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SYMBOLS

Stiffener cross-sectional area (in.2)

Stringer center-to-center spacing (in.)

Bending stiffness (in.-1b.)

Distance from shell middle surface to line where ﬁx
acts (in.)

Young's modulus (psi)

Nondimensional buckling load, F = ﬁxR/Eh2

Time step

Shear modulus (psi)

Unstiffened shell wall thickness (in.)

Integer

Moment of inertia of stiffemer about its centroid (in.")

Momeﬁt of inertia of stiffener about shell middle surface
(in.™)

zimr/L (in.”1)

zimrj&/L (dimensionless)
zgmnj/L (dimensionless)
Integer

Polar moment of inertia (in.*)
=jn/R (in." 1)

zjnkd/R (dimensionless)
zgnkd/R (dimensionless)

Integer

ix



2 Ring center-to-center spacing (in.)

L Shell length (in.)

m Number of half-waves in axial direction

M Number of stringers on cylinder

MX,My,Mxy Middle-surface moment resultants

n Number of waves in circumferential direction

N Number of rings on cylinder

Nx,Ny,Nxy Middle-surface stress resultants

ﬁx Externally applied axial load resultant (positive in comp.)

Q Galerkin "error functions'

T Subscript referring to ring quantities

R Radius of cylinder middle surface (in.)

s Subscript referring to stringer quantities

t Time (sec)

u,v,w Displacements in axial, circumferential, and radial directions

U Strain energy (in.-1b.)

W Dependent variable used in Runge-Kutta algorithm

W Dimensionless radial deflection of shell middle surface,
W= w/Winitial

X,Y,2 Circular cylindrical coordinates with origin lying in

middle surface of shell and oriented in the axial, circum-
ferential, and radial directions, respectively

Z Distance from centroid of stiffener to shell middle surface
(in.)

yA Batdorf parameter, Z = L2(1-v2)/(Rh)

Gij Kroneker delta

§(x-j2) Dirac delta function



ex,ey,ny

Oxs0ysTyy

ol e BN S

5icsj€ (Double Kroneker delta)
8izd3j¢
8,..6.
3it jg
%312%35¢
521824
Axial, circumferential and shear strains of shell middle
surface
Integer
Poisson's ratio
Integer
Density (lb-sec?/in.*)
Axial, circumferential and shear stresses
N
Indicates )
j=1
M
Indicates )
k=1

Indicates ) |
il j=1

A subscript preceded by a comma indicates partial differentiation

with respect to the subscript.

Primes indicate total derivatives with respect to X.
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DYNAMIC BUCKLING OF AN AXIALLY COMPRESSED CYLINDRICAL

SHELL WITH DISCRETE RINGS AND STRINGERS

CHAPTER I

INTRODUCTION

1.1 Survey of Cylindrical Shell Buckling

For the past decade, the aerospace and defense industry has
been actively involved in studying the structural response of high-
performance aircraft and missiles to blast-induced loadings. However,
the structural response of a light aircraft (in the general aviation
fleet) subjected to a crash loading has been largely ignored. Ap-
parently, there are no current studies directed toward understanding
the structural response of such aircraft to crash loadings. There are
several reasons cited for this lack of analytical effort. These rea-
sons are research cost, great variation in design of aircraft in the
general aviation fleet, complexity of the crash-loading time-history
delivered to the aircraft structure, and the lack of a procedure to
treat the dynamic response of a complex sturcture.

The design of a more crashworthy aircraft will undoubtedly
receive greater emphasis in the near future. In a recent article ap-
pearing in Time magazine [1], the high accident rate of the nation's
3,200 '"third level' carriers was discussed. These include air taxis
and commuter lines that usually fly smaller planes such as Cessna,
Piper, Beechcraft and the like. According to Time, "last year 106

1
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people died in third-level crashes. The accident death rate for every
100,000 hours flown is 1.31 for the third-levels, as compared with 0.09
for the nation's eleven first level trunk carriers and nine regionals.”
This high accident rate was further documented in a FAA report [2]
which claimed that the death rate for general aviation is seven times
that of automcbiles. While many of these accidents could be avoided
by improved procedures, many of the fatalities could probably have been
avoided by an aircraft designed to withstand a certain level of crash
loading.

At the present time, crash impact loading is not considered in
the design of light aircraft. The problem is understandably complex,
due to the great number of unknowns, and the lack of any controlled ex-
perimental data. However, the problem should be manageable if the
structure is broken down into representative elements and if the crash
loading is simplified. After the response of a representative element
is correctly modeled and understood, a more rational design could per-
haps be proposed to resist the effects of crash loading on the structure.

As a point of departure, the basic structural element of a
light aircraft is assumed to be a thin cylinder, internally stiffened
by both stringers and rings (bulkheads). One typical loading to be
expected in a crash would be a suddenly applied axial compression
loading cf short to medium duration. If one could mathematically model
the dynamic behavior of a stiffened cylinder to such a loading, one
could then begin to rationally design a ''crashworthy" aircraft.

Beginning first with the static axial buckling studies of un-

stiffened thin-walled cylinders, one is impressed by the incredible
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number of papers written over the past several decades on this subject
alone. This fact is due in large part to the serious discrepancies be-
tween theory and experiment. Two authors who have provided extensive
bibliographies on this subject are Hoff [3] and Stein [4].

The so-called classical linear buckling theory was probably
first formulated by Timoshenko [5]. In this theory, effects due to
nonlinear prebuckling and initial imperfections are neglected. Unfor-
tunately, experimental results range from twenty per cent to eighty
per cent of the values predicted by this linear small deflection theory.
Investigators have attempted to resolve this discrepancy by including
in their analysis one or more of the following general effects: in-
plane boundary conditions, nonlinear prebuckling, nonlinear post-
buckling and initial imperfections.

Apparently, the first effects considered were initial imper-
fections and nonlinear postbuckling. In 1934 Donnell [6] proposed a
nonlinear finite-deflection theory, together with a consideration of
initial imperfections present in the thin-walled cylinder. This theory
was modified and refined by numerous authors including von Karman and
Tsien [7], Kempner [8], and Almroth [9]. In order to answer questions
of convergence of various solutions in the postbuckling range, Hoff
[10] solved the large displacement equations using a radial displace-
ment expression containing 1100 terms. It should be noted, however,
that all authors have implicitly ignored exact satisfaction of some
boundary conditions. This is partly due to the nonlinear terms in the
boundary conditions arising from the nonlinear strain-displacement re-

lations. Hoff [10] stated that the assumption of L/R>1 makes it possible
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5

In-plane boundary conditions can play a significant role in
obtaining theoretical buckling loads lower than the classical value.
This has been pointed out by numerous authors [3,15-17]. Apparently,
Hoff [3] was one of the first to document four different sets of
boundary conditions which could be identified as "simple-support
boundary conditions". Experiments performed in the ordinary tension-
compression testing machine could be represented by several of these
sets, depending upon the friction between testing machine and test
specimen.

It is now generally agreed that, given a realistig %EE~9§:
boundary conditions, the main reason that theory and experiment did
not agree in the past was due to initial imperfections in the test
cylinder. The agreement obtained between theoretical (linear) results
for a perfect shell with correct boundary conditions and experimental
results from very nearly perfect specimens indicate the validity of
the linear theory [19,20].

Theoretical buckling predictions for stiffened cylinders have
not shown the wide disparity with experimental results that their un-
stiffened counterparts have shown. However, numerous authors have in-
vestigated the effects of in-plane boundary conditions, nonlinear pre-
buckling, and initial imperfections. Nonlinear prebuckling deformations
have been shown to have only a small effect on the buckling load of
stiffened cylinders [16,21-24]. The effect of in-plane boundary condi-
tions on the buckling load of stiffened cylinders has also been inves-
tigated [16]. As before, the choice of in-plane simple support boundary

conditions can make a difference on the magnitude of the buckling load.
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However, as noted in reference [16], the influence of in-plane bound-
ary conditions diminishes for internally stiffened shells with in-
creasing values of stiffener eccentricity and area. Of course, a
light-aircraft structure would have internally located stiffeners.

As in the unstiffened case, initial imperfections can make a
considerable difference in the experimentally determined buckling load
of stiffened cylinders. The bulk of this research has been conducted
using the imperfection sensitivity concepts first introduced by
Koiter [25] and expanded by numerous authors [26-30]. However, as
pointed out by reference [24], the predicted regions of large imper-
fection sensitivity shift from one study to another, and have not been
verified by experiment. Also, the predicted sensitivities appear to
depend strongly on quantities such as torsional stiffness of stiffeners,
which only slightly affect the classical buckling load [32]. Fortun-
ately, the studies have shown that an internally stiffened shell is re-
latively imperfection insensitive, whereas an externally stiffened
shell is imperfection sensitive [29,30].

The importance of two other effects, stiffener eccentricity and
stiffener discreteness, have been explored by numerous investigators of
stiffened shells. The stiffener eccentricity or one-sideness has a
significant effect on the buckling strength, as demonstrated in various
ways by many authors [32-40]. Stiffener discreteness was shown by
Block, et al. [21] to have a significant effect on the buckling load,
even for structures with many stiffeners. Block [21] used a finite
difference approach and considered discrete rings only. His conclusion

is in direct contrast with Singer's concluding remark in reference [41]
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that "in ring stiffened shells under axial compression, the discrete-
ness effect is always very small." Singer used a linear Donnell theory,
and treated the stiffeners as linear discontinuities represented by the
Dirac delta function. Despite the disagreement as to the importance of
stiffeners in most light-aircraft, both stiffener eccentricity and dis-
creteness should be included.

Linear buckling theory has been used by nearly all investiga-
tors in their study of stiffened cylinder buckling, primarily because
stiffeners are closely spaced in most aerospace applications. However,
as demonstrated by reference [43], linear theory is only applicable
when the stiffeners are closely spaced. Again, this will not be the
case for the light-aircraft structure considered in this study.

This problem of static buckling of stiffened and unstiffened
cylinders has been extensively researched over the past 60 years. By
contrast, dynamic buckling of axially loaded cylinders has been studied
only for the past 15-20 years, and the amount of published work is only
a small fraction of its static buckling counterpart.

The first studies were primarily experimental and phenomenolog-
ical in nature. Some of the earliest work was published by Schmidt
[44] and Coppa [45]. Both experimenters considered only unstiffened
cylinders.

One of the first analytical treatments of dynamic buckling is
credited to Volmir [48]. 1In 1957, he investigated the buckling of a
shallow circular cylindrical panel subjected to a rapidly applied axial
load. He used the large deflection shell equations (generally attri-

buted to Donnell) and reduced them to equations in time only, using a
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Galerkin procedure. By making certain restrictions on the time-depen-
dent coefficients of the assumed radial deflection function, the system
of equations was reduced to a single equation, which was then solved
numerically. The final results were presented in the form of dimension-
less axial load versus time. A closely related study was one by
Agamirov and Volmir [47]. As in all subsequent work, both the longitu-
dinal and circumferential inertia were neglected.

In 1962, using essentially the same procedure as Volmir used,
Coppa and Nash [48] studied the dynamically loaded thin cylinder. They
used a two-term Galerkin procedure, in which the terms approximated the
familiar diamond buckle shape. Rotatory and axial inertia terms were
neglected. The assumed two-term solution contained a guess as to the
axial and circumferential buckle wavelength. The procedure was repeated
over a range of axial and circumferential wavelengths to find the combi-
nation that gave the lowest buckling load. A constant rate of axial
end shortening was used as the dynamic loading mechanism. Only quali-
tative correlations with related experiments were made.

In 1964 Roth and Klosner [49] studied the same problem pre-
viously investigated by Coppa and Nash. Roth and Klosner constructed
appropriate kinetic and potential energy relations. They used the
middle-surface nonlinear strain-displacement relations for thin circu-
lar shells which was based on the work of Donnell [6]. Applying Hamil-
ton's principle, they derived the equations of motion and appropriate
boundary conditions. Next, they rewrote their governing equations of
motion using an Airy-type stress function, and obtained the same equa-

tions as Coppa and Nash. Using a four-term radial-deflection function,
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together with the Galerkin procedure, they reduced their problem to a
set of four ordinary nonlinear differential equations. This final
set was solved using Runge-Kutta procedures. As is the case with all
prior large deflection theories, the assumed deflection modes did not
exactly satisfy all of the boundary conditions. Also, no correlations
with any experiments were made.

Lindberg [50] used a linear, small-deflection theory instead
of a large deflection theory, to calculate the growth of normal modes
of cylinders under axial impact. An inspection of Lindberg's experi-
mental setup quickly reveals that he was using an impulsive rather
than a step function loading. His shells were free at the end opposite
the impact end. As a result, the compressive impact stress had a dura-
tion (at the impact end), which at most was equal to the transit time
of the longitudinal stress wave up and down the shell.

In a recent dissertation, Howell [51] studied the transient
response of stiffened cylinders to an impact load. He used a linear
theory and smeared the effect of the stiffeners over the cylinder sur-
face. However, he applied the impact to a point on the cylinder sur-
face between stringers rather than to the ends of the cylinder. Also,
his time duration of loading and subsequent transient response measure-
ments indicate a wave propagation-type of study rather than a buckling
analysis.

The amount of experimental data on the dynamic buckling of un-
stiffened shells, other than very early work (44,45], has been sparse.
The most recent was that of Tennyson [52]. To date, no experimental
data on the dynamic buckling of stiffened cylindrical shells have been

found.
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The influence of damping on the dynamic stability of shells
has been investigated recently by several authors. Mescall and Tsui
[53] found that damping aiways increased the critical dynamic buckling
load for the thin cylinders, cones, and spheres considered in their
analysis. Consequently, it should be expected that a dynamic buckling

analysis that neglected damping would yield conservative results.

1.2 Research Objectives

The major objective of this research is to develop a dynamic
buckling analysis capable of predicting the dynamic response and
buckling load of a stiffened, thin, circular cylindrical shell under
the action of a suddenly applied step axial-loading pulse. This pulse
will be similar to that experienced by a light aircraft during a crash
on take-off or landing. The cylinder will be stiffened with widely
spaced rings and stringers, which will be representative of modern
light-aircraft fuselage structures. The stiffeners will be considered
as discrete elements with eccentricity due to their internal location.

