# A METHODOLOGY FOR ESTIMATING THE REGIONAL FLOOD FREQUENCIES FOR NORTHEASTERN THAILAND

By

# PIROTE KRIENGSIRI

## Bachelor of Engineering Kasetsart University Bangkok, Thailand 1969

## Master of Science University of Missouri at Rolla Rolla, Missouri 1971

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1976



# A METHODOLOGY FOR ESTIMATING THE REGIONAL FLOOD FREQUENCIES FOR NORTHEASTERN THAILAND

Thesis Approved:

Thesis Adviser

Dean the Graduate College of

## ACKNOWLEDGEMENTS

I wish to express my deepest respect and gratitude to Dr. Richard N. DeVries, my major adviser, for his guidance, understanding, and assistance throughout the course of this study.

I wish to thank Dr. William D. Warde for his friendship and assistance during this research. I also wish to thank my committee members, Dr. Anthony F. Gaudy, Jr., Dr. Don F. Kincannon, Dr. Douglas C. Kent, and Dr. David L. Weeks, for their service and their valuable suggestions.

Great appreciation and love are extended to my parents, Mr. and Mrs. Eam Kriengsiri, for their love and encouragement. I cannot find words to express the respect and love which I feel for these two exceptional people. Also, I wish to thank my two brothers, Suthat and Watchara, and my sister, Srisakul, for their love and understanding.

I am grateful to Mr. Lek Chindasaguan, of the Royal Thai Irrigation Department, and Mrs. Suntraphorn Sudhaswin, of the National Energy Authority of Thailand, for supplying data. Without them, this research would not have been complete.

I sincerely appreciate the friendship and assistance of my student colleagues, Hapke, Tortorelli, Esfandi, and others, while I was working on this research.

Mrs. Grayce Wynd deserves special thanks for her careful and accurate typing of this dissertation, and for her cheerful assistance

iii

and friendship.

Finally, I wish to thank the Royal Thai Army, and Oklahoma State University, for financial support during this study.

## TABLE OF CONTENTS

| Chapte | r de la companya de l                                                                                                                                                                                                                                                                                                                                      | Page                                                                 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Ι.     | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                    |
|        | Synopsis of Following Chapters                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                    |
| II.    | LITERATURE REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                    |
|        | Regional Frequency Analysis<br>Literature Review of Water Research in North-<br>eastern Thailand<br>Literature Review of Digital Computer Model for<br>Simulation of Stream Flow<br>United States Department of Agriculture Hydro-<br>logical Laboratory (USDAHL) Model<br>Stanford Watershed Model IV (SWM IV)<br>United States Geological Survey Watershed Model<br>National Weather Service River Forecast System<br>(NWSRFS)<br>Sacramento Model | 8<br>11<br>14<br>14<br>17<br>17<br>18                                |
| III.   | HYDROLOGIC INFORMATION FOR NORTHEASTERN THAILAND                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                   |
|        | Topography, Drainage, Geologic Structure, and Soil.<br>Climatology                                                                                                                                                                                                                                                                                                                                                                                   | 21<br>23<br>26                                                       |
| IV.    | MATHEMATICS OF REGIONAL FREQUENCY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                   |
|        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28<br>29<br>31<br>31<br>33<br>34<br>35<br>36<br>37<br>37<br>38<br>43 |

Chapter

Page V. STATISTICAL MODEL AND ANALYSIS OF FLOOD FREQUENCIES . . 46 Flood Records . . . . . . . . . . . . 46 Flood Frequency Relations . . . . . . . . . . . . . 48 Log Pearson Type III Distribution for Northeastern 48 Flood Frequency at Ungaged Sites on Streams of 49 Relation of Flood Peaks of Selected Recurrence Interval and Drainage Area . . . . . 56 58 79 Engineering Application . . . . . . . . . . 80 Maximum Flood Record of Northeastern Thailand . . . 83 VI. 86 86 87 89 VII. BIBLIOGRAPHY 90 . . . . . . . . APPENDIX A - CLIMATOLOGIC DETAILS OF NORTHEASTERN THAILAND . . 94 APPENDIX B - LIST OF FLOOD PEAK DATA AND LOG PEARSON TYPE III DISTRIBUTION OF 38 DRAINAGE BASINS IN NORTH-109 EASTERN THAILAND . . . . . . . . APPENDIX C - RELATIONSHIP OF FLOOD PEAKS WITH SELECTED RECUR-RENCE INTERVAL WITH BASIN CHARACTERISTICS AND 129 

vi

# LIST OF TABLES

| Table |                                                                                                                                 |   | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------|---|------|
| Ι,    | ANOVA Table for General Linear Regression Model                                                                                 | • | 36   |
| II.   | Summary of the Distribution of Data and Average<br>Length of Record per Station                                                 | • | 47   |
| III.  | Probability That an Event of Given Recurrence Inter-<br>val will be Exceeded at Least Once During Periods<br>of Various Lengths | • | 49   |
| IV.   | Linear Model Equations Peak Flow Related to Six<br>Variables                                                                    | • | 52   |
| ۷.    | Logarithmic Model Equation Peak Flow Related to<br>Six Variables                                                                | • | 54   |
| VI.   | Weighted Linear and Log Transform Model of 36 Basins                                                                            | • | 58   |
| VII.  | Weighted Linear and Log Transform Model of 38 Basins                                                                            | • | 59   |
| VIII. | Table Shows Several Predicted Models Compared With<br>Observed Model Q <sub>2</sub>                                             | • | 60   |
| IX.   | Table Shows Several Predicted Models Compared With<br>Observed Model Q <sub>5</sub>                                             | • | 61   |
| Χ.    | Table Shows Several Predicted Models Compared With<br>Observed Model Q <sub>10</sub>                                            | • | 62   |
| XI.   | Table Shows Several Predicted Models Compared With<br>Observed Model Q <sub>25</sub>                                            | • | 63   |
| XII.  | Table Shows Several Predicted Models Compared With Observed Model Q <sub>50</sub>                                               | • | 64   |
| XIII. | Table Shows Several Predicted Models Compared With<br>Observed Model Q <sub>100</sub>                                           | • | 65   |
| XIV.  | Table of Compared Predicted Values of Q <sub>2</sub> and From<br>Log Pearson Type III                                           |   | 67   |

vii

Table

| XV.     | Table of Compared Predicted Values of Q5and FromLog Pearson Type III                    | 69  |
|---------|-----------------------------------------------------------------------------------------|-----|
| XVI.    | Table of Compared Predicted Values of Q <sub>10</sub> and From<br>Log Pearson Type III  | 71  |
| XVII.   | Table of Compared Predicted Values of Q <sub>25</sub> and From<br>Log Pearson Type III  | 73  |
| XVIII.  | Table of Compared Predicted Values of Q <sub>50</sub> and From<br>Log Pearson Type III  | 75  |
| XIX.    | Table of Compared Predicted Values of Q <sub>100</sub> and From<br>Log Pearson Type III | 77  |
| XX.     | C <sub>T</sub> Matrices                                                                 | 81  |
| XXI.    | Maximum Discharge in Northeastern Thailand                                              | 84  |
| XXII.   | Climatological Data for the Period 1951-1970                                            | 95  |
| XXIII.  | Climatological Data for the Period 1951-1970                                            | 96  |
| XXIV.   | Climatological Data for the Period 1951-1970                                            | 97  |
| XXV.    | Climatological Data for the Period 1951-1970                                            | 98  |
| XXVI.   | Climatological Data for the Period 1951-1970                                            | 99  |
| XXVII.  | Climatological Data for the Period 1951-1970                                            | 100 |
| XXVIII. | Climatological Data for the Period 1951-1970                                            | 101 |
| XXIX.   | Climatological Data for the Period 1951-1970                                            | 102 |
| XXX.    | Climatological Data for the Period 1951-1970                                            | 103 |
| XXXI.   | Climatological Data for the Period 1951-1970                                            | 104 |
| XXXII.  | Climatological Data for the Period 1951-1970                                            | 105 |
| XXXIII. | Climatological Data for the Period 1951-1970                                            | 106 |
| XXXIV.  | Annual Rainfall (mm) in Northeastern Thailand                                           | 107 |
| XXXV.   | Linear Model Equations Peak Flow Related to Five<br>Variables                           | 130 |
| XXXVI.  | Linear Model Equations Peak Flow Related to Four<br>Variables                           | 132 |

| Page |                  |                                                | Table    |
|------|------------------|------------------------------------------------|----------|
| 134  | Related to Three | Linear Model Equations Peak<br>Variables       | XXXVII.  |
| 135  | Related to Two   | Linear Model Equations Peak<br>Variables       | XXXVIII. |
| 136  | Flow Related to  | Logarithmic Model Equations<br>Five Variables  | XXXIX.   |
| 138  | Flow Related to  | Logarithmic Model Equations<br>Four Variables  | XL.      |
| 140  | Flow Related to  | Logarithmic Model Equations<br>Three Variables | XLI.     |
| 141  | Flow Related to  | Logarithmic Model Equations<br>Two Variables   | XLII.    |

# LIST OF FIGURES

| Figu | re                                                                                                                     | Page |
|------|------------------------------------------------------------------------------------------------------------------------|------|
| 1.   | Map of Northeastern Thailand and Related Area                                                                          | 2    |
| 2.   | Computation of Basin Runoff SSAR Model                                                                                 | 13   |
| 3.   | Stanford Watershed Model IV                                                                                            | 16   |
| 4.   | Flow Chart of Soil Moisture Accounting Portion of the<br>National Weather Service River Forecasting System             | 19   |
| 5.   | Simplified Flow Chart of Land Phase of Sacramento Model .                                                              | 20   |
| 6.   | Map of Thailand and Air Stream Dominating Climatic<br>Conditions                                                       | 24   |
| 7.   | Mean Positions of the Inter-Tropical Convergence Zone<br>at Different Months of the Year                               | 25   |
| 8.   | Relationship of Predicted Q <sub>2</sub> and Q <sub>2</sub> From Log Pearson<br>Type III to Drainage Area <sup>2</sup> | 68   |
| 9.   | Relationship of Predicted Q <sub>5</sub> and Q <sub>5</sub> From Log Pearson<br>Type III to Drainage Area              | 70   |
| 10.  | Relationship of Predicted Q <sub>10</sub> and Q <sub>10</sub> From Log Pearson<br>Type III to Drainage Area            | . 72 |
| 11.  | Relationship of Predicted Q <sub>25</sub> and Q <sub>25</sub> From Log Pearson<br>Type III to Drainage Area            | 74   |
| 12.  | Relationship of Predicted Q <sub>50</sub> and Q <sub>50</sub> From Log Pearson<br>Type III to Drainage Area            | 76   |
| 13.  | Relationship of Predicted Q <sub>100</sub> and Q <sub>100</sub> From Log Pearson<br>Type III to Drainage Area          | 78   |
| 14.  | Peak Flow at Recurrence Interval of 2, 5, 10, 25, 50,<br>and 100 Years versus Drainage Area                            | 82   |
| 15.  | Relation of Maximum Flood to Drainage Area in North-<br>eastern Thailand                                               | 85   |
| 16.  | Isohvet Map of Thailand                                                                                                | 108  |

Х

## GLOSSARY AND LIST OF SYMBOLS

Analysis of Variances (ANOVA) - a statistical technique in which variances of subset of data are compared with the variance of the whole set and with each other to test the hypotheses

| ANRAIN                          | - mean annual precipitation for the drainage basin   |
|---------------------------------|------------------------------------------------------|
| B <sub>o</sub> , b <sub>o</sub> | - the intercept of regression equation (centimeters) |
|                                 |                                                      |

B<sub>i</sub>, b<sub>i</sub> - the multiple regression coefficient of the dependent variable Y on the independent variable X<sub>i</sub>

C - covariance function

Coefficient of skewness (G) - a numerical measure or index of the lack of symmetry in the frequency distribution

- Correlation association among sets of data having some mutual linear relation, not necessarily cause and effect
- Coefficient of Determination (R<sup>2</sup>) a natural measure of the effect of independent variable in reducing the variation in dependent variable of regression analysis

Coefficient of Multiple Correlation (R) - see correlation or the square root of  $R^2$ 

Degree of Freedom (DF) - the number of independent comparisons which can be made between members of sample

DA

- drainage area, square kilometers

| e <sub>i</sub> .                                                      | - residual, observed error; the difference between               |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------|--|--|
|                                                                       | observed value and fitted value                                  |  |  |
| ε <sub>i</sub>                                                        | - true error in the regression model can be assumed to be        |  |  |
|                                                                       | independent normal random variables, with mean and               |  |  |
|                                                                       | constant variance, $\sigma^2$                                    |  |  |
| EL -                                                                  | - mean drainage area elevation, meters above sea level           |  |  |
| EVAP .                                                                | - mean annual evaporation for each drainage basin (in            |  |  |
|                                                                       | centimeters)                                                     |  |  |
| E -                                                                   | - expected valuethe expected value of a function of              |  |  |
|                                                                       | variate value is its mean value in repeated sample               |  |  |
| F                                                                     | - name of variance ratio test                                    |  |  |
| f -                                                                   | - true error of regression transform in weighted least           |  |  |
|                                                                       | square method                                                    |  |  |
| I                                                                     | - identity matrix                                                |  |  |
| К -                                                                   | - Pearson Type III coordinates expressed in number of            |  |  |
|                                                                       | standard deviation from the mean for various recurrence          |  |  |
|                                                                       | intervals or percent chances                                     |  |  |
| Level of Signi                                                        | ificances ( $lpha$ ) - the probability of rejecting a hypothesis |  |  |
|                                                                       | when it is in fact true. At a "10 percent" level of              |  |  |
|                                                                       | significance, the probability is 1/10                            |  |  |
| m -                                                                   | - number of independent variable                                 |  |  |
| Mean Square Error - the residual or error sum of squares divided by   |                                                                  |  |  |
|                                                                       | the number of degrees of freedom on which the sum is             |  |  |
| е.,                                                                   | based. It provides an estimator of the residual or               |  |  |
|                                                                       | error variances                                                  |  |  |
| Mean Square Regression - the sum of squares for regression divided by |                                                                  |  |  |
|                                                                       | its degrees of freedom                                           |  |  |
|                                                                       |                                                                  |  |  |

xii

- number of observation; in this research, the number of drainage basins
  - a unique non-singular matrix used in the weighted least
     squares method
- number of observations of P

n

Ρ

р

Q

 coefficient of regression transformation in weighted least squares

 $Q_T$  - annual flood peak in return period of T years, m<sup>3</sup>/sec Recurrence Interval (T) - average time interval between actual occur-

> rences of a hydrological event of a given or greater magnitude; 2) in an annual flood series, the average interval in which a flood of a given size recurs as an annual maximum; 3) in a partial duration series, the average interval between floods of a given size, regardless of their relationship to the year or any other period of time. This distinction holds even though for large flood recurrence, intervals are nearly the same as both scales

Return Period - the same as recurrence interval Sum of Square Total (SSTOT) - the measure of total variation Sum of Square Regression (SSR) - the measure of the variable of the Y associated with regression line

Standard Deviation (S,  $\sigma$ ) - a measure of the dispersion or precision of a series of statistical values such as precipitation, stream flow, etc. It is the square root of the sum of squares of the deviations from the arithmetic mean divided by the number of values or events in the

xiii

series. It is now standard practice in statistics to divide by the number of values minus one in order to obtain an unbiased estimate of the standard deviation from sample data

SS

t

۷

WT

Х

Y

Ŷ

Ζ

- surface storage of drainage area, measured by percent - a test based on the student's distribution Variance (S<sup>2</sup>,  $\sigma^2$ ) - a measure of the amount of spread or dispersion of

> a set of values around their mean, equal to the square of the standard deviation

- variance function

- the variance of  $\boldsymbol{Q}_{T}$  used in weighted least squares methods

- independent variable in multiple regression

- dependent variable in multiple regression

- predicted value from regression model

- transform value of Y in weighted least squares

## CHAPTER I

## INTRODUCTION

Northeastern Thailand contains one-third of the area of Thailand, and comprises fifteen provinces. Its total area is about 155,000 square kilometers (63,000 square miles)(see Figure 1)(1).

The land area of this zone forms a large plateau which dips toward the east. It is enclosed partly by a semi-circle of mountains to the north and west, and is bounded on the northeast by the Mekong River. The plateau slopes gently down from the Korat, which is at an elevation of 600 feet above sea level, to its eastern extremity at Ubol, which is 300 feet above sea level. Two rivers, the Chee and the Mune, rise on the western flank of the plateau. They run parallel across the table land to join at Ubol, near the Indochina boundary, and then flow into the Mekong. Much of the plateau is undulating to rolling, dotted here and there by occasional hills of quartzitic sandstone and a few small shallow lakes.

This is a poverty-ridden portion of the country--of impoverished soil and adverse climate. Much of the land area is still unexplored; large sections are subject to the Monsoon climate. Although sections flood during the rainy season, they suffer water shortages during the dry season from November to May. Soils for the most part are fine, sandy loams, which are extremely low in fertility.



.

Figure 1. Map of Northeastern Thailand and Related Area

Source: (1)

The climate within the northeastern Thailand study area is tropical, with the minimum temperature considerably above freezing. The climate is influenced primarily by the Monsoon, and to a lesser extent, by the intropical front and cyclonic storms. The Monsoons are designated as the Southwest Monsoons, and the Northeast Monsoons by the movement of the air masses over the basin.

Historically, flooding of Northeastern Thailand is caused mainly by the flood flow of the Mekong River. Additional damage results from flooding caused by the backwater effect from tributaries unable to drain into the Mekong River. Every year, floods inflict substantial damage, especially in the Vientiane Plains and Nong Khai areas. The 1966 Mekong flood, which is one of the highest of record in this reach of the river, caused heavy losses to public utilities, business, personal property, and road systems, and destroyed approximately 18,300 hectares (46,000 acres) of the rice crop in the Vientiane, Laos, and Nongkhai, Thailand, areas.

Northeastern Thailand seeks the development of its water resources in terms of hydroelectric power, irrigation, navigation improvement, flood control, and in various related fields, with a view to improve the welfare of the people.

Flood discharge from a drainage basin may affect man's home or his livelihood, and may even endanger his life. It is also a phenomenon that occurs erratically in time and varies widely from one place to another.

Regional flood frequencies are the basic requirement for the planning design and operation of multipurpose water projects. Where the flood frequencies analyses are adequate, water projects can be

undertaken with added assurance of success, since more of the available water resources can be safely developed, and vice versa.

The general objective of this study is to find methods of explaining the variations in flood magnitude throughout northeastern Thailand, so that flood freqency relationships may be predicted for any location in any gaged or ungaged basin.

The specific objective of this research is to find the equations needed to predict flood flows based on watershed and climatic variables for return periods of 2, 5, 10, 25, 50, and 100 years.

### Synopsis of Following Chapters

Chapter II contains a review of literature on regional frequency analysis, water resources in northeastern Thailand and digital computer models for stream flow.

Chapter III is concerned with hydrologic information of northeastern Thailand, such as topography, climatology, drainage, geology, soil and its structure.

In Chapter IV, mathematics of regional frequency analysis, multiple regression analysis and weighted least squares theory are explained. The statistical model of regional flood frequency analysis, limitations, applications, and maximum flood record of northeastern Thailand are presented and discussed in Chapter V.

Chapters VI and VII are the summary, conclusions, and suggestions for future study.

## CHAPTER II

## LITERATURE REVIEW

## Regional Frequency Analysis

Clarke-Hafstad (2) worked on the reliability of the frequency determinations of station-year rainfall, which is the combination of records of stations in an area, and using this as a single record for the midpoint of the area under consideration, she tried to develop a method to find the reliability of this combination by the number of times that a certain amount of rainfall has occurred at each station within a certain number of years. Then, from this number of occurrences, she gave the upper and lower limits about the average frequency of that amount of rainfall by a method that they had developed.

Her method of calculating dependence of the stations within an area did not take into consideration the time of occurrence of the events. For example, considering three stations with nine years of records each, 20 mm of rainfall may be recorded three times in all of the three stations in nine years, but the years of occurrence may be different at each.

Longbein (3) developed a test to define a homogeneous region for regional flood frequency analysis practiced by the United States Geological Survey. At each station within a region a study of ten-year floods as estimated from its probability curve is required for this

homogeneity test. The ratio of ten-year flood to mean annual flood (which has a recurrence interval of 2.33 years according to Gumbel's extreme value distribution) is found for each station within the region, then these ratios are averaged to obtain the mean ten-year ratio for the area. From the probability curve of each station, the recurrence interval corresponding to the mean annual flood times the averaged ten-year ratio is found and plotted against the so-called "effective or adjusted length of record" on a test graph. The effective (adjusted) length of record is the number of years of actual record plus one-half the number of years of the record.

The test graph is constructed on the basis of extremal distribution. If the points fall within the two control curves, then that region is considered to be homogeneous. The control curves represent a range of variations equal to two standard deviations of the reduced variate on the ten-year flood (indicating 95 percent reliability). The estimated deviation of the reduced variate is

$$\sigma y = \frac{e^y}{\sqrt{n}} \sqrt{\frac{1}{T-1}}$$
(2.1)

where T is recurrence interval, n is the number of years of record, y is called the reduced variate, and is given by the equation:

$$y = -\log\left[-\log\left(1 - \frac{1}{T}\right)\right]$$
 (2.2)

for T = 10 years, y = 2.25 (from the equation of reduced variate given below), and  $e^{y} = 9.49$ . Then equation (2.1) becomes

$$2\sigma y = 6.33 / \sqrt{n}$$
 (2.3)

The return period  $T_L$  and  $T_U$  corresponding to  $y - 2\sigma y$  and  $y + 2\sigma y$  define the lower and upper limits of the control curves for a value of n.

Dalrymple (4) after the analyses of records from 7,000 sites in the United States, developed a method to determine the magnitude and frequency of momentary peak discharges at any place on a stream, whether a gaging station record is available or not. This method was based on Longbein's previous work.

The method was based on statistically dependent records of gaging stations at hydrologically homogeneous areas. Rather than adding several short records to produce a long term record and finding the average, taking the median of the records of the stations for each event could yield better results in frequency analysis for that area. By this method, five records of twenty years each when combined give only a twenty-year record, but it is considered that each year of flood has been measured five times. The median of these five values is assumed to give a better measure of the frequency characteristics of those events.

Benson (5) made a study of floods in the New England states (U.S.A.) using the multiple linear regression and correlation techniques. From this analysis, the annual peak discharge in cubic feet per second for a measured interval of T years was found to be

$$Q_{T} = aA^{b}S^{c}S^{d}_{T}I^{e}t^{f}0^{g}$$
(2.4)

where

A = drainage area (sq. mi.)

S = slope of main channel (ft/mi)

 $S_{t}$  = surface storage area plus 0.5%

I = 24-hr rainfall (inches) of recurrence interval of T years

t = average temperature in January <sup>O</sup>F before freezing

0 = orographic factor

b, c, d, e, f, g, = estimated coefficient from a multiple linear regression relationship of the type:

 $\log Q_{T} = \log a + b \log A + c \log S + d \log S_{T} + e \log I + f \log t +$   $g \log 0 \qquad (2.5)$ 

Benson and Matalas (6) used a regression technique to generate stream flow at ungaged sites from regional data in the United States. The process utilizes multiple regression relating monthly or annual average flows to the physiographic and climatological factors of the region.

The United States Geological Survey (7) also used this technique. Analysis of historic records is of little value in flood frequency studies for an ungaged watershed or watersheds with only a few years of record. The U. S. Geological Survey has summarized flood data and presented regional frequency methods for the United States. They separated the United States into several areas, and used multiple regression to fit streamflow in several recurrence intervals as a function of characteristics of drainage area and climatology.

> Literature Review of Water Research in Northeastern Thailand

Molagool's study (12) of the water balance in northeast Thailand

was calculated for representative localities using Thornethwaite's (49) method for assessing potential evapotranspiration which, although hitherto not extensively applied in tropical regions, yields very reliable results, the assessed runoff agreeing well with the observed runoff. Infiltration during the wet season amounts to about 20 mm/ month. Overall, 80 percent of the rainfall is returned to the atmosphere by evapotranspiration, 7½ percent is lost in infiltration, and the remaining 12½ percent runs into the Mekong River. There is a soil moisture deficit over the whole area amounting to 400-700 mm, which is most extreme around Chaiyaphum, least severe in the extreme northeast where the rainfall is highest. Comparing supply and demand, it is evident that no more than 10-15 percent of northeast Thailand can be irrigated for year 'round crop production without bringing in additional water from the Mekong.

Pravatmuang (8) reported on the hydrology of the lower Mekong River with particular reference to the Pa Mong Project. He analyzed the hydrologic conditions of the Mekong River over a distance of 180 km stretching from Vientiane to Kratie, in respect to mean, maximum and minimum flow, seasonal variation, seasonal variation, flow duration and flow recession, based on data compiled by the Harza Engineering Company for the Committee for Coordination of Investigation of the Lower Mekong River Basin, with an assessment of river flow parameters for the proposed Pa Mong project site 30 km upstream of Vientiane, Laos.

Discharge records covering the period 1923-1961 at Vientiane and Kratie and at the three intermediate stations (Thakek, Mukdahan, and Pakse) were used in the evaluation to test for consistency and to establish the geographic variation of the various parameters over the

area of interest, which may be summarized briefly as follows:

|                   | Vientiane<br>m <sup>3</sup> /sec | Kratie<br>m <sup>3</sup> /sec |
|-------------------|----------------------------------|-------------------------------|
| 1000-year flood   | 28,112                           | 95,369                        |
| 100-year flood    | 23,818                           | 79,967                        |
| mean flow         | 4,210                            | 13,912                        |
| 100-year drought  | 622                              | 1,200                         |
| 1000-year drought | 559                              | 1,130                         |

The United States Bureau of Reclamation (9) published the "Pa Mong Project Phase I Report" which related to water research of northeastern Thailand. From this preliminary report, it was determined that more detailed investigations of the proposed project were justified. These studies were carried out, and by Janury, 1970, the Bureau had completed the "Stage One Feasibility Report" covering the initial power portion of the project and an initial increment of irrigation development. This report was supplemented by a special "Optimization Study and Interest Rate Sensitivity Analysis" dated July, 1971. The phase II report, published in 1972 by the Bureau of Reclamation, incorporated data from the state one feasibility report, and provides an inventory of possible future irrigation development project and other possible ultimate. developments which also give some details about water research in northeastern Thailand.

Pinkayan and Sahagun (11) did a hydrologic study of the Thung Ma Hiu irrigation project in the Pibulmangsahan district of Ubon Rajathani province. The study dealt with the problems of hydrology drainage and flood control improvement in the project area and also related to northeastern Thailand.

Literature Review of Digital Computer Model for Simulation of Stream Flow

Several digital computer models were assessed by the author as to their application for simulation of stream flow records for future water research in northeastern Thailand.

The SSAR model was redesigned with significant improvements in 1966 and 1967, in conjunction with a training program in Systems Analysis conducted in Portland, Oregon, for Southeast Asian Engineers (39). The program was written in FORTRAN for use in the IBM 360 Computer system expected to be available for use by the Mekong Committee in Bangkok, Thailand, and by the North Pacific Division Office of the Corps of Engineers of the United States. This rewritten program intended for worldwide use indicated the ability to synthesize streamflow from a watershed with almost any combination of characteristics, whereas the previous version of the program was oriented mainly to application in the Pacific Northwest United States.

Preliminary basin characteristics and relationships affecting runoff were developed for many of the Lower Mekong subbasins that included the northeastern part of Thailand, during the training program in Portland, and this work has been continued in Bangkok, Thailand. Reconstitution studies have been made for all of the gaged areas of major tributaries. Design floods for three projects on the Lower Mekong were developed by Rockwood and Anderson (40). Twenty-eight subbasins and fourteen channel reaches were included in that analysis, utilizing basic hydrology relationships generalized from the work carried out under the training program.

The SSAR watershed model incorporates rainfall-runoff relationships and other factors in the hydrologic cycle for use in developing streamflows synthetically. Figure 2 is a schematic diagram of the SSAR model. Rainfall runoff versions of the model have been developed for use with Metric or English units.

Hydrologic elements and relationships illustrated in Figure 2 are described briefly as follows:

a) Rainfall and snowmelt (optional, not used in Mekong basins) are basic time-dependent data, specified by the user or computed by index relationships of point values.

b) Moisture Input (MI) is that quantity of water resulting from rainfall distributed uniformly on a given watershed area, within a specified period of time.

c) Soil Moisture Index (SMI) is used with an appropriate runoff relationship to separate the moisture input into two parts: 1) the runoff, and 2) soil moisture increase.

d) Evapotranspiration Index (ETI) is used to compute the reduction in soil moisture.

e) The Baseflow Infiltration Index (BII) is used to separate runoff into components of baseflow and direct runoff.

f) Baseflow is that component which is routed with a relatively long period of time before appearing as streamflow.

g) Direct Runoff is divided into surface and sub-surface components, and these two components are then routed separately.

h) Computed Streamflow is the sum of the routed components. Unfortunately, the SSAR model is the best for simulation of



Figure 2. Computation of Basin Runoff SSAR Model Source: (38)

streamflow for short periods of time (46). Therefore, the author could not use the SSAR model in this research.

Martin discussed the evolution of the conceptual model of streamflow (41) in the U.S.A. It may be useful for future water resources research in northeastern Thailand; however, many of the parameters used in these models are currently unavailable for northeastern Thailand, and considerable effort would be required to obtain them.

# United States Department of Agriculture Hydrological Laboratory (USDAHL) Model

The USDAHL model was developed using data from a 2.37 square mile experimental watershed at Coshocton, Ohio. Simulations were originally made on a single storm basis, and later expanded to synthesize a period of continuous record.

The USDAHL model was designed for very small watersheds; the extent of testing on large watersheds is unknown. Nevertheless, it does not seem useful for watersheds of the size normally encountered in forecasting. Lindsley (43) feels it is not particularly adaptable to the large watershed.

## Stanford Watershed Model IV (SWM IV)

A milestone in the use of the computer to simulate and thus predict river from rainfall was presented by a program developed at Stanford University. The Mark IV version (45), completed in 1966, was the result of six years of digital hydrologic simulation. Subsequently, the commercial applications of the program and its further evolution have been carried out by a private firm, Hydrocomp, set up by the originators of the program. The Mark IV program, which is used on an IBM 360/67, had the capability of simulating with considerable effectiveness, the hydrological behavior of complex river systems. With current information on rainfall and snow runoff, the effects of a flood wave could be calculated at any point down stream.

Basically, the simulation model was designed to accept input from any number of recording gages, and to produce flow at a series of points in the stream channel downstream. Streamflow could be calculated at several locations (flow points) in the stream channel--the area above each location being divided into segments selected from topographical considerations (one or more segments for each recording rain gage). The general model included a data section, and involved reading data cards and storing the data on magnetic tape for use in the simulation. The input to the simulation consisted essentially of options for controlling the program and of fixed parameters determined by watershed characteristics, such as mean rainfall or watershed area. Figure 3 gives the input sequence. The output provided a description of the streamflow conditions at a series of points in the stream channel system, and a number of optional data related to the basic output. The entire simulation model consisted of approximately 1300 statements. The significance of the model was that it could make information on historically recorded flows and simulated streamflows with a statistical estimate of simulation accuracy, and that it offered the opportunity to search out and evaluate all of the hydrometeorological records existing in the region.







## United States Geological Survey Watershed Model

This model is patterned after the Stanford watershed model, although it is a much simplified version. Its design purpose was to analyze storm peaks. It establishes antecedent soil moisture conditions, utilizes an infiltration equation, a two-level moisture storage system for water balance accounting, and linear storage and translation methods for routing to the basin outflow point. The pilot study for the model was on a 5.41 sq mi basin in the Blue Ridge Mountains. Tests have shown that this model has some degree of competence, but extensive testing of it does not appear to have been done. Since its emphasis was on flood peaks, it was designed to only simulate the surface runoff component of the flood hydrograph, and baseflow and seepage were simply not considered. Since these are the principal components of low flow, this model is not suitable for simulating low flow.

## National Weather Service River Forecast

## System (NWSRFS)

The acronym NWSRFS stands for National Weather Service River Forecast System, and refers to the system described in NWS HYDRO 14 (42). This system was assembled by the Hydrologic Research Laboratory (HRL) of the National Weather Services Office of Hydrology, in Silver Springs, Maryland, and includes programs to process data, compute mean basin precipitation (MBP), optimize parameters, verify model parameters, and produce operational river forecasts.

The heart of this system is the model of the hydrologic cycle. Selection of this portion of the model was based on a statistical

analysis of three watershed models: the SSAR model, the Sacramento model, and a version of the Stanford Watershed IV (SWM IV) model as modified by the HRL. The decision of which to choose was narrowed down to a choice between the modified SWM IV and the Sacramento model, and on the basis of statistical analyses completed by August, 1971, the modified SWM IV was chosen. It should be noted that testing performed after that date showed that there was no significant difference between the two, and Burnash (44) cited that the latest version of the Sacramento model is considerably better than the one involved in the testing. It is interesting to note that the HRL is now adopting the land phase of the Sacramento model to replace the land phase of the modified SWM IV currently used in the NWRFS (see Figure 4).

#### Sacramento Model

This is the model developed from the Generalized Streamflow Simulation System, which was documented in March, 1973 (44). It attempts to simulate streamflow by simulating all of the significant components of the hydrologic cycle in a simplified manner, which is consistent with observed soil moisture profiles. Each variable in the model then has a recognizable counterpart in the physical world. Data inputs are for twenty-four increments and were not justified for the average size basin (60-1200 sq mi). This model will be described through a description of its various components (see Figure 5) for simplified flow chart of the soil moisture accounting system of the model.



Figure 4. Flowchart of Soil Moisture Accounting Portion of the National Weather Service River Forecasting System



Source: (40)

## CHAPTER III

## HYDROLOGIC INFORMATION FOR NORTHEASTERN THAILAND

Topography, Drainage, Geologic Structure, and Soil

Northeastern Thailand is bounded by the Mekong River on the north and east, the Phanom Daugrek escarpment on the south, and the Petchabun Ridge on the west, the whole comprising a very flat inland basin or plateau tilted gently toward the southeastern corner. There are two low hills south of Udon Thani and Sakon Nakhon. Apart from those and the hills on the southern and western borders, the plain presents an aspect of unrelieved flatness, stretching to the horizon as far as the eye can see. The western edge of the plain at the foot of the Petchbum Mountains has an elevation of about 200 m (10). Along the Mekong, the elevation is for the most part less than 150 meters. The highest peak is Khao Laem (1328 meters).

The main rivers are the Mune and the Chee. Together, these drain four-fifths of the region. The Mune rises near Nakhon Ratchasima and flows eastward through Ubon Ratchathani to the Mekong, draining the northern slopes of the Phanom Dangrek Mountains. The Chee drains all of the western portion of the plain and most of the interior, flowing southeast to meet the Mune at Ubon. The combined drainage area of the two rivers is 125,500 square kilometers.

La Moreaux, et al. (37) cited that the region is structurally unique in occupying the center of a series of concentric mountain folds that encircle Burma, Thailand, Malaya, Indonesia, and the Phillipines. Except for a few small outcrops of basalt in the south and outcrops of limestone and igneous rocks along a north-south trending ridge between Loei and Udon, the plateau is made up of a series of fine-grained sandstone and shale beds overlain in valley depression by river terrace deposits. The beds are believed to have a total thickness of 1200 meters. Over a large part of the region embracing Khon Kaen, Kalasin, Ubon Ratchathani, Surin, Nakhon Ratchasima, and Chaiyaphum, the near-surface rocks are fine- to medium-grained sandstones, tan to pinkish-red in color, interbedded with mottled purple and gray fine sandy shale. These lithologic units are also found in the northeastern corner, north of Sakon Nakhon and east of Udon Thani and Nongk-Between these two areas and elsewhere around the perimeter in a hai. strip of 10-15 km width, the surface rocks are massive, fine- to coarse-grained sandstones, some conglomeritic, of a variety of colors and interbedded with shale. Geological descriptions are not precise enough to differentiate between pervious and impervious formations, but in general aspects, the coarser sandstones and the upper strata, being the least consolidated, are the most pervious. Alluvial beds of recent origin include clays, silts, sands and gravels, some of which are highly pervious.

As natural rock surfaces are rarely exposed in the interior and few borings have been put down, the structure of the plain must be largely conjectural. On such geological evidence as there is, it seems that the formations are slightly dished into a shallow structural
basin, dipping at very low angles to the center, the stratigraphy being exposed only in the hills at the edge.

Paddleton (3) cited that he classifies the soil into four main types: a) Khorat, fine sandy loams, b) Roi Et, fine sandy loams, c) Gula Ronghai, silt loams, and d) sandy soils derived from quartzite and silicious sandstone hills.

The first of these is found on foothill slopes, often with laterite; it is not usually cultivated. Roit Et fine sandy loams are the lower portions of this soil type which are diked and used for growing rice. Gula Ronghai silt loams are found in the lower depressions of the plain along the banks of the Mune, Chee, and Songkram Rivers, covered with sparse grass. The surface soil is light grey to whitish silt up to 30 cm in thickness, under which there is a heavy grey clay that sometimes has scattered iron or magnesium concretions in it. The last type occurs in the Phu Phan range south of Sakon Nakhon and the Petchabun hills to the west. The four groups are roughly of equal extent.

#### Climatology

Molagool (12) reported that the climate of the region is characteristically monsoonal. The southwest monsoon caused by low pressure over Central Asia, brings copious rainfall to the whole of Thailand (see Figures 6 and 7). The U. S. Bureau of Reclamation stated that (14)(15) this air mass moves in from the south, the air circulating in a counterclockwise direction. It picks up moisture from the Indian Ocean and produces rains starting about mid-May, with the heaviest occurring in August and September, creating what is known as the rainy season,



Figure 6. Map of Thailand and Air Stream Dominating Climatic Conditions



Figure 7. Mean Positions of the Inter-Tropical Convergence Zone at Different Months of the Year

lasting until mid-October. Occasionally, the continental Australian air mass will shift enough to the west to displace the southwest monsoon from the Indian Ocean. When this happens, drought conditions and crop failures may be expected over the basin area. The low runoff year of 1957 was the result of this weather phenomenon.

Starting in May, precipitation increases steadily as the wet season progresses, until a maximum of 250 mm is reached in September. Accompanying this, there is a slight rise in humidity and simultaneous decrease in temperature and radiation. The average wind velocity remains fairly steady at about 1.5 on the Beaufort Scale (5 miles an hour).

Precipitation falls off rapidly in October and November, in spite of occasional tropical storms that move inland from the South China Sea, bringing torrential rainfall near the coast but weakening rapidly as they penetrate inland.

#### The Reverse Airstream - the Northeast Monsoon

The U. S. Bureau of Reclamation (14)(15) also reported that cold air masses originating in the polar region move southward across Siberia and the mainland of China. This air mass has a clockwise motion and is cold and dry. The influence of this air mass is felt from mid-October until the middle of February when the weather is cool and practically no rain occurs. Following this monsoon is a transition period when the polar Pacific air is modified by tropical heat and moves into the area from the east and southeast. This gives a period of hot, dry weather from mid-February to mid-May, called the hot season. The intertropical front occurs where the southwest monsoon and the cold air masses from the north meet. It is along this front that the heavy rains occur during the wet season. This is sometimes referred to as the "trough," and rain can be predicted at its location.

The cyclonic storms that sweep into the mainland from the Pacific Ocean are the cause of intense precipitation. If two such storms occur with the second following the first by about one week, flooding is likely to occur. Actually, only about one out of ten cyclonic storms reach the mainland of Southeast Asia, and these generally weaken as they move inland. There are three types of cyclonic storms classified by the wind velocities attained in their generation:

1) depression: wind up to 61 kilometers per hour

2) tropical storm: wind 62 to 117 kilometers per hour

3) typhoon: cyclonic winds greater than 117 kilometers per hour.

The northeast monsoon starts in December. The temperature falls from  $26^{\circ}$ C to  $22^{\circ}$ C as the cooler, drier air flows south. For the next three months, rainfall is negligible. Temperatures rise quickly in January, then more slowly to a maximum of  $30^{\circ}$ C in May. During this period, the weather is hot and dry, moderated slightly by light breezes, cool nights, and very occasional light showers. Relative humidity reaches a minimum of 60 percent in March. Statistics concerning these are set out in Tables XXII-XXXIV in Appendix A (14)(15)(16) (17).

#### CHAPTER IV

#### MATHEMATICS OF REGIONAL FREQUENCY ANALYSIS

### Introduction

Riggs (18) stated that regional analysis is concerned with extending records in space as differentiated from extending them in time. Because stream flow records are collected at only a few of the many sites where information is needed, gaging station information must be transferred to ungaged sites.

The specific purposes of a regional analysis, then, are to provide estimates of the characteristics of the frequency distributions at the ungaged sites, and to improve estimates of the frequency distributions of flow characteristics at gaged sites. Consider, for example, a frequency curve of annual floods derived from 50 years of record. This frequency curve is an estimate of the population frequency curves. It will differ from the true curve, however, because a 50-year sample of floods is never completely representative. Frequency curves for other streams would also differ from their respective true curves. If these several curves were based on samples from the same population frequency curve and if they were independent of each other, then we would expect that an average of the several curves would be a better estimate of the population curve than any one of the samples. This averaging of curves can be accomplished by regional analysis.

No group, or even pair, of stream sites would have the same population frequency distribution of floods. The true distribution at a site depends on a great many factors, the principal ones being basin characteristics such as size, topography, geology, and climate. Thus, the variability among a group of flood frequency curves is made up of two components: chance variation due to sampling, and variation due to differences in basin characteristics. A regionalization procedure should average the chance variation but should maintain the variation due to basin characteristics. This is a difficult task because the total variation cannot be neatly separated into the two types of variation. The degree of success attained by a given method of regionalization depends on the relative sizes of the variations due to chance and those due to differences in basin characteristics, the degree of independence of the samples at the various gaging stations, the quality of the mathematical representation of basin characteristics, and the general suitability of the method.

#### Log Pearson Type III

A frequency curve relates magnitude of a variable to frequency of occurrence. The curve is an estimate of the cumulative distribution of the population of that variable and is prepared from a sample of data.

Frequency curves have many uses in hydrology. Flood frequency curves are widely used in the design of bridge openings, channel capacities, and roadbed elevations; for flood plain zoning, and in studies of economics of flood protection works. Frequency curves of annual low flows are used in design of industrial and domestic water supply systems,

classification of streams as to their potential for waste dilution, definition of the probable amount of water available for supplemental irrigation, and maintenance of certain channel discharges as required by agreement or by law. Frequency curves of annual mean flows are sometimes used in studies of the carryover of annual storage (19).

Frequency curves also provide a means of classifying data for use in subsequent analyses. For example, Benson (20) used intensity of rainfall for a given frequency in his regional flood frequency analysis for New England, and Riggs (21) used a frequency curve of runoff in excess of assured flow in a forecasting problem. Many other applications have been and can be made.

In 1967, the U. S. Water Resources Council recommended the use of the Pearson Type III distribution with log transformation of the data (log-Pearson Type III distribution) as a base method for flood flow frequency studies (22). As pointed out in that report, further studies were needed covering various aspects of flow frequency determinations.

In 1974, the U. S. Water Resources Council provided an extension and updated its previous report (23). It provides a more complete guide for flood flow frequency analysis, incorporating accepted technological methods with sufficient detail to promote uniform application. This guide is limited to defining flood potentials in terms of peak discharge and exceedence probability at locations where a systematic record of peak flood flow is available.

#### Multiple Regression Analysis

#### General

Yevjavich (25) stated that the association of three or more variables can be investigated by the multiple regression and correlation analyses.

The multiple regression relation may be expressed in the form

$$Y = f(X_1, X_2, X_3, X_4, X_5, ...)$$
(4.1)

where

 $X_1, X_2, X_3, \dots X_m$  are m independent variables. This equation gives the estimate of Y for given values of all other variables.

If equation (4.1) is linear, the regression is referred to as MULTIPLE LINEAR REGRESSION and the association is MULTIPLE LINEAR COR-RELATION.

Because linear equations are easier to treat than are nonlinear multiple relations, variables of nonlinear relations in hydrology are often transformed to linear relations for multiple regression analysis.

### Linear Regression With Several Variables

If there are m variables to correlate, including one dependent and m-l externally independent, the general equation for multiple linear regression is

$$Y = B_0 + B_1 X_1 + \dots + B_1 X_1 + \dots + B_m X_m$$
(4.2)

where  $B_0$  is the intercept and  $B_i$  is the multiple regression coefficient

of the dependent variable Y on the independent variable Xi with all other variables kept constant.

The principal results for the multiple regression model (equation 4.2) can be shown in matrix form.

To express the multiple linear regression model (equation 4.2):

$$Y_i = B_0 + B_i X_{i1} + B_2 X_{i2} + \dots + B_m X_{im} + \varepsilon_i$$
 (4.3)

in matrix form, we need to define the following matrices for the n observations:





$$Y = XB + \varepsilon$$
(4.8)  
nx1 nx(m+1)(m+1)x1 nx1

where

Y is a vector of observations

- B is a vector of parameters
- X is a matrix of constants

 $\boldsymbol{\epsilon}$  is a vector of independent normal random variables with

expectation  $E(\varepsilon) = 0$  and

variance-covariance matrix  $\sigma^2(\varepsilon) = \sigma^2 I$ .

