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Abstract: The Pickup-and-Delivery problem is an important category of Vehicle
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CHAPTER I

INTRODUCTION

1.1 Trucking industry in U.S.

The trucking industry contributed over $700 billion to U.S. annual revenue in 2017

[4]. This constituted 84% of total annual revenue in the U.S. commercial transporta-

tion sector that year. Around 71% of all freight tonnage moved in the U.S. is by

trucking [8]. Furthermore, this industry is the source of many direct and indirect

employment opportunities in the country. Nearly 6% of all full-time jobs in the U.S.

are in the trucking industry [8]. It is a major industry with signi�cant economic im-

plications for the country. However, the U.S. trucking industry is very fragmented.

Currently there are over 110,000 carriers and 350,000 independent owner-operators

[9]. Among them, around 97% of the carriers own less than 20 trucks, and around

90% own six or lesser trucks [3]. This fragmentation hinders the e�ciency of cargo

transportation. An estimated 15% to 25% of trucks on road are traveling empty [26].

This reduced e�ciency causes a hike in shipping prices, greenhouse gas emissions,

and tra�c congestion. Further considering the unused space in non-empty trucks,

there is more need for better e�ciency. Truck sharing is one such way to attain

better e�ciency in cargo transportation.

Internet and mobile computing technology have made truck sharing more viable.
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The number of online marketplaces for freight-matching is on the rise. The concept of

freight-matching is like Uber which connects driver and passenger based on request.

However, the working principle behind freight-equipment matching is more compli-

cated than Uber, because of the sizes and types of freights and trucks. It is very

di�cult and time-consuming for carriers to search for shippers' demand information

online to identify freight consolidation options. It will be very helpful if the online

freight-matching marketplace could provide consolidation solutions to the carriers.

Therefore, online market places are in great need of e�ective freight consolidation

algorithms. This dissertation is an e�ort towards identifying e�ective consolidation

techniques to make truck sharing viable. Signi�cant contributions of this dissertation

are algorithms and techniques to solve a speci�c class of vehicle routing problems.

1.2 Pickup-and-Delivery Problems

Vehicle Routing Problem (VRP) plays the central task in the day-to-day operations

of the trucking industry. VRP forms the basis of optimization tools and procedures

in most of the trucking enterprises across the U.S. Given a set of customer requests

and a �eet of vehicles, VRP seeks to �nd an optimal set of routes with the minimal

operating cost. Due to a wide array of practical aspects in truck operations and

routing, VRP is a vast topic with many variants. It has been a topic of great interest

to the scienti�c community owing to its practical applications and di�culty to solve.

So, VRP has been intensely studied for over half a decade since its introduction in

1959 by Dantzig and Ramser [23] which is a seminal paper addressing the problem

of fuel delivery to gas stations. For general surveys of VRP, we refer the reader to

2



Vigo and Toth [41], and Cordeau et al. [19].

Pickup-and-delivery problems are an important category of VRP with many prac-

tical implementations. The objective of this problem is to �nd minimal cost vehicle

routes when customer requests require vehicles to pick up commodities at certain

locations and deliver them elsewhere. Depending on the route structure and type of

demand, pickup-and-delivery problems can be classi�ed into three di�erent types:

(1) Many-to-Many (M-M) problems seek to �nd vehicle routes when there are mul-

tiple commodities with each commodity having multiple pickup and delivery

locations. Furthermore, any location may supply or request multiple com-

modities. Deliveries from warehouses to retailers and inventory redistribution

of �nished products among retail stores are some of the practical applications

of M-M problems.

(2) One-to-Many-to-One (1-M-1) problems arise when there are some commodi-

ties to be picked up from customers and delivered to the depot, and other

commodities are to be delivered from depot to customers. Milk delivery where

dairy products are delivered to customers and empty bottles are collected is a

practical application of 1-M-1 problems.

(3) One-to-One problems arise when there are multiple customer requests, with

each request requiring vehicle(s) to pick up a commodity from an origin and

deliver it to a destination. The objective is to identify vehicle routes with

the minimal cost from an origin depot to a destination depot while satisfying

multiple customer requests. One-to-One problems often arise in the context of

3



Less-Than-Truckload (LTL) shipping and short-haul transportation.

We address one-to-one Pickup-and-Delivery Problem as PDP for the remainder

of this document. The focus of this dissertation is on four variants of PDP.

1.3 Pickup-and-Delivery Problem with Loading Constraints

Single Vehicle Pickup-and-Delivery Problem with Loading Constraints (SPDPL) is a

variant of PDP in which the loading order of cargo is considered along with vehicle

routing. SPDPL enforces Last-In-First-Out (LIFO) loading order for pickups and

deliveries. This means that an item being picked should be placed at the rear-end of

the vehicle and an item can be delivered only if it is at the rear end of the vehicle.

Consider two customer requests: Si (to be picked up at i+ and delivered at i−) and

Sj (to be picked up at j+ and delivered at j−). Figure 1.1 is a vehicle route starting

from depot d, satisfying the aforementioned customer requests while violating LIFO.

On the contrary, Figure 1.2 is a vehicle route respecting the LIFO order.

SPDPL arises in the context of vehicles with a single access point at the rear-end.

Furthermore, it has the following practical implications:

(1) In local pickups and deliveries where customers are clustered close together,

loading/unloading comprises a signi�cant part of trip time. So, the driver can

save time by following the LIFO loading/unloading order.

(2) Automated Guided Vehicle (AGV) operations within a warehouse require pickup

and delivery in a stack structure which follows the LIFO loading/unloading or-

der.

4



d i+

j+

i-j-

SiSj
Depot

Si

Sj
SiSjSj

Figure 1.1: A LIFO violating route

d i+

j+

i-j-

SiSj
Depot

Si

Si
SiSj

Figure 1.2: A LIFO enforced route

(3) In short-haul LTL trips involving warehouses, handling costs (HC) are a con-

cern due to cargo loading/unloading workers in warehouses known as Lumpers.

They are paid by the shipping company based on the quantity of cargo han-

dled. Lumper fee is often unavoidable in certain warehouses due to some United

States Code provisions [32]. LIFO loading/unloading order reduces the quan-

tity of cargo handled and by extension, the Lumper fee is also reduced.

(4) One more practical motivation behind this problem is the latest developments

in autonomous vehicles. Delivery to customers by self-driving trucks is not a

distant prospect. In that case, the driver will not be available at customer

sites for unloading. So, customers might have to assume the unloading task.

LIFO enforced routes will be very convenient for customers in this scenario

because they can unload their cargo from the access end of the vehicle without

additional handling complications. Furthermore, letting a customer handle

5



another customers' shipment might lead to liability issues which can be avoided

with LIFO enforced routes.

SPDPL is one of the problems that we address in this dissertation. We also focus

on Multiple Vehicle Pickup-and-Delivery Problem with Time windows and Loading

constraints (MPDPTL) which is SPDPL with multiple vehicles and time windows

for customer service.

1.4 Pickup-and-Delivery Problem with Handling Costs

Single Vehicle Pickup-and-Delivery Problem with Handling costs (SPDPH) is another

variant of PDP. In SPDPL, a vehicle may have to travel a long distance just to satisfy

the LIFO loading/unloading order. Therefore, penalizing LIFO violations instead of

strict LIFO enforcement can be a preferable alternative. So, SPDPH seeks to �nd

an optimal vehicle route from origin to destination depot while handling multiple

customer requests, and enforcing penalty (handling costs) for LIFO violations.

The objective of SPDPH is to �nd an e�ective trade-o� between transportation

cost and handling cost. By penalizing LIFO violations, we can choose to either

satisfy LIFO and avoid penalty or to incur handling cost by choosing a shorter path.

For example, consider two customer requests: Si (pickup at i+ and delivery at i−)

and Sj (pickup at j+ and delivery at j−) and a handling cost of $30 for a LIFO

violation. Figure 1.3(a) shows a vehicle route satisfying LIFO loading order with

a total transportation cost of $500. Whereas, Figure 1.3(b) shows a vehicle route

violating LIFO once and incurring a penalty with a total cost of $480 (transportation

cost: $450 and handling cost:$30).

6
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Figure 1.3: (a) Total traveling cost=$500 (b)Total cost=$450+$30=$480

SPDPH is useful for routing short-haul trips to balance the transportation cost

with warehouse Lumper Fee. In short-haul trips, the handling cost is not domi-

nated by the transportation cost. Reducing travel costs may result in handling cost

increment. Conversely, reducing handling costs might cause travel cost increment.

SPDPH seeks to balance these two cost aspects.

With self-driving trucks, SPDPH is applicable if a customer is willing to do addi-

tional cargo handling (perhaps with an incentive subject to liability). As a result, the

total traveling distance might be reduced by violating the LIFO loading/unloading

order. This may result in minor savings for a single truck, but for a nationwide

franchise like UPS the savings could have a huge impact. Transportation during

disaster relief is a broader application of SPDPH. During emergency times, short

travel distances with minimal cargo handling is a crucial aspect. A trade-o� between

travel distance and cargo handling is required to minimize response time. Disaster

relief is a perfect practical application for SPDPH.

SPDPH is one of the problems that we address in this dissertation. Furthermore,

we also focus on Multiple Vehicle Pickup-and-Delivery Problem with Time windows

and Handling cost (MPDPTH) which is SPDPH in a multi-vehicle setting with time

7



windows for customer service.

1.5 Organization

The remainder of this document is organized as follows: Chapter 2 presents the past

works in the literature pertaining to SPDPL, SPDPH, MPDPTL, and MPDPTH

problems. Chapter 3 presents the problem statements and speci�c objectives of this

dissertation. Chapter 4 focuses on MIP formulations, algorithms, and methodologies

for single-vehicle problems we address in this dissertation. Chapter 5 explains our

approaches to solving multi-vehicle problems. Chapter 6 presents computational

results from our implementations. In Chapter 7, we conclude this dissertation with

a summary of the results and future directions for research.

Some content from Chapter 4 and 6 have been submitted for a journal publica-

tion at the time of this dissertation writing (Radha Krishnan and Liu [35]). Also,

some contents from Chapters 5 and 6 are currently under preparation for another

publication. All the �gures in this dissertation were generated using Diagrams.net©

and Tableau© 2018.1.
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CHAPTER II

LITERATURE REVIEW

This chapter presents the literature review of pickup and delivery problems, load-

ing constraints, and handling costs. For the readers' convenience, a comprehensive

summary of literature pertaining to our dissertation is shown in Table 2.1.

One-to-one Pickup-and-Delivery Problem (PDP) has been extensively studied in

the literature due to its practical relevance in the transportation sector. We refer the

reader to Cordeau et al. [20], and Vigo and Toth [41] for a general review of PDP.

There are some notable works in the PDP literature with a focus on exact models

and algorithms like Ruland and Rodin [37], and Dumitrescu et al. [24]. However,

most of the works in literature seek to solve PDP using heuristics because of the

problem di�culty and industrial time restrictions.

PDP with LIFO loading and handling costs has not received much focus. We

present some of the relevant literature in this section and classify them under single-

vehicle and multi-vehicle categories.

2.1 Single-Vehicle PDP with Loading Constraints

In this section, we present some relevant works from single-vehicle PDP with loading

constraints. SPDPL was introduced by Ladany and Meherz [30] in their study of a

9
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fuel delivery problem in Israel. They theoretically introduced SPDPL but solution

approaches were not discussed. Some works in the literature have focused on solving

SPDPL in a Branch-and-Bound (BB) framework. Pachecho [34] [33] published some

of the earlier works by solving SPDPL in a BB framework. Cassani [12] presented a

BB framework to solve SPDPL using lower bounds calculated using minimum span-

ning tree. Their implementation optimally solved instances with up to 11 customer

requests. Carrabs et al. [10] presented an additive branch-and-bound algorithm

that improved the runtime by identifying additive lower bounds and restricting the

number of nodes in the enumeration tree.

One of the papers very relevant to this dissertation was proposed by Cordeau et

al. [18]. They presented three Mixed Integer Programming (MIP) formulations for

SPDPL. A cut-based MIP formulation for SPDPL presented by Cordeau et al [18] is

essential for one of the algorithms we present in this dissertation. They also presented

a branch-and-cut algorithm with fractional separation procedures to identify violated

inequalities for a MIP formulation with an exponential number of constraints. These

separation procedures were solved using maximum �ow algorithms. We present and

discuss the details of this formulation, and branch-and-cut algorithms in Chapter

IV. Cordeau et al [18] also introduced a nice property of SPDPL solution which is

essential for our MPDPTL problem formulation. More details about this property

are discussed in Chapter V.

Côté et al. [21] studied SPDPL with multiple stacks. They extended the algo-

rithms and methodologies proposed by Cordeau et al. [18] for SPDPL with single

stack to SPDPL with multiple stacks. The same problem was solved using large
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neighborhood search heuristic by Côté et al. [22]. Heuristics for SPDPL with move-

ment inside two-dimensional containers was presented by Malapert et al. [31] and

Gendreau at al.[29].

SPDPL literature gap: All the past literature work in SPDPL involves solving the

problem with heuristics, and branch-and-cut algorithms with fractional separation

procedures. However, solving SPDPL in a branch-and-cut framework with integral

separation procedures has not been explored in the literature up to our knowledge.

While SPDPL has received sparse attention in the literature, SPDPH has received

even lesser attention. Battarra et al. [6] introduced the Traveling Salesman Problem

with Pickups, Deliveries, and Handling Costs (TSPPD-H) where handling costs were

included in cost objective for One-to-Many-to-One problem. In this problem, all

supplies originate from the depot and all deliveries are destined for the depot, and

each customer may have a supply or demand. They considered the pick ups and

deliveries to be di�erent commodities (consider types a and b), therefore at customer

sites, some items of type a have to be unloaded with handling cost before accessing a

type b item. They presented three MIP formulations and a branch-and-cut algorithm

to solve TSPPD-H with instances up to 25 customer orders. Erdogan et al. [27] solved

TSPPD-H on larger instances with up to 200 customers using metaheuristics.

SPDPH was introduced recently by Veenstra et al. [42]. To our knowledge, they

presented the �rst work on handling cost variant of one-to-one pickup and delivery

problem. They presented an Integer Programming (IP) formulation and a heuristic

to solve SPDPH. Due to the relevance to our work, we present their IP formulation

in Section 4.3.1.
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SPDPH literature gap: There are studies in the literature about SPDPH with

focus on compact formulations and heuristics. However, to our knowledge, cut-based

formulations and branch-and-cut algorithms have not been studied for SPDPH.

2.2 Multi-Vehicle PDP with Loading Constraints

In this section, we present some relevant works from multi-vehicle PDP with loading

constraints.

Multi-vehicle PDP is a well-studied problem in the literature. This problem has

been addressed by many variants of branch-and-cut, column generation, and heuristic

schemes. The reader is referred to Cordeau et al. [19] for a general review of multiple

vehicle PDP. Ropke et al. [36] presented two formulations, and a branch-and-cut-

and-price algorithm to solve multiple vehicle PDP with time windows for customers.

The MIP formulation presented by them is very relevant for this dissertation. We

discuss more about this formulation in Chapter 5.

Loading constraints in a multi-vehicle setting is a fairly recent topic with very

sparse literature. LIFO loading constraints in multi vehicles PDP was simultaneously

introduced by Cherkesly et al. [14] and Benavent et al. [7]. Cherkesly et al. [14]

presented a three-index formulation, set partitioning model, and branch-and-price-

and-cut algorithm for multi vehicles PDP with time windows and LIFO loading

constraints. They modi�ed and used single-vehicle type constraints presented by

Ropke and Cordeau [36] for multi-vehicle PDP with time windows. Cherkesly et

al. [14] also identi�ed that the set partitioning model performed better than the

three index model and yielded better linear relaxation bounds. Benavent et al. [7]
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presented formulations and branch-and-cut algorithms for multi-vehicle PDP with

LIFO loading constraints and maximum route duration.

MPDPTL literature gap: Multi-vehicle PDP with time windows and LIFO load-

ing constraints has been explored in the literature. Multi-vehicle PDP with LIFO

loading constraints and maximum route duration has also been studied in the litera-

ture. However, multi vehicles PDP with time windows, LIFO loading, and maximum

route duration has not been studied in the literature up to our knowledge.

MPDPTH literature gap: To our knowledge, Multiple Vehicle Pickup-and-Delivery

Problem with Time Windows and Handling Cost has not been studied in the litera-

ture.
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CHAPTER III

RESEARCH STATEMENT

In this chapter, we state the problems of interest, discuss speci�c research objectives,

and relevant tasks. The scope of this dissertation covers four closely related problems.

3.1 Problem statements

Single vehicle Pickup-and-Delivery Problem with Loading constraints

(SPDPL)

The problem is to identify an optimal route for a single vehicle from an origin depot to

a destination depot, satisfying multiple pickup-and-delivery requests and respecting

the LIFO loading/unloading order for cargo handling. Heuristics and branch-and-cut

algorithms with fractional separation procedures have been studied in the literature

for SPDPL. However, branch-and-cut algorithms with integral separation procedures

have not been explored which is one of the approaches we explore in this dissertation.

Single vehicle Pickup-and-Delivery Problem with Handling costs (SPDPH)

The problem is to identify an optimal vehicle route, satisfying multiple pickup-and-

delivery requests, and incurring handling costs for each additional unloading/reloading

operation at delivery locations. This problem is motivated by the necessity to �nd
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a fair trade-o� between handling costs and travel distance. SPDPH was very re-

cently introduced in the literature with a compact formulation and heuristic. Our

interests are on cut-based formulations, and branch-and-cut algorithms for SPDPH

which have not yet been addressed in the literature.

Multi vehicle Pickup-and-Delivery Problem with Time windows and Load-

ing constraints (MPDPTL)

Given a homogeneous �eet of vehicles with uniform capacity, customer requests with

time windows, and maximum on-road time for drivers, MPDPTL seeks to identify

vehicle routes satisfying the requests and time constraints. Furthermore, the routes

should also respect the LIFO loading/unloading order for cargo handling. MPDPTL

is one of the problems we address in this dissertation and it has not been explored

in the literature up to our knowledge.

Multi vehicle Pickup-and-Delivery Problem with Time windows and Han-

dling cost (MPDPTH)

This problem is similar to MPDPTL except for the fact that the LIFO order is

not strictly enforced for cargo handling. Instead, LIFO violations are penalized by

handling costs for additional unloading/reloading operations at delivery locations for

each vehicle. MPDPTH has not been explored in the literature up to our knowledge

and is a problem of interest in this dissertation.
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3.2 Speci�c tasks

Objective 1- Exploring a new solution methodology for SPDPL.

