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CHAPTER I 

HlTRODUCTION 

Let (X, T, n) be a transformation group where the phase space X 

is ~ metric space with the metric d and the phase group T is a 

topological group. If T is effective, then we can regard T as a sub

gro~p of the group of all homeomorphisms of X onto itself with an 

appropriate topology (5). In case that Tis either Z, the additive 

gro~p of integers with the discrete topology, or R, the additive group 

of real numbers with usual topolo,gy, (X, T, n) is called a ~· We 

call (X, R, n) a continuous flow and (X, Z, n) a discrete flow. 

Regarding T as a family of homeomorphisms from X onto itself, from 

the point of view of equicontinuity, we have the following three cases. 

1. T is regular (Reg (T) = X) 

2. T is intermediate (¢ 7 Reg (T) 7 X) or 

3· T is irregular (Reg (T) = ¢) 

The cases 1) and 2) have provided some of the most interesting 

theories and results in topological dynamics. For example, it has been 

sho"!!l that (X, 1) is uniformly almost periodic if? and only if, 

Reg (T) = T (4). Also, one can show that if Tis compact, Reg (T) =X. 

Perhaps one of the most interesting results obtained, in this line, is 

a theorem of Kerekjarto. In (10), he shows that if, in (82, Z), Z is 

regqlar, except possibly at a finite number of points, then Z is 

generated by a one point compactification of a homeomorphism which is 
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topologically equivalent to .a bilinear transformation of the complex 

plane. 

Although the concept of expansiveness, as a special case of 

irr~gularity, has been studied extensively (2) (8) (9) (11) (13) (14), 

the irregularity in general has not been exploited. Gottschalk's (5) 

question about the existence of expansive homeomorphism on the unit 

disk motiviated the studies of expansiveness. These studies are, 

quite naturally, concerned with the existence of an expansive discrete 

flow (X, Z, TI) where X is a compact manifold. The complexity of 

determining the existence of an expansive transformation group can 

well be illustrated by pointing out that the problem of determining 

the existence of such a transformation group on s2 is still out

standing. Lam (12) asked for what spaces one can define an 

irregular homeomorphism. The purpose of this paper is to give a 

somewhat more complete solution to the question by relaxing the con

dition for expansiveness. This can be done by not insisting that all 

pairs of distinct points "move away" from each other (expansiveness) 

but only requiring that for each point x, there is a point y 

arbitrarily close to x such that x andy "move away" from each other 

(uniform irregularity). 

As far as a discrete flow is concerned, we can completely ignore 

the topology on Z and just talk about the iterates of its generator. 

Since the topology of Z induced from the usual topology of R is the 

discrete topology, the existence of an irregular continuous flow can 

be established by constructing an irregular homeomorphism which can 

be embedded in a continuous flow. 

In Chapter II, after establishing some notations and basic 
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definitions, some of the basic properties, concerning irregularity, of 

homeomorphisms on one dimensional compact polyhedra will be discussed. 

Then a necessary and sufficient condition for the existence of an 

irregular flow on a compact polyhedron will be established in 

Chapter III. In Chapter IV, along with some examples, characteriza

tions of exPansive homeomorphisms and uniformly irregular homeo

morphisms will be given. In addition l~fts and projections of an 

irregular homeomorphism, via covering projections, will be discussed 

in Chapter IV. Finally, in Chapter V, some open questions about 

irregularity will be given. 

For basic concepts and theorems used without specific references, 

the reader is referred to (3) for general topology, (15) for piece

wise linear topology and (4) or (6) for topological dynamics. 



CHAPTER II 

IRREGULARITY IN ARCS AND SIMPLE CLOSED CURVES 

All spaces considered in this paper are metric spaces and we let 

d denote the metric. All maps are continuous functions. B.r the 

n-dimensional Euclidean space Rn, we mean the set of all sequences 

x = (x1 , x2 , ... , x , •.. ) of real numbers such that x. = 0 for n . ~ 

i > n, with a topology induced by the norm given by llxll = ( ~ x~)"~ 
i=l ~ 

If xt:Rn, we also write x = (~, x2 , · · ., xn). 

n of all po~nts x ~ ~n such that By then-ball B, we meanthe set ..... c. .llt 

llxll ~ 1 and by an p-cell, we mean a space which is homeomorphic to 

Bn. In particular, a 1-cell is called an~· We let I denote the 

unit closed interval in R1 • Other closed intervals in R1 are denoted 

by [a,b] and corresponding open intervals are denoted by (a,b). 

n By the standard n-.sphere S , we·· mean the set of all points 

xt:Rn+l such that llxll = 1. A space which is homeomorphic to the 

standard 1-sphere is called a simple closed curve,. ·· 

A neighborhood of A in X is an open set in X which contains A. 

If :i EX, then the £:-neighborhood of x, NE(x), is the set of all 

points y of X such· that d(x,y) ~ & In case that y E NE(x), we say 

that y is E-close to x. The symbol int(A) denotes the point-set 

interior of A. 

A homeomorphism of a space onto itself is called a homeomorphism 

gs X. If h is a homeomorphism on X and n is a positive integer, hn 

4 



denotes the n-fold composition of h and we let h-n = (h-1 )~ h0 = lX' 

the identity map on X. 

A family F of maps on X is eguicontinuous at x e: X if for each 

positive number e:, there is a positive number o such that d(x,y) < o 

implies d(f(x), f(y))<e: for all f e: F. A homeomorphism h on X is 

5 

said to be regular at x e: X if {hnlne:Z} is an equicontinuous family at 

' x and in this case xis called a regular point of h •. We write Reg(h) 

for the set of all regular points of h. If x is not a regular point 

of ;ij we call x an irregular point of handwrite Irr(h) for the set 

or all irregular points or h. If h(x) = x, X is called a fixed point 

of h. and we let Fix(h) denote the set of all fixed points of h. 

Let h be a homeomorphism and x e: X. The set ~(x) = {hn(x)jne:Z} 

is called the orbit of x under h. The orbit ~(x) of x is positively 

asYJ'illptotic (negative~y asympo.totic) to a:, set: A c X if for each positive 

nummer e:, there is an integer N such that n > N (n < N) implies 

d(h~{x),A)< e:. If ~(x) is both positively and negatively asymtotic 

to A, then we say that ~(x) is asymptotic to A. 

Two homeomorphisms h1 , h2 on X are topologically equivalent 

if h1 and h2 belong to the same conjugacy class in the group of all 

homeomorphisms on X. 

It is a known fact that if h is a homeomorphism on an arc or a 

simple closed curve then Reg(h) ~ ¢ (12). In t~is chapter we prove a 

slightly different version of this fact. 

