity in the 

southwestern US (Garfin et al. 2013; Dettinger et al. 2015) would impact the access of 

the agriculture sector to water with acceptable quantity and quality. Water conservation 

practices and increasing the resilience of the agricultural sector support food security and 

economy, especially in the face of uncertainties related to water-shortages (Ganjegunte 

and Clark 2017; English et al., 2002). Adaptive irrigation practices such as deficit 

irrigation, partial root zone drying, mulching, and crop pattern change facilitate coping 

with growing water scarcity (Nouri et al., 2019; Eberbach et al., 2011; Sadras, 2009). 

Likewise, advanced irrigation approaches such as surface and sub-surface drip and 

sprinkler irrigation and micro irrigation along with modern technology such as remote 

sensing, soil moisture monitoring, etc. to schedule irrigation and minimize the water 

losses have produced promising results around the world (Koech and Langat 2018; Li et 

al., 2007; Ganjegunte and Clark 2017).  

The main objective of this paper is to analyze the impacts of different agricultural water 

management interventions on future water availability in an arid/semi-arid region with 

limited surface water and fresh groundwater resources for irrigation. Adaptive 

agricultural water management approaches like irrigation scheduling, deficit irrigation, 

and land use management do not require major changes in infrastructure and are already 

practiced to some extent by farmers as a general response to water shortages (Skaggs and 
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Samani 2005). Other methods such as drip irrigation would require fundamental changes 

in irrigation infrastructure, creating a heavier economic burden. Substituting current high-

value commodity crops with drought-tolerant cash crops such as pistachio and 

pomegranate that are compatible to the climate of New Mexico is another approach that 

has generally been applied as a drought adaptation strategy in arid regions (Herrera, 

1991; Wang et al., 2015). 

The study area in the middle Rio Grande basin is an example of an arid/semi-arid 

irrigated agricultural watershed facing water quantity and quality concerns due to demand 

growth and extreme climate-related variability of renewable water (Elias et al., 2015; 

Chavarria and Gutzler 2018, Samimi et al., in review). The groundwater resources are in 

this region are declining due to increasing withdrawal (Sheng 2013; Fuchs et al. 2018). 

Rio Grande flow projections at San Marcial up to year 2100 demonstrate great 

uncertainty in future surface water conditions (Townsend and Gutzler 2020), which affect 

future states of the EB-C reservoir system and groundwater sustainability (Samimi, et al., 

in review). Analysis of 97 climate projections shows that the majority of the river flow 

projections indicate drier conditions compared to the historical record. Even “wet” future 

projections would also experience major droughts, resulting in more pressure on 

groundwater resources (See section 3.3 in Chapter III).  

It is highly likely that fresh to slightly saline groundwater (TDS < 3000 mg/L) in the 

middle section of the Rio Grande will be depleted in the second half of the 21st century 

under warm-dry scenarios. The agricultural sector is vulnerable to fresh groundwater 

depletion, which can cause economic losses associated with diminishing crop production. 

To cope with this plausible scenario, it is necessary to investigate feasible water saving 
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strategies to prolong the life of the fresh to slightly saline groundwater resources. 

Alternatively, irrigated agriculture in this region should prepare to use marginal quality 

groundwater and mitigate the impacts of irrigation with saline water including yield loss, 

soil salinization, soil degradation, etc. Using more irrigation water to leach out salt from 

the root zone, diluting the saline water with available fresh water, switching to drip 

irrigation, on-farm desalinization plants, and growing more salt-tolerant crops are 

example strategies to deal with the impacts of salinity. Such measures are costly and 

energy demanding and might not be always efficient given the watershed conditions, 

implementation challenges and maintenance requirements (Miyamoto, 2006). 

Pecan is the highest-value crop in the study area, which is most vulnerable to water 

shortages (Miyamoto et al., 1995; Miyamoto and Storey 1995). The region has witnessed 

a 25% increase in the area of pecan farms from 1994 to 2013 because of high profitability 

of this crop. In the past, producers have typically decreased the acreage of other crops or 

stopped growing them altogether, especially alfalfa and cotton, to save water for pecan 

farms during droughts. The efficiency of current irrigation methods for pecan, cotton, and 

alfalfa in the study area is estimated to range between 60 to 90 percent (Skaggs and 

Samani 2005; Ahadi et al., 2013). In particular, flood-irrigation of pecan farms in 

southern New Mexico leads to significant water losses because irrigation schedules 

typically do not account for crop water demand in different growth stages (Skaggs and 

Samani 2005; Samani and Skaggs 2008). Scheduling the time and amount of irrigation 

events according the plant’s water demand will increase the flood irrigation efficiency. 

Irrigation scheduling based on soil water content measurements and soil moisture sensors 
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will also increase the water consumption efficiency, creating opportunities to save more 

water (Ganjegunte and Clark 2017; Kalisek et al., 2011).  

Agricultural water conservation methods mainly focus on increasing the water 

productivity through reducing the irrigation water consumption with minimum negative 

impact on crop yield. This can be obtained by increasing irrigation efficiency through 

reducing the water loss during conveyance from the source to the farm (e.g., channel 

lining),  on-farm water losses (e.g., drip irrigation, sprinkler irrigation, mulching), and 

irrigation scheduling based on monitoring ET or soil moisture content to minimize water 

application when irrigation is not needed. Water savings are also possible during the 

periods of crop growth when the plant is less sensitive to water stress (e.g., deficit 

irrigation, partial root-zone drying). Other options to reduce irrigation include breeding 

drought tolerant crops (Condon et al., 2004), growing drought adaptive crops, and 

leveling the farm ground to improve water distribution (Knutson et al., 1998; Thompson 

et al., 2009; Perry, 2011; Mir et al., 2012; Li et al., 2013; Ganjegunte and Clark 2017). 

Further, using treated wastewater or marginal quality saline water can reduce reliance on 

fresh groundwater (Knutson et al., 1998).  

This paper contributes to climate-informed adaptation of agricultural water management 

in an arid/semi-arid agricultural watershed where heavily irrigated croplands face the risk 

of increasing water shortages due to possible warm-dry future climate conditions. The 

objectives of the paper are two-fold: 1) simulate a series of agricultural water adaptation 

scenarios using a multi-component calibrated SWAT model; and 2) evaluate the water 

conservation potential of each scenario, as well as opportunities for agricultural water 

savings using a combination of the analyzed interventions. Water conservation potential 
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is defined in this study as the percentage of reduction in irrigation water applied by the 

model based on the user-defined scenarios of deficit irrigation. The implications of 

various intervention options (e.g., irrigation, changing current cropping pattern, and 

growing alternative high-value crops) to sustain irrigated agriculture are discussed using 

the middle Rio Grande in the arid US-Mexico border region as a case study. Results of 

this study inform model-based evaluation of agricultural water management interventions 

in hydroclimatically similar areas to adapt to growing risks of water shortages due to 

plausible warm-dry conditions in the future. 

2. Methods and Materials 

2.1. Study Area 

The study area is the New Mexico-Texas portion (watershed area: ~ 6000 km2; 

agricultural area: ~ 400 km2) of the Rio Grande basin (Fig. 3.1). The region is classified 

as arid/semi-arid with an average annual precipitation of approximately 270 mm (less 

than one-third of global average) and average maximum and minimum daily 

temperatures of 42 °C and -23 °C, respectively (absolute min is -28°C and absolute max 

is 45°C from different weather stations). The soil types in the farmlands are very various, 

the larger portion of pecan farms are covered with clay loam and loam but pecan orchards 

in EBID vary between all types of soil from sand to clay (Miyamoto and Storey 1995). 

The Rio Grande streamflow is regulated at the Elephant Butte (EB) and Caballo 

reservoirs. The EB reservoir (completion: 1916, Capacity: > 2.2 million acre-feet) stores 

water for irrigation and hydro-power production (USBR, n.d.). Caballo Reservoir with a 

capacity of 343,990 acre-feet is located 25 miles downstream of the EB Dam to regulate 
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the releases from the main reservoir. “Water discharged from the EB Power plant during 

winter power generation is impounded at Caballo Dam for irrigation use during the 

summer.” (USBR, n.d.). Two gauges, USGS 08358300 Rio Grande conveyance channel 

at San Marcial and USGS 08358400 Rio Grande Floodway at San Marcial measure 

inflow to the EB reservoir. The reservoirs’ releases are recorded by USGS gauges 

08361000 Rio Grande below EB and 08362500 Rio Grande below Caballo. The USGS 

gauge 08364000 Rio Grande at El Paso measures the outflow from the watershed. 

The main irrigated agricultural activities occur within Elephant Butte Irrigation District 

(EBID) located downstream of the Caballo reservoir. Three diversion dams, Mesilla, 

Leasburg, and Percha, and five main canals distribute water among > 90,000 acres of 

irrigated lands. Alfalfa and pecan are major crops, covering about 50% of the cultivated 

area. Figure 3.2 shows the historical changes in crop pattern in the EBID and compares it 

with the water availability in the watershed. The major drought periods in 2003-2004 and 

2011-2012 caused decline in all crops especially alfalfa, pepper, corn, cotton, and 

vegetables. The surface water availability for agriculture depends on upstream reservoir 

releases. In normal years, water is released from Caballo reservoir from March to 

September to meet the irrigation water demands in the EBID.  

To compensate for surface water shortages during the irrigation season, farmers pump 

groundwater from the Mesilla basin, the main aquifer in the region (Sheng, 2013). The 

annual groundwater withdrawal data were obtained from observational records and a 

piecewise linear approximation of groundwater withdrawal based on releases from the 

Caballo reservoir (Samimi et al., in review). The monthly distribution is estimated based 

on monthly releases and monthly water table measurements available from USGS (e.g., 
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USGS 321745106492101 MBOWN-29 - 23S.01E.22.241A (LC-2A)). A constant daily 

withdrawal is assumed in each month. These estimations introduce uncertainty in the 

SWAT model results, which will be reduced through a model calibration process. 

Increasing salinity in water resources is a major problem in arid/semi-arid regions 

(Williams, 1999).  The surface water and groundwater salinity data from 2014 to 2016 in 

the study area demonstrate the availability of fresh surface water (TDS<1000 mg/L) in 

the river channel during the reservoir release period (Ma et al., 2019). Samples collected 

from wells along the main stem of the river indicate fresh to slightly saline groundwater 

with TDS values ranging between 300 to 2000 mg/L (Ma, et al., 2019). Sources of 

salinity in the Rio Grande are mainly upstream river flow which provides the majority of 

salt ions, natural river bed material, and saline groundwater intrusion (Wurbs, 2002; 

Hogan et al., 2007; Szynkiewicz et al., 2011 and 2014; Yuan and Mayer, 2012). As fresh 

water availability declines, there is mounting concern about increasing salinity in 

groundwater and river water.  

Traditional flood irrigation (basin irrigation) is commonly practiced in the EBID. The on-

farm irrigation efficiency in several EBID farms has been estimated between 60%-83% 

(Samani and Skaggs 2005; Ahadi et al., 2013). The high efficiencies are attributed to 

deficit irrigation and high water consumption of pecan. However, studies have also 

shown that some fields within the irrigation district over-irrigate while others fail to meet 

their water requirements (Samani and Skaggs 2005). Agricultural producers are 

concerned about the prospect of reduced future water availability, especially the 

sustainability of irrigated pecan production using current agricultural water management 

approaches (Hargrove and Heyman, 2020). 
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2.2. Simulating Irrigation with SWAT 

SWAT is a semi-distributed model that simulates watershed hydrology using the water 

balance equation (Arnold et al., 1998). The watershed is first divided into hydrological 

response units (HRU) based on similar land use/land cover type, soil characteristics, and 

slope in each subbasin. The water balance in each HRU is calculated based on input 

information including weather data, elevation, land use/land cover, soil, management 

practices (irrigation, fertilization, harvest, etc.), and plant growth information. The 

model’s built-in databases provide input data including weather data, land use, and plant 

growth (Neitsch et al., 2011). SWAT has been widely applied in arid/semi-arid areas with 

irrigated agriculture to simulate the impacts of changes in climate and agricultural 

management on the water budget components (Samimi et al., 2020).  