- Task 1.1. Developing a new branch-and-cut algorithm with integral solu-

tion separation techniques to solve SPDPL. Branch-and-cut algorithms with

fractional and heuristic procedures have been explored in the literature, but

integral separation procedures have not been explored yet.

- Task 1.2. Empirically assessing the impacts of our integral separation tech-

niques against fractional separation procedures in the literature.

Objective 2- Developing newMIP models and solution methodologies for SPDPH.

- Task 2.1. Building new mathematical models for SPDPH. An exact formula-

tion for this problem is already available in the literature. However, a cut-based

formulation has not been proposed.

- Task 2.2. Developing branch-and-cut algorithms with integral and fractional

separation procedures to solve SPDPH.

- Task 2.3. Strengthening our implementation by introducing new inequalities.

- Task 2.4. Comparing the computational scalability of our algorithms with

each other and against the exact formulation provided in the literature.

Objective 3- Developing new mathematical models and solution methodologies

for MPDPTL.
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- Task 3.1. Developing MIP models and heuristics to e�ectively solve MPDPTL.

- Task 3.2. Extending the �ndings from Objective 1 to multiple vehicles setting

to enhance our MPDPTL implementation.

Objective 4- Exploring practically implementable algorithms to solve MPDPTH.

- Task 4.1. Applying the results from Objectives 1, 2 and 3 to build an opti-

mization model for MPDPTH

- Task 4.2. Assessing the computational scalability of our implementations to

ensure that real-world instances are solved within reasonable runtime.

SPDPL
1. A branch-and-cut
algorithm with integral
separation techniques

2. Assess the impacts of our
integral separation 
against fractional separation
procedures in the literature

SPDPH
1. Build new mathematical
models

2. Branch-and-cut
algorithms with two different
separation procedures

3. Introduce new
inequalities

MPDPTH
1. Building new
mathematical models

2. Extend the findings from
other problems to multiple
develop new solution
methodologies

MPDPTL
1. Build new mathematical
models

2. Develop a branch-and-cut
algorithm and a heuristic

3. Extend the findings from
single vehicle problem to
multiple vehicles setting

Si
ng

le
 v

eh
ic

le
M

ul
ti 

ve
hi

cl
e

LIFO Handling cost

Figure 3.1: Research tasks for the four problems in this dissertation
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3.3 Major contributions of this dissertation

In this section, we discuss the major contributions of this dissertation

� We introduced two new problems to the VRP literature in this dissertation,

namely: multi-vehicle pickup-and-delivery problem with LIFO and handling

costs. These problems have a variety of practical considerations including

vehicle capacity, �eet size, customer time windows, driver operating hours,

and cargo loading restrictions. We discuss the multi-vehicle problem solution

methodologies in Chapter V.

� The branch-and-cut (BC) algorithms in the PDP literature pervasively have

a framework that does not permit infeasible integer solutions to be generated

at any step in the solution approach. So, none of the model constraints are

violated while solving the problem. However, this is not an e�ective approach

because strictly respecting all the constraints in every step could increase the

runtime considerably. This increase is due to solving a hard optimization prob-

lem while respecting a large number of constraints. So, we developed BC algo-

rithms that permit some constraint violations that are identi�ed and removed

later, hence reducing the runtime. In Sections 4.2.4 and 5.2.6, we present the

algorithms in single-vehicle and multi-vehicle settings respectively.

� We introduced new conditional structures called integral separation procedures

for identifying infeasible integer solutions. This structure is based on a sequence

of logical decisions. For example, it is not logical to search for LIFO violations

in a path with precedence violations, because that solution will be discarded
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later. The algorithms based on this logic can be applied to problems with

exponential sets of constraints. This could give rise to new algorithms for

other problems besides PDP. We discuss this separation procedure details in

Section 4.2.4.

� Another major contribution of this dissertation is the multi-vehicle Warm-Start

(WS) heuristic algorithms. The WS heuristics identi�ed e�ective solutions to

multi-vehicle problems within very short runtime. Furthermore, we use the

results from these algorithms as a starting solution to our exact approaches.

The heuristics work by iterating through two logics:

(1) Clustering and assigning customer requests to vehicles such that the con-

straints are not violated

(2) Routing the vehicles by measuring the trade-o� between enforcing LIFO

and handling costs for customer requests

In Section 5.2.5, we discuss the WS algorithm structure details. We also discuss

the computational scalability of the WS algorithms in Chapter VI
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CHAPTER IV

SINGLE VEHICLE PROBLEMS

In this chapter, we present the formulations and methodologies for single-vehicle

problems. As mentioned in Chapter III, we address two problems under single vehi-

cle category: Pickup-and-Delivery Problem with Loading constraints (SPDPL) and

Pickup-and-Delivery Problem with Handling costs (SPDPH).

4.1 Notations and de�nitions

In this section, we present some terminologies and notations which will be used in

this chapter for single vehicle problems.

4.1.1 Graph structure

Let n denote the number of customer shipment requests. Consider a complete di-

rected graph G = (N,A) with node set N = {0, 1, . . . , 2n, 2n + 1} and arc set A.

Node subsets P = {1, . . . , n} and D = {n+ 1, . . . , 2n} are pickup and delivery nodes

respectively, whereas 0 and 2n + 1 are origin and destination depots respectively.

Each customer request is to transport a load from pickup node i ∈ P to delivery

node n+ i ∈ D. We use i ≺ j to denote the fact that node i precedes node j in the

vehicle route.
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For readers' convenience, a centralized table for decision variables, set de�nitions

and other notations has been created (Table 4.1). We refer to this table from the

formulations as per necessity.

We also present the following de�nitions which are required for understanding

problem statements.

De�nition 1. A Hamiltonian Path is a directed path from an origin node to a

destination node visiting each node in N exactly once.

De�nition 2. A sub-tour is a directed cycle in G which does not visit all the nodes

in N .

De�nition 3 (Ahuja et al. [2]). The indegree and outdegree of a node is the number

of incoming and outgoing arcs of that node respectively.

De�nition 4. A Path-Subtour tuple (PS-tuple) is a subgraph containing exactly one

directed path and at least one subtour, with the path and subtour(s) being pairwise

node-disjoint.

0 2n+1

Figure 4.1: A PS-tuple with a path and two node-disjoint subtours
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Table 4.1: Notations for MIP models- Single vehicle

Type Notation De�nition

Capacity Q Capacity of vehicles in a homogeneous �eet

qi size of the load to be transported from pickup node i ∈ P to
delivery node n+ i ∈ D.

Cost pa-
rameters

cij Cost value associated with each directed arc (i, j) ∈ A

v Handling cost for one unloading and reloading operation.

Decision
variables

f 1
ijk Equal to 1 if arc (i, j) ∈ A is in the path from node 0 to

node k; 0 otherwise

f 2
ijk Equal to 1 if arc (i, j) ∈ A is in the path from node k to

node n+ k; 0 otherwise

f 3
ijk Equal to 1 if arc (i, j) ∈ A is in the path from node n + k to

node 2n+ 1; 0 otherwise

Qi Load on the vehicle upon leaving node i ∈ N
xij Equal to 1 if arc (i, j) ∈ A is in the vehicle route and 0

otherwise

yij Equal to 1 if node i ∈ N precedes node j ∈ N \ {i} in the
vehicle route and 0 otherwise

zij Equal to 1 if j ∈ P is picked up between i ∈ P and n + i ∈
D, and delivered after n+ i; 0 otherwise

Set de�-
nitions

Γ Collection of all node subsets S ⊂ N such that 0 ∈ S,
2n + 1 /∈ S, and there exists a node i ∈ P such that i /∈ S
and n+ i ∈ S

Ω Collection of node subsets S ⊂ P ∪ D such that there is at
least one customer request j ∈ P such that either j ∈ S and
n+ j /∈ S or n+ j ∈ S and j /∈ S

Υj Collection of all node subsets S ⊂ P ∪ D such that j ∈ S
and n+ j /∈ S

π(S) Set of pickups - {i ∈ P |n+ i ∈ S} for a node subset S ⊂ N

σ(S) Set of deliveries - {n+ i ∈ D|i ∈ S} for a node subset S ⊂ N

S̄ N \ S for a node subset S ⊂ N

A′ Subset of arcs having both endpoints in P ∪D

Other A(S) Set of all arcs (i, j) ∈ A such that i, j ∈ S, where S ⊂ N

x(A(S))
∑

i,j∈S xij

x(i, S)
∑

j∈S xij

x(S, i)
∑

j∈S xji
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4.2 Single Vehicle Pickup-and-Delivery Problem with Loading

Constraints

In this problem, a single vehicle serves all customer requests. The objective of SPDPL

is to �nd a minimum cost Hamiltonian path from origin depot 0 to destination depot

2n + 1. We associate a load qi with each node i ∈ N , such that qi = −qn+i,∀i ∈ P .

We also assume q0 = q2n+1 = 0 for the depots. A feasible route must satisfy the

following conditions:

(1) For each shipment i = 1, . . . , n, the pickup node i ∈ P must be visited before

the delivery node n+ i ∈ D.

(2) Load picked from a location should be placed at the rear end of the vehicle

(top of the stack).

(3) A delivery node n+ i ∈ D can be visited only if the load picked from i ∈ P is

at the rear end of the vehicle.

Cordeau et al [18] introduced a cut-based formulation with exponential number

of constraints for SPDPL. This formulation was implemented using a branch-and-cut

algorithm with fractional separation procedures. In this dissertation, we present a

new branch-and-cut algorithm with integral separation techniques to solve SPDPL.

One of our objectives is to computationally compare our implementation against

the already existing branch-and-cut approach. In the following section, we discuss

the formulation and separation techniques presented by Cordeau et al [18] before

introducing our branch-and-cut algorithm.
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4.2.1 SPDPL formulation from Cordeau et al. [18]

Decision variables

x variables as de�ned in Table 4.1

Sets

Γ and Ω as de�ned in Table 4.1

Formulation 4.2.1 (SPDPL-Cut by Cordeau et al. [18]).

min
∑

(i,j)∈A

cijxij (4.1)

subject to: ∑
j:(i,j)∈A

xij = 1 ∀i ∈ P ∪D ∪ {0} (4.2)

∑
i:(i,j)∈A

xij = 1 ∀j ∈ P ∪D ∪ {2n+ 1} (4.3)

Qj ≥ (Qi + qj)xij ∀(i, j) ∈ A (4.4)

max{0, qi} ≤ Qi ≤ min{Q,Q+ qi} ∀i ∈ N (4.5)

x(A(S)) ≤ |S| − 1 ∀S ⊆ P ∪D, 2 ≤ |S| ≤ |N | (4.6)

x(A(S)) ≤ |S| − 2 ∀S ∈ Γ (4.7)

x(i, S) + x(A(S)) + x(S, n+ i) ≤ |S| ∀S ∈ Ω, ∀i, n+ i /∈ S, i ∈ P (4.8)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.9)

The objective function seeks to minimize the total transportation cost. Con-

straints (4.2) and (4.3) ensure that each pickup and delivery node is visited exactly

once. Constraints (4.4) and (4.5) satisfy capacity restrictions for the vehicle. Con-
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straints (4.4) link the load variables and arc variables, whereas Constraints (4.5)

ensure that the vehicle does not exceed its capacity on any arc. So, Formulation

4.2.1 considers vehicle capacity restriction. However, the test instances for our com-

putational experiments are uncapacitated (refer Chapter VI). So, we adapt the

formulation to uncapacitated version, by setting qi = 1 and qn+i = −1,∀i ∈ P . We

also set the vehicle capacity as Q = n to handle the uncapcitated instances. Note

that Constraints (4.5) are non-linear. However, we can linearize the product of two

variables using some standard linearization techniques as presented in Appendix A.

Constraints (5.23) are well-known Dantzig-Fulkerson-Johnson (DFJ) constraints

for sub-tour elimination. Constraints (4.7) are to ensure that pickup node is visited

before delivery node for each customer request. These precedence constraints were

introduced for PDTSP by Ruland and Rodin [37]. An illustration of these constraints

are shown in Figure 4.2. Let us consider a vehicle path with a precedence violation

(n + i ≺ i) for a customer request i ∈ P . In this path, we can identify a node set

S ⊂ N such that 0, n+ i ∈ S and 2n+ 1, i /∈ S, and x(A(S)) = |S| − 1. We enforce

x(A(S)) ≤ |S| − 2 to remove at least one more arc with both endpoints in S and

ensure that this path does not exist.

LIFO loading/unloading order is violated by a vehicle route, if there are two

pickup nodes i ∈ P and j ∈ P \ {i} such that:

(1) j is in the path between i and n+ i

(2) n+ j is not in the path between i and n+ i

Constraints (4.8) are LIFO loading constraints which ensure that no such pickup
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n+i

0

i

2n+1

S

x(A(S))=|S|-1

Figure 4.2: Precedence constraints illustrations

nodes exist.

Note: Constraints (4.2)-(4.7) are pervasively used in many formulations and dis-

cussions throughout this chapter. So, we will be referring back to these constraints

where ever necessary to avoid repetition.

4.2.2 Inequalities for SPDPL

In this section, we explain the existing inequalities available in the SPDPL literature

that we used in our implementations for runtime improvement.

Incompatible predecessor and successor inequalities

Consider two pickup nodes i, j ∈ P such that i 6= j. Cordeau et al. [18] presented the

incompatible successor inequalities by considering xij = 1 and identifying possible

successors to n + j ∈ D in a LIFO enforced vehicle route. If xij = 1, then the set

of possible immediate successors to n+ j is either n+ i or P \ {i, j}. Let us denote

this set of successors to n + j as Sn+j(i, j) = {n + i} ∪ (P \ {i, j}). For each node
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pair i, j ∈ P , the incompatible successor inequality is

xij +
∑

l /∈Sn+j(i,j)

xn+j,l ≤ 1 (4.10)

Similarly, for i, j ∈ P , Cordeau et al. [18] proposed the incompatible predecessor

inequalities by considering xn+i,n+j = 1. In this case, the set of possible predecessors

to i ∈ P is {j} ∪ (D \ {n + i, n + j}) which we denote as Pi(n + i, n + j). The

incompatible predecessor inequality for each node pair i, j ∈ P is

xn+i,n+j +
∑

l /∈Pi(n+i,n+j)

xl,i ≤ 1 (4.11)

Incompatible arc set inequalities

Cordeau et al. [18] presented these inequalities which are based on a set of pairwise

incompatible arcs for LIFO enforced vehicle route. For all node pairs i, j ∈ P , the

following four arcs are pairwise incompatible: (i, j), (n + i, n + j), (n + i, j) and

(n+ j, i). This leads to the following family of inequalities.

xij + xn+i,n+j + xn+i,j + xn+j,i ≤ 1 (4.12)

Predecessor and successor inequalities

Let π(S) = {i ∈ P |n + i ∈ S} and σ(S) = {n + i ∈ D|i ∈ S} be the sets of

predecessors and successors for a node subset S ⊂ P ∪D. The sub-tour elimination

constraints (5.23) can be strengthened by considering the precedence relationship
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between pickup and delivery nodes for di�erent customer requests. For example, let

us consider a node subset S = {n+ i, n+j} ⊆ D as shown in Figure 4.3(a). The sub-

tour elimination constraint for S is xn+i,n+j + xn+j,n+i ≤ 1. Furthermore, we know

that i ≺ n + i and j ≺ n + j in the vehicle route. If xn+i,n+j = 1, then xn+j,i must

be 0, otherwise we will have n+ i ≺ i in the solution. Similarly, if xn+j,n+i = 1, then

xn+i,j must be 0. So, the sub-tour elimination constraint for S can be strengthened

with inequality xn+i,n+j + xn+j,n+i + xn+i,j + xn+j,i ≤ 1.

n+i

n+j

i

j
S

(a) Predecessor inequality for
S = {n+ i, n+ j}

i

j

n+i

n+j
S

(b) Successor inequality for S = {i, j}

Figure 4.3: Predecessor and successor inequalities

Similarly, let us consider another node subset S = {i, j} ⊆ P as shown in Figure

4.3(b). Sub-tour elimination constraint for S is xij +xji ≤ 1. Furthermore, we know

that i ≺ n + i and j ≺ n + j in the vehicle route. If xij = 1, then xn+j,i must be

0, otherwise we will have n + i ≺ i in the solution. Similarly, if xji = 1, then xn+i,j

must be 0. By the above arguments, the sub-tour elimination constraint for S can

be strengthened with inequality xij + xji + xn+i,j + xn+j,i ≤ 1. Generalizing these

ideas, Balas et al. [5] presented the following inequalities.
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x(A(S)) +
∑
i∈S

∑
j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑
j∈S̄\π(S)

xij ≤ |S| − 1 (4.13)

x(A(S)) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(S)

∑
j∈S∩σ(S)

xij ≤ |S| − 1 (4.14)

Strengthened cycle inequalities

Consider a node subset S = {i, j, k} ⊆ P as illustrated in Figure 4.4(a). The

classical cycle inequality for S is xij + xjk + xki ≤ 2. Cycle arcs are (i, j), (j, k)

and (k, i). Note that, if xji = 1, then none of the cycle arcs can be in the solution.