Lemma 2.1. Let X be acompact space and h a homeomorphism from 

X onto Y. Then for each e: > 0, there is a o > 0 such that if 

d(x,y) > e: then d(h(x) ,h(y)) ~ o. 
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Proof': By uniform continuity of' h-l, choose o > 0 so that if' 

d(h(x) ,h(y)) > o then d(h -~(x) ,h-1h(y)) = d(x,y) > e:. 

Definition 2.2. A homeomorphism h on X is said to be an irregular 

homeomorphism"if' Irr(h) = X. 

Lemma 2. 3. If' h is ·a,ehomeomorphism on a compact space X and 

¢ is a homeomorphism f'rom X onto Y, then Irr(¢h¢-1 ) = ¢(Irr(h)). 

Proof': Let y e Irr( </lh¢-1 ). Then there. is .. an e: > 0 such that f'or each 

n > O, we can f'ind y' which is n-close toy but (¢h¢-l)n(y') = 

¢hn¢~1 (y 1 ) is not e:-close to ¢hn¢-1 (y) f'or some n e: z. By lemma 2.1, 

there is a o > 0 such that if' d(y,y 1 ) ~ e: then d(¢-1 (y),¢-1 (y 1 )) ~ o. 

Let x = ¢-1 (y). For each A> 0 there is a A1 > 0 such that if' y' is 

· -1 rl N-close toy then¢ (y 1 ) is A-close to ~ (y). Thus, if' we choose 

A-< nt~,-1 ) tl.,_nt~,-1 y' rrhich is A1-close to y and -¥h ~ (y' is not e:-close to ~n ~ (y), 

-1 n then x' = ¢ (y') is a point which is A-close to x but h (x 1 ) is not 

o-close to hn(x) so that Irr(¢h¢~1 ) c ¢(Irr(h)). 

To prove the other inclusion, note that Irr(¢-1 (¢.h¢11)¢) c 

¢-1 (Irr(¢.h¢-1)). Thus, Irr(h) c ¢-1 (Irr(¢.h¢11 )) so that ¢(Irr(h)) c 

Irr( <Ph<P1). 

In view of' lemma 2.3, we see that, f'or compact spaces, the 

property of' supporting an irregular homeomorphism is a topological 

property. In particular, this property does not depend on the metric. 

By setting X = Y, we also see that if' h1 and h2 are topologically 

equivalent, then h1 is irregular if', and only if' h2 is irregular. 
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Lemma 2.4. Let h be a homeomorphism on a compact space X and 

let x £ X. Then for each n ~ o, x is an irregular point of h if, and 

only if, x is an irregular point of hn. 

Proof: Sufficiency is trivial by definition. 

To prove the necessity, assume that x £ Irr(h). There is then an 

n > 0 such that for each 8 > 0, we can find yEX with d(x,y) > 8 and 

d (hm(x),hm(y)) ~ n for some mEZ. Since n is not zero, we can find 

integers k and r such that 0 ~ r < n and m + r = kn. For each i = 0, 

1, ••• , n, there is a o. > 0 such that if d(x1 ,y 1 ) ~ n then 
~ 

d(hi(x 1 ), hi(y 1 )) ~ oi. Let£= min {oili = O, 1, ••• , lnl-1.} 

Then d ((hn)k(x), (hn)k(y)) = d (hnk(x), hnk(y)) = d (hr+m(x), 

hr+m(y)) = d (hr(hm(x)), hr(hm(y)) ~ £. Therefore x £ Irr(hn). 

By the above lemma and the definition, h is an irregular homeo

morphism on X if, and only if, hn is an irregular homeomorphism for 

each n ~ 0. 

If h is a map defined from X into X, it is trivial to see that 

Fix(h) is closed in X. 

Lemma 2.2. If h is a homeomorphism on I and if h(O) = 0, 

h(l) = 1, then Irr(h) c Fix(h). 

~: If x t Fix (h), then there is a neighborhood of x which 

contains no fixed points of h. Let x0 =sup {y£IIy ~ x, h(y) = y} 

and~= inf{y£IIy ~ x, f(y) = y}. Note that both x0 and xi exist, 

x0 ~ x1 , x0 , x1£ Fix(h), x £ (x0 , x1 ) and (x0 , x1 ) contains no fixed 

points of h. Thus, h(y) > y or h(y) < y for all Y' e: (x0 ,x1). We 



may assume that h(y) > y for all y E> (x0 ,J!]_). Then e-(y) is positively 

asymptotic to J!]_ and negatively a~ymptotic to X • 
0 

Let £ > 0 be given 

and choose any y0 < x, y1 > x. Th~re are integers N0 and N1 such that 

if n < N0 then hn(x) and hn(y1) are both £-close to x0 and if n > N1, 

then hn(x) and hn(y0 ) are both £-close to~· B.1 uniform continuity of 
N +1 N1 

h 0 , ••• , h , we can find o such that if y is o -close to x then 
0 0 

hi(y) is £-close to hi(x) for all i = N0 = 1, ... , n1 . Let o = 

min {o ' y - x, x-y } then, for each y which is a-close to x, hn(y) 
0 1 0 

is £-close to hn(x) for all n £ z. 

Lemma 2.5 does not hold true in general as we will see in 

Chapter III, that, on a 2-cell, we can define a homeomorphism with 

irregular points which are not fixed points. 

Proposition 2.6. For each homeomorphism h on I, Irr(h) is 

nowhere dense subset of I. 

~: In view of lemma 2.4, we may assume that h(O) = 0 and h(l) = 1 

so that:Irr(h) c Fix(h). If Fix(h) is no'lirhere dense then there is 

nothing to show. On the other hand, if Fix(h) = Fix(h) contains an 

opel:'t set, then int (Fix(h)) c Reg (h). Thus, Irr(h) is nowhere dense 

in I. 

Since Irr(h) is a topological invariant for compact spaces, 

lemma 2.5 and proposition 2.6 remain valid for any arc. 

B.1 a cantor w, we mean a totally disconnected compact perfect 

metric space (3). If Eisa cantor subset of an arc or a simple 

closed curve, we can of course think of the complement of E as a 

sequence of disjoint open intervals whose diameters converge to zero. 



9 

Definition 2.7. B,y a transformation group (X, T, TI) we mean a 

space X, a topological group T, and a map TI : X :x T -+ x satisfying the 

following conditions: 

1) TI(x,O) = x for all x E x and the identity 0 of T 

2) TI(TI(x,t),t 1 ) = TI(x,t+t 1 ) for all x Ex, and all t,t' E T. 

A s~t A c X is said to be invariant under I if TI(A x T) = A. A closed 

subset A of X is called a minimal set if A is invariant under T and A 

contains no proper closed subset which is invariant under T. 

In case that X is compact, the existence of a minimal set can be 

easily established (5). 

We need following results by van Kampen and we will refer the 

reader to (17) for the proofs. To avoid unnecessary complication, 

we replace a simple closed curve by the standard 1-sphere. 