Consequently, the random vector Y has expectation:

$$E(Y) = YB \tag{4.9}$$

and the variance-covariance matrix of Y is

$$\sigma^2(Y) = \sigma^2 I \tag{4.10}$$

### Least Squares Estimators

Denote the vector of the estimates of the regression coefficients  $B_0$ ,  $B_1$  ....,  $B_m$  as b:

(4.11)

The least squares normal equations for the general multiple linear regression (4.8) are:

$$(X'X)'$$
 B = X' Y (4.12)  
(m+1)x(m+1) (m+1)x1 (m+1)n nx1

and the least squares estimators are

$$b = ('X')^{-1} X'Y \qquad (4.13)$$
  
(m+1)x1 (m+1)(m+1) m+1x1

(4.15)

# Analysis of Variance Result

(4.14)

Let the vector of the fitted values  $\hat{Y}_i$  be denoted by  $\hat{Y}$  and the vector of the residual terms,  $e_i = Y_i - \hat{Y}_i$ , be denoted by e:

$$Y = \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix} \qquad e = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ nx1 \end{bmatrix}$$

The fitted values are represented by

$$\hat{Y} = Xb$$

(4.16)

and the residual vector by

$$e = Y - \hat{Y}$$
(4.17)

Sums of Squares and Mean Squares

The sums of squares for the analysis of variances are:

Sums of squares total = SSTOT = 
$$Y'Y - n\overline{Y}^2$$
 (4.18)

Sums of squares regression = SSR =  $b'X'Y - n\overline{y}^2$  (4.19)

Sums of squares error = 
$$SSE = e'e = Y'Y - b'X'Y'$$
 (4.20)

The sum of squares total, as usual, has n-1 degrees of freedom associated with it. The sum of squares error has n-(m+1) degrees of freedom associated with it since m+1 parameters need to be estimated in the regression function for model (4.8). Finally, the sum of squares regression has m+1-1 = m degrees of freedom associated with it, representing the number of X variables  $X_1 \dots X_m$  for which a coefficient has been estimated.

Table I shows these analyses of variance results, as well as the mean squares MSR and MSE:

(MEAN SQUARE REGRESSION) = MSR = 
$$\frac{\text{sum of square regression}}{\text{m}}$$
 (4.21)

$$(MEAN SQUARE ERROR) = MSE = \frac{sum of square error}{n-m+1}$$
(4.22)

The expectation of MSE is  $\sigma^2$ , as for simple regression. Neter and Wasserman (27) stated that the expectation of MSR is  $\sigma^2$  plus a quantity which is positive if any of the  $B_k$  (k = 1, ...., m) coefficients is

not zero. For instance, when m+1-1 = m = 2, then

$$E(MSR) = \sigma^{2} + B_{1}^{2} \Sigma(X_{11} + \bar{X}_{1})^{2} + B_{2}^{2} \Sigma(X_{12} - \bar{X}_{2})^{2} + 2B_{1}B_{2} \Sigma(X_{11} - \bar{X}_{1})(X_{12} - \bar{X}_{2}) /2 . \qquad (4.23)$$

Thus, if both  $B_1$  and  $B_2$  equal zero,  $E(MSR) = \sigma^2$ . Otherwise,  $E(MSR) > \sigma^2$ .

### TABLE I

### ANOVA TABLE FOR GENERAL LINEAR REGRESSION MODEL (4.24)

| Source of<br>Variation | Sum of Square                    | DF    | MS                        |
|------------------------|----------------------------------|-------|---------------------------|
| REGRESSION             | $SSR = b'X'Y' - n\overline{Y}^2$ | m     | $MSR = \frac{SSR}{m}$     |
| ERROR                  | SSE = Y'Y - b'X'Y                | n-m-1 | $MSE = \frac{SSE}{n-m+1}$ |
| TOTAL                  | SSTO = $Y'Y-n\overline{Y}^2$     | n-1   | -                         |

### Coefficient of Multiple Determination

The coefficient of multiple determination, denoted by  $R^2$ , is defined as follows:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

(4.25)

It measures the proportionate reduction of total sum of squares variation in Y associated with the use of the set of X variables  $X_1, \ldots, X_m$ . The coefficient of multiple determination  $R^2$  reduces to the coefficient of simple determination  $r^2$  (simple regression) when m = 1; that is, when one independent variable is in the model (equation 3.8). Thus, for  $R^2$  we have

$$0 \stackrel{<}{=} R^2 \stackrel{<}{=} 1$$
 (4.26)

 $R^2$  assumes the value of 0 when all  $b_k = 0$  (k = 1, ...., m).  $R^2$  takes on the value 1 when all observations fall directly on the fitted response surface; that is, when  $Y_i = \hat{Y}_i$  for all i.

#### Coefficient of Multiple Correlation

The coefficient of multiple correlation R is the positive square root of  $R^2$ :

 $R = \sqrt{R^2}$ .

(4.27)

### Inferences About Regression Parameters

The least squares estimators in b are unbiased:

E(b) = B.

(4.28)

The variance-covariance matrix V(b):

$$V(b) = \begin{bmatrix} V(b_{o}) & C(b_{o}b_{1}) & \cdots & \cdots & -C(b_{o}, b_{m}) \\ C(b_{1}, b_{o}) V(b_{1}) & \cdots & \cdots & -C(b_{1}, b_{m}) \\ \vdots & \vdots & \vdots \\ C(b_{m}, b_{o}) C(b_{m}, b_{1}) & V(b_{m}) \end{bmatrix}$$

is given by

$$V(b) = \sigma^2 (X'X)^{-1}$$
 (4.31)

From  $S^2(b)$ , one can obtain  $S^2(b_0)$ ,  $S^2(b_1)$  or whatever other variance is needed or any needed covariances.

#### Weighted Least Squares

Draper and Smith (26) state that it sometimes happens that some of the observations used in a regression analysis are "less reliable" than others. What this usually means is that the variances of the observations are not equal; in other words, the matrix  $V(\varepsilon)$  is not of the form  $I\sigma^2$  but is diagonal with unequal diagonel elements. It may also happen, in some problems, that the off diagonal elements of  $V(\varepsilon)$  are not zero; that is, that the observations are correlated.

When either or both of these events occur, the ordinary least squares estimation formula

$$b = (X'X)^{-1} X'Y$$
(4.33)

does not apply and it is necessary to amend the procedures for obtaining estimates. The basic idea is to transform the observations Y to other

38

(4.29)

variables Z which do appear to satisfy the usual tentative assumptions [that Z = QB + f, E(f) = 0, V(f) =  $I\sigma^2$ , and for F-test and confidence intervals to be valid, that  $f \sim N(0, I\sigma^2)$  and then to apply the usual (unweighted) analysis to the variables so obtained. The estimates can then be re-expressed in terms of the original variables Y. One shall describe how the usual regression procedures are changed. Suppose the model under consideration is

$$Y = XB + \varepsilon \tag{4.34}$$

where

$$E(\varepsilon) = 0, (V(\varepsilon) = V^{2}, \text{ and } \varepsilon^{N}(0, V\sigma^{2})$$
(4.35)

It can be shown that for V non-singular it is possible to find a unique non-singular symmetric matrix P such that

 $P'P = PP = P^2 = V$  (4.36)

Then let

$$f = P^{-1}\varepsilon$$
, so that  $E(f) = 0$  (4.37)

Now it is a fact that, if f is a vector random variable such that E(f) = 0, then E(ff') = V(f) where the expectation is taken separately for every term in the square nxn matrix ff'. Thus

$$V(f) = E(ff') = E(P^{-1}\varepsilon\varepsilon'P^{-1}) [since (P^{-1})' = P^{-1})]$$
  
=  $P^{-1}E(\varepsilon\varepsilon')P^{-1}$   
=  $P^{-1}PPP^{-1}\sigma^{2} [since E(\varepsilon\varepsilon') = \sigma^{2}V = \sigma^{2}PP]$   
=  $I\sigma^{2}$  (4.38)

It is also true that f is normally distributed, since the element of f consists of linear combinations of the elements of  $\varepsilon$  which were normally distributed.

Therefore, if equation (4.34) is multiplied by  $P^{-1}$ , a new model is obtained:

$$P^{-1}Y = P^{-1}XB + P^{-1}\varepsilon$$
 (4.39)

or

$$Z = QB + f$$
 (4.40)

with an obvious notation. It is now clear that one can apply basic least squares theory to equation (4.40), since E(f) = 0 and V(f) =  $I_{\sigma}^{2}$ . The residual sum of squares is

$$f'f = \varepsilon'V^{-1}\varepsilon = (Y-XB)'V^{-1}(Y - YB),$$
 (4.41)

The normal equations Q'Qb = Q'Z become

$$X'V^{-1} XB = X'V^{-1}Y$$
 (4.42)

with solution

$$b = (X'V^{-1}X)^{-1}X'V^{-1}Y$$
(4.43)

when the matrix  $(X'V^{-1}X)$  is nonsingular. The regression sum of squares is

$$b'Q'Z = Y'V^{-1}X(X'V^{-1}X)^{-1}X'V^{-1}Y$$
(4.44)

and the total sum of squares is

$$Z'Z = Y'V^{-1}Y {4.45}$$

The difference between equations (4.34) and (4.37) provides the residual sum of squares. The sum of squares due to the mean is  $(\Sigma Z_i)^2/n$  where  $Z_i$  is the i<sup>th</sup> element in the vector Z. The variance-covariance matrix of b is

$$V(b) = (Q'Q)^{-1}\sigma^{2} = (X'V^{-1}X)^{-1}\sigma^{2}.$$
 (4.46)

A joint confidence region for all of the parameters can be obtained from

$$(b-B)'Q'Q(b-B) = \left[\frac{p}{n-p}\right] (Z'Z-b'Q'Z)F(p,n-p, 1-\alpha)$$
 (4.47)

after substituting from equations (4.44) and (4.45) and setting  $Q = P^{-1}X$ , if so desired.

The simplest application of weighted least squares occurs when the observations are independent but have different variances so that



(4.48)

In a practical problem, it is often difficult to obtain specific information on the form of V at first. For this reason, it is sometimes necessary to make the (known to be erroneous) assumption V = 0 and then attempt to discover something about the form of V by examining the residuals from the regression analysis.

If a weighted least squares analysis were called for but an ordinary least squares analysis were performed, the estimates obtained would still be unbiased but would not have minimum variance, since the minimum variance estimates are obtained from the correct weighted least squares analysis.

If standard least squares is used, then the estimates are obtained from

$$b_0 = (X'X)^{-1}X'Y$$
 and  
 $E(b_0) = (X'X)^{-1}X'XB = B$  (4.49)

but

$$V(b_0) = (X'X)^{-1}X' [V(Y)] X(X'X)^{-1}$$
 (4.50)

$$= (X'X)^{-1}X'VX(X'X)^{-1}\sigma^{2}$$
(4.51)

If the correct analysis is performed using equation (4.46), then

$$V(b) = (X'V^{-1}X)^{-1}\sigma^2$$
(4.52)

and, in general, elements of this matrix would provide smaller variances both for individual coefficients and for linear functions of the coefficients.

### An Example of Weighted Least Squares

A fit of the following model is desired. Suppose one wishes to fit the model

$$E(Y) = BX$$

Suppose that

where the W's are weights to be specified. This means that



(4.55)

Applying the general results above, one finds after reduction that

(4.53)

(4.54)

$$b = \frac{\sum W_i X_i Y_i}{\sum W_i X_i^2}$$

where all summations are from  $i = 1, 2, \ldots, n$ .

<u>Case 1</u>. Suppose  $\sigma_i^2 = V(Y_i) = kX_i$ --that is, variance of  $Y_i$  is proportional to the size of the corresponding  $X_i$ , then  $W_i = \sigma^2/kX_i$ . Hence,

$$b = \frac{\Sigma Y_i}{\Sigma X_i} = \frac{\overline{Y}}{\overline{X}}$$
(4.57)

Thus, if the variance of  $Y_i$  is proportional to  $X_i$ , the best estimate of the regression coefficient is the mean of  $Y_i$ , divided by the mean of  $X_i$ . In addition,

$$V(b) = \frac{\sigma^2}{\Sigma W_i X_i^2} = \frac{k}{\Sigma X_i}$$
(4.58)

<u>Case 2</u>. Suppose  $\sigma_i^2 = V(Y_i) = kX_i^2$ --that is, the variance of  $Y_i$  is proportional to the square of the corresponding  $X_i$ --then  $W_i = \sigma^2/kX_i^2$ . Hence,

$$b = \frac{\Sigma(Y_i/X_i)}{\Sigma 1}$$
(4.59)

$$=\frac{\Sigma(Y_i/X_i)}{n} \qquad (4.60)$$

Thus, if the variance of the  $Y_i$  is proportional to  $X_i^2$ , the best estimate of the regression coefficient is the average of the n slopes

(4.56)

obtained, one from each pair of observations  $Y_i/X_i$ . Also

$$V(b) = \frac{\sigma^2}{\Sigma W_i \chi_i^2} = \frac{k}{n}$$
(4.61)

#### Application of Multiple Regression and

#### Weighted Least Squares

In this study, a multiple regression technique will be used as a way to find the peak flow for selected recurrence intervals of 2, 5, 10, 25, 50, and 100 years.

Annual peak flow of the drainage area will be expressed as a function of drainage basin characteristics and climatic conditions by using multiple regression analysis as an equation of the form

 $Y = F(X_1, X_2, X_3, ..., X_n)$ 

where

Y = dependent variable  $(Q_2, Q_5, Q_{10}, Q_{25}, Q_{50}, and Q_{100})$ 

F = the function, for example, linear function or logarithmic
function

X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>,....X<sub>n</sub> = drainage basin characteristics and climatic conditions

The weighted least squares will be used to adjust the best fit of the equation when the residuals have different variances.

Analysis of the model and results of flood flow frequency in the form of multiple regression model will be developed in the next chapter.

#### CHAPTER V

# STATISTICAL MODEL AND ANALYSIS OF FLOOD FREQUENCIES

#### Flood Records

Systematic collection of flood records (peak stage and discharge) began in northeastern Thailand between 1950 and 1961 (28)(29)(30)(31). During this period, many continuous record gaging stations were installed throughout northeastern Thailand to define the flow characteristics of streams. Some streams have records prior to 1960, but these records are generally fragmentary and, in most cases, only stream stages are available. Generally, the records prior to 1960 are for the large basins only. Since the 1962-1974 era, many additional stream flow stations have been installed.

The most notable addition to the collection of flood records was begun in the early 1960s by the Committee of the Lower Mekong Basin. The Committee's contribution represents a part of a comprehensive plan for ultimate development of the water resources of that part of the Mekong River basin lying in the riparian countries, under the sponsorship of the United Nations (32). During that time, about 20 stream sites were instrumented for the collection of flood data. The number of sites has been increased, and some have been discontinued because hydraulic structures have been built, or because the site was unusable,

but more than 40 sites are still in operation at this time.

The flood frequency analysis for streams of northeastern Thailand, which is presented in the following section of this thesis, is based on flood records through 1974 at 40 sites. For this analysis, the only records used were those with at least five years of flood peak data. A summary of the distribution of data and average length of record per station is as follows:

#### TABLE II

| Drainage Area<br>sq. km. | No. of<br>Stations | Average Length<br>of Record, Years |  |
|--------------------------|--------------------|------------------------------------|--|
| 1- 100                   | 1                  | 9                                  |  |
| 100- 1,000               | 11                 | 9                                  |  |
| 1,000- 10,000            | 18                 | 11                                 |  |
| 10,000-100,000           | 6                  | 15                                 |  |
| 100,000-200,000          | 2                  | 13                                 |  |
|                          |                    |                                    |  |

# SUMMARY OF THE DISTRIBUTION OF DATA AND AVERAGE LENGTH OF RECORD PER STATION

Appendix B of this report contains a listing of all flood records with at least five annual peaks for gaging stations in northeastern Thailand. A total of 38 stations is included.

#### Flood Frequency Relations

The relation of flood peak magnitude to probability of occurrence, or recurrence interval, is generally referred to as a flood frequency relation. Probability of occurrence is the percent chance of a given flood magnitude being exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence. It is emphasized that a recurrence interval is an average interval. For instance, a flood having a probability of occurrence of two percent has a recurrence interval of 50 years. This does not mean that each 50 years this flood will be exceeded, but that it will be exceeded on the average of once every 50 years. In fact, it may be exceeded in successive years, or even twice in the same year.

The probability of a flood of given magnitude occurring in a given period of time can also be calculated. For instance, there is a 64 percent chance that the 50-year flood will be exceeded at least once in a given 50-year period. Table III lists the probabilities of experiencing a flood of selected recurrence interval during various periods of time.

# Log Pearson Type III Distribution for Northeastern Thailand Streams

The flood frequency relation for a stream where gaging station records are available can be defined by fitting the array of annual peak discharges (largest instantaneous discharge for each year) to a theoretical distribution. The U. S. Water Resources Council (23) had recommended a uniform technique for determining flood flow frequencies by fitting the logarithms of the annual peak discharges to a Pearson

#### TABLE III

#### PROBABILITY THAT AN EVENT OF GIVEN RECURRENCE INTERVAL WILL BE EXCEEDED AT LEAST ONCE DURING PERIODS OF VARIOUS LENGTHS

| Recurrence | ŕ  | Probability, in | percent, for ind | i-  |
|------------|----|-----------------|------------------|-----|
| (Years)    | 2  | 10              | 50               | 100 |
| 2          | 97 | 99.9            | a                | a   |
| 10         | 41 | 65              | 99.5             | `a  |
| 50         | 10 | 18              | 64               | 87  |
| 100        | 5  | 10              | 39               | 63  |

a = probability greater than 99.9 but less than 100 percent

The details of the Log-Pearson Type III calculations are described in the Water Resources Council Bulletin 15 (23).

The computer program used in this research was furnished by the U. S. Geological Survey (24).

# Flood Frequency at Ungaged Sites on Streams of Northeastern Thailand

Flood frequency relation can be estimated for ungaged sites for northeastern Thailand through the use of the equations and graphs presented in this section, and for the practical engineering use in the section on Engineering Application. The equations were developed by relating the 2-, 5-, 10-, 25-, 50-, and 100-year floods to six basin and climatic characteristics.

The following parameters are defined for use in this study:

1) Drainage Area (DA). The contributing drainage area of the basin measured, in square kilometers  $(km^2)$ , measured from the topographic map of northeastern Thailand (34) and checked with the hydrologic report of the Royal Irrigation Department and National Energy Authority of Thailand (28)(29)(30)(31).

2) Annual Precipitation (ANRAIN). The mean annual precipitation for the basin, in centimeters (cm), during the period 1951-1971 (29)(48) (see Figure 9).

3) Annual Evaporation (EVAP). The mean annual evaporation for the basin, in centimeters, during the period 1954-1970 (14)(29)(see Appendix A).

4) Average Elevation of the Basin (EL). For this study, the mean basin elevation, in thousands of meters above sea level, was used. This parameter was evaluated by laying grid over a topographic map (34) of each basin and determining the mean of the elevations under each grid intersection. The grid spacing was selected so as to provide no less than five intersections within the basin boundary.

5) Surface Storage (SS). The index of each basin's surface storage was computed as the percentage of total drainage area occupied by lakes, ponds, rice paddies, and swamps. To avoid difficulties associated with the use of zeros in the regression analysis when logarithms were taken, all values of percent of drainage area in lakes, ponds, and swamps were increased by values of one percent. 6) Main-channel Length (LENGTH). This is a variable indicating the basin shape in conjunction with the basin area. Values of mainchannel length, in kilometers, were measured from a topographic map of the Royal Thai Army (34).

The parameter proving most significant for this study was found to be drainage area sizes by using the statistical package called "Stepwise Regression" from the Statistic Analysis System Package Program (46).

In this stepwise regression procedure, several regressions are computed, the first one including all six basin and climatic characteristics: drainage area, annual precipitation, annual evaporation, average elevation of the basin, surface storage, and main channel length. A "backward elimination" computer program will make the first computation, eliminate the least significant variable, and recompute the regression, then continue the elimination process until only the drainage area remains.

A preferable approach is to select carefully a few variables having clear physical relationships to the flood peak, and to compute the regression equation and check regression coefficients for significance. A computer program called "forward selection" regression will select the most highly related variable and test it for significance, then select the next most highly related variable, compute the regression on the two and test for significance. It then proceeds similarly until all of the significant variables are included in the regression. The only one highly significant in this procedure is the drainage area.

Table IV shows the linear model equations. Table V shows the logarithmic model equations. Each equation contains six variables

# TABLE IV

| Model Forms                                                                                           | R <sup>2</sup> | Variable                                   | Observed<br>Significant<br>Level > ltl                    |
|-------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|-----------------------------------------------------------|
| Q <sub>2</sub> = -247.07 + 0.03 DA + 0.19 ANRAIN<br>- 1.39 LENGTH + 0.15 EVAP - 0.3155SS<br>- 0.01 EL | 0.952          | DA<br>ANRAIN<br>LENGTH<br>EVAP<br>SS<br>EL | 0.0001*<br>0.1069<br>0.1516<br>0.5387<br>0.7773<br>0.9319 |
| Q <sub>5</sub> = 52.27 + 0.04 DA - 2.80 LENGTH<br>- 0.08 EL + 0.08 ANRAIN + 0.12 EVAP                 | 0.945          | DA<br>LENGTH<br>EL<br>ANRAIN<br>EVAP<br>SS | 0.0001*<br>0.0559<br>0.6739<br>0.6375<br>0.6862<br>0.7082 |
| Q <sub>10</sub> = 360.710 + 0.04 DA - 3.77 LENGTH<br>+ 1.45 S S - 0.14 EL + 0.06 EVAP                 | 0.925          | DA<br>LENGTH<br>SS<br>EL<br>EVAP<br>ANRAIN | 0.0001*<br>0.0594<br>0.5407<br>0.5936<br>0.8720<br>0.9099 |
| Q <sub>25</sub> = 901.73 + 0.05 DA - 4.96 LENGTH<br>+ 2.57 SS - 0.22 ANRAIN - 0.25 EL<br>- 0.05 EVAP  | 0.875          | DA<br>LENGTH<br>SS<br>ANRAIN<br>EL<br>EVAP | 0.0001*<br>0.1092<br>0.5145<br>0.5507<br>0.5634<br>0.9377 |

LINEAR MODEL EQUATIONS PEAK FLOW RELATED TO SIX VARIABLES

| TABLE | I۷ | (Continued) |
|-------|----|-------------|
|-------|----|-------------|

| Model Forms                                                                                            | R <sup>2</sup> | Variable                                   | Observed<br>Significant<br>Level > ltl                    |
|--------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|-----------------------------------------------------------|
| Q <sub>50</sub> = 1448.97 + 0.06 DA - 5.71 LENGTH<br>+ 3.38 SS - 0.43 ANRAIN<br>- 0.35 EL - 0.15 EVAP  | .809           | DA<br>LENGTH<br>SS<br>ANRAIN<br>EL<br>EVAP | 0.0001*<br>0.1877<br>0.5137<br>0.5921<br>0.5648<br>0.8548 |
| Q <sub>100</sub> = 2135.24 + 0.06 DA - 6.28 LENGTH<br>+ 4.18 SS - 0.70 ANRAIN - 0.46<br>EL - 0.28 EVAP | .716           | DA<br>LENGTH<br>SS<br>ANRAIN<br>EL<br>EVAP | 0.0001*<br>0.3027<br>0.5637<br>0.6681<br>0.5859<br>0.8134 |

\*denotes the significant variable

# TABLE V

# LOG MODEL EQUATIONS PEAK FLOW RELATED TO SIX VARIABLES

| Model Forms                                                                                                                       | R <sup>2</sup> | Variable                                                           | Observed<br>Significant<br>Level > ltl                    |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|-----------------------------------------------------------|
| Log Q <sub>2</sub> = - 5.77 + 0.51 log DA + 1.18 log ANRAIN<br>+ 0.22 log EL + 0.59 log EVAP<br>- 0.008 log SS - 0.004 log LENGTH | 0.811          | log DA<br>log ANRAIN<br>log EL<br>log EVAP<br>log SS<br>log LENGTH | 0.0001*<br>0.0564<br>0.5365<br>0.5937<br>0.9557<br>0.9795 |
| Log Q <sub>5</sub> = - 2.42 + 0.55 log DA + 0.61 log EVAP<br>+ 0.29 log ANRAIN + 0.11 log EL<br>+ 0.04 log LENGTH + 0.03 log SS   | 0.800          | log DA<br>log EVAP<br>log ANRAIN<br>log EL<br>log LENGTH<br>log SS | 0.0001*<br>0.6057<br>0.6430<br>0.7094<br>0.8309<br>0.8358 |
| Log Q <sub>10</sub> = - 0.96 + 0.51 log DA + 0.61 log EVAP<br>+ 0.07 log LENGTH - 0.12 log ANRAIN<br>+ 0.05 log SS + 0.08 log EL  | 0.777          | log DA<br>log EVAP<br>log LENGTH<br>log ANRAIN<br>log SS<br>log EL | 0.0001*<br>0.5861<br>0.7330<br>0.8461<br>0.7686<br>0.7983 |
| Log Q <sub>25</sub> = 0.428 + 0.48 log DA 0.62 log EVAP<br>- 0.52 log ANRAIN + 0.11 log LENGTH<br>+ 0.063 log SS + 0.061 log EL   | .734           | log DA<br>log EVAP<br>log ANRAIN<br>log LENGTH<br>log SS<br>log EL | 0.0001*<br>0.5454<br>0.5243<br>0.6370<br>0.7195<br>0.8493 |

TABLE V (Continued)

| Model Forms                                                                                                                       | R <sup>2</sup> | Variable                                                           | Observed<br>Significant<br>Level > ltl                    |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|-----------------------------------------------------------|
| Log Q <sub>50</sub> = 1.24 + 0.46 log DA - 0.75 log ANRAIN<br>+ 0.63 log EVAP + 0.13 log LENGTH<br>+ 0.07 log SS + 0.06 log EL    | 0.691          | log DA<br>log EVAP<br>log ANRAIN<br>log LENGTH<br>log SS<br>log EL | 0.0004*<br>0.6654<br>0.5137<br>0.5993<br>0.7051<br>0.8688 |
| Log Q <sub>100</sub> = 1.85 + 0.441 log DA - 0.96 log ANRAIN<br>+ 0.65 log EVAP + 0.16 log LENGTH<br>+ 0.084 log SS + 0.07 log EL | 0.648          | log DA<br>log ANRAIN<br>log EVAP<br>log LENGTH<br>log SS<br>log EL | 0.0011*<br>0.2624<br>0.5123<br>0.5604<br>0.6924<br>0.8565 |

\*denotes the significant variable

related to drainage basin characteristics and climatic conditions. The  $R^2$  (coefficient of determination) for each model and probability of getting a greater students t distribution value (observe significant level more than .05) for each variable is indicated. These two tables show that the drainage area is the most significant variable of the models. The theory concerned in this stepwise regression is shown in the section of a multiple regression technique, Chapter IV. For the equations containing 5, 4, 3, and 2 independent variables, see Appendix C. Again, the drainage area was the most significant variable in all of these analyses.

#### Relation of Flood Peaks of Selected Recur-

#### rence Interval and Drainage Area

Standard simple linear regression techniques were used to determine the relation of the drainage area to flood peaks of selected recurrence intervals. The model used in the regression analysis is of the form

$$Q_{T} = a + bDA \tag{5.1}$$

and

$$Q_{T} = aDA^{b}$$
(5.2)

where

Q<sub>T</sub> = peak discharge, in cubic meters per second (m<sup>3</sup>/sec) for recurrence interval T years

a = regression constant

b = regression coefficient

DA = drainage area square kilometers (km<sup>2</sup>),

The weighted least squares model given in equation (4.54) was used with  $W_T$  being the variance of the  $Q_T$  values as derived by Hardison (36). This weight function was used in an attempt to minimize the effect of the "less reliable" basin for this purpose.

$$W_{T} = N/(1 + 2RBK_{T} + B^{2}K_{T} + B_{2}K_{T}^{2}/2)$$
 (5.3)

where

N = number of years

R = correlation coefficient of the sample means and the sample standard deviations given by Kendall (35). Values of R for use in this equation have been determined by sampling to be about 0.3 for G of 0.5, 0.5 for G of 1.0, and 0.65 for G of 1.5. For negative skew coefficients, values of R are positive in sign to those for the corresponding positive skew coefficient

 $B = (0.75G^2 + 1)$  varies with G

- G = coefficient of skewness for each stream basin
- K<sub>T</sub> = from Table I, from "A Uniform Technique for Determing Flood Flow Frequencies" (23).

The coefficients of  $K_T$ , G vary in both linear model equation (5.1) and exponential model equation (5.2). The coefficients b were all significant at the five percent level of significance. The linear regression model and log transform model which were presented in Tables VI and VII, show the standard error and the  $R^2$ . The predicted and observed values of  $Q_2$ ,  $Q_5$ ,  $Q_{10}$ ,  $Q_{25}$ ,  $Q_{50}$ , and  $Q_{100}$  were shown in Tables

# TABLE VI

WEIGHTED LINEAR AND LOG TRANSFORM MODEL OF 36 BASINS

| Variable             | a      | b    | s <sup>2</sup> | R <sup>2</sup> | Form of<br>Mathematical Model            | Model<br>Name |
|----------------------|--------|------|----------------|----------------|------------------------------------------|---------------|
| Q <sub>2</sub>       | 128.34 | 0.02 | 421.92         | 0.910          | $Q_2 = 128.33 + 0.02DA$                  | B2            |
| Q <sub>5</sub>       | 218.17 | 0.03 | 362.48         | 0.932          | $Q_5 = 218.16 + 0.03DA$                  | B5            |
| Q <sub>10</sub>      | 265.61 | 0.03 | 427.54         | 0.906          | $Q_{10} = 265.61 + 0.03DA$               | B10           |
| Q <sub>25</sub>      | 289.21 | 0.04 | 540.59         | 0.852          | $Q_{25} = 289.21 + 0.04DA$               | B25           |
| Q <sub>50</sub>      | 330.81 | 0.04 | 651.88         | 0.798          | $Q_{50} = 330.81 + 0.04DA$               | B50           |
| Q <sub>100</sub>     | 418.14 | 0.05 | 783.15         | 0.738          | $Q_{100} = 418.13 + 0.05DA$              | B100          |
| log Q <sub>2</sub>   | 0.44   | 0.54 | 0.79           | 0.993          | $Q_2 = 2.74 DA^{0.54}$                   | AB2L          |
| log Q <sub>5</sub>   | 0.69   | 0.52 | 0.44           | 0.994          | $Q_5 = 4.94 DA^{0.52}$                   | AB5L          |
| <sup>log Q</sup> 10  | 0.74   | 0.53 | 0.37           | 0.994          | $Q_{10} = 5.54 \text{DA}^{0.53}$         | AB10L         |
| log Q <sub>25</sub>  | 0.79   | 0.54 | 0.32           | 0.994          | $Q_{25} = 6.18 DA^{0.54}$                | AB25L         |
| log Q <sub>50</sub>  | 0.82   | 0.54 | 0.31           | 0.993          | Q <sub>50</sub> = 6.61DA <sup>0.54</sup> | AB50L         |
| <sup>1og Q</sup> 100 | 085    | 0.54 | 0.30           | 0.993          | $Q_{100} = 7.02 DA^{0.54}$               | AB100L        |
|  | TA | BL | Ε | ۷ | I | Ι |
|--|----|----|---|---|---|---|
|--|----|----|---|---|---|---|

WEIGHTED LINEAR AND LOG TRANSFORM MODEL OF 38 BASINS

| Variable            | a       | b     | s <sup>2</sup> | R <sup>2</sup> | Ma               | th | Form of<br>ematical Mode | 9]     | Model<br>Name |
|---------------------|---------|-------|----------------|----------------|------------------|----|--------------------------|--------|---------------|
| Q <sub>2</sub>      | 88.05   | 0.025 | 556.72         | 0.972          | Q <sub>2</sub>   | =  | 88.05 + (                | 0.02DA | M2            |
| Q <sub>5</sub>      | 168.86  | 0.03  | 469.41         | 0.974          | Q <sub>5</sub>   | =  | 168.86 + 0               | 0.03DA | M5            |
| Q <sub>10</sub>     | 222.24  | 0.04  | 501.25         | 0.963          | Q <sub>10</sub>  | =  | 222.24 + 0               | 0.04DA | М10           |
| Q <sub>25</sub>     | 260.04  | 0.04  | 591.31         | 0.939          | Q <sub>25</sub>  | =  | 260.04 + 0               | 0.04DA | M25           |
| Q <sub>50</sub>     | 309.914 | 0.05  | 692.06         | 0.909          | Q <sub>50</sub>  | =  | 309.01 + 0               | 0.05DA | M50           |
| Q <sub>100</sub>    | 396.46  | 0.05  | 815.12         | 0.87           | Q <sub>100</sub> | =  | 396.46 + 0               | 0.05DA | M100          |
| log Q <sub>2</sub>  | 0.25    | 0.59  | 0.809          | 0.993          | Q <sub>2</sub>   | =  | 1.79DA <sup>0.59</sup>   |        | AM2L          |
| log Q <sub>5</sub>  | 0.55    | 0.568 | 0.454          | 0.995          | Q <sub>5</sub>   | =  | 3.51DA <sup>0.57</sup>   |        | AM5L          |
| <sup>log Q</sup> 10 | 0.63    | 0.566 | 0.371          | 0.995          | Q <sub>10</sub>  | =  | 4.23DA <sup>0.57</sup>   |        | AM10L         |
| log Q <sub>25</sub> | 0.701   | 0.565 | 0.321          | 0.994          | Q <sub>25</sub>  | =  | 5.02DA <sup>0.566</sup>  |        | AM25L         |
| log Q <sub>50</sub> | 0.741   | 0.565 | 0.302          | 0.994          | Q <sub>50</sub>  | =  | 5.52DA <sup>0.56</sup>   |        | AM50L         |
| <sup>log</sup> 100  | 0.776   | 0.564 | 0.292          | 0.993          | Q <sub>100</sub> | =  | 5.96DA <sup>0.56</sup>   |        | AM100L        |

#### TABLE VIII

### TABLE SHOWS SEVERAL PREDICTED MODELS COMPARED WITH OBSERVED MODEL Q2

|                | <u>OB S</u>     | NO    | Q2          | M2                  | AM2L             | B2               | AB2L            | DA     |
|----------------|-----------------|-------|-------------|---------------------|------------------|------------------|-----------------|--------|
|                | 1               | 1     | 1013        | 1157.48             | 1041.82 <b>S</b> | 907.201          | 845.112         | 43100  |
|                | 2               | 2     | 39          | 98,00               | . 64.03 <b>S</b> | 135,583          | 68.623          | 401    |
|                | 3               | 3     | 110         | 105.49 <b>s</b>     | 85.49            | 141.040          | 92.758          | 703    |
|                | 4               | 4     | 383         | 189.53              | 255.78 <b>s</b>  | 202.247          | 238.719         | 4090   |
|                | 5               | 5     | 238         | 118.81              | 125.54           | 150.744 <b>5</b> | 125.793         | 1240   |
|                | 6               | . 6   | 438         | 203.43              | 276.12 <b>5</b>  | 212.367          | 255.743         | 4650   |
|                | 7               | 7     | 130         | 114.60              | 114.97           | 147.672          | 116.2205        | 1070   |
|                | 8               | з     | 255         | 121.30              | 131.48           | 152.551S         | 131.141         | 1340   |
|                | 9               | 9     | 148         | 105.46              | 89.42            | 141.022 <b>5</b> | 92.687          | 702    |
|                | 10              | 10    | 307         | 170.92              | 225.675          | 188.694          | 214.121         | 3340   |
|                | 11              | 11    | 421         | 139.16              | 169.92 <b>5</b>  | 165.563          | 165.194         | 2060   |
|                | 12              | 14    | 132         | 145.60 <b>S</b>     | 184.27           | 170.984          | 177.701         | 2360   |
|                | 13              | 15    | 27          | 89.56               | 20.83            | 129.433          | 24.972 <b>s</b> | 61     |
|                | 14              | 16    | 64          | 56 <b>.</b> 21      | 56.90            | 134.282          | 61.705 <b>5</b> | 329    |
| •              | 15              | 17    | 201         | 123.03              | 135.53           | 153.816 <b>s</b> | 134.775         | 1410   |
|                | 15              | 18    | 464         | 795.21              | 814.08           | 643.363 <b>s</b> | 676.839         | 28500  |
|                | 17              | 20    | 153         | 101.69              | 77.31            | 138,275 S        | 81.307          | 550    |
|                | 13              | 21    | 140         | 120.48              | 129,545          | 151.955          | 129.397         | 1307   |
|                | 19              | 22    | 76          | 102.36              | 79.55 s          | 138.763          | 83.426          | 577    |
|                | 20              | 23    | 298         | 139.19              | 169.975          | 165.581          | 165.237         | 2061   |
|                | 21              | 24    | 285         | 160.15              | 208.625          | 180.851          | 198.705         | 2905   |
|                | 22              | 25    | 226         | 163.13              | 213.715          | 183.019          | 203.068         | 3026   |
|                | 23              | 26    | 173         | 108.44              | 98.24            | 143.191 <b>5</b> | 100.881         | 822    |
|                | 24              | 27    | 237         | 207.15              | 281.40           | 215.078 <b>s</b> | 260,139         | 4800   |
|                | 25              | 28    | 599         | 827.89              | \$36.31          | 667.163 <b>5</b> | 693.453         | 29817  |
|                | 26              | 29    | 212         | 225.55 S            | 305.58           | 228.486          | 281.006         | 5542   |
|                | 27              | 30    | 38          | 120.10 <b>s</b>     | 128.65           | 151.684          | 128.598         | 1292   |
|                | 23              | 32    | 653         | 827.54              | 836.C3           | 666.910 <b>5</b> | 693.278         | 29803  |
|                | 29              | 33    | 404         | 414.865             | 513,75           | 366.351          | 447.231         | 13171  |
|                | 30              | 34    | 73          | 117.305             | 123.04           | 150.003          | 123,543         | 1199   |
|                | 31              | 35    | 66          | 102.09              | 78,64 <b>5</b>   | 138.564          | 82.569          | 565    |
| -              | 32              | 36    | 61          | 109.75              | 101.975          | 144.148          | 104.322         | 875    |
|                | 33              | 37    | 117         | 415.15              | 514.03           | 365.5685         | 447.449         | 13183  |
|                | 34              | 38    | 42          | 99.11               | 68.22 <b>S</b>   | 136.396          | 72.555          | 446    |
|                | 35              | 39    | 41          | 93.88               | 46.565           | 132.583          | 51.509          | 235    |
|                | 36              | 40    | 158         | 115.76              | 117.95           | 148.5225         | 118.933         | 1117   |
|                | 37              | 12    | 2697        | 2668.595            | 1761.70          |                  |                 | 104000 |
|                | 38              | 19    | 3441        | 2991.165            | 1889.89          |                  |                 | 117000 |
|                |                 |       |             |                     |                  |                  |                 |        |
|                |                 |       | •           |                     |                  |                  |                 |        |
|                |                 |       |             |                     |                  |                  |                 |        |
|                | ·········       |       |             |                     |                  |                  |                 |        |
| oscrip         | ot <b>s</b> Der | notes | the Pr      | e <b>d</b> iction ( | losest to        | ) Actual [       | Data Among      | the F  |
| М              | lodels          | Used  |             |                     |                  |                  |                 |        |
| ח <u>-</u> 0   |                 |       | 01110100010 | a Intonus           |                  | and (Ann         | modiv R)        |        |
| α <u>μ</u> = Ρ | eak Fl          | ю ке  | curren      | ce interva          |                  | ars (Appe        |                 |        |
| 杪 = Ⅰ          | inear           | Model | of 38       | Basins (T           | able VI)         |                  |                 |        |
| '했 — L         | mean            | nouer | 51 50       |                     | upic iij         |                  |                 |        |
| . i            | • •             |       | M. I 7      | . C 20 D            | /                |                  |                 |        |

AM2L = Logarithmic Model of 38 Basins (Table VI)

B2 = Linear Model of 36 Basins (Table VII) AB2L = Log Model of 36 Basins (Table VII)

NO = Number of Drainage Basins Corresponding to Appendix B

DA = Drainage Area in Square Kilometers

| TAB | LΕ | IX |
|-----|----|----|
|-----|----|----|

# TABLE SHOWS SEVERAL PREDICTED MODELS COMPARED WITH OBSERVED MODEL $\rm Q_5$

| DA     | AB5L     | 85                                                     | AM5L     | M5       | Q5   | NO  | OB S |
|--------|----------|--------------------------------------------------------|----------|----------|------|-----|------|
| 43100  | 1288.321 | 1362.86                                                | 1519.87  | 1597.04  | 1293 | 1   | 1    |
| 401    | 112.40   | 228.82                                                 | 106.19   | 182.14   | 54   | 2   | 2    |
| 703    | 150.621  | 236.84                                                 | 146.15   | 192.15   | 156  | 3   | 3    |
| 4090   | 377.31   | 326.79                                                 | 398.021  | 304.39   | 572  | 4   | 4    |
| 12:40  | 202.50   | 251.10                                                 | 201.85   | 209.55   | 471  | 5   | ົົ   |
| 4650   | 403.42   | 341.67                                                 | 428.17   | 322.94   | 526  | 6   | 6    |
| 1070   | 187.51   | 246.53                                                 | 185.301  | 204.31   | 178  | 7   | 7    |
| 1340   | 210.85   | 253.76                                                 | 210.95   | 213.26   | 383  | 8   | 8    |
| 7 0 2  | 150.51   | 236.81                                                 | 146.03   | 192.12   | 177  | 9   | 9    |
| 3340   | 339.48   | 306.37                                                 | 354.591  | 279.53   | 498  | 10  | 10   |
| 2060   | 263.86   | 272.88                                                 | 269.431  | 237.12   | 541  | 11  | 11   |
| 2360   | 283.25   | 23C.85                                                 | 291.10   | 247.061  | 173  | 14  | 12   |
| 61     | 42.10    | 219.79                                                 | 36.371   | 170.88   | 40   | 15  | 13   |
| 329    | 101.381  | 226.90                                                 | 94.88    | 179.76   | 114  | 16  | 14   |
| 1410   | 216.53   | 255.61                                                 | 217.15   | 215.58   | 298  | 17  | 15   |
| 28500  | 1038.37  | 975.10                                                 | 1201.17  | 1113.25  | 710  | 18  | 16   |
| 550    | 132.53   | 232.77                                                 | 127.10   | 187.08   | 229  | 20  | 17   |
| 1307   | 208.13   | 252.83                                                 | 207.98   | 212.17   | 230  | 21  | 18   |
| 577    | 135.88   | 233.49                                                 | 130.61   | 187.98   | 106  | 22  | 19   |
| 2051   | 263.93   | 272.901                                                | 269.50   | 237.15   | 384  | 23  | 20   |
| 2906   | 315.71   | 295.35                                                 | 327.691  | 265.15   | 543  | 24  | 21   |
| 3026   | 322.45   | 298.53                                                 | 335.321  | 269.13   | 432  | 25  | 22   |
| 822    | 163.42   | 240.001                                                | 159.75   | 196.10   | 322  | 26  | 23   |
| 48.00  | 410.15   | 345.65                                                 | 435.97   | 327.91   | 543  | 27  | 24   |
| 29817  | 1063-12  | 1010.071                                               | 1232.44  | 1156.89  | 936  | 2.8 | 25   |
| 5542   | 442.08   | 365.36                                                 | 473.13   | 352.50   | 442  | 29  | 20   |
| 1292   | 206.88   | 252.48                                                 | 206-621  | 211.67   | 84   | 30  | 27   |
| 29803  | 1062.36  | 1009.70                                                | 1232.11  | 1156.421 | 1154 | 32  | 28   |
| 13171  | 694.29   | 567.97                                                 | 774.241  | 605.30   | 941  | 33  | 29   |
| 1199   | 198.98   | 250.01                                                 | 198.02   | 208.59   | 79   | 34  | 30   |
| 566    | 134.53   | 233.20                                                 | 129,19   | 187.61   | 131  | 35  | 31   |
| 875    | 168,83   | 241-41                                                 | 165.53   | 197.85   | 129  | 36  | 32   |
| 13183  | 694.62   | 568.29                                                 | 774.64   | 605.70   | 183  | 37  | 33   |
| 446    | 118,811  | 236.01                                                 | 112.81   | 183.64   | 116  | 3.9 | 34   |
| 235    | 85.06    | 224.41                                                 | 78.35    | 176.64   | 70   | 39  | 35   |
| 1117   | 191.76   | 247.83                                                 | 190.20   | 205.87   | 313  | 40  | 36   |
| 104000 |          | <b>L</b> , <b>, , , , , , , , , , , , , , , , , , </b> | 2508-79  | 3615.05  | 3586 | 12  | 37   |
| 117000 |          |                                                        | 2682 67  | 4045.831 | 4951 | 19  | 3.8  |
| -1,000 |          |                                                        | 2002.00, |          |      | ÷ / | 50.  |
|        |          |                                                        |          |          |      |     |      |