Therefore, the cycle inequality for S can be strengthened with xij +xjk+xki+2xji ≤

2. Furthermore, we know that i ≺ n + i and j ≺ n + j in the vehicle route.

So, if two of the three cycle arcs are in the solution, then neither (n + j, i) nor

(n + k, i) can be in the solution. Otherwise, they will violate either the precedence

requirements or the degree constraints. Therefore, the cycle inequality for S can be

further strengthened as xij + xjk + xki + 2xji + xn+j,i + xn+k,i ≤ 2. Similarly, for

an ordered node subset S = {n + i, n + j, n + k} ⊆ D as shown in Figure 4.4(b),

the classical cycle inequality xn+i,n+j + xn+j,n+k + xn+k,n+i ≤ 2 can be strengthened

with xn+i,n+j + xn+j,n+k + xn+k,n+i + 2xn+i,n+k + xn+i,j + xn+i,k ≤ 2. Cordeau [17]

generalized the above idea for an ordered node subset S = {i1, i2, . . . , ik} ⊂ N and

presented the following inequalities.

k−1∑
h=1

xih,ih+1
+ xik,i1 +

k−1∑
h=2

xih,i1 +
k−1∑
h=3

h−1∑
l=2

xih,il +
∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ k − 1 (4.15)
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k−1∑
h=1

xih,ih+1
+ xik,i1 +

k∑
h=3

xi1,ih +
k∑

h=4

h−1∑
l=3

xih,il +
∑

ip∈S̄∩π(S)

xi1,ip ≤ k − 1 (4.16)

i

j

k

2
n+j

n+k S

(a) Inequality (4.15) for S = {i, j, k}

n+i

n+j

n+k

2

j

k S

(b) Inequality (4.16) for
S = {n+ i, n+ j, n+ k}

Figure 4.4: Strengthened cycle inequalities

4.2.3 Branch-and-cut algorithm - Fractional separation (SPDPL-F)

Notice that Constraints (5.23)-(4.8) are exponential in number. Therefore, building

the model for direct implementation of Formulation 4.2.1 is computationally expen-

sive. So, Cordeau et al [18] presented a branch-and-cut algorithm in which a master

relaxation problem was solved and node sets violating Constraints (5.23)-(4.8) were

identi�ed by solving maximum �ow problems. Before presenting the procedure, we

present the following relaxations and separation problems which are essential for our

discussion.
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Master Relaxation Problem for SPDPL-F

Formulation 4.2.2 (MRP-F).

min
∑

(i,j)∈A

cijxij (4.17)

subject to:

Constraints (4.2) and (4.5) from Formulation 4.2.1 (degree constraints)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A (4.18)

Let F be the feasible solution set for MRP-F. Cordeau et al [18] proposed a

branch-and-cut algorithm (SPDPL-F) which starts by identifying a solution feasible

to MRP-F. Three fractional separation problems were solved on the aforementioned

solution and cutting planes were sequentially added. This procedure was repeated

until a solution feasible to the original formulation (Formulation 4.2.1) was identi�ed.

The separation problems associated with SPDPL-F algorithm are presented below.

Fractional Separation Problem 1 (FSP1)- Sub-tours

Input: A directed graph G = (N,A) as described in Section 4.1, and fractional

values x∗ ∈ F .

Problem: To identify a set of nodes S∗, such that S∗ ⊆ P ∪D, 2 ≤ |S∗| ≤ N and

x(A(S∗)) > |S∗| − 1, or determine that no such set exists.

Cordeau et al [18] solved FSP1 in a classical way as shown below:

(1) Create a supporting graph G∗ = (N,A∗) where each arc (i, j) ∈ A∗ has �ow

capacity equal to x∗ij.
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(2) Solve maximum �ow problem from 0 to i, for each node i ∈ N \ {0, 2n+ 1}.

(3) If the max-�ow value is less than 1, then search the residual graph and identify

a node set S∗.

After solving FSP1, Cordeau et al [18] added inequality (5.23) for S∗ as a cutting

plane.

Fractional Separation Problem 2 (FSP2)- Precedence

Input: A directed graph G = (N,A) as described in Section 4.1, and fractional

values x∗ ∈ F .

Problem: For each node i ∈ P , identify a node subset S∗ ⊂ N , such that 0 ∈ S∗,

n+ i ∈ S∗, 2n+ 1 /∈ S∗, i /∈ S∗, and x(A(S∗)) > |S∗| − 2, or determine that no such

set exists.

Cordeau et al [18] solved FSP2 for each customer request i ∈ P as shown below:

(1) Create a supporting graph G∗ = (N,A∗) where each arc (i, j) ∈ A∗ has �ow

capacity equal to x∗ij.

(2) Create two new arcs in G∗: (0, n+ i) and (i, 2n+ 1) each with arc capacity 2.

(3) Solve a maximum �ow problem from origin depot 0 to destination depot 2n+1.

(4) If the max-�ow value is lesser than 2, then search the residual graph and identify

a node set S∗ ∈ Γ.

(5) Note that 0, n+i ∈ S∗ and i, 2n+1 /∈ S∗ (by de�nition of set Γ and Constraints

(4.7)).
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After solving FSP2, Cordeau et al [18] added inequality (4.7) for S∗ as a cutting

plane.

Fractional Separation Problem 3 (FSP3)- LIFO

For separating node sets violating Constraints (4.8), Cordeau et al [18] solved sepa-

ration problems for each pair of nodes i, j ∈ P by performing two searches:

1. For all sets S ∈ Ω, such that j ∈ S, n+ j /∈ S, i /∈ S and n+ i /∈ S

2. For all sets S ∈ Ω, such that n+ j ∈ S, j /∈ S, i /∈ S and n+ i /∈ S

The following problem and procedure corresponds to the �rst search. The separation

problem and procedure for second search is similar to the �rst one.

Input: A directed graph G = (N,A) as described in Section 4.1, and fractional

values x∗ ∈ F .

Problem: For each pair of nodes i, j ∈ P , identify a node subset S∗ ⊂ P ∪D, such

that j ∈ S∗, n+j /∈ S∗, i /∈ S∗, n+i /∈ S∗, and x(i, S∗)+x(A(S∗))+x(S∗, n+i) > |S∗|,

or determine that no such set exists.

Cordeau et al [18] solved FSP3 for each pair of requests i, j ∈ P as shown below:

(1) Create a supporting graph G∗ = (N,A∗) where each arc (i, j) ∈ A∗ has �ow

capacity equal to x∗ij.

(2) Increase the capacity of following arcs to 2 in G∗: (i, n+ i), (i, n+ j), (n+ i, i)

and (n+ j, i).

(3) For each node k ∈ P ∪D, add x∗ik + x∗k,n+i to the current capacity.
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(4) Solve a maximum �ow problem from j to i.

(5) If the max-�ow value is lesser than 2, then search the residual graph and identify

a node set S∗ ∈ Ω.

(6) Note that by set de�nitions and Constraints (4.8), j ∈ S∗ and i, n+i, n+j /∈ S∗.

After solving FSP3, Cordeau et al [18] added inequality (4.8) for S∗ as a cutting

plane.

Given a fractional solution x∗ij, Table 4.2 shows the number of max �ow problems

solved in each separation procedure. We solve max-�ow problems using Edmonds-

Karp algorithm [25] with Breadth-First-Search (BFS) for graph traversal. The time

complexity of each max-�ow implementation is O(n5). Our implementation struc-

tures for BFS function and max-�ow algorithm are presented in Appendices 2.1 and

2.2 respectively. For the readers' recollection, n denotes the number of customer

requests.

Table 4.2: Constraints and #Max �ow problems for SPDPL-F separations

Problem name Constraints Type #Max �ow problems

FSP1 5.23 Sub-tours 2n
FSP2 4.7 Precedence n
FSP3 4.8 LIFO violation 2(n2 − n)

SPDPL-F Algorithm Structure (Cordeau et al. [18])

Formulation 4.2.2 is solved in a Branch-and-Bound (BB) framework. Each node of

the BB tree may represent one of the following cases:
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- An infeasible LP relaxation, in which case we prune by infeasibility.

- A precedence abiding Hamiltonian path with no LIFO violations, in which case

we update the incumbent solution accordingly.

- A fractional or integral solution not feasible to the original problem, in which

case the following steps are executed:

(1) FSP1 is solved and node sub-sets violating Constraints (5.23) (SECs), if

any exists, are identi�ed. Cutting planes corresponding to aforementioned

node sub-sets are added to the current formulation.

(2) Similarly, FSP2 and FSP3 are solved and node sub-sets violating Con-

straints (4.7) (precedence) and (4.8) (LIFO), if any exists, are identi�ed.

Cutting planes are added to current formulation for resolving.

This algorithm terminates when there are no nodes left in the BB tree to branch. At

that point, the incumbent solution is an optimal vehicle route.

4.2.4 Branch-and-cut algorithm - Integral separation (SPDPL-I)

In this section, we introduce a new branch-and-cut algorithm with integral separation

procedures to solve SPDPL. Before presenting the procedure, we present the following

relaxations and separation problems.

Master Relaxation Problem for SPDPL-I

MRP-I is an assignment problem formulation
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Formulation 4.2.3 (MRP-I).

min
∑

(i,j)∈A

cijxij (4.19)

subject to:

Constraints (4.2) and (4.5) from Formulation 4.2.1 (degree constraints)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.20)

Let I1 be the feasible solution set for Formulation 4.2.3. We propose a branch-and-

cut algorithm (SPDPL-I) which starts by identifying a solution feasible to MRP-I.

We then solve three integral separation problems on the aforementioned solution.

Consequently, violated inequalities are identi�ed and added as lazy cuts to MRP-I.

This process is repeated until a solution feasible to the original formulation (Formu-

lation 4.2.1) is identi�ed. The integral separation problems associated with SPDPL-I

algorithm are presented below.

Integral Separation Problem 1 (ISP1)- Sub-tours

Input: A directed graph G = (N,A) as described in Section 4.1, and binary values

x∗ ∈ I1.

Problem: To identify a set of nodes S∗, such that S∗ ⊆ P ∪D, 2 ≤ |S∗| ≤ N and

xA((S∗)) > |S∗| − 1, or determine that no such set exists.

We solve ISP1 with a simple graph traversal from origin depot 0 to destination

depot 2n + 1 with runtime complexity of O(n2). After a search in x∗, if there are

unreachable nodes from the origin depot, then they are a part of sub-tour(s). This
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is because x∗ ∈ I1 is either a Hamiltonian path (all nodes are reachable from the

source node) or a PS-Tuple (pairwise node-disjoint path and sub-tours). If sub-tours

are identi�ed, then we add Constraints (5.23) as lazy cuts. Our implementation

structure to solve ISP1 is presented in Appendix 2.3.

Before presenting the next separation problem, we add Constraints (5.23) (sub-

tour elimination) to Formulation 4.2.3 and denote the new formulation as RP1. Let

I2 be the feasible solution set for Formulation RP1. The following separation problem

seeks to identify precedence violations in a Hamiltonian path.

Integral Separation Problem 2 (ISP2)- Precedence

Input: A directed graph G = (N,A) as described in Section 4.1, and binary values

x∗ ∈ I2.

Problem: For each node i ∈ P , identify a node subset S∗ ⊂ N , such that 0 ∈ S∗,

n+ i ∈ S∗, 2n+ 1 /∈ S∗, i /∈ S∗, and x(A(S∗)) > |S∗| − 2, or determine that no such

set exists.

We solve ISP2 by performing a graph traversal from origin depot 0 to destination

depot 2n + 1 and numbering the nodes in their order of visit. The time complex-

ity for aforementioned traversal is O(n2). All nodes are reachable from the origin

because x∗ ∈ I2 is a Hamiltonian path. Let hi be the position (order of visit) of

node i ∈ N in the path form origin to destination depot. If we can identify a node

i ∈ P such that hn+i < hi, then delivery node n + i was visited before the pickup

node i. We construct a node set S∗ containing nodes corresponding to path positions

h0, . . . , hn+i, . . . , (hi − 1). After that, we add inequality (4.7) for S∗ as a lazy cut.
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Our implementation structure for ISP2 is presented in Appendix 2.4.

Before presenting the LIFO separation problem, we add Constraints (4.7) (prece-

dence) to RP1 and denote the new formulation as RP2. Let I3 be the feasible solution

set for RP2. The following separation problem seeks to identify LIFO violations in

a Hamiltonian path with no precedence violations.

Similar to FSP3 (fractional separation procedure for LIFO violations), integral

separation procedures for LIFO violations should also be solved by performing two

searches.

(1) For all sets S ∈ Ω, such that j ∈ S, n+ j /∈ S, i /∈ S and n+ i /∈ S

(2) For all sets S ∈ Ω, such that n+ j ∈ S, j /∈ S, i /∈ S and n+ i /∈ S

The following problem and procedure corresponds to the �rst search. The separation

problem for second search is equivalent to the �rst one.

Integral Separation Problem 3 (ISP3)- LIFO violation

Input: A directed graph G = (N,A) as described in Section 4.1, and binary values

x∗ ∈ I3.

Problem: For each node pair i, j ∈ P , i 6= j, identify a node subset S∗ ⊂ P∪D, such

that i /∈ S∗, n+ i /∈ S∗, j ∈ S∗, n+ j /∈ S∗, x(i, S∗) + x(A(S∗)) + x(S∗, n+ i) > |S∗|

or determine that no such set exists.

Since, x∗ ∈ I3, we know the input to ISP3 is a precedence abiding Hamiltonian

path. We solve ISP3 with a procedure similar to ISP2 (graph traversal and numbering

the nodes by order of visit). Let hi be the position (order of visit) of node i ∈ N in
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the path form origin to destination depot. There is a LIFO violation, if i and j are

located in the path such that

� hi < hj (i is visited before j)

� hj < hn+i (j is visited before n+ i) and

� hn+i < hn+j(n+ i is visited before n+ j)

We then construct a node set S∗ containing nodes corresponding to path positions

(hi + 1), . . . , hj, . . . , (hn+i − 1). After that, inequality (4.8) is added for S∗ as a lazy

cut. Our implementation structure is presented in Appendix 2.5.

Notice that ISP1, ISP2 and ISP3 are de�ned and solved on integral solutions.

Also, LIFO violations are separated on a solution only if it is a Hamiltonian path

with no precedence violations. With this remark, we present our branch-and-cut

algorithm with nested integral separation procedures.

SPDPL-I Algorithm Structure

Formulation MRP-I is solved in a Branch-and-Bound (BB) framework. Each node

of the BB tree may represent one of the following cases:

- A fractional solution, in which case we continue branching.

- An infeasible LP relaxation, in which case we prune by infeasibility.

- An integral solution with PS-Tuple, in which case the following steps are exe-

cuted:
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(1) ISP1 is solved and the sub-tours are detected.

(2) Constraints (5.23) (SECs) are added to the current formulation as lazy

cuts.

- A Hamiltonian path with precedence violations for at least one customer re-

quest, in which case the following steps are executed:

(1) ISP2 is solved and node sets violating Constraints (4.7) (precedence) are

detected.

(2) Constraints (4.7) are added to the current formulation as lazy cuts.

- A precedence abiding Hamiltonian path with at least one LIFO violation, in

which case the following steps are executed:

(1) ISP3 is solved and node sets violating Constraints (4.8) (LIFO) are de-

tected.

(2) Constraints (4.8) are added to the current formulation as lazy cuts.

- A precedence abiding Hamiltonian path with no LIFO violations, in which case

we update the incumbent solution accordingly.

An interesting aspect of this algorithm structure is the nested separation proce-

dure. We start with assignment relaxation and once we have an integral solution, we

solve ISP1 to add SECs as lazy cuts. From there, we identify a Hamiltonian path

with precedence violations (integral solution for RP1). Then, we solve ISP2 to add

precedence constraints as lazy cuts. As a result, we may identify an integral solution
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Figure 4.5: SPDPL-I algorithm structure

for RP2, at which point we solve ISP3 and �nd a feasible solution to our original

problem. This implies that we solve one separation problem based on the output of

another one.

The algorithm terminates when there are no nodes left in the BB tree to branch.

At that point, the incumbent solution is an optimal vehicle route. A high-level

illustration of our SPDPL-I algorithm structure is shown in Figure 4.5.

4.2.5 Other runtime improvements

In this section, we present other runtime improvements that we implemented in

our branch-and-cut algorithms. Some of the preprocessing techniques and cut pool

implementations were presented by Cordeau et al. [18].
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Preprocessing

We remove the following arcs from the arc set (A) of the graph (G)

� Arcs of form (n + i, i) ∀i ∈ P . This is because the pickup node cannot imme-

diately succeed the delivery node for any customer request.

� Arcs of form (0, n + i) ∀n + i ∈ D. This is because a delivery node cannot

immediately succeed the origin depot in the vehicle path. On the similar note,

we remove all arcs of form (i, 2n+ 1) ∀i ∈ P . Furthermore, we also remove the

arc (2n+ 1, 0).

� Consider two pickup nodes i, j ∈ P such that i 6= j. On a LIFO enforced

route, n + j cannot immediately succeed i. So, we remove all arcs of form

(i, n+ j) ∀i, j ∈ P .

Cut pool

Before starting the algorithm, we include the following inequalities to the assignment

formulation:

� Sub-tour elimination constraints (5.23) for all node sub-sets S such that |S| = 2.

� Incompatible successor (4.10) and predecessor inequalities (4.11) because they

are quadratic in number.

� Incompatible arc set inequalities (4.12) because they are also quadratic in num-

ber.

43



� For each pickup node pair i, j ∈ P , successor inequalities (4.14) after setting

node subset S to {i, j}, {i, n+j} and {i, n+i, j}. Also, predecessor inequalities

(4.13) after setting node subset S to {n+i, n+j}, {i, n+j} and {i, n+i, n+j}.

� For each pickup node pair i, j ∈ P , D+
k inequality (4.15) for ordered set S =

{n+i, j, i, n+j} and D−k inequality (4.16) for ordered set S = {i, n+i, n+j, j}.

Warm start

We provide a feasible solution of SPDPL to the solver for a warm start. If our solution

is better than the solvers' initial solution, then our solution will be used as a warm

start. We developed a greedy heuristic to identify the warm start solution. The basic

idea is to start with a feasible solution, and remove and insert nodes repeatedly such

that LIFO loading order and precedence for pickups are not violated. We discuss

more about our heuristic structure in the next section.

4.2.6 SPDPL warm start heuristic structure

Initial solution

We obtain a feasible SPDPL solution by performing the following steps.

(1) Scan all outgoing arcs from origin depot 0 and identify the lowest cost arc (0, i),

such that i ∈ P . This is because a delivery node cannot immediately succeed

0 in the solution.

(2) The possible successor of i ∈ P in a LIFO enforced route is either n + i or

a pickup node di�erent from i, because i is the last visited pickup node and
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visiting any other delivery node except n + i violates LIFO. So, we scan the

possible successor set and select the lowest cost arc. The node at the tail end

of the lowest cost arc is added to the path and the process is repeated.

(3) We continue by selecting the lowest cost arc (or one of the lowest cost arcs

in case of a tie) from the possible successor set for each newly added node

in the path. In any given iteration, the successor set is the delivery node

corresponding to the last visited pickup node or a pickup node not already in the

partial path. It follows that the precedence will be respected for all customer

requests because a delivery node will not be selected unless the corresponding

pickup node is already in the route.

(4) Repeat this process until all pickup and delivery nodes are in the route. Append

destination depot 2n+ 1 to the route.

Removal and insertion of nodes

After identifying an initial solution, for each pickup node i ∈ P , we remove i and

n+ i from the path and insert them in all possible positions such that the precedence

(i ≺ n+ i) and LIFO order is respected. After multiple removals and insertions, the

path with lowest objective value is selected as our warm start solution. A simple

example of our removal and insertion process is shown in Figure 4.6.
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Figure 4.6: SPDPL warm start heuristic- nodes removal and insertion

The procedure for our example is described below:

(1) In iteration 1, i and n + i are removed from the initial solution and inserted

in positions 2 and 3 in the path. The path respects the LIFO order, so the

objective value of the new path is calculated and the lowest cost is updated.