Proposition 2. 8. Let, h- ·be· a '·homeomorphism on s1 • If h has no 

periodic points, then the set E of all cluster points of ~(x) is 

independent of the choice of x and it is either s1 or a cantor subset 

1 of S • 

Proposition 2.9.- If his a homeomorphism on s1 such that 

E = s1 , then it is topologically equivalent to a rotation. 

We are now ready to prove the following proposition. 

Proposition 2.10. For.anyhomeomorphism h on s1 , Irr(h) is 

nowhere dense in s1 • 

Proof: In case that h has a periodic point, we may assume that h 

has a fixed point. If h has exactly one fixed point X E s1 , then for 
0 
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each x E s1 , ~(x) is asymptotic to x • So if x ~ x , by an argument 
0 0 

similar to that of Lemma 2.4, we can easily show that x E Reg(h). If 

h' has more than one fixed point, then we can further assume that two 

arcs A1 and A2 on s1 determined by any two fixed points are invariant 

under h. Since Irr(h) n A. is nowhere dense in A. for i = 1,2, Irr(h) 
~ ~ 

is nowhere dense in s1• 

If h has no periodic points and E = s1 , then h is topologically 

equivalent to a rotation. Consequently, Irr(h) = ¢. 
1 If he has no periodic points and E ~ S , then we can find a 

minimal set which is a cantor set and which consists of the common 

cluster points of orbits (9). Let C denote this minimal set and 

{Ai}i:l denote the complementary arcs of C. Given E > 0, there are 

only finitely many complementary arcs A.. , ••• , A .• with diameters 
~1 ~k 

greater than or equal to E. Since h does not have any periodic 

point, h(A.) =A. where i ~ j. Therefore, there is a positive 
~ J 

integer N such that if lnl > N then diameter of hn(A.) is less than E. 
~ 

By uniform continuity of hi, i = -N, -N+l, ••• , N, choose o > 0 

such that if diam A < o then diam hi(A) < E. Thus, for x E A. , if .. we 
~ 

choose·. N-0{x) c Ai, then we see that diam (hn(N0 (x))) < E for all n. 

Consequently, Irr(h) c C and it is nowhere dense in s1 • 

Corollary 2.11. A-finite g~aph does not support an irregular 

homeomorphism. 

Proof: A finite graph X is a union of finite number of arcs and 

simple closed curves. Let h be a homeomorphism on X and let 

{Vi}i~l be the collection of vertices of orders different from 2. 

Then hi{Vi}i~l is a permutation on {Vi}i~l· Thus, there is an integer 



n ~ 0 such that hn(V.) = V. for all i = 1, ••• , k. Now, hn 
1 1 

permutes arcs with the common vertices and permutes simple closed 

11 

curves with the common vertex. Therefore, for some integer m ~ 0, 

hnm(A) = A where A is an arc or a simple closed curve. Consequently, 

hnm is not an irregular homeomorphism so that h is not an irregular 

homeomorphism. 



CHAPTER III 

IRREGULARITY IN COMPACT POLYHEDRA 

By a compact polzhedron, we mean the underlying space of a 

finite simplicial complex or a finite cell complex. Since there is a 

subdivision of a cell complex into a simplicial complex, we simply 

refer to either one of them as a complex. An annulus is a space which 

1 is homeomorphic to the product space S x I. 

By a pair (X,A), we mean a space X with a subset A. By a ~-

morphism from~ pair (X,A) .Qn]£ ~pair (Y,B), we-mean a homeomorphism 

from X onto Y such that the image of A under the homeomorphism is B. 

In case that there is such a ho~eomorphism, we say that (X,A) and 

(Y,B) are homeomorphic. 

A map is a continuous function and -~ denotes the identity map 

on X. Iff is a map with the domain X.and A c X then fiA denotes the 
~ 

restriction of f to A. A map f:X + Y is null homotopic if f is 

homotopic to a constant map from X into Y. X is said to be contrac-

tib#~ if lX is null homotopic. A retraction from a space X onto a 

sub~et A is a map r such that riA= lA. A mapping cylinder Mf of a 

map f:X + Y is obtained by taking disjoint union of X x I and Y and 

identifying (x,l) with f(x). 

A principal n-~ in a complex is an n-cell which intersects 

higher dimensional cells in a subset of its boundary. 

Throughout this chapter we use some standard terminologies 

12 
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of ~opological dynamics and piecewise linear topology and refer the 

reaqer to (6) and (15) f9r definitions. If X is a manifold, the 

symbols 9 X and ax are used to denote the combinatorial interior of X 

and the combinatorial bormdayof X respectively. 

It is a well known fact that the homeomorphism h on s1 , in the 

. ( i8) i{8 +2nt) . complex plane, def~ned by h e = e , 0 S t ~ 1, ~s periodic 

wit};), the period q if t is rational and t = ~ in the lowest term, and 

eacA point of s1 has dense orbit under h if t is irrational. 

Lemma 3-l. Define h: s1 X I+ s1 X I byh{ei8,t) = (ei(S+ 2nt),t). 

The~ h is an irregular homeomorphism. 

Proof; In view of lemma 2.3, we may assume that the metric d on 
~ 

s1 ~I is the product metric. Let X e: s1 X I and write X= (ei8 ,t)~ 

0 ~ 6 .S. 2n, t e: I. For each 8 < 0, we can take t' such that 0 <~t-t 1 I 
<min {:o,t}. Then 0 < d{(ei8,t), (ei8,t 1 )) < 8 and there is an integer 

n s~ch that i ~ n(t-t 1 ) ~ t. Thus, d(hn(ei8,t), ~(ei8 ,t')) = 

Q.((ei(8+2nnt),t), (ei(8+2nnt') ,t')) > d( (ei(8+2nnt) ,t), (ei(8+2nnt 1 ),t)) 

= ei(S+2nnt) - ei{S+2nnt') = 2 sin nn{t-t') 2:, j2 by the choice 

of 11. Thus, with any e: < /2, x e: Irr(h) for each x e: X. --
Corollary 3. 2. Let X be.n a compac'\; space. If there is a map 

f: X+ I such that int(f-1(t)) is empty for each t e: I, then s1 x X 

admits an irregular homeomorphism. 

Proof: Assume that s1 X X has the product metric. Define.g:S1 X X. 

+ s1 X X by g( (ei8 ,x)) = (ei( S+nf(x)) ,x). For each (ei8 ,x) e: s1 X X 

and any neighborhood U of (ei8,x), there is a N0(x) in nx{U), where 

TI is the projection map of s1 X X onto x. Thus, there is a point 
X 
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y 1 :x: in N0(x) such that f(x) 1 f(y) since Int (f-1 (t)) =¢for each t. 