Subscript, Denotes the Prediction Closest to Actual Data Among the Four Models Used

Q5 = Peak Flow Recurrence Interval of 5 Years (Appendix B)

M5 = Linear Model of 38 Basins (Table VI)

AM5L = Logarithmic Model of 38 Basins (Table VI)

B5 = Linear Model of 36 Basins (Table VII)

AB5L = Log Model of 36 Basins (Table VII)

1

...1

NO = Number of Drainage Basins Corresponding to Appendix B

DA 🛎 Drainage Area in Square Kilometers

#### TABLE X

# TABLE SHOWS SEVERAL PREDICTED MODELS COMPARED WITH OBSERVED MODEL Q<sub>10</sub>

| 0BS | NO   | Q10  | M10              | AM10L                    | 810                       | ABIOL                    | DA     |             |
|-----|------|------|------------------|--------------------------|---------------------------|--------------------------|--------|-------------|
| . 1 | 1    | 1473 | 1855.59          | 1797.33                  | 1664.10                   | 1576.97 <b>h</b>         | 43100  |             |
| 2   | 2    | 64   | 237.44           | 126.81 <b>h</b>          | 278.63                    | 132.43                   | 401    |             |
| 3   | 3    | 196  | 248.88           | 174.33                   | 288.42                    | 178.29 <b>h</b>          | 7 0 3  |             |
| 4   | 4    | 712  | 377.24           | 473.07 <b>h</b>          | 398.32                    | 453.0ó                   | 4090   |             |
| 5   | 5    | 743  | 269.23           | 240,49                   | 305 <b>,</b> 85 h         | 240.80                   | 1240   |             |
| 6   | 6    | 585  | 398.45           | 508.77h                  | 41 5.49                   | 484.92                   | 4650   |             |
| 7   | 7    | 195  | 262.79           | 221.20 <b>h</b>          | 300.33                    | 222.71                   | 1070   |             |
| 8   | 8    | 473  | 273.02           | 251.30                   | 309 <b>.</b> 09 <b>h</b>  | 250.90                   | 1340   |             |
| 9   | 9    | 192  | 248.34           | 174.19                   | 288.39                    | 178.15 <b>h</b>          | 7 0 2  |             |
| 10  | 10   | 677  | 348.82           | 421.75 <b>h</b>          | 373.99                    | 406.97                   | 3340   |             |
| 11  | 11   | 635  | 300.31           | 320.68                   | 332.46 <b>h</b>           | 315.07                   | 2060   |             |
| 12  | 14   | 196  | 311.68 <b>h</b>  | 346.37                   | 342.19                    | 338.59                   | 2360   |             |
| 13  | 15   | 48   | 224,55           | 43.60 h                  | 267.59                    | 48.85                    | 61     |             |
| 14  | 16   | 153  | 234.71           | 113.35                   | 276.29                    | 119 <b>.</b> 26 <b>h</b> | 329    |             |
| 15  | 17   | 342  | 275.67           | 258.66                   | 311.37h                   | 257.76                   | 1410   |             |
| 16  | 18   | 844  | 1302.30          | 1422.04                  | 1190.36 h                 | 1266.74                  | 28500  |             |
| 17  | 20   | 278  | 243.08           | 151.68                   | 283.46 h                  | 156.56                   | 550    |             |
| 13  | 21   | 288  | 271.77 <b>h</b>  | 247.77                   | 308.02                    | 247.61                   | 1307   |             |
| 19  | 22   | 130  | 244.11           | 155.86 <b>h</b>          | 284.34                    | 160.58                   | 577    |             |
| 20  | 23   | 432  | 300.35           | 320.76                   | 332.49 <b>h</b>           | 315.15                   | 2061   |             |
| 21  | 24   | 827  | 332.37           | 389.74 <b>h</b>          | 359.91                    | 378.05                   | 2906   |             |
| 22  | 25   | 647  | 336.92           | 398.79h                  | 363.80                    | 386.24                   | 3026   |             |
| 23  | 25   | 403  | 253.39           | 190.49                   | 292.29 <b>h</b>           | 193.68                   | 822    |             |
| 24  | 27   | 785  | 404.14           | 518.01 <b>h</b>          | 421.36                    | 493.15                   | 48 00  |             |
| 25  | 28   | 1119 | 1352.21          | 1458.93                  | 1233 <b>.</b> 10 <b>h</b> | 1297.41                  | 29817  |             |
| 26  | 29   | 641  | 432.26           | 551.99 <b>h</b>          | 445.44                    | 532.15                   | 5542   |             |
| 27  | 30   | 126  | 271.20           | 240.15                   | 307.54                    | 246 <b>.</b> 10 <b>h</b> | 1292   |             |
| 28  | 32   | 1481 | 1351.68          | 1458.54h                 | 1232.64                   | 1297.09                  | 29303  |             |
| 29  | 33   | 1505 | 721.38           | 918.05 <b>h</b>          | 692.98                    | 841.68                   | 13171  |             |
| .30 | 34   | 81   | 267.58           | 235 <b>.</b> 95 <b>h</b> | 304.52                    | 236.55                   | 1199   |             |
| 31  | 35   | 196  | 243.69           | 154.17                   | 283.98                    | 158 <b>.</b> 95 <b>h</b> | 566    |             |
| 32  | 36   | 171  | 255.40           | 197.36h                  | 294.01                    | 200.20                   | 875    |             |
| 33  | 37   | 241  | 721.83 <b>h</b>  | 918.52                   | 693.37                    | 842.09                   | 13183  | · · · · · · |
| 34  | 38   | 189  | 239.14           | 134.69                   | 280.09                    | 140 <b>.</b> 11 <b>h</b> | 446    |             |
| 35  | - 39 | 91   | 231.15           | 93.65 <b>h</b>           | 273.24                    | . 99.79                  | 235    |             |
| 36  | 40   | 452  | 264.57           | 226.60                   | 301.86 <b>h</b>           | 227.84                   | 1117   |             |
| 37  | 12   | 4074 | 4163.50 <b>h</b> | 2962.30                  |                           |                          | 104000 |             |
| 38  | 19   | 5930 | 4656.15 <b>h</b> | 3166.86                  |                           |                          | 117000 |             |
|     |      |      |                  | •                        |                           |                          |        |             |
|     | •    |      | •                |                          |                           |                          |        |             |

h

Subscript h Denotes the Prediction Closest to Actual Data Among the Four Models Used

Q10 = Peak Flow Recurrence Interval of 10 Years (Appendix B)

M10 = Linear Model of 38 Basins (Table VI)

AM10L = Logarithmic Model of 38 Basins (Table VI)

NO = Number of Drainage Basins Corresponding to Appendix B

Bl0 = Linear Model of 36 Basins (Table XII)

DA = Drainage Area in Square Kilometers

a state and a state of the state of the

### TABLE XI

# TABLE SHOWS SEVERAL PREDICTED MODELS COMPARED WITH OBSERVED MODEL $Q_{25}$

| OBS | NO  | Q25  | M25                      | AM25L                    | B25                       | AB25L    | DA     |
|-----|-----|------|--------------------------|--------------------------|---------------------------|----------|--------|
| 1   | 1   | 1696 | 2140.49                  | 2107.12                  | 2014.95                   | 1900.210 | 43100  |
| 2   | 2   | 78   | 277.53                   | 149.29                   | 340.99                    | 154.330  | 401    |
| 3   | 3   | 259  | 290.71 O                 | 205.12                   | 352.83                    | 208.61   | 7 0 3  |
| 4   | 4   | 908  | 438.49                   | 555 <b>.</b> 71 <b>0</b> | 485.61                    | 536.82   | 4090   |
| 5   | 5   | 1303 | 314.14                   | 282.82                   | 373.880                   | 282.89   | 1240   |
| 6   | 6   | 664  | 452.92                   | 597.57 o                 | 507.57                    | 575.10   | 4650   |
| 7   | 7   | 206  | 306.72                   | 260.180                  | 367.22                    | 261.37   | 1070   |
| 8   | - 8 | 593  | 318.50                   | 295.51                   | 377.300                   | 294.92   | 1340   |
| 9   | 9   | 207  | 290.67                   | 204.960                  | 352.79                    | 208.45   | 702    |
| 10  | 10  | 978  | 405.76                   | 495.520                  | 456.21                    | 481.51   | 3340   |
| 11  | 11  | 773  | 349.92                   | 376.94                   | 406.030                   | 371.49   | 2060   |
| 12  | 14  | 222  | 363.010                  | 407.09                   | 417.79                    | 399.62   | 2360   |
| 13  | 15  | 57   | 262.70                   | 51.43                    | 327.66                    | 56.170   | 61     |
| 14  | 16  | 208  | 27-1.390                 | 133.47                   | 338.17                    | 138.78   | 329    |
| 15  | 17  | 381  | 321.56                   | 304.15                   | 380.550                   | 303.09   | 1410   |
| 16  | 13  | 982  | 1503.49                  | 1667.34                  | 1442 <b>.</b> 58 <b>0</b> | 1521.88  | 28500  |
| 17  | 20  | 336  | 284.03                   | 178.52                   | 346.850                   | 182.86   | 550    |
| 18  | 21  | 359  | 317.05                   | 291.37                   | 376.510                   | 291.00   | 1307   |
| 19  | 22  | 164  | 285,21                   | 183.430                  | 347.89                    | 187.62   | 577    |
| 20  | 23  | 436  | 349.96                   | 377.04                   | 406.070                   | 371.59   | 2051   |
| 21  | 24  | 1391 | 386.83                   | 457.980                  | 439.20                    | 446.84   | 2906   |
| 22  | 25  | 828  | 392.06                   | 468 <b>.</b> 59 <b>0</b> | 443.50                    | 456.66   | 3026   |
| 23  | 23  | 430  | 295.90                   | 224.11                   | 357 <b>.</b> 50 <b>0</b>  | 226.87   | 822    |
| 24  | 27  | 1103 | 459.46                   | 608.410                  | 513.45                    | 584.98   | 4800   |
| 25  | 28  | 1306 | 1560.95                  | 1710.52                  | 1494.210                  | 1559.24  | 29817  |
| 26  | 29  | 942  | 501.84                   | 659.970                  | 542.54                    | 631.90   | 5542   |
| 27  | σ£  | 196  | 316,41                   | 289.47                   | 375.92                    | 289.200  | 1292   |
| 28  | 32  | 1867 | 1560.34                  | 1710.070                 | 1493.65                   | 1558.84  | 29803  |
| 29  | 33  | 2537 | 834.69                   | 1077.210                 | 841.62                    | 1005.65  | 13171  |
| 30  | 34  | 84   | 312.35                   | 277.490                  | 372.28                    | 277.83   | 1199   |
| 31  | 35  | 311  | 284 <b>.</b> 73 <b>0</b> | 181.44                   | 347.45                    | 185.69   | 566    |
| 32  | 36  | 223  | 298.21                   | 232.170                  | 359.57                    | 234.61   | 875    |
| 33  | 37  | 336  | 835.210                  | 1077.76                  | 842.09                    | 1006.14  | 13183  |
| 34  | 38  | 305  | 279.50                   | 158.55                   | 342.750                   | 163.40   | 446    |
| 35  | 39  | 122  | 270.29                   | 110.33                   | 334.48                    | 115.850  | 235    |
| 36  | 40  | 671  | 308 <b>.</b> 77          | 266.58                   | 369,060                   | 267.47   | 1117   |
| 37  | 12  | 4597 | 4797.560                 | 3468.99                  |                           |          | 104000 |
| 38  | 19  | 7143 | 5364.75 <b>0</b>         | 3708.12                  |                           |          | 117000 |
|     |     |      |                          |                          |                           |          |        |

Subscript o Denotes the Prediction Closest to Actual Data Among the Four Models Used (DA = Drainage Area in Square Kilometers) Q25 = Peak Flow Recurrence Interval of 25Years (Appendix B) M25 = Linear Model of 38 Basins (Table VI) AM25L = Logarithmic Model of 38 Basins (Table VI) B25 = Linear Model of 36 Basins (Table VII) AB25L = Logarithmic Model of 36 Basins (Table VII) AB25L = Logarithmic Model of 36 Basins (Table VII) NO = Number of Drainage Basins Corresponding to Appendix B

0

### TABLE XII

### TABLE SHOWS SEVERAL PREDICTED MODELS COMPARED WITH OBSERVED MODEL Q<sub>50</sub>

| DA     | ABSOL                     | B50             | AM50L           | M5 0                     | 050  | NG  | DBS . |
|--------|---------------------------|-----------------|-----------------|--------------------------|------|-----|-------|
|        |                           |                 |                 |                          |      |     |       |
| 43100  | 2107 <b>.</b> 51 <b>e</b> | 225C.54         | 2306.30         | 2341.11                  | 1863 | 1   | 1     |
| 401    | 168.40                    | 388.57          | 163.67 <b>e</b> | 327.92                   | 88   | 2   | 2     |
| 703    | 228.07                    | 401.74          | 224.84          | 342 <b>.</b> 16 <b>e</b> | 317  | 3   | 3     |
| 4090   | 590.52                    | 545.43          | 608.75 e        | 501.85                   | 1067 | 4   | 4     |
| 1240   | 309.90                    | 425.16 <b>e</b> | 309.94          | 367.48                   | 1959 | 5   | 5     |
| 4650   | 632.91                    | 573.85          | 654.57 e        | 528.25                   | 724  | 6   | 6     |
| 1070   | 286.17                    | 417.74          | 285.14 e        | 359.46                   | 210  | 7   | 7     |
| 1340   | 323.16                    | 429.52 <b>e</b> | 323.84          | 372.19                   | 687  | 8   | 3     |
| 702    | 227.90                    | 401.69          | 224.66 <b>e</b> | 342.11                   | 216  | 9   | 9     |
| 3340   | 529.30                    | 516.73          | 542.85 <b>e</b> | 465.49                   | 1270 | 10  | 10    |
| 2060   | 407.68                    | 460 <b>.91e</b> | 413.02          | 406.14                   | 890  | 11  | 11    |
| 2360   | 438.75                    | 474.00          | 446.03          | .420.28e                 | 239  | 14  | 12    |
| 51     | 60.89                     | 373.74          | 56.42 C         | 311.89                   | 63   | 15  | 13 .  |
| 329    | 151.33 <b>e</b>           | 385 <b>.</b> 43 | 146.34          | 324.53                   | 254  | 16  | 14    |
| 1410   | 332.18                    | 432.57          | 333.30          | 375.49 <b>e</b>          | 400  | 17  | 15    |
| 28500  | 1685.48                   | 1613.88 e       | 1825.22         | 1652.74                  | 1064 | 18  | 16    |
| 550    | 199.75                    | 395.07 e        | 195.70          | 334.95                   | 378  | 20  | 17    |
| 1307   | 318.84                    | 428.08          | 319.31          | 370.64 e                 | 409  | 21  | 13    |
| ל 57   | 204.99                    | 395.24          | 201.08 e        | 336.22                   | 194  | 22  | 19    |
| 2061   | 407.79                    | 46C.96E         | 413.13          | 406.19                   | 520  | 23  | 20    |
| 2906   | 490.96                    | 497.80          | 501.75 e        | 446.03                   | 2023 | 24  | 21    |
| 3026   | 501.81                    | 503.04          | 513.36e         | 451.69                   | 941  | 25  | 22    |
| 822    | 248.18                    | 406.93 <b>e</b> | 245.64          | 347.77                   | 551  | 26  | 23    |
| 4800   | 643.86                    | 580.40          | 666.43 e        | 535.33                   | 1352 | 27  | 24    |
| 29817  | 1727.13                   | 1671.31e        | 1872.45         | 1714.84                  | 1418 | 28  | 25    |
| 5542   | 595.85                    | 612.75          | 722.88 e        | 570.31                   | 1201 | 29  | 26    |
| 1292   | 316.86 e                  | 427.42          | 317.23          | 369,93                   | 259  | 30  | 27    |
| 29803  | 1726.59                   | 1670.70         | 1871.96 e       | 1714,18                  | 2130 | 3.2 | 28    |
| 13171  | 1110.76                   | 945.43          | 1179.53e        | 930.01                   | 3597 | 33  | 29    |
| 1199   | 304.32                    | 423.37          | 304.10 <b>e</b> | 365.54                   | 86   | 34  | 30    |
| 566    | 202.37                    | 395.75 e        | 198.90          | 335.70                   | 427  | 35  | 31    |
| 875    | 256.70e                   | 409.24          | 254.47          | 350.27                   | 260  | 36  | 32    |
| 13183  | 1111.31                   | 945.95          | 1180.13         | 530.57 e                 | 423  | 37  | 33    |
| 446    | 178.36                    | 390.53 e        | 173.32          | 330.04                   | 408  | 38  | 34    |
| 235    | 126.18                    | 3\$1.33         | 120.980         | 320.09                   | 148  | 39  | 35    |
| 1117   | 292.90                    | 419.79e         | 292.10          | 361.58                   | 369  | 40  | 30    |
| 104000 |                           |                 | 3795.71         | 5212.45e                 | 4931 | 12  | 37    |
| 117000 |                           |                 | 4057.19         | 5825.38 e                | 8008 | 19  | 38    |
|        |                           |                 |                 |                          |      |     |       |
|        |                           |                 |                 |                          |      |     |       |

Subscript e Denotes the Prediction Closest to Actual Data Among the Four Models Used (DA = Drainage Area in Square Kilometers)

Q50 = Peak Flow Recurrence Interval of 50 Years (Appendix B)

M50 = Linear Model of 38 Basins (Table VI)

e

AM50L = Logarithmic Model of 38 Basins (Table VI)

B50 = Linear Model of 36 Basins (Table VII)

AB50L - Logarithmic Model of 36 Basins (Table VII)

NO = Number of Drainage Basins Corresponding to Appendix B

#### TABLE XIII

# TABLE SHOWS SEVERAL PREDICTED MODELS COMPARED WITH OBSERVED MODEL $\rm Q_{100}$

| OB'S | ŇŌ   | C100          | M100            | AM100L             | B100                     | AB100L                   | DA     |
|------|------|---------------|-----------------|--------------------|--------------------------|--------------------------|--------|
| 1    | 1    | 2023          | 2541.24         | 2474.85            | 2462.33                  | 2280.93 <b>a</b>         | 43100  |
| 2    | 2    | . 98          | 410,42          | 176.29             | 437.16                   | 180.83 <b>a</b>          | 401    |
| ڌ    | 3    | 386           | 431.45 a        | 242.07             | 451.48                   | 245.14                   | 7 03   |
| 4    | 4    | 1237          | 599.99          | 654.46 a           | 612.12                   | 636.58                   | 4090   |
| 5    | 5    | 2914          | 458.17          | 333.54             | 476.95 a                 | 333.41                   | 1240   |
| 6    | 6    | 786           | 627.86          | 703.56 <b>a</b>    | 638.68                   | 682.43                   | 4650   |
| 7    | 7    | 211           | 449.71          | 306.88 a           | 468.89                   | 307.80                   | 1070   |
| 8    | 8    | 783           | 463.15          | 348.47             | 481.69 <b>a</b>          | 347.72                   | 1340   |
| 9    | 9    | 223           | 431.40          | 241.87a            | 451.43                   | 244.95                   | 702    |
| 10   | 10   | 1633          | 552.67          | 583.71a            | 576.55                   | 570.40                   | 3340   |
| - 11 | 11   | 1018          | 498.97          | 444.28             | 515.84 <b>a</b>          | 438.97                   | 2060   |
| 12   | 14   | 255           | 513.90          | 479.74             | 53C.C7                   | 472 <b>.</b> 54 <b>a</b> | 2360   |
| 13   | 15   | 70            | 399.50          | 60.86 <b>a</b>     | 421.03                   | 05.13                    | 61     |
| 14   | 16   | 302           | 412.84 a        | 157.65             | 433.74                   | 162.44                   | 329    |
| 15   | 17   | 414           | 465.63 a        | 358.04             | 485.01                   | 357.45                   | 1410   |
| 16   | 18   | 1133          | 1814.70         | , 1959.25          | 1769.85 a                | 1822.91                  | 28500  |
| 17   | 20   | 417           | 423. 83 a       | 210.73             | 444.22                   | 214.51                   | 550    |
| 18   | 21   | 455           | 461.50 <b>a</b> | 343.60             | 480.13                   | 343.05                   | 1307   |
| 19   | 22   | 22 <b>7</b>   | 425.18          | 216.51             | 445.51                   | 220.25 <b>a</b>          | 577    |
| 20   | 23   | 552           | 499.02          | 444.40             | 515.89 <b>a</b> .        | 439.09                   | 2061   |
| 21   | 24   | 2911          | 541.07          | 539.58             | 555 <b>.</b> 97a         | 528.95                   | 2906   |
| 22   | 25   | 1035          | 547.05          | 552.05             | 561.66 <b>a</b>          | 540.68                   | 30.26  |
| 23   | 26   | 552           | 437.37          | 264.42             | 457.13 a                 | 266.82                   | 822    |
| 24   | 27   | 1593          | 535 <b>.</b> 32 | 716.39 <b>a</b>    | 645.80                   | 694.27                   | 48 G J |
| 25   | 28   | 1510          | 1886.24         | 2009.88            | 1832.33 <b>a</b>         | 1868.09                  | 29817  |
| 26   | 29   | 1490          | 672.25          | 776.98 <b>a</b>    | 68C.99                   | 750.51                   | 5542   |
| 27   | 30   | 333           | 460.76          | 341.37 .           | 479.42                   | 340.91 <b>a</b>          | 1292   |
| 28   | 32   | 2371          | 1879.54         | 2009 <b>.</b> 35 a | 1831.66                  | 1867.61                  | 25803  |
| 29   | 33   | 4966          | 1051.89         | 1266.92 a          | 1042.83                  | 1199.77                  | 13171  |
| 30   | 34   | 87            | 456.13          | 327.25 a           | 475.01                   | 327.39                   | 1199   |
| 31   | . 35 | 576           | 424.63          | 214.17             | 444 <b>.</b> 98 <b>a</b> | 217.97                   | 566    |
| 32   | 36   | 295           | 440.01          | 2/3.92 <b>a</b>    | 459.64                   | 276.01                   | 875    |
| 33   | . 37 | 528           | 1052.48         | 1207.58            | 1043.39 <b>a</b>         | 1200.36                  | 13183  |
| 34   | 38   | 523           | 418.66          | 187.21             | 435.29 <b>a</b>          | 191.56                   | 446    |
| 35   | 39   | 176           | 408.16          | 130.35             | 429.28                   | 135.37 <b>a</b>          | 235    |
| 36   | 40   | 1099          | 452 <b>.</b> 05 | 314.43             | 471.12 a                 | 315.06                   | 1117   |
| 37   | 12   | 5226 <b>a</b> | 5571.78         | 4070.24            |                          |                          | 104000 |
| 38   | 19   | 8861 <b>a</b> | 6218.70         | 4350.22            |                          |                          | 117000 |

Subscript a Denotes the Prediction Closest to Actual Data Among the Four Models Used (DA = Drainage Area in Square Kilometers) Ql00 = Peak Flow Recurrence Interval of 100 Years (Appendix B) Ml00 = Linear Model of 38 Basins (Table VI) AM100L = Logarithmic Model of 38 Basins (Table VI) Bl00 = Linear Model of 36 Basins (Table VII) AB100L = Logarithmic Model of 36 Basins (Table VII)

a.

NO = Number of Drainage Basins Corresponding to Appendix B

VIII, IX, X, XI, XII, and XIII, respectively, and the graph of predicted equations and flood peaks of selected recurrence intervals from Log Pearson Type III is shown in Figures 8 through 13.

#### Analysis of Result of Model

After analysis of 38 drainage basins by using stepwise regression techniques relating peak flow to six drainage basin characteristics and climatic conditions, the following results were noted. The drainage area was found to be the most significant variable, in terms of both  $R^2$  (coefficient of determination) and the observed significance level of the coefficient. The peak flows of return periods of 2, 5, 10, 25, 50, and 100 years relating to drainage area were analyzed by using both linear and log models. The  $R^2$  and standard error seemed to indicate a good prediction, but the residuals (peak flow from selected recurrence interval minus predicted flow from the model) indicate an inadequate prediction. The weighted least squares technique was found to improve the accuracy of the flow predictions and reduce the residuals.

The final results are shown in Tables VI and VII. For each peak flow from a given recurrence interval, the best models are shown. Table VI indicates the best models when all 38 basins are considered. Table VII indicates the best models when 36 basins are considered, with the two very large basins deleted.

When considering all 38 basins, log models give better predictions than do linear models, but the linear models seem to give better predictions when the drainage area is greater than 100,000 km<sup>2</sup> (see Tables VIII to XIII). Basins No. 12 and No. 19 (Appendix B) on the Mune River give greater residuals than do the other basins, so these two

### TABLE XIV

٠,

ļ

| OBS | NO | Q 2         | PQ2     | RESID2         | DA     |
|-----|----|-------------|---------|----------------|--------|
| 1   | 1  | 1013        | 907-201 | 105,799        | 431.00 |
| 2   | 2  | 39          | 135.583 | -96.583        | 401    |
| 3   | 3  | 110         | 141-040 | -31-040        | 703    |
| 4   | 4  | 383         | 202.247 | 180,753        | 4090   |
| 5   | 5  | 238         | 150.744 | 87.256         | 1240   |
| 6   | 6  | 438         | 212.367 | 225.633        | 4650   |
| 7   | 7  | 130         | 147.672 | -17.672        | 1070   |
| 8   | 8  | 255         | 152.551 | 102.449        | 1340   |
| 9   | 9  | 148         | 141.022 | 6.978          | 702    |
| 10  | 10 | 307         | 188.694 | 118.306        | 3340   |
| 11  | 11 | 421         | 165.563 | 255.437        | 2060   |
| 12  | 14 | 132         | 170.984 | -38.984        | 2360   |
| 13  | 15 | 27          | 129.438 | -102.438       | 61     |
| 14  | 16 | 64          | 134.282 | -70.282        | 329    |
| 15  | 17 | 201         | 153.816 | 47.184         | 1410   |
| 16  | 18 | 464         | 643.363 | -179.363       | 28500  |
| 17  | 20 | 153         | 138.275 | 14.725         | . 550  |
| 18  | 21 | 140         | 151.955 | -11.955        | 1307   |
| 19  | 22 | 76          | 138.763 | -62.763        | 577    |
| 20  | 23 | 298         | 165.581 | 132.419        | 2061   |
| 21  | 24 | 285         | 180.851 | 104.149        | 2906   |
| 22  | 25 | 226         | 183.019 | 42.981         | 3026   |
| 23  | 26 | 173         | 143.191 | 29.809         | 822    |
| 24  | 27 | 237         | 215.078 | 21.922         | 4800   |
| 25  | 28 | 599         | 667.163 | -68.163        | 29817  |
| 26  | 29 | 212         | 228.485 | -16.486        | 5542   |
| 27  | 30 | 38          | 151.684 | -113.684       | 1292   |
| 28  | 32 | 653         | 666.910 | -13.910        | 29803  |
| 29  | 33 | <b>4</b> 04 | 366.351 | 37.649         | 13171  |
| 30  | 34 | 73          | 150.003 | -77.003        | 1199   |
| 31  | 35 | 66          | 138.564 | -72.564        | 566    |
| 32  | 36 | . 61        | 144.148 | -83.148        | 875    |
| .33 | 37 | 117         | 366.568 | -249.568       | 13183  |
| 34  | 38 | 42          | 136.396 | -94.396        | 446    |
| 35  | 39 | 41          | 132.583 | -91.583        | 235    |
| 36  | 40 | 158         | 148.522 | 9 <u>•</u> 478 | 1117   |
|     |    |             |         |                |        |

# TABLE OF COMPARED PREDICTED VALUES OF Q2 AND FROM LOG PEARSON TYPE III

- Q2 = Peak Flows in Recurrence Intervals of Two Years From Log Pearson Type III (cubic meters/sec)
- PQ2 = Predicted Peak Flow From Recurrence Interval of Two Years From Model B2
- RESID2 = Q2 PQ2 (cubic meters/sec)
  - DA = Drainage Area in Square Kilometers



50000.00000

### TABLE XV

| 08.5 | 110 |      |         |            |       |
|------|-----|------|---------|------------|-------|
| 000  | NU  | Q5   | PQ5     | RESID5     | DA    |
| 1    | 1   | 1293 | 1362.86 | -69.858    | 43100 |
| 2    | 2   | 54   | 228-82  | -174.816   | 401   |
| 3    | 3   | 156  | 236.84  | -80-837    | 703   |
| 4    | 4   | 572  | 326.79  | 245.208    | 4090  |
| 5    | 5   | 471  | 251.10  | 219,901    | 1240  |
| 6    | 6   | 526  | 341.67  | 184.335    | 4650  |
| 7    | 7   | 178  | 246.58  | -68.584    | 1070  |
| 8    | 8   | 383  | 253.76  | 129.245    | 1340  |
| 9    | 9   | 177  | 236.81  | -59.811    | 702   |
| 10   | 10  | 498  | 306.87  | 191.127    | 3340  |
| 11   | 11  | 541  | 272.88  | 268.122    | 2060  |
| 12   | 14  | 173  | 280.85  | -107.845   | 2360  |
| 13   | 15  | 40   | 219.79  | -179.786   | 61    |
| 14   | 16  | 114  | 226.90  | -112.904   | 329   |
| 15   | 17  | 298  | 255.61  | 42.386     | 1410  |
| 16   | 18  | 710  | 975.10  | -265.097   | 28500 |
| 17   | 20  | 229  | 232.77  | -3.774     | 550   |
| 18   | 21  | 230  | 252.88  | -22.879    | 1307  |
| 19   | 22  | 106  | 233.49  | -127.491   | 577   |
| 20   | 23  | 384  | 272.90  | 111.096    | 2061  |
| 21   | 24  | 543  | 295.35  | 247.654    | 2906  |
| 22   | 25  | 482  | 298.53  | 183.466    | 3026  |
| 23   | 26  | 322  | 240.00  | 82,002     | 822   |
| 24   | 27  | 543  | 345.65  | 197.351    | 4800  |
| 25   | 28  | 936  | 1010.07 | -74.075    | 29817 |
| 26   | 29  | 442  | 365.36  | 76.644     | 5542  |
| 27   | 30  | 84   | 252.48  | -168.480   | 1292  |
| 28   | 32  | 1154 | 1009.70 | 144.297    | 29803 |
| 29   | 33  | 941  | 567.97  | 373.026    | 13171 |
| 30   | 34  | 79   | 250.01  | -171.010   | 1199  |
| 31   | 35  | 131  | 233.20  | -102.198   | 566   |
| 32   | 36  | 129  | 241.41  | -112.405   | 875   |
| 33   | 37  | 183  | 568.29  | -385.293   | 13183 |
| 34   | 38  | 116  | 230.01  | -114.011   | 446   |
| 35   | 39  | 70   | 224.41  | - 154. 407 | 235   |
| 36   | 40  | 313  | 247.83  | 65.168     | 1117  |

# TABLE OF COMPARED PREDICTED VALUES OF ${\rm Q}_5$ AND FROM LOG PEARSON TYPE III

- Q5 = Peak Flows in Recurrence Intervals of 5 Years From Log Pearson Type III (cubic meters/sec)
- PQ5 = Predicted Peak Flows from Recurrence Intervals of 5 Years From Model B5

RESID5 = Q5 - PQ5 (cubic meters/sec)

DA = Drainage Area in Square Kilometers



#### TABLE XVI

| 605  | NO | 010          | 0/110           |          |                       |
|------|----|--------------|-----------------|----------|-----------------------|
| LDS  | NU | 010          | PQIO            | R 10     | · DA                  |
| 1    | 1  | 1473         | 1664.10         | -191.095 | 43100                 |
| 2    | 2  | 64           | 278.63          | -214.626 | 401                   |
| 3    | 3  | 196          | 288.42          | -92.425  | 703                   |
| 4    | 4  | 712          | 398.32          | 313.676  | 4090                  |
| 5    | 5  | 743          | 305.85          | 437.151  | 1240                  |
| 6    | 6  | 586          | 416.49          | 169.506  | 4650                  |
| 7    | 7  | 195          | 300.33          | -105.333 | 1070                  |
| 8    | 8  | 473          | 309.09          | 163.906  | 1340                  |
| 9    | 9  | 192          | 288.39          | -96.392  | 702                   |
| 10   | 10 | 677          | 373.99          | 303.012  | 3340                  |
| 11   | 11 | 636          | 332.46          | 303.544  | 2060                  |
| 12   | 14 | 196          | 342.19          | -146.190 | 2360                  |
| 13   | 15 | 48           | 267.59          | -219.594 | 61                    |
| 14   | 16 | 153          | 276.29          | -123.289 | 329                   |
| 15   | 17 | 342          | 311.37          | 30.635   | 1410                  |
| 16   | 18 | 844          | 1190.36         | -346.364 | 28500                 |
| 17   | 20 | 278          | 283.46          | -5.460   | 550                   |
| 18   | 21 | 288          | 308.02          | -20.023  | 1307                  |
| 19   | 22 | 130          | 284.34          | -154.336 | 577                   |
| 20   | 23 | 432          | 332.49          | 99.512   | 2061                  |
| - 21 | 24 | 827          | 359.91          | 467.094  | 2906                  |
| 22   | 25 | 647          | 363.80          | 283.200  | 3026                  |
| 23   | 26 | 403          | 292.29          | 110.714  | 822                   |
| 24   | 27 | 785          | 421.36          | 363.638  | 4800                  |
| 25   | 28 | <b>1</b> 119 | 1233.10         | -114.097 | <b>2</b> 981 <b>7</b> |
| 26   | 29 | 641          | 445.44          | 195.562  | 5542                  |
| 27   | 30 | 126          | 307.54          | -181.536 | 1292                  |
| 28   | 32 | 1481         | 1232.64         | 248,357  | 29803                 |
| 29   | 33 | 1505         | 692.98          | 812.022  | 13171                 |
| 30   | 34 | 81           | 304.52          | -223.519 | 1199                  |
| 31   | 35 | 196          | 283 <b>.9</b> 8 | -87.979  | 56 <b>6</b>           |
| 32   | 36 | 171          | 294.01          | -123.006 | 875                   |
| 3,3  | 37 | 241          | 693.37          | -452.368 | 13183                 |
| 34   | 38 | 189          | 280.09          | -91.086  | 446                   |
| 35   | 39 | 91           | 273.24          | -182.239 | 235                   |
| 36   | 40 | 452          | 301.86          | 150.142  | 1117                  |
|      |    |              |                 |          |                       |

#### TABLE OF COMPARED PREDICTED VALUES OF Q<sub>10</sub> AND FROM LOG PEARSON TYPE III

- Q10 = Peak Flows in Recurrence Intervals of 10 Years From Log Pearson Type III (cubic meters/sec)
- PQ10 = Predicted Peak Flows From Recurrence Intervals of 10 Years From Model B10
- RESID10 = Q10-PQ10 (cubic meters/sec)
  - DA = Drainage Area in Square Kilometers





### TABLE XVII

| 085 | NO | Q25  | P025    | R25      | DA    |
|-----|----|------|---------|----------|-------|
| 1   | 1  | 1696 | 2014.95 | -318.95  | 43100 |
| 2   | 2  | 78   | 340.99  | -262.99  | 401   |
| 3   | 3  | 259  | 352.83  | - 93. 83 | 703   |
| 4   | 4  | 908  | 485.61  | 422.39   | 4090  |
| 5   | 5  | 1303 | 373.88  | 929.12   | 1240  |
| 6   | 6  | 664  | 507.57  | 156.43   | 4650  |
| 7   | 7  | 206  | 367.22  | -161.22  | 1070  |
| 8   | 8  | 593  | 377.80  | 215.20   | 1340  |
| 9   | 9  | 207  | 352.79  | -145.79  | 702   |
| 10  | 10 | 978  | 456.21  | 521.79   | 3340  |
| 11  | 11 | 773  | 406.03  | 366.97   | 2060  |
| 12  | 14 | 222  | 417.79  | -195.79  | 2360  |
| 13  | 15 | 57   | 327.66  | -270.66  | 61    |
| 14  | 16 | 208  | 338.17  | -130.17  | 329   |
| 15  | 17 | 381  | 380.55  | 0.45     | 1410  |
| 16  | 18 | 982  | 1442.58 | -460.58  | 28500 |
| 17  | 20 | 336  | 346.83  | -10.83   | 550   |
| .18 | 21 | 359  | 376.51  | -17.51   | 1307  |
| 19  | 22 | 164  | 347.89  | -183.89  | 577   |
| 20  | 23 | 485  | 406.07  | 79.93    | 2061  |
| 21  | 24 | 1391 | 439.20  | 951.80   | 2906  |
| 22  | 25 | 828  | 443.90  | 384.10   | 3026  |
| 23  | 26 | 480  | 357.50  | 122.50   | 822   |
| 24  | 27 | 1108 | 513,45  | 594.55   | 4800  |
| 25  | 28 | 1306 | 1494.21 | -188.21  | 29817 |
| 26  | 29 | 942  | 542.54  | 399.46   | 5542  |
| 27  | 30 | 196  | 375.92  | -179.92  | 1292  |
| 28  | 32 | 1867 | 1493.66 | 373.34   | 29803 |
| 29  | 33 | 2537 | 841.62  | 1695.38  | 13171 |
| 30  | 34 | 84   | 372.28  | -288.28  | 1199  |
| 31  | 35 | 311  | 347.46  | -36.46   | 566   |
| 32  | 36 | 223  | 359.57  | -136.57  | 875   |
| 33  | 37 | 336  | 842.09  | -506.09  | 13183 |
| 34  | 38 | 305  | 342.76  | -37.76   | 446   |
| 35  | 39 | 122  | 334.48  | -212.48  | 235   |
| 36  | 40 | 671  | 369.06  | 301.94   | 1117  |
|     |    |      |         |          |       |

# TABLE OF COMPARED PREDICTED VALUES OF $\mathsf{Q}_{25}$ and from Log pearson type III

- Q25 = Peak Flows in Recurrence Intervals of 25 Years From Log Pearson Type III (cubic meters/sec)
- PQ25 = Predicted Peak Flows From Recurrence Intervals of 25 Years From Model  $B_{25}$
- RESID25 = Q25 PQ25 (cubic meters/sec)
- DA = Drainage Area in Square Kilometers





### TABLE XVIII

| UES | NÜ       | Q5 0 | PQ50             | R 50                | DA    |
|-----|----------|------|------------------|---------------------|-------|
| 1   | 1        | 1863 | 2250.54          | -387.54             | 43100 |
| 2   | 2        | 88   | 388.57           | -300.57             | 401   |
| 3   | 3        | 317  | 401.74           | -84.74              | 703   |
| 4   | 4        | 1067 | 549.43           | 517.57              | 4090  |
| 5   | 5        | 1959 | 425.16           | .1533.84            | 1240  |
| 6   | 6        | 724  | 573.85           | 150.15              | 4650  |
| 7   | 7        | 210  | 417.74           | -207.74             | 1070  |
| 8   | 8        | 687  | 429.52           | 257.48              | 1340  |
| 9   | 9        | 216  | 401.69           | -185.69             | 702   |
| 10  | 10       | 1270 | 516.73           | 753.27              | 3340  |
| 11  | 11       | 890  | 460.91           | 429.09              | 2060  |
| 12  | 14       | 239  | 474.00           | -235.00             | 2360  |
| 13  | 15       | 63   | 373.74           | -310.74             | 61    |
| .14 | 16       | 254  | 385.43           | <del>-</del> 131.43 | 329   |
| 15  | 17       | 400  | 432.57           | - 32. 57            | 1410  |
| 16  | 18       | 1064 | 1613.88          | -549.88             | 28500 |
| 17  | 20       | 378  | 395.07           | -17.07              | 550   |
| 18  | 21       | 409  | 428.08           | -19.08              | 1307  |
| 19  | 22       | 194  | 396.24           | -202.24             | 577   |
| 20  | 23       | 520  | 460.96           | 59.04               | 2061  |
| 21  | 24       | 2023 | 497.80           | 1525.20             | 2906  |
| 22  | 25       | 941  | 503.04           | 437.96              | 3026  |
| 23  | 26       | .551 | 406.93           | 144.07              | 822   |
| 24  | 27       | 1352 | 580.40           | 771.60              | 4800  |
| 25  | 28       | 1418 | 16/1.31          | -253.31             | 29817 |
| 20  | 29       | 1201 | 612.15           | 588.25              | 5542  |
| 21  | 30       | 2.59 | 427.42           | -108.42             | 1292  |
| 28  | 32       | 2130 | 1670.70          | 459.30              | 29803 |
| 29  | د د      | 3597 | 945•43<br>(12 27 | 2021.07             | 13171 |
| 30  | 24       | 60   | 423.31           | -221.21             | 1199  |
| 22  | 32<br>24 | 421  | 393.10           | 21.24               | 200   |
| 22  | 20       | 200  | 409+24           | -147024<br>533 DE   | 12102 |
| 20  | 20       | 425  | 340.53           | - 522.095           | 13103 |
| 24  | 20       | 140  | 281 22           | 1/04/               | 225   |
| 36  | 40       | 140  | L10 70           | -233.33             | 1117  |
| 50  |          | 009  | 412012           | 777021              |       |
|     |          |      |                  |                     |       |

#### TABLE OF COMPARED PREDICTED VALUES OF Q<sub>50</sub> AND FROM LOG PEARSON TYPE III

- Q50 = Peak Flows in Recurrence Intervals of 50 Years From Log Pearson Type III (cubic meters/sec)
- PQ50 = Predicted Peak Flows From Recurrence Intervals of 50 Years From Model B50
- R50 = Q50 PQ50 (cubic meters/sec)
- DA = Drainage Area in Square Kilometers





TABLE XIX

ľ

| GBS | NO | 0100 | PQ100   | R100    | DA    |
|-----|----|------|---------|---------|-------|
| 1   | 1  | 2023 | 2462.33 | -439.33 | 43100 |
| 2   | 2  | 98   | 437.16  | -339.16 | 401   |
| 3   | 3  | 386  | 451.48  | - 65.48 | 703   |
| 4   | 4  | 1237 | 612.12  | 624.88  | 4090  |
| 5   | 5  | 2914 | 476.95  | 2437.05 | 1240  |
| 6   | 6  | 786  | 638.68  | 147.32  | 4650  |
| 7   | 7  | 211  | 468.89  | -257.89 | 1070  |
| 8   | 8  | 783  | 481.69  | 301.31  | 1340  |
| 9   | 9  | 223  | 451.43  | -228.43 | 702   |
| 10  | 10 | 1633 | 576,55  | 1056.45 | 3340  |
| 11  | 11 | 1018 | 515.84  | 502.16  | 2060  |
| 12  | 14 | 255  | 530.07  | -275.07 | 2360  |
| 13  | 15 | 70   | 421.03  | -351.03 | 61    |
| 14  | 16 | 302  | 433.74  | -131.74 | 329   |
| 15  | 17 | 414  | 485.01  | -71.01  | 1410  |
| 16  | 18 | 1133 | 1769.86 | -636.86 | 28500 |
| 17  | 20 | 417  | 444.22  | -27.22  | 550   |
| 18  | 21 | 456  | 480.13  | -24.13  | 1307  |
| 19  | 22 | 227  | 445.51  | -218.51 | 577   |
| 20  | 23 | 552  | 515.89  | 36.11   | 2061  |
| 21  | 24 | 2911 | 555.97  | 2355.03 | 2906  |
| 22  | 25 | 1035 | 561.66  | 473.34  | 3026  |
| 23  | 26 | 552  | 457.13  | 94.87   | 822   |
| 24  | 27 | 1593 | 645.80  | 947.20  | 4800  |
| 25  | 28 | 1510 | 1832.33 | -322.33 | 29817 |
| 26  | 29 | 1490 | 680.99  | 809.01  | 5542  |
| 27  | 30 | 333  | 479.42  | -146.42 | 1292  |
| 28  | 32 | 2371 | 1831.66 | 539.34  | 29803 |
| 29  | 33 | 4966 | 1042.83 | 3923.17 | 13171 |
| 30  | 34 | 87   | 475.01  | -388.01 | 1199  |
| 31  | 35 | 576  | 444.98  | 131.02  | 566   |
| 32  | 36 | 295  | 459.64  | -164.64 | 875   |
| 33  | 37 | 528  | 1043.39 | -515.39 | 13183 |
| 34  | 38 | 523  | 439.29  | 83.71   | 446   |
| 35  | 39 | 176  | 429.28  | -253.28 | 235   |
| 36  | 40 | 1099 | 471.12  | 627.88  | 1117  |
|     |    |      |         |         |       |

# TABLE OF COMPARED PREDICTED VALUE Q AND FROM LOG PEARSON TYPE III

- Q100 = Peak Flows in Recurrence Intervals of 100 Years From Log Pearson Type III (cubic meters/sec)
- PQ100 = Predicted Peak Flows From Recurrence Intervals of 100 Years From Model B100
- R100 = Q100 PQ100 (cubic meters/sec)

DA = Drainage Area in Square Kilometers



50000.00000



basins are omitted, leaving 36 basins. The other reason for omitting these two basins was to check the prediction when the drainage area sizes are smaller than 43,1000 square kilometers. In the analysis of the 36 small basins, the linear model gives a better prediction. The logarithmic models indicate good  $R^2$  and standard error, but do not give a good prediction (Tables VI and VII). Based on the value of the residual, linear models were found to give a good prediction (see Tables VIII and XIV).