In order to accomplish the research objectives it has been
necessary to devise a number of new approaches and methods. The fol-
lowing specific original contributions are noted:

1. The first discretely stiffened cylinder buckling analysis
in which nonlinear rather than linear strain-displacement
relations are used.

2. The first cylinder buckling analysis to solve the resultant
nonlinear algebraic and differential equations using a
modified Gauss-Jordan technique in conjunction with a

Runge-Kutta algorithm.
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The first dynamic buckling analysis with the capability
of handling any number of assumed deflection terms,
limited only by the available computer capacity.
The first dynamic buckling analysis of a discretely
stiffened cylinder.
The first dynamic analysis of any kind to use the Dirac
delta function to account for stiffener discreteness.
The first dynamic buckling analysis to contain the effects

of stiffener eccentricity or one-sideness.



CHAPTER 11

FORMULATION OF THEORY

2.1 Method of Analysis

An energy approach is used to facilitate the writing of compa-
tible governing equations for the unstiffened cylinder, stringers and
rings, which all buckle as an unit. This procedure allows for treat-
ment of stringers and rings as discrete elements, rather than the usual
orthotropic '"'smeared" analysis. Appropriate expressions for the poten-
tial and kinetic energies of the unstiffened cylinder, stringers, and
rings are formulated and presented in Appendix A. To allow for finite
deflections of the cylinder during the buckling process, the appropri-
ate nonlinear strain-displacement relations, as suggested by Donnell
[6], are employed. Also, the strain-displacement relations for the
rings and stringers are related to the mid-surface unstiffened shell
displacements. Then, in Appendix B, Hamilton's principle is used to
obtain the governing nonlinear differential equations of motion and
the appropriate boundary conditions which govern the prebuckling and
buckling of a stiffened cylinder. To obtain the prebuckling and buck-
ling equations, the axial, circumferential and radial displacements of
the shell (u,v, and w) are assumed to be separable into two parts as

follows:
u(x,y,t) = u,(x) + up(x,y,t)

v(x,y,t) = v,(x) + vp(x,y,t)

12
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w(x,y,t) = WA(X) + WB(XJYst) (2-1)

The subscript A denotes the axisymmetric prebuckling displacement;
the subscript B denotes the time-varying unsymmetric buckling displace-
ment.

The prebuckling equations and boundary conditions are ob-
tained by substitution of the axisymmetric displacements in Equations
(2-1) into Equations (B-10). In a like manner, the buckling equations
and boundary conditions are obtained by substituting Equations (2-1)
into Equations (B-11), and subtracting out the previously obtained pre-
buckling identities.

To solve the buckling equations, the prebuckliing quantities
(subscript A) are first determined directly. Galerkin's technique is
then applied to the three buckling equations of motion. The result of
this operation is a set of simultaneous, nonlinear, ordinary differen-
tial equations. The coupled equations are then solved by means of a

Runge-Kutta technique with the aid of a digital computer.

2.2 Hzpotheses

All of the following assumptions are implicit in the analysis:

1. The circular cylindrical shell and all stiffeners re-
main in the linear elastic range during buckling.

2. The cylinder undergoes a classical axisymmetric prebuck-
ling deformation during axial loading.

3. Initial imperfections in the stiffened cylinder are neg-
lected.

4. The Kirchoff-Love hypothesis is used for the shell; thus,



10.

11.

12,

13.

14
it is assumed to have a wall thickness which is small
compared to its radius.
The Donnell shallow-shell assumptions [54] apply. The
buckled cylinder contains at least several buckled cir-
cumferential wavelengths. See reference [55] for de-
tails.
The stiffeners are discretely located along the length

and circumference of the cylinder, and the width of the

stiffeners is small compared to the distance between them.
In-surface and rotatory inertia effects in the stiffened
cylinder are neglected.

Stiffeners behave as beam elements, and displacements
vary linearly across stiffener depth. This implies that
the stiffener depth is small compared to the radius of
the shell middle surface.

The total circumferential arc length of the ring is
approximately the same as that of the middle surface

of the shell.

The stiffeners are rigidly attached to the shell.

The stiffeners are symmetrical with respect to a normal
from the shell middle surface passing through the stif-
fener centroid.

The boundary ccnditions at the shell ends are not neces-
sarily satisfied exactly, as assumed by references [6,7,8,
10,45,48,49].

The cylinder has the characteristic buckling behavior of
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a "long" cylinder. Thus, the Batdorf parameter is
greater than thirty.

14, Effects of axial-wave propagation do not influence the
wavelengths at which the buckles form.

15. All material damping, thermal, and initial-stress ef-
fects are neglected.

16. The shell and stiffener materials are homogeneous and

isotropic.

2.3 Prebuckling Equations

The general nonlinear equations of motion governing the stiffened
cylinder buckling are derived in Appendices A and B. The appropriate
equations of motion and boundary conditions governing the cylinder pre-
buckling are obtained by substituting the A-subscript portion of Equa-
tions (2-1) into Equations (B-10) and (B-11). Primes indicate total

differentiation with respect to x. The prebuckling equations become

Niy = 0 (2-2)
N)'(YA =0 (2-3)
M+ (NyA/R) = 0 (2-4)

The appropriate boundary conditions at the cylinder ends are:

NxA + Nx =0 or u, = 0 (2-5)
xyA =0 or vy = 0 (2-6)

MxA + Nxé =0 or wA =0 (2-7)
M, =0 or w, =0 (2-8)
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In the above equations the following definitions apply:

E

Noo = l_vz(uA+vR“1wA)+£6(y-kd)EsAsuA (2-9)
Ny = I%ai(R‘lwA+vuA)+§6(x-jz)ErArR'lwA (2-10)
Neya = 64 (2-11)

M, = - gé(y-kd)EsAsisuA (2-12)

Equations (2-2) and (2-5) require that N , must equal -Nx.
This condition satisfies boundary condition (2-5). In a similar manner,
Equations (2-3) and (2-6) require that there be no applied shear. Thus,
if ny is equated to zero, boundary condition (2-6) will be satisfied.

To satisfy the third boundary condition (2-7), w, is set equal to a con-

A
stant. By making Wy equal to a constant, a classical prebuckling mem-
brane state is assumed for the stiffened cylinder. Finally, the fourth
boundary condition (2-8) is satisfied by setting MxA equal to zero.

For later use in the formulation of the buckling equations, the

following prebuckling identities will be used:

Ny =0 (2-13)
Ny =0 (2-14)
Neya = 0 (2-15)

2.4 Buckling Equations

The governing equations and boundary conditions of a stiffened

cylinder with discrete rings and stringers can be obtained by substituting
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Equations (2-1) into Equations (B-10) and (B-11), subtracting out
identities (2-2) through (2-4) and making use of Equations (2-13)
through (2-15). The buckling equations become:
NxB,x + nyB,y =0 (2-16a)

Nog o+ Neyp,x = O (2-16b)

A

- - - -1 -
MxB,xx 2MxyB,xy MyB,yy+R NyB+waB,xx NwaB,xx

-NwaB,yy'szwaB,xy+pth,tt+§prArwB,tt6(X-Jz)

+1§pSAst, (8 0-kd) = 0 (2-16¢)

The boundary conditions at the stiffened cylinder ends become

NxB =0 or up = 0 (2-17a)
nyB =0 or vp = 0 (2-17b) -
MxB =0 or WB’X =0 (2-17¢)

+2M

MxB,x xyB,y_waB,x+NwaB,x+N

yB¥B,x = 0 Of wy=0  (2-17d)

The definitions for the various buckling terms may be found in

Appendix B, Equations (B-4) through (B-9), where a subscript B is added

to each term and displacement.

2.5 Application of Galerkin's Method

The buckling Equations (2-16) are a set of coupled, nonlinear
partial differential equations. To reduce them to a set of ordinary
differential equations, the Galerkin weighted average method will be

used.
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The Galerkin method is an approximate assumed-mode method
similar to the Rayleigh-Ritz method when applied correctly [56]. The
method should be applied only to the equations of motion which arise
directly from application of either Hamilton's principle or Newton's
second law. If the equations are escalated by differentiation and
combined, the method often yields incorrect results [57].

To apply the Galerkin method, solutions are assumed for the
unknown variables in the equations of motion. In general, the solu-
tions will not satisfy the equations of motion exactly. In order to
minimize the error, the assumed solutions are inserted into the equa-
tions of motion and a non-zero "error function" is generated. Each
error function is then orthogonalized with respect to the assumed sclu-
tion functions. This orthogonalization process will give rise to a
set of equations which can be solved for the unknown solution function
coefficients. The resulting set of equations can be either linear or
nonlinear, algebraic or differential, depending on the equations of
motion and the form of the assumed solution.

To apply Galerkin's method to the buckling equations, the

following series of assumed modes will be used

u = ZZuij(t)sin(imnx/L)cos(jny/R) (2-18a)
v = ZZvij (t)cos (immx/L)sin(jny/R) (2-18b)
W= ZZwij(t)cos(imnx/L)cos(jny/R) (2-18¢)

Most researchers [6-9,45,48,49] who used a nonlinear shell

theory to study buckling resorted to one or more terms of the above
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series. As noted in Chapter I, these researchers were unable to sat-
isfy all of the boundary conditions. In line with hypothesis 14,
Equations (2-18) satisfy boundary conditions (B-l1la), (B-11b), and
(B-11c), but not boundary condition (B-11d).
Substitution of Equations (2-18) into the buckling Equations
(2-16) yields a set of "error functions", Qx’ Qy’ Qz’ respectively.

The orthogonalization process may be formulated as

27mR C=1,2,3"'
J I Qx(u,v,w)sin(cmnx/L)cos(Eny/R)dxdy =0 (2-19)

o ‘o £1,2,3 ¢

rZTTR L c=1’2’3..-
J Q (u,v,w)cos(zmmx/L)sin(Eny/R)dxdy = 0 (2-20)

o (o] y E=1,2,3“’

(2R (L =1,2,3 "
J Qz(u,v,w)cos(;mnx/L)cos(gny/R)dxdy =0 (2-21)

‘o o £=1,2,3"""

Because Qx and Qy are not dependent on time, Equations (2-19)
and (2-20) will each yield a set of nonlinear algebraic equations.
Since QZ is dependent on time, Equation (2-21) will yield a set of non-
linear ordinary differential equations in time. The resultant equa-
tions after some simplification are listed below, and the details of

the Galerkin method are found in Appendix C.

8, Iu; [126 +%(1 v)J 25 +(1 v2) (nREh) IZZE A _cosJ, cosJ,]
ig ig's's k &

-1
+A122viji(1+v)IiJj+6iC22wij[R inéjg

_y2 -1.3 > - 2 3
+(1-v?) (7REh) IiEESAszscoschong] 84 czzwlj[u JJ 25¢ +138, 2ie
+(1-v2)(ZEhnR)_lIngsAscoskacong] =0 (c-1)

K
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zzv..[J?a +;(1 v) 126,

& 117 i'ig

AIZZuij%(1+v)IiJj+6.

ziw, . [R71J.6

-2 —12
+2(1-v2) (EhL) JjgﬁrArcostcosIC]+6jg i3 i%ic

-1 -
2 -1 3 - 27113
+2(1-v4) (EhL) %(R JjErAr+JjErArzr)COSIjCOSI;] 8 ZZw [&J 621

2j& z

&IzJ'ﬁ +(1—v2)(EhL) J3ZE A cosZIJcosI ] =
J

(C-2)

a2yl 3r7h O 212¢.
Eh(1-v2) (l/sz)zzwijﬂicﬂi+A2 38, A4)+21iJj( By #B,+h =D +4vA

-2vA -2vA3)+J;(3A <34

) +.-8,)]+(2/L) 22w 3(5

3
) e 33& 8 ZE pArcos’l

scosI +(1/nR)ZZw 3(6 IgZESAScos3J cosJ, +A Eh(l-vZTIUVBR)
k

ic” 31; 3

. 2,12 2 -172_1 145 2
ZZwij(Ii+Jj)+62jg(2/L)ZZwij(%R Jj iszr)gﬁrArcos chosIC

w271 2 Y
cosJ +A1Eh(1 v4) ZZwij[(h /12)Ii

- 2174 2
Gﬁg(l/nR)ZzwijiliéﬁsAszscos Iy .

+(h2/6)1§J§+(h2/12)J3+(1/R2)-ﬁx(l-VZ)Ig(Eh) 1485, (2/L) 23w, ¢

[J;E I +2R'1J§E Az +(1/R2)E A ]ZcosIJcosIC+6 (2/L)Z£w1JJ§

. -1lgi : n
%%GrJrcme sijsmIcﬂSic(l/ﬂR)Z}:wiJ.Ii]Z(EsIOScoschosJE

2 1 w2y 1 p-1
+61§(1/WR)ZZwiinJjZG JgnRlsindysind +4,Eh(1-v2) VR o3u, (T,

3

3 5 w2y 11
+6ic(l/nR)ZEuijIiEESASzScoschosJ +4,Eh(1-v?) 'R ZZViij

g

3z -1 o2yl 3
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. 3472 -1 3 <2
ZZvi.wij(Jj+IiJj)+6 L EZv..w..J.ZErArcos chosIC

j 2j¢ ij7ij JJ

+zzWij[A1ph+6j prAr(Z/L)ZcostcosI

¢ j

;+GigpsAs(1/"R3£COSJkC°SJ£] =0

(C-3)

2.6 Numerical Solution

The buckling equations consist of a set of 2k nonlinear
algebraic equations and a set of k nonlinear differential equations,
where k represents the number of terms used in the assumed modes. Be-
cause of the complex nature of these sets of equations, no closed form
solution is known to exist. However, with given initial conditions,
the above sets of equations should be numerically solvable if we use a
Gauss-Jordan technique on the algebraic equations and.a Runge-Kutta
technique on the nonlinear differential equations. In addition to the
initial con&itions on the dependent variables, the solution of the
equations depends also on the externally applied axial load resultant,
ﬁx, and the circumferential wave number n. Of course, it will be neces-
sary to vary n over a range of values to find the minimum critical load,
since this will be the true dynamic buckling load of the stiffened
. cylinder. .. e .