Therefore 0 < lf(x)- f(y)l ~ 1 so that t < n(f(x)- f(y)) ~ 1 for some 

integer n. Then d(hn(ei8 ,x), hn(ei8 ,y)) = d( (ei(B+nTI·f(x)) ,x), 

(ei(8+nTI•f(y) ,y)) > d( (ei(8+nTI·f(x)) ,x), (ei(8+nTI·f(y)) ,x)) ~ .)2. 
--- i8 i8 1 Therefore, with any E ~ }2 , (e ,x) E Irr(g) for any (e ,x) E S'xX. 

2 Lemma 3. 3. There is an irregular homeomorphism r;2 on B such 

that r;2 1aB2 is equal to laB2. 

Proof: Let f: s1 x 1 + B2 be a map which satisfies the following 

conditions: fl 81~ (O,lJ is a homeomorphism of s1 x (0,1] onto B2 -

{(x,o)l- t ~ x ~ t}, f((ei8,o)) = f((ei( 2TI-B),o)), o ~ e ~ 2TI 

f((~i'TT,O)) = (-i,O), f((ei0,0)) = (i,O) and fl{(ei8,0)IO ~ 8 ~ TI} 

is a homeomorphism of {(ei8,o)lo ~ 8 ~ TI} onto {(x,O)I - t ~ x S t}. 

Take h: s1 X I_ + s1 X I def'ined in lemma J.l. Defi-ne r;2: B2 + B2 by 

r;2(x) = fhf-1 (x). Then it is easy to see that r;2 is a homeomorphism 

on B2• If p E B2 - {(x,O) 1- t ~ x ~ i} then p = f((ei8 ,t)) for some 

t 1 0. Since flslx[~,l-] is a homeomorphism of s1 x [~,1] onto an 

2 2 -1 
annulus A c B -c-t,tJ, both f lslx[~,lJ and f lA are uniformly 

continuous. Tllus, if ~2 IA were equicontinuous at p then hlslxci,l] 
. . e 2 

would be equicontinuous at (e~ ,t). Therefore r;2 1A is not 

equicontinuous at p so that r;2 is not equicontinuous at p. I£ 

p E {(x,O)I-i ~ x ~ t}, then r;2(p) = p. Choose E > 0 so that N2E(p) 

does not cont·ain { (x, 0) 1-t S x S i}. 

in bor:qood U of e such that U x [O,t] 

t E I. For each o > o, pick (eie ,t) 

Then thez!e.is ann and a neigh-

c s1 X [O,t] - f-1(NE(p)) for each 

E f-1 (N0 (p)) which has dense --

orbit in s1 x {t} under h. Then there is an integer n such that 
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hn((eie,t)) E U X {t}. Therefore, s~(f((eie,t))) t NE (p) and 

f((eie,t)) E N0 (p) whic~ shows that s2 is not equicontinuous at P• It 

is clear that s2 1 cB2 = 18B2. 

Lemma 3. 4. For ea,eh n ~ 2 , Bn admits an irregular homeomorphism 

sn such that snlaBn = ~aBn. 

~: We prove this lemma by induction on n. 2 
By lemma 3. 3, B 

admits such a homeomorphism. Assume that there is such a homeomorphism 

n-1 n-1 ( z;n-l on B • For e::~ El, 0 .::;, e .< 2rr, let Be = x1, ••• , xn_2 , 

x 1cose, x 1A:~ine)j L: x~ < 1 and x 1 ~.0}. Then Bne-l is the 
n- n- . ~ - n-

~=1 
closed half of the unit ball sitting in the subvector space in Rn of 

dimension n-1 which is determined by Rn-2 and the vector (0, ••• , o, 

Cose • s~ne) c Rn. Th 't · t th t Bn u ~-l , .... "'" .ijS, ~. ~s easy o see a = 0 .::;, e .::;, 2 J:Se 

n-1 n-1 n-2 
and Be n Be = B fore¢ e 1 • 

(Bn-l, 8Bn-l) are homeomorphic as compact pairs, there is an irregular 
0 0 

. n-1 n-1 
hom~omorph~sm lji 1 : B -+ B. such .that .lji . . 1 1 '"'Bn-1 _ l,.,Bn-1. · n- o o n- o - o 

. 0 0 

n n I n-1 lji -1· n-1 n-1 Define sn: B -+ B by sn Be = pe n-1 p e where Pe: B0 -+Be 

is the homeomorphism defined by Pe((~, ••. , xn_2, xn-l' 0)) = 

(xl' • • • ' X lcos e' X lsine) • Then s is a well defined function n- n- n 

Then a 

i i i i i i . 00 
sequence {x = (~, ... , x 2 , x 1cose , x 1sine~)}._1 converges 

~ n- n- n- ~-

to~= (~, ••• , xn_2, xn_1cos8, xn_1sine) if and only if 

:1. i i 00 

{(xt, .•. , ~-2 , ~-1 )} i=l converges to (~, ••• , xn_2, xn_1 ) 

i 00 

and {e }i=l converges to e up to module 2rr. Thus, the continuity of 
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n n-2 n-2 
~ at x E B - B is clear. Suppose x E B • Then a sequence 
n 

. { i} 00 -1 ( i) 00 
x i=l converges to x if and only if{p8i x } i=l converges to x, 

-1 i i since d(x,p8i (x )) = d(x,x) for each i. Therefore ~n is continuous 

1 n n 1 I n-1 -1 -1 at x. Since the map ~n: B + B defined by ~n B6 =p8~ n-l Pe 

is the inverse of~, ~ .. is a homeomorphism. n n, 

n-1 is the identity on 8B for each 6 so that ~niC3Bn = lBn since 

"Bn c u "Bn-1 
0 0<827T 0 e . ~ is an irregular homeomorphism since 

n 

~niB:~l is an irregular homeomorphism for each e. 

Theorem 3.5. A compact polydedron P admits an irregular homeo-

morphism if and only if P contains no principal 1-cells. 

~: To prove the necessity, suppose that P contains a principal 

1-cell and suppose that there is an irregular homeomorphism h on P. 

Let K be a triangulation of P, K1 be the collection of prinicpal 1-cells 

inK and write IK1 1 = P1 • Then h(P1) = P1 • Since P1 n IK- K1 i is 

finite, the regular set of hiPl is at most finite. But using the 

fact that the irregular set of a homeomorphism on either a simple 

closed curve or a 1-cell is nowhere dense, we can show that the 

irre¢ular set of a homeomorphism o~ P1 is nowhere dense. Therefore, 

~ cannot be an irregular homeomorphism on P. 

If P does not contain any principal 1-cell then we can write 

k 
P = u{crj}j=l where crj is a principal n-simplex with n ~ 2 in some 
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triangulation {ai} i:l. Therefore, since ~nJ 8Bn = lCBn' we can 

-1 
define an irregular h on P by taking h to be gn~ngn on each principal 

cell a . of dimension n where g : Bn-+ a . i.s a homeomorphism of Bn 
J n J 

onto a .• 
J 

Lemma 3.6. Let C be a locally connected contractible continuum 

in int B2, where B2 c R2• If C is nowhere dense in R2, then there is 

1 a map f from S onto C such that the pair (Mf,C) is homeomorphic to 

2 (B ,G). 
I 

Proof: Since Cis strongly cellular (16), there is a circleS and 

a homotopy H of S in R2 such that 

(1) H is the identity. 
0 

(2) Ht is an embedding for t < 1. 