SWAT has two options to simulate irrigation. The first option is manual irrigation based 

on user-defined irrigation schedule (i.e., time and amount of water), as well as irrigation 

efficiency. When detailed information about irrigation schedule is unavailable, users can 

select the auto-irrigation function to allow the model to simulate the irrigation timing and 

amount based on default or user-defined parameter values. The model assumes irrigation 

continues until soil water content reaches the field capacity (Neitsch et al., 2011). The 

model allows the user to define the start of auto-irrigation on a specific day and month or 

based on the amount of crop heat units.  

When a specific date is set for auto-irrigation, the model triggers irrigation events based 

on a pre-defined water stress threshold. Two types of water stress thresholds can be 

defined, i.e., plant water demand or soil water content. For the plant water demand 
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threshold, the model monitors the plant growth and triggers irrigation once growth falls 

below the threshold. For soil water content, a pre-defined soil water deficit compared to 

field capacity is used as the threshold to initiate irrigation. We selected the specific date 

and soil water content threshold for auto-irrigation. The auto-irrigation function in SWAT 

model continues irrigation even after the harvest season (Akhavan et al., 2010; Samimi et 

al., 2020). Thus, we specified an extreme water stress threshold at the end of the 

irrigation season to stop irrigation after harvest.  

The soil water deficit threshold for auto-irrigation is defined using the available soil 

water concept. The total available water content (AWC) in the soil is the amount of water 

available to plant, which is calculated as the difference between the field capacity and 

wilting point. Field capacity is the maximum amount of water that stays in the soil 

against gravity. The wilting point is the minimum threshold of soil water content 

accessible to the plant. These values depend on the soil type. Plants cannot uptake all the 

AWC easily (FAO 22). The readily available water (RAW) in the soil is the portion of 

the total available water that can be easily used by plants without any water stress. The 

readily available water varies in crops between 0.3-0.7 of AWC. Lower RAW values are 

typically used for dry and hot climates (FAO 22). RAW has been estimated to be 0.45-

0.50 for pecan, 0.65 for cotton, 0.55 for oat and alfalfa, and 0.30 for onion and vegetables 

(FAO 22; Kallestad et al., 2008). The RAW for each crop in the study area was 

calculated based on soil AWC from SSURGO map and effective rooting depth of plants, 

where root density is 80% and maximum water uptake occurs (USDA, 1997). 

The auto-irrigation parameters were calibrated separately for each crop. The water stress 

threshold for soil moisture deficit was calculated based on the soil and crop 
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characteristics. Based on the SSURGO soil map, the average AWC for the majority of 

farmlands is 0.13 - 0.14. The water stress threshold (AUTO_WSTRS) for soil moisture 

content was calculated for the AWC of 0.13, crop effective rooting, and RAW coefficient 

of 30-50% as recommended for each crop (FAO 22; Kallestad et al., 2008). The amount 

of water application for each irrigation event (IRR_MAX) was set based on the general 

information on irrigation applications in the region (Example: 4 acre-feet per acre for 

pecan). 

3. Intervention Scenarios 

Several agricultural water management interventions are reported in the literature to 

improve irrigation efficiency and crop water use efficiency (e.g., Heaton et al., 1982; 

English et al., 2002; Sadras, 2009; Eberbach et al., 2011; Chai et al., 2016; Ganjegunte 

and Clark 2017). The intervention scenarios are examined to identify opportunities to 

conserve water to sustain irrigated agriculture, in general, and high-value pecan crops, in 

particular. The interventions were grouped into two main categories of irrigation and 

cropping change, which were analyzed by simulating thematic scenarios of deficit 

irrigation, changing crop pattern, and growing alternative crops. The examined 

intervention scenarios were selected based on their practical application in the study area, 

taking into account past adaption approaches, and the SWAT model’s ability to simulate 

the interventions properly. 

3.1. Deficit Irrigation 

Deficit irrigation is applied in water-scarce regions around the world as a way to increase 

water use efficiency by reducing irrigation water with minimum loss in crop yield 
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(Martin et al., 1989; Costa et al., 2007). It is designed based on reducing crop ET to a 

fraction of pan evaporation or potential crop ET. Deficit irrigation is implemented by 

reducing the amount of irrigation, increasing the RAW coefficient, and/or reducing the 

number of irrigation events, especially during less sensitive growth stages (Onder et al., 

2009; Payero et al., 2009; Liu et al., 2017; Bauder et al., 2011). Crops under unregulated 

deficit irrigation experience certain levels of water stress throughout the irrigation season 

(FAO 22, Costa et al., 2007). One type of regulated deficit irrigation means that plants 

are stressed during specific periods of their growth cycle when they are less vulnerable to 

water stress (Chai et al., 2016). Regulated deficit irrigation requires knowledge of plant 

growth periods and related heat unites in each climate. It is more practical with trickle 

and drip irrigation where the timing and amount of irrigation can be easily controlled 

(FAO 22, Costa et al., 2007). 

The effectiveness of deficit irrigation depends on climate, soil water retention potential, 

and plant physiology and mechanisms to cope with water stress (Aydinsakir et al., 2013; 

witt et al., 2020). Although some studies have reported that deficit irrigation may 

decrease crop productivity to some extent (Bauder et al., 2011; Djaman et al., 2020), 

other studies have shown increased crop quality or improved yield factors under deficit 

drip irrigation such as boll weights and opened boll numbers (Onder et al., 2009; Liu et 

al., 2017). In some cases, the yield reduction associated with deficit irrigation was 

negligible (Costa et al., 2007; FAO 22). In areas facing growing water scarcity and 

raising economic value of water, the increase in water use efficiency may justify the yield 

reduction (FAO 22). 
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Yield loss in deficit irrigation is typically estimated by the following equation 

(Doorenbos and Kassam 1979): 

1 −
𝑌𝑐

𝑌𝑚
= 𝐾𝑦 (1 −

𝐸𝑇𝑐

𝐸𝑇𝑚
)       (1) 

Where ETc and ETm are the crop ET and potential ET of the crop (the maximum crop ET) 

in mm, Yc is the yield in kg/ha, achieved with ETc; Ym is the maximum yield in kg/ha 

related to potential crop ETc; and Ky is the yield response factor estimated through 

research and experiment for each crop and for different stages of crop growth. 

The impact of water stress on different plants and their crop yield is varied. Alfalfa is a 

water demanding crop that is relatively adaptable to water stress because of its deep roots 

and the ability to go to dormancy during droughts (Bauder et al., 2011). The ET and yield 

reduction of alfalfa in whole season deficit irrigation is greater than “partial season 

irrigation” (Bauder et al., 2011; Djaman et al., 2020; Smeal et al., 1991). Partial season 

irrigation of alfalfa is normally practiced by stopping the irrigation after a cut, e.g., in 

some areas irrigation is stopped after the first, second, or third cut whereas in other places 

it may continue until the last cut (Bauder et al., 2011; Djaman et al., 2020).  

Any water stress level and timing results in corn yield reduction (Payero et al., 2006; 

Payero et al., 2009; Yazar et al., 2009). The yield reduction and optimum time for deficit 

irrigation in semi-arid regions depends on many factors that vary from year to year 

(Payero et al., 2009). For cotton, deficit drip irrigation during the initial and final stages 

of cotton growth were most efficient in the Southern High Plains with 350-450 mm 

rainfall (Himanshu et al., 2019). Moderate water stress without decreasing irrigation 

events had minimum yield loss in cotton in arid climate of Central Asia (Pereira et al., 



88 
 

2009). In the Mediterranean, 50% of pan evaporation had the best result for deficit 

irrigation of cotton (Onder et al., 2009) and corn (Aydinsakir et al., 2013). Mixing deficit 

irrigation with other measurements like mulching to manage soil water might be more 

effective (Pereira et al., 2009). There is a dearth of literature on deficit irrigation of pecan 

orchards, although it is generally known that pecan is highly sensitive to water stress 

(Miyamoto et al., 1995; Miyamoto and Storey 1995). 

Unregulated deficit irrigation scenarios were simulated through changing the water stress 

threshold and irrigation amounts for the entire irrigation season to expose crops to a 

certain level of water stress. Increasing the water stress threshold (soil water deficit) in 

SWAT does not necessarily lead to the desired increase in crop water stress. A trial and 

error process was applied to identify the combination of water stress threshold and 

irrigation amount to reach the desired level of water stress for each crop. To simulate 

stage-based regulated deficit irrigation scenarios the auto-irrigation periods were 

controlled by adding extra auto-irrigation functions with high water stress thresholds 

(AUTO_WSTRS=999) to stop irrigation at certain stages. 

3.2. Modifying Current Crop Pattern 

Agricultural producers in the study area experienced major droughts in 2003-2004 and 

2011-2013. Based on historical records of crop acreage, the producers may take part of 

their irrigated lands out of production depending on river water availability while they 

rely on fresh groundwater to sustain pecan, the most vulnerable perennial crop. The 

changes in crop patterns in response to droughts can be seen in Figure 3.2. The major 

drops in the total cultivation areas are due to decrease in alfalfa, corn, peppers, cotton, 
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and vegetables. The crop pattern scenarios were selected based on the general practices in 

the region such as reducing alfalfa and cotton acreages or stopping their cultivation 

altogether to save water (Ganjegunte and Clark 2017).  

3.3. Alternative Crops 

Pecan production is affected by water stress and salinity, especially Na+ and Cl¯ ion 

concentrations in water (Heaton et al., 1982; Miyamoto et al., 1995; Miyamoto, 2006). 

Water stress can impact the quality of nuts, affect plant growth, and in the long run might 

kill the tree. Saline water with TDS more than 700 - 1000 mg/L impacts the growth of 

plants and shrinks the size of leaves and nuts. Growth decline starts at EC of 2.5-3 dS/m 

in the soil saturation extract, while tree “die-back” starts at higher EC (6-8 dS/m) 

(Miyamoto, et al., 1986; Miyamoto, 2006). Adding gypsum to the soil might increase the 

crop’s tolerance to some extent (Miyamoto, 2006). 

Pistachio and pomegranate are example high-value crops that are relatively adaptive to 

water stress and salinity (Herrera, 1991; Holland et al., 2009). In recent years, New 

Mexico farmers have expressed interest in growing pistachio and pomegranate as 

potential alternatives to pecan (Wang et al., 2015; Carreon, 2019). Pistachio is resistant to 

water shortage and salinity (TDS up to 4000 ppm is reported) and is cultivated in arid 

regions of the world (Herrera, 1991). It has been cultivated in the US as a commercial 

crop since 1929 and its acreage has increased significantly, mostly in California (Herrera, 

1991; Geisseler and Horwath, 2016). The climate of the study area is potentially suitable 

for growing pistachio trees, which need hot summers and cold winters (not colder than -9 

to -12 oC) for ideal growth and wind for pollination. The tree starts to bear fruit after 5-10 
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years while the full fruit production takes up to 15 years (Herrera, 1991). Pistachio needs 

about 1020 mm/year or 2500 cubic meters (2 acre-feet) of water annually. Despite being 

a drought-adaptive crop, enough soil moisture during late winter, spring and early 

summer is required to produce quality crop (Herrera, 1991; Goldhamer et al., 1985; 

Doster et al., 2001). Deficit irrigation at certain stages of crop growth may have minimal 

impact on pistachio yield (Goldhamer and Beede 2004).  