(2) In iteration 2, n+i is removed from the iteration 1 path and inserted in position

4, whereas i is held in the same position. The new path violates the LIFO order.

So it is not considered for update.

(3) In iteration 3, n+i is removed from the iteration 2 path and inserted in position

5, whereas i is held in the same position. This path respects the LIFO order

for all shipment requests. So it is considered for cost update.
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(4) Precedence violations will not occur in any iteration because n + i is inserted

in positions after i. We continue this process until all possible positions for i

and n + i without precedence and LIFO order violations are explored. In our

example, it took 6 iterations among which 4 were feasible solutions.

(5) Path positions for i and n+ i are �xed based on the lowest cost route from the

aforementioned 4 solutions and we repeat the same process by removing and

inserting j and n+ j.

The algorithm structure for our warm start heuristic is shown in Appendix 2.7.

4.2.7 Upper bound tightening

In our SPDPL-I algorithm, we perform an upper bound tightening procedure when

we update the incumbent solution. Let Unew be the objective of a new incumbent

solution. We use the incumbent vehicle path as the initial solution and perform the

removal and insertion of nodes as described in the previous section. Notice that there

are no precedence violations after performing the removal and insertion procedure on

the incumbent solution. Let Uri be the objective value after a removal and insertion

operation. If Uri < Unew, then we add a lazy cut stating that the objective of the

solution should be less than or equal to Uri.
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4.3 Single Vehicle Pickup-and-Delivery Problem with Handling Costs

A single-vehicle should serve all customer demands. The objective of SPDPH is to

�nd a minimum cost Hamiltonian path from origin depot 0 to destination depot

2n+ 1. A feasible route must satisfy the following conditions:

� For each shipment i = 1, . . . , n, the pickup node i ∈ P must be visited before

the delivery node n+ i ∈ D.

� Load picked from a location should be placed at the rear end of the vehicle

(top of the stack).

� LIFO violation penalty (handling cost) is incurred once for each additional load

handling operation at delivery nodes.

We assume that the reshu�ing of cargo at delivery nodes is not permitted. So,

additionally handled loads are reloaded back into the vehicle in the same order they

were unloaded.

We explore three MIP models for SPDPH.

1. SPDPH1 is a compact formulation presented by Veenstra et al. [42]. One

of this dissertation objectives is to compare the computational performance of

this formulation against our solution methodologies.

2. SPDPH2 is a compact formulation introduced in this dissertation.

3. SPDPH3 is a cut-based formulation with exponential number of constraints

introduced in this dissertation. We also present two branch-and-cut algorithms

to implement SPDPH3.
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We use the graph structure and notations presented in Section 4.1 to introduce the

formulations.

4.3.1 SPDPH Formulation 1 (SPDPH1)

The �rst formulation we discuss here was presented by Veenstra et al. [42].

Decision variables

f , x and z variables as de�ned in Section Table 4.1

Sets

A′ as de�ned in Table 4.1

Formulation 4.3.1 (SPDPH1 by Veenstra et al. [42]).

min
∑

(i,j)∈A

cijxij + v
∑
i∈P

∑
j∈P
j 6=i

zij (4.21)

subject to:

Constraints (4.2) - (4.5) from Formulation 4.2.1

∑
j:(i,j)∈A

f 1
ijk −

∑
j:(j,i)∈A

f 1
jik =


1, if i = 0

−1, if i = k

0, otherwise

∀i ∈ N, k ∈ P (4.22)

∑
j:(i,j)∈A′

f 2
ijk −

∑
j:(j,i)∈A′

f 2
jik =


1, if i = k

−1, if i = n+ k

0, otherwise

∀i ∈ P ∪D, k ∈ P (4.23)
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∑
j:(i,j)∈A

f 3
ijk −

∑
j:(j,i)∈A

f 3
jik =


1, if i = n+ k

−1, if i = 2n+ 1

0, otherwise

∀i ∈ N, k ∈ P (4.24)

f 1
ijk + f 3

ijk = xij ∀(i, j) ∈ A \ A′, k ∈ P (4.25)

f 1
ijk + f 2

ijk + f 3
ijk = xij ∀(i, j) ∈ A′, k ∈ P (4.26)

zij ≥
∑

k:(k,j)∈A′

f 2
k,j,i −

∑
k:(n+j,k)∈A′

f 2
n+j,k,i ∀i, j ∈ P, i 6= j (4.27)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.28)

zij ∈ {0, 1} ∀i, j ∈ P, i 6= j (4.29)

f 1
ijk, f

3
ijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ P (4.30)

f 2
ijk ∈ {0, 1} ∀(i, j) ∈ A′, k ∈ P (4.31)

The objective function (4.21) minimizes the total transportation and handling

cost. Constraints (4.2) - (4.5) are degree and capacity constraints. Constraints (4.22)

ensure a path from origin depot 0 to each pickup node. Constraints (4.23) ensure

a path from pickup node to delivery node for each customer request. Constraints

(4.24) ensure a path from each delivery node to destination depot 2n+1. Constraints

(4.25) and (4.26) link �ow variables (f) with arc variables (x). Constraints (4.27)

enforce a penalty, if node j ∈ P is in the route between i and n+ i, and n+ j is not

in the route between i and n+ i.
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4.3.2 SPDPH Formulation 2 (SPDPH2)

The second formulation is a compact model introduced in this dissertation.

Decision variables

x, y and z variables as de�ned in Table 4.1

Formulation 4.3.2 (SPDPH2).

min
∑

(i,j)∈A

cijxij+v
∑
i∈P

∑
j∈P
j 6=i

zij (4.32)

subject to:

Constraints (4.2) - (4.5) from Formulation 4.2.1

yi,n+i = 1 ∀i ∈ P (4.33)

yij ≥ xij ∀(i, j) ∈ A (4.34)

yij + yji = 1 ∀i, j ∈ N, i 6= j (4.35)

yij + yjk + yki ≤ 2 ∀i, j, k ∈ N, i 6= j 6= k (4.36)

zij ≥ yij + yn+i,n+j + yj,n+i − 2 ∀i, j ∈ P, i 6= j (4.37)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.38)

0 ≤ yij ≤ 1 ∀i, j ∈ N, i 6= j (4.39)

0 ≤ zij ≤ 1 ∀i, j ∈ P, i 6= j (4.40)

The objective function (4.32) calls for the minimization of the total transporta-

tion and handling cost. Constraints (4.2) - (4.5) are degree and capacity constraints.

Constraints (4.33) are precedence constraints ensuring that pickup is visited before
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delivery for all customer requests. Constraints (4.34)-(4.36) are Sub-Tour Elimina-

tion Constraints (SEC) introduced by Sarin et al. [38] for Precedence Constrained

Asymmetric Traveling Salesman Problem. Constraints (4.37) ensure that zij = 1 for

customer requests i and j, if:

� j is visited after i

� n+ i is visited after j and

� n+ j is visited after n+ i

4.3.3 SPDPH Formulation 3 (SPDPH3)

Our third formulation is a cut-based MIP with exponential number of constraints.

Decision variables

x and z variables as described in Table 4.1

Sets

Γ and Υj as de�ned in Table 4.1

Formulation 4.3.3 (SPDPH3).

min
∑

(i,j)∈A

cijxij + v
∑
i∈P

∑
j∈P
j 6=i

zij (4.41)

subject to:

Constraints (4.2) - (4.7) from Formulation 4.2.1

zij ≥
[
x(i, S) + x(A(S)) + x(S, n+ i)

]
−|S| ∀S ∈ Υj, ∀i, n+ i /∈ S,∀i, j ∈ P

(4.42)
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xij ∈ {0, 1} ∀(i, j) ∈ A (4.43)

0 ≤ zij ≤ 1 ∀i, j ∈ P (4.44)

The objective function (4.41) seeks to minimize the total transportation and

handling cost. Constraints (4.2) - (4.7) are degree constraints, SECs, precedence and

vehicle capacity constraints for PDP which have been discussed before in Formulation

4.2.1. Constraints (4.42) enforce handling cost in case of LIFO loading order violation

as discussed below.

Let us consider two customer requests i ∈ P and j ∈ P \ {i}. Also, consider a

node subset S ⊂ P ∪D, such that j ∈ S and i, n + i, n + j /∈ S. Note that S ∈ Υj

(by set de�nition). Let x∗ and z∗ be a feasible solution to SPDPH3. Note that:

� x∗(i, S) ≤ 1 (maximum out-degree of i- Constraints (4.2))

� x∗(S, n+ i) ≤ 1 (maximum in-degree of n+ i- Constraints (4.3))

� x∗(A(S)) ≤ |S| − 1 (sub-tour elimination- Constraints (5.23))

Now, z∗ij will assume a value of 1 only if S was selected such that x∗(i, S) = 1,

x∗(S, n + i) = 1 and x∗(A(S)) = |S| − 1. As illustrated in Figure 4.7, this would

mean that

� j is in the path between i and n+ i

� n+ j is not in the path between i and n+ i
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0 i j n+i n+j 2n+1

Sx*(i,S)=1

x*(S,n+i)=1

x*(A(S))=|S|-1

Figure 4.7: An illustration of handling cost constraints

The aforementioned node subset structure is the only case where z∗ij can be 1.

Any other node subset in Υj will result in the right hand side of equation (4.42)

yielding values lesser than equal to zero, hence trivializing the constraints.

Inequalities for SPDPH3

As mentioned in the literature review, SPDPH is a relatively new problem with very

sparse literature. So, there are no existing inequalities for SPDPH speci�cally avail-

able in the literature. However, precedence constrained ATSP inequalities are appli-

cable for SPDPH. Therefore, inequalities (4.13)-(4.16) are applicable for SPDPH. In

this dissertation, we present the following inequalities for SPDPH.

Handling cost enforcing arc pair inequalities

We present this family of inequalities based on the following notion. For each node

pair i, j ∈ P , handling cost has to be enforced if two of the following arcs are in the

vehicle route: (i, j), (j, n+ i) and (n+ i, n+ j). This is because it would mean j is
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in the path between i and n+ i, and n+ j is not in the path between i and n+ i as

shown in Figure 4.8.

0 n+j 2n+1i j n+i

Figure 4.8: An illustration HC enforcing arc pair inequalities

Proposition 1. For each node pair i, j ∈ P , the following inequalities are valid for

SPDPH3

zij ≥ xij + xj,n+i − 1 (4.45)

zij ≥ xj,n+i + xn+i,n+j − 1 (4.46)

zij ≥ xij + xn+i,n+j − 1 (4.47)

Proof: Suppose that C ⊆ A represents a Hamiltonian path from node 0 to 2n + 1

that satis�es precedence for all customer requests (i ≺ n+ i and j ≺ n+ j). Let Xc

be its characteristic vector, and suppose

zcij =


1, if j ∈ P is picked up between i ∈ P and n+ i ∈ D, and delivered after n+ i

0, otherwise

we want to show

zcij ≥ xcij + xcj,n+i − 1 (4.48)

zcij ≥ xcj,n+i + xcn+i,n+j − 1 (4.49)

zcij ≥ xcij + xcn+i,n+j − 1 (4.50)
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Inequality (4.48): This can be obtained by setting S = {j} in Constraints (4.42).

Inequality (4.49): By the de�nition of zcij, we know that zcij = 1, if and only if j is

in the path between i and n + i, and n + j is not in the path between i and n + i.

This in turn means zcij = 1, if and only if:

1. i ≺ j

2. j ≺ n+ i and

3. n+ i ≺ n+ j

Notice that the above conditions hold, if xcj,n+i = xcn+i,n+j = 1 because

� xcj,n+i = 1 =⇒ j ≺ n+ i

� xcn+i,n+j = 1 =⇒ n+ i ≺ n+ j and

� i ≺ n+ i (precedence for customer requests) and xcj,n+i = 1 =⇒ i ≺ j

Therefore,

zcij = 1, if xcj,n+i = xcn+i,n+j = 1 =⇒ zcij ≥ xcj,n+i + xcn+i,n+j − 1.

Inequality (4.50): Notice that conditions 1 − 3 also hold, if xcij = xcn+i,n+j = 1

because

� xcij = 1 =⇒ i ≺ j

� xcn+i,n+j = 1 =⇒ n+ i ≺ n+ j and

� xcij = 1 and i ≺ n+ i (precedence for customer requests) =⇒ j ≺ n+ i

56



Therefore,

zcij = 1, if xcij = xcn+i,n+j = 1 =⇒ zcij ≥ xcij + xcn+i,n+j − 1.

�

Size comparison of SPDPH formulations

Table 4.3 shows the number of constraints and variables for the three SPDPH for-

mulations in terms of the number of customer requests n. To reiterate the formula-

tion labels, SPDPH1 is a �ow-based formulation proposed by Veenstra et al. [42],

SPDPH2 is a compact formulation and SPDPH3 is a cut-based formulation with an

exponential number of constraints.

Table 4.3: SPDPH formulations size comparison

Formulation #Variables #Constraints

SPDPH1 2n3 + 5n2 3n3 + 15n2 + 6n
SPDPH2 6n(n+ 1) + 2 11n3 + 19n2 + 18n
SPDPH3 2n2 Exponential

Branch-and-cut algorithms

We present two branch-and-cut algorithms to solve SPDPH. Formulation SPDPH3

has exponentially many sub-tour elimination Constraints (5.23), precedence Con-

straints (4.7) and handling cost Constraints (4.42). So, similar to SPDPL Formu-

lation 4.2.1, we solve this problem with two branch-and-cut algorithms: one with

fractional separation procedures and another with integral separation procedures.
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Branch-and-cut algorithm - Fractional separation (SPDPH3-F)

The algorithm structure is similar to the branch-and-cut approach discussed in Sec-

tion 4.2.3. We start by identifying a solution feasible to MRP-F. After that, we solve

three fractional separation problems and sequentially add cutting planes. Two of the

fractional separation problems (FSP1 for sub-tour elimination and FSP2 for prece-

dence enforcement) are similar to SPDPL-F. Therefore, we solve FSP1 and FSP2 as

described in Section 4.2.3. However, the third separation problem (handling cost) is

slightly di�erent from SPDPL-F.

Fractional Separation Problem 3 (FSP3H)- Handling cost

Input: A directed graph G = (N,A) as described in Section 4.1, fractional values

x∗ ∈ F and handling costs z∗.

Problem: For each pair of nodes i, j ∈ P , identify a node subset S∗ ⊂ N , such that

j ∈ S∗, n+j /∈ S∗, i /∈ S∗, n+ i /∈ S∗, and [x(i, S∗)+x(A(S∗))+x(S∗, n+ i)]−|S∗| >

z∗ij, or determine that no such set exists.

We solve FSP3H as follows. FSP3 (LIFO violation- fractional separation problem)

is solved for pair of customer requests i, j ∈ P as shown in Section 4.2.3. We do this

to identify a LIFO violating node set S∗ ∈ Υj and check if [x(i, S∗) + x(A(S∗)) +

x(S∗, n + i)] − |S∗| > z∗ij. If yes, then we add inequality (4.42) for S∗ as a cutting

plane.

58



Branch-and-cut algorithm - Integral separation (SPDPH3-I)

The algorithm structure is similar to the branch-and-cut approach discussed in Sec-

tion 4.2.4. We start by identifying a solution feasible to MRP-I. After that, we

solve three separation problems and add lazy cuts. Two of the separation problems

(ISP1 for sub-tour elimination and ISP2 for precedence enforcement) are similar to

SPDPL-I. Therefore, we solve ISP1 and ISP2 as described in Section 4.2.4. However,

the third separation problem (handling cost) is slightly di�erent from SPDPL-I.

Integral Separation Problem 3 (ISP3H)- Handling cost

Input: A directed graph G = (N,A) as described in Section 4.1, binary values

x∗ ∈ I3 and handling costs z∗.

Problem: For each node pair i, j ∈ P , i 6= j, identify a node subset S∗ ⊂ P∪D, such

that i /∈ S∗, n+i /∈ S∗, j ∈ S∗, n+j /∈ S∗, [x(i, S∗)+x(A(S∗))+x(S∗, n+i)]−|S∗| > z∗ij

or determine that no such set exists.

ISP3H is de�ned in a Hamiltonian path with no precedence violations. We handle

this problem by solving ISP3 (LIFO violation- integral separation problem) for node

pair i, j ∈ P as shown in Section 4.2.4. If we identify a LIFO violating node set

S∗ ∈ Υj, then we check if [x(i, S∗) + x(A(S∗)) + x(S∗, n + i)] − |S∗| > z∗ij . If yes,

then we add inequality (4.42) for S∗ as a lazy cut. A high-level illustration of our

SPDPH3-I algorithm structure is shown in Figure 4.9.
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Solve MRP in a
BB framework
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feasible to relaxed
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elimination)

O(n2)

ISP2 (precedence)
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ISP3 (Handling cost)
O(n2)

Continue branching
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An integral solution
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Identify the type of
solution
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LIFO
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no HC

Sub-tours
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Yes
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No
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An integral solution
feasible to original

problem

Update incumbent
accordingly

Figure 4.9: SPDPH3-I algorithm structure

4.3.4 Other runtime improvements

In this section, we present other runtime improvements that we implemented for

SPDPH branch-and-cut algorithms.

Preprocessing

We remove the following arcs from the arc set (A) of the graph (G)

� Arcs of form (n + i, i) ∀i ∈ P . This is because the pickup node cannot imme-

diately succeed the delivery node for any customer request.

� Arcs of form (0, n + i) ∀n + i ∈ D. This is because a delivery node cannot

immediately succeed the origin depot in the vehicle path. On the similar note,

we remove all arcs of form (i, 2n+ 1) ∀i ∈ P . Furthermore, we also remove the

arc (2n+ 1, 0).
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Cut pool

Before starting the algorithm, we include the following inequalities to the assignment

formulation:

� Sub-tour elimination constraints (5.23) for all node sub-sets S such that |S| = 2.

� For each pickup node pair i, j ∈ P , successor inequalities (4.14) after setting

node subset S to {i, j}, {i, n+j} and {i, n+i, j}. Also, predecessor inequalities

(4.13) after setting node subset S to {n+i, n+j}, {i, n+j} and {i, n+i, n+j}.