(3) Ht(S) n Hu(S) = ¢ for t .,. u, and 

(4) h1 (S) = c (7) 

By the Schoenflies theorem, S bounds a ~-cell. Therefore, we may 

1 assume that S = S . It is clear, from tp.e properties of H, that 

Hl 81 x [O,l) is an imbedding and Im(H) c B2• To prove that Im(H) = B2, 

suppose that there is x £ Int(B2 ) - C such that Im(H) c B2-{x}. Then 

ther' is a retraction y: B2-{x}-+ s1 • Now, yH1 is homotopic to 

' yH0 = 181. But, since C is contractible, yH1 is null homotopic. Thus, 

we obtain a contradiction. By taking f = H1 , we see that (Mf,C) is 

2 
h~~eomorphic to (B ,c). 

Theorem 3.7. For each nondegenerate locally connected contrac~ 

tible continuum C which is nowhere dense in intB2, there is an 
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Proof: Let f be the map in lemma 3.6. 1 Since f is a closed map from S 

onto C, C has the identification topology with respect to f. Thus, 

(Mf,C} is homeomorphic to (~ ,' {[eie ,lJ I eie £ s1}) where ~ 

is the equivalence relation on s1 x I induced by the map H which is 

defined in lemma 3.6 and [x,tJ denqtes the equivalence class of 

(x,t). Write {[ei8,1Jiei8£S1} = C'. Then it suffices to show the 

s1 x I 
existence of an irregular homeomorphism h* on ~ with Fix(h*) = C1 • 

Let p: s1 X I ~ s~ be the projection and h: s1 X I ~ s1 X I be 

defined by h(ei8 ,t) = (ei(G+TI(l-t)) ,t). Th~~ by the argument used in 

lemma 3.1, h is an irregular homeomorphism on s1 x I and Fix(h) = 

1 s1 x r- s1 x :r__ ie ie 
S x {1}. Define h*: ___..-:---~ ~ by h*([e ,tJ) = ph(e ,t). 

Th&p, since h* is well defined one to one correspondence, it is a 

homeomorphism. Since plsl ~ [O,t] is a ~pmeomorphism and s1 x [O;tJ is 

comp!ict for each t < 1, it is clear that {[eie ,s]£ S~ I s < 1} c 

Irr(h*). To show that [ei8,1J E Irr(h*), note first that Fix(h*) = C' 

and d.iam C' > 0. For each neighborhood U of [ei8,1J, U contains 
ie ·e [e ,tJ for some irrational t. Since the orbit of (e~ ,t) under h is 

dense in s1 X { t}, the orbit of [eie, t J under h* is dense in { reie, t] I 

0 ~ e ~ 2TI}. Now, if we take o = -~ <;liam (C'), then we can find n £ Z 

*n i8 *n i8 
such that d(h [e ,tJ, h [e ,lJ) > o. 
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If h1 and h2 are topologically equivalent homeomorphisms, then 

Fix(h1 ) is homeomorphic to Fix(h2). Cons_equently, theorem 7 implies 

the existence of uncquntable many conjugacy classes o~ irregular 

homeomorphisms on B2• 

Definition 3.8. Let (X,T,TI) be a tran~formation group. Then 
t -." 

for each t E T, TI : X +X defined by Tit(x) = TI(x,t) is called a 

~-tr;nsition. We say that a homeomorphism h on X can be embedded 

J.n a;.,oontinuous ~ if· there is a transformation group (X, R, TI) 

such that the 1-transition Til coincides with h. A discrete flow 

(X, Z; p) embeds in a continuous flow (X, R, TI) if P = Tiix x z• 

It is clear that a discrete flow (X, Z, p) embeds in a 

continuous flow (X, R, TI) if, and only if~ the 1-transition p1 is 

embeqded in (X, R, TI). 

Remark A: Let f: X + Y be an onto map where X and Y are compact 

metric spaces. Then the rel~tion on X defined qy x ~ x' if, and only 

if, f(x) = f(x') partitions X into subsets each of which is an inverse 

image of a point (point inverse) in Y under f. Define G(f) = 

{hE H(X)i for each p E Y, h(f-1 (p)) = f-l{q) for some q E Y} where 

H(X) denotes the gro«p of all homeomorphisms on X. Then it is easy 

to see that G(f) forms a subgroup of H(X). Since X andY are compact 

metric spaces, H(X) and H(Y) are topological groups with compact-open 

topology {1). Define a: G(f) + H{Y) by {a{h)){y) = fh(f-1{y)), for 

each h E G(f) and each y E Y. Then a is a continuous homomorphism 

~rom the topological group G(f) into the topological group H{Y). 
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Theorem 3.2. Let f: X ~ Y be an onto map where X and Y are 

compact metric spaces. If hE H(X) can be embedded in a continuous 

flow (X, R, rr) such that Tit E G(f) for e~ch t, then h' E H(Y) defined 

by h' (y) = (a(h)) (y) can be embedded in a continuous flow (Y, R, A). 

Proof: Define p : R-+ H(X) bv P (t) = Tit for each te:R. Then the - rr 'Jrr 

continuity of rr gives the continuity of Prr· Since the map a: G(f)-+ 

f(y) is continuous and prr(R) c G(f), we have a map pA:R-+ H(Y) 

d,efined by p A ( t) = (a·· p rr )( t) = a ( rr t) • ~efine A : Y x R -+ Y by 

A (y,t) = (a(rrt))(y). Then A is continuous. It is clear that 

A (y,O) = y and A(y,l) = A1(y) = fh(f-l(y)) for ally E Y. 

A(A(y,t),t') = A((a(rrt))(y),t') = A(frrtf-1 (y),t 1 ) = (frrtf-1 ) 

(frrt'f-1 (y)) = frrt'rrtf-1 (y) = frrt'+tf-1 (y) = frrt'+tf-1 (y) = 
A(y,t 1+t). 

Remark B. Define a homeomorphism h on s1 X I by 

h(ei8 ,t) = 

(ei(8+2rrt) ,t), 0 ~ t ~! 

(ei(8+2IT(l-t) ,t), ! ~ t ~ 1. 

~hen .h is embedded in a continuous flow (S1 x I, R, rr) where 

( 1 ) 1 rr: S x I x R -+ S x I is defined by 

(ei(8+2rrt•r) ,t), 0 ~ t ~! 
. 8 

rr( (e~ ,t) ,r) 0 -. 

(ei(8+ 2rr(l-t)·r),t),! ~ t ~ l. 