Pomegranate is a native plant of the Middle East, which is grown in Iran, Afghanistan, 

India, Mexico, Southwest US, and Latin America (Glozer and Ferguson, 2008; Çam et 

al., 2009; Volschenk, 2020). The crop is gaining attention is a competitive commodity 

crop due to its growing use in food and medicine industries (Çam et al., 2009; Lansky & 

Newman, 2007; Carreon, 2019). Pomegranate can be grown in different climates 

including tropical and subtropical, but the best quality of fruits is obtained in arid regions 

(Chandra et al., 2010). Pomegranate is compatible to New Mexico climate because of its 

resistance to droughts (Glozer and Ferguson, 2008; Aseri et al., 2008). The water demand 

of pomegranate is estimated about 1250-1500 mm/year (Glozer and Ferguson, 2008). 

Water stress of up to 50% ET in drip irrigation did not have harmful impacts on the crop 

growth in Iran (Parvizi et al., 2016; Parvizi et al., 2014). Subsurface and surface drip 

irrigation reduced water application to 53-953 mm/year based on the plant age (Aseri et 

al., 2017; Volschenk, 2020). 

The cold resistance of pomegranate varies between different cultivars. The minimum 

temperature is reported between -11 oC (Glozer and Ferguson, 2008) and -15oC (Parvizi 

et al., 2016) while some cultivars can tolerate up to -30oC (Parvizi et al., 2016). It takes 

3-5 years for a young pomegranate tree to become productive (Glozer and Ferguson, 
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2008). The irrigation requirement for young trees is measured at 441-456 mm/year in 

subsurface and surface drip irrigation systems in California (Wang et al., 2015). Salinity 

tolerance threshold of pomegranate is reported to be about 2650 mg/L of TDS. Plants 

irrigated with saline water with TDS of 4000-6000 mg/L demonstrated some vegetative 

growth problems (Holland et al., 2009). Table 4.1 summarizes the intervention scenarios 

investigated in this study. Three main scenarios of deficit irrigation, modifying the 

current crop pattern, and alternative crops are defined. 

Table 4.1 Description of selected scenarios for irrigation water conservation to cope with 

dwindling river water and potential fresh groundwater depletion in 2050 

Scenario  Name Description 

Baseline  Baseline Recent historical data (1995-2013) 

Baseline 

Projection 
Baseline Projection 

Current condition under projected surface water in a warm-dry climate scenario 

with fresh GW (2020-2098) 

Deficit 

Irrigation 

DI_alf_July Alfalfa is not irrigated after July 

DI_alf45 
Deficit irrigation of alfalfa by reducing alfalfa ET to 45% of average simulated 

alfalfa ET in the Baseline condition (1995-2013) 

DI_alf65 Deficit irrigation of alfalfa for 65% of average simulated alfalfa ET 

DI_cor65 Deficit irrigation of corn for 65% of average simulated corn ET 

DI_alf45cot85 
Deficit irrigation of alfalfa for 45% of average simulated alfalfa ET and simulated 

cotton for 85% of average cotton ET 

DI_cot_July Cotton is not irrigated after July 

DI_cot_50 Deficit irrigation of cotton for 50% of average simulated cotton ET 

Modifying 

Current 

Crop 

Pattern 

CP_pecan-4 
Flood irrigated pecan orchards are increased by 4% in 2020; Young pecan trees 

are simulated 

CP_no-alf-2050 Alfalfa cultivation is stopped completely in 2050 

CP_50%alf-2050 Alfalfa acreage is reduced by half in 2050  

CP_no-cot-2050 Cotton cultivation is stopped completely in 2050 

CP_no-cot-

50%cor-2050 

Cotton cultivation is stopped completely and corn cultivation area is reduced by 

half in 2050  

CP_Extreme All crops are removed after 2050 except pecan  
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Alternative 

Crops 

AC_PISCH Cotton is replaced by flood irrigated pistachio by 2030 

AC_POMG Cotton is replaced by flood irrigated pomegranate by 2030 

AC_POMG_drip Cotton is replaced by drip irrigated pomegranate by 2030 

 

4. Results  

4.1. Multi-Component Calibration and Validation 

The SWAT Model was calibrated and validated for different water budget components as 

well as irrigation amounts. Since the main objective of the study is to evaluation different 

irrigation interventions, the model should be able to reflect the current irrigation practices 

and crop water consumption. To meet these conditions, the model was first calibrated and 

validated for the monthly observed river flow at the watershed outlet (USGS 08364000) 

using Sufi2 algorithm in SWAT-CUP (Abbaspour, 2015). The calibration period is 1995-

2004 to cover both high and low flows in the historical period. Two years of warm-up 

(1993-1995) were considered to set the primary values of model parameters.  

The model was then validated for the period of 2005-2013 with low streamflow during 

the 2011-2013 drought. Figure 4.1 shows the results of final calibration and validation. 

The goodness-of-fit factors to evaluate the model’s performance include NSE, PBIAS, 

and R2 (Moriasi et al., 2007). The model shows good performance during calibration 

period (NSE=0.68, PBIAS=1.5% and R2=0.86). The goodness-of-fit factors for the 

validation period are NSE=0.7, PBIAS= -7%, and R2=0.84, which comparably good 

performance. The performance improves significantly during 1995-2002 (NSE=0.8, 

PBIAS= -4.5%, and R2=0.9), which excludes a severe drought in 2003. The model 
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overestimates some peak flows, especially in 2003 and 2004. It also overestimates the 

low flows in the validation period, possibly due to overestimation of groundwater 

withdrawal outside irrigation season (see Section 2.2 in Chapter III).  

In the next step, the model was manually calibrated for average annual irrigation and ET 

as well as groundwater recharge. In each step the main components (streamflow, crop 

ET, groundwater recharge, and applied irrigation) were cross -compared to find a realistic 

calibrated parameter set for the heavily irrigated watershed located in an arid/semi-arid 

region. Due to limited irrigation schedule data for different crops in the study area, we 

used a range of values based on measurements reported in the literature (Abdul-Jabbar et 

al., 1983; Samani et al., 2009; Samani et al., 2011; Samani et al., 2013; Samani et al., 

2004; Ward et al., 2014). Table 4.2 shows the parameterization of the calibrated model.  

The initial auto-irrigation settings resulted in lower average annual irrigation amounts 

than expected based on the literature and “soft data” for crops especially pecan and 

alfalfa (e.g., Abdul-Jabbar et al., 1983; Sammis et al., 2004; Samani et al., 2009, 2011 & 

2013). Soft data means expert judgements (Arnold et al., 2015). In order to calibrate the 

irrigation, we reduced the AUTO_WSTRS depths for all crops. This might indicate that 

farmers either irrigate the fields before the soil water deficit reaches at least 50% of AWC 

or they overapply water to leach out the salt from the soil layer. The irrigation at the HRU 

level is not consistent; some HRUs are overirrigated while others are underirrigated based 

on water availability to each HRU and subbasin at each time step.  

The thresholds for the HRUs with different AWC were corrected individually. Model 

calibration for irrigation resulted in lower values of RAW than the initial thresholds. This 
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indicates a potential difference between the model set up and actual irrigation practices 

on the ground, which are mainly based on counting the days between irrigation events 

instead of checking the soil moisture (Ganjegunte and Clark 2017). The SWAT model, 

on the other hand, irrigates the HRUs based on the defined dates and soil water deficit. 

By comparing the irrigation results against the general information about irrigation water 

consumption of each crop in the region, we calibrated the SWAT auto-irrigation factors 

to better capture actual irrigation practices. 

Table 4.2. Calibration parameters in the multi-component SUFI-aided calibration 

Parameters Definition Default 

Range/Value 

Final Estimate 

ALPHA_BF Base flow recession constant (days) 0-1 0.4 

GWQMN Return flow threshold depth (mm) 0.01-5000 1500 

CANMX Maximum canopy storage (mmH2O) 0 1-3 

OV_N Manning’s “n” value for overland 

flow 

0.008-0.5 0.02 

EPCO Plant uptake compensation factor 0.01-1 0.9 

ESCO Soil evaporation compensation factor 0.01-1 0.8 

GW_REVAP Groundwater “revap” coefficient 0.02-0.2 0.08 

CH_N2 Manning’s n value for the main 

channels 

0.008-0.5 0.03 (Rio Grande 

literature) 

GW_delay Groundwater delay time (days) 31 Ag.: 20; non-Ag.: 

115 

CN2 SCS curve number for moisture 

condition II 

35-98 varies (40-75) 

LAI_INIT Initial leaf area index varies 4 

REVAPMN Threshold water level in shallow 

aquifer for “revap” or deep 

percolation (mmH2O) 

varies 800 

RCHRG_DP Deep aquifer percolation fraction 0-1 0.1 

SURLAG Surface runoff lag coefficient (days) 4 2-4 

HVSTI Harvest Index varies 0.13-1.25 
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Figure 4.1. Streamflow calibration and validation for the time period 1995-2013 

Calibration of the model based on ET is also essential to improve the simulation of 

irrigation events in SWAT. The average simulated crop ET during the irrigation season 

and annual groundwater recharge were also calibrated. Since groundwater recharge 

measurements were unavailable, we used soft data from literature as an estimation (Ahn 

et al., 2018). The annual average groundwater recharge is simulated at 25 mm, although 

other modeling applications in the study area reported groundwater recharge to be about 

16 mm (Ahn et al., 2018).  

Table 4.3 compares the average simulated irrigation, ET, and yield of major crops with 

reported values for single farms in the study area or other parts of New Mexico with 

similar climate (Abdul-Jabbar et al., 1983; Samani et al., 2009; Samani et al., 2011; 

Samani et al., 2013; Samani et al., 2004; Ward et al., 2014). It indicates that, overall, the 

model somewhat underirrigates alfalfa and corn. The irrigation and ET of onion matches 

the reported values in the literature (Kannan et al., 2011). However, despite using the 
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maximum harvest index in SWAT (HVSTI=1.25) the simulated onion yield is 

significantly lower than the literature reported values. 

 

Table 4.3. Calibration results for crop irrigation, ET, and yield. 

Crop Reported 

Irrigation (mm) 

Simulated 

Irrigation 

(mm) 

Reported 

ET(mm) 

Simulated ET 

(mm) 

Average 

Reported 

Yield 

(tons/ha) 

Simulated 

Yield 

(tons/ha) 

Pecan 368-2300 

(Avg:1300) 

224-2970  

(Avg.: 1700) 

825-1400 369-1460  

(Avg.: 1060) 

2.5 0.3-2.3 

Alfalfa 900-2100  127-1713 

(Avg.:983) 

390-1240 

(Avg. 900) 

312-1140  

(Avg.: 850) 

19 0.7-14 

Cotton 650-950 170-1920  

(Avg.: 736) 

650-890 370-1260 

 (Avg.: 947) 

1.1 0.02-7 

Corn 760-1300 127-930 

(Avg.: 580) 

685 214-1045  

(Avg.: 740) 

58 2-20 

Pepper 1050-1400 570-1900  

(Avg.: 1260) 

900 614-1310  

(Avg.: 1098) 

5 2-16 

Onion 350-1040 190-1560  

(Avg.: 667) 

1010 360-1055  

(Avg.: 782) 

55 0.02-14.5 

*Avg.: Average in growing season 

The monthly simulations of irrigation are comparable with field measurements. Table 4.4 

compares three years of measured irrigation data from a flood-irrigated pecan orchard 

(Wang et al., 2007) with weighted average irrigation of pecan simulated by SWAT. It 

should be noted that in the referenced field experiment, the irrigation water in the orchard 

was supplied by two wells and the trees did not experience any water stress throughout 

the experiment (Wang et al., 2007). Although, irrigation data from one farm may not 

represent the pecan irrigation practices across the study area, the closeness of the 

simulated and measured pecan irrigation amounts increase the confidence in the model. 

The difference between the model results and observational irrigation data in 2003, a 

severely dry year based on standardized precipitation index (SPI: -1.5; Fig. 3.2), indicates 
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increased groundwater withdrawal, and possibly overirrigation, to avoid adverse drought 

impacts.  

Table 4.4. Comparison of average monthly measured and simulated irrigation amounts. 