An inspection of the set of algebraic Equations (C-1) and (C-2)
reveals that the nonlinearity is in the radial deflection terms,
wij(t). Thus,; if wij(t) is specified initially, Equations (C-1) and
(C-2) can be solved by a suitable technique for solving simultaneous
linear equations. The results, together with the value of wij(t),

can be substituted into the set of nonlinear differential equations



22
(C-3). Using a fourth order Runge-Kutta algorithm and advancing it
% step, a new set of wij(t) can be obtained. The new wij(t) set can
be resubstituted into Equations (C-1) and (C-2) and the process re-
peated three times to yield one complete step.

Since most Runge-Kutta algorithms are written specifically
for first-order differential equations, it is necessary to convert
the k second-order differential equations into 2k first-order equa-
tions by a simple change of variable. The following fourth-order al-

gorithm attributed to Kutta is used in the analysis [58]:

Wil TW; ¥ (g/6)(kl+2k2+2k3+k4)
where
k; = £(ts,y;)
k. =

o = £t +3g,y,+3gk,)

=
it

3 = £(t +g,y.+3gk,)

P
n

4 = £t +g,y;+gky)

In order to begin the numerical procedure, it is necessary to
choose representative initial values for the set of dependent variables,
wij(t)' Physically, this corresponds to giving the shell a slight ini-
tial radial deflection or velocity. This procedure was first suggested
by Roth and Klosner [49].

Finally, a criterion for identifying dynamic buckling must be
established. An inspection of the representative buckling curves
found in Chapters III and IV make it apparent that at some critical load
the structure is diverging from its initial displacement rather than re-

turning to its equilibrium (or zero displacement) position. Thus, as
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suggested in referenceg [49] and [59], the buckling load can be de-

fined as the load at which a large increase in the amplitude of the

deflection occurs. Of course, as mentioned earlier in this section,
it will be necessary to plot the buckling load as a function of cir-
cumferential wave number, n, and then pick the lowest resultant load
as the true buckling load.

Further details concerning the numerical techniques employed
may be obtained by consulting Appendices IV and V. One particularly
important technique, which allowed a general formulation of the
governing equation coefficients independent of the number of assumed
mode terms, will be illustrated here. It should be noted that the
coefficients of the various terms in Equations (C-1) through (C-3) can
be written as functions of the assumed mode subscripts i, j, z and &.
However, the identification of parameters by four rather than by two
subscripts becomes very cumbersome when attempting to construct a
general computer program. This problem was solved by making use of
an algorithm suggested in reference [60]. The algorithm permits the
rewriting of each coefficient in terms of only two subscripts P and Q,

and then 'decoding' the subscripts as necessary during the numerical

procedure. If a typical coefficient is represented by Acgij’ the al-
gorithm will convert it to AQP as follows:

i=P - ()it

=1+ (59,

e = Q- &30
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where i* represents the maximum value of the i coefficient and the

symbol ( )T represents the operation of integer truncation. An ex-

ample of this calculation for a four-term assumed deflection mode is

shown in Table 2.1. The operation of this algorithm can be observed

in Appendix V.

Table 2.1 Coefficient Algorithm

i 1 2 1 2
t ¢ i 1 1 2 2
1 1 (Q=1,P=1) (Q=1,P=2) (Q=1,P=3) (Q=1,P=4)
2 1 (Q=2,P=1) (Q=2,P=2) (Q=2,P=3) (Q=2,P=4)
1 2 (Q=3,P=1) (Q=3,P=2) (Q=3,P=3) (Q=3,P=4)
2 2 (Q=4 ’P=1) (Q=4 :P=2) (Q=4 ’ P=3) (Q=4 ’P=4)




CHAPTER III
EVALUATION OF THEORY

3.1 Comparison with Static Buckling

During the literature search no studies were found that dealt
exclusively with sparsely stiffened cylinders. Consequently, most
studies used a linear buckling theory in conjunction with a smeared
stiffener analysis. In the smeared analysis, the stiffener properties
are averaged over the appropriate dimension by dividing by the stif-
fener spacing. In the more exact analysis contained in this investiga-
tion, the stiffener properties are considered as discrete and a Dirac
delta function is used to handle the discreteness in the analysis. In
order to reduce the present discrete analysis to a smeared one for

comparison, the typical results in Table 3.1 can be used.

Table 3.1 Comparison of Smeared and Discrete Terms

SMEARED DISCRETE
Typical
Term EsAsu’xx/d kEsAsu’xxa(y-kd)
Result After )
. - 2 -
Galerkin bu; SI3TRLE A /d bu; JT2LE A sLc0sJ, cosJ :
Procedure k
Equivalent wR/d ZCOSJ cosJ
Terms X k £

25



26

Block, et al. [38] used a linear smeared analysis and a one
term assumed mode approach. This procedure reduced the static buckling
problem to a single algebraic equation containing the applied axial
load and the circumferential and axial wave numbers. In order to com-
pare Block's final equation with the present results, Equations (C-1),
(C-2) and (C-3) were linearized, the stiffeners were smeared using re-
sults analogous to those presented in Table 3.1, the inertia terms were
removed, and only the first displacement terms were included. When the
resulting equations were reduced, they compared exactly to final Equa-
tion (15) of reference [38].

In a later reference, Block [21] completed a linear classical
buckling solution for a cylinder with smeared stringers and discrete
rings. He used a Dirac delta approach to model the discrete rings.

His assumed modes consisted of a single circumferential term together
with a large number of axial terms, all of which satisfied the boundary
conditions of the classical simple support. Again, a term-by-term com-
parison with the present analysis yielded analogous results.

Unfortunately, after an extensive literature search, no theore-
tical or experimental work was found which dealt with dynamic buckling
of stiffened cylinders. The only dynamic studies were theoretical
studies of unstiffened cylinders, and these are treated in the next
section. However, to obtain an approximate comparison between the pre-
sent dynamic buckling analysis and previously published static analyses,
a dynamic buckling analysis was conducted using the shell parameters re-
ported in references [21] and [38]. In these references the cylinder

which was used had closely Spaced stiffeners representative of the
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large-diameter liquid rocket booster structures. Details of the struc-
ture and results of the comparison are contained in Fig. 3.1. The dy-
namic analysis was made using one circumferential and three axial terms.
Since the dynamic loading consisted of a step pulse loading of infinite
time duration, the predicted buckling load should roughly correspond to
the predicted static buckling load. As observed from Fig. 3.1, except
for the smeared static analysis, the dynamic load is generally above
the corresponding static load. The difference can be attributed to the
inclusion of the radial inertia and the nonlinear terms in the dynamic
analysis.

3.2 Comparison with Dynamic Buckling

The only dynamic buckling analyses found in the literature were
for unstiffened shells exclusively [46,48,49], and were not experimen-
tally verified. Generally, a nonlinear buckling theory together with a
stress function approach was used to reduce the problem to one equili-
brium and one compatability equation. These equations were solved by
the Ritz-Galerkin method and then integrated numerically. Because of
the sensitivity of the unstiffened cylinder to initial imperfections,
the analyses concentrated on the influence of these imperfections on
the buckling load. Since initial imperfections are not included in the
present stiffened cylinder analysis, it was necessary to extend the un-
stiffened cylinder analyses for comparison purposes. In order to ac-
complish this, the equations of reference [49] were solved numerically
for the case of zero imperfections, and plotted in Fig. 3.2. As a com-
parison, the same unstiffened cylinder was treated using the present

analysis, and the results are shown in Fig. 3.2. Because of the
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different radial deflection functions used in reference [49], exact
agreement would not be expected. However, the curves are in good

agreement.
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CHAPTER IV

RESULTS

4.1 Representative Aircraft Structure

Because of the large number of geometric and physical para-
meters involved in this investigation, it is impractical to present
results of a general nature. However, it is of value to present some
computed results for stiffened cylinders which are representative of
light aircraft fuselage structures. In order to determine the geo-
metric parameters of a typical light aircraft structure, four light
aircraft companies were contacted. Based on the data they provided,
Table 4.1 was constructed. It must be mentioned that the data shown
in Table 4.1 is approximate only. It reflects engineering judgment
made by the author, and not by personnel of the respective aircraft

companies. Many of the actual geometric configurations have been
simplified for this analysis. For example, actual rings or bulkheads
are seldom uniform, of constant thickness, or without "lighteniﬁg"
" holes to conserve weight. In this analysis, all rings and stringers
are considered uniform, of constant thickness, and evenly spaced along
the inside of the cylinder. No provision has been made for cutouts in
the shell for doors or windows. However, despite these limitations,

it is felt that a useful first-order parametric study can be made based
on the approximate quantities contained in Table 4.1.

31



Table 4.1 Representative Light Aircraft Geometry
Cabin R b A I, J z, A I J. Z,

Actt. Type L??ﬁt? (in.) (n.) M (@n2) @n%)  @Ge¥  (Gn.) (in2)  @GeY)  (@a%)  (in.)
A g;g%iz 112 25 0.30 33 0.032 0.006 0.0049 0.308 0.094 0.088 0.039 0.763

Single ., 25 0.25 22 0.065 0.015 0.0059 0.466 0.142 0.320 0.120 1.210

Engine

ET"?“ 168 34 0.30 27 0.046 0.013 0.0078 0.413 0.165 0.264 0.102 1.013

ngine

Twin 217 31 0.34 30 0.035 0.003 0.0022 0.187 0.133 0.461 0.159 1.513

Engine

A
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An inspection of Table 4.1 reveals that all four aircraft have
approximately the same stiffener area, but that some of the other stif-
fener quantities vary by as much as 50 per cent. This is due to differ-
ent geometrical shapes of the various stiffeners. For example, the
stringers in aircraft C are channel-sections, while those in aircraft D
are L-sections. However, the effect of variation of these parameters
was shown to be small, as documented in Section 4.3.

Based on the data contained in Table 4.1, a representative set
of stiffened cylinder parameters was chosen. To begin the study a 32-
inch radius cylinder was used. The skin thickness was 0.04 inches and
the largest spacing between rings was 32 inches. Thirty equally spaced
stringers, together with the stiffener properties of aricraft C were
used as a starting point. These various geometrical parameters were
then varied, and the influence on the dynamic buckling behavior was
noted.

In light of assumptions twelve and thirteen regarding the
cylinder boundary conditions, the cylinder radius, thickness, and
length were never such that the Batdorf parameter, Z, was less than
30. In fact, even if the stringers were smeared over the surface of
the shortest cylinder, the smallest value of Z was 190. Thus, the
expected buckling behavior of the stiffened cylinder would be that
of a "long" cylinder.

Due to the relatively wide spacing between the rings on general-
aviation light aircraft, it was felt that local buckling of the shell
between the rings would be the mode of failure, rather than general in-

stability. Local buckling between rings is defined as the buckling
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mode in which the rings have little or no radial buckling deformation,
and the cylinder buckles between the rings. General instability is
defined as the buckling mode in which the rings deform radially and
the cylinder wall and rings buckle as a composite wall. Since discrete-
ness of the stiffeners has been accounted for, the present analysis can
handle either type of instability.

Since an actual aircraft fuselage consists of a long cylinder
with a number of repeating bays between the rings, it is reasonable to
assume that buckling of the entire cylinder can be studied by considering
a representative smaller portion or subshell of the cylinder. If this
assumption is valid, fewer assumed mode terms in the deflection function
would probably be needed to correctly model the dynamic behavior of the
structure. Of course, fewer temms would mean a saving of computer time.

To validate the above assumption, the long cylinder shown in
Fig. 4.1 was divided into three subshells. Subshell I consisted of one
ring and an L/R of two. Subshell II consisted of two rings and an L/R
of three. Subshell III consisted of the stringers between two rings
and an L/R of one. A buckling analysis was performed on subshells I
and II, and the results are shown on Fig. 4.2. Although the curves di-
verge somewhat for higher values of n, the lowest buckling load for both
subshells was approximately the same and occurred for the same wave
number, indicating the similarity of buckling shapes. As expected, sub-
shell II required more terms than subshell I for convergence; subshell
I required three terms while subshell II required five terms. It should
be mentioned that the curves drawn through the calculated points on the

various graphs are for ease in identifying the lowest buckling load.



~ ‘\\\\\
- N
- < AN AN R
< N AN ) A\ \
TN \§\ \}\ \\ \\\\ \ \ B
RN A\ R\ M \ W u
3 A i\ \\\ t ]
R %\ \ N i i i
\\l Y il 1] ] il
| il
3 i ! i if i i/
A ! il i ) / 4
I X i / y /
i ! 1 ) / / / // /,
i j I 4/ 7 7 7
17 l;’ Y 27 V4 /’ 4
Y Y 7 i / # e
4 4 7 vl = “
4 J o7 e J
\@/ P a T v Subshell 117
~ '
Subshel] 7 Subshel1 17
Figure 4.3

General Aircraft Structure

qg



36
The curves are actually discrete points since n can take on integer
values only.

Subshell III was used as a further check on the convergence
of the curves presented in Fig. 4.2, and as a demonstration of local
buckling of the subshell between the rings. When a stiffened cylinder
undergoes local buckling between the rings, the rings can only exert a
torsional restraint on the shell. Thus, a lower bound on the buckling
load can be obtained by considering the stringer stiffened portion be-
tween the rings. This portion is shown as subshell III in Fig. 4.1,
and the corresponding buckling curve is plotted on Fig. 4.2. The close-
ness of the subshell I and II curves to this lower bound curve demon-
strates that local buckling between the rings is the mode of buckling
for the representative cylinder considered in this analysis.

The effect of discreteness on the stringer stiffened shell can
be seen in the region of n = 15, Since the shell consists of 30
stringers, n = 15 represents the case of local buckling between the
stringers. However, when rings are used in addition to stringers, the
buckling at n = 15 does not represent the lowest buckling load, as evi-
denced by the subshell I and II curves.