The map f:~1 x I -+ B2 defiried in the proof of lemma 3.4 is an onto 

map such that for each y E B2, t( -1 ) ) -1 rr f (y = f (y') for some y' 

Consequently, by theorem 3.10, ~2 defined by ~2 (y) = fh(f-1(y)) 

2 e: B • 

for 

each y E B2 can be embedded in a continuous flow (B2, R, A2). Note 
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2 that A2{y,r) = y for ally e:dB and all r E R. Thus, if we define s 
n 

inductively as in lemma 3.4 then it is clear that s can be embedded in 
n 

a continuous flow (Bn, R, A ) such that A (x,r) = x for all x E 2Bn 
n n 

Definition 3.10. Given a transformation group (X, T, rr) and S c T, 

we say that Sis reroa.+ar at x EX if {rrsl s E S} is an equicontinuous 

family at x. If S is not regular at x then we say that S is irregul~ 

at x. Reg{X,S) and Irr(X,S) denote the set of all regular points of S 

and the set of all irregular points of S, respectively. If Irr(X,T) = 

X then ( S, T, 'IT) is called an irregular transformati.on ... gr.o.up .• 

Lemma 3.11. Let (X, T, .'JT) be a transformation group .. and S c T •. 

If X is compact and {rrs s E S} is dense in {rrt I t E T}, with 

compact-open topologies then Reg(X,T) = Reg(X,S). 

Proof: It is clear that Reg{T) c Reg{S). Suppose x E Reg{S). Th~n 

given E > 0, there is o > 0 such that if d(x,y) < o then d( Tis (x), Tis {y) )< 

E/3 for all s E S. Since X is a compact metric space, the compact-open 

topol,ogy on {rrt I t E T} coincides with the topology induced by the 

t t' sup t tl metric p(rr ,rr ) = XEX {d{rr (x),rr (x)} (3). So for each t E T, we can 

pick an s E S such that p(rrt,rrs) < E/3. Then d(rrt(x),rrt{y) < 

Lemma 3.12. Let (X, R, rr) be a continuous flow with X= I or 

X= s1 • Then Irr(X,R) is nowhere dense ~n X. 
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Proof: Irr(X,Z) is nowhere dense in X bl propositions 2.6 and 2.10. 

Q, the set of all rational numbers, is dense in R. Thus, {~s I seQ} 

is dense in {~t I teR} with the compact-open topology. Then, by 

lemma 2.4, Irr(X,Q) = Irr(X,Z). Now, by lemma 3.11, Irr(X,Q) = 

Irr(X,R). Since Irr(X,Z) is nowhere dense, we are done. 

~oren 3.13. A compact polydedron P admits an irregular 

continuous flow if, and only if, P co~tains no principal 1-cells. 

Proof: If P contains a principal 1-cell and (P,R,~) is a continuous 

flow there is a principal 1-cell C which is R-invariant. Thus, 

(C,R,~/CxR) is a continuous flow so that Irr(C,R) is nowhere dense 

in c. Consequently, if we choose X eJC such that xEReg(C,R) then 

*eReg(p,R). 

Conversely, if P has no principal 1-cells, then b,y remark B 

and theorem 3.5, we can define, piecewise on each principal n-simplex, 

n ~ 2, a conti~uous flow (P,R,~) with Irr(~1 ) = P so that Irr(P,R) = P. 



CHAPTER IV 

LIFTS AND PROJECTIONS OF IRREGULAR 

HOMEOMORPHISMS 

A biseguence in a set S is a function from Z into S. For 

convenience, a bisequence inS is writtenas <xi>. The diagonal 

of a product space xxx is denoted by il(X) and the,deleted product X~ 

is defined to be (XxX) - il(X). For each complex K, we let JKI 
denote the carrier of K. 

Definition 4.1. A homeomorphism h on X is said to be uniformly 

irreWJ].ar if there is· a a > 0 such that for each E > 0 and for each 

x E X, there exists y E XJ which is E-close to x but hn(y) is not 

a-close to hn(x) for some n E Z. The number a is called an uniform 

irregularity constant. 

Definition 4.2. Ahemeomorphism h on X is expansive if there is 

a a > 0 such that f.or each pair of distinqt points x and y in X, hn(x) 

and hn(y) are not a-close to each other for some nE z. The number 

a is called an expansiye constant. 

It is obvious that if 0 is an uniform irregularity (expansive) 

constant then any positive number a' such that a' < a is also an 

uniform irregularity (expansive) constant. It is also obvious that 
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an expansive homeomorphism is uniformly irregular and an uniformly 

irregular homeomorphism is irregular. 

We can prove, with little adjustments in the arguments, that all 

irregular homeomorphisms constructed in Chapter III are uniformly 

irregular. However, following two examples show that an irregular 

homeomorphism on a continuum need not be uniformly irregular. In 

fact, example 4.4 shows that there is a Peano conti~um on which an 

irregular homeomorphism can be defined but it supports no uniformly 

irregular homeomorphisms. 

Let f 1 , f 2 , ••• be maps such that domain(fi) = Ai. Then by 

the union u f i of f i 1 s, we mean a function f defined on u Ai by f (x) = 

fi(x), x E Ai whenever it is well defined. 

E21;ample 4 . 3 . Let K be a 2-simplex in R2 with the barycenter c 
0 

and let K(l) denote the barycentric subdivision of K. Choose a 2-

simplex a(l) in K(i). For each 2-simplex S(~) E K(l) - a(l), 
]. 

1 ~ i ~ 5, we define an irregular homeomorphism hil) such that 

h ( 1 ) I " ( 1) = 1 ( 1), I • Define h : I K ( 1 ) - a ( 1 ) I+ I K ( 1 ) ~ a ( l) 
i cSi as· 1 

5 i 

by h:lt- = i:; hil). Let K(2) be the barycentric subdivision of a'(l). 

Choo~e a 2~simplex a(2) in K( 2) such that c is a vertex of a(2). 
. 0 

~~reach simplex si2) E K( 2)- a(2), 1 ~ i ~ 5, define an i:r:-regular 

homeomorphism h~ 2 ) such that h~2 ) I ~2 ) = 1 (2).. Define 
1 1 83i atr 1 
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h2.·1 K( 2)- ~< 2 )1 ~ IK(2)- ~< 2 )1 - 5 h(2) N th i d ti ~ ~ ~ b.Y h2 - 1g1 1 • ow, e n uc ve 

process to define h , for each n > O, is clear (see Figure 1). 
n 

Then ~ IK{j)l = K. 
j=l 

00 

x(2) 

Figure 1. K(3) 

By the construction of h , the function h:K -+ K 
n 

defined by h = uh. is a well defined irregular homeomorphism. 
i=l ~ 

However, h cannot be uniformly irregular since, for each o > 0, we can 

find an open subset U 0 of I K I , with .diam (U 0 ) < o , which is invariant 
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under h. 