Irrigation  

Month* 

2002 2003 2004 

Reported 

Irrigation** 

Simulated 

Irrigation 

Reported 

Irrigation** 

Simulated 

Irrigation 

Reported 

Irrigation** 

Simulated 

Irrigation 

March 115 238 120.4 90 NA*** 181.4 

April 114.4 317.3 135.4 215 146.3 66.7 

May 325.7 372 415.9 259 231.5 98.4 

June 354.5 431 467.1 359 421.5 418 

July 303.1 234 393.7 357 343.5 326 

August 357.5 227 323.5 211 346.7 280 

September 187.6 217 283.7 109 NA***+127 180 

October 196.4 104.5 189.6 39 146.8 35.5 

Irrigation 

Season 
1954.2 2141 2329.3 1638 1636.3 1587 

* The field was irrigated twice in May and October and three times a month from June to 

September. 

** Measured water application in a flood-irrigated pecan orchard with no water stress throughout 

the experiment (Wang et al., 2007). 

*** No data was reported for the irrigation events. 

 

The monthly measurements of ET from a pecan orchard in 2003 to 2005 (Wang et al., 

2007) and an alfalfa field in 2008 (Samani et al., 2013) were compared with the 

corresponding area-weighted average monthly ET values simulated by SWAT (Fig. 4.2 

and 4.3). Both figures illustrate the variability of ET during the irrigation season. Pecan 

ET reaches its peak in June-July period while peak alfalfa ET occurs in June. The results 
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are comparable given the fact that measured ET data are from a single farm whereas 

SWAT results are aggregated for all irrigated lands under each crop in the study area. The 

generally lower values of simulated pecan ET may also be attributed to slight under-

irrigation of pecan in SWAT. 

 

 

Figure 4.2. Comparison of pecan ET measurements in a sample farm (Wang et al., 2007) 

and average monthly simulated ET by SWAT. 
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Figure 4.3. Comparison of alfalfa ET measured by OPEC (One-Propeller Eddy 

Covariance) tower in a sample farm, ET estimated using the Regional ET Estimation 

Model (REEM) for the same field (Samani et al., 2013) and area-weighted average 

monthly ET of alfalfa farms in the study area simulated by SWAT in 2008. 

4.2. Assessment of Water Conservation Scenarios 

Table 4.5 compares the total water consumption of all farms, and average irrigation of 

pecan, alfalfa, corn, cotton, and pepper farms during the irrigation season under different 

intervention scenarios. Deficit irrigation was simulated by imposing water stress to the 

crops throughout the irrigation season or at the end it as is common in the literature (e.g., 

Bauder et al., 2011; Djaman et al., 2020; Himanshu et al., 2019). In practice, the water 

stress through deficit irrigation is applied as a percentage of crop’s potential ET or pan 

evaporation (Onder et al., 2009; Payero et al., 2009; Liu et al., 2017; Bauder et al., 2011) 

or by omitting specific irrigation events in a regulated deficit irrigation scheme. The 

water stress was simulated by increasing the soil water deficit threshold and reducing 

irrigation water in the auto-irrigation function. However, changing only one of these two 
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parameters in the model does not necessarily produce the desired water stress level 

because of the SWAT’s auto-irrigation algorithm and the diversity of farms. For example, 

increasing the soil water deficit by 50% will not directly translate into a 50% crop water 

stress due the presence of different soil types. Likewise, merely increasing or decreasing 

irrigation water (IRR_MX) by a certain amount will not provide a specific water deficit. 

A combination of these two parameters were set by trial and error to achieve specific 

levels of water stress under different scenarios.  

As summarized in Table 4.5, both regulated and unregulated deficit irrigation of alfalfa 

result in increased water availability for pecan and other plants. The increased water 

availability achieved by deficit irrigation of alfalfa farms is greater as compared with 

deficit irrigation of cotton farms because of alfalfa’s larger water demand and acreage 

(more than 30% of total cultivated lands) in the study area. Since many farms have 

already had to apply deficit irrigation to some extent to handle the past water shortages, 

the average irrigation season ET of each crop in the baseline case (1995-2013) was used 

as the basis for defining in the watershed-scale simulations. Other possible bases for 

water stress targets such as irrigation water or potential ET render realistic water stress 

levels for deficit irrigation at the regional scale.  

Compared to cotton, removal of alfalfa from the crop mix had a much larger effect on 

increasing water availability (Table 4.5). For example, by removing alfalfa from the crop 

mix in 2050 (i.e., CP_no-alf-2050) due to likely depletion of fresh groundwater, pecan 

water availability increased up to 27% while corn and cotton would also receive about 

11% and 35% more water, and watershed outflow increased by 16%. However, even the 

aggressive scenario of completely removing alfalfa from the crop mix after 2050 will not 
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provide enough water to prevent crop loss during major long-term droughts in the future 

(Figure 4.4). Overall, scenarios of removing alfalfa in 2050 (CP_no-alf-2050) and 45% 

and 85% deficit irrigation, respectively, for alfalfa and cotton (DI_alf45cot85) had the 

largest effect on increasing pecan water availability in the study area at the expense of 

crop yield loss in alfalfa and cotton farms. These scenarios also increased watershed 

outflow, which can help increase downstream water availability, a major feature of the 

water conflicts between New Mexico and Texas farmers. 

For scenarios of modifying crop pattern and alternative crops, it was assumed that the 

total area of farms remains constant and new crops substitute those that are taken out of 

production or whose acreage is reduced. To simulate the alternative crops, the general 

information (e.g., maximum root depth, maximum leaf area index) for pistachio and 

pomegranate plants was added to the SWAT land use database. More specific plant 

parameters such as radiation-use efficiency were assumed to be the same as default 

values for “orchards” land use in the model. Growing flood irrigated pistachio and 

pomegranate instead of cotton (about 9% of EBID farmlands in 2008) resulted in small to 

significant reduction of irrigation water availability for other crops because the water 

requirements of these alternative crops are comparable to the water requirement of pecan. 

Nonetheless, using deficit or drip irrigation for these drought-tolerant crops will reduce 

the negative impact on water availability in the watershed.  
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Table 4.5. Average watershed outflow and crop irrigation water for different scenarios 

during the growing season 

Scenario 
Outflow 

(MCM) 

EBID 

Irrigation 

(MCM) 

EBID 

ET 

(MCM) 

Pecan 

Irr.  

(MCM) 

Alfalfa 

Irr. 

(MCM) 

Corn 

Irr.  

(MCM) 

Cotton 

Irr.  

(MCM) 

Pepper 

Irr.  

(MCM) 

Baseline 

Projection 
143.2 349.04 267.73 179.81 116.48 2.54 15.60 6.16 

DI_alf_July 147 347.80 266.21 191.64 102.06 2.62 16.67 6.18 

Change (%) 2.7 -0.36 -0.57 6.58 -12.38 3.11 6.83 0.38 

DI_alf45 182 316.98 247.06 213.25 44.95 2.73 18.99 6.20 

Change (%) 27 -9.19 -7.72 18.60 -61.41 7.11 21.69 0.74 

DI_alf65 170 322.40 261.77 205.10 60.38 2.65 17.97 6.20 

Change (%) 18.7 -7.63 -2.23 14.06 -48.16 4.04 15.18 0.72 

DI_cor65 146 348.7 267 180 116.6 1.6 15.70 6.16 

Change (%) 2 -2.60 0.08 1.35 -9.0 -36.1 1.8 0.3 

DI_cot_July 143.7 358.6 266.1 179.4 128.5 2.5 13.7 6.1 

Change (%) 0.42 0.17 -0.34 0.97 0.28 0.06 -10.93 0.08 

DI_cot_50 148.4 356.64 262.12 181.63 128.86 2.55 8.85 6.15 

Change (%) 3.65 -0.38 -1.83 2.20 0.56 0.25 -42.59 0.06 

DI_alf45cot85 184 315.63 245.25 214.05 44.97 2.73 16.78 6.20 

Change (%) 28.7 -9.57 -8.40 19.04 -61.39 7.19 7.56 0.74 

CP_pecan-4 143.5 353.00 266.55 189.85 115.54 0.98 12.78 6.13 

Change* (%) 0.26 1.13 -0.44 5.58 -0.80 -61.38 -18.10 -0.42 

CP_no-alf-2050 165.5 341 242 228 50 3 21 6.2 

Change (%) 15.6 -2.3 -9.5 27.0 -56.9 10.6 35.9 0.8 

CP_50%alf-

2050 
150.4 348.35 256.99 204.55 86.52 2.68 18.02 6.2 

Change (%) 5 -0.2 -4.0 13.8 -25.7 5.5 15.5 0.8 

CP_no-cot-2050 147.4 347.62 260.92 185.62 116.33 2.41 9.00 6.07 

Change (%) 2.97 -0.4 -2.5 3.2 -0.1 -5.3 -42.3 -1.5 

CP_no-cot-

50%cor-2050 
147.6 347.6 260.5 186.0 116.4 1.9 9.0 6.07 

Change (%) 3.1 -0.4 -2.7 3.4 0.0 -23.9 -42.3 -1.5 

CP_Extreme 198 339.4 212.6 259 - - - - 

Change (%) 38 -5.2 -20.4 45.7 - - - - 

AC_PISCH 142.9 351.97 268.49 179.75 118.06 2.53 - 6.16 

Change (%) -0.2 -1.69 0.56 1.14 -7.87 -0.32 - 0.37 

AC_POMG 142.5 344.74 271.68 164.91 113.33 2.45 8.85 6.16 

Change (%) -0.5 -3.70 1.75 -7.21 -11.56 -3.71 -42.59 0.26 

AC_POMG_drip 148.2 348.17 273.70 167.25 113.93 2.47 - 6.16 

Change (%) 3.5 -2.75 2.51 -5.89 -11.09 -2.92 - 0.30 

*Percent change relative to baseline projection 
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Figure 4.4. Comparing pecan irrigation water availability in different cropping and deficit 

irrigation interventions.  

As expected, moderate whole season deficit irrigation of cotton and alfalfa saved more 

water than partial season deficit irrigation (Table 4.5). The pecan water availability 

increased by 18.6% in the case of whole season deficit irrigation of alfalfa with 45% 

deficit (i.e., DI_alf45 scenario) as compared to 6.6% increase as a result of partial season 

deficit irrigation of alfalfa (i.e., DI_alf_July scenario). However, partial season deficit 

irrigation of crops like alfalfa had less negative impact on the yield than the whole season 

water stress (Bauder et al., 2011; Djaman et al., 2020; Smeal et al., 1991).  

It should be noted that SWAT distributes the water saved by irrigation interventions 

among all other crops based on user defined auto-irrigation parameters and water 

availability at the time of irrigation. Figure 4.5 shows how the amount of irrigation water 

saved from cotton deficit irrigation (DI_cot50) is distributed for alfalfa and pecan crops. 
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In reality, however, farmers can leverage these water savings to prioritize the irrigation of 

more valuable crops. In addition to water savings that are used by the model for irrigation 

of other crops, a portion of the saved water leaves the watershed as outflow (Table 4.5), 

which is an artifact of using the auto-irrigation function of SWAT. The largest outflow 

belongs to scenarios of deficit irrigation of alfalfa while other crops in some farms 

remained underirrigated likely due to differences in daily timing of irrigation events 

simulated by the auto-irrigation for different farms based on different soil types, crops, 

and soil moisture changes.  

 

 

Figure 4.5. Comparing crop irrigation water distribution for pecan and alfalfa in SWAT 

under scenarios DI_cot50 (cotton deficit irrigation) and Baseline Projection. 
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Figure 4.6 compares the yield of alfalfa in deficit irrigation scenarios with the baseline 

projection. It illustrates the stark tradeoff between significant water conservation in 

alfalfa fields under all season deficit irrigation and major losses in crop productivity. 

Figure 4.7 shows that once the groundwater is depleted in 2050, taking an extreme 

measure to stop growing all other crops would save enough water to maintain the current 

acreage of pecan orchards. The low reservoir releases after 2050 after depletion of fresh 

groundwater means that the will not be enough water to grow other crops besides pecan. 