The author would like to recommend the use of the following models: If the drainage area sizes are smaller than 50,000 square kilometers, use models B2, B5, B10, B25, B50, and B100, to estimate  $Q_2$ ,  $Q_5$ ,  $Q_{10}$ ,  $Q_{25}$ ,  $Q_{50}$ , and  $Q_{100}$ . Tables XIV to XIX and Figures 8 to 13 show the residuals between the predicted and Log Pearson Type III values. The utilization of the models in a simple and practical way is presented in the Engineering Application section.

#### Limitations

The following limitations should be observed when using the regression models:

1) They should not be used where dams, flood detention structures, and other man-made works have a significant effect on peak discharges. Under such conditions, stream systems studies involving reservoir and open channel routing may be required to evaluate flood frequency, which is beyond the scope of this thesis.

2) They should not be used in urban areas unless the effects of urbanization are not significant.

It should be noted that the predicted values given in Table V in

79

the linear models are the best unbiased estimates of stream flow. The maximum  $Q_T$  to be expected can be established with 100 (1- $\alpha$ ) percent confidence by computing a one-sided confidence interval. This can be computed from the formula

$$Q_{T}^{*} = (a-bA_{o}) + t_{35,\alpha}S_{T}(1A_{o})C_{T}\begin{pmatrix}1\\A_{o}\end{pmatrix}$$
 (5.4)

where  $A_0$  is the drainage area of the basin for which the estimate is desired, a, b, and  $S_T^2$  are given in Table V for the appropriate model,  $t_{35,\alpha}$  is the upper  $\alpha$  point of the student t distribution with 35 degrees of freedom, and  $C_T$  is given in Table XX for the models named  $B_2$ ,  $B_5$ ,  $B_{10}$ ,  $B_{25}$ ,  $B_{50}$ , and  $B_{100}$ .

#### Engineering Application

As an engineering consideration, the model should be simple to use in the engineering field. The models named B2, B5, B10, B25, B50, and B100 are presented in the form of:

| Q <sub>2</sub>  | = 128 + 0.02 DA | (B2)  | (5.4) |
|-----------------|-----------------|-------|-------|
| Q <sub>10</sub> | = 265 + 0.03 DA | (B10) | (5.6) |

$$Q_{25} = 289 + 0.04 \text{ DA}$$
 (B25) (5.7)

$$Q_{50} = 330 + 0.05 DA$$
 (B50) (5.8)

$$Q_{100} = 418 + 0.05 \text{ DA}$$
 (B100) (5.9)

The relationships of  $Q_2$ ,  $Q_5$ ,  $Q_{10}$ ,  $Q_{25}$ ,  $Q_{50}$ , and  $Q_{100}$  to drainage are shown in Figure 14. The graph has the same practical predictive value as the equations (5.4) through (5.9).

TABLE XX

## CT MATRICES

| 2.48338031172D-03 -9.74887527567D-08<br>-9.74887527567D-08 1.35445682559D-11 |
|------------------------------------------------------------------------------|
|                                                                              |
| 7.89704011688D-03 -2.85524000103D-07<br>-2.85524000103D-07 3.16807494210D-11 |
|                                                                              |
| 1.28073475287D-02 -4.61533524065D-07<br>-4.61533524065D-07 4.89655719597D-11 |
|                                                                              |
| 1.99507659630D-02 -7.18904092411D-07<br>-7.18904092411D-07 7.40576482919D-11 |
|                                                                              |
| 2.56621596241D-02 -9.24882661381D-07<br>-9.24882661381D-07 9.40037663212D-11 |
|                                                                              |
| 3•15324943495D-02 -1•13630369537D-06<br>1•13630369537D-06 1•14197590914D-10  |
|                                                                              |

D = power of ten.



Figure 14. Peak Flow at Recurrence Intervals of 2, 5, 10, 25, 50, and 100 Years versus Drainage Areas

#### Maximum Flood Record of Northeastern Thailand

For each of the 38 drainage basins, the maximum flow or record was selected from the lists of annual peak flows in Appendix B. These maximum recorded flows are listed in Table XXI, and Figure 15 shows the relationship between maximum recorded flow and drainage area.

The graph can be used to approximate the maximum flow to be expected from a drainage basin of a given size.

### TABLE XXI

| Drainage<br>Area<br>Km <sup>2</sup>                                                                                                                                                                                                                                                                                                           | Drainage<br>Area<br>Mile <sup>2</sup>                                                                                                                                                                                                                                                                                    | M <sup>3</sup> /Sec                                                                                                                                                                                                                                                      | Ft <sup>3</sup> /Sec                                                                                                                                                                                                                                                                                                                  | M <sup>3</sup> /Sec/<br>Km <sup>2</sup>                                                                                                                                                                                                                                                                                            | Ft <sup>3</sup> /Sec/<br>Mile <sup>2</sup>                                                                                                                                                                                                                                                                                                 | Basin<br>No.                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 43100\\ 401\\ 703\\ 4090\\ 1240\\ 4650\\ 1070\\ 1340\\ 702\\ 3340\\ 2060\\ 10400\\ 2360\\ 61\\ 329\\ 1410\\ 28500\\ 10400\\ 2360\\ 61\\ 329\\ 1410\\ 28500\\ 117000\\ 550\\ 1307\\ 577\\ 2061\\ 2906\\ 3026\\ 822\\ 4800\\ 29817\\ 5542\\ 1292\\ 29803\\ 13171\\ 1199\\ 566\\ 875\\ 13183\\ 446\\ 235\\ 1117\\ \end{array}$ | $\begin{array}{c} 16641 \\ 155 \\ 271 \\ 1579 \\ 479 \\ 1796 \\ 413 \\ 931 \\ 271 \\ 1289 \\ 796 \\ 40154 \\ 912 \\ 24 \\ 127 \\ 544 \\ 11004 \\ 45174 \\ 212 \\ 505 \\ 223 \\ 796 \\ 1122 \\ 1168 \\ 318 \\ 1853 \\ 11512 \\ 2139 \\ 499 \\ 11506 \\ 5085 \\ 463 \\ 219 \\ 338 \\ 5090 \\ 172 \\ 91 \\ 432 \end{array}$ | $\begin{array}{c} 1920\\ 72\\ 261\\ 747\\ 913\\ 644\\ 190\\ 514\\ 191\\ 1150\\ 691\\ 5540\\ 212\\ 44\\ 197\\ 346\\ 803\\ 6640\\ 252\\ 331\\ 157\\ 500\\ 1509\\ 760\\ 479\\ 1136\\ 1108\\ 639\\ 115\\ 1453\\ 1840\\ 82\\ 326\\ 171\\ 277\\ 276\\ 108\\ 527\\ \end{array}$ | 57796<br>2543<br>9216<br>26377<br>32238<br>22740<br>6709<br>18150<br>6744<br>40606<br>24399<br>195618<br>7485<br>1544<br>6956<br>12217<br>28354<br>234811<br>8898<br>11688<br>5544<br>17655<br>53283<br>36836<br>16914<br>40112<br>39123<br>22563<br>4061<br>51306<br>64970<br>2896<br>11511<br>6038<br>9781<br>9746<br>3814<br>18609 | .045<br>.18<br>.371<br>.183<br>.736<br>.138<br>.177<br>.383<br>.272<br>.344<br>.335<br>.053<br>.09<br>.721<br>.598<br>.245<br>.028<br>.057<br>.458<br>.253<br>.272<br>.242<br>.519<br>.251<br>.582<br>.236<br>.037<br>.115<br>.089<br>.049<br>.115<br>.089<br>.049<br>.139<br>.068<br>.575<br>.195<br>.021<br>.618<br>.460<br>.472 | $\begin{array}{c} 4.07\\ 16.406\\ 34.000\\ 16.70\\ 67.302\\ 12.66\\ 16.244\\ 19.5\\ 25.0\\ 31.50\\ 30.65\\ 4.87\\ 8.20\\ 64.75\\ 54.77\\ 22.45\\ 2.58\\ 5.19\\ 41.97\\ 23.144\\ 24.86\\ 22.18\\ 47.489\\ 31.54\\ 53.19\\ 21.64\\ 3.398\\ 10.548\\ 8.138\\ 4.459\\ 12.776\\ 6.25\\ 52.56\\ 17.86\\ 1.92\\ 56.66\\ 41.9\\ 43.076\end{array}$ | $1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\$ |

MAXIMUM DISCHARGE IN NORTHEASTERN THAILAND

, **s** 



Figure 15. Relation of Maximum Flood to Drainage Area in Northeastern Thailand

#### CHAPTER VI

#### SUMMARY AND CONCLUSIONS

#### Summary

The regional flood flow frequency analysis had never been made in Thailand. Therefore, flood records at 38 gaging stations in northeastern Thailand have been used in analysis for this report. The flood frequency relation and associated statistics were derived for 38 stations that have five or more years of record by fitting the array of annual peaks to a Log-Pearson Type III distribution. Selected recurrence-interval floods from the 2-year through the 100-year level were tabulated for each record, depending on the number of years of record used to calculate the flood frequency curve.

The flood frequency data for the 38 basin drainage areas were related to basin characteristic and climatology through multiple linear regression techniques. Of the variables considered, the only significant variable was drainage area. By excluding the two large drainage basins of the Mune River and making a linear model of the remaining 36 basins, a better result was obtained (see Tables VIII and XIII). Equations were developed for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. A weighted least squares procedure based on length of record is recommended to adjust the equation.

86

#### Conclusions

The objective of this research is to use a new way of flood frequency technique that has never been used in Thailand and should be useful to estimate the flood frequency of a stream at an ungaged site if the drainage area sizes are known.

After analysis, the linear models named B2, B5, B10, B25, B50, and B100, gave better results than did other models (see summary of results in Tables VIII to XIII; note the standard error and  $R^2$  in Tables VI and VII). The selected model was based on the residual of the results (discharge of Log Pearson Type III at selected recurrence interval - predicted discharge from model).

The utilization of this model under upper confidence limit was shown in the section on limitation of model and Table XX for each recurrence interval--2, 5, 10, 25, 50, and 100 years. The result of these predictions is only fair, because of insufficient data. The graph of drainage area versus observed discharge for selected recurrence interval and predicted discharge is shown in Tables XIV to XIX. For the engineering practical application in the field, it has been summarized in engineering consideration. It summarizes equations (5.4), (5.5), (5.6), (5.7), (5.8), and (5.9) for recurrence intervals of 2, 5, 10, 25, 50, and 100 years, respectively. It also included the corresponding graph, which is shown in Figure 14 for use in the engineering field.

This research will be useful as a guide for future study. Further studies are planned when the author of this paper returns to his country (Thailand). The use of more independent variables as characteristic of drainage basins and more accurate topographic maps would be useful for future studies. Also, digital simulation computer models would be of use to extend the streamflow records.

#### CHAPTER VII

#### SUGGESTIONS FOR FUTURE STUDY

These suggestions for future study would be useful for future water resources research in northeastern Thailand and other parts of Thailand.

1) Do regional flood frequency analyses by use of a multiple regression technique for another part of Thailand, e.g., the south, east, north, and central areas.

2) Use a multiple regression technique to predict low flow frequency with relation to the characteristics and climatology of the drainage basins.

3) Use a multiple regression technique to relate the water quantity and quality.

4) Construct skew coefficient map to adjust the data to give better results of flood flow frequency, and use the multiple regression technique to fit the characteristics and climatology of drainage basins of the study areas.

5) Use a multiple regression technique to predict the water yield in northeastern Thailand.

6) Do sediment yield of watershed in northeastern Thailand by use of the multiple regression technique.

89

#### BIBLIOGRAPHY

- Committee for Co-ordination of Investigations of the Lower Mekong Basin: Flood Frequency Study of the Mekong, <u>MKG/7</u> (June 28, 1973).
- Clarke-Hafstad, K., "Reliability of Station-Year Rainfall Frequency Determinations." <u>Trans. ASCE</u>, V. <u>107</u>, pp. 632-683 (1942).
- Longbein, W. B., "Topographic Characteristics of Drainage Basins." U. S. Geological Survey, Water Supply Paper 968C, pp. 125-157 (1947).
- Dalrymple, T., "Flood Frequency Analyses." U. S. Geological Survey, Water Supply Paper 1543A (1960).
- Benson, M. A., "Evolution of Methods for Evaluating the Occurrence of Floods." U. S. Geological Survey Water Supply Paper 1580A (1962).
- Benson, M. A., Matalas, N. C., <u>Synthetic Hydrology Based on</u> <u>Regional Statistical Parameters</u>. Water Resources Research, Vol. 3, No. 4, pp. 931-936 (1967).
- 7. U. S. Geological Survey Water Supply Paper, 1671-1689 (1964).
- 8. Pravatmuong, P., The Hydrology of the Lower Mekong River With Particular Reference to Pa Mong Project, Asian Institute of Technology, Thesis No. 51 (1964).
- 9. U. S. B. R., Pa Mong, "Key to the Development of the Lower Mekong," <u>Data Summary</u> (1973).
- 10. Rjoanasoonthorn, S., and Moorman, F. R., "The Soils of the Kingdom of Thailand Explanatory Text of the General Soil Map." Report SSR-72A, Soil Survey Division, Bangkok, Thailand.
- Pinkayan, S, and Sahagun, V. A., "Hydrologic Study of the Thung Ma Hiu Project, Asian Institute of Technology Research, <u>Report</u> No. 42, September (1973).
- 12. Molagool, A., An Investigation of the Water Balance in Northeastern Thailand. Thesis No. 32, Asian Institute of Technology (1962).

- 13. Paddleton, R. L. <u>Report</u> to Accompany the Provisional Map of the Soils and Surface Rocks of the Kingdom of Siam (unpublished). Mutual Security Agency, U. S. Special Technical and Economic Mission to Thailand (1953).
- 14. U. S. B. R., Pa Mong Phase II, Appendix III, "Hydrology and Climatology." Prepared for the Committee for Coordination of Investigations of the Lower Mekong Basin and the Agency for the International Development (1972).
- 15. U. S. B. R., Pa Mong Phase I, Appendix III. "Hydrology and Climatology." Prepared for the Committee for Coordination of Investigations of the Lower Mekong Basin and the Agency for the International Development (1970).
- 16. Information From Royal Thai Irrigation Department.
- 17. National Energy Authority of Thailand, <u>Hydrologic Data</u>, Vol. <u>I</u> and Vol. <u>II</u> (1962-1971).
- Riggs, H. C., <u>Regional Analysis of Stream Flow Characteristics</u>.
  U. S. Geological Survey Techniques of Water Resources Inv., Book 4, Chap. B3, 15 p. (1973).
- Beard, L. R., <u>Statistical Methods in Hydrology</u>. U. S. Army Engineer District, Corps of Engineers, Sacramento, Calif., Section 7 (1962).
- Benson, M. A., "Evolution of Methods for Evaluating the Occurrence of Floods." U. S. Geological Survey Water Supply Paper 1580A, 30 p. (1962).
- 21. Riggs, H. C., "A Method of Forecasting Low Flow of Streams." Am. Geophys. Union Trans., V. 34, No. 3, pp. 427-434 (1953).
- 22. Water Resources Council, Hydrology Committee. "A Uniform Technique for Determining Flood Flow Frequencies." <u>Bulletin</u> No. 15, Washington, D. C. (1967).
- 23. U. S. Water Resources Council. "A Uniform Technique for Determining Flood Flow Frequencies." <u>Draft</u>, Washington, D. C., December 3 (1974).
- 24. U. S. Geological Survey, "Log Pearson Type III Flood Frequency Analysis Computer Program E657-451" (Revision by D. B. Sapek) (August, 1974).
- 25. Yeojavich, V., <u>Handbook of Hydrology</u>, by V. T. Chow, Section 8-11, McGraw-Hill Book Company, New York (1964).

- 26. Draper, N. R., and Smith, H., <u>Applied Regression Analysis</u>. John Wiley & Sons, Inc., New York (1967).
- 27. Neter, V., and Wasserman, W., <u>Applied Linear Statistical Model</u>. Richard D. Irwin, Inc., New York (1974).
- 28. Royal Thai Irrigation Department, <u>Thailand Hydrologic Year Book</u>, Vol. <u>5-8</u>, Bangkok, Thailand (1959-1965).
- National Energy Authority, Ministry of National Development, <u>Hydrologic Data</u>, Vol. <u>I</u> and Vol. <u>II</u>, Bangkok, Thailand (1962-1972).
- 30. Supplemental <u>Data</u> From Royal Thai Irrigation Department, by Mr. Lek Chindasaguan (1973-1974).
- Supplemental <u>Data</u> From National Energy Authority, Ministry of National Development, by Mrs. Suntraphorn Suthaswin (1972-1973).
- 32. Harza Engineering Company, Hydrologic <u>Data</u> Mekong River Basin (1960-1961).
- 33. Sauer, V. B., Flood Characteristics of Oklahoma Streams. U. S. Geological Survey Water Resources <u>Investigation</u>, 52-73 (1974).
- 34. Royal Thai Army, <u>Topographic Map Scales</u> 1:250,000 (1969).
- 35. Kendall, M. G., <u>The Advanced Theory of Statistics</u>, Vol. <u>I</u>, 5th Ed., Hafner Publishing Co., New York (1952).
- 36. Hardison, C. H., "Accuracy of Stream Flow Characteristics." U. S. Geological Survey Professional Paper 650-D, pp. 210-214 (1969).
- 37. LaMoreaux, P. E., et al., "Reconnaissance of the Geology and Groundwater of the Khorat Plateau, Thailand." U. S. Geological Survey Water Supply Paper 1429 (1958).
- 38. Anderson, J. A., "Runoff Evaluation and Streamflow Simulation by Computer." U. S. Army Engineering Division, North Pacific, Portland, Oregon (May, 1971).
- 39. Rockwood, D. M., and Anderson, J. A., "Probable Maximum Floods for Mekong River Project." Presented at the ASCE National Meeting on Water Resources Engineering, New Orleans, La., (February 3-7, 1969).
- 40. Martin, R. C., "Low Flow Simulation of the Illinois River Using a Conceptual Hydrologic Model." Unpublished Masters Thesis, Oklahoma State University (1975).

- 41. "National Weather Service River Forecast System Forecast Pro-Procedures." NOAA Technical <u>Memorandum</u> NWS HYDRO 14. Department of Commerce (1972).
- 42. Linsley, R., "A Critical Review of Currently Available Hydrologic Models for Analysis of Urban Stormwater Runoff." Hydrocomp International (1972).
- 43. Burnash, R. J. C., Ferral, R. L., and McGuire, R. A., "A Generalized Streamflow Simulation System." U. S. Department of Commerce and State of California Department of Water Resources (1973).
- 44. Crawford, N. H., and Linsley, R. K., "Digital Simulation in Hydrology. Stanford Watershed Model IV." Technical <u>Report</u> No. 39, Stanford University (1966).
- 45. Thomas, B. J., Corps of Engineers, North Pacific Division, Portland, Oregon. Personal Communication (1975).
- Service, Jolayne. <u>A User's Guide to the Statistical Analysis</u> <u>System</u>. North Carolina State University, Raleigh (August, 1972).
- 47. Linsley, R., Kohler, M. A., and Paulhus, J. L. H., <u>Hydrology</u> for Engineers. McGraw-Hill Book Company, New York (1975).
- 48. Royal Thai Irrigation Department Loose-leaf <u>Report</u> of Precipitation and Climatic Data 1951-1971, Bangkok, Thailand.
- 49. Thornethwaite, C. W., "An Approach Toward a Rational Classification of Climate, 1948." Geological Review, Vol. 38, pp. 55-94

### APPENDIX A

## CLIMATOLOGIC DETAILS OF NORTHEASTERN THAILAND
# TABLE XXII

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

|                                                                                                 |                                   | and the second se | and the second se |                                   |                                   |                                                     |                                                    |                                                 |                                          |                                   |                                      |                                   |                                       |
|-------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|
| Station LOEI<br>Index Station 44<br>Latitude 17 <sup>0</sup> 32<br>Longitude 101 <sup>0</sup> 3 | B 353<br>' N.<br>30' E.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | E<br>H<br>H<br>H<br>H             | levatio<br>eight o<br>eight o<br>eight o<br>eight o | n of st<br>f barom<br>f therm<br>f wind<br>f raing | ation a<br>eter ab<br>ometer<br>vane ab<br>uage | bove MS<br>ove MSL<br>above g<br>ove gro | L<br>round<br>und                 | 252.5<br>253.9<br>1.2<br>11.3<br>0.6 | 2 meter<br>9<br>1<br>0<br>5       | rs                                    |
|                                                                                                 | Jan                               | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Apr                               | May                               | Jun                                                 | Jul                                                | Aug                                             | Sep                                      | Oct                               | Nov                                  | Dec                               | Year                                  |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                                       | 77.6<br>119.8                     | 95.3<br>129.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.0<br>161.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.2<br>166.0                    | 68.2<br>144.8                     | 54.1<br>128.2                                       | 56.7<br>134.3                                      | 48.1<br>119.7                                   | 35.4<br>101.8                            | 44.5<br>119.6                     | 50.5<br>110.5                        | 62.6<br>114.9                     | 818.2<br>1550.6                       |
| <u>Cloudiness (0-8)</u><br>Mean                                                                 | 2.4                               | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.7                               | 5.5                               | 6.3                                                 | 6.4                                                | 6.5                                             | 6.1                                      | 4.3                               | 3.3                                  | 2.9                               | 4.4                                   |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                                      | 1.8<br>6.0                        | 1.8<br>4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5<br>3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5<br>4.9                        | 5.0<br>8.6                        | 5.9<br>9.4                                          | 6.1<br>9.5                                         | 5.5<br>9.1                                      | 3.8<br>8.4                               | 2.5<br>8.4                        | 1.8                                  | 1.8<br>7.6                        | 3.3<br>7.3                            |
| <u>Wind (knots)</u><br>Prevailing<br>Mean speed<br>Max. speed                                   | E<br>3.5<br>30 NW                 | E<br>3.9<br>27 SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E<br>3.8<br>\$ 40N,SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E<br>3.9<br>47 W                  | W<br>3.6<br>45 N                  | W<br>3.3<br>40 SW                                   | W<br>3.9<br>33 NW                                  | W<br>3.6<br>33 W                                | N<br>3.2<br>35 NW                        | N<br>2.9<br>33 N                  | N<br>2.8<br>21 NE                    | N<br>3.0<br>21 N                  | -                                     |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year                | 7.3<br>1.8<br>17.0<br>19/69       | 14.4<br>3.2<br>28.0<br>9/56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.5<br>5.7<br>61.8<br>26/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.0<br>9.3<br>66.4<br>4/55       | 189.4<br>19.5<br>87.4<br>4/68     | 156.2<br>18.5<br>102.8<br>1/57                      | 143.2<br>17.9<br>59.9<br>21/68                     | 196.3<br>21.6<br>118.5<br>29/58                 | 248.0<br>20.3<br>148.6<br>23/67          | 104.1<br>11.4<br>102.3<br>9/64    | 14.1<br>2.8<br>33.7<br>1/69          | 2.9<br>0.9<br>23.3<br>22/66       | 1221.4<br>132.9<br>148.6<br>23/67     |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                           | 27.9<br>12.5<br>0.0<br>0.5<br>0.0 | 26.8<br>5.5<br>0.1<br>1.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.5<br>3.4<br>0.2<br>7.9<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.8<br>1.1<br>0.2<br>18.5<br>0.5 | 15.2<br>2.1<br>0.1<br>23.6<br>0.2 | 8.2<br>3.4<br>0.0<br>16.1<br>0.1                    | 5.8<br>4.7<br>0.0<br>13.4<br>0.1                   | 5.6<br>5.7<br>0.0<br>15.3<br>0.0                | 7.3<br>9.6<br>0.0<br>11.8<br>0.1         | 13.9<br>16.8<br>0.0<br>7.0<br>0.0 | 17.4<br>19.2<br>0.0<br>0.7<br>0.0    | 22.6<br>17.9<br>0.0<br>0.0<br>0.0 | 209.0<br>101.9<br>0.6<br>116.4<br>1.2 |

Remark: Data for 1954-1970

# TABLE XXIII

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

| ·                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHANOM<br>8 357<br>' N.<br>20' E. |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E<br>H<br>H<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | levatio<br>eight o<br>eight o<br>eight o<br>eight o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n of st<br>f barom<br>f therm<br>f wind<br>f raing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation a<br>leter ab<br>lometer<br>vane ab<br>luage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bove MS<br>ove MSL<br>above g<br>ove gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L.<br>round<br>und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140.0<br>141.0<br>1.2<br>13.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 mete<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs                                                                                                                                                                                                                                                                                                                                                         |
| Jan                               | Feb                                                                                                                                                   | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Year                                                                                                                                                                                                                                                                                                                                                       |
| 93.4                              | 95.0                                                                                                                                                  | 105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.0<br>No o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.6<br>bservat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.0<br>ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 872.4                                                                                                                                                                                                                                                                                                                                                      |
| 2.4                               | 3.2                                                                                                                                                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7                                                                                                                                                                                                                                                                                                                                                        |
| 4.9<br>10.8                       | 5.6<br>9.0                                                                                                                                            | 5.8<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0<br>8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2<br>11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.4<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.6<br>11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5<br>10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.2<br>11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6<br>12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5<br>12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2<br>11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.7                                                                                                                                                                                                                                                                                                                                                        |
| E<br>4.6<br>27NEĘ                 | E<br>4.5<br>50W                                                                                                                                       | E<br>3.9<br>39N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E<br>3.3<br>40NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E<br>3.1<br>55WSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E<br>2.6<br>22SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E<br>2.9<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E<br>3.0<br>34W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E<br>2.6<br>48S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E<br>3.3<br>26E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E<br>4.0<br>30E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E<br>4.3<br>30NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                            |
| 7.1<br>0.9<br>43.5<br>25/54       | 18.5<br>2.7<br>60.5<br>28/54                                                                                                                          | 51.9<br>5.6<br>58.9<br>6/61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.3<br>8.2<br>110.4<br>30/67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242.5<br>18.8<br>124.0<br>26/69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 529.1<br>22.7<br>459.2<br>17/62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 377.3<br>23.4<br>155.8<br>3/69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 588.3<br>24.8<br>264.0<br>16/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 355.1<br>20.9<br>146.0<br>15/54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.4<br>7.4<br>105.4<br>1/64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4<br>1.4<br>27.2<br>1/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>0.0<br>0.0<br>0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2317.9<br>136.8<br>459.2<br>17/62                                                                                                                                                                                                                                                                                                                          |
| 22.6<br>6.9<br>0.0<br>0.2<br>0.0  | 24.3<br>5.4<br>0.1<br>1.1<br>0.1                                                                                                                      | 27.8<br>3.4<br>0.1<br>5.4<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.9<br>2.9<br>0.1<br>10.1<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.2<br>1.8<br>0.0<br>18.4<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3<br>0.7<br>0.0<br>18.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3<br>0.3<br>0.0<br>16.5<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1<br>0.6<br>0.0<br>14.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9<br>1.7<br>0.0<br>10.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.0<br>4.6<br>0.0<br>4.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.6<br>5.8<br>0.0<br>0.2<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.8<br>10.1<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152.8<br>44.2<br>0.3<br>100.4<br>0.1                                                                                                                                                                                                                                                                                                                       |
|                                   | PHANOM<br>3 357<br>N.<br>20' E.<br>Jan<br>93.4<br>2.4<br>4.9<br>10.8<br>E<br>4.6<br>27NEE<br>7.1<br>0.9<br>43.5<br>25/54<br>22.6<br>6.0<br>0.2<br>0.0 | PHANOM           3 357           N.           20' E.           Jan         Feb           93.4         95.0           2.4         3.2           4.9         5.6           10.8         9.0           E         E           4.6         4.5           27NEF         50W           7.1         18.5           0.9         2.7           43.5         60.5           25/54         28/54           22.6         24.3           6.9         5.4           0.0         0.1           0.2         1.1           0.0         0.1 | PHANOM<br>3 357         Phanom<br>N.           Jan         Feb         Mar           93.4         95.0         105.3           2.4         3.2         3.5           4.9         5.6         5.8           10.8         9.0         7.5           E         E         E           4.6         4.5         3.9           27NEF         50H         39N           7.1         18.5         51.9           0.9         2.7         5.6           43.5         60.5         58.9           25/54         28/54         6/61           22.6         24.3         27.8           6.9         5.4         3.4           0.0         0.1         0.0 | PHANOM<br>3 357         Phanom<br>N.           20' E.         Mar         Apr           93.4         95.0         105.3         100.1           2.4         3.2         3.5         4.4           4.9         5.6         5.8         7.0           10.8         9.0         7.5         8.7           E         E         E         E           4.6         4.5         3.9         3.3           27NEE         50H         39N         40NW           7.1         18.5         51.9         85.3           0.9         2.7         5.6         8.2           43.5         60.5         58.9         110.4           25/54         28/54         6/61         30/67           22.6         24.3         27.8         22.9           6.9         5.4         3.4         2.9           0.0         0.1         0.1         0.1           0.2         1.1         5.4         10.1           0.0         0.1         0.0         0.0 | PHANOM<br>B 357         E<br>N.<br>20' E.         E<br>H<br>H           Jan         Feb         Mar         Apr         May           Jan         Feb         Mar         Apr         May           Jan         Feb         Mar         Apr         May           93.4         95.0         105.3         100.1         67.0<br>No o           2.4         3.2         3.5         4.4         5.7           4.9         5.6         5.8         7.0         10.2           10.8         9.0         7.5         8.7         11.6           E         E         E         E         E           4.9         5.6         5.8         7.0         10.2           10.8         9.0         7.5         8.7         11.6           E         E         E         E         E           4.9         5.6         5.8         7.0         10.2           7.1         18.5         51.9         85.3         242.5           0.9         2.7         5.6         8.2         18.8           43.5         60.5         58.9         110.4         124.0      25/54         28/54         6/61 | PHANOM<br>3 357         Elevatio<br>Height o<br>Height o<br>Height o           20' E.         Mar         Apr         May         Jun $3an$ Feb         Mar         Apr         May         Jun $3an$ Feb         Mar         Apr         May         Jun $93.4$ $95.0$ $105.3$ $100.1$ $67.0$ $45.6$ $an$ $90$ $7.5$ $8.7$ $11.6$ $11.0$ E         E         E         E         E         E $4.6$ $4.5$ $3.9$ $3.3$ $3.1$ $2.6$ $27NEE$ $50W$ $39N$ | PHANOM       Elevation of st $3 357$ Height of barom         'N.       Height of therm $20'$ E.       Height of wind         Jan       Feb       Mar       Apr       May       Jun       Jul $93.4$ 95.0       105.3       100.1 $67.0$ $45.6$ $41.0$ No       observation $2.4$ $3.2$ $3.5$ $4.4$ $5.7$ $6.8$ $6.8$ $4.9$ $5.6$ $5.8$ $7.0$ $10.2$ $9.4$ $9.6$ $10.8$ $9.0$ $7.5$ $8.7$ $11.6$ $11.0$ $11.1$ E       E       E       E       E       E $2.9$ $2.9$ $2.7$ $27NEE$ $50W$ $39N$ $40NW$ $55WSW$ $22SW$ $27S$ $7.1$ $18.5$ $51.9$ $85.3$ $242.5$ $529.1$ $377.3$ $0.9$ $2.7$ $5.6$ $8.2$ $18.8$ $22.7$ $23.4$ $43.5$ $60.5$ $58.9$ $110.4$ $124.0$ $459.2$ $155$ | PHANOM<br>3 357<br>' N.<br>20' E.Elevation of station a<br>Height of barometer ab<br>Height of thermometer<br>Height of wind vane ab<br>Height of rainguageJanFebMarAprMayJunJulAug93.495.0105.3100.167.045.641.037.1<br>No observation2.43.23.54.45.76.86.86.94.95.65.87.010.29.49.68.510.89.07.58.711.611.011.110.7EEEEEEEE4.64.53.93.33.12.62.93.027NEE50W39N40NW55WSW22SW27S34W7.118.551.985.3242.5529.1377.3588.30.92.75.68.218.822.723.424.843.560.558.9110.4124.0459.2155.8264.025/5428/546/6130/6726/6917/623/6916/6022.624.327.822.95.20.30.30.16.95.43.42.91.80.70.30.60.00.10.10.118.418.616.514.60.00.10.00.00.00.00.00.0 | PHANOM<br>3 357<br>' N.<br>20' E.Elevation of station above MS<br>Height of barometer above MSL<br>Height of thermometer above gro<br>Height of wind vane above gro<br>Height of wind vane above gro<br>Height of rainguageJanFebMarAprMayJunJulAugSep93.495.0105.3100.167.045.641.037.142.0<br>No observation2.43.23.54.45.76.86.86.96.44.95.65.87.010.29.49.68.59.210.89.07.58.711.611.011.110.711.2EEEEEEEE4.64.53.93.33.12.62.93.02.627NEE50W39N40NW55WSW22SW27S34W48S7.118.551.985.3242.5529.1377.3588.3355.10.92.75.68.218.822.723.424.820.943.560.558.9110.4124.0459.2155.8264.0146.025/5428/546/6130/6726/6917/623/6916/6015/5422.624.327.822.95.20.30.30.12.96.95.43.42.91.80.70.30.61.70.00.10.10.10.00.0< | PHANOM<br>3 357<br>' N.<br>20' E.Elevation of station above MSL<br>Height of barometer above MSL<br>Height of thermometer above ground<br>Height of wind vane above ground<br>Height of rainguageJanFebMarAprMayJunJulAugSepOct $93.4$ 95.0105.3100.167.045.641.037.142.070.6 $93.4$ 95.0105.3100.167.045.641.037.142.070.6 $2.4$ 3.23.54.45.76.86.86.96.44.4 $4.9$ 5.65.87.010.29.49.68.59.29.610.89.07.58.711.611.011.110.711.212.2EEEEEEEE $4.6$ 4.53.93.33.12.62.93.02.63.327NEE50W39N40NW55WSW22SW27S34W48S26E7.118.551.985.3242.5529.1377.3588.3355.158.40.92.75.68.218.822.723.424.820.97.443.560.558.9110.4124.0459.2155.8264.0146.0105.425/5428/546/6130/6726/6917/623/6916/6015/541/6422.624.327.822.95.2 | PHANOM       Elevation of station above MSL.       140.0         3 357       N.       Height of barometer above MSL.       141.0         1 N.       Height of thermometer above ground       13.8         20'E.       Height of rainguage       13.8         Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov         93.4       95.0       105.3       100.1       67.0       45.6       41.0       37.1       42.0       70.6       86.5         2.4       3.2       3.5       4.4       5.7       6.8       6.8       6.9       6.4       4.4       3.4         4.9       5.6       5.8       7.0       10.2       9.4       9.6       8.5       9.2       9.6       7.5         10.8       9.0       7.5       8.7       11.6       11.0       11.1       10.7       11.2       12.2       12.6         E       E       E       E       E       E       E       E       E       4.4       3.4         4.9       5.6       5.8       7.0       10.2       9.4       9.6       8.5       9.2       9.6       7.5 | $\begin{array}{c} \begin{array}{c} \text{Elevation of station above MSL} \\ \text{Height of barometer above MSL} \\ \text{Height of thermometer above ground} \\ \text{Height of thermometer above ground} \\ \text{Height of rainguage} \end{array} \\ \begin{array}{c} 140.00 \text{ mete} \\ 141.00 \\ 1.20 \\ 1.80 \\ 0.80 \end{array} \\ \end{array}$ |

Remark:

 Pressure
 1953-1970

 Temperature
 1952-1970

 Evaporation
 1957-1970

1. 2. 3.

# TABLE XXIV

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

| Station SAKHON<br>Index Station 4<br>Latitude 17 <sup>0</sup> 10<br>Longitude 104 <sup>0</sup> | NAKHON<br>8 356<br>' N.<br>09' E. |                                  |                                  | -<br>-<br>-                       | E<br> -<br> -<br> -<br> -        | levatio<br>leight o<br>leight o<br>leight o<br>leight o | on of st<br>of barom<br>of therm<br>of wind<br>of raing | ation a<br>eter al<br>ometer<br>vane al<br>uage | above MS<br>ove MSL<br>above g<br>ove gro | SL<br>ground<br>bund            | 172.0<br>173.0<br>1.2<br>14.5<br>0.6 | 0 mete<br>0<br>0<br>0<br>3       | rs                                  |
|------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-------------------------------------------|---------------------------------|--------------------------------------|----------------------------------|-------------------------------------|
|                                                                                                | Jan                               | Feb                              | Mar                              | Apr                               | May                              | Jun                                                     | Jul                                                     | Aug                                             | Sep                                       | 0ct                             | Nov                                  | Dec                              | Year                                |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                                      | 94.9<br>199.1                     | 96.6<br>200.0                    | 116.8<br>254.7                   | 102.8<br>222.9                    | 67.5<br>176.5                    | 52.0<br>148.5                                           | 55.4<br>164.9                                           | 47.5<br>149.0                                   | 44.6<br>141.8                             | 71.5<br>200.7                   | 84.9<br>204.8                        | 84.7<br>198.1                    | 919.2<br>2261.0                     |
| <u>Cloudiness (0-8)</u><br>Mean                                                                | 2.4                               | 2.8                              | 3.1                              | 4.1                               | 5.8                              | 6.6                                                     | 6.5                                                     | 6.8                                             | 6.1                                       | 4.1                             | 3.3                                  | 2.6                              | 4.5                                 |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                                     | 5.3<br>8.3                        | 5.3<br>7.6                       | 5.8<br>7.3                       | 7.5<br>8.6                        | 9.5<br>10.3                      | 9.2<br>10.4                                             | 9.6<br>10.7                                             | 9.2<br>10.4                                     | 8.6<br>10.1                               | 9.0<br>10.7                     | 8.1<br>10.4                          | 5.7<br>9.4                       | 7.7<br>9.5                          |
| Wind (knots)<br>Prevailing<br>Mean speed<br>Max. speed                                         | E<br>4.7<br>33NE                  | E<br>5.0<br>32W                  | Е<br>4.7<br>44 <mark>М</mark> ш  | E<br>4.2<br>50W                   | S<br>3.4<br>45N                  | S<br>3.7<br>35W                                         | SW<br>4.1<br>33 <sup>N</sup> 55F                        | SW<br>3.9<br>40SW                               | E<br>3.2<br>338E                          | E<br>3.8<br>28N                 | 4 2<br>24 PE                         | E<br>4.2<br>30NE                 | -                                   |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year               | 7.0<br>1.1<br>26.6<br>19/69       | 15.2<br>2.8<br>52.6<br>3/53      | 48.0<br>5.6<br>73.6<br>1/60      | 77.4<br>7.7<br>69.7<br>9/54       | 222.0<br>18.2<br>106.5<br>29/54  | 266.6<br>19.1<br>131.6<br>17/53                         | 198.8<br>18.9<br>184.2<br>11/69                         | 287.9<br>22.9<br>115.0<br>12.56                 | 274.9<br>19.3<br>214.3<br>15.54           | 60.4<br>7.2<br>93.9<br>5/62     | 6.6<br>1.2<br>52.2<br>9/63           | 0.9<br>0.3<br>14.4<br>16/66      | 1465.7<br>124.3<br>214.3<br>15/54   |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                          | 25.4<br>7.2<br>0.0<br>0.3<br>0.0  | 24.8<br>7.3<br>0.0<br>0.9<br>0.0 | 25.9<br>8.3<br>0.2<br>4.4<br>0.0 | 20.3<br>6.3<br>0.1<br>10.2<br>0.0 | 3.2<br>0.7<br>0.1<br>14.1<br>0.1 | 0.2<br>0.2<br>0.0<br>10.5<br>0.0                        | 0.3<br>0.3<br>0.0<br>8.6<br>0.0                         | 0.0<br>0.0<br>0.0<br>8.8<br>0.0                 | 2.6<br>1.0<br>0.0<br>6.7<br>0.1           | 8.3<br>1.3<br>0.0<br>2.3<br>0.0 | 15.7<br>2.7<br>0.0<br>0.4<br>0.0     | 23.6<br>6.8<br>0.0<br>0.0<br>0.0 | 150.3<br>42.1<br>0.4<br>67.2<br>0.2 |
|                                                                                                |                                   |                                  |                                  |                                   | 1050 1                           |                                                         | i                                                       |                                                 |                                           |                                 |                                      |                                  |                                     |