Example 4.4. Let E be a bouquet of circles s0 , s1 , ••• , in R2 

with the common point p such that Sn+l lies in the bounded domain of 

S for each nand diam(S ) = +ll (Hawaiian ear ring). Let F (Figure 2) n · n n 

be a subset of R~ 
i en, i = 1, 2, . • 

obtained, from E, by attaching n disjoint 1-cells 

• , n, to S such that each Ci lies in the pinched 
n n 

annulus bounded by S and S .l, Ci n S is a point and ci n S 1 is 
n n- n n n n-

n . 
empty. Let Dn = Sn u (i:~h C~). 

Figure 2. 2 The Set F in R 



Define a quotient space S of F x I by "smashing" p x I to a point *· 

' We can consider X as a subset of R3. It is clear that D~ x ~ ;...-.p X I 
is 
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lim 
not homeomorphic to D; x~ for i 'f j and i -+oo ( diam D~ ) ) = 0 

~ X I . p X I 

(see Figure 3). 

Figure 3· 

We can define an irregular homeomorphism hi on Di x~ such that 
...;::-p X I . 

* e: Fix (h. ) • 
~ 

00 

Then h = .Q0 h. is an irregular homeomorphism on X. 
~- ~ 

However, we cannot define any uniformly irregular homeomorphism on X 

for if g is a homeomorphism on X then g(*) = * and the restriction of 

g to Di x._!-
.:::-p X I 

is a homeomorphism on Di x~ • 
..;::..-p X I 

Consequently, 

we can find, for any o > o, an open set U0, with diam(U0) < o, such 



that U0 is invariant under g. 

Perhaps the most significant difference between the concepts of 

expansiveness and uniform irregularity is that a space X cannot support 

an expansive homeomorphism if it has a subset which is invariant under 

any homeomorphism on X and which itself cannot support an expansive 

homeomorphism while such a space X may as well support an uniformly 

irregular homeomorphism. This fact can be illustrated by pointing out 

that B2 cannot support an expansive homeomorphism since it has a subset 

s1 which cannot support an expansive homeomorphism (9) and is invariant 

under any homeomorphism on B2 whereas B2 can support an uniformly 

irregular homeomorphism. 

Despite such a difference, both notions enjoy somewhat similar 

properties. For instance, we can give a characterization of an 

uniformly irregular homeomorphism quite similar to that of an expansive 

homeomorphism given by Keynes and Robertson (11). Furthermore, as 

for the case of expansiveness (8), lifting and projecting uniformly 

irregular homeomorphisms, via covering maps, yield uniformly irregular 

homeomorphisms. 

We now state the theorem of Keynes and Robertson mentioned above 

and prove an analogeous theorem for uniformly irregular homeomorphisms. 

Theorem 4.5. (11) A homeomorphism h on a compact space X is 

expansive if, and only if, there is an open cover U of X such that for 

00 -i ) each bisequence <Ai> in U, ~oo h (Ai is at most a point. 

Tbeorem 4.6. A homeomorphism h on a compact space X is 

uniformly irregular if, and only if, there is an open cover U of X 



such that for each bisequence <Ai> in U, int(~ h-i(Ai)) = ¢. 

~: Suppose h is uniformly i~regular and let o be a uniform 

irregularity constant. Let U be a finite open cover for X such that 

diam (A) < o for each A £ U. Support that there is a bisequence 

<A.> in U such that int(Cb h-i(A.)) ~ ¢. Then there is a point 
1 - 1 

p £ X and £ > 0 such that N (p)c .'n h -:i.(A.). Thus N (p) c h -i(A.) 
£ -~ 1 £ 1 

for each i. This means that hi(N£(p)) c Ai for each i. Therefore, 

for each X £ N£(p), hi(x) is a-close to hi(p) for all i £ z. This 

' 00 ~ 
contradicts the choice of o and proves that int( n h (A.)) = ¢ . ..:.oo 1 

Conversely, suppose there is an open cover U of X such that for 

any bisequence <Ai> in U, int(~~ h-i(Ai)) =¢ • Let o be a Lebesque 

number for this cover. We claim that o /2 is an uniform irregularity 
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constant. For if not, then there is a point p £ X and £ > 0 such that 
i . . 

for each X£ N£(p), h (x) is o/2- close to h1 (p) for all i £ z. 

This means that for each i, there is a set Ai. £ U such that hi(N (p)) c 
.£ 

Therefore, N (x) c '({ h -i(Ai). .This 
£ -00 

contradicts the choice of U and proves that o/2 is a uniform 

irregularity constant for h. 

The cover U in theorem 4.5 (theorem 4.6) is called a generator 

of ~ expansive (uniformly irregular) homeomorphism. If an open cover 

U' o£ X is a refinement of a generator U, either for expansiveness or 

uniform irregularity, then U1 itself is a generator. 
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Definition 4. 7. Let p: f + X be a covering map. If h and h are 
~ ~ ~ 

homeomorphisms on X and X respectively, such that Ph = hp then h is 

call~<i a lift of h and h is called a projection of h'. 

DJ,eorem 4.8. (8) 
~ ~ 

Let p: X + X be a covering map where X and X 
~ ~ 

are compact spaces. Suppose a homeomorphism h on X is a lift of a 
~ 

P,omeomorphism h on X. Then h is eipansive if, and only if, h is 

expansive. 

~ ~ 

Theorem 4.9. Let p: X + X be a covering map where X and X are 

compact spaces. Suppose the homeomorphism h on X is a lift of a 

homeomorphism h on X. Then h is uniformly irregular if, and only if, 

h is '\llliformly irregular. 

~: Suppose h is uniformly irregular and let U be a generator for h. 

Let U = {p-1 (A) I A £ U}. 
~ ~ 

Then U is an open cover for X and if <A.> 
·~ 

~ ':"" -1 
is bisequence in U then A. = p (A.) for some bis.equence <A.> in U. 

~ ~ ~ 

Therefore, p[int(l ·h-i(Ai))J c int[p(l h-i(Ai))J c int[JL p(h-i(Ai))J 

= int( n h-ip (A.)) = int( n h -i(Ai)) = ¢. Thus, int( n 'h:-i(A.)) = ¢. 
_oo ~ -oo _oo ~ 

~ 

Conversely, suppose h is uniformly irregular and let o be a 

unifOI'IJI. irregularity constant for h. Since X is compact, p is k to 1 

map fbr some positive integer k. Thus, for each x £ X, there is a 

heig~porhood Vx of x such that p-1 (Vx) is the union of disjoint sets 

{U i}'kl with diam U . < o for all i = 1, 2, ••• , k. Let B· be a x, ~= x,~ 

Lebeaq~e number for the open cover {Vx} of X. If h is not uniformly 

irre~ar, then for each £ > 0, there is an n > 0 and x, £ X such that 
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for each yEN~ (x), hn(y) E NE(hn(x) for.all n. Without loss of 

generality, we can assume that E < f3/2. Thus, for each n, hn(N,n(x)) c 

Vx for some ~n EX. Pick x E p-1 (x) and choose NA.(i) c p-1 (Nn(x)) such 
n 

that NA.(i) is connected by local connectivity of X. 

connected for each n. Therefore, for each n, iJ:Il(NA.(i)) c Uj for 
xn 

some j, 1 _:s j _:s k. Since diam(Uj ) < o, this is contrary to the 
xn 

choiqe of o and proves that h is uniformly irregular. 