Unless other measures are taken to increase agricultural water supply (e.g., on-farm 

desalination units), the irrigated agriculture will be at risk under a warm-dry future 

(Figure 4.7). 

 

Figure 4.6. Comparing the crop yield results for alfalfa under different deficit irrigation 

scenarios. 
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Figure 4.7. Pecan evapotranspiration in CP_Extreme scenario (i.e., removing all crops 

other than pecan from the mix) compared to baseline projection under warm-dry scenario 

with fresh groundwater availability until 2050. 

5. Discussion 

The middle section of the Rio Grande has reached its limit for expanding irrigated 

agriculture. Results from the multi-component calibrated SWAT model demonstrate that 

the current agricultural water use is unsustainable under a possible dry-warm climate 

future climate. Pecan orchards will be vulnerable to moderate to severe droughts if fresh 

to slightly saline groundwater storage is exhausted within the 21st century unless 

interventions are implemented to save water to maintain the production of the high-value 

pecan crops. It will be more difficult to expand the acreage of water-intensive crops in the 

face of dwindling agricultural water supply without significant ramifications. For 

example, even a slight increase in the acreage of pecan (i.e., a 4% increase in 2020) 
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results in significant water shortage for other crops. The water availability reduction for 

other crops may cause excessive water deficit, resulting in major crop loss. In one 

scenario of pecan acreage increase, the redistribution of the fixed amount of available 

water to irrigate young pecan trees resulted in more than 75% water deficit for corn. 

These agricultural water management tradeoffs signify the need to cope with future water 

shortages by using marginal quality groundwater, different irrigation and cropping 

interventions, and enforcing market mechanisms to secure water for high-value crops 

based on the economic value of water.  

Decreasing the acreage of pecan orchards is not a viable option due to significant 

economic damages associated with the loss of mature pecan trees that will be productive 

for several decades. Reducing the acreage or removing other crops is also challenging 

due to a strong sense of ownership of water (Hargrove and Heyman, 2020). Nonetheless, 

signs of growing water insecurity necessitate leveraging past adaptation practices to 

prepare for a warm-dry future. Deficit irrigation and crop pattern change have been 

occasionally practiced by farmers to cope with water shortages in the past. It is necessary 

to systematically implement these water conservation practices in a planned and 

controlled manner. Modeling results show that deficit irrigation and reducing the acreage 

of water-intensive crops like alfalfa provide modest opportunities for water saving in the 

study area but not enough to drastically change the vulnerability of irrigated agriculture, 

especially pecan farms, to future severe droughts. The results suggest that a graduate 

transition to a more drought-adaptive agricultural production is more effective to cope 

with future drought risks as opposed an abrupt response to fresh groundwater depletion 

around mid-21st century.  
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Another possible intervention to reduce the vulnerability of irrigated agriculture is 

graduate substitution of water-intensive annual commodity crops or high-value perennial 

crops with drought-adaptive alternative crops like pistachio and pomegranate, which are 

compatible to the climate of the study area. Flood irrigation of pistachio and pomegranate 

plants as alternative crops will not generate significant water savings because their 

reported water demand is comparable to that of pecan. An advantage of pistachio and 

pomegranate orchards will be their drought resilience and salinity tolerance relative to 

pecan, making them a potentially suitable adaptation strategy to sustain irrigated 

agriculture in the region using deficit irrigation. Regulated deficit irrigation, drip 

irrigation of the alternative crop orchards can create additional water conservation 

opportunities but it requires further investigations. Further, the time required for the new 

alternative crops to reach commercial fruiting should be considered in the decision to 

switch to these crops instead of growing pecan or other crops.  

The irrigation management in the study area is challenged by water availability in each 

farm, variety of soil types, and different sizes of farms. Irrigation timing and amount 

depends directly on upstream reservoir releases. Farms with wells have more options in 

irrigating the crops properly. Deficit irrigation is forced to some farmers while others 

might over-irrigate (Samani and Skaggs 2005; Ganjegunte and Clark 2017). So,  

Results of this model-based agricultural water management intervention analysis should 

be interpreted in regard to the watershed scale of the analysis and limited actual crop 

management data. Despite extensive efforts to calibrate the model to realistically simulate 

irrigation alongside streamflow, ET, and groundwater recharge, the results from the 

watershed-scale model are not directly applicable for the individual farms. Regulated 
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deficit irrigation may somewhat reduce crop yields, which should be better characterized. 

Farm level analyses of water saving potential and likely impacts on crop yields requires 

detailed farm-scale modeling, and field measurements to reduce uncertainties in model 

setup and parametrization. Using the exact timing of the crop growth and harvest (e.g., 

alfalfa’s number of harvests in an agricultural year) in the model will improve the 

simulation of regulated deficit irrigation of crops. 

 

6. Conclusions 

The water conservation potential of several irrigation interventions were analyzed in a 

heavily irrigated agricultural area in the middle section of the Rio Grande basin under a 

warm-dry climate scenario. The results show that the current agricultural practices are 

vulnerable to future severe droughts and risk of losing valuable pecan orchards increases 

by degradation of quality groundwater resources and increasing salinity. The multi-

component calibrated and validated SWAT model that was especially calibrated for 

irrigation practices was proven to be reliable for simulating the impact of different 

interventions on vulnerability of agricultural activities in the watershed.  

The water conservations tested in this study is limited to the SWAT ability and available 

data as well as the applicability of the measures regarding the stakeholders experience, 

existing infrastructures, and current conditions of irrigation applications in the farms. 

Other effective methods like drip irrigation, partial root zone drying, and irrigation 

scheduling based on soil moisture can be tested using other models and field experiments 
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alongside SWAT. However, this study shows that such effective interventions cannot be 

used as quick responses in a short time before drought happens.  

Alfalfa and cotton are the first choice of farmers to sacrifice during the drought (Chapter 

III). Long term regulated deficit irrigation of these crops could be more effective than 

current level of unregulated deficit irrigation. Detailed study of currently practiced deficit 

irrigation and data on crop growth stages in study area is necessary to plan for more 

sustainable deficit irrigation with minimum loss of crop yield. But the modeling results 

show that modifying current cropping pattern is somewhat helpful for regional 

agricultural water conservation but abrupt elimination of cotton or alfalfa when 

approaching the groundwater limit will not conserve significant amount of water to 

sustain the current crop mix. Substituting the current pattern with more tolerant crops like 

pomegranate and pecan would increase the resiliency of agriculture to the long-term 

droughts, but the irrigation water conservation will not be improved in these scenarios 

and might result in losing other crops like cotton and corn, unless drip or regulated deficit 

irrigation is applied.  

Challenges of modeling in arid/semi-arid irrigated watersheds are addressed in this study. 

The high uncertainties are introduced due to lack of data and information about 

groundwater withdrawal and farming practices, multi-calibration of the model and cross 

referencing some parameters with available data helps to reduce some these uncertainties, 

for example, assuming the total available water as sum of the surface and ground water is 

practical for water balance calculation of the basin, but cannot be used for aquifer water 

table changes as our assumptions does not account for the impact of water withdrawal 

from the aquifer. To model the impact of groundwater withdrawal and recharge on the 
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aquifer, a SWAT model that considers both surface and groundwater as irrigation sources 

along with a SWAT-MODFLOW model is required. The quality of the water resources, 

especially increasing salinity and more accurate estimation of fresh groundwater volume, 

is also an important factor and should be considered in future management plans. 

More detailed studies on a farm scale are required to elaborate the positive and negative 

impacts of the water conservation methods on water resources, agriculture, and economy 

of the basin under warm and dry future. Despite the need to detailed studies, quick 

measures should be taken to improve the irrigation water consumption and modify the 

crop pattern to move towards more resiliency in the watershed. The required precautions 

for saline water irrigation application during major droughts is recommended. Insights 

from this study is applicable for similar regions around the world that are dealing with 

drought problems, and obstacles related to lack of field information.  
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CHAPTER V 
 

 

SUMMARY AND CONCLUSION 

 

 

 

1. Summary  

The future of irrigated agriculture in arid/semi-arid regions like the study area in the Rio 

Grande basin, depends on water availability. The historical declining trend of streamflow 

and plausible climate projections for the region point to high possibility of a drier future 

that would increase the vulnerability of current agriculture condition. Modeling the 

watershed for the minimum crop areas in the project time period shows the high 

dependency of the agriculture to groundwater resources to the extent that when the 

groundwater with acceptable quality (TDS<3000 mg/L) declines, farmers should either 

take extra measures to continue with the saline groundwater or decrease their dependency 

to groundwater through modifying the water use efficiency. 

Sustainable agriculture could ensure the water availability and food security under the  
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increasing pressures of demand growth and climate conditions. The multi-component 

calibrated SWAT model shows that once the groundwater resources declined, most 

common practices for coping with drought like emergency crop pattern change and 

occasional deficit irrigation would not be effective in major droughts.   

Graduate transition to a more resilient agriculture through using regulated deficit 

irrigation and drought adaptive crops like pistachio and pomegranate is recommended. 

Modern methods like drip irrigation are very effective for water use efficiency, however 

the need for changing infrastructures and the cost of installation and maintenance are 

significant obstacles for implementing them in a short time. Increasing value of water in 

arid/semi-arid regions justifies the investment for more complicated water and salinity 

management measures, however, the efficiency of such methods should be studied 

considering the controlling factors like climate, soil type, farm size, etc.   

Multi-calibration of the model and checking it for details of irrigation activities based on 

available data increases the reliability of the results despite uncertainties related to lack of 

detailed information and measured data. 

2. Conclusions 

Modeling the study area with the multi-component calibrated SWAT model shows that 

current agriculture with the high dependency to the declining groundwater resources, is 

vulnerable to droughts even with the minimum farming areas during the drought in 2011. 

Simulating the impact of some common irrigation interventions with a multi-calibrated 

SWAT model that accounts for irrigation practices in detail indicated that although 

measures like deficit irrigation or reducing the cultivation area of water demanding crops 
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result in levels of water conservation, taking them as emergency responses to droughts is 

not helpful and sustainable. Graduate transition from current condition to more resilient 

land use and irrigation methods improves the vulnerability of agricultural activities in the 

region. 

Field experiments on optimum regulated deficit irrigation practices on different crops, 

especially pistachio and pomegranate in the study area helps to improve water application 

efficiency in under-irrigated farm. Soil salinity measurements to find problematic sites 

along with modeling the future salinization risks in soil and water resources to plan for 

using saline groundwater resources in farms with less salinity problems. Long-term 

impacts of saline water irrigation will elaborate the water resources management plans 

for future.  

Studying the surface water- groundwater interactions is required to investigate the impact 

of irrigation water conservation practices on the water table. This model should be able to 

account for the impact of irrigation interventions on both reduction in groundwater 

pumping and decrease in groundwater recharge at the same time. 
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APENDIX A 

 

 

 

This table presents an extensive list of the SWAT parameters reported in the reviewed 

literature for model parametrization and calibration when SWAT was applied to irrigated 

agricultural watersheds in arid/semi-arid climates. The parameters were broadly grouped 

under surface runoff, ET, soil water, and groundwater based on parameter definitions and 

their effect. The information summarized in Table S1 and accompanying references may 

be used to start the calibration process. However, it is necessary to note that the list of 

parameters and the general range of calibrated parameters are merely based on what has 

been reported in published journal articles and they may not be directly applicable to 

other watershed modeling efforts using SWAT. The sensitive parameters and their range 

for a particular SWAT application to an arid/semi-arid irrigated agricultural watershed 

should be selected based on the characteristics of the watershed and modeling approaches 

and objectives. 
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Extended list of SWAT model parameters, initial parameter values, and calibrated values 

extracted from the reviewed publications (see note below). 