 1.
 Pressure
 1953-1970

 Remark:
 2.
 Temperature
 1952-1970

 3.
 Evaporation
 1957-1970

# TABLE XXV

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

|                                                                                  |                                   |                                   | ;                                |                                   |                                  |                                                         |                                                        | - Har Sill                                         |                                          |                                 |                                      |                                   |                                     |
|----------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|
| Station MUKDAHAN<br>Index Station 44<br>Latitude 16º 33<br>Longitude 104º 4      | N<br>3 383<br>' N.<br>14' E.      |                                   |                                  | ,                                 | E<br>H<br>H<br>H<br>H            | levatio<br>leight o<br>leight o<br>leight o<br>leight o | n of st<br>of barom<br>of therm<br>of wind<br>of raing | ation a<br>meter ab<br>nometer<br>vane ab<br>nuage | bove MS<br>ove MSL<br>above g<br>ove gro | L<br>Iround<br>Jund             | 138.0<br>139.0<br>1.5<br>10.5<br>0.8 | 00 meter<br>00<br>50<br>50<br>30  | rs<br>,                             |
|                                                                                  | Jan                               | Feb                               | Mar                              | Apr                               | May                              | Jun                                                     | Jul                                                    | Aug                                                | Sep                                      | 0ct                             | Nov                                  | Dec                               | Year                                |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                        | 113.0                             | 118.3                             | 140.4                            | 126.3                             | 83.9<br>No ob                    | 58.5<br>servati                                         | 55.2<br>on                                             | 47.0                                               | 44.4                                     | 75.0                            | 89.7                                 | 104.9                             | 1056.6                              |
| <u>Cloudiness (0-8)</u><br>Mean                                                  | 2.7                               | 3.2                               | 3.4                              | 4.4                               | 5.9                              | 6.6                                                     | 6.6                                                    | 6.9                                                | 6.3                                      | 4.6                             | 3.6                                  | 3.1                               | 4.8                                 |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                       | 4.6<br>8.1                        | 5.1<br>6.8                        | 4.3<br>4.8                       | 6.1<br>6.9                        | 9.8<br>11.3                      | 10.0<br>11.7                                            | 10.6<br>12.1                                           | 9.1<br>11.0                                        | 8.2<br>10.0                              | 9.3<br>11.3                     | 8.0<br>10.9                          | 6.3<br>10.4                       | 7.6<br>9.6                          |
| <u>Wind (knots)</u><br>Prevailing<br>Mean speed<br>Max. speed                    | NE<br>5.8<br>40NE                 | E<br>5.3<br>35E                   | E<br>5.0<br>35၌E                 | E<br>5.1<br>80WSW                 | E<br>4.0<br>34SW                 | WSW<br>4.1<br>40NE                                      | WSW<br>4.3<br>35S                                      | WSW<br>4.1<br>35W                                  | NE<br>3.8<br>33N                         | NE<br>5.7<br>33 ENS             | NE<br>6.6<br>40NE                    | NE<br>6.5<br>35NE                 | -                                   |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year | 3.9<br>0.7<br>21.4<br>23/54       | 12.1<br>2.3<br>31.5<br>15/51      | 45.0<br>4.6<br>73.7<br>27/57     | 74.6<br>7.2<br>82.7<br>8/58       | 184.4<br>16.5<br>74.7<br>9/62    | 266,3<br>17.9<br>106.6<br>25/61                         | 231.5<br>18.8<br>167.8<br>8/56                         | 307.9<br>21.6<br>156.0<br>4/62                     | 294.5<br>19.2<br>176.7<br>8/51           | 63.6<br>8.6<br>64.1<br>27/55    | 3.3<br>1.6<br>12.4<br>11/67          | 0.6<br>0.2<br>7.1<br>16/66        | 1487.7<br>119.2<br>176.7<br>8/51    |
| No. days with<br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                   | 22.0<br>15.6<br>0.0<br>0.1<br>0.1 | 22.7<br>10.1<br>0.0<br>0.9<br>0.0 | 26.1<br>8.7<br>0.2<br>6.0<br>0.1 | 20.9<br>2.3<br>0.1<br>11.7<br>0.3 | 4.2<br>0.4<br>0.0<br>18.1<br>0.2 | 0.8<br>0.7<br>0.0<br>11.8<br>0.1                        | 0.3<br>0.5<br>0.0<br>11.9<br>0.1                       | 0.3<br>1.4<br>0.0<br>12.5<br>0.0                   | 2.6<br>1.4<br>0.0<br>10.7<br>0.0         | 7.2<br>3.2<br>0.1<br>3.6<br>0.0 | 9.0<br>7.5<br>0.0<br>0.2<br>0.1      | 13.0<br>14.0<br>0.0<br>0.0<br>0.0 | 129.1<br>65.8<br>0.4<br>87.5<br>1.0 |
|                                                                                  | Rema                              | ark: 1.                           | Tempe                            | rature                            | 1953                             | -1970                                                   |                                                        | · .                                                |                                          |                                 |                                      |                                   |                                     |

k: 1. Temperature Evaporation

1953**-1**970 1957**-19**70

| TABLE X | IVX |
|---------|-----|
|---------|-----|

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

| Station KHON KA<br>Index Station 4<br>Latitude 16 <sup>0</sup> 20<br>Longitude 102 <sup>0</sup> | EN<br>8 381<br>' N.<br>51' E.    |                                  | Elevation of station above MSL 164.<br>Height of barometer above MSL 165.<br>Height of thermometer above ground 1.<br>Height of wind vane above ground 14.<br>Height of gainguage 0. |                                   |                                  |                                  |                                  |                                  |                                  |                                 | 164.6<br>165.4<br>1.5<br>14.5<br>0.6 | 63 meters<br>41<br>50<br>50<br>60 |                                     |  |
|-------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|--|
| • • • • • • • • • • • • • • • • • • •                                                           | Jan                              | Feb                              | Mar                                                                                                                                                                                  | Apr                               | May                              | Jun                              | Jul                              | Aug                              | Sep                              | 0ct                             | Nov                                  | Dec                               | Year                                |  |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                                       | 108.5<br>174.7                   | 112.5<br>175.4                   | 141.9<br>224.8                                                                                                                                                                       | 153.3<br>228.6                    | 116.1<br>202.7                   | 96.8<br>170.5                    | 86.5<br>176.9                    | 73.8<br>162.7                    | 55.9<br>142.0                    | 70.4<br>174.6                   | 88.6<br>172.4                        | 98.3<br>177.5                     | 1184.6<br>2182.8                    |  |
| <u>Cloudiness (0-8)</u><br>Mean                                                                 | 2.7                              | 2.8                              | 3.2                                                                                                                                                                                  | 3.9                               | 5.5                              | 6.3                              | 6.4                              | 6.6                              | 6.2                              | 4.5                             | 3.6                                  | 3.0                               | 4.6                                 |  |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                                      | 5.3<br>7.2                       | 5.2                              | 4.8                                                                                                                                                                                  | 5.9<br>7.0                        | 7.5                              | 7.7                              | 7.9                              | 7.6<br>8.4                       | 7.1                              | 7.2                             | 7.0                                  | 6.0<br>8.0                        | 6.6<br>7.8                          |  |
| <u>Wind (knots)</u><br>Prevailing<br>Mean speed<br>Max. speed                                   | NE<br>3.6<br>33NE                | NE<br>3.3<br>33NW                | NE<br>3.8<br>40NE                                                                                                                                                                    | SW<br>4.0<br>40 <sup>E</sup> NW   | SW<br>3,9<br>47.5W               | SW<br>4.1<br>39ନ୍ମ୍ୟ             | SW<br>4.6<br>55W                 | SW<br>4.0<br>40E                 | SW<br>3.1<br>33SE                | NE<br>3.8<br>34NE               | NE<br>4.1<br>35N                     | NE<br>4.0<br>38NE                 |                                     |  |
| Rainfall (mm)<br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year                       | 9.2<br>1.2<br>29.2<br>24/69      | 19.8<br>3.0<br>63.4<br>3/66      | 39.6<br>4.7<br>70.2<br>12/52                                                                                                                                                         | 63.0<br>6.6<br>65.7<br>6/65       | 166.0<br>14.5<br>96.9<br>10/52   | 187.6<br>14.4<br>123.8<br>12/70  | 149.5<br>15.9<br>92.8<br>26/53   | 176.9<br>17.6<br>99.0<br>14/61   | 277.6<br>18.1<br>141.6<br>8/51   | 95.7<br>9.9<br>124.5<br>26/69   | 11.4<br>1.7<br>55.9<br>8/63          | 1.5<br>0.6<br>8.3<br>20/66        | 1197.8<br>108.2<br>141.6<br>8/51    |  |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                           | 23.2<br>5.6<br>0.0<br>0.4<br>0.0 | 23.7<br>4.1<br>0.0<br>1.4<br>0.0 | 23.2<br>1.8<br>0.0<br>6.6<br>0.0                                                                                                                                                     | 13.0<br>0.9<br>0.1<br>12.2<br>0.0 | 1.6<br>0.1<br>0.0<br>17.0<br>0.0 | 0.1<br>0.0<br>0.0<br>13.2<br>0.0 | 0.1<br>0.1<br>0.0<br>13.2<br>0.0 | 0.5<br>0.3<br>0.0<br>11.6<br>0.0 | 0.9<br>0.3<br>0.0<br>13.1<br>0.0 | 3.6<br>1.0<br>0.0<br>5.5<br>0.0 | 8.3<br>3.8<br>0.0<br>0.5<br>0.0      | 20.8<br>3.5<br>0.0<br>0.1<br>0.0  | 119.0<br>21.5<br>0.1<br>94.8<br>0.0 |  |

Remark: Evaporation 1. Piche 19 2. Pan 19

che 1957-1967 n 1961-1970

# TABLE XXVII

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

|                                                                                    |                                  |                                  |                                  |                                  |                                  |                                                                                                                                                                  |                                 | 4                                |                                 |                                  |                                  |                                  |                                                  |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------|--|--|--|
| Station ROI ET<br>Index Station 4<br>Latitude 16 <sup>0</sup> 03<br>Longitude 1030 | 8 405<br>' N.<br>41' E.          |                                  | Fob Man Ann                      |                                  |                                  | Elevation of station above MSL<br>Height of barometer above MSL<br>Height of thermometer above ground<br>Height of wind vane above ground<br>Height of rainguage |                                 |                                  |                                 |                                  |                                  |                                  | 140.00 meters<br>141.35<br>1.20<br>13.00<br>0.65 |  |  |  |
|                                                                                    | Jan                              | Feb                              | Mar                              | Apr                              | May                              | Jun                                                                                                                                                              | Jul                             | Aug                              | Sep                             | Oct                              | Nov                              | Dec                              | Year                                             |  |  |  |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                          | 92.8<br>154.8                    | 94.4<br>152.8                    | 117.3<br>192.1                   | 103.1<br>180.8                   | 80.6<br>163.0                    | 64.1<br>142.3                                                                                                                                                    | 62.3<br>149.5                   | 54.1<br>130.8                    | 48.1<br>115.9                   | 61.0<br>150.3                    | 72.7<br>154.0                    | 83.4<br>54.6                     | 933.9<br>1840.9                                  |  |  |  |
| <u>Cloudiness (0-8)</u><br>Mean                                                    | 2.8                              | 3.3                              | 3.6                              | 4.5                              | 5.8                              | 6.5                                                                                                                                                              | 6.5                             | 6.9                              | 6.4                             | 4.7                              | 3.6                              | 3.0                              | 4.8                                              |  |  |  |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                         | 4.4<br>7.6                       | 5.1<br>7.0                       | 5.4<br>6.6                       | 6.3<br>7.4                       | 8.0<br>9.1                       | 8.9<br>9.8                                                                                                                                                       | 9.0<br>9.9                      | 8.3<br>9.4                       | 7.8<br>9.1                      | 8.1<br>9.8                       | 7.2                              | 5.6<br>8.9                       | 7.0<br>8.7                                       |  |  |  |
| <u>Wind (knots)</u><br>Prevailing<br>Mean speed<br>Max. speed                      | E<br>4.7<br>24NE                 | E<br>4.1<br>33NE                 | E<br>4.2<br>34SW                 | S<br>4.0<br>36N                  | S<br>4.7<br>36S                  | SW<br>4.7<br>27 SW                                                                                                                                               | SW<br>4.7<br>30S                | SW<br>4.3<br>36NE                | SW<br>3.2<br>27 Eu              | E<br>3.9<br>28S                  | E<br>4.6<br>27E                  | E<br>4.4<br>27E                  |                                                  |  |  |  |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year   | 1.9<br>0.7<br>9.2<br>27/54       | 11.1<br>2.1<br>28.8<br>12/56     | 37.3<br>4.2<br>63.0<br>7/61      | 89.9<br>7.4<br>88.5<br>23/51     | 193.2<br>14.6<br>118.0<br>31/70  | 195.1<br>14.5<br>140.6<br>6/55                                                                                                                                   | 196.5<br>15.4<br>135.0<br>12/65 | 240.1<br>17.5<br>140.2<br>25/63  | 336.3<br>19.0<br>230.6<br>22/64 | 89.2<br>8.4<br>63.4<br>7/62      | 9.0<br>1.7<br>33.0<br>5/64       | 0.2<br>0.3<br>1.2<br>23/59       | 1399.8<br>105.8<br>230.6<br>22/64                |  |  |  |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall              | 24.0<br>8.9<br>0.0<br>0.2<br>0.0 | 23.1<br>4.8<br>0.0<br>0.9<br>0.0 | 37.6<br>2.3<br>0.1<br>4.4<br>0.0 | 23.0<br>3.3<br>0.1<br>8.1<br>0.1 | 9.1<br>2.6<br>0.0<br>13.9<br>0.0 | 1.6<br>0.1<br>0.0<br>7.6<br>0.0                                                                                                                                  | 0.8<br>0.1<br>0.0<br>8.6<br>0.1 | 0.8<br>0.2<br>0.0<br>10.5<br>0.0 | 2.1<br>0.4<br>0.1<br>8.6<br>0.0 | 10.5<br>0.6<br>0.0<br>4.7<br>0.0 | 16.6<br>2.6<br>0.0<br>0.5<br>0.0 | 23.0<br>6.3<br>0.0<br>0.2<br>0.0 | 162.2<br>32.1<br>0.3<br>68.2<br>0.2              |  |  |  |

Remark: 1. Temperature 1955-1970 2. Evaporation 1958-1970

.100

# TABLE XXVIII

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

|                                                                                        |                                     |                                  |                                  |                                  | ~ *                              | × 1 1 ×                                             |                                                       |                                                                                                                |                                 |                                 |                                 |                                                  |                                     |  |
|----------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------|--|
| Station UBON RA<br>Index Station 44<br>Latitude 15º 15<br>Longitude 104 <sup>0</sup> 9 | TCHATHAN<br>3 407<br>' N.<br>53' E. | I                                |                                  |                                  | E<br>H<br>H<br>H<br>H            | levatio<br>eight o<br>eight o<br>eight o<br>eight o | n of sta<br>f baroma<br>f therma<br>f wind<br>f raing | of station above MSL<br>barometer above MSL<br>thermometer above ground<br>wind vane above ground<br>rainguage |                                 |                                 |                                 | 123.00 meters<br>128.40<br>1.20<br>12.30<br>0.74 |                                     |  |
|                                                                                        | Jan                                 | Feb                              | Mar                              | Apr                              | May                              | Jun                                                 | Jul                                                   | Aug                                                                                                            | Sep                             | 0ct                             | Nov                             | Dec                                              | Year                                |  |
| <u>Evaporation (mm)</u><br>Mean - Piche<br>- Pan                                       | 119.8<br>191.3                      | 119.1<br>192.1                   | 138.1<br>237.4                   | 121.6<br>226.0                   | 95.3<br>194.1                    | 79.7<br>176.5                                       | 80.3<br>182.5                                         | 71.7<br>168.7                                                                                                  | 59.9<br>151.2                   | 84.3<br>191.5                   | 104.9<br>199.0                  | 113.3<br>195.6                                   | 1188.0<br>2305.9                    |  |
| <u>Cloudiness (0-8)</u><br>Mean                                                        | 2.8                                 | 3.1                              | 3.6                              | 4.5                              | 5.8                              | 6.4                                                 | 6.4                                                   | 6.7                                                                                                            | 6.4                             | 4.9                             | 3.7                             | 3.1                                              | 4.0                                 |  |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                             | 7.9<br>11.3                         | 6.5<br>8.8                       | 6.0<br>7.6                       | 7.1<br>8.6                       | 10.0                             | 10.9<br>11.7                                        | 10.3<br>11.4                                          | 9.7<br>10.9                                                                                                    | 9.4<br>10.8                     | 10.7<br>12.4                    | 11.3<br>13.3                    | 9.9<br>13.1                                      | 9.0<br>10.9                         |  |
| Wind (knots)<br>Prevailing<br>Mean speed<br>Max. speed                                 | NE<br>4.8<br>33NE                   | NE<br>3.8<br>46NE                | NE<br>3.6<br>41N                 | S<br>3.6<br>56SW                 | S<br>3.4<br>4251                 | S<br>4.4<br>60W                                     | W<br>4.5<br>41WSW                                     | W<br>4.4<br>68S                                                                                                | W<br>3.4<br>46E                 | NE<br>4.7<br>55NE               | NE<br>5.8<br>40NE               | NE<br>5.3<br>51NE                                | -                                   |  |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year       | 0.8<br>0.4<br>5.4<br>27/54          | 6.9<br>1.0<br>37.0<br>27/62      | 55.6<br>4.2<br>124.1<br>14/60    | 81.4<br>7.4<br>82.1<br>1/56      | 217.3<br>15.2<br>138.5<br>18/56  | 234.9<br>18.0<br>99.5<br>29/59                      | 273.2<br>19.8<br>203.9<br>7/70                        | 299.3<br>22.0<br>182.8<br>8/51                                                                                 | 271.5<br>20.6<br>130.3<br>5/68  | 103.0<br>10.5<br>113.4<br>9/67  | 18.7<br>3.2<br>69.5<br>5/64     | 1.5<br>0.7<br>8.2<br>15/66                       | 1565.0<br>123.0<br>203.9<br>7/70    |  |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                  | 17.9<br>4.7<br>0.0<br>0.0<br>0.1    | 24.1<br>4.2<br>0.0<br>0.7<br>0.0 | 27.1<br>3.0<br>0.0<br>4.7<br>0.2 | 19.6<br>1.9<br>0.0<br>9.9<br>0.2 | 3.0<br>0.3<br>0.0<br>17.9<br>0.1 | 0.9<br>0.2<br>0.0<br>12.4<br>0.3                    | 1.2<br>0.2<br>0.0<br>13.3<br>0.3                      | 0.6<br>0.2<br>0.0<br>9.6<br>0.4                                                                                | 1.8<br>1.1<br>0.0<br>8.8<br>0.1 | 4.5<br>1.0<br>0.0<br>5.7<br>0.1 | 7.4<br>1.4<br>0.0<br>1.6<br>0.0 | 10.7<br>2.3<br>0.0<br>0.1<br>0.0                 | 118.8<br>20.5<br>0.0<br>84.7<br>1.5 |  |

Remark: Evaporation - Piche 1954-- Pan 1961-1970

# TABLE XXIX

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

| Station SURIN<br>Index Station 48 432<br>Latitude 14 <sup>0</sup> 53' N.<br>Longitude 103 <sup>0</sup> 29' E. |                                  |                                  | Elevation of station above MSL145.00Height of barometer above MSL146.28Height of thermometer above ground1.25Height of wind vane above ground11.10Height of rainguage0.66 |                                   |                                  |                                  |                                  |                                  |                                  |                                  |                                  | 0 meten<br>8<br>5<br>0<br>6      | rs                                  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|
| ·····                                                                                                         | Jan                              | Feb                              | Mar                                                                                                                                                                       | Apr                               | May                              | Jun                              | Jul                              | Aug                              | Sep                              | 0ct                              | Nov                              | Dec                              | Year                                |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                                                     | 149.3<br>193.8                   | 148.0<br>191.5                   | 170.6<br>235.3                                                                                                                                                            | 147.9<br>223.5                    | 104.9<br>204.3                   | 81.7<br>182.3                    | 78.6<br>190.0                    | 68.8<br>164.8                    | 60.0<br>142.1                    | 83.4<br>181.7                    | 103.4<br>180.1                   | 128.3<br>183.4                   | 1324.5<br>2272.8                    |
| <u>Cloudiness (0-8)</u><br>Mean                                                                               | 3.6                              | 4.0                              | 4.3                                                                                                                                                                       | 5.3                               | 6.2                              | 6.7                              | · 6.7                            | 7.0                              | 6,8                              | 5.6                              | 4.6                              | 3.9                              | 5.4                                 |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                                                    | 5.8<br>7.8                       | 6.1<br>7.2                       | 6.0<br>7.2                                                                                                                                                                | 6.8                               | 8.0                              | 8.8<br>9.0                       | 8.8<br>9.1                       | 8.5<br>8.9                       | 8.3<br>8.8                       | 7.8                              | 6.9<br>9.0                       | 6.0<br>8.7                       | 7.3<br>8.4                          |
| Wind (knots)<br>Prevailing<br>Mean speed<br>Max. speed                                                        | NE<br>3.5<br>33N                 | NE<br>3.3<br>32NE                | S<br>3.5<br>40SE                                                                                                                                                          | S<br>3.5<br>44E                   | S<br>3.5<br>405                  | S<br>3.8<br>32SW                 | S<br>3.8<br>330                  | S<br>3.5<br>50WNW                | S<br>3.1<br>33WSW                | NE<br>3.8<br>47E                 | NE<br>4.0<br>33N                 | NE<br>4.4<br>30NE                |                                     |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year                              | 2.1<br>0.8<br>12.8<br>25/54      | 10.5<br>2.1<br>57.7<br>12/70     | 32.9<br>4.6<br>40.1<br>24/64                                                                                                                                              | 86.3<br>8.6<br>108.9<br>12/68     | 191.5<br>14.9<br>106.3<br>25/51  | 152.9<br>17.5<br>114.4<br>12/70  | 199.4<br>18.4<br>97.6<br>18/61   | 200.3<br>20.1<br>94.5<br>6/58    | 267.6<br>21.0<br>102.4<br>21/58  | 133.1<br>11.8<br>132.1<br>6/60   | 22.0<br>3.3<br>39.6<br>14/66     | 2.0<br>0.7<br>19.5<br>26/66      | 1300.6<br>123.8<br>132.1<br>6/60    |
| No. days with<br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                                                | 28.8<br>6.1<br>0.0<br>0.2<br>0.0 | 26.8<br>3.8<br>0.0<br>1.2<br>0.0 | 29.3<br>2.0<br>0.0<br>6.7<br>0.1                                                                                                                                          | 22.8<br>1.6<br>0.1<br>10.8<br>0.8 | 6.4<br>0.6<br>0.1<br>16.7<br>0.1 | 1.3<br>0.0<br>0.0<br>10.7<br>0.1 | 0.7<br>0.0<br>0.0<br>11.1<br>0.0 | 1.0<br>0.0<br>0.0<br>10.6<br>0.1 | 2.3<br>0.3<br>0.0<br>10.1<br>0.1 | 11.2<br>0.5<br>0.0<br>6.2<br>0.1 | 18.9<br>2.8<br>0.0<br>1.5<br>0.0 | 24.3<br>7.1<br>0.0<br>0.1<br>0.0 | 173.8<br>24.8<br>0.2<br>85.9<br>1.4 |

Remark: Evaporation 1. Piche 1959-1970 2. Pan 1961-1970

| TABLE XXX |  |
|-----------|--|
|-----------|--|

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

| Station NAKHON F<br>Index Station 44<br>Latitude 16 <sup>0</sup> 58<br>Longitude 102 <sup>0</sup> ( | RATCHASI<br>3 431<br>' N.<br>D7' E. | MA                               |                                  |                                   | E<br>H<br>H<br>H                 | levatio<br>eight o<br>eight o<br>eight o<br>eight o | L<br>round<br>und               | 188.00 meters<br>189.50<br>1.50<br>12.20<br>1.00 |                                 |                                  |                                  |                                  |                                     |
|-----------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|
|                                                                                                     | Jan                                 | Feb                              | Mar                              | Apr                               | May                              | Jun                                                 | Jul                             | Aug                                              | Sep                             | 0ct                              | Nov                              | Dec                              | Year                                |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                                           | 101.4<br>147.7                      | 104.5<br>156.1                   | 119.4<br>197.5                   | 111.0<br>194.0                    | 79.4<br>175.5                    | 7 <b></b> 7<br>173.5                                | 76.4<br>168.0                   | 68.9<br>159.7                                    | 49.7<br>134.8                   | 60.4<br>139.9                    | 74.4<br>135.2                    | 88.5<br>138.1                    | 1012.7<br>1920.0                    |
| <u>Cloudiness (0-8)</u><br>Mean                                                                     | 2.9                                 | 3.4                              | 3.8                              | 4.5                               | 5.7                              | 6.3                                                 | 6.4                             | 6.7                                              | 6.4                             | 5.2                              | 3.9                              | 3.1                              | 4.9                                 |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                                          | 4.1                                 | 3.8<br>6.3                       | 4.2                              | 5.5<br>7.6                        | 8.0<br>9.5                       | 9.4<br>10.3                                         | 9.3<br>10.0                     | 9.3                                              | 8.3                             | 6.7                              | 5.3                              | 4.3                              | 6.5<br>8.6                          |
| Wind (knots)<br>Prevailing<br>Mean speed<br>Max. speed                                              | NE<br>2.7<br>28ENE                  | NE<br>3.0<br>37E                 | NE<br>2.9<br>43SSW               | SW<br>5.1<br>53S                  | SW<br>2.8<br>46SE                | SW<br>4.7<br>35SE                                   | W<br>4.1<br>39NW                | W<br>3.9<br>35SE                                 | W<br>2.6<br>32SE                | NE<br>3.0<br>34SE                | NE<br>3.3<br>44NE                | NE<br>3.2<br>40NE                | -                                   |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year                    | 3.6<br>1.3<br>17.1<br>26/54         | 27.8<br>3.1<br>59.7<br>23/65     | 55.6<br>6.4<br>81.7<br>28/63     | 71.1<br>8.2<br>63.3<br>4/57       | 177.4<br>16.9<br>134.5<br>14/52  | 109.3<br>14.9<br>114.8<br>27/69                     | 143.2<br>17.0<br>96.0<br>20/66  | 133.2<br>16.6<br>72.3<br>27/64                   | 261.1<br>19.7<br>143.7<br>12/68 | 176.0<br>12.7<br>80.7<br>7/60    | 29.9<br>3.8<br>108.6<br>9/55     | 2.7<br>1.0<br>20.6<br>3/70       | 1190.9<br>121.6<br>143.7<br>12/68   |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                               | 27.2<br>4.8<br>0.0<br>0.6<br>0.0    | 26.3<br>4.6<br>0.0<br>1.8<br>0.0 | 28.3<br>3.8<br>0.1<br>7.6<br>0.1 | 20.6<br>4.4<br>0.0<br>13.1<br>0.1 | 5.8<br>1.9<br>0.0<br>16.4<br>0.2 | 0.7<br>0.4<br>0.0<br>7.0<br>0.1                     | 0.9<br>0.4<br>0.0<br>7.3<br>0.1 | 1.6<br>0.2<br>0.0<br>6.6<br>0.1                  | 3.1<br>1.4<br>0.0<br>8.9<br>0.0 | 10.5<br>3.5<br>0.0<br>6.7<br>0.1 | 17.4<br>3.2<br>0.0<br>0.6<br>0.0 | 23.8<br>3.7<br>0.0<br>0.0<br>0.0 | 166.2<br>32.3<br>0.1<br>76.6<br>0.8 |

Remark: Evaporation Pan 1962-1970

# TABLE XXXI

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

| Station CHAIYAP<br>Index Station 4<br>Latitude 15º 45<br>Longitude 102º          | HUM<br>8 403<br>' N.<br>92' E,   |                                  |                                   |                                   | E<br>H<br>H<br>H                 | levatio<br>eight o<br>eight o<br>eight o<br>eight o | n of st<br>f barom<br>f therm<br>f wind<br>f raing | ation a<br>eter ab<br>ometer<br>vane ab<br>uage | bove MS<br>ove MSL<br>above g<br>ove gro | L<br>round<br>und               | 181.0<br>183.0<br>1.5<br>14.5<br>1.0 | 0 meter<br>0<br>0<br>0           | rs                                 |
|----------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------|---------------------------------|--------------------------------------|----------------------------------|------------------------------------|
|                                                                                  | Jan                              | Feb                              | Mar                               | Apr                               | May                              | Jun                                                 | Jul                                                | Aug                                             | Sep                                      | 0ct                             | Nov                                  | Dec                              | Year                               |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                        | 128.4                            | 141.0                            | 161.7                             | 148.9                             | 112.7<br>No ob                   | 97.0<br>servati                                     | 91.5<br>on                                         | 79.5                                            | 61.3                                     | 81.0                            | 96.9                                 | 15.9                             | 1315.8                             |
| <u>Cloudiness (0-8)</u><br>Mean                                                  | 3.0                              | 3.2                              | 3.6                               | 4.3                               | 5.6                              | 6.4                                                 | 6.6                                                | 6.8                                             | 6.6                                      | 4.9                             | 3.8                                  | 3.3                              | 4.8                                |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                       | 6.0<br>8.0                       | 4.9<br>6.4                       | 4.9<br>6.1                        | 7.7<br>8.6                        | 10.4<br>11.0                     | 10.0<br>11.5                                        | 10.1<br>11.0                                       | 9.7<br>10.8                                     | 9.2<br>10.1                              | 9.4<br>10.9                     | 8.3<br>10.9                          | 6.2<br>9.8                       | 8.1<br>9.6                         |
| <u>Wind (knots)</u><br>Prevailing<br>Mean speed<br>Max. speed                    | NE<br>5.5<br>33ENE               | E<br>5.7<br>33S                  | E<br>5.8<br>39ଧୂନ                 | W<br>5.9<br>39<br>NW              | W<br>5.7<br>35WSW                | W<br>6.3<br>33S<br>NW                               | W<br>6.3<br>335<br>W                               | W<br>5.8<br>27NW                                | W<br>5,2<br>33<br>SW                     | NE<br>5.8<br>27É<br>5.5         | NE<br>6.1<br>275                     | NE<br>5.8<br>24 NE               | -                                  |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year | 3.0<br>1.0<br>13.3<br>31/58      | 12.4<br>2.1<br>49.8<br>17/61     | 53.4<br>5.9<br>65.9<br>5/69       | 78.8<br>7.6<br>95.9<br>7/63       | 159.7<br>14.0<br>141.6<br>23/59  | 143.1<br>13.2<br>93.3<br>26/68                      | 163.0<br>15.3<br>149.4<br>12/62                    | 134.1<br>17.2<br>91.5<br>27/66                  | 293.2<br>18.9<br>158.0<br>2/69           | 100.3<br>10.4<br>119.3<br>25/66 | 18.3<br>1.7<br>67.3<br>7/63          | 0.9<br>0.7<br>4.3<br>31/62       | 1160.2<br>108.0<br>158.0<br>2/69   |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall            | 22.5<br>1.0<br>0.0<br>0.0<br>0.0 | 24.9<br>0.2<br>0.0<br>1.4<br>0.0 | 24.9<br>0.8<br>0.1<br>16.6<br>0.0 | 15.6<br>0.0<br>0.1<br>11.9<br>0.0 | 1.4<br>0.0<br>0.0<br>16.1<br>0.0 | 0.0<br>0.0<br>0.0<br>7.7<br>0.0                     | 0.0<br>0.1<br>0.0<br>7.7<br>0.0                    | 0.0<br>0.0<br>0.1<br>8.9<br>0.0                 | 0.7<br>0.0<br>0.0<br>10.5<br>0.0         | 3.6<br>0.0<br>0.0<br>5.3<br>0.0 | 10.3<br>0.2<br>0.0<br>0.5<br>0.0     | 18.1<br>0.3<br>0.0<br>0.0<br>0.0 | 122.0<br>2.6<br>0.3<br>76.6<br>0.0 |
| adalahan seri seri seri seri seri seri seri seri                                 | ÷                                |                                  |                                   |                                   | ·                                | 1054 1                                              |                                                    | <u> </u>                                        |                                          |                                 | ····                                 | <u></u>                          |                                    |

|         | 1. | Data for    | 1954-1970 |
|---------|----|-------------|-----------|
| Remark: | 2. | Pressure    | 1957-1970 |
| •       |    | Evaporation | 1959-1970 |

# TABLE XXXII

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

|                                                                                        | Amabaia                           |                                   |                                    |                                   |                                  | ······                                                  |                                                         |                                                    |                                          |                                   |                                      |                                   |                                      |
|----------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| Station SAP MUA<br>Index Station 44<br>Latitude 14 <sup>0</sup> 07<br>Longitude 101° ( | NG<br>3 x x x<br>' N.<br>D4' E.   |                                   | Ň                                  |                                   | E<br>                            | levatio<br>leight o<br>leight o<br>leight o<br>leight o | on of st<br>of baron<br>of therm<br>of wind<br>of raing | ation a<br>meter at<br>nometer<br>vane at<br>nuage | bove MS<br>ove MSL<br>above g<br>ove gro | 5L<br>ground<br>bund              | 282.3<br>283.8<br>1.1<br>13.5<br>0.8 | 16 meter<br>16<br>0<br>10<br>10   | rs                                   |
|                                                                                        | Jan                               | Feb                               | Mar                                | Apr                               | May                              | Jun                                                     | Jul                                                     | Aug                                                | Sep                                      | Oct                               | Nov                                  | Dec                               | Year                                 |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                              | 86.2                              | 92.4                              | 96.8                               | 71.1                              | 64.7<br>No ob                    | 85.2<br>servati                                         | 85.7<br>on                                              | 85.2                                               | 59.1                                     | 41.6                              | 55.9                                 | 69.6                              | 893.5                                |
| <u>Cloudiness (0-8)</u><br>Mean                                                        | 3.5                               | 4.2                               | 4.5                                | 4.9                               | 5.8                              | 6.3                                                     | 6.6                                                     | 6.6                                                | 6.3                                      | 5.4                               | 4.3                                  | 3.5                               | 5.2                                  |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                             | 5.3<br>9.6                        | 3.2<br>6.9                        | 3.1<br>7.4                         | 6.1<br>10.1                       | 9.8<br>12.7                      | 10.4<br>13.3                                            | 9.7<br>12.4                                             | 9.5<br>12.4                                        | 7.4<br>11.4                              | 5.8                               | 7.2                                  | 7.4                               | 7.1                                  |
| Wind (knots)<br>Prevailing<br>Mean speed<br>Max. speed                                 | NE<br>3.9<br>22NE                 | NE<br>3.8<br>23SE                 | SW<br>3.2<br>27S                   | SW<br>2.5<br>27NE                 | SW<br>2.8<br>33E                 | SW<br>5.6<br>27W                                        | SW<br>6.1<br>27SW                                       | SW<br>5.8<br>28NW                                  | SW<br>3.6<br>23SW                        | NE<br>3.2<br>20NE                 | NE<br>3.9<br>25NE                    | NE<br>3.9<br>25NE                 | -                                    |
| <u>Rainfall (mm)</u><br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year       | 5.3<br>1.4<br>15.8<br>26/66       | 44.7<br>4.2<br>75.8<br>2/66       | 79.9<br>7.1<br>111.3<br>3/58       | 124.8<br>11.7<br>78.3<br>23/68    | 163.0<br>15.3<br>74.6<br>27/57   | 76.3<br>13.1<br>76.5<br>20/60                           | 109.3<br>16.5<br>54.7<br>12/62                          | 106.9<br>15.6<br>53.2<br>14/69                     | 286.2<br>17.3<br>195.4<br>28/59          | 148.5<br>13.7<br>117.8<br>6/57    | 17.7<br>3.3<br>24.7<br>14/56         | 8.9<br>1.0<br>45.6<br>17/66       | 1171.5<br>120.2<br>195.4<br>28/59    |
| <u>No. days with</u><br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall                  | 19.6<br>12.2<br>0.0<br>0.8<br>0.0 | 19.2<br>16.3<br>0.1<br>3.6<br>0.0 | 22.3<br>15.3<br>0.3<br>10.7<br>0.1 | 16.5<br>8.6<br>0.7<br>17.3<br>0.0 | 9.6<br>4.3<br>0.1<br>17.3<br>0.0 | 12.1<br>1.4<br>0.1<br>7.1<br>0.0                        | 12.9<br>2.2<br>0.1<br>5.8<br>0.0                        | 11.5<br>3.2<br>0.0<br>7.1<br>0.0                   | 11.2<br>5.8<br>0.0<br>7.8<br>0.0         | 10.2<br>11.7<br>0.0<br>9.3<br>0.0 | 7.5<br>11.2<br>0.5<br>1.5<br>0.0     | 10.8<br>11.7<br>0.0<br>0.4<br>0.0 | 163.4<br>103.9<br>1.9<br>88.7<br>0.1 |

Remark: Data for 1956-1970

# TABLE XXXIII

# CLIMATOLOGICAL DATA FOR THE PERIOD 1951-1970

· ·

| Station UDON TH<br>Index Station 48<br>Latitude 17º 26'<br>Longitude 102º | ANI<br>354<br>N.<br>46'E.        |                                  |                                  |                                   | Е<br>Н<br>Н<br>Н                 | levatio<br>eight o<br>eight o<br>eight o<br>eight o | n of sta<br>f baroma<br>f therma<br>f wind v<br>f raingu | ation a<br>eter ab<br>ometer<br>vane ab<br>uage | bove MS<br>ove MSL<br>above g<br>ove gro | L<br>round<br>und                | 176.98<br>182.05<br>1.50<br>17.50<br>0.70 | meter                            | 5                                   |
|---------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------|-------------------------------------|
|                                                                           | Jan                              | Feb                              | Mar                              | Apr                               | May                              | Jun                                                 | Jul                                                      | Aug                                             | Sep                                      | 0ct                              | Nov                                       | Dec                              | Year                                |
| Evaporation (mm)<br>Mean - Piche<br>- Pan                                 | 89.5                             | 95.1                             | 122.8                            | 116.3                             | 79.3<br>No o                     | 61.2<br>bservat                                     | 63.2<br>ton                                              | 53.9                                            | 48.8                                     | 70.0                             | 76.6                                      | 84.6                             | 961.3                               |
| <u>Cloudiness (0-8)</u><br>Mean                                           | 2.4                              | 2.7                              | 3.1                              | 4.0                               | 5.8                              | 6.6                                                 | 6.6                                                      | 6.9                                             | 6.2                                      | 4.3                              | 3.4                                       | 2.8                              | 4.6                                 |
| <u>Visibility (Km)</u><br>0700 LST<br>Mean                                | 2.7                              | 2.6<br>4.6                       | 2.6<br>4.3                       | 4.2                               | 6.9<br>9.0                       | 7.6<br>9.4                                          | 8.1<br>9.7                                               | 7.6                                             | 7.3<br>9.6                               | 6.3<br>9.5                       | 4.7                                       | 3.6                              | 5.4<br>7.8                          |
| <u>Wind (knots)</u><br>Prevailing<br>Mean speed<br>Max. speed             | E<br>3.1<br>30 W                 | E<br>3.4<br>33 NE                | E<br>3.5<br>53 NW                | SE<br>3.7<br>67 WSW               | SE<br>3.5<br>151 SW              | S<br>3.3<br>52 SW                                   | S<br>3.6<br>42 NNW                                       | 'S<br>3.3<br>1 44 W                             | E<br>3.2<br>43 E                         | E<br>3.1<br>43 SE                | NE<br>2.9<br>27 NE                        | E<br>3.0<br>27 E                 | -                                   |
| Rainfall (mm)<br>Mean<br>Mean rainy days<br>Greatest in 24 hr<br>Day/year | 8.3<br>1.4<br>26.4<br>11/51      | 21.6<br>2.0<br>125.1<br>10/64    | 36.9<br>5.2<br>46.3<br>1/60      | 75.9<br>7.5<br>76.1<br>12/70      | 226.0<br>18.0<br>90.6<br>14/52   | 267.6<br>18.5<br>153.6<br>12/67                     | 221.7<br>19.6<br>98.1<br>14/67                           | 275.2<br>20.3<br>105.4<br>21/65                 | 312.5<br>20.6<br>155.0<br>25/52          | 82.7<br>8.2<br>94.5<br>13/60     | 8.9<br>1.6<br>65.7<br>8/63                | 0.3<br>0.3<br>2.8<br>2/54        | 1537.6<br>123.2<br>155.0<br>25/52   |
| No. days with<br>Haze<br>Fog<br>Hail<br>Thunderstorm<br>Squall            | 26.9<br>1.4<br>0.0<br>0.4<br>0.0 | 26.4<br>1.9<br>0.0<br>0.8<br>0.0 | 28.8<br>1.8<br>0.0<br>5.1<br>0.1 | 24.4<br>0.2<br>0.3<br>10.3<br>0.1 | 7.9<br>1.0<br>0.0<br>19.2<br>0.1 | 2.5<br>0.2<br>0.0<br>14.2<br>0.0                    | 1.4<br>0.1<br>0.0<br>11.8<br>0.0                         | 1.0<br>0.3<br>0.0<br>10.6<br>0.0                | 2.4<br>0.8<br>0.0<br>10.6<br>0.1         | 11.5<br>1.7<br>0.0<br>3.3<br>0.0 | 18.6<br>0.9<br>0.0<br>0.3<br>0.0          | 24.2<br>0.8<br>0.0<br>0.0<br>0.0 | 176.6<br>11.1<br>0.3<br>86.6<br>0.4 |

# TABLE XXXIV

ANNUAL RAINFALL (mm) IN NORTHEASTERN THAILAND

| Station<br>No. | Year<br>Name         | 1962         | 196 <b>3</b>  | 1964           | 1965         | 1966         | 1967 | 1968  | 196 <b>9</b>    | 1970   | Average |
|----------------|----------------------|--------------|---------------|----------------|--------------|--------------|------|-------|-----------------|--------|---------|
| 1              | Chum Phae            | 1236         | 1133          | 104 <b>0</b>   | 641          | 1382         | 911  | 661   | 1112            | 1045   | 1018    |
| 2              | Khon Kaen            | 1232         | 1337          | 1224           | 921          | 1366         | 931  | 1144  | 1295            | 1347   | 1200    |
| 3              | Loei                 | 1007         | 1129          | 1254           | 1099         | 1185         | 1274 | 917   | 1147            | 1490   | 1167    |
| 4              | Nong Rong            | 1265         | 1125          | 973            | 1527         | 178 <b>8</b> | 1227 | . 937 | 1267            | 1116   | 1247    |
| 5              | Phayakkaphum Phisai  | 1615         | 1383          | 979            | 122 <b>2</b> | 2020         | 1064 | 1413  | 1158            | 1221   | 1342    |
| 6              | Phon                 | 1632         | 1108          | 98 <b>8</b>    | 936          | 1608         | 947  | 672   | 1497            | 1151   | 1171    |
| 7              | Roi Et               | 167 <b>0</b> | 1299          | 1697           | 1213         | 1865         | 1339 | 1365  | 1395            | 1162   | 1445    |
| 8              | Sakol Nakorn         | ,            | 1695          | 1489           | 1348         | 1446         | 1408 | 1188  | 154 <b>1</b>    | 1841   | 1495    |
| 9              | Sawang Dandin        | 1302         | 1764          | 1289           | 153 <b>3</b> | _            | -    | -     | 1296            | 2015   | 1533    |
| 10             | Surin                | 1506         | 1303          | 1027           | 1275         | 1627         | 1168 | 1071  | 1147            | 1415   | 1282    |
| 11             | Korat                | 1354         | 1358          | 1263           | 1078         | 1318         | 920  | 1064  | 1126            | -      | 1185    |
| 12             | Ubon                 | 2040         | 15 <b>2</b> 0 | 1628           | 1297         | 2258         | 1297 | 1142  | 1623            | 1751   | 1617    |
| 13             | Sisaket              | 1921         | 1481          | 840            | 1339         | 2064         | 1002 | 629   | 1145            | 1331   | 1306    |
| 14             | Mukdahan             | -            | -             | 1605           | 1516         | 1663         | 1170 | 1312  | 1379            | 1401   | 1435    |
| 15             | Kuchinarai           | 1254         | 1142          | 1212           | 1444         | 1635         | 1002 | 1195  | 1647            | 1458   | 1332    |
| 16             | Nam Pung             | 1302         | 1601          | 1519           | 136 <b>9</b> | 1535         | 1289 | · _   | , <del></del> , | -      | 1436    |
| 17             | Ban Nong Meg         |              | 1708          | -              | -            | 1892         | 1462 | · _   | 230 <b>6</b>    | ···· _ | 1842    |
| 18             | Det Udom             | 1207         | 1504          | -              | 1568         | -            | 1450 | 1463  | 1725            | 1622   | 1506    |
| 19             | Ban Song Khon        |              | _ `           | - ,            | -            | 1624         | 801  | 1258  | 619             | . 1340 | 1128    |
| 20             | Dan <b>Sa</b> i      | .—           | -             | <del>-</del> . |              | -            | 953  | 1087  | 1499            | 1659   | 1300    |
| 21             | Ban Tha Kok Daeng    | · _          | -             | -              | -            | -            | 1790 | 1780  | 1776            | -      | 1782    |
| 22             | Khong Chiam          | 1 <b>-</b> 1 | · ·-          |                | . —          |              | 1934 | 1707  | 1934            | 2044   | 1900    |
| 23             | Lam Dom Noi Dam Site | _            | -             | -              | -            | -            | -    | 1839  | 2039            | 2166   | 2015    |
| 24             | Kham Pa Lai          | -            |               |                |              |              | -    | 1544  | 1267            | 1347   | 1386    |



Figure 16. Isohyet Map of Thailand

# APPENDIX B

LIST OF FLOOD PEAK DATA AND LOG PEARSON TYPE III DISTRIBUTION OF 38 DRAINAGE BASINS IN NORTHEASTERN THAILAND

1920.000 937.000 828.000 1490.000 928.000 919.000 1450.000 862.000 516.000 1370.000 815.000 1310.000 1290.000 1080.000 1070.000 943.000 1010.000 943.000 ANNUAL FLOOD STATISTICS LOGS MEAN= 3.007 1057.9 STANDARD DEVIATION= 0.125 313.6 SKEWNESS= 0.097 0.974 STANDARD ERROR OF SKEWNESS -0.481 LOG-PEARSON TYPE III CALCULATIONS EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES 0.9900 0.9500 0.9000 0.5000 0.2000 0.0200 0.0400 0.0400 0.0400 0.0100 0.0100 0.0100 1.01 1.05 1.11 1.25 2.00 5.00 10.00 25.00 50.00 100.00 200.00 532.432 639.384 706.132 797.635 1012.027 1292.448 1472.591 1859.777 \*\*\* R.I.> 2N 2022.254 \*\*\* R.I.> 2N 2184.704 \*\*\* R.I.> 2N 2401.074 \*\*\* R.I.> 2N 0.0020 500.00 NAM MAN AT DAN SAI NO. OF ITEMS = 7 STATION 0- 0.2 CODE DATA USED IN CALCULATIONS 30.000 21.000 45.000 72.000 33.000 49.000 39.000 ANNUAL FLOOD STATISTICS LOGS

MAE NAM CHEF AT YASOTHORN NO. OF ITEMS = 23 STATION 0- 0.1 CODE

DATA USED IN CALCULATIONS

| MEAN=                       | 1.587 | 41.3  |
|-----------------------------|-------|-------|
| STANDARD DEVIATION-         | 0.171 | 16.5  |
| SKEWNESS-                   | 0.041 | 0.997 |
| STANDARD ERROR OF SKEWNESS- | 0.794 |       |