� For each pickup node pair i, j ∈ P , we add D+
k inequality (4.15) for ordered set

S = {n+ i, j, i, n+ j} and D−k inequality for ordered set S = {i, n+ i, n+ j, j}.

� Handling cost enforcing arc pair inequalities (5.25)-(5.27) for each node pair

i, j ∈ P .

� For each pickup node pair i, j ∈ P , we add Constraints (4.42) after setting

S = {j, k}, for all k ∈ N \ {i, j, n+ i, n+ j, 0, 2n+ 1}.

Warm start

We developed a greedy heuristic to identify a warm start solution for our branch-

and-cut algorithms. The basic idea is to start with an infeasible solution, and remove

and insert nodes repeatedly until we �nd a reasonably good feasible solution. We

discuss more about our heuristic structure in the next section.
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4.3.5 SPDPH warm start heuristic structure

Initial solution

We obtain an initial solution which could be infeasible to SPDPH by implementing

the savings algorithm presented in the seminal paper by Clark and Wright [15]. This

algorithm seeks to �nd vehicle routes for VRP with capacity constraints. We modify

this for a single vehicle problem as shown in Appendix 2.6.

0

i

j

2n+1 0

i

j

2n+1

Figure 4.10: Cost incurred by two routes

The savings algorithm is based on the following premise. Without loss of gener-

ality, assume that multiple vehicles are available at origin depot 0 and our task is

to visit customers i and j. A novice decision might be to visit i and j using two

separate vehicles as shown in Figure 4.10 (left). The total cost for this strategy is

c0i + ci,2n+1 + c0j + cj,2n+1. However, if we choose to travel on arc (i, j) as shown

in Figure 4.10 (right), then the total cost would be c0i + cij + cj,2n+1. So, the sav-

ings sij from combining two customers in a single truck and traveling on arc (i, j) is

ci,2n+1 + c0j − cij (di�erence between the aforementioned route costs). The idea is

to calculate savings for each arc and construct a solution so that the total savings is
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maximized. We obtain our initial solution with the following steps:

1. Calculate savings sij for each arc (i, j) ∈ A such that i, j ∈ P ∪D and arrange

them in a list by descending order.

2. Scan each arc (i, j) in the list starting from the top.

� If i and j are not in any vehicle path, then create a new vehicle path with

i and j as endpoints.

� If i is at one end of a vehicle path and j is not in any vehicle path, then

append j to that endpoint and vice versa.

� If node i or j is in the middle of a vehicle path, then ignore the arc and

move to the next one.

� If i is at one end of a vehicle path and j is at one end of another vehicle

path, then append the two paths together by merging the endpoints (if

necessary, reverse a vehicle path to make the endpoints meet).

3. Repeat step 2 until all pickup and delivery nodes are in a single-vehicle path.

4. Note that the path should start at 0 and end at 2n + 1. So, append 0 to the

beginning of the path and 2n+ 1 to the end of the path.

The initial solution might have precedence violations for some customer requests.

So, it might not be a feasible solution to SPDPH. However, we remove and insert

nodes repeatedly from this initial solution until we obtain a good feasible solution to

SPDPH.
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Removal and insertion of nodes

The removal and insertion procedure is similar to that of SPDPL heuristic discussed

in Section 4.2.6, except for the following di�erences:

� Routes violating LIFO loading/unloading are considered.

� Incumbent route updates are done based on objective value calculation which

includes handling costs.

� A route will be considered for the incumbent update only if it does not violate

precedence for any customer request.

Even though we might start with an infeasible initial solution, the �nal route

after removal and insertion of nodes will be feasible to SPDPH. This is because

the insertion procedure in SPDPL heuristic is performed in such a way that the

pickup node will precede the delivery node for each customer request. Therefore, the

precedence constraints will not be violated for any customer request.
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CHAPTER V

MULTI VEHICLE PROBLEMS

In this chapter, we present our formulations and methodologies for multi-vehicle

problems. As mentioned in Chapter III, we address two problems under the multi-

vehicle category: Pickup-and-Delivery Problem with Time windows and Loading

constraints (MPDPTL) and Pickup-and-Delivery Problem with Time windows and

Handling costs (MPDPTH).

5.1 Notations

We use the same graph structure as mentioned in Section 4.1.1. However, in addition

to the single-vehicle problem notations, we introduce new notations in this chapter.

For readers' convenience, a centralized table for decision variables, set de�nitions,

and other notations has been created (Table 5.1). We refer to this table from the

formulations as per necessity.
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Table 5.1: Notations for MIP models- Multi vehicle

Type Notation De�nition

Set de�-
nitions

K Set of homogeneous (vehicles with same capacity) �eet
of vehicles

Decision
variables

Bk
i Time by which vehicle k ∈ K begins service at node

i ∈ N
f 1k
ijl Equal to 1 if arc (i, j) ∈ A is in the path of vehicle k

from node 0 to node l; 0 otherwise

f 2k
ijl Equal to 1 if arc (i, j) ∈ A is in the path of vehicle k

from node l to node n+ l; 0 otherwise

f 3k
ijl Equal to 1 if arc (i, j) ∈ A is in the path of vehicle k

from node n+ l to node 2n+ 1; 0 otherwise

Qk
i Load on vehicle k ∈ K upon leaving node i ∈ N

ukij Load carried by vehicle k ∈ K on arc (i, j) ∈ A

xkij Equal to 1 if arc (i, j) ∈ A is in the route of vehicle k
and 0 otherwise

zkij Equal to 1 if j ∈ P is picked up between i ∈ P and
n + i ∈ D, and delivered after n + i by vehicle k; 0
otherwise

Time factors ai Earliest time at which service can start at node i ∈ N
bi Latest time at which service can start at node i ∈ N
tij Travel duration on arc (i, j) ∈ A

Other xk(A(S))
∑

i,j∈S x
k
ij for vehicle k ∈ K

xk(i, S)
∑

j∈S x
k
ij for vehicle k ∈ K

xk(S, i)
∑

j∈S x
k
ji for vehicle k ∈ K

For origin depot, a0 and b0 each represents earliest and latest times at which

vehicles can leave respectively. Similarly, a2n+1 and b2n+1 each represents earliest
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and latest time for vehicle arrival at the destination depot respectively. We assume

that q0 = q2n+1 = 0, and qi = −qn+i for each request i ∈ P .

5.2 Multi Vehicle Pickup-and-Delivery Problem with Time Windows

and Handling Costs

In this section, we: (1) Present a compact formulation and a cut-based formula-

tion for MPDPTH which we denote as MPDPTH-C and MPDPTH-E respectively;

(2) Explore a BC algorithm for MPDPTH-E; (3) Explore runtime improvements in-

cluding families of inequalities and a warm start heuristic, which turns out be very

e�cient. The objective of MPDPTH is to �nd minimum cost Hamiltonian path(s)

from origin depot 0 to destination depot 2n+ 1. A feasible solution must satisfy the

following conditions:

� Each node i ∈ P ∪D should be visited exactly once by one vehicle.

� For each customer request, the pickup and delivery must be visited by the same

vehicle.

� The number of routes must not exceed the number of available vehicles.

� For each shipment and vehicle, the pickup node must be visited before the

delivery node.

� Each node can be visited only within the associated time window.

� For each vehicle k ∈ K, the capacity should not exceed Q on any arc.
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� Handling cost must be imposed for additional cargo handling at delivery points

(LIFO violation).

5.2.1 Compact formulation

In this section, we present our compact formulation with a polynomial number of con-

straints for MPDPTH. Our formulation is the multiple vehicle extension of SPDPH

formulation introduced by Veenstra et al. [42].

Decision variables

B, f , Q, x and z variables as de�ned in Table 5.1

Sets

A′ as de�ned in Table 5.1

Formulation 5.2.1 (MPDPTH-C).

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij + h

∑
k∈K

∑
i∈P

∑
j∈P
j 6=i

zkij (5.1)

subject to:∑
k∈K

∑
j:(i,j)∈A

xkij = 1 ∀i ∈ P (5.2)

∑
j:(i,j)∈A

xkij −
∑

j:(n+i,j)∈A

xkn+i,j = 0 ∀i ∈ P, k ∈ K (5.3)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀(i, j) ∈ A,∀k ∈ K (5.4)

max{0, qi} ≤ Qk
i ≤ min{Q,Q+ qi} ∀i ∈ N,∀k ∈ K (5.5)

Bk
j ≥ (Bk

i + tij)x
k
ij ∀(i, j) ∈ A,∀k ∈ K (5.6)

Bk
i + ti,n+i ≤ Bk

n+i ∀i ∈ P, ∀k ∈ K (5.7)
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ai ≤ Bk
i ≤ bi ∀i ∈ N,∀k ∈ K (5.8)

∑
k∈K

∑
j:(i,j)∈A

f 1k
ijl −

∑
k∈K

∑
j:(j,i)∈A

f 1k
jil =


1, if i = 0

−1, if i = l

0, otherwise

∀i ∈ N, l ∈ P (5.9)

∑
k∈K

∑
j:(i,j)∈A′

f 2k
ijl −

∑
k∈K

∑
j:(j,i)∈A′

f 2k
jil =


1, if i = l

−1, if i = n+ l

0, otherwise

∀i ∈ P ∪D, l ∈ P

(5.10)

∑
k∈K

∑
j:(i,j)∈A

f 3k
ijl −

∑
k∈K

∑
j:(j,i)∈A

f 3k
jil =


1, if i = n+ l

−1, if i = 2n+ 1

0, otherwise

∀i ∈ N, l ∈ P (5.11)

nxkij ≥
∑
l∈P

f 1k
ijl +

∑
l∈P

f 3k
ijl ∀(i, j) ∈ A \ A′, k ∈ K (5.12)

nxkij ≥
∑
l∈P

f 1k
ijl +

∑
l∈P

f 2k
ijl +

∑
l∈P

f 3k
ijl ∀(i, j) ∈ A′, k ∈ K (5.13)

zkij ≥
∑

l:(l,j)∈A′

f 2k
l,j,i −

∑
l:(n+j,l)∈A′

f 2k
n+j,l,i ∀i, j ∈ P, i 6= j, k ∈ K (5.14)

f 1k
ijl , f

3k
ijl ∈ {0, 1} ∀(i, j) ∈ A, l ∈ P, k ∈ K (5.15)

f 2k
ijl ∈ {0, 1} ∀(i, j) ∈ A′, l ∈ P, k ∈ K (5.16)

xkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (5.17)

zkij ∈ {0, 1} ∀i, j ∈ P, i 6= j, k ∈ K (5.18)
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Objective function and constraints

The objective function seeks to minimize the total transportation and handling

cost. Constraints (5.2) ensure that each customer request is served by exactly one

vehicle. Constraints (5.3) ensure that the pickup and delivery for each customer

request is serviced by the same vehicle. Constraints (5.4) and (5.5) satisfy capacity

restrictions for all vehicles. Constraints (5.6) and (5.8) satisfy time window restric-

tions for each node. Precedence requirement that the pickup node has to be visited

before the delivery node for each customer request is enforced by Constraints (5.7).

Constraints (5.9) ensure a path from origin depot 0 to each pickup node. Constraints

(5.10) ensure a path from pickup node to delivery node for each customer request.

Constraints (5.11) ensure a path from each delivery node to destination depot 2n+1.

Constraints (5.12) and (5.13) link �ow variables with arc variables for each vehicle.

Constraints (5.14) enforce a handling cost for vehicle k ∈ K, if node j ∈ P is in the

route between i and n+i, and n+j is not in the route between i and n+i. Note that

Constraints (5.4) and (5.6) are non-linear. However, we can linearize the product of

two variables using some standard linearization techniques as presented in Appendix

A, but with an additional index for each load and arc variable corresponding to ve-

hicle k ∈ K. Except for Constraints (5.9) - (5.16), remainder of the formulation was

proposed by Ropke et al. [36] for PDP with time windows. We introduce Constraints

(5.9) - (5.16) as the multiple vehicle extension of PDTSPH formulation introduced

by Veenstra et al. [42].
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5.2.2 Cut-based formulation

In this section, we present our cut-based formulation with an exponential number of

constraints. We remove the �ow variables (f) from Formulation MPDPTH-C for our

cut-based formulation and replace them with an exponential number of constraints.

Formulation 5.2.2 (MPDPTH-E).

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij + h

∑
k∈K

∑
i∈P

∑
j∈P
j 6=i

zkij (5.19)

subject to:

Constraints (5.2) - (5.8), (5.17) and (5.18) from Formulation MPDPTH-C

∑
j:(0,j)∈A

xk0j = 1 ∀k ∈ K (5.20)

∑
j:(j,i)∈A

xkji −
∑

j:(i,j)∈A

xkij = 0 ∀i ∈ P ∪D, k ∈ K (5.21)

∑
j:(j,2n+1)∈A

xkj,2n+1 = 1 ∀k ∈ K (5.22)

xk(A(S)) ≤ |S| − 1 ∀S ⊆ P ∪D, 2 ≤ |S| ≤ |N |, k ∈ K (5.23)

zkij ≥
[
xk(i, S) + xk(A(S)) + xk(S, n+ i)

]
− |S| ∀S ∈ Υj,∀k ∈ K, ∀i, n+ i /∈ S,∀i, j ∈ P

(5.24)

Constraints (5.23) are the well-known Dantzig-Fulkerson-Johnson (DFJ) sub-tour

elimination constraints for each vehicle k ∈ K. LIFO violations are penalized with

handling cost h with Constraints (5.24). These constraints are the multi-vehicle
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version of the SPDPH handling cost constraints from Formulation 4.3.3, which in

turn were obtained by penalizing LIFO constraints presented by Cordeau et al. [18].

5.2.3 Families of inequalities

In this section, we present the inequalities that we used in our implementations for

reducing the runtime.

Multi Vehicle handling cost enforcing arc pair inequalities

We introduce a new family of inequalities which is the multi vehicle variation of the

handling cost enforcing arc pair inequalities for SPDPH introduced in Section 4.3.3.

For each pickup node pair i, j ∈ P , handling cost has to enforced for vehicle k ∈ K,

if at least two of the following three arcs are on the vehicle path: (i, j), (j, n+ i) and

(n + i, n + j). This means that j is between i and n + i, and n + j is not between

i and n + i on the path of vehicle k. With that notion, we present the following

inequalities for each pickup node pair i, j ∈ P and vehicle k ∈ K.

zkij ≥ xkij + xkj,n+i − 1 (5.25)

zkij ≥ xkj,n+i + xkn+i,n+j − 1 (5.26)

zkij ≥ xkij + xkn+i,n+j − 1 (5.27)

The proof of validity of these inequalities for SPDPH is the same as the proof

presented in Section 4.3.3, but with one additional index on variables for vehicle k.
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Symmetry breaking inequalities

In multi-vehicle routing problem with a homogeneous �eet, there is a symmetry issue

that could increase the runtime. The route assigned to a vehicle can be swapped

with any other vehicle in the �eet. So, there are |K|! options to swap the routes

assigned to a vehicle in the �eet. For example, customer requests i, j ∈ P being

assigned to vehicle k ∈ K is equivalent to |K| − 1 other solutions in which the same

customer requests are assigned to other vehicles in the �eet. This could increase

the runtime of our implementation due to search in a space of equivalent solutions.

Sherali and Smith [39] discussed how such symmetry issues could increase the runtime

in branch-and-bound implementations. Coelho et al. [16] and Adulyasak et al. [1]

presented symmetry breaking inequalities for homogeneous �eet assignment in Multi-

Vehicle Inventory Routing Problem (MVIRP) where vehicle routing and inventory

management are solved as a single model. We use the following inequalities which

are similar to their symmetry breaking inequalities. We assume that the vehicles are

indexed from 1 to |K| and use the following inequalities for each customer request

i ∈ P .

min(i,|K|)∑
k=1

2n∑
j=0

xkji = 1 (5.28)

Let us consider customer request 1 as an example for which the inequality is∑2n
j=0 x

1
j1 = 1. We eliminate the complexity of request 1 being assigned to k − 1

other vehicles by assigning that request to vehicle 1. Similarly, request 2 can be

assigned to vehicle 1 or 2 by the inequality
∑2n

j=0 x
1
j2 +

∑2n
j=0 x

2
j2 = 1. Therefore, we
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eliminate the complexity of request 2 being assigned to k−2 other vehicles. Similarly,

inequalities (5.28) assign a customer request i ∈ P to a vehicle only if the vehicle

index k is smaller than or equal to i. By doing this, we eliminate the complexity of

assigning request i to vehicles with k > i. If i ≥ |K|, then request i is assigned to

one of the vehicles in the �eet without any restriction.

5.2.4 Preprocessing

We rearrange the customer requests before building the model such that the geo-

graphically proximal pickup locations are listed far from each other. We do this to

maximize the potential of symmetry breaking inequalities. As Figure 5.1 illustrates,

arranging the customer requests such that proximal pickup locations are listed to

each other could reduce the potential of symmetry breaking and cluster consecutive

pickup locations in a single vehicle. This preprocessing technique turned out to be

very e�ective when used in tandem with symmetry breaking inequalities.

a cba

b

c

Vehicle 1

Vehicle 2

Vehicle 3

Pickup locations a, b and c are close to each
other, and has a high chance of being assigned

to a same vehicle

a

v

u

a

u

v

Vehicle 1

Vehicle 2

Vehicle 3

Pickup locations a, u and v are located
 farther from each other,and has a high chance of

being assigned to different vehicles

Figure 5.1: Preprocessing illustration
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5.2.5 Warm start heuristic

In this section, we present a warm start heuristic that we implemented in our mod-

els for identifying a good starting solution. The heuristic has �ve stages: savings

calculation, vehicle assignments, route generation, feasibility check, and cost update.

Except for the �rst step, the remaining steps are iterative. In the vehicle assignment

step, we assign customer requests to vehicles such that the cost savings calculated

in the �rst step are maximized. In route generation, we explore di�erent possible

routes based on assignments done in the previous step. In feasibility check, we check

for vehicle capacity and time window violations in the routes. Finally, in the cost

update step, the route with the minimum cost is selected. We explain each stage in

detail below.

Savings calculation

The objective of this step is to group customer requests based on savings opportu-

nities. The savings calculation is based on the savings algorithm proposed in the

seminal paper by Clark and Wright [15] for VRP. We modify their algorithm for the

savings calculation step in our warm start. Let us consider two customer requests

i, j ∈ P for an example. All possible paths for routing these two requests are shown

in Figure 5.2.