Based on this preliminary case, it is reasonable to assume that
local buckling between the rings will be the dominant instability mode.
Local buckling between the stringers will occur at some higher load and
thus not be significant. Also, because of the great increase in com-
puter running time and core space for each additional assumed mode term,
the number of assumed mode terms in the circumferential direction will

be limited to one. The number of terms in the axial direction will be
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increased until convergence is obtained.

4.2 Dynamic Considerations

As stated in Section 1.2, it is believed that this study re-
presents the first dynamic buckling analysis of a discretely stiffened
cylinder. Because of the relative newness of the dynamic buckling
field, general procedures and criteria for identifying dynamic buckling
have not been generally established as they have been for static buck-
ling. Consequently, the results presented in this and subsequent sec-
tions should be considered exploratory in nature. Unlike static buck-
ling analyses, where the lowest buckling load results from the solution
of an eigenvalue problem, the shell deflection-time history curves must
be inspected to determine buckling. Next, the buckling load must be
cross-plotted as a function of the wave number n to determine the
lowest buckling load. Because of the many parameters that must be varied,
and because of the large amount of computer time required for the ana-
lysis, the following general calculational procedure was adopted:

Computer Run #1

a. Allow n to vary from one to twenty.
b. Establish a best guess as an upper and lower bound
on the load, F.
c. Establish an incrementing value for F, usually beginning with 0.5.
d. Begin with a Runge-Kutta step increment of 0.1 msec
and terminate computation after t reaches 5.0 msec.

Computer Run #2

a. Narrow region of n to those values yielding the lowest

values of F.
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b. Narrow the upper and lower bounds and reduce the size
of the incrementing step.
c. Examine the smoothness of the maximum deflection curves
to determine whether the Runge-Kutta increment is adequate.

Computer Run #3

a. Identify and input the critical value of n causing the
lowest buckling load.

b. Narrow the upper and lower bounds of F and reduce the size
of the incrementing step.

c. Run the analysis for t>50 msec. to positively identify the
lowest buckling load, and the time to the first maximum of
the lowest buckling load.

d. Repeat the entire procedure with more terms in the assumed
deflection function to determine convergence of the results.

Although the analysis and computer program allows one to con-
sider an axial end load varying arbitrarily with time, the present study
has been limited to loads having a step function variation in time.
Since actual crash load durations are on the order of 100 milliseconds
[61], the step function time duration was at least 100 milliseconds.

In order to start the numerical analysis it was necessary to
establish the initial displacement and velocity conditions on the radial
assumed mode terms. It was decided to‘set the initial deflection of the
lowest mode equal to 0.001 which represented an initial displacement of
less than five per cent of the shell thickness. All other initial con-
ditions were set equal to zero. This procedure was suggested by re-

ference [49] for studying dynamic buckling of unstiffened cylinders.
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The initial deflection was varied with no change in buckling behavior,
thus indicating the insensitivity of buckling to initial conditions.

As mentioned in Section 2.6, the buckling load for a particu-

lar wave number is defined as the load at which a large increase in
the amplitude of the deflection occurs. The actual buckling load for
a particular structure can then be determined from a plot of load
versus wave number, such as shown in Fig. 4.2.

By considering the behavior of the lowest mode only as a func-
tion of time, it can be seen from Fig. 4.3 that there are two types of
shell response. If the load is below the critical buckling load, the
shell oscillates around its original equilibrium position. Since
damping is neglected in the analysis, this oscillation would rapidly
damp out in an actual shell. If the load is at or above the critical
buckling load, there is a radical increase in the maximum shell deflec-
tion. If the load is increased further, the maximum radial deflection
increases, and the time to maximum deflection decreasés. This type of
behavior was previously observed and documented for dynamic buckling
of unstiffened shells by Roth and Klosner [49]. They used the same
instability criterion by investigating the response of the lowest mode
only.

In order to distinguish the lowest buckling load between two
values of n, it was often necessary to observe the dynamic behavior
for durations of up to 100 milliseconds. For example, from Fig. 4.2

the buckling load occurred either at a wave number of nine or ten. To
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identify the exact buckling load and the corresponding wave number, it
was necessary to study the behavior of the shell in greater detail for
longer time durations. This illustrative study is shown in Figs. 4.3
and 4.4. Based on these figures, the representative cylinder would
buckle at a wave number of nine rather than ten. The shell reaches a
greater deflection in Fig. 4.3 than in Fig. 4.4 for the same applied
load.

As mentioned previously, the time required for maximum deflec-
tion to occur decreases as the applied load is increased. This time
can be classed as the critical time required for buckling. If the time
duration of the axial loading is short enough, the shell should be able
to withstand loads higher than the minimum buckling load. Although
this fact has not been experimentally verified for dynamically loaded
cylinders, the same conclusion was reached in reference [49]. Figure
4.5 depicts the time duration curve for the representative stiffened
cylinder.

4.3 Geometric Considerations

In an attempt to suggest design improvements on current light
aircraft, various parameters (such as number of stiffeners, stiffener
area and stiffener eccentricity) were varied and the effects on the
buckling load were noted. The results of this limited parametric study
are shown in Figs. 4.6 through 4.11.

The influence of the number of stringers on the buckling load
of subshell II are shown in Figs. 4.6 and 4.7. Since local buckling
between the stringers was not the dominant mode of buckling, only the

region of importance is shown on the respective figures. However, the
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calculations were also run for higher wave numbers to check this as-
sumption. In performing the calculations all shell and stiffener para-
meters were held constant except for the number of stringers. It can
be seen from Fig. 4.7, that if the number of stringers of the aircraft
C type were doubled, the minimum dynamic buckling load would be in-
creased by over 50 per cent. If the number of stringers was less than
thirty, local buckling between the stringers would probably be the do-
minant mode of buckling, with a corresponding decrease in buckling load.
This observation suggests a minimum weight design where the number of
stringers was just enough to prevent local buckling between the
stringers.

The influence of the number of rings on the buckling load is
shown in Figs. 4.8 through 4.10. Figures 4.8 and 4.10 represent the
lower bound on the calculations, since they were made using subshell
I1I, which does not include the torsional rigidity of the rings. The
calculations show the same trend previously observed when the number
of stringers was increased. If the distance between rings is halved,
the buckling load is increased by about 50 per cent. This same trend
is also verified when the ring torsional rigidity is included, as shown
in Fig. 4.9.

Finally, the ring and stfinger cross-sectional areas and eccen-
tricities were each varied independently and the analysis was repeated.
No significant change in the buckling load was noted for increases of
25 to 50 per cent of each parameter. This somewhat surprising result
was also observed by Singer, Baruch, and Harari [35] when they studied

the static buckling of stiffened cylinders using a linear smeared
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analysis. They stated that, except for very low values of the Batdorf
parameters, Z, the buckling load was not increased appreciably by
variation of stiffener area or eccentricity. Judging from the curves
presented in reference [35], the value of Z had to be less than 25 for
the variation to have any appreciable effect. As noted earlier, the
smallest value of Z observed for any of the light aircraft structures
was about 190.

The results of the parameter variation seem to suggest that
stiffener eccentricity or one-sideness need not be included in the ana-
lysis. This, however, is definitely not the case as shown in Fig. 4.11.
If the stiffeners were placed on the outside rather than on the inside
of the cylinder, the dynamic buckling load is increased. The effect of
stiffener eccentricity on the buckling load was first demonstrated by
Koiter [25]. Of course, from a practical standpoint, light aircraft
normally would not be designed with the stiffeners outside the fuselage!

The results of this section demonstrate that the number rather
than the geometric configuration of the stiffeners is the important de-
sign consideration. This is not surpriéing, especially due to the local
buckling behavior observed previously. The stiffeners can only exert
a torsional restraint in the local buckling mode. Consequently,
"beefing up" the stiffeners will only effect the buckling load slightly.
The results of this section also suggest an aircraft design where the
stiffener cross-section is reduced until general instability would be
on the verge of predominating over local buckling. Then the reduction
in stiffener weight could bz used to increase the total number of stif-
feners. The final design should be a more crashworthy aircraft with no

increase in weight.
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4.4 Discreteness Considerations

Because of the wide spacing between some stiffeners in light
aircraft structures, the stiffeners were treated as discrete elements,
by use of the Dirac delta representation. However, it was found that
most light aircraft have relatively closely spaced stringers. An in-
spection of Table 4.1 reveals that the number of stringers varies from
33 on aircraft A, which has a 25-inch radius, to 22 on aircraft C,
which also has a 25-inch radius. As noted in Section 4.1, a stringer
spacing of 30 caused some discreteness effects to be apparent, but not
enough to dominate the buckling mode. This was due in part to the large
number of stringers and in part to the restraining effect of the rings,
as was observed in Fig. 4.2. However, if light aircraft are designed
with fewer stringers it is recommended that stringer discreteness be
checked using the present analysis.

The discreteness effects of the rings were observed using a
suggestion from reference [41], where it was shown that the first temm,
the first approximation, of the discrete solution is equal to the '"smeared"
solution, for the case of equal rings. This fact also applies to the
present analysis. If the stiffeners are smeared in the analysis, and
the buckling Equations (2-16) are solved by the Galerkin method, one
sees that the terms corresponding to the unstiffened shell are the same
as those in the discrete analysis. The ring terms in the smeared ana-
lysis yield terms of the type

L

(ErAr/z)j cos (imx/L)cos (gmx/L)dx
0

“ErArL/“)Gi;  (4-1)
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The corresponding term for the discrete analysis would be

L
JogErjAer(x-jz)cos(inx/L)cos(cwx/L)dx = ZErjArjcos(inx/L)cos(gnx/L)

J
(4-2)

In matrix form, Equation (4-1) would be an it diagonal matrix,
whereas Equation (4-2) would also be an iz matrix, but not necessarily
diagonal. However, the diagonal terms of Equation (4-2) would be of

the form

gﬁrjAchosz(inx/L) = 3(E A L/2) (4-3)

Obviously Equation (4-3) is equal to Equatioﬁ (4-1), demonstrating that
the diagonal terms in the discrete case are equal to those of the
smeared case.

Thus, instead of generating a smeared analysis to compare with
thé present analysis, it is only necessary to compare a one term solu-
tion with a multi-term solution to observe the discreteness effects.

The discreteness effects on subshell I are shown in Fig. 4.12.
It is readily observed that a one-term solution was totally inadequate
in predicting the buckling load, but that a three- or five-term solu-
tion rapidly converged to a lower bound answer. It is interesting to
note that the three- and five-term solution predicted essentially the
same critical buckling load at the same wave number, but differed some-
what at the higher wave numbers.

The discreteness effects on subshell II are shown in Fig. 4.13.

They are of the same character as those for subshell I, but it took a

five-term rather than a three-temm solution to converge on the lowest

buckling load. A seven-term solution is also shown in Fig. 4.13 which
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further demonstrates the convergence. It is interesting to note that,
for subshell I, only the third and fifth terms had a significant effect
on the buckling load. Similarly, only the fifth and seventh terms had
a significant effect on the subshell II buckling load. This behavior
followed an empirical rule suggested by Dr. D. M. Egle for identifying
the significant assumed mode terms. This rule can be deduced from

Ref. [62] as:
1st term, (anim) term, (4nbim) term, etc.

where

numbers of bays between rings

n

m

axial wave number (normally 1)

This rule predicts the same important terms for subshell I and II as
were actually observed.

Thus, as anticipated, the discreteness of the rings or bulk-
heads in light aircraft must be accounted for. The usual smeared ana-
lysis'would calculate an incorrect wave number and a buckling load

that could be an order of magnitude too high.



CHAPTER V

CLOSURE

The analysis developed in this dissertation can be applied to
any light aircraft structure undergoing any dynamically varying axial
compression loading. Since the stiffeners are treated as discrete
elements, the analysis can be of great value in the design of new air-
craft that can better withstand crash impact loads without any great
increase in overall structural design weight. The computer program
contained in the analysis can handle any dynamically varying load
shape, such as ramp, exponential, or triangular. With minor modifica-
tion, the program could handle stiffeners with varying geometric cross-
sectional properties.

The present theory was compared with available dynamic unstif-
fened shell and static stiffened shell analyses, and good agreement was
achieved. A limited parametric study was conducted on a stiffened cy-
linder which was representative of a present-day, light-aircraft cabin
section. The results were presented primarily in graphical form, and
the following general conclusions were obtained:

1. Since local buckling between bulkheads predominated

over general shell instability in the test cases,
the stiffeners in most aircraft are probably over-

designed. A more efficient design could be achieved
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by designing the stiffeners such that general
instability buckling would be on the verge of
predominating over local buckling.

2. The number of rings and stringers should be in-

creased in preference to increasing the size or
cross-sectional shape of the stiffeners in cur-
rent aircraft design.

3. Stiffener discreteness must be included in a
dynamic analysis of the type presented here in
order to adequately model a light aircraft
structure in a crash environment.