### LOG-PEARSON TYPE III CALCULATIONS

| 0.9900   | 1.01                                                                                                      | 15.668                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9500   | 1.05                                                                                                      | 20.334                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.9000   | 1.11                                                                                                      | 23.389                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.6000   | 1.25                                                                                                      | 27. 736                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5000   | 2.00                                                                                                      | 38.540                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.2000   | 5.00                                                                                                      | 53.760                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1000   | 10.00                                                                                                     | 64.074                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-0400   | 25.00                                                                                                     | 77.354 **                                                                                                                                                                                                                                                                 | * R.I.>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2Ń                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0200   | 50.00                                                                                                     | 87.419 **                                                                                                                                                                                                                                                                 | * R.I.>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0100   | 100.00                                                                                                    | 97.629 **                                                                                                                                                                                                                                                                 | * R.J.>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0050 . | 200.00                                                                                                    | 108.054 **                                                                                                                                                                                                                                                                | + R.I.>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0020   | 500.00                                                                                                    | 122.248 **                                                                                                                                                                                                                                                                | * R.I.>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 0.9900<br>0.9500<br>0.5003<br>0.5003<br>0.2200<br>0.1000<br>0.0400<br>0.0203<br>0.0100<br>0.0100<br>0.050 | $\begin{array}{ccccc} 0.9900 & 1.01 \\ 0.9500 & 1.05 \\ 0.9000 & 1.11 \\ 0.6000 & 1.25 \\ 0.5003 & 2.00 \\ 0.2000 & 5.00 \\ 0.1000 & 10.50 \\ 0.0400 & 25.00 \\ 0.0203 & 50.00 \\ 0.0100 & 100.60 \\ 0.0050 & 200.00 \\ 0.0050 & 500.00 \\ 0.000 & 500.00 \\ \end{array}$ | 0.9900         1.01         15.668           0.9900         1.05         20.334           0.9000         1.11         25.389           0.5000         1.25         27.735           0.5000         1.25         27.735           0.5000         1.25         27.735           0.5000         1.25         27.735           0.5000         5.00         53.760           0.2000         5.00         53.760           0.0000         10.00         64.074           0.0200         50.00         87.419           0.0200         100.00         97.629           0.0050         200.30         108.054           0.0050         200.30         122.248 | 0.9900         1.01         15.668           0.9500         1.05         20.334           0.9000         1.11         23.389           0.6000         1.25         27.736           0.5000         2.00         36.540           0.2000         5.00         53.760           0.1000         10.00         64.074           0.0200         25.00         77.354 *** R.I.>           0.0200         50.00         87.419 *** R.I.>           0.0100         100.00         97.629 *** R.I.>           0.0050         200.30         108.054 *** R.I.>           0.0050         500.00         122.248 *** R.I.> |

| 176.000 98.000 | 86.000 131.000             | 90.000 80.0      | 261.0       | 91.000            | 101.000   | 147.000 |
|----------------|----------------------------|------------------|-------------|-------------------|-----------|---------|
|                | A N N U A L F L            |                  | STICS       | ***************** | ********* | ******  |
|                |                            |                  |             |                   |           |         |
|                |                            |                  | LOGS        |                   |           |         |
|                | ME AN=                     |                  | 2.069       | 126.1             |           |         |
|                | STANDARD DEVIAT ION=       | •                | 0.165       | 56.6              |           |         |
|                | SKEWNE SS=                 |                  | 1.167       | 1.760             |           |         |
|                | STANDARD ERROR OF SKE      | WNESS=           | 0.687       | -                 |           |         |
|                | EXCEEDANCE PROB REC        | URRENCE INTERVAL | MAGNI TUDES |                   |           |         |
|                | 0.9900                     | 1.01             | 67.045      |                   |           |         |
|                | 0.9500                     | 1.05             | 72.801      |                   |           |         |
|                | 0.8000                     | 1.25             | 11.432      |                   |           |         |
|                | 0.5000                     | 2.00             | 109.132     |                   |           |         |
|                | 0.2000                     | 5.00             | 155.206     |                   |           |         |
|                | 0.1000                     | 10.00            | 195.234     |                   |           |         |
|                | 0.0400                     | 25.00            | 258.604     | *** R.I.> 2N      |           |         |
|                | 0.0200                     | 50.00            | 316.569     | *** R.I.> 2N      |           |         |
|                | 0.0100                     | 100.00           | 385.156     | *** R.I.> 2N      |           |         |
|                | 0.0050 .                   | 200.00           | 466.425     | *** R.I.> 2N      |           |         |
|                | <b>A A A A A A A A A A</b> | 500,00           | 597.450     | *** R.I.> 2N      |           |         |
|                | 0.0320                     |                  |             |                   |           |         |
|                | 0.0520                     |                  |             | · .               |           |         |
|                | 0.0520                     |                  |             |                   |           |         |
|                | 0-0520                     |                  |             | · · ·             |           |         |
|                | 0.0320                     |                  |             |                   |           |         |

NO. OF ITEMS -

NAM SAN AT DAM SITE

NAN HEUNG AT BAN PAK HJAI NO. OF ITENS = 7 STATION 0- 0.4 CODE

#### DATA USED IN CALCULATIONS

537.000 216.000 314.000 747.000 267.000 319.000 591.000

ANNUAL FLOOD STATISTICS

|                             | LOGS  |       |
|-----------------------------|-------|-------|
| MEAN-                       | 2.591 | 427.3 |
| STANDARD DEVIATION=         | 0.200 | 198.3 |
| SKE WNESS -                 | 0.240 | 0.662 |
| STANDARD ERROR CF SKEWNESS= | 0.794 |       |

## LOG-PEARSON TYPE III CALCULATIONS

EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900   | 1.01   | 144.080               |
|----------|--------|-----------------------|
| 0.9500   | 1.05   | 188.617               |
| . 0.9000 | 1.11   | 218.698               |
| 0.8000   | 1.25   | 263.259               |
| 0.5000   | 2.00   | 382.759               |
| 0.2000   | 5.00   | 571.237               |
| 0.1000   | 10.00  | 711.766               |
| 0.0400   | 25.00  | 907.307 *** R.I.> 2N  |
| 0.0200   | 50.00  | 1066.172 *** R.I.> 2N |
| 0.0100   | 100.00 | 1236.490 *** R.I.> 2N |
| 0.0050   | 200.00 | 1419.746 *** R.I.> 2N |
| 0.0020   | 500.00 | 1664.159 *** R.I.> 2N |
| 0.0020   | 500.00 | 1654.159 ### R.I.> 2N |

111

0. 3 CODE

STATION 0-

### NO. OF ILENS - 5 STATION 0- 0.5 CODE NAM LOFT AT WANG SAPHUNG DATA USED IN CALCULATIONS 272.000 282.000 913.000 135.000 171.000 ANNUAL FLOOD STATISTICS LCGS 2.442 354.6 MEAN= 0.320 318.5 STANDARD DEVIATION= 1.275 SKEWNESS= 2.016 STANDARD ERROR CF SKEWNESS-0.913 LOG-PEARSON TYPE III CALCULATIONS EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES 1.01 1.05 1.11 1.25 2.00 5.00 10.00 25.00 50.00 100.00 200.00 500.00 98.581 112.923 125.708 146.920 237.472 70.952 742.011 1302.608 \*\*\*\* R.I.> 2958.543 4300.645 \*\*\*\* R.I.> 7127.289 0.9900 0.9500 0.9000 0.5000 0.2000 0.1000 0.0400 0.0400 0.0200 0.0100 0.0050 0.0050

VAN SONGKRAH AT BAN THA KOK DAENG NO. OF ITEMS = 10 STATION 0- 0.6 CODE

#### DATA USED IN CALCULATIONS

.000 582.000 398.000 380.000 425.000 644.000 418.000 430 330.000 421.000 430.000 0 527.000

### ANNUAL FLOOD STATISTICS

|                             | LDGS  |       |
|-----------------------------|-------|-------|
| MEAN=                       | 2.650 | 455.5 |
| STANDARD DEVIATION=         | 0.089 | 97.5  |
| SKE WNE SS =                | 0.615 | 0.951 |
| STANDARD ERROR OF SKEWNESS= | 0.687 |       |

#### LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.21   | 3 05 . 209  |       |     |  |
|--------|--------|-------------|-------|-----|--|
| 0.9500 | 1.05   | 332.270     |       |     |  |
| 0.9000 | 1.11   | 349.983     |       |     |  |
| 0.8000 | 1.25   | 375.150     |       |     |  |
| 0.5000 | 2.00   | 437.605     |       |     |  |
| 0.2000 | 5.00   | 525.748     |       |     |  |
| 0.1000 | 10.00  | 585.878     |       |     |  |
| 0.0400 | 25.00  | 664.010 *** | R.I.> | 2N  |  |
| 0.0200 | 50.00  | 723.871 *** | 8.1.> | 2N  |  |
| 0.0100 | 100.00 | 785.225 *** | R.I.> | 2 N |  |
| 0.0050 | 200.00 | 848.573 *** | R:1.> | 2N  |  |
| 0.0020 | 500.00 | 936.009 *** | R.I.> | 2N  |  |
|        |        |             |       |     |  |

# NAN PUNG AT BAN THAM MAI BRIDGE NO. OF ITEMS = 10 STATION 0- 0.7 CODE DATA USED IN CALCULATIONS 118.000 68.000 150.000 88.000 110.000 178.000 147.000 190.000 162.000 24.000

ANNUAL FLOOD STATISTICS

|                          |     | LDGS   |        |
|--------------------------|-----|--------|--------|
| MEAN=                    |     | 2.035  | 123.5  |
| STANDARD DEVIATION=      |     | 0.269  | 52.3   |
| SKEWNESS=                |     | -1.814 | -0.641 |
| STANDARD ERROR OF SKEWNE | SS= | 0.687  |        |

### LOG-PEARSON TYPE III CALCULATIONS

#### EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900  | 1.01   | 12.319               |
|---------|--------|----------------------|
| 0.9500  | 1.05   | 31.715               |
| 0.9000  | 1.11   | 47 - 930             |
| 0.8000  | 1.25   | 72.878               |
| 0.5000  | 2,00   | 129-293              |
| 0.2000  | 5.00   | 177.823              |
| 0.1000  | 10.00  | 194.461              |
| 0. 3400 | 25.00  | 205-438 *** R-I-> 2N |
| 0.0200  | 50.00  | 209-587 *** 8-1-> 2N |
| 0.0100  | 100.00 | 211.915 *** R.I.> 2N |
| 0.0050  | 200.00 | 213.226 ### R.L.> 2N |
| 0.0020  | 500.00 | 214.128 *** R.I.> 2N |
|         |        |                      |

HUAI BANG SAI 4T BAN NONG AEK BRIDGE (BACK WATER) NO. OF ITEMS = 11 STATION 0- 0, 8 CODE

### DATA USED IN CALCULATIONS

| 419.000 | 482.000 514.000 | 319.000 | 189.000   | 152.000    | 234.000 | 241.000 | 116.000 | 176.000 |
|---------|-----------------|---------|-----------|------------|---------|---------|---------|---------|
| 280.000 |                 | ******  | ********* | ********** | ******  | ******  | *****   | ******* |
|         |                 |         |           |            |         |         |         |         |

## ANNUAL FLOOD STATISTICS

|                             | LDGS  |          |
|-----------------------------|-------|----------|
| MEAN=                       | 2.407 | . 283. 0 |
| STANDARD DEVIATION=         | 0.209 | 134-1    |
| SKEWNESS=                   | 0.009 | 9.666    |
| STANDARD ERROR OF SKEWNESS= | 0.661 |          |

# LOG-PEARSON TYPE III CALCULATIONS

| 0.9900   | 1.01   | 83.780                |
|----------|--------|-----------------------|
| 0.9500   | 1.05   | 115.998               |
| 0-9000   | 1.11   | 138.007               |
| 0-8000   | 1.25   | 170.362               |
| 0.5000   | 2.00   | 255.096               |
| 0.2000   | 5.00   | 382.364               |
| 6 1000   | 10.00  | 472.646               |
| 0.0400   | 25.00  | 592.711 *** R.I.> 2N  |
| 0.0700   | 50-00  | 686.157 *** R.I.> 2N  |
| 0.0200   | 100.00 | 782.823 *** R.I.> 2N  |
| 0.0050   | 200-00 | 883.267 *** R.I.> 2N  |
| 0.0020   | 500-00 | 1022.539 *** R.I.> 2N |
| V- VV 4V |        |                       |

|                                    |                     | DATA                                                                                                                                                                                   | U S E D                                                                                                                                                         | IN CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |                                              |                                        |
|------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|----------------------------------------|
| 160.000                            | 146.000             | 115.000 101                                                                                                                                                                            | .000 1                                                                                                                                                          | 142.000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 191.000                                                       | 160.000                                      | 95 .                                   |
|                                    |                     |                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | •••••                                        |                                        |
|                                    |                     | A N 1                                                                                                                                                                                  | IUAL FL                                                                                                                                                         | LOUDSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                                              |                                        |
|                                    |                     |                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LDGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                                              |                                        |
|                                    |                     | MEAN                                                                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                             |                                              |                                        |
|                                    |                     | STANDARD C                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                             |                                              |                                        |
|                                    |                     | STRUGARD .                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                             |                                              |                                        |
|                                    |                     | SKE WN2 55=                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                             |                                              |                                        |
|                                    |                     | STANDARD B                                                                                                                                                                             | RROR OF SKE                                                                                                                                                     | WNESS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                              |                                        |
|                                    |                     | LOG-PEA                                                                                                                                                                                | R S O N T                                                                                                                                                       | YPE III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CALCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                              |                                        |
|                                    |                     |                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                              |                                        |
|                                    |                     | EXCEEDANCE                                                                                                                                                                             | PROB REC                                                                                                                                                        | URRENCE INTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VAL MAGNITU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                              |                                        |
|                                    |                     | 0.99                                                                                                                                                                                   | 000                                                                                                                                                             | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                              |                                        |
|                                    |                     | 0.95                                                                                                                                                                                   | 00                                                                                                                                                              | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .605<br>.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                              |                                        |
|                                    |                     | 0.80                                                                                                                                                                                   | 000                                                                                                                                                             | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                              |                                        |
|                                    |                     | 0.20                                                                                                                                                                                   | 100                                                                                                                                                             | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                              |                                        |
|                                    |                     | 0.10                                                                                                                                                                                   | 000                                                                                                                                                             | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .157<br>.101 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5 2N                                                        |                                              |                                        |
|                                    |                     | 0.02                                                                                                                                                                                   | 00                                                                                                                                                              | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .202 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.> 2N                                                        |                                              |                                        |
|                                    |                     | 0.01                                                                                                                                                                                   | 100                                                                                                                                                             | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .960 *** R.<br>.677 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I.> 2N<br>I.> 2N                                              |                                              |                                        |
|                                    |                     |                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 3 24                                                        |                                              |                                        |
| DOM YAI AT D                       | DET UDOM            | 0, 00                                                                                                                                                                                  | 920                                                                                                                                                             | 500.00<br>NO. OF ITEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 237<br>- 11 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 205 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                          | CODE                                         |                                        |
| 00M YAIAT D                        | DET UDOM            | ō, ōc                                                                                                                                                                                  | ******                                                                                                                                                          | 500.00<br>NO. OF ITEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 237<br>- 11 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .295 *** R.<br>Tation o-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                          | CODE                                         | *****                                  |
| DON YAIAT D                        | DET UCOM            | ō, ō c                                                                                                                                                                                 | 20<br>*****************                                                                                                                                         | 500.00<br>NO. OF ITEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 237<br>- 11 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 295 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                          | CODE<br>**********                           | *****                                  |
| 273.000                            | DET UDOM            | 0,00                                                                                                                                                                                   | 220<br>***********************************                                                                                                                      | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 237<br>- 11 ST<br>- ULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 295 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                          | CODE<br>************                         | ••••••                                 |
| 273.000<br>135.000                 | 296,000             | ō, ōc<br>D A T<br>331.000 49                                                                                                                                                           | 220<br>A U S E D<br>2.000                                                                                                                                       | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 237<br>- 11 51<br>- ULATION<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 295 *** K.<br>Ation o-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10                                                          | CODE<br>************************************ | ••••••<br>0 1150                       |
| DDM YAI AT D<br>273.000<br>135.000 | DET UDOM<br>296.000 | ō, ōc<br>D A T<br>331. 000 49                                                                                                                                                          | 220<br>A U S E D<br>2.000                                                                                                                                       | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 237<br>- 11 57<br>- ULATION<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 295 *** K.<br>ATION 0-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10<br>                                                      | CODE<br>270.00                               | •••••••••••••••••••••••••••••••••••••• |
| DOM YAI AT D<br>273.000<br>135.000 | DET UDOM<br>296.000 | ō, ōc<br>D A T<br>331. 000 49<br>A N                                                                                                                                                   | 220<br>A U S E D<br>2.000                                                                                                                                       | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOOD ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 237<br>- 11 57<br>- ULATION<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 295 *** K.<br>TATION 0-<br>N S<br>246.000<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10<br>332.000                                               | CODE<br>270.00                               | ••••••                                 |
| DOM YAI AT D<br>273.000<br>135.000 | DET UDOM<br>296.000 | ō, ōc<br>D A T<br>331. 000 49<br>A N                                                                                                                                                   | 220<br>A U S E D<br>2.000                                                                                                                                       | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 237<br>- 11 ST<br>- ULATION<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 295 *** K.<br>Tation o-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>332.000                                               | CODE<br>270.00                               | •••••••<br>0 1150                      |
| DOM YAIAT D<br>273.000<br>135.000  | DET UDOM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN-                                                                                                                                           | A U S E D<br>2.000                                                                                                                                              | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOOD STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 295 *** K.<br>TATION O-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>332.000                                               | CODE<br>270.00                               | •••••••<br>0 1150                      |
| DON YAIATD<br>273.000<br>135.000   | DET UDDM<br>296,000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>ST ANDARD                                                                                                                              | A U S E D<br>2.000                                                                                                                                              | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOOD STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 295 *** K.<br>(ATION 0-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>332.000                                               | CODE<br>270.00                               | •••••••••••••••••••••••••••••••••••••• |
| 00M YAIATD<br>273.000<br>135.000   | DET UDDM<br>296,000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>ST ANDARD<br>SKE WNE SS=                                                                                                               | 220<br>A U S E D<br>2.000<br>N U A L F<br>DEVIATION=                                                                                                            | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOOD STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.225<br>0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 295 *** K.<br>(ATION 0-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>332.000                                               | CODE<br>270.00                               | •••••••••••••••••••••••••••••••••••••• |
| DDM YAIAT D<br>273.000<br>135.000  | DET UDOM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>ST ANDARD<br>SKE WNE SS=<br>CT NND SKE WNE SS=                                                                                         | A U S E D<br>2.000<br>N U A L F ;<br>DEV IAT IGN=                                                                                                               | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.226<br>0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 295 *** R.<br>(ATION 0-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>332.000<br>5<br>9                                     | CODE<br>270.00                               | •••••••••••••••••••••••••••••••••••••• |
| DDM YAIAT D<br>273.000<br>135.000  | DET UDOM<br>296.000 | D A T<br>331.000 49<br>A N<br>MEAN=<br>ST ANDARD<br>SKE WNE SS=<br>ST ANDARD                                                                                                           | A U S E D<br>2.000<br>N U A L F ;<br>DEVIATION=<br>ERROR OF SKI                                                                                                 | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 237<br>ULATION<br>933.000 2<br>NTISTIC<br>LOGS<br>2.523<br>0.225<br>0.984<br>0.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 295 *** K.<br>(ATION 0-<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>332.000<br>5<br>9                                     | CODE<br>************************************ | ••••••                                 |
| DDM YAIAT D<br>273.000<br>135.000  | DET UDOM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>STANDARD<br>SKEWNE SS=<br>STANDARD<br>L D G - P E A                                                                                    | A U S E D<br>2.000<br>DEVIATION=<br>ERROR OF SKI<br>R S O N T                                                                                                   | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOODSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.226<br>0.984<br>0.661<br>CALCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>332.000                                               | CODE<br>******************<br>270.00         | •••••••••••••••••••••••                |
| DDM YAIAT D<br>273.000<br>135.000  | DET UDDM<br>296,000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>STANDARD<br>SKEWNE SS=<br>STANDARD<br>L D G - P E A                                                                                    | A U S E D<br>2.000<br>DEVIATION=<br>ERROR OF SKI<br>R S O N T                                                                                                   | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A<br>EWNESS-<br>Y P E I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.226<br>0.984<br>0.661<br>CALCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION 0-<br>X S<br>246.000<br>S<br>3 386.<br>2.69<br>2.69<br>A T I D N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>332.000<br>5<br>9                                     | CODE<br>************************************ | ••••••                                 |
| DDM YAIAT D                        | DET UDDM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>St ANDARD<br>SKE WNE SS=<br>ST ANDARD<br>L D G - P E A<br>EXCEEDARC                                                                    | A U S E D<br>2.000<br>DEVIATION=<br>ERROR OF SKI<br>R S O N T<br>E PROB REG                                                                                     | SOO.DO<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOODSTA<br>EWNESS-<br>YPEIII<br>CURRENCE INTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.226<br>0.984<br>0.661<br>CALCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION 0-<br>S<br>3 386<br>2 2 6 00 0<br>S<br>3 386<br>2 2 6 9<br>2 - 62<br>A TIDNS<br>10 DNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10<br>332.000<br>5<br>.9                                    | CODE<br>270.00                               | ••••••                                 |
| DDM YAIAT D                        | DET UDDH<br>296,000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN-<br>STANDARD<br>SKEWNE SS-<br>STANDARD<br>L D G - P E A<br>EXCEEDARC<br>0.9                                                                | A U S E D<br>2.000<br>N U A L F ;<br>DEVIATION-<br>ERROR OF SKI<br>R S O N T<br>E PROB REI<br>900                                                               | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOOD STA<br>EWNESS-<br>YPEIII<br>CURRENCE INTER<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 237<br>ULATION<br>433.000 2<br>433.000 2<br>453.000 2<br>453.0000 2<br>453.00000 2<br>453.00000 2<br>453.00000 2<br>453.000000000000000000000000000000000000 | ATION 0-<br>S<br>3 386.<br>2 46.000<br>S<br>3 386.<br>2 46.000<br>A T I D N S<br>10ES<br>1.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10<br>332.000<br>5<br>9                                     | CODE<br>270.00                               | ••••••                                 |
| DDM YAIAT D                        | DET UDDM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>STANDARD<br>SKEWNESS=<br>STANDARD<br>L D G - P E A<br>EXCEEDANC<br>0.9<br>0.9                                                          | A U S E D<br>2.000<br>N U A L F 1<br>DEVIATION=<br>ERROR OF SKI<br>R S D N T<br>E PROB REG<br>500<br>500                                                        | 500.00<br>NO. DF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A<br>EWNESS=<br>Y P E I I I<br>CURRENCE INTER<br>1.01<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.225<br>0.984<br>0.661<br>CALCUL<br>IVAL MAGNITU<br>143<br>166<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATION 0-<br>N S<br>246.000<br>S<br>3 386.<br>9 269.<br>A T I D N S<br>10ES<br>1.617<br>.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10<br>332.000<br>5<br>9                                     | 270.00                                       | ••••••                                 |
| 20M YAIAT D                        | DET UDDH<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN-<br>STANDARD<br>SKEWNE SS-<br>STANDARD<br>L O G - P E A<br>EXCEEDARC<br>0.9<br>0.9<br>0.9                                                  | A U S E D<br>2.000<br>N U A L F<br>ERROR OF SKI<br>R S O N T<br>E PROB REG<br>500<br>500                                                                        | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A<br>EWNESS=<br>Y P E I I I<br>CURRENCE INTER<br>1.01<br>1.05<br>1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 237<br>ULATION<br>33.000 2<br>VTISTIC<br>LOGS<br>2.523<br>0.224<br>0.984<br>0.661<br>CALCUL<br>I43<br>166<br>183<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A T I D N S<br>A T I D N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10<br>332.000<br>5<br>9                                     | 270.00                                       | 0 1150                                 |
| 20M YAI AT D                       | DET UCOM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN-<br>STANDARD<br>SKEWNE SS-<br>STANDARD<br>L D G - P E A<br>EXCEEDANC<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                                    | A U S E D<br>2.000<br>N U A L F 1<br>DEVIATION-<br>ERRDR OF SKI<br>R S O N T<br>E PROB RE1<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50 | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A<br>EWNESS=<br>Y P E I I I<br>CURRENCE INTER<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.224<br>0.984<br>0.661<br>CALCUL<br>IVAL MAGNITU<br>143<br>166<br>183<br>212<br>306<br>697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A T I D N S<br>246.000<br>S<br>3 386.<br>2 269.<br>A T I D N S<br>300ES<br>.617<br>.203<br>.887<br>.973<br>.481<br>.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10<br>332.000<br>5<br>.9                                    | 270.00                                       | 0 1150                                 |
| DDM YAIAT D                        | DET UDOM<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN-<br>STANDARD<br>SKEWNESS-<br>STANDARD<br>L D G - P E A<br>EXCEEDANC<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9  | A U S E D<br>2.000<br>N U A L F<br>DEVIATION=<br>ERRDR OF SKI<br>R S O N T<br>E PROB REI<br>500<br>000<br>000<br>000<br>000<br>000                              | 500.00<br>NO. DF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A<br>EWNESS=<br>Y P E I I I<br>CURRENCE INTER<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.225<br>0.984<br>0.661<br>CALCUL<br>IVAL MAGNITU<br>143<br>146<br>183<br>212<br>306<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A T I D N S<br>246.000<br>A T I D N S<br>269.<br>A T I D N S<br>2005<br>2005<br>2005<br>2005<br>2005<br>2003<br>2007<br>2003<br>2007<br>2003<br>2007<br>2003<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10<br>332.000<br>5<br>.9<br>27                              | CODE<br>270.00                               | 0 1150                                 |
| DDM YAIAT D                        | DET UDOM<br>296,000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>STANDARD<br>SKEWNE SS=<br>STANDARD<br>L D G - P E A<br>EXCEEDANC<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9 | A U S E D<br>2.000<br>N U A L F S<br>DEVIATION=<br>ERROR OF SKI<br>R S D N T<br>E PROB REG<br>500<br>000<br>000<br>000<br>000<br>000<br>000<br>00               | 500.00<br>NO. OF ITEMS<br>IN CALC<br>293.000<br>LOODSTA<br>VPEIII<br>CURRENCE INTER<br>1.01<br>1.05<br>1.01<br>1.25<br>5.00<br>5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 237<br>ULATION<br>ULATION<br>33.000 2<br>ATISTIC<br>LOGS<br>2.523<br>0.225<br>0.984<br>0.661<br>CALCUL<br>IVAL MAGNITU<br>143<br>164<br>163<br>212<br>305<br>675<br>675<br>777<br>1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A T I D N S<br>246.000<br>5<br>3 3866<br>9 269<br>4 T I D N S<br>10ES<br>1617<br>203<br>1897<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1978<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>1617<br>16 | 0.10<br>332.000<br>5<br>9<br>77<br>5                          | CODE<br>270.00                               | ••••••                                 |
| 273.000<br>135.000                 | DET UDDH<br>296.000 | G, GC<br>D A T<br>331.000 49<br>A N<br>MEAN=<br>STANDARD<br>SKEWNE SS=<br>STANDARD<br>L D G - P E A<br>EXCEEDARC<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9 | A U S E D<br>2.000<br>M U A L F S<br>DEVIATION=<br>ERROR OF SKI<br>R S O N T<br>E PROB REG<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50               | 500.00<br>NO. OF ITEMS<br>I N C A L C<br>293.000<br>L O O D S T A<br>EWNESS=<br>Y P E I I I<br>CURRENCE INTER<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.00<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.00<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.01<br>1.05<br>1.00<br>1.05<br>1.01<br>1.05<br>1.00<br>1.05<br>1.01<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.05<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 237<br>ULATION<br>33.000 2<br>TISTIC<br>LOGS<br>2.523<br>0.226<br>0.984<br>0.661<br>CALCUL<br>I43<br>166<br>183<br>212<br>306<br>677<br>977<br>1269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATION 0-<br>S<br>ATION 0-<br>S<br>ATION 0-<br>S<br>ATION 5<br>Construction<br>ATION 5<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>C                                                                                                                                                                                                                                                                                                                                                                                         | 0.10<br>332.000<br>5<br>9<br>77<br>1.> 2N<br>1.> 2N<br>1.> 2N | CODE<br>270.00                               | •••••                                  |

# LAM DOM NOI AT SE FALL NO. OF ITEMS = 8 STATION 0- 0.11 CODE

# DATA USED IN CALCULATIONS

652.000 408.000 432.000 416.000 351.000 356.000 691.000 348.000

## ANNUAL FLOOD STATISTICS

|                    |            | LOGS  |       |
|--------------------|------------|-------|-------|
| MEAN=              |            | 2.645 | 456.8 |
| STANDARD DEVIATION | -          | 0.118 | 136.7 |
| SKEWNESS=          |            | 1.076 | 1.238 |
| STANDARD ERROR OF  | SKEWNESS - | 0.752 |       |

#### LOG-PEARSON TYPE 111 CALCULATIONS

## EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900 | 1.01   | 290.566               |
|--------|--------|-----------------------|
| 0.9500 | 1.05   | 310.678               |
| 0.9000 | 1.11   | 325.994               |
| 0.8000 | 1.25   | 350.201               |
| 0.5000 | 2.00   | 420.594               |
| 0.2000 | 5.00   | 540.879               |
| 0.1000 | 10.00  | 635.528 ~             |
| 0.0400 | 25.00  | 772.982 *** R.I.> 2N  |
| 0.0200 | 50.00  | 889.132 *** R.I.> 2N  |
| 0.0100 | 100.00 | 1017.832 *** R.I.> 2N |
| 0.0050 | 200.00 | 1160.925 *** R.I.> 2N |
| 0.0020 | 500.00 | 1375.463 *** R.I.> 2N |

# N2M MUN AT UBOL NO. OF ITEMS = 30 STATION D- 0.12 CODE

## DATA USED IN CALCULATIONS

| 2470,000 3110,000 2210,000 2940,000 3300,000 3690,000 4790,000 2680,000 2150,000 1970,<br>3040,009 1020,000 2710,000 2050,000 2880,009 3130,000 3130,000 3720,000 3930,000 1930,<br>3620,000 1240,000 5540,000 2480,000 2420,000 2350,000 2260,000 2180,000 2850,000 1130, |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

ANNUAL FLOOD STATISTICS

|                             | LOGS   | 4      |
|-----------------------------|--------|--------|
| MEAN =                      | 3.413  | 2764.0 |
| STANDARD DEVIATION=         | 0.165  | 984.2  |
| SKEWNESS-                   | -0.640 | 0.712  |
| STANDARD ERROR OF SKEWNESS= | 0.427  |        |

## LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 902.031               |
|--------|--------|-----------------------|
| 0.9500 | 1.05   | 1306.355              |
| 0.9000 | 1.11   | 1564.357              |
| 0.8000 | 1.25   | 1915.828              |
| 0.5000 | 2.00   | 2696.690              |
| 0.2000 | 5.00   | 3585.268              |
| 0.1000 | 10.00  | 4073-103              |
| 0.0400 | 25.00  | 4596.555              |
| 0.0200 | 50.00  | 4930-816              |
| 0.0100 | 100.00 | 5225-691 *** 8-1-> 2N |
| 0.0050 | 200.00 | 5488-797 ### B.L.> 2N |
| 0.0020 | 500.00 | 5796.727 *** R.L.> 2N |
|        |        |                       |

NAM KAM AT NAKAE NAKORN PHANOM NO. DF ITEMS = 10 STATION 0- 0.14 CODE

### DATA USED IN CALCULATIONS

143.000 91.000 136.000 70.000 146.000 166.000 175.000 212.000 122.000 83.000

| ANNUAL FLOOD S             | LOGS   |       |
|----------------------------|--------|-------|
| MEAN                       | 2.103  | 134.9 |
| STANDARD DEVIATION=        | 0.150  | 43.7  |
| SKEWNESS=                  | -0.456 | 0.152 |
| STANDARD FRROR OF SKEWNESS | 0.687  |       |

#### LOG-PEARSON TYPE III CALCULATIONS

#### EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900 | 1.01   | 51.164               |
|--------|--------|----------------------|
| 0.9500 | 1.05   | 69.634               |
| 0.9000 | 1.11   | 81.180               |
| 0.8000 | 1.25   | 96.789               |
| 0.5000 | 2.00   | 131.569              |
| 0.2000 | 5.00   | 172.316              |
| 0.1000 | 10.00  | 195.624              |
| 0.0400 | 25.00  | 221.672 *** R.I.> 2N |
| 0.0200 | 50.00  | 239.004 *** R.I.> 2N |
| 0.0100 | 100.00 | 254.839 *** R.I.> 2M |
| 0.0050 | 200.00 | 269.470 *** R.I.> 2N |
| 0.0020 | 500.00 | 287.293 *** R.I.> 2W |

LAM TA KHONG AT KHAO YAI NO. OF ITEMS = 9 STATION 0- 0.15 CODE

## DATA USED IN CALCULATIONS

44.000 43.000 23.000 14.000 38.000 18.000 11.000 37.000 25.000

ANNUAL FLOOD STATISTICS

|                             | LOGS   |        |
|-----------------------------|--------|--------|
| MEAN=                       | 1.403  | 28.1   |
| STANDARD DEVIATION=         | 0.221  | 12.7   |
| SKEWNESS=                   | -0.469 | -0.003 |
| STANDARD ERROR OF SKEWNESS= | 0.717  |        |

## LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 6.531               |
|--------|--------|---------------------|
| 0.9500 | 1.05   | 10.304              |
| 0.9000 | 1.11   | 12.925              |
| 0.8000 | 1.25   | 16.752              |
| 0.5000 | 2.00   | 26.317              |
| 0.2000 | 5.00   | 39.084              |
| 0.1000 | 10.00  | 47.044              |
| 0.0400 | 25.00  | 56.444 *** R.I.> 2N |
| 0.0200 | 50.00  | 62.972 *** R.I.> 2N |
| 0.0100 | 100.00 | 69.115 *** R.I.> 2N |
| 0.0050 | 200.00 | 74.936 +++ R.I.> 2N |
| 0.0020 | 500.00 | 82.204 *** R.I.> 2N |

| LAM TA KHONG AT BAN BUNG TOE |                  | NO, OF ITEMS -   | 10 STATI       | DN 0- 0.16                       | CODE       | ****** |
|------------------------------|------------------|------------------|----------------|----------------------------------|------------|--------|
|                              | DATAUS           | EDINCALC         | ULATIONS       |                                  |            |        |
| 76.000 87.000                | 75.000 84.000    | 21.000           | .23.000 34.0   | 20,0                             | 00 197.000 | 47.000 |
|                              | ANNUAI           | L FLOOD STA      | TISTICS        |                                  |            |        |
| :                            |                  |                  |                |                                  |            |        |
|                              |                  | •                | LOGS           |                                  |            |        |
|                              | MEAN=            |                  | 1.796          | 77.2                             |            |        |
|                              | STANDARD DEVIAT  | ION -            | 0.306          | 52.9                             |            |        |
|                              |                  | •                |                |                                  |            |        |
|                              | SKEWNESS=        |                  | -0.123         | 1.313                            |            |        |
| ·                            | STANDARD ERROR ( | DF SKEWNESS=     | 0.687          |                                  |            |        |
|                              | LOG-PEARSO       | N TYPE III       |                | 1 0 N S                          |            |        |
|                              |                  |                  |                |                                  |            |        |
|                              | EXCEEDANCE PROB  | RECURRENCE INTER | WAL MAGNITUDES |                                  |            |        |
|                              | 0.9900           | 1.01             | 11.38          | 5                                |            |        |
|                              | 0. 9500          | 1.05             | 19.140         | 5                                |            |        |
|                              | 0.9000           | 1.11             | 25.10          | ÷                                |            |        |
|                              | 0.8000           | 1.25             | 34.68          | 5                                |            |        |
|                              | 0.5000           | 2.00             | 63.36          | 3                                |            |        |
|                              | 0.2000           | 5.00             | 113.429        | 2                                |            |        |
|                              | 0.1000           | 10.00            | 152.54         |                                  |            |        |
|                              | 0.0400           | 25.00            | 207.90.        | D TTT K.142 20<br>1 444 0 7 5 70 |            |        |
|                              | 0.0200           | 100-00           | 301-63         | 7 ### R.1.> 2N                   |            |        |
|                              | 0.0050           | 200.00           | 353.373        | *** R.I.> 2N                     |            |        |
|                              | 0.0020           | 500.00           | 427.120        | +++ R.I.> 2N                     |            |        |

LAN DOM YAI AT BAN FANG PHE NO. OF ITEMS = 5 STATION 0- 0.17 CODE

## DATA USED IN CALCULATIONS

200.000 207.000 166.000 346.000 61.000

ANNUAL FLOOD STATISTICS

## LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 22.158               |
|--------|--------|----------------------|
| 0.9500 | 1.05   | 51.006               |
| 0.9000 | 1.11   | 74.442               |
| 0.8000 | 1.25   | 110.897              |
| 0.5000 | 2.00   | 200.612              |
| 0.2000 | 5.00   | 297.490              |
| 0.1000 | 10.00  | 341.640 *** R.I.> 2N |
| 0.0400 | 25.00  | 380.286 *** R.I.> 2N |
| 0.0200 | 50.00  | 399.700 *** R.I.> 2N |
| 0.0100 | 100.00 | 413.619 *** R.I.> 2N |
| 0.0050 | 200.00 | 423.664 *** R.I.> 2N |
| 0.0020 | 500.00 | 432.839 *** R.I.> 2N |
|        |        |                      |

NAM CHI AT BAN KOK UBON NO. OF ITEMS = 8 STATION 0- 0.18 CODE

#### DATA USED IN CALCULATIONS

633.000 586.000 142.000 803.000 635.000 531.000 216.000 321.000

## ANNUAL FLOOD STATISTICS

|                             | LOGS          |
|-----------------------------|---------------|
| MEAN=                       | 2.624 483.4   |
| STANDARD DEVIATION=         | 0.265 231.4   |
| SKEWNESS=                   | -0.957 -0.346 |
| STANDARD ERROR OF SKEWNESS= | 0.752         |

### LOG-PEARSON TYPE III CALCULATIONS

EXCEEDANCE PROB RECURRENCE INTERVAL HAGNITUDES

| 0.9900 | 1.01   | 67.519                |
|--------|--------|-----------------------|
| 0.9500 | 1.05   | 134.348               |
| 0.9000 | 1.11   | 185.654               |
| 0.8000 | 1.25   | 264.228               |
| 0.5000 | 2.00   | 463.557               |
| 0.2000 | 5.00   | 709.192               |
| 0.1000 | 10.00  | 843.249               |
| 0.0400 | 25.00  | 981.042 *** R.I.> 2N  |
| 0.0200 | 50.00  | 1063.964 *** R.I.> 2N |
| 0.0100 | 100.00 | 1132.962 *** R.L.> 2N |
| 0.0050 | 200.00 | 1190.749 *** R.I.> 2N |
| 0.0020 | 500.00 | 1253.347 *** R.I.> 2N |

# NAM HUN AT PAK HUN NO. OF ITEMS = 7 STATION 0- 0.19 CODE

### DATA USED IN CALCULATIONS

6650.000 2930.000 3150.000 4880.000 3220.000 3320.000 1570.000

#### ANNUAL FLOOD STATISTICS

|                             | LOGS   |        |
|-----------------------------|--------|--------|
| MEAN=                       | 3.529  | 3074.3 |
| STANDARD DEVIATION=         | 0.195  | 1627.7 |
| SKEWNESS=                   | -0.241 | 0.979  |
| STANDARD ERROR OF SKEWNESS- | 0.794  |        |

### LOG-PEARSON TYPE III CALCULATIONS

| 0.9900  | 1.01   | 1099-132              |     |
|---------|--------|-----------------------|-----|
| 0.9500  | 1.25   | 1567-969              |     |
| 0.9000  | 1.11   | 1681-317              | . 1 |
| 0.8000  | 1.25   | 2330.248              |     |
| 0.5000  | 2.00   | 3440.164              |     |
| 0.2000  | 5.00   | 4950.703              |     |
| 0.1000  | 10.00  | 5929.117              |     |
| 0.04'00 | 25.00  | 7133.707 *** R.I.> 2  | 2N  |
| 0.0200  | 50.00  | 8007.145 *** R.1.> 2  | 2N  |
| 0.0100  | 100.00 | 8860.406 *** R.1.> 2  | 2N  |
| 0.0050  | 200.00 | 9699.758 *** R.I.> 2  | 2N  |
| 0.0020  | 500.00 | 10794.652 *** R.I.> 2 | 2N  |
|         |        |                       |     |

|               |             |         | 0     | ATA US      | ED IN     | CALC       | ULAT    | IONS                                    |        |                                         |        |         |         |
|---------------|-------------|---------|-------|-------------|-----------|------------|---------|-----------------------------------------|--------|-----------------------------------------|--------|---------|---------|
| 2 52 .0 00    | 242.000     | 151.0   | 00    | 175.000     | 81.00     | 0          | 79.000  | ********                                | ****** | ******                                  |        | ******* | ******* |
|               |             |         |       |             |           |            |         |                                         |        |                                         |        |         |         |
|               |             |         |       | ANNUAL      | FLOD      | 0 5 1 1    | A I I S | 1162                                    |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         | 1.005                                   |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         | 2003                                    |        |                                         |        |         |         |
|               | ۰.          |         | MEAN= |             |           |            |         | 2.169                                   | 163.   | 3                                       |        |         |         |
|               |             |         | STAND | ARD DEVIATI | ON=       |            |         | 0.222                                   | 75.    | 1 .                                     |        |         |         |
|               |             |         |       |             |           |            |         |                                         |        |                                         |        |         |         |
|               |             |         | SKEWN | 55=         |           |            |         | -0.401                                  | 0.01   | •                                       |        |         |         |
|               |             |         | STAND | ARD ERROR O | F SKEWNES | 5 <b>-</b> |         | 0.845                                   |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         |                                         |        | •                                       |        |         |         |
|               |             | 6.0     | G - P | EARSO       | N ТҮРІ    | E I I I    | CAL     | CULAŢ                                   | IONS   | $[h_{\lambda_1}, \dots, h_{\lambda_n}]$ |        |         |         |
|               |             |         |       |             |           |            |         | · · ·                                   |        |                                         |        |         |         |
|               |             |         | EXCEE | DANCE PROB  | RECURRE   | NCE INTE   | RVAL M  | AGNITUDES                               |        |                                         |        |         |         |
|               |             |         |       | 0-9900      |           | 1.01       |         | 38.644                                  |        |                                         |        |         |         |
|               |             |         |       | 0.9500      |           | 1.05       | . *     | 60.194                                  | · ·    |                                         |        |         |         |
|               |             |         |       | 0.9000      |           | 1.11       |         | 75.174                                  |        |                                         | · · ·  |         |         |
|               |             |         |       | 0.5000      |           | 2.00       |         | 152.661                                 |        |                                         |        |         |         |
|               |             |         |       | 0.2000      |           | 5.00       |         | 228.581                                 |        |                                         |        |         |         |
|               |             |         |       | 0.1000      |           | 10.00      |         | 277.086                                 |        |                                         |        |         |         |
|               |             |         |       | 0.0400      |           | 25.00      |         | 335.616                                 |        | 1.> 2N                                  |        |         |         |
|               |             |         |       | 0.0200      |           | 50.00      |         | 51/-102<br>416 703                      | D.     | 142 ZN                                  |        |         |         |
|               |             |         |       | 0.0100      |           | 200.00     |         | 455-017                                 | *** R. | 1.> 2N                                  |        |         |         |
|               |             |         |       | 0-0020      |           | 500.00     |         | 503.611                                 | *** A. | 1.> 2N                                  |        |         |         |
|               |             |         |       |             |           |            |         |                                         |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         | •                                       |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         |                                         |        |                                         |        |         |         |
|               |             |         |       |             |           |            | 1.1     |                                         |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         | · ·                                     |        |                                         |        |         |         |
|               |             |         |       |             |           |            |         | 1 - E - E - E - E - E - E - E - E - E - |        |                                         |        |         |         |
|               |             |         |       |             |           | • .        | · · · · |                                         |        |                                         |        |         |         |
| HONG AT BAN P | HU UDON THA | NI      |       |             | ND. 0F    | ITEMS =    | 18      | STATION                                 | 0-     | 0.21                                    | CODE   |         |         |
|               | *******     | ******* |       | *********   | ********  |            | ******* | ********                                | ****** | *****                                   | ****** | ******* | ******* |

| 33.000  | 165.000    | 97.000    | 211.000 | 327.000   | 118.000 | 75.000     | 93.000  | 170.000 | 172.   |
|---------|------------|-----------|---------|-----------|---------|------------|---------|---------|--------|
| 180.000 | 84.000     | 41.000    | 309.000 | 127.000   | 109.000 | 168,000    | 331.000 |         |        |
| *****   | ** ******* | ********* | *****   | ********* |         | ********** | ******* | ****    | ****** |

ANNUAL FLOOD STATISTICS

|                             | LOGS   |       |
|-----------------------------|--------|-------|
| MEAN=                       | 2.120  | 157.2 |
| STANDARD DEVIATION-         | 0.281  | 90.9  |
| SK EWNE SS=                 | -0.548 | 0.769 |
| STANDARD ERROR OF SKEWNESS- | 0.536  |       |

### LOG-PEARSON TYPE III CALCULATIONS

| ACCEDANCE PROB | NEUV ANERUE | THE CREAT | MAUNITODES |     |       |     |  |
|----------------|-------------|-----------|------------|-----|-------|-----|--|
| 0.9900         |             | 1.01      | 22.762     |     |       |     |  |
| 0.9500         |             | 1.05      | 41.611     |     |       |     |  |
| 0.9000         |             | 1.11      | 55.992     |     |       |     |  |
| 0.8000         |             | 1.25      | 78.428     | Ľ.  |       |     |  |
| 0.5000         |             | 2.00      | 139.821    |     |       |     |  |
| 0-2000         |             | 5.00      | 229-333    |     |       |     |  |
| 0-1000         | 1           | 0.00      | 287.835    |     |       |     |  |
| 0.0400         | 2           | 5.00      | 358.560    |     |       |     |  |
| 0-0200         | 5           | 0.00      | 408-345    | *** | 8-1-> | 2N  |  |
| 0.0100         | 10          | 0-00      | 455-486    | *** | 8.1.5 | 2N  |  |
| 0.0050         | 20          | 0.00      | 500-278    | *** | 8-1-5 | 2N  |  |
| 0.0020         | 50          | 0.00      | 556-223    |     | 8.1.5 | 2 N |  |

# NAM PHUNG AT BAN CHUN PEN SAKHON NAKORN NO. OF ITEMS = 9 STATION 0- 0.22 CODE

# DATA USED IN CALCULATIONS

157.000 82.000 122.000 72.000 50.000 82.000 66.000 75.000 53.000

ANNUAL FLOOD STATISTICS

|                             | LDGS  |       |
|-----------------------------|-------|-------|
| MEAN =                      | 1.898 | 84.3  |
| STANDARD DEVIATION=         | 0.159 | 34-4  |
| SKEWNESS -                  | 0.765 | 1.414 |
| STANDARD ERROR OF SKEWNESS- | 0.717 |       |

# LOG-PEARSON TYPE III CALCULATIONS

### EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900 | 1.01   | 41.532               |  |
|--------|--------|----------------------|--|
| 0.9500 | 1.05   | 47.349               |  |
| 0.9000 | 1.11   | 51.492               |  |
| 0.8000 | 1.25   | 57.805               |  |
| 0.5000 | 2.00   | 75.546               |  |
| 0.2000 | 5.00   | 105.458              |  |
| 0.1000 | 10.00  | 129.108              |  |
| 0-0400 | 25.00  | 163.779 *** R.I.> 2N |  |
| 0.0700 | 50-20  | 193.374 *** R.I.> 2N |  |
| 0 0100 | 100-00 | 226.457 *** R.I.> 2N |  |
| 0.0050 | 200.00 | 263-554 *** R.L.> 2N |  |
| 0.0020 | 500.00 | 319.711 *** R.I.> 2N |  |

VAN YANG AT BAN NONG SAENG THA ROI ET (E.33A) NO. OF ITEMS = 14 STATION 0- 0.23 CODE

DATA USED IN CALCULATIONS.

| 500.0C0<br>360.000 | 235.000<br>299.000 | 235.000<br>148.000 | 337.000<br>429.000 | 179.000     | 315.000  | 248.000 | 371.000 | 297.000   | 304.000 |
|--------------------|--------------------|--------------------|--------------------|-------------|----------|---------|---------|-----------|---------|
|                    |                    | *********          | ************       | *********** | ******** | *****   | ******  | ********* | *****   |
|                    |                    |                    | ·                  |             |          |         |         |           |         |

#### ANNUAL FLODO STATISTICS

|                              | LOGS   |       |
|------------------------------|--------|-------|
| MEAN                         | 2.462  | 304-1 |
| STANDARD DEVIATION-          | 0.142  | 94.3  |
| SKEWNESS=                    | -0.485 | 0.363 |
| STANDARD ERROR OF SKEWNESS - | 0.597  |       |

### LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 120.982          |         |
|--------|--------|------------------|---------|
| 0.9500 | 1-05   | 162.587          |         |
| 0.9000 | 1.11   | 158.257          |         |
| 0.8000 | 1.25   | 222.593          |         |
| 0.5000 | 2.00   | 297.749          |         |
| 0.2000 | 5.00   | 383.668          |         |
| 0.1000 | 10.00  | 431.904          |         |
| 0.0400 | 25.00  | 485.013          | · · · . |
| 0.0200 | 50.00  | 519.904 *** R.I. | > 2N    |
| 0.0100 | 100.00 | 551.474 *** R.I. | > 2N    |
| 0.0050 | 200.00 | 580.380 *** R.I. | > 2N    |
| 0.0020 | 500.00 | 615.245 *** R.I. | > 2N    |
|        |        |                  |         |

CHEE RIVER AT BAN NONG OH CHAIYAPHUME (E 32) NO. OF ITEMS = 15 STATION 0- 0.24 CODE DATA USED IN CALCULATIONS 279.0 C0 247.000 1509.000 473.000 1076.000 169.000 390.000 294.000 178.000 777.000 186.000 203.000 242.000 207.000 169.000 777.000 'ANNUAL FLOOD STATISTICS LOGS 2-514 MEAN= 428.1 STANDARD DEVIATION= 0.301 393.2 · . 1.210 2.001 SKEWNESS= STANDARD ERROR OF SKEWNESS= 0.580 LOG-PEARSON TYPE III CALCULATIONS EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES 1.01 120.115 0.9900 0.9900 0.9500 0.9000 0.5000 0.2000 0.0400 0.0400 0.0200 0.0100 0.0100 0.0050 0.0020 1.01 1.05 1.11 1.25 2.00 5.00 10.00 25.00 50.00 120.115 138.301 154.044 182.021 284.942 542.160 827.003 827.003 1390.284 2022.459 \*\*\* R.I.> 2N 2910.902 \*\*\* R.I.> 2N 4155.676 \*\*\* R.I.> 2N 6589.715 \*\*\* R.I.> 2N 100.00 HUAI SAMRAN HIGHWAY BRIDGE SISAKET (H.9) NU. OF ITEMS - 21 STATION 0- 0.25 CODE DATA USED IN CALCULATIONS 214.000 325.000 15.000 54.000 126.000 494.000 212.000 418.000 225.000 728.000 126.000 313.000 426.000 254.000 18.000 .... ANNUAL FLOOD STATISTICS LOGS 2.266 260.9 MEAN-STANDARD DEVIATION= 0.492 211.2 -1.092 0.840 SKEWNE'SS= STANDARD ERROR OF SKEWNESS= 0.501 LOG-PEARSON TYPE III CALCULATIONS EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES 0.9900 0.9500 0.9000 0.8000 0.2000 0.2000 0.0400 0.0200 0.0100 0.0050 0.0050 0.0020 1.01 1.05 1.11 1.25 2.00 5.00 25.00 50.00 100.00 200.00 5.640 5.640 21.657 40.434 225.674 401.052 645.874 828.445 940.772 \*\*\* R.I.> 2N 1034.475 \*\*\* R.I.> 2N 112.219 \*\* R.I.> 2N 1134.475 \*\*\* R.I.> 2N

AN PHRA PHLOENG AT PAK THONG CHAI NAKCRN RATCHSIMA NO. OF ITEMS - 8 STATION 0- 0.26 CODE

.