Route r1 is a novice choice where both requests are routed using two separate

vehicles. There might be a savings opportunity by routing them together using a

single vehicle. Routes r2 to r7 are all possible options to route the two requests on a

single vehicle. Let ck be the cost of the route rk. The savings we obtain by routing
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i n+i

j n+j

0 2n+1

r1

i n+i

j n+j

0 2n+1

r2

i n+i

j n+j

0 2n+1

r3

i n+i

j n+j

0 2n+1

r4

i n+i

j n+j

0 2n+1

r5

i n+i

j n+j

0 2n+1

r6

i n+i

j n+j

0 2n+1

r7

Figure 5.2: All possible routes for i, j ∈ P

requests i and j on a single vehicle is sij = c1 −min(c2, c3, c4, c5, c6, c7). Notice that

routes r2 to r5 are LIFO enforced routes, whereas r6 and r7 have LIFO violations.

So, their route costs include transportation and handling costs. As a result, we

capture the trade-o� between enforcing LIFO and allowing handling costs for each

customer request pair in the savings. Similarly, we calculate savings sij for each

customer request pair i, j ∈ P . After that, we arrange the customer request pairs in

descending order based on the savings value and create a savings list. This savings

list ranks the customer requests which are most bene�cial to be paired together on

a route. The intuition behind our heuristic is to iteratively visit the entries in the

savings list and generating routes such that the total savings are maximized.
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Vehicle assignment

Consider an iteration with a customer request pair i, j ∈ P from the savings list (note

that each entry in the savings list is a customer request pair). One of the following

scenarios is possible.

� Requests i and j are already assigned to vehicles, in which case we move to the

next entry in the savings list (next pair of customer requests).

� Requests i and j are not on any vehicle route, in which case we assign i and j

to vehicle k.

� Request i is already assigned to vehicle k, in which case we assign j to vehicle

k. Similarly, if j is already assigned to vehicle k, then we assign i to vehicle k.

Route generation

After assigning customer requests to vehicles, we generate routes based on the latest

vehicle assignment from the previous step. This step is similar to node removal and

insertion procedure in SPDPH warm start heuristic proposed in Section 4.3.5. Let

us consider requests i, j, and l ∈ P that have been assigned to vehicle k. We create a

route i→ n+ i→ j → n+ j → l→ n+ l. After that, we remove pickup and delivery

nodes for customer request i (i and n+ i) from the path. We know i always precedes

n+ i in the route due to precedence requirement. So, we iteratively generate routes

by holding other nodes in their positions, and inserting i and n + i in all possible

positions such that precedence is not violated for request i. We show some of the

route generation steps with removal and insertion of i and n+ i nodes in Figure 5.3.

77



0 2n+1i j n+jn+iInitial solution:

Itr 1:

Itr 2:

Itr 3:

l n+l

0 2n+1i n+i n+jj l n+l

0 2n+1i n+j n+ij l n+l

0 2n+1i n+j lj n+i n+l

Itr 4: 0 2n+1i n+j lj n+l n+i

Itr 5: 0 2n+1j n+i n+ji l n+l

Itr 6: 0 2n+1j n+j n+ii l n+l

Figure 5.3: Some iterations in the route generation procedure

After that, we repeat the same steps for customer requests j (remove and insert j

and n + j iteratively) and l (remove and insert l and n + l iteratively). For each

route, we check route feasibility and incumbent cost update before �nalizing a route

and moving forward to the next iteration.

Feasibility check and cost update

After generating a route, we check it for capacity and time window violations to

check feasibility. If a route passes the feasibility tests, then we calculate the objective

function for that route. If the route objective value is cheaper than the objective of

previous routes, then we update the incumbent cost value in the cost update step.

However, if the objective value is not cheaper, then we generate the next route and

repeat the feasibility check and cost update.
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Let uk and vk be the dynamic time and capacity labels on the route of vehicle k.

Initially, we set uk = vk = 0, and we increment the labels as we scan through the

route, and checking for violations after visiting each node in the route. For example,

while scanning the arc (i, j) ∈ A, the labels are updated as follows: uk = uk + tij and

vk = vk + qj. We do not consider the route for incumbent cost update, if uk > bj or

vk > Q. This is because these conditions mean capacity or time window violations

in the route. If the route passes the feasibility checks and the route cost is cheaper

than other routes for the same vehicle assignment set, then the best route cost is

updated. However, it is possible for all the routes for a vehicle assignment to fail the

feasibility checks. In that case, the latest vehicle assignment is undone, and we move

to the next entry in the savings list.

5.2.6 Branch-and-cut algorithm for MPDPTH-E

In our Formulation MPDPTH-E, there are exponential number of sub-tour elimi-

nation Constraints (5.23) and handling cost Constraints (5.24). So, a direct im-

plementation of MPDPTH-E in a commercial solver is computationally expensive.

Therefore, we present a BC algorithm with integral separation procedures in this

paper for MPDPTH-E implementation. We relax Constraints (5.23) and (5.24) in

MPDPTH-E and denote the new formulation as Master Relaxation Problem (MRP ).

Our algorithm is initiated by �nding an integral solution feasible toMRP . Therefore,

the resulting solution might have subtours and LIFO violations with zero handling

costs. So, we implement separation procedures which are used to identify the node

sets that violate Constraints (5.23) and (5.24). Our BC algorithm structure and
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separation procedures are similar to our SPDPH approach. The following are our

separation problems.

Separation Problem 1 (SP1)- To identify subtours

Input: A directed graph G = (N,A) as described in Section 4.1.1, and a vector Xk

for a vehicle k ∈ K containing binary values xkij ∀(i, j) ∈ A which are feasible to

MRP.

Problem: To identify a node set S, such that S ⊆ P ∪ D, 2 ≤ |S| ≤ N and∑
i,j∈S x

k
ij > |S| − 1, or determine that no such set exists.

We can solve SP1 with a simple graph traversal from 0 to 2n+ 1. The procedure

and complexity are presented in Section 4.2.4. If subtours are identi�ed, then we

add inequalities (5.23) as lazy cuts.

Separation Problem 2 (SP2) - To identify LIFO violations and add HC

Input: A directed graph G = (N,A) as described in Section 4.1.1, a solution vector

(B,Q,X,Z) feasible to MRP, such that B is the vector containing continuous values

Bk
i ∀i ∈ N, k ∈ K, Q is the vector containing continuous values Qk

i ∀i ∈ N, k ∈ K,

X is the arc variable vector containing binary values xkij ∀(i, j) ∈ A, k ∈ K and Z is

the LIFO violation vector containing binary values zkij ∀i, j ∈ P, k ∈ K.

Problem: For each node pair i, j ∈ P and k ∈ K, identify a node set S ∈ Υj, such

that i /∈ S, n+i /∈ S, j ∈ S, n+j /∈ S,
[∑

u∈S x
k
iu+

∑
u,v∈S x

k
uv+

∑
u∈S x

k
u,n+i

]
−|S| >

zkij or determine that no such set exists.

We solve SP2 with a simple graph traversal from 0 to 2n + 1 for each vehicle
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Solve MRP in a
BB framework

A fractional solution
feasible to relaxed

problem

A fractional solution
infeasible to relaxed

problem

BB Nodes

Prune by infeasibility

SP1 (Subtour)
O(n2) for each

vehicle

Continue branching

Separation
by graph traversal

An integral solution
infeasible to the
original problem

Subtours

Yes

An integral solution
feasible to original

problem

Update incumbent
accordingly

No

LIFO
violations &

no HC SP2 (Handling cost)
O(n2) for each

vehicle

Separation
by graph traversal

Yes

No

Figure 5.4: BC algorithm structure MPDPTH-E

k ∈ K, and indexing the node positions on the path based on their order of visits.

The procedure and complexity are presented in Section 4.2.4. If LIFO violations are

identi�ed, then we add inequality (5.24) as a lazy cut.

BC algorithm structure

The structure of our BC algorithm is shown in Figure 5.4. We start by solving

MRP in a Branch-and-Bound framework. If a BB node corresponds to a fractional

solution, then we handle them in a traditional BB approach. If the fractional solution

is infeasible to the MRP, then we prune the BB node by infeasibility. On the other

hand, if the fractional solution is feasible to MRP, then we continue branching. If a

BB node contains an integral solution feasible to the original formulation, then we

update the incumbent accordingly. However, if we have an integral solution infeasible

to the original problem, then we solve the separation problems to identify subtours
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and LIFO violations for each vehicle route. After that, we add inequalities (5.23)

and (5.24) as lazy cuts.

5.3 Multi Vehicle Pickup-and-Delivery Problem with Time Windows

and Loading Constraints

In this section, we: (1) Present two formulations with exponentially many constraints

for MPDPTL; (2) Explore BC algorithms for the two formulations; (4) Explore

runtime improvements including families of inequalities and a warm start heuristic.

Similar to MPDPTH, the objective of MPDPTL is to �nd minimum cost Hamiltonian

path(s) from origin depot 0 to destination depot 2n + 1. However, LIFO violations

are not permitted. So, a delivery location can be visited only if the corresponding

shipment is at the access end of the vehicle.

5.3.1 Formulation MPDPTL1

Decision variables

B, Q, u and x variables as de�ned in Table 5.1

Formulation 5.3.1.

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (5.29)

subject to:

Constraints (5.2)-(5.8) and (5.17) from Formulation 5.2.1
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Constraints (5.20)-(5.23) from Formulation 5.2.2∑
k∈K

Qk
n+i =

∑
k∈K

Qk
i − qi ∀i ∈ P (5.30)

Objective function and constraints

The objective function seeks to minimize the total transportation cost. Except

for LIFO Constraints (5.30), the remainder of the formulation is similar to PDP

with time windows formulation proposed by Ropke et al. [36]. Those constraints are

explained in Formulations 5.2.1 and 5.2.2. LIFO constraints (5.30) were designed

based on a nice property of SPDPL solution presented by Cordeau et al. [18] for

single vehicle problems. This property is explained in the proposition below.

Proposition 2 (Cordeau et al. [18]). The net amount delivered between each pair

i ∈ P , n+ i ∈ D is equal to 0 for a SPDPL solution

This proposition is based on the following observation. Consider two customer

requests: (pickup at i and delivery at n+ i) and (pickup at j and delivery at n+ j).

Figure 5.5 shows a route respecting LIFO loading order. For both customer requests,

the vehicle weight entering the pickup node is equal to the vehicle weight leaving the

corresponding delivery node. For instance, the total weight entering pickup node i

is 135 lbs, which is equal to the total weight leaving the corresponding delivery node

n+ i.
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i j

n+jn+i

135
Lbs

135
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135
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105
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Figure 5.5: An illustration of LIFO loading property

BC algorithm for MPDPTL1

There are exponentially many subtour elimination constraints in MPDPTL1. So,

we implement it using a BC algorithm. The algorithm structure is similar to the

MPDPTH BC algorithm presented in Section 5.2.6. However, we do not solve the

handling cost separation problem (SP2) because it is handled by Constraints (5.30).

5.3.2 Formulation MPDPTL2

Decision variables

B, Q, u and x variables as de�ned in Table 5.1

Formulation 5.3.2.

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (5.31)

subject to:

Constraints (5.2)-(5.8) and (5.17) from Formulation 5.2.1
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Constraints (5.20)-(5.23) from Formulation 5.2.2

xk(i, S) + xk(A(S)) + xk(S, n+ i) ≤ |S| ∀S ∈ Υj,∀k ∈ K, ∀i, n+ i /∈ S,∀i, j ∈ P

(5.32)
Objective function and constraints

The objective function seeks to minimize the total transportation cost. Except

for LIFO Constraints (5.32), the remaining constraints are explained in Formulations

5.2.1 and 5.2.2. LIFO Constraints (5.32) were introduced by Cherkesly et al. [14] for

multi-vehicle PDP with time windows and LIFO , which in turn is the multi-vehicle

extension of LIFO constraints introduced by Cordeau et al. [18] for SPDPL.

BC algorithm for MPDPTL2

There are exponentially many subtour elimination and LIFO constraints in MPDPTL2.

So, we implement it using a BC algorithm whose structure is similar to the MPDPTH

BC algorithm presented in Section 5.2.6. However, we add Constraints (5.32) as lazy

cuts after solving SP2 because we do not permit LIFO violation in MPDPTL.

Other runtime improvements

We add symmetry breaking inequalities (Section 5.2.3) to enhance the computational

scalability of our MPDPTL implementations. We also use a warm start heuristic to

provide a starting solution for our MPDPTL algorithms. The structure of this warm

start heuristic is the same as the MPDPTH algorithm discussed in Section 5.2.5 with

one small modi�cation. We reject LIFO violating solutions in the route generation

step of the heuristic.
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CHAPTER VI

COMPUTATIONAL RESULTS

In this chapter, we present the computational results for the problems that we address

in this dissertation.

6.1 Single Vehicle Pickup-and-Delivery Problem with Loading

Constraints

In this section, we present our experimental set-up, test-bed details, and computa-

tional results for SPDPL methodologies.

SPDPL test-bed details: SPDPL solution approaches were tested on instances

from Carrabs et al. [11]. They solved SPDPL using a variable neighborhood heuris-

tics. This test-bed has 32 instances ranging from 9 to 21 shipment orders. The

instances were posted for public access by Chair in Logistics and Transportation

research program, HEC Montréal business school [13].

SPDPL implementation details: The SPDPL solution approaches were imple-

mented using C++ and GurobiTM 7.5.2 on dual Intel® Xeon E5-2620 Sandy Bridge

hex core 2.0 GHz CPU, with 32 GB RAM. A time limit of 2 hours was imposed in

all instances.
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Remarks on computational results

Table 6.1 compares the performance of our branch-and-cut algorithm with integral

separation procedures (SPDPL-I) against branch-and-cut algorithm with fractional

separation procedures (SPDPL-F) by Cordeau et al. [18] on 16 small instances.

Column header n denotes the number of customer requests. UB denotes the best

upper bound on the objective function value identi�ed by us. We have also reported

the integrality %gap
(
|UB|−|LB|
|UB|

)
between the upper and lower bound of objective

value. For instances that were not solved to optimality within the time limit, the

%gap at the end of 2 hours has been reported. We have indicated the algorithm with

shorter runtime and smaller %gaps in bold font. The number of Branch-and-Bound

nodes (#BB nodes) has been reported for both approaches. The table also shows

the number of separation problems solved for sub-tour elimination (SEC), precedence

(PRE), and Last-In-First-Out (LIFO) constraints.

Some remarks from the Table 6.1 are as follows:

� SPDPL-I solved 14 out of 16 instances to optimality within the time limit,

whereas SPDPL-F solved 12 out of 16 instances to optimality within the time

limit.

� SPDPL-I and SPDPL-F timed out in two and four instances respectively. For

those instances, SPDPL-I terminated with a smaller %gap than SPDPL-F

(brd14015 and nrw1379 with n = 13).

� Except for att532, d15112, and fnl4461 with n = 9, SPDPL-I has a higher

number of BB nodes on all instances.
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� For SPDPL-I, the number of LIFO enforcing cuts are higher than sub-tour

elimination and precedence enforcing cuts for around 88% of instances.

From Table 6.1 results in small instances, our branch-and-cut algorithm with

integral separation procedures (SPDPL-I) is the clear winner. With this observation,

we implemented SPDPL-I on larger test instances to measure its scalability. SPDPL-

I performance on 16 large instances with 17 and 21 customer requests is shown in

Table 6.2.

Table 6.2: SPDPL-I computational results on large instances

Upper Time #BB #Separation problems

Instance n bound (secs) Gap Nodes SEC PRE LIFO

att532 17 6,365 >7,200 4% 550,584 1,470 4,329 3,644
brd14051 11,650 >7,200 63% 96,273 3,216 8,074 -
d15112 138,157 >7,200 29% 365,121 4,042 6,615 7,680
d18512 6,617 >7,200 31% 281,929 3,677 7,836 4,802
fnl4461 3,926 >7,200 37% 383,003 3,808 6,379 12,500
nrw1379 5,760 >7,200 48% 269,617 3,753 8,848 2,418
pr1002 17,564 24 0% 654 60 9 58
ts225 36,703 142.7 0% 6,096 58 23 182

att532 21 13,067 >7,200 27% 193,083 4,091 10,253 758
brd14051 9,209 >7,200 51% 226,327 3,680 8,691 804
d15112 154,535 >7,200 35% 253,111 4,149 7,739 1,422
d18512 7,693 >7,200 39% 203,327 3,652 7,677 1,284
fnl4461 4,385 >7,200 37% 323,094 3,690 5,721 9,890
nrw1379 8,364 >7,200 61% 175,334 3,865 12,364 322
pr1002 20,173 105.2 0% 3,713 164 34 144
ts225 43,082 255.2 0 97,156 867 1,099 8,298

Some remarks from the Table 6.2 are as follows:

� Across all instances (from Tables 6.1 and 6.2), around 57% of instances were
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solved to optimality within the 2-hour time limit by SPDPL-I.

� All timed-out instances terminated with a reasonable upper bound on objective

function due to a decent warm start. For instances with 17 requests, brd14051

terminated without solving any LIFO violation separation problem. So, the

upper bound for that instance is completely due to the warm start heuristic.

� The number of precedence cuts are higher than other cuts for large timed-

out instances (9 out of 16). Since our separation procedures are nested, the

solver expended more time on the precedence stage before proceeding to LIFO

violation separation problems.

In summary, SPDPL-I (branch-and-cut algorithm introduced in this dissertation)

outperforms SPDPL-F (branch-and-cut algorithm by Cordeau et al. [18]) on our

test-bed. However, our approach expends more time on separation problems for

precedence enforcement in large instances. Our runtime can probably be improved

by focusing on some heuristic separation procedures for precedence enforcement.

6.2 Single Vehicle Pickup-and-Delivery Problem with Handling Costs

In this section, we present our experimental set-up, test-bed details, and computa-

tional results of SPDPH methodologies.

SPDPH test-bed details: We implement our SPDPH algorithms on the same

testbed as SPDPL. For handling costs, we use the values proposed by Veenstra et al.

[42]. All customer requests will be forced to respect LIFO with very high handling
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cost values. With that observation, Veenstra et al. [42] presented two di�erent

handling costs for each instance from Carrabs et al. [11] such that LIFO violations

will be permitted. We explore 60 instances ranging from 9 to 25 shipments, with

handling costs ranging from $1 to $1000.

SPDPH implementation details: Single vehicle algorithms were implemented

using C++ and GurobiTM 8.1.1 on Intel® Xeon W3670 3.20 GHz CPU, with 8 GB

RAM and Windows® 7 Professional operating system. A time limit of 2 hours was

imposed on all instances.