Finally, it is recommended that this analysis be complimented
by a series of experiments in which representative cylinders are sub-
jected to a carefully controlled dynamic buckling environment. No ex-
periments were found in the current literature in which dynamic axial
compression buckling of stiffened shells was studied. Experiments of
this type could study phenomena such as time duration of loading
(Section 4.2), the effect of stiffener discreteness (Section 4.4), and
the effect of geometric variations of the stiffened shell on the
buckling load (Section 4.3). The present theory would provide the
analytical basis for designing such experiments to extract maximum use-

ful information.
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APPENDIX A

DERIVATION OF THE KINETIC AND POTENTIAL ENERGIES

FOR A DISCRETELY STIFFENED CYLINDRICAL SHELL

A.1 Nonlinear Strain-Displacement Formulation

The Donnell [4] nonlinear strain-displacement relations for

the shell mid-surface are

_ _ 2
EX - u:x - i’(w:x)
e =v, +WwR'l+ $(w, )2 (A-1)
y y y
Y. =u, +V, +W, W

Xy y X X’y
It is assumed that the stiffeners behave as beam elements and
that displacements vary linearly across the stringer depth. Therefore,
to satisfy compatibility of displacements where shell and stringer are
joined, we may write

€ _ = E_ - ZW,
yr y Yy

(A-2)

=g - ZW,

€
Xs X XX

A.2 Unstiffened Cylinder Strain Energy

The strain energy of the unstiffened shell is found by con-
sidering a small element of a thin shell. Since plane stress is as-
sumed to be a valid assumption for a thin shell and the shell material
is homogeneous, isotropic, and linearly elastic, the following consti-

tutive relations are appropriate

66



67

Figure A.1 Shell Geometry
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Q
n

E(l-vz)-l(sx+vey)

X
0. = E(l-vz)-l(e +ve_) (A-3)
y y X
Txy = Gny

The incremental change in strain energy per unit volume for

the small element is

du =g de +0 de
. X Xy

vol ¥ Txy‘dY (A-4)

y Xy

Substituting Equation (A-3) into (A-4) and integrating the result, one

obtains the strain energy per unit volume

%ot. = E(l-vz)-l[iei +%€§'+V€xey+ z%(1'\))&;] (A-5)

If Equation (A-5) is integrated over the volume of the unstif-
fened cylinder, both the extensional and the bending strain energy will

be found. This integration yields

2nR (L si-1, o ) )
Ucylinder = ijo fo[Eh(l-v ) (ex+25xey+ey+-%(l-v)yxy)
(A-6)

2 2)]dxdy

+ D(w,xx+w’yy) - ZD(I"V) (W,xxw:yy'w,xy

If the strain displacement relations (A-1) are substituted
into Equation (A-6), one obtains
27R¢L 1 1,
= -v2)~ 2 24 (2 -1 2
UC-jo Jo{ﬁh(l ve) [%u,x+iu,xw,x+(s)w,x+vu,xv,y+%vR W,

+§vu,xw,§+&vw,§w,§+vR‘lwuafivw,iv,y+k‘1wv,y+iv,§+§v,yw,§

“ly 24 Ly, b 2,101 244y .2
HER™ W, ()W, + B (W/R) T+E (1-0) (Bu, T+dv,Seu, W, W, 4V, W, W,
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2
2 2 - 2
+u,yv,x+%w,xw,y)] + D(w,xx+w,yy) 2D(1- v)(w,xx 'yy w,xy)}dxdy
(A-7)

A.3 Ring Strain Energy

The rings are considered as thin curved beam elements, with
the strain energy of an individual ring consisting of strain energy
due to flexure, extension, and torsion. Thus

2mR
= 2 2 -
3] J . (f ArE e 2dA ¢ Grer,xy)x_szy (A-8)

Next, the ring strain-displacement relations (A-2) are substi-
tuted into Equation (A-8) and integrations are performed over the ring

area. The strain energy of N rings becomes

27R (L 2
= ;ZJ Jo(ErArgy Zgﬁrzrw yy y ErIorw’yy
2 o4 -
+Grer,xy)6(x Jl)dxdy (A-9)

where §(x-j&) is a Dirac delta function defined by

£(32) (x=32)

0 (x#j4)

J f(x)8(x-jo)dx

§(x-jL)

(A-10)

Now, Equation (A-9) is in terms of the strains of the shell
middle surface. If the shell strain-displacement relations (A-1) are
substituted into (A-9), one obtains

2nR (L 2 1 2 lyng 24 Ly 4
Uy = %IO Jo{ErAr[%v,y+v,yR WV, W, CHRT T, ok ()W,

/R -2 W, (v, Rl D THE L v, 2

%Grerx;ﬂd(x j2)dxdy (A-11)
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A.4 Stringer Strain Energy

In an analogous fashion to the derivation of the ring strain

energy, the stringer strain energy can be found as

27R(L
- 2. 5 2 2 -
Ug {;IZJO JO(ESASEX ZEsAszsw,xsx+EsIOSw,xx+GsJSw,xy)6(y kd) dxdy
(A-12)
where
J £(y)8(y-kd)dy = £(kd) (y=kd)
- (A-13)
6(y-kd) = 0 (y#kd)
As before, Equation (A-1) is substituted into Equation
(A-12) to obtain
2mR (L 1
= 2 2 — ’+_" - 2
Us EJO JO{ESAS(&U’X+%u’xw’x+ 8 ox 2 o x 2 o xx oy
2 2 - -
+%ESIOSW,XX+%GSsz,xy}6(y kd)dxdy (A-14)

A.5 Potential Energy of External Load

The potential energy of the externally applied load on the end
of the stiffened shell is the same as the negative of the work done on
the shell. Thus it can be calculated as the product of the applied
force and the change of length of the cylinder. Finally, the potential
energy due to the load resultant ﬁx applied at a distance € from the
shell middle surface is

2mR L
Uexternal = I Nx(U-ew,x)lody (A-15)
load
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A.6 Total Potential Energy

The total potential energy is found by adding Equations (A-7),

(A-11), (A-14) and (A-15) to obtain

21R (L T 1. 1
= -v2)~ = - 2
] Jo Jo{Eh(l ve) [%U,x+£u,xw,x+8 w,x+vu,xv,y+%vR ww, 2

2

+%vu,xw,§+&vw,§w,§+vR‘lwu,x+ivw,iv,y+R'1wv,y+%v,§+£v,yw,y

Sl 2. Lot 2,11 2.1y 2
+iR ww, o+ w,y+%(W/R) +3(1 v)(%u,y+%v,x+u,yw,xw,y+v,xw,xw,

8 y

)]

2
2y 2 -2(1- -
Vo BN W D TD [, 4, )2 (0] (W, W 0

- 2 2 2,.p-1 2
+§6(x 32)[%Erlorw,yy+£Grer,xy+ErAr(%v,y+R v,yw+ifv,yw,y

+R"h 25 1 w,;+%(w/u)2-i

- -1 _13 2
8 V, W, z_R ww,yy 3z Wy W )]

rywyr Toyy'y

- 2 2 2 2.1 4
+£6(y kd)HESIOSW’xx+%Gstw’xy+EsAs(J"u’x+%u’xw’x+ g Wox

- - - - L
—zsw,xxu,x—zsw,xxw,i)]}dxdy+Jo Nx(u-ew,x)lody (A-16)

A.7 Total Kinetic Energy

Neglecting in-surface and rotatory inertia effects, one may
write the kinetic energy of the unstiffened shell as

2n7R

Thnstiffened

L
J w,2dxdy (A-17)
shell 0

= %phJ

(o

In a like manner, the kinetic energy of rings and stringers

(referenced to the shell middle surface) may be written as

T = %gf

T, = %EJ

27R (L
[ 6(x-j£)prArw,%dxdy
0

2nR

(o]
(A-18)

L
j G(y-kd)psAsw,%dxdy
o ‘o



APPENDIX B

APPLICATION OF HAMILTON'S PRINCIPLE TO DERIVE

THE EQUATIONS OF MOTION

The governing equations of motion are obtained from Hamiltom's
principle, which requires that the first variation of the time-inte-

grated difference between the potential and kinetic energies be zero.

t2
GJ (U-T)dt = 0 (B-1)
t

Substituting Equations (A-16), (A-17) and (A-18) into Equation (B-1)

and performing the variational operation, one obtains

t, t (2nR (L N
GJ (U-T)dt = J J J [Eh(l-vz) {[u, +iw,2+vv, +ivw,2+R"1vw]éu,
t) 0’0o ‘o x X y y X

(19 [, 1w, W, 00, 160, +H[L-v] [0, 0w, W, v, 16V,

+[vu,x+&vw,§+v,y+R'1w+%w,§]6v,y+[u,xw,x+iw,i+R'lvww,x

2 -
+%w,xw,y+vw’xv’y+%(1 \)) (u’yw’y+v,xw,y)]6w’x+[vu)xw’y

2 -1 3 -
+%\)w:xw,y+vyyw’y+k ww,y"'i'w,y"'i'(l V) (u,yw;x"’v:xw:x

+w,yw,§)]6w,y+[ivR'1w,§+R'1vu,x+R'1v,y+iR’1w,§

A (1/R) 20} o] [aw, i, 0w, +aw, e, ]

XX

. - - -1 2
6w,yy+[1 v]w,xy6w,xy}+§6(x Jl){ErAr[v,y+R w+iw,y
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-Z.w, ]6v, +E_A_[w, v, +R7tww, +4w,3-Z w, w, ]Jéw, +E_A [R7lv,
R L LT L

-1y 2 2_c p-1 -1 2
+3R w,y+w(1/R) er W, ]6w+[Er10rw 'y ErArzr(V’ +R w+£w,y)]

. - 2_3
6w’)’}’ Grer’xy xY}+£6(y kd){Es‘A‘s[11’>(J”k.w’x st’xx]duﬁ:EsAs[w’xu’x

+%w,x-z W W J6W, +[EI1 w, -EA3Z (u, +%w 2)]Gw +G_J w, 6w, }

S S 0S XX S§S§S ’XX 'S’ s Xy Xy

-phw,tdw,t-§6(x-Jz)prArw,taw,t-ga(y-kd)psAsw,téw,t dxdydt = 0
(B-2)

The following illustrations of integrations by parts opera-

tions will be performed on Equation (B-2).

trL t L (L
joj u, 6u, dxdt = Jo{u,xdu, -J u,xxéudx}dt

o o’0
t L L L
J J w,28u, dxdt = J 26u| éudx}d
XX
0’0o 0 o

o
L4
-
O
[=4
v
>
[a R}
bl
[N
+
n
[

o ‘o

=]

0

L

L
{v, 6u| J Vi Sudx

t(L L 2
J J w,28u, dxdt = 26u| (¥,y) sudx}dt
0’0 ‘ 0°0 X
tJZNR t 27R ¢27R

W, W, éu, dydt J W, w, du -J W, W, +w, w, )Sudxidt
t rL t L L (L
foJow’xxaw’xdedt ) Jo{w’xxdw’xlo'w’xxxéw|°+Jow’xxXXGde}dt
jtTZWRJL t{ L |2ﬂR 2mR ,L

W,  Sw, _dxdydt = J J W,  &w, dx-J W, . Swi dy

oo Jo X X 0lo X Xy o W

2nR (L
+Jo J w,xxyyéwdxdy}dt



Making use of the above integration by parts forms, and per-
forming the indicated operations in Equation (B-2), one obtains the

following equation

tz t 27R L -1
6{ (U-T)dt = f (-I J {Eh(l—vz) [u,  +w, w,_ _+Vv,_ +vw, W,
ol Jo XX X ’xx Xy y

tl o} Xy
-1 _
+R vw,x+a}(l v) (u,yy+w,xyw,y+w,xw,yy+v,xy)]
+£6(y'kd)EsAs[u’xx+w’xw’xx-zsw’xxx]}GudXdy
2mR 2y-1 2 2,p-1
+Jo {Eh(1-v?) [u,x+%w,x+w,y+i;vw,y+R ww]
- 23 N L
+]z(6 (y-kd)E A [u, +iw,2-Z W, ] +Nx}6u| Jdy
L -1 2nR 2nR (L 1
+J $Eh(1+v) {u,_+w, w, +v, }6u| dx-J J {En(1-v2)
X Ux Uy X

0 o o ‘o
. -1 1 -
[vu,xy+vw,xw,xy+v,yy+R w,y+w,yw,yy+z(l v)(w,xxw,y
W, W, U, +V, +Y6(x-FR)E_A_[v, +R lw, +w, w,
Wy oy Vo) 14 L8 G-IDE A Vs y "y yy

J

27R 1 L
-er’yyy] }6vdxdy+Jo 3Eh (1+v) {w,xw,y+u,y+v,x}6v| &y

L
-1 - .
-u2 2 1 2 -
+J0{Eh(1 vé) [\)u,x+irvw,x+v,y+R w+%w,y]+26 (x JQ,)ErAr

-[v,y+R'1w+&w,)2,-2rw, -

2R 27R (L
1}sv] dx+J J {Dv"w+phw
Yy o

0
0
+Z<S (x-j2)p AW, tt+lz<6 (y-kd)p AW, . } swdxdy

2R ¢L po-1 , -
-jo Jo{Eh(l-v) [u,xxw,x+u,xw,xx+1.Sw,xw,xx+R w,x+R v,
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2
+2W, W, W, +IW,4W, +UW, _V, +UW +tvu, w, +iu, w
2 X’y ’xy 3 ’y XX VW xx 'y ’xv’xy v ’xy ’y : ’xy ’y

+u, W, +£vw Zu, v, w, +v, w, +R7Iw,2+R"1ww, +1.5w,2w,
x’yy Xy ¥y Y y vy y Yy y vy

+ (1'\’) (u)yw’xy'*%v ’XXW’}’+V ’Xw :xy"'i'u:yyw ’X+%V,X}’W’X

2 -1 -1 2 2
+ - + + + +3v + -kd w
B, 0) -R7H (v, #R s, Devu, +how, 0 ] ;c(y JEA [w, u,
+w, u, +1.5w,%w, -%w,? Z W, W, tZ U, I W 2.7 w, w,
X ’xx X ’Xx °s XX o xx T Zs M xxx T8 rxx T2  x Y xxx

—(Ios/As)w,xxxx-(GSJS/ESAs)w,xxyy]+§6(x-Jz)ErAr[w,yyv,y
+w, v, +R~lw,2+R"lww, +1.5w,2w, R-1v,
yyy 4 Yy 'y YY Y YY “r" Y YYY Y
2 _ -
_ip-ly 2. 1 -1 -
iR w,y w(1/R) +er w,yy ‘rv’yyy rR w,y or/ r) 'yyyy

-(G J_/E A )w, 247 W, W, ] E by -kd)CI W,

rrrr xxyy r vy r’y ’yyy y

L
- - vyl
+Za, (x-j2)6.J v, xyy}éwdxdy+J0{D[ Wigvy vw,xxy]+Eh(1 v2)

. 2 -1 3 _
[vu,xw,y+%vw,xw,y+v,yw,y+R ww,y+%w,y+i(l v)(u,yw,xw,xw,x

1
s W2 )]+§6(x JRIEA T, v, +R”ww, +£w,y ooy (Lo /A
27R
W Z R lw, +7_w, w, }Gwlan +[ {D[-w, . -2w,
YYY r YY r y rly yy o XXX Xyy

a2yl 3,0p"1 2
+vw,xyy]+Eh(1 ve) [u,xw,x+&w,x+vR ww,x+%w,yw,x+vw,xv,y

; 2y]. . V6 (x-3
+HH(1-9) (U, W 4V, W, 4, W, 5] éé,y(y kd)G I W, §d(x i)

G J W, +26(y—kd)EsAs[w,xu,x+%w,i+2

rr ’xyy o x 25U Tos/ Ag)

S
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L
]}6wl2dy+J {ZD(l—v)w,Xy+ZG(x-jz)GrJr

.w’xxx-(Gst/EsAs)w’xy o :

y

2R 21R
-w,xy+lz(6(y-kd)Gstw,x }Gw,xlo dx+J0 {D[w,_ _+vw, ]

y x"ryy
- - 2— _" L
—Ed(y-kd)EsAs[zsu,xnsw,x (I,s/AIV, ] Nxé}éw,x|ody

L
- -3 3 5 R-lweds w 2o
+JO{D[w,yy+vw,xx] gé(x Jz)ErArLzrv,y+er w+1fz][_w,y (Ior/Ar)

2R _
w,yy]}&w,y]o dx}dt =0 (B-3)

Since the variation of the function with 6 is periodic, all
of the terms in Equation (B-3) that are evaluated between zero and 2mR
reduce to zero. The three equations of motion (u,v,w) and all relevant
boundary conditions can now be extracted from Equation (B-3).