# DATA USED IN CALCULATIONS

184.000 122.000 479.000 304.000 17.000 121.000 97.000 217.000

|                             | LCGS   |       |
|-----------------------------|--------|-------|
| MEAN=                       | 2.144  | 192.6 |
| STANDARD DEVIATION=         | 0.434  | 144.0 |
| SK EWNESS=                  | -1.311 | 1.139 |
| STANDARD ERROR OF SKEWNESS= | 0.752  |       |

### LOG-PEARSON TYPE III CALCULATIONS

EXCEEDANCE PROB RECURRENCE INTERVAL HAGNITUDES

| 0.9900 | 1.01   | 5.575           |       |
|--------|--------|-----------------|-------|
| 0.9500 | 1.05   | 20.287          |       |
| 0.9000 | 1.11   | 36.508          |       |
| 0.8000 | 1.25   | 67.952          |       |
| 0.5000 | 2.00   | 172.177         |       |
| 0.2000 | 5.00   | 321.881         |       |
| 0.1000 | 10.00  | 402.640         |       |
| 0.0400 | 25.00  | 479.157 *** R.I | .> 2N |
| 0.0200 | 50.00  | 520.337 ### R.I | .> 2N |
| 0.0100 | 100.00 | 551.045 *** R.I | •> 2N |
| 0.0050 | 200.00 | 573.973 *** R.I | •> 2N |
| 0.0020 | 500.00 | 595.536 *** R.I | •> 2N |

MUNE RIVER AT THA CHANG (M.2) NO. OF ITEMS = 23 STATION D- 0.27 CODE

#### DATA USED IN CALCULATIONS

| 773.000<br>1136.000<br>64.000 | 236.000<br>49.000<br>55.000 | 800.000<br>280.000<br>234.000 | 305.000<br>220.000 | 151.000<br>271.000 | 180.000<br>298.000 | 980.000<br>182.000 | 175.000<br>95.000                            | 992.000<br>10.000 | 122.000<br>234.000 |
|-------------------------------|-----------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------------------------------|-------------------|--------------------|
| ********                      | *****                       | ******                        | ******             | ***********        |                    |                    | ماد باد باد باد الله باد باد باد باد باد باد | *****             |                    |

#### ANNUAL FLOOD STATISTICS

|                             | LOGS   |       |
|-----------------------------|--------|-------|
| MEAN-                       | 2.320  | 341.0 |
| STANDARD DEVIATION=         | 0.484  | 337.0 |
| SKEWNESS=                   | -0,677 | 1.379 |
| STANDARD ERROR OF SKEWNESS= | 0.481  |       |

#### LOG-PEARSON TYPE III CALCULATIONS

EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900   | 1.01   | 9.175                 |
|----------|--------|-----------------------|
| 0. 95 00 | 1.05   | 27.749                |
| 0.9000   | 1.11   | 47.443                |
| 0.000.   | 1.25   | 86.521                |
| 0.5000   | 2.00   | 236.780               |
| 0.2000   | 5.00   | 542.802               |
| 0.1000   | 10.00  | 784.108               |
| 0.0400   | 25.00  | 1107.851              |
| 0.0200   | 50.00  | 1351.652 *** R.I.> 2N |
| 0.0100   | 100.00 | 1592.138 *** R.I.> 2N |
| 0.0050   | 200.00 | 1826.761 *** R.I.> 2N |
| 0.0020   | 500.00 | 2125.818 *** R.I.> 2N |

| ÷                  |                    | (1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |          |         |
|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|---------|
|                    |                    | DATAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SED IN GALC                                                                                                                                                              | ULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   | 1053 000 | 1048.00 |
| 636.000<br>324.000 | 663.000<br>571.000 | 806.000 857.00<br>492.000 135.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 959.000 a<br>) 785.000 5                                                                                                                                               | 37.000 482.00<br>+++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D 186.000                                                                                         | 277.000  | 155.00  |
|                    |                    | 'ANNU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L FLODD STA                                                                                                                                                              | TISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |          |         |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          | 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |          |         |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          | 2-731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 633-0                                                                                             |          |         |
|                    |                    | STANDARD DEVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          | 0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 309.5                                                                                             |          |         |
|                    |                    | SKEWNESS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          | -0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.140                                                                                            | • *      |         |
|                    |                    | STANDARD ERRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OF SKEWNESS-                                                                                                                                                             | 0.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |          |         |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |          |         |
|                    |                    | LOG-PEARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON TYPE III                                                                                                                                                              | CALCULATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DNS                                                                                               |          |         |
|                    |                    | EXCEEDANCE PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DB RECURRENCE INTER                                                                                                                                                      | VAL MAGNITUDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |          |         |
|                    |                    | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.01                                                                                                                                                                     | 75-970<br>159-540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |          |         |
|                    |                    | 0.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.11                                                                                                                                                                     | 225.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |          |         |
|                    |                    | 0.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                     | 598.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |          |         |
|                    |                    | 0.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                     | 935.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |          |         |
|                    |                    | 0.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.00                                                                                                                                                                    | 1305.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |          |         |
|                    |                    | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.00                                                                                                                                                                    | 1417.244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *** R.I.> 2N<br>*** R.I.> 2N                                                                      |          |         |
|                    |                    | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200.00                                                                                                                                                                   | 1585.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +++ R.1.> 2N                                                                                      |          |         |
|                    |                    | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500.00                                                                                                                                                                   | 1666.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *** R.I.> 2N                                                                                      |          | •       |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |          |         |
| 73.000             | 95.000             | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELOOD STAT                                                                                                                                                               | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ******                                                                                            | *****    | ******* |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |          |         |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |          |         |
|                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          | LOGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |          |         |
|                    |                    | MEAN=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          | LOGS<br>2.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 286.3                                                                                             |          |         |
|                    |                    | MEAN=<br>Standard Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( ON =                                                                                                                                                                   | LOGS<br>2.314<br>0.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 286.3<br>218-2                                                                                    |          |         |
|                    |                    | MEAN=<br>Standard Deviat<br>Skewness=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0N-                                                                                                                                                                      | LOGS<br>2.314<br>0.390<br>-0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 286.3<br>218.2<br>0.559                                                                           |          |         |
|                    |                    | MEAN=<br>Standard Deviat<br>Skekness=<br>Standard error (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ION-<br>DF Skewness-                                                                                                                                                     | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 286.3<br>218-2<br>0.559                                                                           |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ION-<br>JF SKEWNESS-<br>N TYPE I I I C                                                                                                                                   | LOGS<br>2,314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 286.3<br>218.2<br>D.559<br>N S                                                                    |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ION=<br>DF SKEWNESS=<br>N T Y P E I I I C<br>RECURRENCE INTERVA                                                                                                          | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 O<br>L MAGNITUDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 286.3<br>218.2<br>D.559<br>N S                                                                    |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0,9900<br>0,9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION=<br>DF SKEWNESS=<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01                                                                                                  | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 O<br>L MAGNITUDES<br>22.010<br>22.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 286.3<br>218-2<br>0.559<br>N S                                                                    |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEKNESS=<br>STANDARD ERROR I<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11                                                                                  | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 0<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 286.3<br>218.2<br>D.559<br>N S                                                                    |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR I<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9000<br>0.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00                                                                  | LDGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>21.1323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 286.3<br>218.2<br>D.559<br>N S                                                                    |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00                                                          | LDGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>44.1554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 286.3<br>218.2<br>D.559<br>N S                                                                    |          |         |
|                    |                    | MEAN-<br>STANDARD DEVIAT<br>SKEWNESS-<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9000<br>0.9000<br>0.5000<br>0.2003<br>0.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>10.00<br>5.00<br>10.00<br>25.00                               | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 286.3<br>218.2<br>3.559<br>N S                                                                    |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEKNESS=<br>STANDARD ERRGR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9900<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000 | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.30<br>50.00                               | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.469 ***<br>1201.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2266.3<br>218-2<br>20.559<br>N S<br>N S                                                           |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEKNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9900<br>0.9000<br>0.9000<br>0.9000<br>0.2000<br>0.1000<br>0.0400<br>0.0400<br>0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.03<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.00<br>10.00<br>25.00<br>100.00<br>200.00  | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.449 ***<br>1201.088 ***<br>1499.471 ***<br>160.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S     |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEKNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9900<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.000000<br>0.000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                             | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.00<br>100.00<br>200.00<br>500.00          | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>64.0175<br>941.449 ***<br>1201.088 ***<br>1208.194 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S     |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9000<br>0.9000<br>0.9000<br>0.2000<br>0.1000<br>0.0400<br>0.0500<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.33<br>50.00<br>100.00<br>200.30<br>500.00 | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>440.554<br>440.575<br>941.449<br>##<br>1201.088<br>##<br>1208.194<br>##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9000<br>0.2000<br>0.1000<br>0.0400<br>0.0500<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ION=<br>DF SKEWNESS=<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.00<br>10.00<br>25.00<br>100.00<br>200.00  | LOGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.449 ***<br>1201.088 ***<br>1208.194 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9000<br>0.9500<br>0.9000<br>0.9500<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION=<br>DF SKEWNESS=<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.00<br>100.00<br>200.00<br>500.00          | LDGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 0<br>L MAGNITUDES<br>22.816<br>45.082<br>45.082<br>441.554<br>640.175<br>941.232<br>441.554<br>640.175<br>941.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.459<br>841.559<br>841.459<br>841.459<br>841.459<br>841.559<br>841.459<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>841.559<br>8 | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S<br>N S     |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ION=<br>DF SKEWNESS=<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.35<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.30<br>100.00<br>200.30<br>500.00          | LDGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 0<br>L MAGNITUDES<br>22.816<br>45.082<br>44.154<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.449<br>****<br>1201.008 ****<br>1208.194 ****<br>2278.194 ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>R.I.> 2N<br>* R.I.> 2N<br>* R.I.> 2N<br>* R.I.> 2N       |          |         |
|                    |                    | MEAN=<br>STANDARD DEVIAT<br>SKEWNESS=<br>STANDARD ERROR M<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9000<br>0.9500<br>0.9000<br>0.9000<br>0.4000<br>0.2000<br>0.1000<br>0.0200<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ION-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.00<br>100.00<br>200.00<br>500.00          | LDGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T 1 0<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.459<br>440.175<br>941.459<br>450.834<br>1201.008 ***<br>1208.194 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 286.3<br>218.2<br>0.559<br>N S<br>* R.I.> 2N<br>* R.I.> 2N<br>* R.I.> 2N<br>* R.I.> 2N            |          |         |
|                    |                    | MEAN-<br>STANDARD DEVIAT<br>SKEWNESS-<br>STANDARD ERROR (<br>L O G - P E A R S O<br>EXCEEDANCE PROB<br>0.9900<br>0.9500<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.2000<br>0.1000<br>0.0200<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDN-<br>DF SKEWNESS-<br>N T Y P E I I I C<br>RECURRENCE INTERVA<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>10.00<br>25.00<br>100.00<br>200.00<br>500.00                  | LDGS<br>2.314<br>0.390<br>-0.168<br>0.637<br>A L C U L A T I O<br>L MAGNITUDES<br>22.816<br>45.082<br>64.174<br>97.519<br>211.232<br>441.554<br>640.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.449<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>941.459<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.175<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>440.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>400.194<br>40 | 286.3<br>218.2<br>0.559<br>N S<br>N S<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N<br>R.I.> 2N             |          |         |

LAN TA KHONG AT DAMSITE (N.38C) NO. OF ITEMS - 13 STATION 0- 0.30 CODE D'ATA USED IN CALCULATIONS 13.000 14.000 77.000 115.000 35.000 13.000 95.000 78.000 104.000 26.000 13.000 107.000 13.600 ANNUAL FLOOD STATISTICS LCGS 1.571 MEAN= . 54.1 STANDARD DEVIATION= 0.414 42.1 0.293 -0.040 SKEWNESS= STANDARD ERROR OF SKEWNESS= 0.616 LOG-PEARSON TYPE III CALCULATIONS EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES 3. 641 7. 679 10. 931 14. 727 37. 484 33. 251 125. 889 195. 145 256. 644 \*\*\*\* R. I.> 2N 332. 912 \*\*\* R. I.> 2N 553. 385 \*\*\* R. I.> 2N 1.01 1.05 1.11 1.25 2.00 5.00 10.00 50.00 50.00 0.9900 0.9900 0.9500 0.9000 0.8000 0.5000 0.2000 0.1000 0.0400 0.0200 0.0100 ~ 1 100.00 0.0050 200.00 CHEE RIVER AT WAT THAI KOSUME HAHA SARAKAN NO. OF ITEMS - 19 STATION 0- 0.32 CODE DATA USED IN CALCULATIONS 1017.000 1382.000 713.000 1038.000 1453.000 1322.000 1354.000 127.000 1120.000 5x3.000 483.000 188.000 285.000 150.000 684.000 585.000 973.000 489.000 308.000 ........... ANNUAL FLOOD STATISTICS L 06 \$ MEAN= 2.774 750.2 STANDARD DEVIATION= 0.336 447.4 SKEWNESS= -0.726 0.167 STANDARD ERROR OF SKEWNESS-0.524 LOG-PEARSON TYPE III CALCULATIONS EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES 0.9900 0.9500 0.9000 1.01 65.956 144.902 211.736 323.184 652.257 1153.662 1866.057 2129.131 \*\*\* R.I.> 2N 2370.536 \*\*\* R.I.> 2N 2658.138 \*\*\* R.I.> 2N 65. 956 1.01 1.05 1.11 1.25 2.00 10.00 25.00 100.00 200.00 500.00 0.8000 0.5000 0.2000 0.1000 0.0400 0.0200 0.0100 0.0050 0.0020

| 39-000       107-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000       170-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | •                   |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|----------|--|--|
| 22.333       123.333       111.333       122.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333       112.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 520 000                                                                                                                                | 1047 000                | 253:020                                                                            | 3/3 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              | 2000 1e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 176 000                                                                                                          | 611 000             |          |  |  |
| AR NUMAL PLOOD STATISTICS         LOGS         NEAH       2.627       654.7         STANDADD DEVIATION-       0.420       624.6         SKEWESS-       0.299       1.040         STANDADD ERADA OF SKEWESS-       0.550       0.500         LOG       - PEAASON TYPE ITTICALL MACHTURES       0.570         LOGS       1.010       55.725         0.4000       1.010       1.010         0.5000       1.031       124.725         0.5000       1.031       124.725         0.5000       1.031       124.725         0.5000       1.031       124.725         0.5000       1.031       124.725         0.5000       1.031       124.725         0.5000       1.031       124.725         0.5000       1.030       1254.731         0.6000       126.000       744.990 err< 8.1.5 201         0.6000       126.000       744.990 err< 8.1.5 201         0.6000       74.000       744.990 err< 8.1.5 201         0.6000       74.000       70.000       73.000         0.41 PLOVE NIGON SAMPLE       1.01 CALCULATION S         10.000       74.000       74.000       74.000      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.000                                                                                                                                 | 1655.000                | 257.000                                                                            | 313.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 165.000 19                                                                                                                                                                                                                   | 4.000 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ******                                                                                                           | ********            | *******  |  |  |
| AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N       60.000         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N       0       63.000         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N       0       63.000         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N       0       63.000         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N       0       63.000         AR DON AT PHANA NIKON SAMELY NAKINGN       NO. OF ITEMS       9       574100 N       54.0000       54.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                         | •                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLOOD STA                                                                                                                                                                                                                    | TISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н<br>1 м. н. н. н.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                     |          |  |  |
| LOGS<br>REAN- 1.627 454, T STAUDAD DEVIATION- 0.420 624.6 5KH MESS- 0.259 1.046 5TAUDAD EROD OF LARUNESS- 0.550 LD G - P E AR S O N TY P E III C CALC ULATION S EXCEEDONCE PROD RECURRENCE INTERVAL MACHIUOES 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.40 0.400 0.40 0.400 0.40 0.400 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                     | •        |  |  |
| MRAM       2.427       55.7         STANDAD DEVIATION       0.420       6244         SKEWRES-       0.550         LOG - PEARSON TYPE IIICALLULATIONS         EXCEEDANCE PAOR RECURRENCE INTERNAL MACHTUDES         0.4000       1.01         0.4000       1.02         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.01         0.4000       1.02         0.4000       1.01         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       1.02         0.4000       74.40         0.4000       74.40         0.4000       74.40 <td></td> <td></td> <td></td> <td></td> <td></td> <td>LOGS</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              | LOGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                     |          |  |  |
| STATUDAD DEVIATION-<br>SKEWRESS-<br>0.209 1.044<br>STANDAD ERGUR OF SKEWRESS-<br>0.500<br>LOC - PEARSON TYPE IIIICALCULATIONS<br>EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES<br>0.9900 1.01 95.735<br>0.9000 1.01 122.453<br>0.9000 1.01 122.453<br>0.9000 1.01 122.453<br>0.0000 1.020 120.153<br>0.0000 1.020 120.157<br>0.0000 1.000 120.177<br>0.0000 1.000 120.177<br>0.0000 120.00 2456.551 *** A.I.> 28<br>0.000 100.00 120.00 2456.551 *** A.I.> 28<br>0.000 100.00 100.00 120.177<br>0.000 120.00 714.459 *** A.I.> 28<br>0.000 100.00 110K5 *** A.I.> 28<br>0.000 100.00 110K5 *** A.I.> 28<br>0.000 100.00 714.459 *** A.I.> 28<br>0.000 100 100 00 100.00 100.00 574.773 *** A.I.> 28<br>0.000 100 100 00 100.00 100.00 574.773 *** A.I.> 28<br>0.000 100 100 00 100 00 574.713 *** A.I.> 28<br>0.000 70.000 70.000 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                         | MEAN=                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              | 2.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 654.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                |                     |          |  |  |
| AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE         C.0030       100.00       70.000       70.000       59.000       65.000         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE       0.340 CODE       0.000       65.000         AA. DON AT PHANA NIKON SAGEON NAKHON       NO. OF ITENS - 9 STATION 0- 0.34 CODE       0.340 CODE       0.000       65.000         D A T A U S E D I N C A L C U L AT I D N S       1.000 STATISTICS       0.000       65.000         C.0000       74.000       70.000 STATISTICS       0.340 CODE         C.0000       70.000 STATISTICS       0.340 CODE         C.0000       1.01 SSTATISTICS       0.340 CODE         C.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                         | STAND                                                                              | ARD DEVIATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N=                                                                                                                                                                                                                           | 0.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 624.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                |                     |          |  |  |
| AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       0.330         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5741000         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5741000         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5741000         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5741000         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5741000         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5741000       -0.354         COUSD       70.000       73.000       55.000       -0.354         COUSD       72.000       73.000       55.000       -0.354       COUE         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5747100 0-       0.354       COUE         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5747100 0-       -0.354       COUE         AM DON AT PHAMA MIKON SAKHOM NAKHON       NO. OF ITENS -       9.5747100 0-       -0.354       COUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                         | SKEWN                                                                              | E\$\$=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                              | 0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                |                     |          |  |  |
| LOG-PEARSON TYPE III CALCULATIONS<br>EXCEEDANCE PROB RECURRENCE INTERVAL MACHITUDES<br>0.5500 1.01 95.755<br>0.5000 1.01 95.755<br>0.5000 1.03 150.755<br>0.5000 1.00 150.755<br>0.5000 1.00 150.775<br>0.5000 1.00 150.777 *** A.I.2 PN<br>0.5000 100.00 7766.50 *** A.I.2 PN<br>0.0000 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        |                         | STAND                                                                              | ARD ERRUR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SKEWNESS =                                                                                                                                                                                                                   | 0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 2                   |          |  |  |
| EXCEEDANCE PROB       RECURRENCE INTERVAL MAGNITUDES         0.9500       1.01       52.953         0.9500       1.20         0.9500       1.21       185.953         0.9500       1.20       1.11       1.15       1.15       1.15       1.15       2.15         0.9500       1.20       1.15       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11 <td 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td></td><td></td><td>L 0 G - P</td><td>EARSON</td><td>TYPE III</td><td>CALCULA</td><td>TIONS</td><td></td><td></td><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <td></td> <td></td> <td>L 0 G - P</td> <td>EARSON</td> <td>TYPE III</td> <td>CALCULA</td> <td>TIONS</td> <td></td> <td></td> <td></td> |                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L 0 G - P                                                                                                                                                                                                                    | EARSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TYPE III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CALCULA                                                                                                          | TIONS               |          |  |  |
| AK DON AT PHANA NIKON SAKHON NAKHON<br>AK DON AT PHANA NIKON SAKHON NAKHON<br>AK DON AT PHANA NIKON SAKHON NAKHON<br>AK DON AT PHANA NIKON SAKHON NAKHON<br>ND. OF ITEMS - 9 STATION G- 0.36 CODE<br>D A T A USED IN CALCULATIONS<br>78.000 77.000 78.000 72.000 59.000 65.000<br>ANNUAL FLOOD STATISTICS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGS<br>NEAN-<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN<br>LOGN |                                                                                                                                        | •                       | EXCES                                                                              | NANCE PROB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RECURRENCE INTERV                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                     |          |  |  |
| AM DDM AT PHAMA NIKON SAMMON NAKMON NO. 00 J 1.00 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                         | LAUL                                                                               | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.01                                                                                                                                                                                                                         | 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                     |          |  |  |
| 0.000000       1.25       100.037.75         0.00000       3.00       940.330         0.00000       350.00       359.00         0.00000       100.00       359.00         0.00000       100.00       359.00         0.00000       100.00       359.00         0.0000       100.00       359.00         0.0000       100.00       714.773         0.0000       700.00       714.773         0.0000       700.00       714.773         0.0000       714.773       8.1.5 20         0.0000       700.00       714.773         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       714.773       8.1.5 20         0.0000       71.000       71.000         1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                         |                                                                                    | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05                                                                                                                                                                                                                         | 93.<br>126-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                     |          |  |  |
| 0.03003       5:00       100.01       100.01         0.1000       10.00       100.01       253.01         0.4000       100.00       100.00       253.01         0.4000       100.00       100.00       100.00         0.0000       100.00       100.00       100.00         0.0000       100.00       100.00       100.00         0.0000       100.00       100.00       100.00         0.0000       744.500       500.00       754.500         0.0000       744.500       500.00       754.500         0.0000       744.500       500.00       59.000         0.0100       74.000       72.000       73.000       59.000         0.0100       74.000       74.000       73.000       59.000       65.000         11.054       71.00       59.000       65.000       59.000       65.000         11.054       71.0       1.055       7.3       58640657       7.3         58640625       0.717       1.015       59.000       1.01       59.700         0.4000       1.01       59.710       0.030       1.01       59.710         0.0000       1.01       59.710       0.030 <td></td> <td></td> <td></td> <td>0. 8000</td> <td>1.25</td> <td>185.</td> <td>584</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                         |                                                                                    | 0. 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25                                                                                                                                                                                                                         | 185.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                     |          |  |  |
| 0.1000       10.00       100.01       100.0172         0.0003       100.03       100.03       100.03       100.03         0.0103       100.03       100.03       100.03       100.03         0.0003       100.03       100.03       100.03       100.03         0.0003       100.03       100.03       100.03       100.03         0.0000       500.00       5744.665       58.112       20         0.0000       70.000       5744.665       58.110       20         0.0000       70.000       73.000       59.000       65.000         LOGS         LOGS         N U A L F L O O D S T A T I S T I C S         LOGS         NEAN"         LOGS         NEAN"         LOGS         NEAN"         LOGS         NEAN"         LOGS         NEAN"         LOGS         NEAN"         LOGS         NAN U A L F L O O D S T A T I S T I C S         LOGS         NEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                      |                         |                                                                                    | 0.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00                                                                                                                                                                                                                         | 940.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                     |          |  |  |
| 0.0200       50.00       355.00       355.00       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                      |                         |                                                                                    | 0.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.00                                                                                                                                                                                                                        | 1504.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                     |          |  |  |
| 0.0030       100.00       499.53       100.00       6714.773       84.1.2 24         0.00220       500.00       9774.939       84.1.2 24         0.00220       500.00       9774.939       84.1.2 24         0.00220       500.00       9774.939       84.1.2 24         0.00220       500.00       9774.939       84.1.2 24         0.00220       500.00       9774.939       84.1.2 24         0.0020       0.0101       0.0101       0.0101         0.0101       0.0101       0.0101       1000         0.0101       0.0101       1000       1000       1000         1.0101       1.0101       1000       1000       1000       1000         1.0101       1.0101       1.0101       1000       1000       1000         1.0101       1.0101       1.0101       1000       1000       1000         1.011       1.011       1.011       1000       1000       1000         1.011       1.011       1.011       1000       1000         1.011       1.011       1.011       1000       1000         1.011       1.011       1.011       1000       10000         1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                         | ۰.                                                                                 | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.00                                                                                                                                                                                                                        | 3596.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 994 +++ R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I.> 2N                                                                                                           |                     |          |  |  |
| 0.0020 500.00 9724.965 *** A.I.> 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                         |                                                                                    | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103.00                                                                                                                                                                                                                       | 4965.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 391 *** R.<br>773 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I.> 2N<br>I.> 2N                                                                                                 |                     |          |  |  |
| AM DDN AT PHANA NIKON SAKHON NAKHON       ND. DF ITEMS -       9       STATION D-       0.34       CODE         D A T A U S E D I N C AL C U L A T I O N S         78.000       67.000       78.000       74.000       70.000       73.000       59.000       65.000         A N N U A L F L O O O S T A T I S T I C S       LOGS         NEAN*       1.854       71.8         STANDARD DEVIATION*       0.0455       7.3         SKENNESS*       -0.588       -0.396         STANDARD DEVIATION*       0.0655       7.1         LOG G - P E A R S O.N T Y P E I I I C A L C U L A T I O N S       EXCEEDANCE PADB         RECURARENCE INTERVAL       NACHITUDES       0.9000         0.9000       1.01       53.718         0.9000       1.01       53.718         0.9000       1.01       65.730         0.0000       1.01       53.718         0.03000       1.01       53.718         0.03000       1.01       62.201         0.03000       1.03       53.718         0.03000       1.03       63.73         0.03000       1.03       73.030       73.030         0.03000       1.03       53.718         0.03000       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                         |                                                                                    | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500.00                                                                                                                                                                                                                       | 9764.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 969 *** R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I.> 2N                                                                                                           |                     |          |  |  |
| AN DOM AT PHANA NIKON SAKHON NAKHON       ND. OF ITENS -       9       STATION D-       0.34       CODE         D A T A USED IN CALCULATIONS         T8.000       67.000       74.000       N2.000       73.000       59.000       65.000         ANNUALFLOOD       74.000       N2.000       70.000       73.000       59.000       65.000         ANNUALFLOOD       NUALFLOOD       STATION       0.045       7.3         KEAN*       1.854       71.8         STANDARD DEVIATION       0.045       7.3         SKENNESS*       -0.588       -0.396         STANDARD ERROR OF SKENNESS*       0.711         LOG - PEARSON       1.01       53.718         0.9900       1.01       53.718         0.9900       1.01       53.728         0.8000       1.02       35.728         0.0000       1.01       53.718         0.20000       1.02       59.300         0.20000       1.02       59.735         0.20000       1.03       53.718         0.20000       1.01       53.718         0.20000       1.02       59.300         0.20000       1.02       59.300         0.20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                         | •                                                                                  | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                        | 1. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                     |          |  |  |
| DATAUSEDINCALCULATIONS         78,000       67.000       78.000       74.003       82.000       70.000       73.000       59.000       65.000         ANNUALFLOODSTATION       LOGS         MEAN=       1.854       71.8         STANDARD DEVIATION       0.045       7.3         SKENNESS=       -0.588       -0.396         STANDARD EROR OF SKENNESS=       0.717         LOG - PEARSON TYPE IIICALCULATIONS         0.9900       1.01         0.9900       1.01         0.000       7.18         0.0000       1.25         0.0000       1.21         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.20         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25         0.0000       1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AM DON AT PHA                                                                                                                          | NA NIKON SAKH           | CN N4KHON                                                                          | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND. OF ITEMS =                                                                                                                                                                                                               | 9 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATION 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34 CO                                                                                                          | DE                  | *******  |  |  |
| 74.000       57.000       78.000       74.003       82.000       70.000       73.000       59.000       65.000         ANNUALFLODD STATISTICS       LOGS         NEAN-       1.854       71.8         STANDARD DEVIATION-       0.0455       7.3         SKEWNESS-       -0.588       -0.396         STANDARD ERROR OF SKEWNESS-       0.717         LOG - PEARSON TYPE IIIC ALCULATIONS         EXCEEDANCE PROB       RECURRENCE INTERVAL         0.9900       1.01       59.718         0.9900       1.01       59.718         0.9900       1.01       59.718         0.9900       1.01       59.718         0.9900       1.01       59.718         0.9000       1.01       59.718         0.9000       1.01       59.743         0.5000       2.00       72.166         0.2000       1.00       63.73         0.2000       1.00       63.74         0.2000       1.00       63.74         0.2000       1.00       63.74         0.2000       1.02       50.00         0.2000       1.02       50.00         0.2000       1.02       50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AM DON AT PHA                                                                                                                          | NA NIKOM SAKH           | CN NAKHON<br>*************                                                         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND. OF ITEMS =                                                                                                                                                                                                               | 9 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATION 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34 CO                                                                                                          | DE<br>++++++++++    | *******  |  |  |
| ANNUAL FLOOD STATISTICS         LOGS         NEAN-       1.854         STANDARD DEVIATION-       0.045         SKEKNESS-       -0.588         STANDARD ERROR OF SKEWNESS-       0.717         LOGG - PEARSON TYPE IIIICALCULATIONS         EXCEEDANCE PROB       RECURRENCE INTERVAL         NGOD       1.01         0.9900       1.01         0.9900       1.01         0.9900       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.02         0.9000       1.02         0.9000       1.25         0.9000       1.02         0.9000       1.02         0.9000       1.02         0.9000       1.02         0.9000       1.25         0.9000       1.02         0.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM DON AT PHA                                                                                                                          | NA NIKON SAKH           | CN NAKHON                                                                          | ************<br>A T A U S I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND. OF ITEMS =                                                                                                                                                                                                               | 9 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATION D-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34 CQ                                                                                                          | DE<br>*********     | ******   |  |  |
| LOGS<br>MEAN=  LOGS  1.854 71.8  STANDARD DEVIATION-  0.045 7.3  SKEWNESS-  -0.588 -0.396  STANDARD ERROR OF SKEWNESS-  0.717  LOG-PEARSON TYPE IIIICALCULATIONS  EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES  0.9900  1.01 53.718 0.9900  1.01 53.718 0.9000  1.11 62.241 0.8000  0.5000  1.11 62.241 0.8000  1.25 65.743 0.5000  2.00 72.166 0.200 5.00 73.038 0.1000 10.00 83.755 *** R.I.> 2N 0.0100 1000 84.922 *** R.I.> 2N 0.0020 500.00 87.610 *** R.I.> 2N 0.0020 500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AM DON AT PHA                                                                                                                          | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000                                                           | ATAUSI<br>74.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND, DF ITEMS -<br>E D I N C A L C I<br>82.600                                                                                                                                                                                | 9 ST,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATION 0~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34 CQ<br>59.000                                                                                                | DE<br>••••••••••••• | *******  |  |  |
| LOGS<br>MEAN=  1.854 71.8  STANDARD DEVIATION- 0.045 7.3  SKEWNESS=  -0.588 -0.396  STANDARD ERROR DF SKEWNESS=  0.717  LOG - PEARS O.N TYPE III CALCULATIONS  EXCEEDANCE PROB RECURRENCE INTERVAL MACNITUDES  0.9900 1.01 53.718 0.9900 1.01 53.718 0.9000 1.11 62.241 0.8000 1.25 65.743 0.5000 2.00 72.166 0.200 50.00 80.936 0.1000 10.00 80.936 0.1000 10.00 80.936 0.1000 10.00 80.92 0.0  0.000 10.00 85.471 *** R.I.> 2N 0.0100 10.00 85.471 *** R.I.> 2N 0.0020 500.00 85.410 *** R.I.> 2N 0.0020 500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM DON AT PHA                                                                                                                          | NA NIKOM SAKH<br>67.000 | CN NAKHON<br>D<br>78.000                                                           | A T A U S I<br>74.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND. OF ITEMS -<br>E D I N C A L C U<br>82.000                                                                                                                                                                                | 9 ST,<br>JLATION<br>70,000<br>TISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATION 0-<br>S<br>73.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.34 CO<br>59.000                                                                                                | DE<br>65.000        | ••••     |  |  |
| NEAN=       1.854       71.8         STANDARD DEVIATION=       0.045       7.3         SKEWNESS=       -0.588       -0.396         STANDARD ERGE OF SKEWNESS=       0.717         LOG-PEARSON TYPEITICAL MAGNITUDES         EXCEEDANCE PAOB RECURRENCE INTERVAL MAGNITUDES         0.9900       1.01         0.9900       1.01         0.9900       1.01         0.9000       1.11         0.9000       1.25         0.9000       1.265         0.9000       1.20         0.9000       1.21         0.9000       1.25         0.9000       1.25         0.9000       1.25         0.9000       1.25         0.9000       1.25         0.4000       2000         0.2000       50.00         0.0000       83.765         0.0000       83.765         0.0100       100.00         0.0200       500.00         0.0200       500.00         0.0200       500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78.000                                                                                                                                 | NA NIKOM SAKH           | CN NAKHON<br>D<br>78-000                                                           | A T A U S I<br>74.003<br>A N N U A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND, OF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O O D S T A                                                                                                                                                             | 9 ST.<br>JLATION<br>70.000<br>TISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATION 0-<br>S<br>73.000<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.34 CO                                                                                                          | DE<br>65.000        |          |  |  |
| STANDARD DEVIATION*       0.045       7.3         SKEKNESS*       -0.588       -0.396         STANDARD ERROR OF SKEWNESS*       0.717         LOG - PEARSON TYPE IIIICALCULATIONS         EXCEEDANCE PROB       RECURRENCE INTERVAL         MACNITUDES         0.9900       1.01         0.9500       1.05         0.9000       1.11         0.9000       1.25         0.9000       1.26         0.9000       1.27         0.8000       1.25         0.9000       1.28         0.9000       1.28         0.9000       1.28         0.9000       1.28         0.9000       1.28         0.9000       1.28         0.9000       1.29         0.8000       1.25         0.9000       1.28         0.1000       10.00         0.0000       10.00         0.00100       10.00         0.0020       500.00         0.0050       200.00         0.0020       500.00         0.0020       500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AM DON AT PHA<br>************************************                                                                                  | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78-000                                                           | A T A U S I<br>74.003<br>A N N U A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND, DF ITEMS -                                                                                                                                                                                                               | 9 ST<br>J L A T I O N<br>70.000<br>T I S T I C<br>LOGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION 0-<br>S<br>73.000<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.34 CO                                                                                                          | 65.000              | *****    |  |  |
| SKENNESS-       -0.588       -0.396         STANDARD ERROR OF SKENNESS-       0.717         LOG - PEARSON TYPE IIIICALCULATIONS         EXCEEDANCE PROB       RECURRENCE INTERVAL         MAGNITUDES         0.9900       1.01         0.9500       1.05         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.01         0.9000       1.25         0.9000       10.00         0.0000       10.00         0.0000       10.00         0.00100       100.00         0.0020       500.00         0.0020       500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM DON AT PH2                                                                                                                          | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000<br>MEAN-                                                  | A T A U S I<br>74.003<br>A N N U A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND. OF ITEMS -                                                                                                                                                                                                               | 9 ST<br>J L A T I G N<br>70.000<br>T I S T I C<br>LOGS<br>1.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATION 0-<br>S<br>73.000<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.34 CO<br>59.000                                                                                                | 65.000              | •••••••• |  |  |
| STANDARD ERROR OF SKEWNESS-       0.717         LOG-PEARSONTYPEIIICALCULATIONS         EXCEEDANCE PROBRECURRENCE INTERVAL MAGNITUDES         0.9900       1.01         0.9500       1.01         0.9900       1.11         0.8000       1.25         0.5000       2.00         0.1000       10.00         0.2000       2.00         0.1000       10.00         0.2000       2.00         0.1000       10.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.2000       2.00         0.0000       80.765         0.0000       80.765         0.0020       500.00         88.178       4.1.> 2N         0.0020       500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AM DON AT PHA<br>************************************                                                                                  | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000<br>MEAN-<br>STANC                                         | A T A U S I<br>74.003<br>A N N U A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND, DF ITEMS -<br>E D I N C A L C I<br>82.000<br>F L O O D S T A                                                                                                                                                             | 9 ST<br>J L A T I G N<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S<br>73-000<br>S<br>71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.34 CO<br>59.000<br>8<br>3                                                                                      | 65.000              |          |  |  |
| LOG - PEARSON TYPE IIIICALCULATIONS<br>EXCEEDANCE PAOB RECURRENCE INTERVAL MAGNITUDES<br>0.9900 1.01 53.718<br>0.9500 1.05 59.300<br>0.9000 1.11 62.241<br>0.8000 2.00 72.166<br>0.2000 2.00 73.038<br>0.1000 10.00 80.936<br>0.0000 25.00 83.765 *** R.I.> 2N<br>0.0200 50.00 85.471 *** R.I.> 2N<br>0.0100 1000 86.922 *** R.I.> 2N<br>0.0050 2000 88.176 *** R.I.> 2N<br>0.0050 2000 88.176 *** R.I.> 2N<br>0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AM DON AT PH2                                                                                                                          | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000<br>Mean-<br>Stand<br>Skenn                                | A T A U S I<br>74.000<br>A N N U A L<br>ARD DEVIATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND, DF ITEMS -<br>E D I N C A L C I<br>82.000<br>F L O D D S T A                                                                                                                                                             | 9 ST<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S<br>73.000<br>S<br>71.<br>71.<br>71.<br>71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.34 CO<br>59.000<br>8<br>8                                                                                      | DE<br>65.000        |          |  |  |
| EXCEEDANCE PAGB       RECURRENCE INTERVAL       MAGNITUDES         0.9900       1.01       53.718         0.9500       1.05       59.300         0.9000       1.11       62.241         0.8000       1.25       65.743         0.5000       2.00       73.038         0.2000       5.00       73.038         0.1000       10.00       80.765         0.2000       5.00       83.765         0.2000       100.00       86.922         0.0100       100.00       86.922         0.0100       100.00       86.922         0.0100       100.00       86.922         0.0050       200.00       88.178         0.0020       500.00       89.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AM DON AT PH2<br>78.000                                                                                                                | NA NIKON SAKH           | CN NAKHON<br>D<br>78.000<br>MEAN-<br>STANC<br>SKEKN<br>STANC                       | A T A U S I<br>74.000<br>A N N U A L<br>IARD DEVIATII<br>IESS-<br>IARD ERROR D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND. DF ITEMS -<br>E D I N C A L C I<br>82.000<br>F L O O D S T A<br>DN-<br>F SKEWNESS-                                                                                                                                       | 9 ST<br>70.000<br>T I S T I C N<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>73.000<br>S<br>71.<br>-0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.34 CO<br>59.000<br>                                                                                            | DE<br>65.000        |          |  |  |
| EXCEEDANCE PAGB       RECURRENCE INTERVAL       MAGNITUDES         0.9900       1.01       53.718         0.9900       1.05       59.300         0.9000       1.11       62.241         0.8000       1.25       65.743         0.5000       2.00       72.166         0.2000       5.00       73.038         0.1000       10.00       80.936         0.1000       10.00       83.765         0.2000       50.00       85.471         0.2000       100.00       86.922         0.0100       100.00       86.125         0.0100       100.00       88.178         0.0000       500.00       89.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 DON AT PHA<br>78.000                                                                                                                | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000<br>MEAN=<br>Stand<br>Skekn<br>Stand<br>L 0 G - F          | A T A U S I<br>74.000<br>A N N U A L<br>IARD DEVIATII<br>IESS=<br>IARD ERROR D<br>F E A R S D I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND. DF ITEMS -<br>ED IN CALCU<br>82.000<br>FLOOD STA<br>2N-<br>F SKEWNESS-<br>N TYPE III                                                                                                                                     | 9 ST<br>J L A T I O N<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION 0-<br>5<br>73.000<br>S<br>71.<br>7.<br>-0.30<br>A T I O N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.34 CO<br>59.000<br>                                                                                            | DE<br>65.000        |          |  |  |
| 0.9900 1.01 53.718<br>0.9500 1.05 59.300<br>0.9000 1.11 62.241<br>0.8000 2.00 72.166<br>0.2000 5.00 73.038<br>0.1000 10.00 80.936<br>0.0000 25.00 83.765 *** R.I.> 2N<br>0.0200 50.00 85.471 *** R.I.> 2N<br>0.0200 100.00 86.922 *** R.I.> 2N<br>0.0050 20.00 88.178 *** R.I.> 2N<br>0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AM DON AT PH2<br>78.000                                                                                                                | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000<br>MEAN-<br>Stand<br>Skekn<br>Stand<br>L 0 G - F          | A T A U S I<br>74.000<br>A N N U A L<br>IARD DEVIATII<br>IESS=<br>IARD EAROR D.<br>P E A R S D. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND. OF ITEMS -<br>ED IN CALCU<br>82.000<br>FLODD STA<br>JN-<br>F SKEWNESS-<br>N TYPE III                                                                                                                                     | 9 ST.<br>J L A T I O N<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.34<br>A T I O N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.34 CO<br>59.000<br>.8<br>.3                                                                                    | DE<br>65.000        |          |  |  |
| 0.9000 1.11 62.241<br>0.8000 1.25 65.743<br>0.5000 2.00 72.166<br>0.2000 5.00 73.038<br>0.1000 10.00 80.936<br>0.000 25.00 83.765 *** R.I.> 2N<br>0.0200 50.00 85.471 *** R.I.> 2N<br>0.0100 100.00 86.922 *** R.I.> 2N<br>0.0020 500.00 83.178 *** R.I.> 2N<br>0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM DON AT PHA<br>78.000                                                                                                                | NA NIKON SAKH<br>67.000 | CN NAKHON<br>0<br>78.000<br>XEAN-<br>Stand<br>Skenn<br>Stand<br>L 0 G - F<br>Excee | A T A U S I<br>74.000<br>A N N U A L<br>ARD DEVIATIJ<br>ESS=<br>JARD ERROR D<br>E A R S D.I<br>DANCE PROB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND. OF ITEMS -<br>ED IN CALCU<br>82.000<br>FLOOD STA<br>DN-<br>F SKEWNESS-<br>N TYPE III<br>RECURRENCE INTER                                                                                                                 | 9 ST.<br>J L A T I O N<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MACNITU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION 0-<br>5<br>73.000<br>S<br>71.<br>71.<br>74.<br>74.<br>74.<br>74.<br>74.<br>74.<br>74.<br>74.<br>74.<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34 CO<br>59.000<br>8<br>3                                                                                      | DE<br>65.000        |          |  |  |
| 0.8000 1.25 85.75<br>0.5000 2.00 72.166<br>0.2200 5.00 78.036<br>0.1000 10.00 80.936<br>0.0400 25.00 83.765 *** R.I.> 2N<br>0.0200 50.00 85.471 *** R.I.> 2N<br>0.0100 100.00 86.922 *** R.I.> 2N<br>0.0100 100.00 88.178 *** R.I.> 2N<br>0.0050 20.00 88.178 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AM DON AT PH2<br>78.000                                                                                                                | NA NIKON SAKH<br>67.000 | CN NAKHON<br>78.000<br>XEAN-<br>Stand<br>Skenn<br>Stand<br>L O G - F<br>Excee      | A T A U S I<br>74.000<br>A N N U A L<br>ARD DEVIATIJ<br>ESS=<br>IARD EARGR D<br>E A R S D.I<br>DANCE PROB<br>0.9900<br>0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND. OF ITEMS -<br>ED IN CALCU<br>82.000<br>FLODD STA<br>DN-<br>F SKEWNESS-<br>N TYPE III<br>RECURRENCE INTER<br>1.01                                                                                                         | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MACNITU<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATION 0-<br>S<br>73.000<br>S<br>71.<br>71.<br>74.<br>70.34<br>A T I O N 5<br>DES<br>-718<br>-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.34 CO<br>59.000<br>8<br>3                                                                                      | DE<br>65.000        |          |  |  |
| 0.2000 5.00 78.038<br>0.2000 10.00 80.936<br>0.4400 25.00 83.765 *** R.I.> 2N<br>0.2200 50.00 85.471 *** R.I.> 2N<br>0.0100 100.00 86.922 *** R.I.> 2N<br>0.0050 20.00 88.178 *** R.I.> 2N<br>0.0050 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.000                                                                                                                                 | 07.000                  | CN NAKHON<br>D<br>78.000<br>MEAN-<br>Stand<br>Skekn<br>Stand<br>L 0 G - F<br>Excee | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATI<br>ESS=<br>ARD ERROR D<br>P E A R S D I<br>DANCE PROB<br>0.9900<br>0.9900<br>0.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND. OF ITEMS -<br>ED IN CALCU<br>82.000<br>FLODDSTA<br>DN-<br>F SKEWNESS-<br>NTYPEIII<br>RECURRENCE INTERN<br>1.01<br>1.05                                                                                                   | 9 ST.<br>J L A T I O N<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MAGNITU<br>53<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.30<br>A T I O N S<br>DES<br>-718<br>-300<br>-241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.34 CO<br>59.000                                                                                                | DE<br>65.000        |          |  |  |
| 0.000 10.00 80.956 *** R.I.> 2N<br>0.0400 25.00 83.765 *** R.I.> 2N<br>0.0200 50.00 85.471 *** R.I.> 2N<br>0.0100 100.00 86.922 *** R.I.> 2N<br>0.0050 20.00 88.178 *** R.I.> 2N<br>0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.000                                                                                                                                 | 07.000                  | CN NAKHON<br>D<br>78.000<br>MEAN=<br>Stand<br>Skekn<br>Stand<br>L 0 G - F<br>Excee | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATIO<br>ESS=<br>HARD EAROR D.<br>P E A R S D.I<br>DANCE PROB<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9000<br>0.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND. DF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O O D S T A<br>DN-<br>F SKEWNESS-<br>N T Y P E I I I<br>RECURRENCE INTERI<br>1.01<br>1.05<br>1.11<br>1.25<br>2.000                                                      | 9 ST<br>7 L A T I O N<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>YAL MAGNITU<br>53<br>52<br>62<br>65<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATION 0-<br>5<br>73.000<br>S<br>71.<br>7.<br>-0.39<br>ATIONS<br>DES<br>.718<br>.300<br>.241<br>.743<br>.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34 CO<br>59.000                                                                                                | DE<br>65.000        |          |  |  |
| 0.0200 50.00 85.471 *** R.I.> 2N<br>0.0100 100.00 86.922 *** R.I.> 2N<br>0.0050 200.00 88.178 *** R.I.> 2N<br>0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.000                                                                                                                                 | 07.000                  | CN NAKHON<br>0<br>78-000<br>MEAN-<br>Stand<br>Skenn<br>Stand<br>L O G - F<br>Excee | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATIO<br>E SS-<br>MARD ERROR D<br>P E A R S D.1<br>DANCE PROB<br>0.9900<br>0.9900<br>0.9900<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.000000<br>0.00000<br>0.00000<br>0.00000<br>0.0000000<br>0.00                                                                                                                                                                                                                                                                                                                                                                                | ND. DF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O D D S T A<br>DN-<br>F SKEWNESS-<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.25<br>2.00<br>5.00                                                               | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MAGNITU<br>53<br>52<br>62<br>67<br>72<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.35<br>ATION:<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.34 CO<br>59.000<br>8<br>3                                                                                      | 65.000              |          |  |  |
| 0.0050 · 200.00 88.178 *** R.I.> 2N<br>0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.000                                                                                                                                 | 07.000                  | CN NAKHON<br>0<br>78-000<br>Xean-<br>Stand<br>Sken<br>Stand<br>L O G - F<br>Excee  | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATIS<br>ESS=<br>MARD ERRGR D<br>P E A R S D.1<br>DANCE PROB<br>0.9500<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND. OF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O O D S T A<br>DN-<br>F SKEWNESS-<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>0.00<br>25.00                                      | 9 ST.<br>9 ST.<br>1 L A T I O N<br>10.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10 | ATION 0-<br>5<br>73.000<br>5<br>71.<br>7.<br>-0.34<br>A T I O N 5<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-345<br>-743<br>-166<br>-365<br>-745<br>-755 *** R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.34 CO<br>59.000<br>8<br>3<br>6<br>6                                                                            | 65.000              |          |  |  |
| 0.0020 500.00 89.610 *** R.I.> 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78.000                                                                                                                                 | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78-000<br>XEAN-<br>STANC<br>SKENN<br>STANC<br>L O G - F<br>Excee | A T A U S I<br>74.000<br>A N N U A L<br>ARD DEVIATIO<br>ESS=<br>MARD ERROR D<br>E A R S D J<br>DANCE PROB<br>0.9900<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.000000<br>0.0000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND. OF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O O D S T A<br>DN-<br>F SKEWNESS-<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>55.00                             | 9 ST.<br>70.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MACNITU<br>53<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATION 0-<br>5<br>73.000<br>S<br>71.<br>7.<br>-0.31<br>ATIONS<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-038<br>-926<br>-755 ** R<br>-922 ** R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.34 CO<br>59.000<br>8<br>3<br>3<br>66<br>5<br>5<br>1.> 2N<br>1.> 2N                                             | 65.000              |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.000                                                                                                                                 | NA NIKON SAKH<br>67.000 | CN NAKHON<br>D<br>78.000<br>Mean-<br>Stand<br>Sken<br>Stand<br>L O G - F<br>Excee  | A T A U S I<br>74.000<br>A N N U A L<br>ARD DEVIATIO<br>ESS=<br>ARD ERROR D<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.9500<br>C.95 | NO. OF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O O D S T A<br>DN-<br>F SKEWNESS-<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.05<br>1.11<br>1.25<br>2.000<br>5.00<br>10.00<br>25.00<br>100.00<br>200.00        | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MACNITU<br>S3<br>59<br>62<br>72<br>73<br>73<br>80<br>83<br>85<br>86<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.31<br>ATIONS<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-745<br>-748<br>-745<br>-748<br>-745<br>-748<br>-745<br>-748<br>-745<br>-748<br>-745<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>-748<br>- | 0.34 CO<br>59.000<br>8<br>3<br>3<br>66<br>5<br>1.> 2N<br>1.> 2N<br>1.> 2N<br>1.> 2N                              | 65.000              |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.000                                                                                                                                 | 07.000                  | CN NAKHON<br>78.000<br>XEAN-<br>Stand<br>Skenn<br>Stand<br>L O G - F<br>Excee      | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATIO<br>ESS=<br>IARD EARUR D<br>0.9500<br>0.9500<br>0.5000<br>0.5000<br>0.2003<br>0.1000<br>0.0200<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO. OF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O D D S T A<br>DN-<br>F SKEWNESS=<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>0.00<br>25.00<br>50.00<br>100.00<br>200.00 | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MAGNITU<br>53<br>59<br>62<br>65<br>72<br>78<br>80<br>83<br>84<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.31<br>A T I O N 1<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-038<br>-743<br>-743<br>-743<br>-743<br>-166<br>-038<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-743<br>-74<br>-74<br>-74<br>-74<br>-74<br>-74<br>-74<br>-74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.34 CO<br>59.000<br>.8<br>.3<br>.6<br>.1.> 2N<br>.1.> 2N<br>.1.> 2N<br>.1.> 2N<br>.1.> 2N<br>.1.> 2N<br>.1.> 2N | DE<br>65.000        |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.000                                                                                                                                 | 07.000                  | D<br>78.000<br>MEAN=<br>STANC<br>SKEKN<br>STANC<br>L O G - F<br>Excee              | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATIO<br>ESS=<br>HARD EARGR D.<br>DANCE PROB<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9903<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                             | ND. DF ITEMS =<br>E D I N C A L C U<br>B2.000<br>F L O D D S T A<br>DN-<br>F SKEWNESS=<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.25<br>2.00<br>5.00<br>5.00<br>0.00<br>100.00<br>200.00                           | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MAGNITU<br>53<br>59<br>62<br>65<br>72<br>78<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.30<br>ATIONS<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-036<br>-765<br>-748<br>-74<br>-743<br>-166<br>-036<br>-755<br>-748<br>-74<br>-74<br>-74<br>-74<br>-74<br>-74<br>-74<br>-74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.34 CO<br>59.000<br>                                                                                            | 1DE<br>65.000       |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAH DON AT PH3                                                                                                                         | 47.000                  | D<br>78-000<br>MEAN-<br>STANC<br>SKENN<br>STANC<br>L D G - F<br>Excee              | A T A U S I<br>74.003<br>A N N U A L<br>ARD DEVIATIO<br>ESS=<br>MARD ERROR D<br>P E A R S D.1<br>DANCE PROB<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9900<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.9000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND. DF ITEMS =<br>E D I N C A L C U<br>82.000<br>F L O D D S T A<br>DN-<br>F SKEWNESS=<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>10.00<br>25.00<br>500.00                   | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MAGNITU<br>53<br>59<br>62<br>63<br>83<br>85<br>84<br>83<br>85<br>84<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATION 0-<br>S<br>73.000<br>S<br>71.<br>7.<br>-0.35<br>ATION:<br>DES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-038<br>-936<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>-745<br>- | 0.34 CO<br>59.000<br>                                                                                            | 65.000              |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.000                                                                                                                                 | 47.000                  | CN NAKHON<br>D<br>78-000<br>Xean-<br>Stand<br>Skenn<br>Stand<br>L 0 G - F<br>Excee | A T A U S I<br>74.000<br>A N N U A L<br>ARD DEVIATII<br>ESS=<br>MARD ERROR D<br>E A R S D I<br>DANCE PROB<br>0.9500<br>0.9500<br>0.9500<br>0.9000<br>0.9500<br>0.9000<br>0.9500<br>0.9000<br>0.2000<br>0.2000<br>0.2000<br>0.0050<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND. OF ITEMS -<br>E D I N C A L C U<br>82.000<br>F L O O D S T A<br>DN-<br>F SKEWNESS-<br>N T Y P E I I I<br>RECURRENCE INTERN<br>1.01<br>1.05<br>1.11<br>1.25<br>2.00<br>5.00<br>100.00<br>25.00<br>500.00                  | 9 ST.<br>V L A T I O N<br>V0.000<br>T I S T I C<br>LOGS<br>1.854<br>0.045<br>-0.588<br>0.717<br>C A L C U L<br>VAL MAGNITU<br>S3<br>59<br>62<br>62<br>62<br>62<br>62<br>88<br>89<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION 0-<br>5<br>73.000<br>S<br>71.<br>7.<br>-0.31<br>ATIONS<br>0ES<br>-718<br>-300<br>-241<br>-743<br>-166<br>-036<br>-936<br>-743<br>-166<br>-036<br>-936<br>-743<br>-166<br>-038<br>-936<br>-743<br>-166<br>-038<br>-94<br>-94<br>-94<br>-94<br>-94<br>-94<br>-94<br>-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34 CO<br>59.000<br>8<br>3<br>3<br>66<br>5<br>5<br>1.> 2N<br>1.> 2N<br>1.> 2N<br>1.> 2N<br>1.> 2N<br>1.> 2N     | 65.000              |          |  |  |