 

SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

S
u

rf
a

ce
 r

u
n

o
ff

 

CN2: SCS curve 

number for moisture 

condition II 

35–98 
35-98 (-40% 

–40%)  

Ahn et al. (2018); Chen et al. (2011); Reshmidevi and Kumar 

(2014); Fallatah et al. (2019); Dechmi et al. (2012); Ficklin et 

al. (2013); Reshmidevi et al. (2018); Andaryani, et al. (2019b); 

Andersson et al. (2009); Ang and Oeurng (2018); Becker et al. 

(2019); Delavar et al. (2020); Epelde et al. (2016); 

Gebremicael et al. (2013); Hammouri et al. (2017); Kannan et 

al. (2011); Li et al. (2013); Luan et al. (2018); Luo et al. 

(2008a); McInerney et al. (2018); Molina-Navarro et al. 

(2016); Notter et al. (2012); Perrin et al. (2012); Qiu et al. 

(2019); Rivas-Tabares et al. (2019); Sahana and Timbadiya 

(2020); Santhi et al. (2001&2006); Santos et al. (2018); Setegn 

et al. (2010); Shrestha et al. (2016); Srivastava et al. (2010); 

Wu et al. (2016); Sun and Ren (2013); Wagner et al. (2012); 

Wei et al. (2018); Worqlul et al. (2018); Zettam et al. (2017); 

Masud et al. (2018) 

CNCOEF: Plant ET 

curve number 

coefficient) 

0.5–2 1-1.89 Ahn et al. (2018); Aliyari et al. (2019); Bressiani et al. (2015) 

ICN: Daily curve 

number method 
0, 1, 2  

1 (ET 

method) 
Bressiani et al. (2015) 

SURLAG: Surface 

runoff lag coefficient 

(days) 

4 0.001–15 

Ahn et al. (2018); Chen et al. (2011); Reshmidevi and Kumar 

(2014); Fallatah et al. (2019); Dechmi et al. (2012); Ficklin et 

al. (2013); Aliyari et al. (2019); Andaryani, et al. (2019b); 

Andersson et al. (2009); Ang and Oeurng (2018); Epelde et al. 

(2016); Gebremicael et al. (2013); Kannan et al. (2011); Li et 

al. (2013); McInerney et al. (2018); Molina-Navarro et al. 

(2016); Qiu et al. (2019); Rivas-Tabares et al. (2019); Sahana 

and Timbadiya (2020); Shrestha et al. (2016); Wagner et al. 

(2012); Wei et al. (2018); Worqlul et al. (2018) 

OV_N: Manning’s 

“n” value for overland 

flow 

0.008–

0.5 

(based 

on land 

surface

) 

0.05–2.13 (-

19%–2%) 

Ahn et al. (2018); Ficklin et al. (2013); Abeysingha et al. 

(2015); Aliyari et al. (2019); Andaryani, et al. (2019b); Kannan 

et al. (2011); Marek et al. (2016); Qiu et al. (2019); Rivas-

Tabares et al. (2019); Sahana and Timbadiya (2020); Wei et al. 

(2018); Worqlul et al. (2018); Masud et al. (2018) 

CH_N1: Manning’s 

“n” value for the 

tributary channel 

0.008–

0.5 
0.01–5.54 

Ahn et al. (2018); Jones et al. (2008); Fallatah et al. (2019); 

Aliyari et al. (2019); Kannan et al. (2011); Qiu et al. (2019); 

Rivas-Tabares et al. (2019); Sun and Ren (2013); Worqlul et al. 

(2018) 

CH_N2: Manning’s n 

value for the main 

channels 

0.008–

0.5 

0–0.2 (-32% 

–30%) 

Reshmidevi and Kumar (2014); Jones et al. (2008); Fallatah et 

al. (2019); Ficklin et al. (2013); Reshmidevi et al. (2018); 

Akhavan et al. (2010); Aliyari et al. (2019); Andaryani, et al. 

(2019b); Ang and Oeurng (2018); Kannan et al. (2011); Notter 

et al. (2012); Qiu et al. (2019); Rivas-Tabares et al. (2019); 

Sahana and Timbadiya (2020); Shrestha et al. (2016); Sun and 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

Ren (2013); Wagner et al. (2012); Wei et al. (2018); Worqlul et 

al. (2018) 

CH_K1: Effective 

hydraulic conductivity 

in tributary channel 

alluvium (mm/h) 

0–300* 0.025–276 
Jones et al. (2008); Fallatah et al. (2019); Aliyari et al. (2019); 

Kannan et al. (2011); Rivas-Tabares et al. (2019) 

S
u

rf
a

ce
 r

u
n

o
ff

 

CH_K2: Effective 

hydraulic conductivity 

in main channel 

(mm/h) 

-0.01–

500* 
0–406 

Reshmidevi and Kumar (2014); Jones et al. (2008); Ficklin et 

al. (2013); Reshmidevi et al. (2018); Abeysingha et al. (2015); 

Akhavan et al. (2010); Aliyari et al. (2019); Andaryani, et al. 

(2019b); Andersson et al. (2009); Ang and Oeurng (2018); 

Gebremicael et al. (2013); Kannan et al. (2011); Molina-

Navarro et al. (2016); Notter et al. (2012); Rivas-Tabares et al. 

(2019); Sahana and Timbadiya (2020); Santos et al. (2018); 

Setegn et al. (2010); Shrestha et al. (2016); Sun and Ren 

(2013); Wei et al. (2018); Worqlul et al. (2018) 

CH_S1: Average 

slope of tributary 

channels 

NR** NR** Worqlul et al. (2018) 

CH_S2: Average 

slope of main channel 

(m/m) 

NR** (2.3%) 
Aliyari et al. (2019); Ang and Oeurng (2018); Worqlul et al. 

(2018) 

SFTMP: Snowfall 

temperature (oC) -5 – 5 -1.1–5 

Jones et al. (2008); Akhavan et al. (2010); Aliyari et al. (2019); 

Andaryani, et al. (2019b); Delavar et al. (2020); Qiu et al. 

(2019); Wei et al. (2018) 

SNOCOVMX: 
Minimum snow water 

content that 

corresponds to 100% 

snow cover (mmH2O) 

1 150-530.8 Jones et al. (2008); Aliyari et al. (2019) 

SNO50COV: 
Fraction of snow 

volume represented by 

SNOCOVMX that 

corresponds to 50% 

snow cover 

0.01–

0.99 
0.4–0.58 Jones et al. (2008); Aliyari et al. (2019) 

TIMP: Snow pack 

temperature lag factor 0.01–1 0.01–0.81 

Jones et al. (2008); Akhavan et al. (2010); Aliyari et al. (2019); 

Andaryani, et al. (2019b); Andersson et al. (2009); Qiu et al. 

(2019); Wei et al. (2018) 

SMTMP: Snow melt 

base temperature (oC) -5–5 1.9–5 

Jones et al. (2008); Akhavan et al. (2010); Aliyari et al. (2019); 

Delavar et al. (2020); Qiu et al. (2019); Wei et al. (2018); Yu et 

al. (2011) 

SMFMX: Melt factor 

for snow on June 21 

(mmH2O/oC day) 

1.4–8 0.2–4.5 

Jones et al. (2008); Akhavan et al. (2010); Aliyari et al. (2019); 

Andaryani, et al. (2019b); Andersson et al. (2009); Li et al. 

(2013); Qiu et al. (2019); Wei et al. (2018); Yu et al. (2011) 

SMFMN: Melt factor 

for snow on December 

21 (mmH2O/oC day) 

1.4–8 0–0.5 
Jones et al. (2008); Aliyari et al. (2019); Andaryani, et al. 

(2019b); Qiu et al. (2019); Wei et al. (2018); Yu et al. (2011) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

SLSUBBSN: Average 

slope length (m) 
50 

0–137.96 (-

35%) 

Akhavan et al. (2010); Gebremicael et al. (2013); Qiu et al. 

(2019); Rivas-Tabares et al. (2019); Worqlul et al. (2018) 

HRU_SLP: Average 

slope steepness (m/m) 
0–0.6* 

0.029–0.28 (-

9%–22%) 

Gebremicael et al. (2013); Li et al. (2013); Qiu et al. (2019); 

Rivas-Tabares et al. (2019); Aliyari et al. (2019); Masud et al. 

(2018) 

SLSOIL: Slope 

length for lateral 

subsurface flow (m) 

0-150* 65.97 Rivas-Tabares et al. (2019); Santos et al. (2018) 

ALPHA__BNK: 

Baseflow alpha factor 

for bank storage 

(days) 

<1 0.01–0.69 Akhavan et al. (2010); Shrestha et al. (2016) 

S
u

rf
a

ce
 r

u
n

o
ff

 

EV_POT: Pothole 

evaporation 

coefficient 

0.5 0.5 Chen et al. (2017); Marek et al. (2016) 

POT_VOLX: 

Maximum volume of 

water stored in the 

pothole (mm) over the 

entire HRU 

0–∞* 50 Chen et al. (2017); Marek et al. (2016) 

MUSK_CO1: 

Weighting factor for 

influence of normal 

flow on storage time 

constant value 

NR** 0.01–10 Kannan et al. (2011) 

MUSK_CO2: 

Weighting factor for 

influence of low flow 

on storage time 

constant value 

NR** 0.01–10 Kannan et al. (2011) 

IRR_SQ: Irrigation 

surface runoff ratio 
0–1 0.001–0.5 McInerney et al. (2018) 

IRR_EFF: Irrigation 

efficiency 
0-100 NR** Masud et al. (2018) 

EVRCH: Reach 

evaporation 

adjustment factor 

0–1 0.669–0.85 Rivas-Tabares et al. (2019); Worqlul et al. (2018) 

TRNSRCH: Fraction 

of transmission losses 

from main channel 

that enter deep aquifer 

0–1 0.21 Worqlul et al. (2018) 

LAT_TTIME: 

Lateral flow travel 

time (days) 

NR** 5–165 
Ficklin et al. (2013); Ba et al. (2020); Rivas-Tabares et al. 

(2019); Masud et al. (2018) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

PLAPS: Precipitation 

laps rate (mmH2O/km) 
NR** 

77.58 (-7.5– 

(-5.8)) 

Delavar et al. (2020); Qiu et al. (2019); Rivas-Tabares et al. 

(2019) 

TLAPS: Temperature 

laps rate (oC/km) 
-6 (-3%– 18%) Delavar et al. (2020); Qiu et al. (2019) 

E
va

p
o

tr
a

n
sp

ir
a

ti
o

n
 

CANMX: Maximum 

canopy storage 

(mmH2O) 

0–100* 0–57.6 

Ahn et al. (2018); Fallatah et al. (2019); Abeysingha et al. 

(2015); Aliyari et al. (2019); Becker et al. (2019); Gebremicael 

et al. (2013); Hammouri et al. (2017); Li et al. (2013); Qiu et 

al. (2019); Rivas-Tabares et al. (2019); Sahana and Timbadiya 

(2020); Shrestha et al. (2016); Sun and Ren (2013); Wagner et 

al. (2012); Masud et al. (2018) 

EVLAI: Leaf area 

index at which no 

evaporation occurs 

from water surface 

0–10 4 Chen et al. (2017); Marek et al. (2016) 

CANMX: Maximum 

canopy storage 

(mmH2O) 

0.01–1 
0–1 (39%-

99%) 

Chen et al. (2011); Reshmidevi and Kumar (2014); Ficklin et 

al. (2013); Reshmidevi et al. (2018); Abeysingha et al. (2015); 

Akhavan et al. (2010); Aliyari et al. (2019); Andaryani, et al. 

(2019b); Ang and Oeurng (2018); Becker et al. (2019); Chen et 

al. (2017); Epelde et al. (2016); Hammouri et al. (2017); 

Kannan et al. (2011); Marek et al. (2016); Melaku and Wang 

(2019); Notter et al. (2012); Qiu et al. (2019); Rivas-Tabares et 

al. (2019); Sahana and Timbadiya (2020); Santhi et al. 

(2001&2006); Shrestha et al. (2016); Sun and Ren (2013); 

Wagner et al. (2012); Worqlul et al. (2018); Masud et al. 