To simplify the governing equations, we make use of the nota-

tion advanced by Kraus [50], and define the following terms

-1 -
N, = Eh(1-v2) {u,x+%w,§+v(v,y+R 1w+&w,§)]+£6(y-kd)EsAs(u,x+%w,§
2V ) (B-4)
- 2y-1 -1 2 2 s
Ny = Eh(1-v?) [v,y+R w+%w,y+v(u,x+%w,x)]+§6(x JUEA,
’ R—l w,z'- Wy B-5
(v y+ Wt y Z) yy) (B-5)
-1
Ney = $ER(LH0) 7 (0, #v, b, W, ) (B-6)
= . - - 5 15 2 -
My = -Dlw,  bow, ) Ea(y K)EA_[(I /AW, ~Z.u, -$2.W,2] (B-7)
- . _ s s 5 p-1
My = D(w,yy+vw,xx) gd(x Jz)ErAr[(Ior/Ar)w,yy 25y z R™w
'%2 w’Z] (B'S)

Ty

Mxy = -D(l-v)w,xy-igs(y-kd)Gstw,xy-£§6(x-jl)Grer,xy (B-9)
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The three equations of motion (u,v,w) can now be extracted

from Equation (B-3) and written as

N + N =0 (B-10a)
X,X XY,y
N + N =0 B-10b
Y,y Xy,X ( )
- -2M M +R7IN -N.w, -Nw, -2N_ w,
X,XX XY ,Xy Y,YY Yy XXX Yy yy Xy °XxXy
+phw,tt+§6 (X"J 'Q’) prArw’tt*.Ea (Y'kd)psAsw: tt = O (B— ].OC)

In a like manner, the boundary conditions which apply at the

ends of the cylinder can be extracted from Equation (B-3) and written

as
N +N_ =0 or u=20 (B-11a)
X X
N =0 or v=20 (B-11b)
Xy
M +N&=0 or w,_ =0 (B-11c)
X X X
M + Nw, +N =0 or w=0 (B-11d)

M + W,
X,X XY,y X X Xy 'y



APPENDIX C

APPLICATION OF GALERKIN'S METHOD TO OBTAIN A
SET OF ORDINARY NONLINEAR GOVERNING

DIFFERENTIAL EQUATIONS

To correctly apply Galerkin's method, one must have the error
functions Qx’ Qy and QZ orthogonal to the assumed mode solutions. The
error functions are formed by substituting the assumed displacement
functions (2-18) into the buckling equations of motion (2-16). The
orthogonalization equations are Equations (2-19), (2-20) and (2-21).

Obviously, a number of terms in each orthogonalization equa-
tion will integrate to zero. For ease in identifying and keeping
track of the various terms, a table is constructed for each of the
orthogonalization equations. In the following development, the B sub-
script is dropped as understood.

Table C.1 contains the final integrated results of Equation
(2-19), which is repeated below for easy reference
1,2,3...

27R /L 4
J J Qx(u,v,w)sin(;mwx/L)cos(gny/R)dxdy =0 (2-19)
o ‘o £ =1,2,3-:

Thus, after integration, Equation (2-19) becomes:

2 L1 12 2 -1
8 ZZuij[Iié g+£(1 v)J 65€+(1 v2) (rREh) IiEESASCOSJRCOSJE]

3

4 j
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Table C.1. Integrated Terms from Axial Equation of Motion.

TERM FINAL INTEGRATED RESULT
- vy ! 2
Us x %AlEhwRL(l vé) Zzuijli
21 Lorw 213
Wy Wy As(EhnRL/S)(l ve) EZwiin
-1
- 2
vv,xy iAIEhnRLv(l ve) ZZviinJj
vR- 1w -3A EhnLv(l—vz)-IEEw I
’x 1 ij°i
w2y Lgow 27 72
vw,yw,xy As(EhnRLv/S)(l v4) ZZwiinJj
-1 2
u, -%A EhmRL(1+v) “IZfu, . J%
yy {EATRL (1+0) “EEu, 53
-1
V’xy -&AlEhnRL(1+v) ZZviinJj
W, W A, (EhmRL/16) (1+v) ~Lzzw.21,J2
’xy ’y 5 1) 1)
“los 27 12
w’xw’yy As(EhnRL/16)(l+v) ZZwiinJj
. 2
Us x %6iCLzzuijIiéESASCOSJkCOSJE
213 2
Wy Moo &GZiCLZZwiinEESAscos chong

cosJ

k™g

_3 - 3 5
2 MWssix %GiCLzzwiinEEsASZSCOSJ
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- 2 3
+A122v F(1+v)1, JJ+6 CZZW J[R7IvI, a +(1 -v2) (vREh) ~ 1y ZES sZs

+413

-coschosJE]-G

TIw,2[11.J2%6
13[& 1%

2iz 2 £ 2j€

2 -1.3 2 - -
+(1-v2) (2EmR) IiEESAScos chong] 0 (C-1)

In a similar manner, Equation (2-20) may be evaluated. (The

details of integration are contained in Table C.2.)

]
[y
-
N
-
W

ZTI’RL C “ e
- f J Q, (u,v,w)cos(zmrx/L)sin(Eny/R)dxdy = 0 (2-20)
o Jo7 ‘ £ =1,0,3 -

After integration, Equation (2-20) becomes

2 0 T2 _y2 -1
AIZZuij%(1+v)IiJj+6jEZZvij[JjGiC+%(1 v)128; +2(1-v2) (ERL)

.72 -1 » 1 ,
JngrArcostcosIC]+6jEXZwij[R Jjai;+2(1 v2) (EhL) §(R JjErAr

+J3E_ A_Z )cosI.cosI_]-6

27153 2 2
jfrrr 5C0ST 1=y 22w, [3I58,, 4315 1758254 (1~ ) (EhL) !

4

.33 2 - _
JngrArcos chosIC] 0 (C-2)

Finally, Equation (2-21) may be evaluated. Details of this

integration are contained in Tables C.3, C.4 and C.5.

27R g =1,2,3--
J I Qz(u,v,w)cos(cmnx/L)cos(Eny/R)dxdy =0 (2-21)
o ‘o £ =1,2,3-..

The last entries in Tables C.4 and C.5 are expanded here for
clarity. They hinge on the definition of the derivative of a Dirac
delta function found in reference [62].

f x(t)6 M (t-pydt = (1) )
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Table C.2. Integrated Terms from Circumferential Equation

of Motion
TERM FINAL INTEGRATED RESULT
-1
- YA 2
V’yy &AIEhnRL(l v4) ZZviij
-1 - 2 -1
R w,y %AlEhnL(l vé) ZZwiij
-1
W, W, A. (EhmRL/8) (1-v2) “giw.2J3
yy 5( /8) ( ) 133
- IR
Vu’xy %AlEhnRLv(l V<) ZZuiinJj
W A (EhaRLv/8) (1-v2) ~lzw,21.J
’x Xy ) ij ivj
-1
'y -&AlEhnRL(1+v) ZZuiinJj
-1 2
Vsx -kAlﬁhnRL(1+v) ZZviin
o) Ly 272
w’xxw’y AS(EhnRL/lé)(1+v) ZZwiinJj
-lo. 0 272
w’xw’xy AS(EhnRL/16)(1+v) ZZwiinJj
, -8, mRELv, .J%)E .
\ yy Jgﬂ vlJ J% rArcosIJcosIC
R 1w, -8, m2iw, .J.JE A _cosI,cosl
y JE 1]} Jj rr J T
W, W, §,..mRZZw, 2J3)E_A cos?I.cosl
y''yy J"Z’Jé: 1JJ§1‘1‘ R 4
-Z W, -8, ,mRZZw, .J3)E A Z_cosI,cosl
ryyy J€ 1jj)srrr ) 4
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Table C.3 Unstiffened Cylinder Integrated Terms from Radial
Equation of Motion

TERM FINAL INTEGRATED RESULT
iy 2 271 T 34
%w,xw,xx Eh(1-v¢) (nRL/64)(3A1+A2 3A3 A4)EZwiin
iy 2 w21 } 37272
ng,yw,xx Eh(1-v%) (vnRL/64)(3A1 3A +A A4)22w 214 JJ
iy 2 vyl . - 374
iw,yw,yy Eh(1-v4) (wRL/64)(3A1 3A2+A3 A4)EZwiij
-1
- 2 —v2 37212
uw, 2 vy Eh(1-v#) (vTrRL/64)(3A1+A2 -34 A4)ZZw JI JJ
W, W, W Eh(l-vz)'I(nRL/sz) (1-0) (-8 +B+8 =0, ) E2W 31252
’x7 'y xy 2 4 ij7i’;
W, $A DnRLIZw, . IM
XXXX 1 ij71
W, A, DrRLEZw, .12J2
XXyy 1 ij7ivj
W, 34, DnRLEZIw, . J2
Yyyy 1 133
- w2yl L 3
u, Wsoo AsEhnRL(l V<) 8221.11J lJI1
')\_1 1 2
-VV, W, A.EhvnRL(1-v=) = ZIIv, JI4d.
y ’xx 5 8"7'ij 1J i’j
-vR™ tww, A EhvrL(1-v?) "} zm 212
XX 5 ijii
2y-1 1 3
-V, W, AL.EhmRL(1-v4) = =fiv, .w,.J?
y vy 5 871 4j ]
-wR-1 2 L 272
wR w,yy A EhnL(l v ] EEWUJJ
2y-11 2
-vu, W, A_EhvrRL(1-v2)~ —££u w, . 1.J¢
x'yy 5 ijiji’j
-u, W, A EhnRL(l+v) —£Zu W, .1.J2
y Xy ij7ij i)

Table C.3 Continued
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Table C.3 (Cont'd.)

TERM FINAL INTEGRATED RESULT
V., 8 EhnRL(1+v) " Lgzv, w127,
X °xy 5 87 ij1j71 )
Yy %AlEhnL(l-vz)_IZZviij
R™lw %AlEhnLR'l (1-v2) ‘lzzwij
w2 -AsﬁhﬂL(l-vz)‘l(1/16)>:>:wi§JJ%
vu,x iAlEhnLv(l-vz)-IZZuiin
ivw,i —ASEhan(l-vz)-l(1/16)22wi§1§
phw,tt %AlphnRLZZﬁij
R, -iAlltlanLZZwijI%
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Table C.4 Ring Integrated Terms from Radial Equation of Motion.

TERM FINAL INTEGRATED RESULT
4
(Ior/Ar)w,yyyy GjEnREZwiijZErlorcostcosIC
-V, 8, ,mR2Zv, J3JE A Z_cosI,coslI
T 'yyy j& ijjerrr j 4
-2z R7 1w, 26, 75w, . J2JE A % cosI,cosl
T Yy j& g Jjyrrry
- 214 5 2
zrw yw’yyy %szEnRZZwiijgErArzrcos chosIC
272
6,J,/E, AV oy 6jEwREZwiijIigGrJrcostcosIC
-V, W, REZ J3 E s21
v yw vy 38 2 gREZV; w Z A co JcosIC
-wR™ 1y S.. TIIw,2J2YE_A_cos?I.cosI
’yy : 2jg i) JZ TT it
-3w,2w, 8) 1w, 3.3‘+ EA cos3I.cosl
BaMoyy (655=835¢) (7/8) § i
Vs djngZViijEErArcostcosIc
R 1w 8., mR"1zzw, .JE_A_coslcosI
J€ 1Jj rr J g
2 232 2
b2 38, 5niIw; 32 ZE Ajcos®1cosT,
prArw’tt Ep A TRIIW, §c°5I3c°51§
2 -
G J ¥, 'y 8, (x-32) 5jgnRzzw13J I. §G J_(zmnlL 51nIJ51nI

~-I.cosl. I
i Jcos C)
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Table C.5 Stringer Integrated Terms from Radial Equation of

Motion.
TERM FINAL INTEGRATED RESULT

(1o /AWs s rox 6., LZZwlIIiZEsloscoschong

-2, ‘_ 38 Liku, 1 ng(ESAszscoschosJ :

A B 46, CL22w1§I';XESASZscoskacoch
(GSJS/ESAS)W,XXYY J‘rdicLzzwij IiJ%lZ(GSJscoschong

U, W, 56, CLZEuljleIfZE A coskacong
-3w,2 V20, (8, - Slc)L/16zzw 3I“ZE A cos3chong
AW, iaicpSASLZZWijgcoschong

8,,(y-kd) 48, (LE2W, J12J ZG J_(EnR~ 151an51nJ£

GJw
s's" xxy”?y

-choschong)
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Applying the above equation to the last term in Table C.5, one obtains

the following results:

2R ¢L
J J [Zzw G J 12J ZG (y-kd)coquocos(gmnx/L)sin@Gﬁcos(gny/R)]dxdy
o ‘o Jk R4

= 22wij§GSJSLI§Jj£[-chqujgcos(gny/R)| _ +(gn/R)sin@?nsin

(Eny/R)l kd
y=

Thus, after integration of Equation (2-21), one obtains the

following expression:

Eh(1-v2)~ ——{Zw [1“(3A +A,,-3A -A4)+212J2( =A +A, A -A , +4vA . -2vA

2 27374 1 2

-2vA )+J“(3A =34+ +(2/L) 2w, 3[6 {JE A cos3IJcosI

2*30y)] 58 SJE)EJ

+(1/7R) 22w, 3(5 ﬁZE A cos3J, cosJ +AcEh(1-v2 )" Lo/er)

ic” 31; g E

. 2,12 2 ~172_1 14 2
ZIW; (1 +J2 )+a g(Z/L)EZwij(%R Jj %Jer)ZErArcos IJcosI; 521c

. 211l 2 2 2 4
(l/wR)Zzwij%IiZEsAszscos JycosT, + 4 Eh(1-v )" zzw [(h /12)1}

o -1
+(h2/6)I§J§+(h2/12)J;+(1/R2)-Nx(l-vz)I%(Eh) ]+%€(2/L)22wij

AL “lion 4 2
[JjErI°r+2R JjErArzr+(1/R )ErAr]ggostcosI;+6jg(2/L)ZZwij

J2 -1
J I. ZG J gmml 51nIJ51nIC+6 (l/ﬂR)ZZW XESIOScosJ cosJE

+A Eh(l-vz)-lvR;lzzu..I.