HUAI KHA YANG AT BAN NAM OQN (M.66) NO. OF ITEMS = 10 STATION 0- 0.35 CODE

#### DATA USED IN CALCULATIONS

34.000 101.009 60.000 86.000 127.000 98.000 50.000 326.000 32.000 24.000

## ANNUAL FLOOD STATISTICS

|                             | LOGS  |       |
|-----------------------------|-------|-------|
| MEAN=                       | 1.847 | 94.0  |
| STANDARD DEVIATION=         | 0.335 | 88.3  |
| SKE WNE SS =                | 0.561 | 2.341 |
| STANDARD ERROR OF SKEWNESS- | 0.687 |       |

### LOG-PEARSON TYPE III CALCULATIONS

#### EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900 | 1.01   | 16.120       |       |    |
|--------|--------|--------------|-------|----|
| 0.9500 | 1.05   | 22.606       |       |    |
| 0.9000 | 1.11   | 27.711       |       |    |
| 0.8000 | 1.25   | 36.280       |       |    |
| 0.5000 | 2.00   | 65.376       |       |    |
| 0.2000 | 5.00   | 130.439      |       |    |
| 0.1000 | 10.00  | 195.291      |       |    |
| 0.0400 | 25.00  | 310.487 ***  | R.1.> | 2N |
| 0.0200 | 50.00  | 426.797 ***  | R.1.> | 2N |
| 0.0100 | 100.00 | 575.482 ***  | R.1.> | 2N |
| 0.0050 | 200.00 | 764.674 ***  | R.I.> | 2N |
| 0.0020 | 500.00 | 1094-159 *** | 8.1.> | 21 |

LAM SAE AT KHON BURI (M.50) NO. OF ITEMS = 10 STATION 0- 0.36 CODE

#### DATA USED IN CALCULATIONS

67.000 107.000 102.000 17.000 167.000 16.000 66.000 171.000 66.000 39.000

### ANNUAL FLOOD STATISTICS

|                             | LOGS   |       |
|-----------------------------|--------|-------|
| ME 4 N =                    | 1.798  | 81.8  |
| STANDARD DEVIATION=         | 0.363  | 55.1  |
| SKEWNESS=                   | -0.644 | 0.586 |
| STANDARD ERROR CF SKEWNESS= | 0.687  |       |

### LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 6.124                |  |
|--------|--------|----------------------|--|
| 0.9500 | 1.05   | 13.881               |  |
| 0.9000 | 1.11   | 20.668               |  |
| 0.8000 | 1.25   | 32.332               |  |
| 0.5000 | 2.00   | 68.733               |  |
| 0.2000 | 5.00   | 128.736              |  |
| 0.1000 | 10.00  | 170.464              |  |
| 0.0400 | 25.00  | 222.373 *** R.I.> 2N |  |
| 0.0200 | 50.00  | 259.450 *** R.I.> 2N |  |
| 0.0100 | 100.00 | 294.731 *** R.I.> 2N |  |
| 0.0050 | 200.00 | 328.264 *** R.I.> 2N |  |
| 0.0020 | 500.00 | 369.983 *** R.I.> 2N |  |
|        |        |                      |  |

# NAM PHENG AT BAN NONG WAI (E.22A) NO. OF ITEMS = 9 STATION 0- 0.37 CODE

#### D'ATA USED IN CALCULATIONS

| 129.000 | 116.000 | 77.000 | 104.000 | 277.000 | 270.000 | 87.000 | 72.000  | 130.000       |  |
|---------|---------|--------|---------|---------|---------|--------|---------|---------------|--|
|         |         |        |         |         |         |        | ******* | ************* |  |
|         |         |        | ANNUAL  | FLOOD S | TATIST  | ICS    |         |               |  |

|                            | LOGS  |       |
|----------------------------|-------|-------|
| MEAN=                      | 2.096 | 140.2 |
| STANDARD DEVIATION=        | 0.214 | 78.4  |
| SKE WNE SS=                | 0.860 | 1.321 |
| STANDARD FREDR DE SKEWNESS | 0.717 |       |

### LOG-PEARSON TYPE III CALCULATIONS

#### EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900   | 1-21   | 54.298              |   |
|----------|--------|---------------------|---|
| 0.9500   | 1.05   | 63.622              |   |
| 0.9033   | 1.11   | 70.644              |   |
| 0.8000   | 1.25   | 81-870              |   |
| 0.5000   | 2.00   | 116.315             |   |
| 0.2000   | 5.00   | 182.491             |   |
| 0.1000   | 10.00  | 240.949             |   |
| 0.0400   | 25.00. | 335.155 *** R.I.> 2 | N |
| 0.0200   | 50.00  | 422.753 *** R.I.> 2 | N |
| 0.0100   | 100.00 | 527.768 *** R.I.> 2 | N |
| 0.0050 . | 200.00 | 653.718 *** R.I.> 2 | N |
| 0.0020   | 500.00 | 859.448 *** R.1.> 2 | N |

UPPER NUNE AT BAN JORAKHE HIN (M.45) NO. OF ITEMS = 10 STATION 0- 0.38 CODE

DATA USED IN CALCULATIONS

79.000 28.000 112.000 3.000 115.000 13.000 16.000 276.000 46.000 25.000

ANNUAL FLOOD STATISTICS

|                            | LOGS   |       |  |
|----------------------------|--------|-------|--|
| MEAN=                      | 1.575  | 71.3  |  |
| STANDARD DEVIATION=        | 0.570  | 82.5  |  |
| SKEWNESS-                  | -0.432 | 1.938 |  |
| STANDARD ERROR CF SKEWNESS | 0.687  |       |  |

## LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 1.178                |
|--------|--------|----------------------|
| 0.9500 | 1.05   | 3.739                |
| 0.9000 | 1.11   | 6.657                |
| 0.8000 | 1.25   | 12.917               |
| 0.5000 | 2.00   | 41.313               |
| 0.2000 | 5.00   | 115.592              |
| 0.1000 | 10.00  | 188.075              |
| 0.0400 | 25.00  | 304.530 *** R.I.> 2N |
| 0.0200 | 50.00  | 407.602 *** R.I.> 2N |
| 0.0100 | 100.00 | 523.000 *** R.I.> 2N |
| 0.0050 | 200.00 | 650.175 *** R.I.> 2N |
| 0.0020 | 500.00 | 835.372 +++ R.I.> 2N |
|        |        |                      |

LAH TA KCNG AT NAKHON RATCHSIMA (H43) NO. OF ITEMS = 10 STATION 0- 0.39 CODE

## DATA USED IN CALCULATIONS

57.000 86.000 59.000 16.000 42.000 27.000 20.000 108.000 29.000 42.000

## ANNUAL FLOOD STATISTICS

|                             | LOGS  |       |  |
|-----------------------------|-------|-------|--|
| MEAN=                       | 1.614 | 48.6  |  |
| STANDARD DEVIATION=         | 0.268 | 29.7  |  |
| SKEWNE SS-                  | 0.031 | 0.996 |  |
| STANDARD ERROR OF SKEWNESS- | 0.687 |       |  |

#### LOG-PEARSON TYPE III CALCULATIONS

#### EXCEEDANCE PROB RECURRENCE INTERVAL MAGNITUDES

| 0.9900 | 1.01   | 9.931                |
|--------|--------|----------------------|
| 0.9500 | 1.05   | 14.990               |
| 0.9000 | 1.11   | 18.691               |
| 0.8000 | 1.25   | 24.444               |
| 0.5000 | 2.00   | 40.984               |
| 0.2000 | 5.00   | 69.027               |
| 0.1000 | 10.00  | 90.815               |
| 0.0400 | 25.00  | 121.646 *** R.I.> 2N |
| 0.0200 | 50.00  | 147.438 *** R.I.> 2N |
| 0.0100 | 100.00 | 175.108 +++ R.I.> 2N |
| 0.0050 | 200.00 | 205.048 +++ R.I.> 2N |
| 0.0020 | 500.00 | 248.410 *** R.I.> 2N |

# NAM OON AT BAN KHOK SA-AT (KH2OB) NO. OF ITEMS = 9 STATION 0- 0-40 CODE

#### DATA USED IN CALCULATIONS

# 371.000 52.000 66.000 93.000 100.000 146.000 252.000 527.000 283.000

## ANNUAL FLOOD STATISTICS

|                             | LOGS  |       |  |
|-----------------------------|-------|-------|--|
| ME AN=                      | 2.201 | 210.0 |  |
| STANDARD DEVIATION=         | 0.351 | 161.7 |  |
| SKEWNESS-                   | 0.087 | 1.003 |  |
| STANDARD EAROR CF SKEWNESS- | 0.717 |       |  |
|                             |       |       |  |

## LOG-PEARSON TYPE III CALCULATIONS

| 0.9900 | 1.01   | 25. 532  |     |       |    |
|--------|--------|----------|-----|-------|----|
| 0.9500 | 1.05   | 42.920   |     |       |    |
| 0.9000 | 1.11   | 56.860   |     |       |    |
| 0.8000 | 1.25   | 80.259   |     |       |    |
| 0.5000 | 2.00   | 157.152  |     | -     |    |
| 0.2000 | 5.00   | 312.867  |     |       |    |
| 0.1000 | 10.00  | 451.424  |     |       |    |
| 0.0400 | 25.00  | 670.802  | *** | R.1.> | 2N |
| 0.0200 | 50.00  | 868.821  | *** | R.I.> | 2N |
| 0.0100 | 100.00 | 1098.499 | *** | R.1.> | 2N |
| 0.0050 | 200.00 | 1363.671 | *** | R.I.> | 2N |
| 0.0020 | 500.00 | 1775.613 | *** | R.I.> | 2N |
|        |        |          |     |       |    |

# APPENDIX C

RELATIONSHIP OF FLOOD PEAKS WITH SELECTED RECUR-RENCE INTERVAL WITH BASIN CHARACTERISTICS AND CLIMATIC CONDITIONS

# TABLE XXXV

# LINEAR MODEL EQUATIONS PEAK FLOW RELATED TO FIVE VARIABLES

| Model Forms                                                                                  | R <sup>2</sup> | Variable                               | Observed<br>Significant<br>Level > ltl          |
|----------------------------------------------------------------------------------------------|----------------|----------------------------------------|-------------------------------------------------|
| Q <sub>2</sub> = - 259.24 + 0.03 DA + 0.19 ANRAIN<br>- 1.39 LENGTH + 0.15 EVAP<br>- 0.27 S S | 0.952          | DA<br>ANRAIN<br>LENGTH<br>EVAP<br>S. S | 0.0001*<br>0.0837<br>0.1455<br>0.5645<br>0.7797 |
| Q <sub>5</sub> = 87.54 + 0.04 DA - 2.76 LENGTH<br>- 0.12 EL + 0.08 ANRAIN<br>+ 0.13 EVAP     | 0.945          | DA<br>LENGTH<br>EL<br>ANRAIN<br>EVAP   | 0.0001*<br>0.0552<br>0.5007<br>0.6592<br>0.6615 |
| Q <sub>10</sub> = 320.28 + 0.04 DA - 3.79 LENGTH<br>+ 1.47 S. S - 0.13 EL + 0.06 EVAP        | 0.926          | DA<br>LENGTH<br>S. S<br>EL<br>EVAP     | 0.0001*<br>0.0541<br>0.5244<br>0.5939<br>0.8675 |
| Q <sub>25</sub> = 852.79 + 0.05 DA - 5.0 LENGTH<br>+2.55 S. S - 0.22 ANRAIN<br>- 0.24 EL     | 0.875          | DA<br>LENGTH<br>S. S<br>ANRAIN<br>EL   | 0.0001*<br>0.0964<br>0.5191<br>0.5457<br>0.5596 |
| Q <sub>50</sub> = 1289.83 + 0.06 DA - 5.84 LENGTH<br>+ 3.31 S. S - 0.43 ANRAIN<br>- 0.33 EL  | 0.809          | DA<br>LENGTH<br>S. S<br>ANRAIN<br>EL   | 0.0001*<br>0.1654<br>0.5147<br>0.5969<br>0.5145 |
| TABLE | XXXV | (Continued) |
|-------|------|-------------|
|-------|------|-------------|

| Model Forms                                                                                  | R <sup>2</sup> | Variable                             | Observed<br>Significant<br>Level > ltl          |
|----------------------------------------------------------------------------------------------|----------------|--------------------------------------|-------------------------------------------------|
| Q <sub>100</sub> = 1843.99 + 0.06 DA - 6.51 LENGTH<br>+ 4.06 S. S - 0.70 ANRAIN<br>- 0.42 EL | 0.716          | DA<br>LENGTH<br>S. S<br>ANRAIN<br>EL | 0.0001*<br>0.2704<br>0.5686<br>0.6726<br>0.6038 |

## TABLE XXXVI

## LINEAR MODEL EQUATIONS PEAK FLOW RELATED TO FOUR VARIABLES

|                              | and the second |                | and the second |                                        |
|------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                              | Model Forms                                                                                                      | R <sup>2</sup> | Variable                                                                                                         | Observed<br>Significant<br>Level > ltl |
| Q <sub>2</sub> = -25<br>- 1  | 7.57 + 0.03 DA + 0.19 ANRAIN<br>.42 LENGTH + 0.14 EVAP                                                           | 0.952          | DA<br>ANRAIN<br>LENGTH<br>EVAP                                                                                   | 0.0001*<br>0.0805<br>0,1273<br>0.5478  |
| Q <sub>5</sub> = 223<br>- 0  | .98 + 0.04 DA - 2.65 LENGTH<br>.14 EL + 0.07 ANRAIN                                                              | 0.944          | DA<br>LENGTH<br>EL<br>ANRAIN                                                                                     | 0.0001*<br>0.0581<br>0.5918<br>0.666   |
| Q <sub>10</sub> = 383<br>1.5 | 0.95 + 0.04 DA - 3.74 LENGTH<br>0 SS - 0.15 EL                                                                   | 0.925          | DA<br>LENGTH<br>SS<br>EL                                                                                         | 0.0001*<br>0.0505<br>0.5086<br>0.5602  |
| Q <sub>25</sub> = 647<br>3.5 | .42 + 0.05 DA - 4.77 LENGTH<br>8 SS - 0.16 ANRAIN                                                                | 0.873          | DA<br>LENGTH<br>SS<br>ANRAIN                                                                                     | 0.001*<br>0.1058<br>0.2468<br>0.6430   |
| Q <sub>50</sub> = 101<br>+ 4 | 2.52 + 0.06 DA - 5.53 LENGTH<br>.70 SS - 0.35 ANRAIN                                                             | 0.8077         | DA<br>LENGTH<br>SS<br>ANRAIN                                                                                     | 0.0001*<br>0.1807<br>0.2783<br>0.5219  |

132

# TABLE XXXVI (Continued)

| Model Forms                                                                  | R <sup>2</sup> | Variable                     | Observed<br>Significant<br>Level > 1t1 |
|------------------------------------------------------------------------------|----------------|------------------------------|----------------------------------------|
| Q <sub>100</sub> = 1485.02 + 0.06 DA - 611 LENGTH<br>+ 5.86 SS - 0.59 ANRAIN | 0.714          | DA<br>LENGTH<br>SS<br>ANRAIN | 0.0001*<br>0.2922<br>0.6647<br>0.6169  |

## TABLE XXXVII

## LINEAR MODEL EQUATIONS PEAK FLOW RELATED TO THREE VARIABLES

|                  | Model Forms                                         | R <sup>2</sup> | Variable               | Observed<br>Significant<br>Level > ltl |
|------------------|-----------------------------------------------------|----------------|------------------------|----------------------------------------|
| Q <sub>2</sub>   | = - 123.76 + 0.03 DA + 0.19 ANRAIN<br>- 1.26 LENGTH | 0.951          | DA<br>ANRAIN<br>LENGTH | 0.0001*<br>0.0742<br>0.1611            |
| Q <sub>5</sub>   | = 331.42 + 0.04 DA - 2.61 LENGTH<br>- 0.16 EL       | 0.944          | DA<br>LENGTH<br>SS     | 0.0001*<br>0.0577<br>0.3206            |
| 0 <sub>10</sub>  | = 310.14 + 0.04 DA - 3.56 LENGTH<br>+ 2.14 EL       | 0.925          | DA<br>LENGTH<br>SS     | 0.0001*<br>0.0562<br>0.2734            |
| Q <sub>25</sub>  | = 425.86 + 0.05 DA - 4.92 LENGTH<br>+ 3.53 SS       | 0.8728         | DA<br>LENGTH<br>SS     | 0.0001*<br>0.0900<br>0.2471            |
| Q <sub>50</sub>  | = 535.72 + 0.06 DA - 5.84 LENGTH<br>+ 4.60 SS       | 0.805          | DA<br>LENGTH<br>SS     | 0.0001*<br>0.1516<br>0.2859            |
| Q <sub>100</sub> | = 668.40 + 0.06 DA - 6.64 LENGTH                    | 0.707          | DA<br>LENGTH<br>SS     | 0.0001*<br>0.2461<br>0.6506            |

## TABLE XXXVIII

| Model Forms                                       | R <sup>2</sup> | Variable     | Observed<br>Significant<br>Level > ltl |
|---------------------------------------------------|----------------|--------------|----------------------------------------|
| Q <sub>2</sub> = - 145.53 + 0.03 DA + 0.18 ANRAIN | 0.948          | DA<br>ANRAIN | 0.0001*<br>0.1055                      |
| Q <sub>5</sub> = 275.42 + 0.04 DA - 2.31 LENGTH   | 0.942          | DA<br>LENGTH | 0.0001*<br>0.0838                      |
| Q <sub>10</sub> = 383.07 + 0.04 DA - 3.21 LENGTH  | 0.922          | DA<br>LENGTH | 0.0001*<br>0.0807                      |
| Q <sub>25</sub> = 546.11 + 0.05 DA - 4.33 LENGTH  | 0.867          | DA<br>LENGTH | 0.001*<br>0.1307                       |
| Q <sub>50</sub> = 692.15 + 0.06 DA - 5.07 LENGTH  | 0.798          | DA<br>LENGTH | 0.0001*<br>0.2069                      |
| Q <sub>100</sub> = 861.73 + 0.06 DA - 5.69 LENGTH | 0.699          | DA<br>LENGTH | 0.0001*<br>0.3133                      |
|                                                   |                |              |                                        |

## LINEAR MODEL EQUATIONS PEAK FLOW RELATED TO TWO VARIABLES

## TABLE XXXIX

## LOGARITHMIC MODEL EQUATIONS PEAK FLOW RELATED TO FIVE VARIABLES

|                     | Model Forms                                                                                                 | R <sup>2</sup> | Variable                                                 | Observed<br>Significant<br>Level > ltl          |
|---------------------|-------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------|-------------------------------------------------|
| Log Q <sub>2</sub>  | <pre>= - 5.76 + 0.6 log DA + 1.18 log ANRAIN + 0.22 log EL + 0.59 log EVAP - 0.008 log SS</pre>             | 0.810          | log DA<br>log ANRAIN<br>log EL<br>log EVAP<br>log SS     | 0.0001*<br>0.0514<br>0.5441<br>0.6152<br>0.9571 |
| Log Q <sub>5</sub>  | <pre>= - 2,27 + 0.55 log DA + 0.61 log EVAP<br/>+ 0.27 log ANRAIN + 0.07 log EL<br/>+ 0.03 log LENGTH</pre> | 0.800          | log DA<br>log EVAP<br>log ANRAIN<br>log EL<br>log LENGTH | 0.0001*<br>0.6216<br>0.6501<br>0.7395<br>0.8467 |
| Log Q <sub>10</sub> | <pre>= - 1.42 + 0.52 log DA + 0.62 log EVAP<br/>+ 0.06 log LENGTH + 0.1 log EL<br/>0.05 log SS</pre>        | 0.777          | log DA<br>log EVAP<br>log LENGTH<br>log EL<br>log SS     | 0.0001*<br>0.6012<br>0.7431<br>0.7292<br>0.7513 |
| Log Q <sub>25</sub> | <pre>= 0.85 + 0.48 log DA + 0.59 log EVAP<br/>- 0.56 log ANRAIN + 0.11 log LENGTH<br/>0.04 log SS</pre>     | 0.734          | log DA<br>log EVAP<br>log ANRAIN<br>log LENGTH<br>log SS | 0.0001*<br>0.5890<br>0.6065<br>0.6350<br>0.7422 |

136

|     | Model For                                                                     | rms                                  | R <sup>2</sup> | Var                             | riable                               | Observed<br>Significant<br>Level               | > ltl |
|-----|-------------------------------------------------------------------------------|--------------------------------------|----------------|---------------------------------|--------------------------------------|------------------------------------------------|-------|
| Log | Q <sub>50</sub> = 1.64 + 0.46 log DA<br>+ 0.60 log EVAP + 0<br>+ 0.05 log SS  | - 0.80 log ANRAIN<br>D.13 log LENGTH | 0.692          | log<br>log<br>log<br>log<br>log | DA<br>ANRAIN<br>EVAP<br>LENGTH<br>SS | 0.003*<br>0.2642<br>0.5093<br>0.5963<br>0.7056 |       |
| Log | Q <sub>100</sub> = 2.34 + 0.44 log DA<br>0.62 log EVAP + 0.1<br>+ 0.06 log SS | - 1.00 log ANRAIN<br>16 log LENGTH   | 0.648          | log<br>log<br>log<br>log<br>log | DA<br>ANRAIN<br>EVAP<br>LENGTH<br>SS | .0009<br>.1965<br>.5199<br>.5571<br>.6981      |       |

TABLE XXXIX (Continued)

## TABLE XL

## LOGARITHMIC MODEL EQUATIONS PEAK FLOW RELATED TO FOUR VARIABLES

|                     | Model Forms                                                                                   | R <sup>2</sup> | Variable                                       | Observed<br>Significant<br>Level > ltl |
|---------------------|-----------------------------------------------------------------------------------------------|----------------|------------------------------------------------|----------------------------------------|
| Log Q <sub>2</sub>  | <pre>= - 5.8 + 0.6 log DA + 1.19 log ANRAIN + 0.23 log EL + 0.59 log EVAP</pre>               | 0.810          | log DA<br>log ANRAIN<br>log EL<br>log EVAP     | 0.0001*<br>0.0460<br>0.2690<br>0.6220  |
| Log Q <sub>5</sub>  | = - 2.41 + 0.56 log DA<br>+ 0.65 log EVAP + 0.29 log<br>ANRAIN + 0.07 log EL                  | 0.800          | log DA<br>log EVAP<br>log ANRAIN<br>log EL     | 0.0001*<br>0.6719<br>0.6264<br>0.7242  |
| Log Q <sub>10</sub> | <pre>= - 0.59 + 0.52 log DA<br/>+ 0.60 log EVAP + 0.06 log LENGTH<br/>- 0.15 log ANRAIN</pre> | 0.776          | log DA<br>log EVAP<br>log LENGTH<br>log ANRAIN | 0.0001*<br>0.6304<br>0.7451<br>0.7792  |
| Log Q <sub>25</sub> | = 0.5 + 0.5 log DA<br>+ 0.66 log EVAP<br>- 0.51 log ANRAIN<br>+ 0.09 log LENGTH               | 0.732          | log DA<br>log EVAP<br>log ANRAIN<br>log LENGTH | 0.0001*<br>0.6245<br>0.5826<br>0.6604  |
| Log Q <sub>50</sub> | = 1.2 + 0.47 log DA<br>- 0.73 log ANRAIN<br>+ 0.69 log EVAP<br>+ 0.12 log LENGTH              | 0.690          | log DA<br>log ANRAIN<br>log EVAP<br>log LENGTH | 0.0001*<br>0.2836<br>0.6047<br>0.6260  |

TABLE XL (Continued)

| Model Forms                               | R <sup>2</sup> | Variable   | Observed<br>Significant<br>Level > ltl |
|-------------------------------------------|----------------|------------|----------------------------------------|
| Log Q <sub>100</sub> = 1.83 + 0.46 log DA | 0.646          | log DA     | 0.0001*                                |
| - 0.94 lot ANRAIN                         |                | log ANRAIN | 0.405                                  |
| + 0.72 log EVAP                           |                | log EVAP   | 0.5782                                 |
| + 0.14 log LENGTH                         |                | log LENGTH | 0.5865                                 |

## TABLE XLI

## LOGARITHMIC MODEL EQUATIONS PEAK FLOW RELATED TO THREE VARIABLES

|                      | Model Forms                                                    | R <sup>2</sup> | Variable                         | Observed<br>Significant<br>Level > ltl |
|----------------------|----------------------------------------------------------------|----------------|----------------------------------|----------------------------------------|
| Log Q <sub>2</sub>   | = - 3.83 + 0.61 log DA<br>+ 1.17 log ANRAIN<br>+ 0.17 log EL   | 0.806          | log DA<br>log ANRAIN<br>log EL   | 0.0001*<br>0.0487<br>0.6059            |
| Log Q <sub>5</sub>   | = - 1.71 + 0.54 log DA<br>+ 0.57 log EVAP<br>+ 0.21 log ANRAIN | 0.799          | log DA<br>log EVAP<br>log ANRAIN | 0.0001*<br>0.6441<br>0.6984            |
| Log Q <sub>10</sub>  | = - 1.1 + 0.52 log DA<br>+ 0.59 log EVAP<br>+ 0.06 log LENGTH  | 0.776          | log DA<br>log EVAP<br>log LENGTH | 0.0001*<br>0.6259<br>0.7612            |
| Log Q <sub>25</sub>  | = 0.23 + 0.52 log DA<br>+ 0.74 log EVAP<br>- 0.48 log ANRAIN   | 0.731          | log DA<br>log EVAP<br>log ANRAIN | 0.0001*<br>0.2981<br>0.5636            |
| Log Q <sub>50</sub>  | = 0.86 + 0.51 log DA<br>- 0.70 log ANRAIN<br>+ 0.79 log EVAP   | 0.688          | log DA<br>log ANRAIN<br>log EVAP | 0.0001*<br>0.2992<br>0.3100            |
| Log Q <sub>100</sub> | ) = 1.43 + 0.50 log DA<br>- 089 log ANRAIN<br>+ 0.84 log EVAP  | 0.643          | log DA<br>log ANRAIN<br>log EVAP | 0.0001*<br>0.2246<br>0.6738            |

\*denotes the significant variable

140

#### TABLE XLII

## LOGARITHMIC MODEL EQUATIONS PEAK FLOW RELATED TO TWO VARIABLES

|                      | Model                                     | Forms | R <sup>2</sup> | Variable             | Observed<br>Significant<br>Limit > ltl |
|----------------------|-------------------------------------------|-------|----------------|----------------------|----------------------------------------|
| Log Q <sub>2</sub>   | = - 2.67 + 0.58 log<br>+ 0.96 log ANRAIN  | DA    | 0.801          | log DA<br>log ANRAIN | 0.0001*<br>0.0727                      |
| Log Q <sub>5</sub>   | = - 1.14 + 0.55 log<br>+ 0.60 log EVAP    | DA    | 0.798          | log DA<br>log ANRAIN | 0.0001*<br>0.3233                      |
| Log Q <sub>10</sub>  | = - 1.15 + 0.54 log<br>+ 0.64 log EVAP    | DA    | 0.775          | log DA<br>log EVAP   | 0.0001*<br>0.3106                      |
| Log Q <sub>25</sub>  | = - 1.11 + 0.52 log<br>+ 0.68 log EVAP    | DA    | 0.726          | log DA<br>log EVAP   | 0.0001*<br>0.6633                      |
| Log Q <sub>50</sub>  | = 2.95 + 0.53 log DA<br>- 0.62 log ANRAIN |       | 0.678          | log DA<br>log ANRAIN | 0.0001*<br>0.6447                      |
| Log Q <sub>100</sub> | = 3.64 + 0.52 log DA<br>-0.81 log ANRAIN  |       | 0.633          | log DA<br>log ANRAIN | 0.0001*<br>0.2679                      |

#### VITA

#### Pirote Kriengsiri

Candidate for the Degree of

Doctor of Philosophy

#### Thesis: A METHODOLOGY FOR ESTIMATING THE REGIONAL FLOOD FREQUENCIES FOR NORTHEASTERN THAILAND

Major Field: Civil Engineering

Biographical:

- Personal Data: Born on July 4, 1946, in Bangkok, Thailand, the son of Eam and Nit Kriengsiri.
- Education: Graudated from Bangkok Christian College, Bangkok, Thailand, in 1963; received Bachelor of Engineering degree from Kasetsart University, Bangkok, in April, 1969; completed requirements for the Master of Science degree in Civil Engineering from the University of Missouri at Rolla, Rolla, in May, 1971; part-time graduate student at Georgia Institute of Technology, Atlanta, Georgia, 1971-1972; completed requirements for the Doctor of Philosophy degree in Civil Engineering at Oklahoma State University, Stillwater, in July, 1976.
- Professional Experience: Engineer in the Royal Thai Irrigation Department, Bangkok, Thailand, 1967-1969; graduate student assistant, Georgia Institute of Technology, 1971-1972; graduate teaching assistant, Oklahoma State University, 1974-1976.