We point out that similar argument can be used to show that the 

lift~ and the projections of irregular homeomorphisms are irregular. 

If h is a homeomorphism on X, it induces a homeomorphism h* on X* 

given by h*(x,y) = (h(x),h(y)). In case that X is compact, we can give 

the following characterization of an expansive homeomorphism h on X. 

Theorem 4.10. A homeomorphism h on compact space X is expansive 

if, and only if, X~/ , the orbit space of h*, is compact. 
h* 

Proo~: Suppose that h is expansive and let o be an expansive constant. 

Let U be an open coverning of X*; and n · be the quotient map. For 
' h* 

each (x,y) E X*, there is n E Z such that (h*)n(x,y) E X x X- N0 (~) 

where N0 (~) = {(a,b) EX x X I d((a,b),~(x)) < o}. {n-1 (A)I A E U} 

is an open cover for X*. Thus {n-1 (A) n (X x X- N0 (~)) I A E U} 

is an open cover for X x X- N0 (~). Since X x X- N0 (~) is compact, 

there is a finite subcover {n-1 (Ai) n (~ x X- N0 (~)) I i = 1, 2, ••• , 

~ . Then {A. I i = 1, 2, • • • , n} covers Xi . 
: ~ h* 



32 

Conversely, suppose X*; is compact. The map n is an open map. 
h* 

Take an open cover A= {X x X- ~1;(~) I n is a positive integer} of X*. 
·~ 

Then {n(A) I A £ A} is an open cover for X*; so that there is a 
ht 

finite subcover {n(Ai)}i~l for some k. Since Ai c Ai+l' n(~) = X*/h*" 

Consequently, for each (x,y) £ X* there is n £ Z such that (h*)n(x,y) = 

1 
This means that k is an expansive constant for 

h and h is an expansive homeomorphism. 



CHAPTER V 

SOME OPEN QUE~TIONS 

Let X be a compact polyhedron with no principle l~cells, H(X) 

be the set of all homeomorphisms with compact-open topology and 

.tHOt) be the set {h e: H(X) I Irr (h) = X}. The immediate problem 

is to determine the "size" of IH(X), the closure of IH(X) in .H(X). 

For lnstance, we have mentioned, in Chapter Ill, that there are 

uncoUn.tably many conjugacy classes of irregular homeomorphisms on B2 • 

The following remark shows that iH(E~) contains all homeomorphisms 

which are conjugate to rotations about th~ origin. 

Remark 5.1. 2 Let- P denote the rotation of B , in the .complex 
T 

planE;~, about the origin with an angle T and let e: be any positive 

numb~+· Let B2 (e:/2) be the set {x E B2 1 n X H .:s e:/2}. We can define 

an itregular homeomorphism h1 on B2 (e:/2) such that hi 8132(e:/2 ) = 

PT·1 ;)J32(e:/2 ) by the same techniq.ue used in Chapter III. Let A. be a 

posiyive number such that d(ei6,ei(e+A.))< e: and define h2 on 

B2 --B2( / 2 ) b h ( i6) _ i(6+-r+A.(r-e:/2)) ... -. e:_ ry 2 re - re • Then by an argument 

similar to that used in lemma 3.1, h2 is an irregular homeomorphism 

-~- 2 
on B ·· - B ( e:/2). Since hll 2 = h2 1 2 , h = h1 u h2 is a 

_ oB (e:/2) 8B ( e:/2) 
i 

homeomorphism on B2 with Irr(h) = B2. Furthermore, if x e: int(B2 (e:/2)) 
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then PT(x) and h(x) are both in int(B2(t/2)) and if x £ B2 -
2 ·e ·(e+t..) 

int(B (E/2)) then d(h(x),p (x)) < E since d(e1 ,e1 ) < £ • 
. T 

2 Therttfore, d(h, PT) ~ £ and shows that PT £ IH(B ) • Suppose that 

-1 2 g = f pT f for some I and a homeomorphism f on B and let £ > 0 be 

given. B.r the uniform continuity of f, there is a positive number o 

such that if d(x,y) < o then d(f(x),f(y,) < £. But we can find 

h £ 
2 IH(B ) such that h is a-close to pT. -1 Thus, fhf is £-close to g 

and is irregular by lemma 2. 3. 

In Chapter II, we have used van K~pen's results in (17) to 

show that Irr(h) is nowhere dense in s1 for each homeomorphism h on 

s1 • The key notion in (17) is th~ rotation nqmber associated with an 

orientation preserving homeomorphism. His definition can easily be 

modified to obtain a function associated with an isotopy h of s1 such 

that h0 is an orientation preserving homeomorphism on s1 • The process 

is described in the fo~owing remark. We emphasize that the process 

is sketched roughly since it is totally analogous to the process used 

by van Kampen (17). 

Remark 5.2. Let h be an iSotopy of S1 (a level preserving 

homeomorphism on s1 x I) with h0 an orientation preserving homeomorphism. 

Then for each t, ht is an orientation preserving homeomorphism 

on s1 • Let H be a lift of h to R1 xI through the covering map 

'IT x li: R1 x I+S1 x I defined by (TI iX li)(r,t) = (ei21Tr,t) for each 

(r,t) £ R1 x I. Then Ht is a lift of ht to R1 through TI. Thus, 

lim ~(x) 1 
"t = n+oo n is independent of the choice of x £ R and ~t is 
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independent of the lift Mt of ht module ~ (17). Define A.: I-+ [0,1) 

by A.(t) = A.t- [(A.t)J where [(x)J denotes the greatest integer which 

does not exceed x. Then A. is a well defined function associated with h. 

A ~ew questions can be asked about the function defined in 

remark 5.2: 

1. Is A. continuous? 

2. Is A. conjugacy invariant in the set of all isotopies on s1? 

3. If A. is not continuous in general, can we "select" a 

lift Gt of ht Separately, rather than lifting h as a whole, 

in such a way that p:I -+ R defined by (t) = 

1 i m G~(x) is continuous? 
n-+oo n 

4. Can one modify above process to define such a function, 

say M, for any homeomorphism on s1 x 1 so that M is 

invariant under conjugation in H (s1 x I)? 

The ~swer "yes" to these questions would provide a beginning tool 

for the classification problem of homeomorphisms and 2-dimensional. 

manifolds. 
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