2 ~lgind. si
+61c(l/nR)ZZwiinJngggﬁnR stkstE 1 i3t

+A Eh(l-v2)'1R'lzzv..J.

3
+61C(l/nR)ZzuijIiEESASZScoschosJE 1 1%
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33 -1 w27t
+6jg(2/L)ZZVij(JjZR+JjR )gﬁrArcostcosIC+A5£Eh(l ve) ZZuijwij

2171
cosJ5+A5£Eh(1 ve)

(13 2 3 2
(Ii+IiJj)+6Zig(l/nR)ZZuijwijiIiEEsAscos Iy

IIV. W, . (J3+12].)+6
j i

. L7izzv, w. . J3JE A cos?I_cosI +IZii, .
ij"1j 2jE SIS A R A ¥

-[Alph+6j£prAr(2/L)%costcosIC+61CpsAs(l/nR)gcoschong] z 0

(C-3)



APPENDIX D
COMPUTER PROGRAM DOCUMENTATION

The program was written in FORTRAN IV, and was run using an
IBM System 360, Model 50 computer. The core storage required for the
program was dependent upon the number of terms in the assumed mode
function. The maximum number of terms run was ten, which required
E-level system operation.

The flow of the program can be observed in Fig. D.1 and is
summarized as follows: The main program reads the input data which
defines the various material and geometric parameters, the number of
assumed modal functions, the range of the circumferential wave number,
the range of the applied axial load, the Runge-Kutta step size, and
the maximum time duration. The main program then calls Subroutines
UVCOF and WCOEF in succession. These general subroutines calculate
the coefficients for the required number of u, v, and w equations of
motion. (The number of equations is dependent upon the number of as-
summed modal functions, k. The two subroutines will generate coeffic-
ients for any number of equations. This number is limited only by the
available computer core space. Subroutine UVCOF generates the coef-
ficients for k algebraic u equations and k algebraic v equations. Sub-
routine WCOEF generates the coefficients for k nonlinear differential
w equations.) The main program then calculates the terms in the w
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equation of motion containing the nondimensional load as a parameter.
Subroutine RUNGE is called to solve the set of nonlinear differential
equations. Subroutine RUNGE also uses subroutine FCT to solve the two
sets of algebraic equations. For each step in the Runge-Kutta proce-
dure, subroutine FCT must be called four times to solve the two sets
of algebraic equations. The results are displayed in the form of shell
displacement as a function of time for a particular axial end load and
circumferential wave number. The output can be punched on cards for
use in plotting the data.

The input data deck is set up as follows:

1. Title card identifying case being run.

2. Number of axial and circumferential assumed mode terms

being used.

3. Maximum and minimum values of n being run.

4. Unstiffened shell parameters.

5. Ring parameters.

6. Stringer parameters.

7. Dynamic parameters.

8. Dynamic parameters (Cont.)

9. Maximum value of time and Runge-Kutta step size.

10. Maximum and minimum values of axial load, and load step

size.
The program is set up so that cases may be stacked, and all

parameters may be varied.
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The formats for the above cards are:

1.

(80A1

)

All eighty columns are available to assign a descriptive

title to the problem being run.

(214)

ISTAR

JSTAR

I

STAR, JSTAR

maximum number of assumed mode terms in the axial
direction, 1i.

maximum number of assumed mode terms in the cir-

cumferential direction, j.

(214) NCRG, NCRS

NCRG

NCRS

=

=

1 + minimum value of the circumferential wave
number, n.

1 + maximum value of n.

(5E15.8) ESHEL, HSHEL, PNU, RSHEL, SHLT

ESHEL

HSHEL

PNU

RSHEL

SHLT

Young's modulus of shell, E. (psi)
Thickness of shell, h. (in.)

Poisson's ratio, v. (dimensionless)

= Radius of Shell, R (in.)

Length of shell, L. (in.)

(I15,3E15.8) NRNG, ARING, ERING, ZRING

NRNG
ARING
ERING

ZRING

Number of Rings, N.

Cross-sectional area of one ring, A,. (in.2)
Young's modulus of rings, E,. (psi)

Distance from ring centroid to shell mid-surface,

Zy (in.)
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(I15,3E15.8) MSTR, ASTR, ESTR, ZSTR

MSTR = Number of Stringers, M.

ASTR = Cross-sectional area of one stringer, Ag. (in.?2)
ESTR = Young's modulus of stringers, Eg. (psi)
ZSTR = Distance from stringer centroid to shell mid-sur-

face, Zg. (in.)

(5E15.8) SHDEN, RGDEN, STDEN, RGMI, STMI

SHDEN = Unstiffened cylinder density, p. (lb-sec?/int)

RGDEN = Ring density, py. (1b-sec?/in.")

STDEN = Stringer density, p_. (1b-sec?/in.%)

RGMI = Moment of inertia of one ring about shell mid-
surface, I ... (in.")

STMI = Moment of inertia of the stringer about shell mid-

surface, Iyg. (int)
(4E15.8) GRING, GSTR, RGJ, STJ

GRING = Modulus of rigidity of ring, G,. (psi)

GSTR = Modulus of rigidity of stringer, Gg. (psi)
RGJ = Polar moment of inertia of ring, Jp. (in.")
STJ = Polar moment of inertia of stringer, Jg. (in.")

(3E15.8) X,XMAX, H

X = Starting value of independent variable, t. (sec.)
XMAX = Maximum value of independent variable, t. (sec.)
H = Runge-Kutta increment size.

(3110) ILOAD, ISTOP, INT

ILOAD = Smallest value of load, Fmin (dimensionless)
ISTOP = Largest value of load, ﬁmax (dimensionless)
INT = Increment for increasing load value.



MAIN PROGRAM

Read Imput

JL‘,

Call UVCOF

,r,x

Call WCOEF

SUBROUTINE WCOEF

Calculate coefficients
for w equations

Figure D.1

Calculate dynamic terms
for w equations

Call RUNGE

t

SUBROUTINE RUNGE

Solve the w nonlinear
differential equations
using Runge-~Kutta
algorithm

SUBROUTINE UVCOF

Calculate coefficients
for u and v equations

Call FCT (as necessary) ————— SUBROUTINE FCT

Computer Program Flow Chart

Solve the u and v
algebraic equations using
Gauss-Jordan procedure
for each new value of

w calculated by RUNGE

Z6
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COMPUTER PROGRAM LISTING
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Nnoonnnn

DODOONOONONONONONHOO

MAIN PROGRAM
EXTERNAL FCT
INTEGER PsQ

DIMENSION Y(10)+DERY(10)¢B(S5+40)¢D(5+40)
DIMENSION PRMT(3)sICASE(80)

THE DIMENSION SIZE FOR WCOF(II.NN) MUST BE EQUAL TO

OR LARGER THAN ISIZE FOR THE FIRST SUBSCRIPT AND EQUAL TO OR
LARGER THAN 8*ISIZE FOR THE SECOND SUBSCRIPT,

THE DIMENSION SIZE FOR C(IIsNN) MUST BE EQUAL TO

OR LARGER THAN 2*ISIZE FOR THE FIRSY SUBSCRIPT AND EQUAL TO

OR LARGER THAN 4*ISIZE FOR THE SECOND SUBSCRIPT,

COMMON WCOF(S940)+sC{10020)+s ISTARsJIJSTARSMAXsNCIR JESHE3+4SHEL ¢PNU
INRNGsARINGIERING s ZRINGesMSTR e ASTRIESTReZSTR IS1ZEsPI+DRINGsDSTR

2F N1 sFN2+FM1sFM29 SHDENsRGDENoSTDENRGMI ¢+ STMI yGRINGsGSTReRGJ9STJU e
3PLOADRSHELsSHLT» IFLAG, NDOT

ISTAR=MAXe VALUE OF I + JSTAR=MAXe VALUE OF J

ARING=RING CROSS-SECT. AREAs ASTR=STRINGER CROSS~SECTe AREA
ERING = YOUNGS MOOULUS OF RINGs ESTR=YOUNGS MODULUS OF STRINGER
DRING=DISTANCE BETWEEN RINGS, DSTR=DISTANCE BETWEEN STRINGERS
ZRING=DISTANCE FROM RING CONTROID TO SHELL MID SURFACE
ZSTR=DISTANCE FROM STRINGER CENTROID TO SHELL MID SURFACE
NRNG=NUMBER OF RINGSs, MSTR=NUMBER OF STRINGERS

ESHEL=YOUNGS MODULUS OF SHELL

HSHEL=SHELL THICKNESSs RSHEL=SHELL RADIUS

PNU=POISSONS RATIO

NCIR=NUMBER OF CIRCUMFERENTIAL WAVES (INTEGER)

MAX=NUMBER OF AXIAL HALF WAVES{ INTEGER)

SHLT=SHELL LENGTH

N1=NCIR/RSHEL (COMPUTED) .+ sFN1

N2=N1#¥N1 (COMPUTED) s« FN2

ML=MAX%3614/SHLT (COMPUTED) ¢e +FM1

M2=M1%¥M]1 (COMPUTED ) e e e FM2

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MRAIN
MAIN
MAIN
MAIN
MAIN

VCONONLUWN~

'™
o

11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

£6



N Na NN s NaNaNeNa N3]

900

99%

1000
1001
1002
1003
100S
1007
1008
1009
1012
1013
1018
1019
1020
1021
1022
103S
1040
1045

1055

S

SHDEN=MASS DENSITY OF SHELL MAIN
RGDEN=MASS DENSITY OF RINGs STDEN=MASS DENSITY OF STRINGER MAIN
RGMI=MOMENT OF INERTIA OF RING, STMI=MOMENT OF INERTIA OF STRINGERMAIN
GSTR=MODULUS OF RIGIDITY OF STRINGER MAIN
GRING=MODULUS OF RIGIDITY OF RING MAIN
RGJ=R ING POLAR MOMENT OF INERTIAs STJU=STRINGER POLAR MIMENT MAIN
PLOAD=AXIAL COMPRESSIVE FQORCE MAIN
MAIN

READ AND WRITE CASE IDENTIFICATION PARAMETERS MAIN
MAIN

FORMAT(1H1.80A1) MAIN
FORMAT(* *) MAIN
FORMAT(80A1) MAIN
FORMAT(214) MAIN
FORMAT(1IH +B8HISTAR = +14+5X+8HJISTAR = s14/) MAIN
FORMAT(SE1S.8) MAIN
FORMAT(1I15+3E15.8) MAIN
FORMAT(S5E1S5.8) MAIN
FORMAT(3110) MAIN
FORMAT(SX»115+3E15.8) MAIN
FORMAT(SXs5E1S5.8) MAIN
FORMAT(?® PRMT VALUES ARE« ¢ oPRMT(1)=XsPRMT(2)=XMAXs PRMT (3)=H *) MAIN
FORMAT(®* SHELL INPUT-—ESHEL+HSHEL+PNUsRSHEL ¢SHLT *¢) MAIN
FORMAT(* RING INPUT—NRNGsARNGERINGZRING *) MAIN
FORMAT(®* STRINGER INPUT-MSTRsASTRGESTR,ZSTR *) MAIN
FORMAT(®* DYNAMIC—-SHDENsRGOEN+STDENsRGMI.STMI ?) MAIN
FORMAT(®* DYNAMIC~-GRING»GSTR+RGJI»STJ *) MAIN
FORMAT(®* RANGE OF BUCKLING LOADee«ILOADSISTOPSINT °*) MAIN
FORMAT(1X»3110) MAIN
FORMAT(* BUCKLING DID NOT OCCUR UNTIL AFTER MAX. LOAD WAS REACHED MAIN
L2k XSORRY ¢) MAIN
FORMAT(//730H NUMBER OF AXIAL HALF—-WAVES = 314:.5X:39HNUMBER OF CIRCMAIN
1UMFERENT IAL FULL WAVES = +147) MAIN
READ(S5+1000) ICASE MAIN
WRITE(6+900) ICASE MAIN

READ(S5+1001) ISTARSJSTAR MAIN

36
37
38
39
40
41
42
43
44
45
46
47
48
49
SO
S1

52
53
54
55
S6
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

6
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0nnn 000 noo

OO0

000

IF(ISTAR—-100)6s15+15
WRITE(641002)ISTARSJSTAR

READ IN NCRGsNCRS

READ(Ss1001 )NCRGsNCRS

READ AND WRITE SHELL INPUT PARAMETERS
READ(S91003)ESHEL s HSHEL sPNURSHELsSHLT
WRITE(6.,1018)
WRITE(6+1007)ESHEL+HSHEL s PNUsRSHEL + SHLT
READ AND WRITE RING INPUT PARAMETERS
READ(Se 100SINRNGe ARING.ERINGs ZR ING
WRITE(6+1019)
WRITE(S5+1009)INRNGARINGIERING » ZRING
READ AND MRITE STRINGER INPUT PARAMETERS
READ(S+100S)IMSTRs ASTRIESTR ZSTR
WRITE(6»1020)
WRITE(65941009)MSTRIASTRIESTRWZSTR