(2018) 

ESCO: Soil 

evaporation 

compensation 

coefficient 

0.01–1 
0–1 (23%-

55%) 

Ahn et al. (2018); Chen et al. (2011); Reshmidevi and Kumar 

(2014); Jones et al. (2008); Dechmi et al. (2012); Ficklin et al. 

(2013); Reshmidevi et al. (2018); Abeysingha et al. (2015); 

Akhavan et al. (2010); Aliyari et al. (2019); Andaryani, et al. 

(2019b); Andersson et al. (2009); Ang and Oeurng (2018); Ba 

et al. (2020); Becker et al. (2019); Bressiani et al. (2015); Chen 

et al. (2017); Epelde et al. (2016); Gebremicael et al. (2013); 

Hammouri et al. (2017); Kannan et al. (2011); Li et al. (2013); 

Luan et al. (2018); Marek et al. (2016); McInerney et al. 

(2018); Melaku and Wang (2019); Molina-Navarro et al. 

(2016); Notter et al. (2012); Qiu et al. (2019); Rivas-Tabares et 

al. (2019); Sahana and Timbadiya (2020); Santhi et al. 

(2001&2006); Setegn et al. (2010); Shrestha et al. (2016); Wu 

et al. (2016); Sun and Ren (2013); Wagner et al. (2012); Wei et 

al. (2018); Worqlul et al. (2018); Masud et al. (2018) 

S
o

il
 w

a
te

r SOL_AWC: Soil 

available water 

capacity (mmH2O/mm 

soil) 

0–1* 

0– 0.91 (-

50%–62%) 

(default + 

0.01) (0-3 

times) 

Ahn et al. (2018); Chen et al. (2011); Reshmidevi and Kumar 

(2014); Jones et al. (2008); Fallatah et al. (2019); Dechmi et al. 

(2012); Ficklin et al. (2013); Reshmidevi et al. (2018); 

Abeysingha et al. (2015); Aliyari et al. (2019); Andaryani, et 

al. (2019b); Andersson et al. (2009); Ang and Oeurng (2018); 

Becker et al. (2019); Delavar et al. (2020); Gebremicael et al. 

(2013); Kannan et al. (2011); Li et al. (2013); Luan et al. 

(2018); Luo et al. (2008a); McInerney et al. (2018); Molina-

Navarro et al. (2016); Notter et al. (2012); Perrin et al. (2012); 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

Qiu et al. (2019); Rivas-Tabares et al. (2019); Sahana and 

Timbadiya (2020); Santos et al. (2018); Setegn et al. (2010); 

Shrestha et al. (2016); Sun and Ren (2013); Wagner et al. 

(2012); Wei et al. (2018); Worqlul et al. (2018); Zettam et al. 

(2017); Masud et al. (2018) 

FFCB: Initial soil 

water storage 
0–1 0.5–0.75 Chen et al. (2017); Marek et al. (2016) 

SOL_K: Saturated 

hydraulic conductivity 

(mm/hr) 

0–

2000* 

0.13–180 (-

50%–62%) 

Ahn et al. (2018); Chen et al. (2011); Reshmidevi and Kumar 

(2014); Fallatah et al. (2019); Xiong et al. (2019); Ficklin et al. 

(2013); Akhavan et al. (2010); Aliyari et al. (2019); Andaryani, 

et al. (2019b); Andersson et al. (2009); Ang and Oeurng 

(2018); Becker et al. (2019); Delavar et al. (2020); Hammouri 

et al. (2017); Kannan et al. (2011); Li et al. (2013); Molina-

Navarro et al. (2016); Notter et al. (2012); Perrin et al. (2012); 

Qiu et al. (2019); Sahana and Timbadiya (2020); Santos et al. 

(2018); Shrestha et al. (2016); Wagner et al. (2012); Wei et al. 

(2018); Worqlul et al. (2018); Masud et al. (2018) 

SOL_BD: Moist bulk 

density (Mg/m3 or 

g/cm3) 

1.1–1.9 (-18% –30%) 

Ficklin et al. (2013); Andaryani, et al. (2019b); Andersson et 

al. (2009); Becker et al. (2019); Notter et al. (2012); Shrestha et 

al. (2016); Masud et al. (2018) 

SOL_ALB: Moist 

soil albedo 
NR** 

0.4-0.81 (-

7%) 

Aliyari et al. (2019); Andaryani, et al. (2019b); Hammouri et 

al. (2017); Masud et al. (2018) 

S
o

il
 w

a
te

r 

SOL_CBN: Organic 

carbon content (% soil 

weight) 

NR** 0-10 Becker et al. (2019); Masud et al. (2018) 

SOL_ZMX: 

Maximum rooting 

depth (mm) 

NR** 600-2030 Becker et al. (2019); Marek et al. (2016) 

SOL_Z (layer): Soil 

depth (mm) 
NR** 

0–3500 (-

32%–22%) 

Fallatah et al. (2019); Aliyari et al. (2019); Ang and Oeurng 

(2018); Delavar et al. (2020); Gebremicael et al. (2013); Li et 

al. (2013); Molina-Navarro et al. (2016); Qiu et al. (2019); 

Rivas-Tabares et al. (2019); Santos et al. (2018); Wu et al. 

(2016); Worqlul et al. (2018); Zettam et al. (2017) 

G
ro

u
n

d
w

a
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GW_DELAY: 
Groundwater delay 

time (days) 

0–500* 0 – 365 

Ahn et al. (2018); Reshmidevi and Kumar (2014); Jones et al. 

(2008); Fallatah et al. (2019); Dechmi et al. (2012); 

Abeysingha et al. (2015); Aliyari et al. (2019); Andaryani, et 

al. (2019b); Andersson et al. (2009); Ang and Oeurng (2018); 

Ba et al. (2020); Becker et al. (2019); Delavar et al. (2020); 

Epelde et al. (2016); Gebremicael et al. (2013); Kannan et al. 

(2011); McInerney et al. (2018); Melaku and Wang (2019); 

Notter et al. (2012); Perrin et al. (2012); Qiu et al. (2019); 

Rivas-Tabares et al. (2019); Sahana and Timbadiya (2020); 

Santos et al. (2018); Shrestha et al. (2016); Srivastava et al. 

(2010); Wu et al. (2016); Wagner et al. (2012); Worqlul et al. 

(2018) 

GWQMN: Threshold 

depth of water in 

shallow aquifer for 

0–

5000* 

0 – 4772 

(default 

+1002.25) 

Ahn et al. (2018); Reshmidevi and Kumar (2014); Jones et al. 

(2008); Fallatah et al. (2019); Abeysingha et al. (2015); Aliyari 

et al. (2019); Andaryani, et al. (2019b); Ang and Oeurng 



147 
 

 

SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

return flow to occur 

(mmH2O) 

(2018); Bressiani et al. (2015); Delavar et al. (2020); Epelde et 

al. (2016); Gebremicael et al. (2013); Kannan et al. (2011); 

Luo et al. (2008a); McInerney et al. (2018); Melaku and Wang 

(2019); Molina-Navarro et al. (2016); Notter et al. (2012); Qiu 

et al. (2019); Rivas-Tabares et al. (2019); Sahana and 

Timbadiya (2020); Santhi et al. (2006); Setegn et al. (2010); 

Shrestha et al. (2016); Srivastava et al. (2010); Wu et al. 

(2016); Sun and Ren (2013); Wagner et al. (2012); Wei et al. 

(2018); Worqlul et al. (2018) 

ALPHA_BF: Base 

flow recession 

constant factor 

(1/days) 

0.1–1 0.001–1 

Ahn et al. (2018); Reshmidevi and Kumar (2014); Jones et al. 

(2008); Fallatah et al. (2019); Dechmi et al. (2012); Ficklin et 

al. (2013); Reshmidevi et al. (2018); Abeysingha et al. (2015); 

Aliyari et al. (2019); Andaryani, et al. (2019b); Andersson et 

al. (2009); Ang and Oeurng (2018); Ba et al. (2020); Becker et 

al. (2019); Bressiani et al. (2015); Delavar et al. (2020); Epelde 

et al. (2016); Gebremicael et al. (2013); Kannan et al. (2011); 

Li et al. (2013); McInerney et al. (2018); Melaku and Wang 

(2019); Molina-Navarro et al. (2016); Notter et al. (2012); Qiu 

et al. (2019); Rivas-Tabares et al. (2019); Sahana and 

Timbadiya (2020); Setegn et al. (2010); Shrestha et al. (2016); 

Wu et al. (2016); Sun and Ren (2013); Wagner et al. (2012); 

Wei et al. (2018); Worqlul et al. (2018); Yu et al. (2011); 

Masud et al. (2018) 

REVAPMN: 
Threshold water level 

in shallow aquifer for 

“revap” or deep 

percolation (mmH2O) 

0–

8000* 
0.65–2000 

Ahn et al. (2018); Reshmidevi and Kumar (2014); Jones et al. 

(2008); Abeysingha et al. (2015); Akhavan et al. (2010); 

Aliyari et al. (2019); Andaryani, et al. (2019b); Andersson et 

al. (2009); Ang and Oeurng (2018); Bressiani et al. (2015); 

Delavar et al. (2020); Epelde et al. (2016); Hammouri et al. 

(2017); McInerney et al. (2018); Melaku and Wang (2019); 

Molina-Navarro et al. (2016); Perrin et al. (2012); Qiu et al. 

(2019); Rivas-Tabares et al. (2019); Sahana and Timbadiya 

(2020); Setegn et al. (2010); Shrestha et al. (2016); Wu et al. 

(2016); Sun and Ren (2013); Wagner et al. (2012); Wei et al. 

(2018); Worqlul et al. (2018) 

G
ro

u
n

d
w

a
te

r 

GW_REVAP: 
Groundwater “revap” 

coefficient 

0.02–

0.2 
0.02–0.4 

Ahn et al. (2018); Jones et al. (2008); Abeysingha et al. (2015); 

Aliyari et al. (2019); Andaryani, et al. (2019b); Andersson et 

al. (2009); Ang and Oeurng (2018); Ba et al. (2020); Bressiani 

et al. (2015); Delavar et al. (2020); Epelde et al. (2016); 

Gebremicael et al. (2013); Kannan et al. (2011); Luan et al. 

(2018); McInerney et al. (2018); Melaku and Wang (2019); 

Molina-Navarro et al. (2016); Perrin et al. (2012); Qiu et al. 

(2019); Rivas-Tabares et al. (2019); Sahana and Timbadiya 

(2020); Santhi et al. (2006); Santos et al. (2018); Setegn et al. 

(2010); Shrestha et al. (2016); Srivastava et al. (2010); Wu et 

al. (2016); Sun and Ren (2013); Wagner et al. (2012); Wei et 

al. (2018); Worqlul et al. (2018) 

REVAPC: “revap” 

coefficient 
NR** 0.03 Santhi et al. (2001) 

DEP_IMP: Depth to 

impervious layer in 

soil profile (mm) 

0–

6000* 
3202 Aliyari et al. (2019); Worqlul et al. (2018) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

GW_SPYLD: 
Specific yield of the 

shallow aquifer 

(m3/m3) 

-0.5–1* -0.48–0.06 
Aliyari et al. (2019); Melaku and Wang (2019); Masud et al. 

(2018) 

GWHT: Initial 

groundwater height 

(m) 

0–25* 4.86 Aliyari et al. (2019) 

GWSOLP: 

Concentration of 

soluble phosphorus in 

groundwater (mg N/L 

or ppm) 

0-

1000* 
NR** Masud et al. (2018) 

SHALLST: Initial 

depth of water in the 

shallow aquifer 

(mmH2O) 

NR** 1000 
Bressiani et al. (2015); Rivas-Tabares et al. (2019); Wei et al. 