Remarks on computational results

Table 6.3 shows the performance of formulation introduced by Veenstra et al. [42]

(SPDPH1), our compact formulation (SPDPH2) and our branch-and-cut algorithms

with fractional (SPDPH3-F) and integral separation procedures (SPDPH3-I) in 32

instances.

Some remarks from Table 6.3 are as follows:

� From the runtime results, SPDPH3-I outperformed SPDPH1, SPDPH2 and

SPDPH3-F on 22 out of 32 instances.

� Comparing the root node relaxation of compact formulations, SPDPH1 is the

clear winner across all instances with tighter root node relaxations.

� A noticeable issue with our branch-and-cut algorithm, when compared against

SPDPH1, is the higher number of BB nodes across all instances.
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� SPDPH1 and SPDPH3-I solved 27 out of 32 instances to optimality within

the 2-hour time limit. However, SPDPH2 and SPDPH3-F timed out on 10 in-

stances each. The %gap
(
|UB|−|LB|
|UB|

)
for those timed out instances are provided

in the runtime results within parenthesis.

� SPDPH3-F has exhibited the longest runtime for 20 out of 32 instances. Whereas,

SPDPH2 has the highest number of BB nodes for 28 out of 32 instances.

� SPDPH1 has the lowest number of BB nodes for 24 out of 32 instances. Fur-

thermore, SPDPH1 was able to solve 15 instances with just 1 BB node.

From our computational results, SPDPH1 and SPDPH3-I were identi�ed as the

top-performing approaches. Table 6.4 shows the impact of the problem size on these

approaches, with an overview of the termination status in four instance groups based

on the number of customer requests (n). The status results for both approaches are

identical in instances with 9 or 13 requests. Speci�c runtime details for these small

instances are shown in Table 6.5. For instances with 17 requests, SPDPH1 solved 25%

of instances to optimality within the 2-hour time limit, whereas SPDPH3-I solved

37.5% of instances to optimality. Similarly, SPDPH3-I solved more instances to

optimality than SPDPH1 for instances with 17 or 21 customer requests. Furthermore,

SPDPH3-I outperformed SPDPH1 by the runtime in all optimally solved instances

with 17 or 21 customer requests. More importantly, SPDPH1 terminated with an

out-of-memory status without a lower bound in 25% and 75% instances with n = 17

and 21, respectively, whereas SPDPH3-I never terminated with that status in any

instance. SPDPH3-I solved those instances either within or beyond the 2-hour time
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limit. For those timed-out instances, SPDPH3-I still managed to obtain reasonable

integrality gaps as shown in Table 6.6. Therefore, SPDPH3-I is the clear winner in

large instances. Since SPDPH1 terminated with an out-of-memory status in many

large instances, we only present the performance of SPDPH3-I in large instances in

Table 6.6.

Table 6.4: Percentage breakdown of termination status for top two approaches

Status
n = 9 (16 instances) n = 13 (16 instances) n = 17 (16 instances) n = 21 (16 instances)

SPDPH1 SPDPH3-I SPDPH1 SPDPH3-I SPDPH1 SPDPH3-I SPDPH1 SPDPH3-I

Optimal 100% 100% 68.8% 68.8% 25% 37.5% 12.5% 18.8%
Timed-out 0% 0% 31.2% 31.2% 50% 62.5% 12.5% 81.2%
Out-of-memory 0% 0% 0% 0% 25% 0% 75% 0%

Table 6.5 shows the performance of SPDPH1 and SPDPH3-I in 32 small instances

comprising of 9 or 13 shipment requests. This table shows the number of LIFO vio-

lations and the best upper bound of the solution, root node relaxation for SPDPH1,

runtime, integrality gap between the best Upper Bound (UB) and the best Lower

Bound (LB), the number of BB nodes, and the number of separation problems in

SPDPH3-I corresponding to subtour elimination (SEC), precedence (PRE) and han-

dling cost (HC) enforcements. From the runtime results, SPDPH3-I outperformed

SPDPH1 in 69% of instances (22 instances). Among them, both approaches timed-

out in 5 instances, namely brd14051, d15112, and nrw1379. However, SPDPH3-I

terminated with smaller integrality gap for those instances. For the optimally re-

solved instances where SPDPH3-I was faster than SPDPH1, the average runtime

improvement was around 57%. For 31% of instances in which SPDPH1 runtime was

smaller than SPDPH3-I, the number of handling cost separation problems (SP3) is

higher than other problems on average. This indicates that the solver spent more
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time in identifying the LIFO violations for those instances.

A noticeable issue of SPDPH3-I, when compared with SPDPH1, is the higher

number of BB nodes across all instances. Especially the numbers of BB nodes for

timed-out instances brd14051, d15112, and nrw1379 are very high, which indicates a

hard e�ort by the solver. In contrast, SPDPH1 solved 15 instances including d18512,

fnl4461, pr1002, and ts225 with just one BB node. This is because SPDPH1 exhibits

tight root node relaxation values.

Table 6.6 shows the performance of SPDPH3-I in 32 large instances comprising

of 17 or 21 shipment requests. In this table, only 28.1% of instances were solved to

optimality within the 2-hour time limit. However, the integrality gaps of SPDPH3-I

in the timed-out instances at the end of the run were within reasonable levels. This

was primarily due to the decent warm start because we noticed that many of the

large timed-out instances terminated without an upper bound if a warm start was

not included. The performance of SPDPH3-I in fnl4461, pr1002 and ts225 is better

than in other instances with the same number of customer requests. Especially

for pr1002 and ts225, the short runtime can be attributed to the low numbers of

separation problems and BB nodes. Comparing the number of separation problems

in large instances, PRE is higher than SEC and HC on average. Therefore, more

focus should be directed towards the precedence constraints for further reduction in

the runtime.

The worst performing instances for our implementation are brd14051, nrw1379,

and d18512. After a close inspection of their solution structures, we identi�ed the

pathological characteristics of our SPDPH3-I algorithm. To understand these char-
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Table 6.6: SPDPH3 computational results

Handling #LIFO Upper Time #BB #Separation problems

Instance n cost Violations bound (secs) Gap Nodes SEC PRE HC

att532 17 10 22 5,514 111.8 0% 8,102 108 27 145
50 10 6,047 >7,200 6% 1,139,290 338 574 857

brd14051 17 10 22 5,418 >7,200 21% 46,319 1,299 5,547 19
50 6 5,673 >7,200 24% 31,193 1,306 5,882 5

d15112 17 500 11 126,534 >7,200 25% 150,125 744 1,653 5,919
1,000 11 132,034 >7,200 28% 120,967 823 1,818 3,997

d18512 17 1 21 4,674 >7,200 5% 1,118,090 184 3,412 111
10 12 4,812 >7,200 6% 247,356 579 3,727 802

fnl4461 17 1 34 2,311 86.5 0% 62 22 15 158
10 14 2,593 >7,200 5% 801,272 131 278 1,751

nrw1379 17 10 15 3,572 >7,200 17% 171,787 979 5,363 627
50 26 4,015 >7,200 7% 116,871 1,699 6,588 1,981

pr1002 17 50 7 17,138 52.9 0% 550 42 72 19
100 1 17,386 66.6 0% 1,761 42 60 26

ts225 17 500 2 35,703 95.3 0% 5,483 83 13 73
1,000 0 36,703 145.3 0% 20,415 89 35 73

att532 21 10 21 9,836 >7,200 5% 398,513 446 2,538 265
50 16 10,485 >7,200 11% 92,307 2,025 8,225 1,675

brd14051 21 10 17 6,420 >7,200 30% 82,293 1,920 7,559 135
50 4 6,811 >7,200 34% 92,982 1,994 6,430 1,178

d15112 21 500 20 137,894 >7,200 30% 85,145 1,566 3,931 4,045
1,000 16 146,491 >7,200 34% 104,925 1,175 2,393 746

d18512 21 1 40 6,371 >7,200 29% 195,211 766 4,139 383
10 19 6,602 >7,200 30% 143,500 814 3,081 286

fnl4461 21 1 50 2,595 603.9 0% 9,480 53 107 1,002
10 30 2,899 >7,200 9% 229,498 479 1,245 3,119

nrw1379 21 10 19 4,162 >7,200 24% 65,809 1,817 8,965 95
50 5 4,607 >7,200 31% 63,859 2,157 10,195 -

pr1002 21 50 8 19,665 163.7 0% 2,380 84 203 53
100 2 19,963 164.3 0% 6,426 66 37 34

ts225 21 500 4 45,541 >7,200 11% 303,590 216 518 1,097
1,000 1 43,082 >7,200 3% 290,470 376 557 1,669

acteristics it is necessary to understand LIFO enforced route structures. So, we

discuss the two types of LIFO route structures before presenting the pathological

characteristics. Figure 6.1(a) shows a sequential structure in which the pickup nodes

of some customer requests are close to their delivery nodes in the solution sequence.
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i k n+kn+i j n+j

i n+j n+ij k n+k

(a) Sequential structure

(b) Nested structure

Figure 6.1: Two types of LIFO route structures

On the other hand, Figure 6.1(b) shows a nested structure in which the pickup nodes

of some customer requests are located far away from their delivery nodes in the so-

lution sequence. For example, node i ∈ P is located far away from n+ i ∈ D in the

solution sequence. Instances with a solution containing nested structure for customer

requests a�ect our SPDPH3-I implementation negatively. For example, the feasible

solutions of brd14051 had nested structure for many customer requests. In the solu-

tions for these instances, many nodes were in the vehicle route between the pickup

and the delivery nodes of other customer requests. This prompted the addition of

a large number of precedence and handling cost lazy cuts. In contrast, pr1002 and

ts225 results do not have a nested structure for most of the customer requests. The

pickup and delivery nodes for those instances were close to each other in the solution

sequence, which prompted less e�ort for precedence and handling cost enforcement.
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6.3 Multi Vehicle Pickup-and-Delivery Problem with Time Windows

and Handling Cost

In this section, we present our experimental set-up, test-bed details and computa-

tional results of our MPDPTH methodologies.

MPDPTH test-bed details: We implemented our algorithms in real-world in-

stances procured from a logistics company for 10 days. We tested our algorithm

performance on 50 instances, each with 9, 13, 17, 21, or 25 customer requests of the

same commodity class. All shipments were delivered using LTL trucks. The maxi-

mum on-road time for the driver was set as 35 hours. This time was set considering

that there were some cross-country shipments with 55 hours delivery deadline and

the maximum consecutive hours a truck driver can work is up to 11 hours after which

an o�-duty time of 10 hours is recommended [28]. The vehicle capacity was set to

20,000 lbs per truck. All commodities in the customer requests fall under the same

LTL weight class category and would reach maximum weight capacity before vol-

ume capacity while loading into the trucks. From the shipment data, we calculated

distances between all sites using a Google® Maps xml plugin in Microsoft® Excel

VBA. For each arc, we assigned a transportation cost of $1.38 per mile (based on

estimates from [40]). For all network sites, the lower limit of time windows was set

as 0. This is because the trucks can be dispatched from the depot by 7 am in our

instances, which is the same time by which the network locations start their daily

operations. For all instances, the handling cost was assumed to be $30 for unloading

and reloading one shipment. This assumption is based on the average handling cost
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calculation across the customer requests for 10 days from which our instances were

extracted.

MPDPTH implementation details: The MPDPTH solution approaches were

implemented using C++ and GurobiTM 7.5.2 on dual Intel® Xeon E5-2620 Sandy

Bridge hex core 2.0 GHz CPU, with 32 GB RAM. A time limit of 4 hours was

imposed in all instances.

Remarks on computational results

Table 6.7 shows the performance of MPDPTH-C (our compact formulation) and

MPDPTH-E (out cut-based formulation) in 30 instances comprising of 9, 13, or 17

customer requests. We denote MPDPTH-C and MPDPTH-E as MV-C and MV-E

respectively in the table for a compact presentation. We have also presented the

results from our Warm Start (WS) heuristic. Even though the primary purpose

of this heuristic is to provide a warm start for other methodologies, we presented

the details here because it identi�ed decent results for MPDPTH with very short

runtime. Table 6.7 shows the following WS heuristic results: best objective cost,

% di�erence against the best UB (from exact approaches), and runtime. The table

also shows the following results for MPDPTH-C and MPDPTH-E: the best objective

cost or Upper Bound (UB), the best Lower Bound (LB), % gap between UB and LB,

runtime, the number of BB nodes, and the number of lazy cuts added in MPDPTH-E

after solving the separation problems.

The WS heuristic identi�ed good results with very small runtime. The heuristic

solutions are within 20% of the best UB solution for 90% of instances (27 out of
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30 instances) in Table 6.7. This indicates that the heuristic reduced the solvers'

e�ort to identify an optimal solution for the exact approaches considerably. Even

for medium-sized instances with 17 customer requests, the runtime did not exceed 2

seconds.

Comparing the results between the other two exact approaches, MPDPTH-E out-

performed MPDPTH-C in all 30 instances. Out of the 30 instances, MPDPTH-E and

MPDPTH-C solved 97% and 67% of instances to optimality within the 4-hour time

limit respectively. For the optimally resolved instances, MPDPTH-E was pervasively

faster than MPDPTH-C with an average runtime savings of 85%. MPDPTH-E and

MPDPTH-C timed-out in 1 and 10 instances respectively. Among them, all instances

had 17 customer requests. So, the runtime of the two approaches increased signi�-

cantly in the mid-size instances with 17 requests. However, MPDPTH-E terminated

with smaller integrality gap than MPDPTH-E in the one timed-out instance.

An issue of MPDPTH-E, when compared with MPDPTH-C, is the higher number

of BB nodes across 18 out of 30 instances. Especially the numbers of BB nodes

for MPDPTH-E in instances S185, S195, and S245 with n = 17 are very high,

which indicates a hard e�ort by the solver during the branch-and-cut procedure. In

contrast, MPDPTH-C solved 16 instances with just one BB node.

After a close inspection of their solution structures, we identi�ed instance char-

acteristics that reduce the runtime for our branch-and-cut algorithm. MPDPTH-E

runtime was relatively short for S155, S165, and S175 (n = 17). These instances had

a lot of short-haul customer requests (lesser than 250 miles) with low cargo weights

(<15,000 lbs), and the solution identi�ed short-haul routes that did not exceed 250
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miles. In contrast, instances S245 and S195 (n = 17) have long runtime and iden-

ti�ed routes with very long distances. This was because the solver was able to �nd

e�ective consolidation options for the short-haul requests with low weights, whereas

long-haul requests were typically high weight and the solver spent more e�ort to �nd

e�ective consolidated routes.

Table 6.8: MPDPTH results in instances with 21 ans 25 requests (two approaches)

Instance n
WS Heuristic MPDPTH-E

Cost Di� Secs Cost LB Gap #BB Nodes #cuts

S274 21 11,947 29% 2.47 9,297 5,443 41% 372,968 11
S284 9,110 24% 1.75 7,333 5,814 21% 535,910 89
S155 9,299 4% 2.68 8,966 4,776 47% 130,701 19
S165 9,830 6% 1.56 9,267 5,773 38% 216,981 2
S175 10,580 11% 2.66 9,508 6,857 28% 490,827 102
S185 7,657 14% 3.95 6,730 4,019 40% 271,529 54
S195 8,486 7% 3.05 7,932 4,834 39% 473,485 73
S225 9,287 12% 2.95 8,295 4,113 50% 361,789 7
S245 7,561 0.1% 4.34 7,551 4,619 39% 401,610 61
S255 8,812 13% 2.62 7,817 4,565 42% 384,944 24

S274 25 13,648 9% 4.38 12,530 4,231 66% 136,387 41
S284 10,052 3% 3.69 9,751 5,475 44% 121,031 58
S155 11,596 3% 4.96 11,263 4,715 58% 45,450 39
S165 12,078 3% 3.13 11,724 4,941 58% 37,248 10
S175 11,679 4% 4.77 11,206 6,172 45% 126,254 79
S185 8,816 12% 6.84 7,848 4,837 38% 135,184 60
S195 9,256 8% 5.81 8,587 4,458 48% 313,366 76
S225 10,222 3% 5.1 9,908 3,902 61% 36,810 23
S245 7,909 1% 7.86 7,857 4,760 39% 270,123 17
S255 10,196 13% 4.88 9,012 4,791 47% 221,207 35

Since MPDPTH-E exhibited better performance than MPDPTH-C on small and

medium sized instances, we measured the scalability of MPDPTH-E alone on larger
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instances with 21 and 25 customer requests in Table 6.8. This table presents the

following details for MPDPTH-E: the best UB, integrality gap between the best UB

and the best LB, the number of BB nodes, and the number of lazy cuts added after

solving the separation problems. The table also shows the following WS heuristic

results: best objective cost, % di�erence against the best UB identi�ed by MPDPTH-

E and runtime. We have not presented the runtime for MPDPTH-E here because all

large instances timed-out (>14,400 secs) in that approach. However, the MPDPTH-

E integrality gap is within 50% for 80% of the instances (16 out of 20). One way

to reduce the MPDPTH-E runtime is to explore the linear relaxation tightening

techniques. This could help to close the integrality gap faster by tightening the

lower bound in the branch-and-bound framework. Similar to Table 6.7 results, the

high number of BB nodes for MPDPTH-E is an issue for all instances. The number

of handling cost lazy cuts is low even for the large instances. One potential reason

for this is that the handling cost enforcing inequalities (5.25)-(5.27) enforced many

handling cost cuts in the initial cut pool. This reduced the number of handling cost

lazy cuts later in the branch-and-cut approach.

The WS heuristic performance is very e�ective even in large instances. From

Table 6.8 results, we can see that the heuristic runtime did not exceed 8 seconds

for instances with n = 25. Moreover, the WS objective is within 15% of the best

UB for 90% of the large instances (18 out of 20). This means that the WS heuristic

provided a decent starting solution. Furthermore, the exact approaches did not �nd

a UB which was drastically di�erent than the WS heuristic solution. Especially for

instance S245, WS performed so well that the exact approach solution was barely
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better than the WS solution.

6.4 Multi Vehicle Pickup-and-Delivery Problem with Time Windows

and Loading Constraints

In this section, we present our experimental set-up, test-bed details and computa-

tional results of our MPDPTL methodologies. The MPDPTL implementation details

are similar to MPDPTH.

Remarks on computational results

Table 6.9 shows the performance of MPDPTL1 and MPDPTL2 in 30 instances com-

prising of 9, 13 or 17 customer requests. We have also presented the results from

our MPDPTL Warm Start (WS) heuristic. Similar to MPDPTH, we presented the

WS details here because it identi�ed decent results for MPDPTL with very short

runtime. Table 6.9 shows the following WS heuristic results: best objective cost,

% di�erence against the best upper bound (from exact approaches), and runtime.