(2018); Masud et al. (2018) 

RCHRG_DP: Deep 

aquifer percolation 

fraction 

0–1 0–0.972 

Reshmidevi and Kumar (2014); Jones et al. (2008); Dechmi et 

al. (2012); Reshmidevi et al. (2018); Abeysingha et al. (2015); 

Aliyari et al. (2019); Andaryani, et al. (2019b); Andersson et 

al. (2009); Becker et al. (2019); Bressiani et al. (2015); 

Gebremicael et al. (2013); McInerney et al. (2018); Melaku 

and Wang (2019); Molina-Navarro et al. (2016); Notter et al. 

(2012); Rivas-Tabares et al. (2019); Sahana and Timbadiya 

(2020); Santhi et al. (2006); Santos et al. (2018); Shrestha et al. 

(2016); Wu et al. (2016); Sun and Ren (2013); Wei et al. 

(2018); Worqlul et al. (2018) 

ANION_EXCL: 

Fraction of porosity 

from which anions are 

excluded 

NR** NR** Masud et al. (2018) 

SOL_CRK: Potential 

or maximum crack 

volume of the soil 

profile 

NR** NR** Masud et al. (2018) 

SOL_CRK: Crack 

volume potential of 

soil (mm) 

NR** 0.01-0.9 McInerney et al. (2018) 
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FLOWMIN: 
Minimum in-stream 

flow for irrigation 

diversions (m3/s) 

0–100* 0 Ahn et al. (2018) 

DIVMAX: Maximum 

daily irrigation 

diversion (mm or 

104 m3) 

-150 –

150* 
45 Ahn et al. (2018) 

FLOWFR: Fraction 

of available flow 
0–1 0.01–0.92 Ahn et al. (2018); Ficklin et al. (2013) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

allowed to be used for 

irrigation 

AUTO_WSTRS: 
Water stress threshold 

that triggers irrigation 

0–1(for 

plant 

water 

demand

) 

0.25– 0.9 
Ahn et al. (2018); Ficklin et al. (2013); Andersson et al. (2009); 

Masud et al. (2018); Wei et al. (2018) 

IRR_EFF: Irrigation 

efficiency 
0–1*** 0.65 Ahn et al. (2018); Masud et al. (2018) 

IRR_MX: Amount of 

irrigation water 

applied each time auto 

irrigation (mm) 

0–100 20-50 Ahn et al. (2018); Masud et al. (2018) 

IRR_ASQ: Irrigation 

surface runoff 
0–1 0.05 Ahn et al. (2018) 

AUTO_NSTRS: 

Plant nitrogen stress 

threshold triggering 

automatic fertilization 

0.85–

0.95 
NR** Andersson et al. (2009); Masud et al. (2018) 

C
ro

p
 G

ro
w

th
 

LAI_INIT: Initial leaf 

area index 
0–8* 0–8 Ahn et al. (2018) 

HEAT UNITS: Total 

heat units for 

cover/plant to reach 

maturity 

0–

6000* 

1750–2400 (-

9% –10%) 

Ahn et al. (2018); Ficklin et al. (2013); Akhavan et al. (2010); 

Andersson et al. (2009); Xiong et al. (2019); Masud et al. 

(2018) 

BIO_E: Radiation use 

efficiency or Biomass-

energy ratio 

(kg/ha)/(MJ/m2) 

NR** 20–45 
Niu et al. (2018) ; Dechmi et al. (2012); Andersson et al. 

(2009); Marek et al. (2017&2020) 

HVSTI: Harvest 

index 
NR** 0.1–1.23 

Niu et al. (2018) ; Dechmi et al. (2012); Akhavan et al. (2010); 

Andersson et al. (2009); Marek et al. (2017&2020) 

BLAI: Maximum 

potential leaf area 

index 

NR** 

1–10.25 

(based on 

crop type) 

Niu et al. (2018); Xiong et al. (2019); Dechmi et al. (2012) 

Marek et al. (2017&2020); Sahana and Timbadiya (2020); Sun 

and Ren (2013) 

DLAI: Fraction of 

plant heat unit when 

LAI begins to decline 

NR** 0.5–0.99 
Niu et al. (2018); Xiong et al. (2019); Marek et al. 

(2017&2020) 

BIOMIX: Biological 

mixing efficiency 
0.2 0.2-0.4 Ba et al. (2020); Santhi et al. (2001&2006) 

FRGRW1: Fraction 

of plant heat unit at 

the 1st point 

NR** 0.15-0.17 Niu et al. (2018); Marek et al. (2017&2020) 

C
ro

p
 

G
ro

w
th

 FRGRW2: Fraction 

of plant heat unit at 

the 2nd point 

NR** 0.45–0.5 Niu et al. (2018); Marek et al. (2017&2020) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

LAIMX1: Fraction of 

leaf area index at the 

1st point 

NR** 0.01–0.05 Niu et al. (2018); Marek et al. (2017&2020) 

LAIMX2: Fraction of 

leaf area index at the 

2nd point 

NR** 0.95 Niu et al. (2018); Marek et al. (2017&2020) 

T_BASE: Minimum 

temperature for plant 

growth (oC) 

NR** 0–18 Niu et al. (2018); Xiong et al. (2019); Dechmi et al. (2012) 

GSI: Maximum 

stomatal conductance 

(m/s) 

NR** 0.004–0.01 Niu et al. (2018) 

EXT_COEF: Light 

extinction coefficient 
0.65 0.5–0.9 Niu et al. (2018); Dechmi et al. (2012) 

CHTMX: Maximum 

Canopy Height (m) 
NR** 0.7–2.7 Niu et al. (2018) 

RDMX: Maximum 

root depth (m) 
NR** 1.5–2.5 Dechmi et al. (2012) 

T_OPT: Optimum 

temperature for 

growth (oC) 

NR** 15–25 Dechmi et al. (2012) 

S
ed

im
en

t 

PRF: Peak rate 

adjustment factor for 

sediment routing in 

the main channels 

1.0 0.18–0.9 Shrestha et al. (2016); Worqlul et al. (2018) 

LAT_SED: Sediment 

concentration in 

lateral and 

groundwater flow 

(mg/L) 

0-

5000* 
NR** Masud et al. (2018) 

SPEXP: Channel 

reentrained exponent 

parameter 

1.0 1.35–1.47 
Gebremicael et al. (2013); Santhi et al. (2001&2006); Shrestha 

et al. (2016) 

SPCON: Channel 

reentrained linear 

parameter 

0.0001-

0.01 

0.0008–0.002 

(1%) 

Gebremicael et al. (2013); Luo et al. (2008a); Santhi et al. 

(2001&2006); Shrestha et al. (2016) 

USLE_P: Support 

practice factor 

See 

SWAT 

input 

data:.m

gt 

0.003–0.8 (-

60% – (–10) 

%) 

Ba et al. (2020); Gebremicael et al. (2013); Shrestha et al. 

(2016); Worqlul et al. (2018) 

USLE_K: soil 

erodibility factor (ton 

m2 hr/m3 ton cm) 

NR** 
0.005 (-19%–

50%) 

Shrestha et al. (2016); Worqlul et al. (2018); Masud et al. 

(2018) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

CH_COV1: Channel 

erodibility factor 

(Also named 

CH_EROD) 

0, 1 0.12–0.14 Luo et al. (2008a) 

CH_COV2: Channel 

cover factor 
0, 1 0.2–0.5 

 

Shrestha et al. (2016) 
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PSP: Phosphorus 

availability index 
0.4 0.08–0.7 Shrestha et al. (2016) 

ERORGP: P 

enrichment ratio with 

sediment loading 

NR** 2–4 Shrestha et al. (2016) 

RCN: Concentration 

of N in rain (mg N/L) 
1.0 -0.1–1.3 Akhavan et al. (2010) 

ERORGN: Organic N 

enrichment for loading 

with sediment 

NR** 2.75 Shrestha et al. (2016) 

NPERCO: Nitrate 

percolation coefficient 
0.01-1 0.1–0.8 

Akhavan et al. (2010); Ba et al. (2020); Epelde et al. (2016); 

Santhi et al. (2001&2006); Shrestha et al. (2016) 

PPERCO: 
Phosphorous 

percolation coefficient 

(10 m3/Mg) 

10-17.5 10 Santhi et al. (2001&2006); Shrestha et al. (2016) 

PHOSKD: 
Phosphorous soil-

partitioning 

coefficient (m3/Mg) 

175 100-193 Santhi et al. (2001&2006); Shrestha et al. (2016) 

CDN: Denitrification 

exponential rate 

coefficient 

0–3 0.1–1.4 
Akhavan et al. (2010); Epelde et al. (2016); Shrestha et al. 

(2016) 

SDNCO: 

Denitrification 

threshold water 

content 

1.1 1 
Akhavan et al. (2010); Epelde et al. (2016); Shrestha et al. 

(2016) 

RSDCO: residue 

decomposition 

coefficient 

0.05 0.01-0.05 Epelde et al. (2016); Santhi et al. (2001&2006) 

CMN: Rate factor for 

humus mineralization 

of active organic 

nutrients 

0.0003 0.002 Epelde et al. (2016) 

HLIFE_NGW: Half-

life of nitrate in 

shallow aquifer (days) 

0–

5000* 
2500 Epelde et al. (2016); Masud et al. (2018) 
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SWAT Model 

Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

FRT_SURFACE: 
Fraction of fertilizer 

applied to top 10mm 

of soil 

NR** 0–0.2 Akhavan et al. (2010) 

SHALLST_N: Initial 

concentration of 

nitrate in shallow 

aquifer (mgN/L or 

ppm) 

NR** 0–1 Akhavan et al. (2010); Masud et al. (2018) 

N_UPDIS: Nitrogen 

uptake distribution 

parameter 

20 63–65 Akhavan et al. (2010) 

SOL_ORGN: Initial 

organic N 

concentration in the 

soil (mg N/kg soil) 

NR** 800-5000 Santhi et al. (2001&2006) 

SOL_ORGP: Initial 

organic P 

concentration in soil 

layer (mg P/kg soil) 

NR** 100-700 Santhi et al. (2001&2006) 
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SOL_MINP: Initial 

mineral P 

concentration in soil 

layer for a particular 

land use (ppm) 

NR** 3-351 Santhi et al. (2001&2006) 

AUTO_NAPP: 

Maximum amount of 

mineral N allowed in 

any one application 

(kg N/ha) 

200 NR** Masud et al. (2018) 

BC1: Rate constant 

for biological 

oxidation of NH4 to 

NO2 (1/day) 

0.55 0.55 Ba et al. (2020) 

BC2: Rate constant 

for biological 

oxidation NO2 to 

NO3(1/day) 

1.1 0.3-1.1 Ba et al. (2020); Santhi et al. (2006) 

R
es

er
vo

ir
 

RES_K: Hydraulic 

conductivity of the 

reservoir bottom 

(mm/h) 

NR** 0.3 Perrin et al. (2012); Qiu et al. (2019) 

EVRSV: Lake 

evaporation 

coefficient 

0.6 0–1 Qiu et al. (2019) 

NDTARGR: Number 

of days to reach target 
NR** 1–200 Qiu et al. (2019) 
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Parameter 

Initial 

Valuea 

Calibrated 

Values 

(Relative 

Change)b  

Citation 

storage from current 

reservoir storage 

P
es

ti
ci

d
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HLIFE_S: 

Degradation half-life 

of the chemical in the 

soil (days) 

NR** 0.37-0.78 Luo et al. (2008a) 

SKOC: Soil 

adsorption coefficient 

normalized for soil 

organic carbon content 

(mg/kg)/(mg/L) 

NR** -0.25−(-0.62 ) Luo et al. (2008a) 

 

a Initial value is based on the range of default parameter values in SWAT documentation. In cases 

where a default value was unavailable (marked with an asterisk), the range is based on the lowest 

and highest values of initial attempts among all applications.  

b Relative change indicates the range over which the parameter values were varied.  

 

NOTE: The list of parameters, initial ranges, and the range of calibrated parameter values are 

provided an idea about initiating model parametrization and calibration. Model parametrization 

and calibration should be finalized based on region-specific data (if available) and characteristics 

of the watershed. 
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