The table also shows the following results for MPDPTL1 and MPDPTL2: the best

objective cost or Upper Bound (UB), the best Lower Bound (LB), % gap between

UB and LB, runtime, and the number of BB nodes.

The e�ciency of MPDPTL WS heuristic is very close to the MPDPTH WS

heuristic. It identi�ed good results with very small runtime. The heuristic solutions

are within 20% of the best UB solution for 87% of instances (26 out of 30 instances)

in Table 6.9. The runtime did not exceed 2 seconds even for medium-sized instances

with 17 customer requests.
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Comparing the results between the two exact approaches, MPDPTL2 outper-

formed MPDPTL1 in 73% of instances. Out of the 30 instances, MPDPTL2 and

MPDPTL1 solved 100% and 93% of instances to optimality within the 4-hour time

limit respectively. For the optimally resolved instances in which MPDPTL2 was

faster than MPDPTL1, the average runtime savings was 28%. MPDPTL1 timed-out

in 2 instances. Both instances had 17 customer requests. The runtime of the two

approaches increased signi�cantly in the mid-size instances with 17 requests. With

these observations, MPDPTL2 is the clear winner among exact approaches based on

the runtime.

The number of BB nodes is very low for both approaches in small instances with

n = 9. For remaining instances in Table 6.9, MPDPTL2 has higher number of BB

nodes in 13 instances and MPDPTL2 has higher number of BB nodes in the remain-

ing 7 instances. So, a comparison between the two approaches based on the number

of BB nodes does not yield an obvious winner. However, the number of nodes is high

for both approaches which suggest a hard branching e�ort by the solver. Similar to

MPDPTH approaches, MPDPTL2 runtime was relatively short in instances that had

a lot of short-haul customer requests with low weights (SL155, S165, and SL274). In

contrast, instances that identi�ed routes with very long distances had relatively long

runtime (for example-SL225 and SL195).

Since MPDPTL2 exhibited better performance than MPDPTL1 in Table 6.9,

we measured the scalability of MPDPTL2 alone on larger instances with 21 and

25 customer requests in Table 6.10. This table presents the following details for

MPDPTL2: the best UB, integrality gap between the best UB and the best LB, the
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Table 6.10: MPDPTL results in instances with 21 ans 25 requests (two approaches)

Instance n
WS Heuristic MPDPTL2

Cost Di� Secs Cost LB Gap #BB Nodes #cuts

SL274 21 12,406 29% 2.98 9,654 5,652 41% 372,968 11
SL284 9,809 24% 2.87 7,896 6,260 21% 535,910 89
SL155 10,091 4% 2.83 9,730 4,989 49% 130,701 19
SL165 10,508 6% 2.14 9,906 6,171 38% 216,981 2
SL175 11,290 11% 3.27 10,146 7,317 28% 490,827 102
SL185 8,036 14% 3.75 7,063 4,218 40% 271,529 54
SL195 9,056 7% 3.47 8,465 5,159 39% 473,485 73
SL225 10,105 12% 3.22 9,026 4,475 50% 361,789 7
SL245 8,109 0.1% 4.34 8,098 4,954 39% 401,610 61
SL255 9,670 13% 2.81 8,578 5,009 42% 384,944 45

SL274 25 14,070 9% 5.64 12,916 4,361 66% 136,387 41
SL284 10,752 3% 5.52 10,430 5,856 44% 121,031 58
SL155 12,003 3% 5.49 11,659 4,881 58% 45,450 39
SL165 13,435 4% 4.45 12,862 5,421 58% 37,248 10
SL175 12,582 4% 6 12,073 6,649 45% 126,254 79
SL185 9,220 12% 6.82 8,208 5,059 38% 135,184 60
SL195 9,875 6% 6.49 9,276 4,816 48% 313,366 76
SL225 11,084 4% 5.93 10,626 4,185 61% 36,810 23
SL245 8,320 1% 7.84 8,265 5,007 39% 270,123 17
SL255 10,577 13% 5.42 9,349 4,970 47% 221,207 60

number of BB nodes, and the number of lazy cuts added after solving the separation

problems. The table also shows the following WS heuristic results: best objective

cost, % di�erence against the best UB identi�ed by MPDPTL2 and runtime. We

have not presented the runtime for MPDPTL2 here because all large instances timed-

out (>14,400 secs) in that approach. However, the integrality gap is below 50% for

80% of the instances (16 out of 20). The high number of BB nodes is an issue in all

large instances.
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Similar to the MPDPTH WS heuristic, the MPDPTL WS performance is very

e�ective even on the large instances. From Table 6.10 results, we can see that the

heuristic runtime is less than 8 seconds for instances with n=21 or 25. Moreover,

the WS objective is within 15% of the best UB for 90% of the large instances (18

out of 20). This means that the WS heuristic provided a decent starting solution.

Furthermore, the exact approaches did not �nd a UB which was drastically di�erent

than the WS heuristic solution. Especially, in instances SL245, SL284 and SL155

WS performed so well that the exact approach solution was barely better than the

WS solution.

Overall, our model consistently identi�ed cheaper routes with a lesser number of

trucks than the actual routes. Figure 6.2(a) shows actual routes along the east coast

for one of the instances. Six trucks were used in total to ful�ll the customer requests,

whereas Figure 6.2(b) shows our model results for the same requests using only 3

trucks.

(a) Actual routes (b) Routes from our model

Figure 6.2: MPDPTL result on east coast for one instance

109



CHAPTER VII

CONCLUSION AND FUTURE WORKS

In this chapter, we summarize the contributions of this dissertation to the vehicle

routing problem literature and some future research directions.

7.1 Research contributions

In this dissertation, we investigate four closely related problems:

� Single vehicle Pickup-and-Delivery Problem with LIFO Loading constraints

� Single vehicle Pickup-and-Delivery Problem with Handling costs

� Multi-vehicle Pickup-and-Delivery Problem with Time windows and LIFO Load-

ing constraints

� Multi-vehicle Pickup-and-Delivery Problem with Time windows and Handling

costs

Our contributions to these four problems are tabulated in Figure 7.1.

For the �rst problem, we introduced a new branch-and-cut algorithm. One of

the notable contributions of this dissertation is the introduction of new conditional

integral separation procedures to identify violated inequalities. We also proposed
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From literature:
1. A cut-based formulation
2. Branch-and cut algorithm-
fractional separation
procedures

Our contributions:
Branch-and cut algorithm
with integral separation
procedures

From literature:
1. A compact formulation

Our contributions:
1. A compact formulation
2. A cut-based formulation
3. Branch-and cut algorithm
with fractional separation
4. Branch-and cut algorithm
with integral separation

Unexplored in literature

Our contributions:
1. Two formulations
2. Branch-and cut algorithm
3. A heuristic based on
tradeoff b/w travel distance
and LIFO enforcement

Unexplored in literature

Our contributions:
1. Two formulations
2. Branch-and cut algorithm
3. A heuristic based on
potential savings from
shipping requests together

Si
ng

le
 v

eh
ic

le
M

ul
ti 

ve
hi

cl
e

LIFO Handling cost

Figure 7.1: Research contributions for the four problems

new inequalities to speed up the algorithm. Other runtime improvements like upper

bound tightening, warm start, and preprocessing were explored. Our algorithm

outperformed a branch-and-cut algorithm with fractional separation procedures from

the literature in all the test instances by the runtime.

For the second problem, we introduced a compact formulation, a cut-based for-

mulation, and two branch-and-cut algorithms (one with fractional separation proce-

dures and another with integral separation procedures). We inspected the solutions

to identify the pathological characteristics of our algorithm. Our approach was very

e�ective in the instances in which each customer requests' delivery node was close
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to its pickup node in the solution sequence. This is because it prompts less e�ort for

precedence and handling cost enforcements. In contrast, the runtime increased when

the solution had a nested structure, which means the pickup and the delivery nodes

for some customer requests were placed far away from each other in the solution

sequence.

The third problem is newly introduced in this dissertation. The objective of this

problem is to route multiple vehicles in a homogeneous �eet. The routing is subject

to vehicle capacity, time windows at customer locations, maximum time on-road for

a driver, and LIFO loading/unloading order. We presented two formulations and

two branch-and-cut algorithms. A warm start heuristic was explored to provide a

starting solution in a branch-and-bound framework for the other procedures. This

heuristic identi�ed decent solutions for all instances with a very short runtime.

The fourth problem is newly introduced in this dissertation. This problem is

similar to the third problem, but we permit loading/unloading LIFO violations with

handling costs. We presented a compact formulation and a formulation with an ex-

ponential number of constraints. We also presented a branch-and-cut algorithm to

computationally implement the latter formulation. The branch-and-cut algorithm

uses integral separation procedures to identify inequalities violating the LIFO order

for loading/unloading. We presented new inequalities for handing cost enforcement

which reduced our runtime. We inspected the solutions to identify the instance char-

acteristics that could impact the runtime of our algorithm positively. Our approach

was very e�ective in the instances where short-haul routes were identi�ed in the

solution (<250 miles). In contrast, the runtime increased when the solution had
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relatively long-distance routes.

7.2 Future Works

We solved the handling cost problems in this dissertation with the assumption that

the shu�ing of cargo will not be permitted. It means that the additional shipments

unloaded at customer sites cannot be shu�ed on the ground before getting reloaded

into the vehicle. Figure 7.2 illustrates this assumption. It would be interesting to

explore the handling cost problems with shu�ing. A heuristic that permits shu�ing

in the single-vehicle handling cost problem has already been explored by Veenstra

et al. [42]. However, shu�ing cargo in a multi-vehicle setting has not been explored

for handling cost problems.

c
cba

Unloading at site c

bac
delivered

Shuffling on ground
(not permitted)

Leaving site c
(after reloading)

Next stop: d

c
d d

Arriving at site c
(to deliver load c)

ba d

Unloading at site d

bad
delivered

Shuffling on ground
(not permitted)

Leaving site d
(after reloading)

d
ba

d

Figure 7.2: Shu�ing option for cargo handling

Variety of VRP problems in the literature has been solved with branch-and-
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price algorithms. However, branch-and-price approaches have not been explored for

the four problems in this dissertation. Although we have explored some fractional

separation procedures in this dissertation, the primary focus has been on integral

separation techniques that target the upper bound of the solutions. So, there are

some computational results in which the upper bound of the solutions closed the

integrality gap very quickly than the lower bounds. One way to resolve this issue is

to explore the linear relaxation tightening techniques.

The conditional integral separation procedures introduced in the single-vehicle

problem is an important contribution of this dissertation. This approach is appli-

cable in other formulations with exponential sets of constraints. Identifying other

problems where the conditional integral separation procedures are applicable is an-

other possible future research direction.
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APPENDIX A

LINEARIZATION OF PRODUCT OF TWO VARIABLES

Let us consider non-linear Constraints (4.4) from Formulation (4.2.1) for an illustra-

tion of our linearization technique. For an arc (i, j) ∈ A, inequality (4.4) is

Qj ≥ (Qi + qj)xij (1.1)

Right hand side becomes Qixij + qjxij, where Qi is a continuous variable, xij is a

binary variable and Qixij is a non-linear term. From Formulation (4.2.1), note that

Qi is bounded below by 0 and above by Q. To linearize this constraint, we present

new variables αij for each arc (i, j) ∈ A. Now we replace (1.1), with following

inequalities
Qj ≥ αij + qjxij

αij ≤ Qxij

αij ≤ Qj

αij ≥ Qj − (1− xij)Q

αij ≥ 0
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APPENDIX B

ALGORITHM STRUCTURES

2.1 Breadth �rst search

Algorithm 1 BFS Algorithm- Function

Require: A directed graph G = (N,A), �ow values 0 ≤ rij ≤ 1 ∀(i, j) ∈ A and
source node s

1: initialize PRED[|N |] := NULL, and LIST := {s}
2: unmark all nodes in N , mark root node s
3: while LIST is not empty do
4: i := LIST [0] (First entry in the LIST )
5: remove i from LIST
6: for j=0 to 2n+ 1 do
7: if node i is incident to an arc (i, j), such that rij > 0 then
8: if node j is unmarked then
9: mark j and PRED[j] := i

10: end if
11: end if
12: end for
13: end while
14: return PRED[|N |]
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2.2 Fractional separation problem- Maximum �ow algorithm

Algorithm 2 Edmonds-Karp Algorithm

Require: A directed graph G = (N,A), fractional values x ∈ {0, 1}|A|, source node
s and sink node t

1: initialize residual graph capacities rij := xij ∀(i, j) ∈ A, MaxFlow := 0 and
PRED[|N |] := NULL

2: while sink t is reachable from s on residual graph (call BFS function) do
3: obtain PRED list
4: i := t and flow :=∞
5: while i 6= s do
6: j := PRED[i]
7: flow := min{flow, rji}
8: i := j
9: end while

10: i := t
11: while i 6= s do
12: j := PRED[i]
13: rji := rji − flow
14: i := j
15: end while
16: MaxFlow := flow +MaxFlow
17: end while
18: return MaxFlow
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2.3 Integral separation problem- Sub-tour elimination

Algorithm 3 ISP1

Require: A directed graph G = (N,A), binary values x ∈ {0, 1}|A| de�ning a PC-
tuple

1: unmark all nodes in N , mark root node 0
2: i := 0; p := 0; PATH := ∅; SUBTOURS[ ] := ∅
3: while i 6= 2n+ 1 do
4: if node i is incident at an arc (i, j), such that xij = 1 then
5: PATH := PATH ∪ {i}, mark node i
6: i := j
7: end if
8: end while
9: for i=1 to 2n do

10: if i is unmarked then
11: if node i is incident to an arc (i, j), such that xij = 1 then
12: SUBTOURS[p] := SUBTOURS[p] ∪{i}, mark i, k := i and i := j
13: while j 6= k do
14: if node i is incident to an arc (i, j), such that xij = 1 then
15: SUBTOURS[p] := SUBTOURS[p] ∪{i}, mark node i
16: i := j
17: end if
18: end while
19: p := p+ 1
20: break for-loop
21: end if
22: end if
23: end for
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2.4 Integral separation problem- Precedence violation

Algorithm 4 ISP2

Require: A directed graph G = (N,A), binary values x ∈ {0, 1}|A| de�ning a Hamil-
tonian path

1: unmark all nodes in N , mark root node 0
2: i := 0; p := 0; q := 0; PATH := ∅; POS[|N |] := ∅; ORDER[|N |] := ∅;
PRECSET := ∅

3: while i 6= 2n+ 1 do
4: if node i is incident at an arc (i, j), such that xij = 1 then
5: PATH := PATH ∪ {i}, mark node i
6: POS[i] := p
7: ORDER[p] := i
8: i := j and p := p+ 1
9: end if

10: end while
11: for i=1 to n do
12: if POS[n+ i] < POS[i] then
13: for k=POS[0] to POS[i]-1 do
14: PRECSET := PRECSET ∪ {ORDER[POS[k]]}
15: end for
16: end if
17: end for
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2.5 Integral separation problem- LIFO violation

Algorithm 5 ISP3

Require: A directed graph G = (N,A), binary values x ∈ {0, 1}|A| de�ning a Hamil-
tonian path with no precedence violations

1: unmark all nodes in N , mark root node 0
2: i := 0; p := 0; q := 0; PATH := ∅; POS[|N |] := ∅; ORDER[|N |] := ∅;
LIFOSET := ∅

3: while i 6= 2n+ 1 do
4: if node i is incident at an arc (i, j), such that xij = 1 then
5: PATH := PATH ∪ {i}, mark node i
6: POS[i] := p
7: ORDER[p] := i
8: i := j and p := p+ 1
9: end if

10: end while
11: for i=1 to n do
12: for j=1 to n do
13: if POS[i] < POS[j] then
14: if POS[j] < POS[n+ i] then
15: if POS[n+ i] < POS[n+ j] then
16: for k=POS[i]+1 to POS[n+ j]-1 do
17: LIFOSET := LIFOSET ∪ {ORDER[POS[k]]}
18: end for
19: end if
20: end if
21: end if
22: end for
23: end for
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2.6 Clarke-Wright algorithm

Algorithm 6 Savings algorithm

Require: A directed graph G = (N,A), cost values cij for each arc (i, j) ∈ A
1: unmark all nodes in N
2: p := 0; PATH := ∅; ARCLIST := ∅
3: for each i(i, j) ∈ A do
4: sij := ci0 + c0j = cij
5: end for
6: Sort sij in descending order and correspondingly store arcs in ARCLIST
7: for p=1 to |A| do
8: if both nodes in ARCLIST [p] are unmarked then
9: Create a new row in PATH and add ARCLIST [p]

10: Mark nodes i and j in ARCLIST [p]
11: end if
12: if one of the nodes in ARCLIST [p] is unmarked then
13: if marked node in ARCLIST [p] is at the edge of a row in PATH then
14: Append ARCLIST [p] to corresponding row
15: Mark nodes i and j in ARCLIST [p]
16: end if
17: end if
18: if both nodes in ARCLIST [p] are marked then
19: if nodes in ARCLIST [p] are at two PATH row edges then
20: Merge the corresponding PATH rows
21: Remove one of the two PATH rows
22: end if
23: end if
24: if PATH[0] has 2n nodes then
25: Break
26: end if
27: end for
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2.7 LIFO greedy search algorithm

Algorithm 7 Warm start heuristic for SPDPL

Require: A directed graph G = (N,A), customer requests n, cost values cij for each
arc (i, j) ∈ A

1: PATH := ∅; UNV ISITED := {1, . . . , 2n}
2: PATH[0] := 0
3: while UNV ISITED 6= ∅ do
4: i := 0
5: MINCOST :=∞
6: for each (i, j) ∈ A do
7: if (i, j) does not violate LIFO on partial PATH then
8: if cij < MINCOST then
9: j := i

10: Remove j from UNV ISITED
11: end if
12: end if
13: end for
14: end while
15: PATH[2n+ 1] := 2n+ 1
16: for i = 1 to n do
17: NEWPATH := PATH
18: Remove i and n+ i from PATH
19: for j = 1 to 2n− 1 do
20: for k = j to 2n do
21: Insert i in position j of NEWPATH
22: Insert n+ i in position k of NEWPATH
23: if NEWPATH does not violate LIFO then
24: if NEWPATH objective < PATH objective then
25: PATH := NEWPATH
26: end if
27: end if
28: end for
29: end for
30: end for
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