READ AND WRITE DYNAMIC INPUT PARAMETERS
READ(S¢1007)SHDEN +RGDEN+sSTDENIRGMI+sSTMI»GRINGsGSTRs RGJe STY
WRITE(6+1021)
WRITE(6+1012)SHDENsRGDENs STDEN ¢ RGMI s STMI
WRITE(6+1022)
WRITE(6+1012)GRINGsGSTR +sRGJ»STJI
NSIZE=2*%ISTAR®JSTAR

READ AND WRITE VALUES OF PRMT AND DERY

MAIN
MAIN

72
73

MAIN7 3A
MAIN738
MAIN73C
MAIN73D

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATIN
MAIN
MAIN
MAIN
MAIN
MAIN

74
75
76
77
78
79
80
a8

82
83
84
85
86
87
88
89
90
91

92
o3
94
95
96
97
98
99

MAIN1 0O
MAIN1O1
MAIN10O2
MAIN1O03

S6
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READ(S+1007)PRMT
DO 4 J2=1.NSIZE
DERY( J2)=1.00
WRITE(6,1013)
WRITE(6+1012)PRMT

CALCULATE INTERMEDIATE VALUES

MAX=1
ISIZE=ISTAR*JSTAR
PI=3.1415926535892
DRING=SHLT/(NRNG+1.0)
DSTR=2.0%PI*RSHEL/MSTR

READ INITIAL EXTERNAL LOADs MAX LOADs LOAD STEP SIZE
EXAMPLE LOAD VALUES e+ ¢PLOAD=610s ILOAD=610

READ(S+1008)ILOAD.ISTOPINT
WRITE(6+999)

WRITE(6+1035)
WRITE(6¢1040)ILOADs ISTOP, INT
DO 10 NCR=NCRGsNCRS
NCIR=NCR~1

WRITE AXIAL AND CIRCUMFERENTIAL WAVE NUMBERS

WRITE(6+105SS5S)IMAX 4 NCIR
FNCIR=NCIR
FNI=FNCIR/RSHEL
FN2=FN1*FN1

FMAX=MAX
FM1=FMAX*PI/SHLT
FM2=FM1%FM1

CALL UVCOF

CALL WwCOEF

MAIN104
MAIN1OS
MAIN10O6
MAIN107
MAIN108
MAIN109
MAIN110O
MAIN111
MAIN11L12
MAIN113
MAIN114
MAINL11S
MAIN116
MAIN117
MAIN118
MAIN119
MAIN120
MAIN121
MAINL122
MAIN123
MAINL 24
MAIN12S
MAIN127
MAIN128
MAIN129
MAIN130
MAIN131
MAIN1 32
MAIN133
MAIN134
MAIN13S
MAIN136
MAIN137
MAIN138
MAIN139
MAIN140

96
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JX95=ILOAD MAINL1 4S

AJS=JX9S MAIN146
NOOT=90 MAIN146A
PLOAD=AJ/1000.0 MAINL147
PLOAD=PLUOAD*HSHEL *HSHEL*ESHEL/RSHEL MAIN148
MAIN149

COMPUTE DYNAMIC TERMS OF WCOEF SUBROUTINE MATRIX MAIN150
MAIN1S1

SET WORKING MATRICES EQUAL TO ZERD MAIN1S2
‘ MAIN1S3

KOLX=3%ISIZE MAIN1SS
KOL=2%ISIZE+] MAIN1S55
DO 9 J4=KOL . KOLX MAIN156
DO 8 14=1,1S1ZE MAIN1IST
B(I4,J43=0.0 MAIN1SS8
D(I4+J4)=060 MAIN1S9
WCOF( 14,+J4)=0.0 MAIN160
CONT INVE MAIN161
I1=0 MAIN162
DO 190 Q=1,-1SI1IZE MAIN163
II=1141} MAIN1IGS
INTGA=(Q-1)/71ISTAR - MAIN16S
IZETA=Q—-INTGQ*ISTAR MAIN166
IXI=INYGQ+1 MAIN167
FZETA=I1ZETA MAIN168
FXI=IXI MAIN169
NN=2%1ISI ZE MAIN170
D0O120P=1,ISIZE MAIN171
NN=NN<+1 MAIN172
INTGP=(P-1)/ISTAR MAINLT3
I=P~INTGPXISTAR MAIN174
J=INTYGP+1 MAIN175
Fi=1 MAIN176
FJd=J MAIN177
MAINLI 78

COMPUTE STRINGER TERMS MAIN179

L6
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NnoOo

113
114

115

116
117

118

OO0

119

IF{I-IZETA) 116+111,5116

SUM1=0.00

SUM2=0.,00

D0112 K=1sMS5TR

FK=K

SUM1=SUM1+COS(FJ*FN1*FK*DSTR)I*COS(FXIXFN1*FK*DSTR)
SUM2=SUMZ2+SIN(FJ*FN1*FK*DSTR)I4SIN(FXI*FN1*FK*DSTR)
BUIIsNN)=(FIXFM] ) * kG *kESTRESTMI*SUMLI/(PI*RSHEL)+FI*FIXFM2%F JXFN2%
LGSTRESTJI*F XI*SUM2/7(PI*¥RSHEL)

COMPUTE RING TERMS

IF(J-IXT) 117.114,117

SUM1=0,.00

SUM2=0.00

D0 115 K=1+sNRNG

FK=K

SUMI=SUM14+COS(FI*FMI1*FK*DRING)*COS(FZETA*FM1%*FK*DRI NG)
SUM2=SUM24S IN(FI*FM1 *FK*DRING) *SIN(FZETA*FMN1%FK *DRI NG)
DCIIJNNI=2%((FJIUXFN1 )%%SGXERINGERGMIEXSUM]1 +2%F JEFJEFN2EERINGE2ARING
1¥ZRING*SUM1/RSHEL+ERING*ARINGASUMLI/ RSHEL**24+F JkFJEFN2%F [ FZETAX
2FM2E¥GRINGE®RGJIXSUM2)/SHLT

IF(I-1ZETA)118,119,118

IF(J-IX1I)120+113,5,120

WCOF(II+NN)=B(ITI+NN)

GO TO 120

WCOF{IILsNNI=D{IIsNN)

GO TO 120

COMPUTE SHELL TERMS

WCOF(IIoNN)=ESHEL ¥*HSHEL ¥*( HSHEL*HSHEL*(F I1%FM1)*%x4/12,0
L4HSHEL*®*HSHEL *F I *F [*FM2%F JXF J*FN2/6 ¢ O+HSHEL ¥HSHEL*(FJ*FN1)%%4/12 .0
241 . 0/RSHEL*%¥2-PLOAD*FIXFI¥FM2%( 1 s0-PNU%XPNU )/ (ES HELXHSHEL ))/
3(1.0-PNURPNU)I+B( I I+NN)+D(I I +NN)

MAIN1 80
MAIN1IS]
MAIN182
MAIN1B83
MAIN184
MAIN18S
MAIN186
MAIN187
MAIN1 88
MAIN189
MAIN190
MAIN191
MAIN192
MAIN193
MAINL194
MAIN19S
MAINL196
MAINL1O97
MAIN198
MAIN199
MAIN200O
MAIN201
MAIN202
MAIN203
MAIN204
MAIN20S
MAIN206
MAIN207
MAIN208
MAIN209

MAIN210

MAINZ211
MAIN212
MAIN213
MAIN214
MAIN215S

86



120
190

22

10

15

CONT INUE

CONTINUE
¥Y(1)=0.001

DO 3 L=2.NSIZE

Y(L)=0.00

CALL RUNGE(PRMT,Y+DERY+NDIMs [HLF+FCTL,OUTP,AUX)
IF(NDQOT)22+22,10

JXI9S=UXI9SH+INT

IF{JUX95—-1STOP)18+18,10

CONTINUE
GO TO S

CALL EXIT

STOP
END

MAIN216
MAIN217
MAIN218
MAINZ219
MAIN220
MAIN221

MAIN222
MAIN227
MAIN228
MAIN230
MAIN231

MAIN232
MAIN233
MAIN234

66



nono

0000

000

(s NaNel

SUBROUTINE UVCOF

THIS SUBROUTINE CALCULATES THE UsVeWeWk%2 COEFFICIENTS FOR THE
U AND V EQUATIODONS.

INTEGER PsQ

THE DOIMENSION SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR
LARGER THAN 2#ISI12E FOR THE FIRST SUBSCRIPT AND EQUAL TGO OR
LARGER THAN 4%ISIZE FOR THE SECOND SUBSCRIPT.

DIMENSICN B8(10.20)

COMMON WCOF(S5+40)+C(10+20)sISTARsJISTAReMAXs NCIRESHE3+HSHEL s PNU»
INRNGs AR ING+ERINGeZRINGsMSTR s ASTRIESTReZSTReISIZE+PI vyORINGsDSTRy
2FN1o0FN2oeFM]1 oFM2 9 SHDENsRGDEN sSTDENsRGMI 4 STMI e GRINGsGSTRsRGJIsSTJ
3PLOAD +RSHEL » SHLT ¢ IFLAG«NDOT

SET WORKING MATRICES EQUAL TO ZERO

NS IZE=2%1ISIZE

MSIZE=4%ISIZE

D0 2 J=1.MSIZE

00 1 I=1.NSIZE

B(I,J)=0.00

C{1+J)=0.00

CONT INVE

COMPUTE COMPOSITE U~V EQUATION COEFFICIENY MATRIX

11=0
COMPUTE U EQUATION MATRIX

DO 130 Q=1.ISIZE
I1I=11+1
INTGG=(Q—-1)/ISTAR
IZETA=Q~INTGQ*ISTAR
IXI=INTGQ+1

UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
VUVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
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001



oo

NnoOn

onn

noon

101

102

103

104
108

FZETA=IZETA
FXI=IXI

SUBMATRIX UeeeU EQUATION

NN=0

DO 105 P=1,IS1ZE
NN=NN+1
INTGP=(P-1)/1ISTAR
I=P—INTGP*1ISTAR
J=INTGP+1

FI=I

Fd=J

COMPUTE STRINGER TERNSe.

IF(I-LZETA)1054101+105
SUM2=0.,00

DO 102 K=1+MSTR

FK=K

SUM2=SUM2+COS(F JXFN1%*FK*DSTR)*COS(FXI*FN1*FK¥*DS5TR)
BOITsNNI={10-PNUXPNU)XFI*F [¥FM2XESTR*ASTR*SUM2/(PIXRSHEL*ESHEL
1*HSHEL)

COMPUTE SHELL TERMS

IF(J-IXI)103+104,103
C{IIsNN)=BC(IIsNN)
GO 7O 10S

COII«NNI=BCIINNIHFIXFIXFM24{1.0-PNU)*F JEFJXFN2/2.0

CONTINUE

SUBMATRIX VeeeslU EQUATION

00 110 P=1,1ISIZE
NN=NN+1

UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
uvcF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UvCF
UVCF
UVCF
UVCF
UVCF
UVCF
UVCF
UvCF
UVCF
UVCF
UVCF

37
38
39
40
41

42
43
44
45
46
47
48
49
SO
S1
52
S3
54
SS
S6
87
S8
59
60
61

62
63
64
65
66
67
68
69
70
71

72
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102

80 1d4DAN
20140A0
90 1JDAN
SO1dDAN
G 140AN
€0 14DAN
201d40AN
10T d40AN
00 1d40AN
66 AOAN
86 HADAN
46 HOAN
96 dJOAN
S6 HOAN
v6 JOAN
€6 HDOAN
26 dOAN
16 JOAN
06 JOAN
68 SHOAN
88 HOAN
48 HOAN
98 HOAN
S8 HAOAN
¥8 JOAN
€8 J4DAN
8 AOAN
18 d4OAN
08 A4OAN
64 HOAN
8L HIOAN
Ll ADAN
94 d4OAN
SZ ADAN
vi AOAN

€L

IDAN

CIT*PIT*ETITC(IXI~T)]
SHY3L T1TI3IHS FLANdWOD

(VAHSHEIDHS I IIHS YR 1T

I/CUNSAULSZHULSYRYLSI INIRCHIRE 2 1 4% (NNAENND=-0®* TI=(NN*11)8
(UL SAENABRINSRIXS)ISOIR(VLSAxNA% TNIX 4 ISOD4+SNNS=2WNS

A=

YiSKN*I=M 21% 0Q
00°0=2NNS
STIT*ITI1*SII(VIaZI~1)d]

SWU31 UYIAONIULS 3iNdWOD

r=rd

1=13

14d9AiNI=F

YY 1SI*dOINI—~-d=1
UYYLISI/Z(1—d)=dOLN}
T+NN=NN

3Z21s1*1=d St OG

NOILAVND3I N®*°*R XIYLIVNENS

ANNILNOD

0°2/7(NNd+0°T )2 INJelr 3% ITNAx] J=(NN®TI1)D

OTT*20T°0T1I(IX]I~r)dX
o11¢901*011(VL13ZI-1)d1

SWH3L T1MI3HS Z1NdNO0D

rf=rd

I=1d

I+d9LINI="

AV LISI*dOANT ~d=1
dviSI/Z(1-d)=d91N1}
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201
901
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NnonNn

Nnoon

noon

0nOo

113

114
1195

116

117

118

119
120
130

COIToNN)=B(II,NN)

GO TO 115
CIIT+NN)=B(II+NN)+PNU*FI%XFM1/RSHEL
CONTINUE

SUBMATRIX W¥%2,¢,U EQUATION

DO 120 P=1,ISIZE
NN=NN11
INTGP=(P-1)/1ISTAR
I=P-INTGP#ISTAR
J=INTGP+1

FI1=1

FJy=J

COMPUTE STRINGER TERMS

IF(2%1I-1ZETA)120+1164+120
SUM2=0.,00

DO 117 K=1+MSTR

FK=K

SUM2=SUM24+COS{FJ*FN1CFK*¥DSTR )**2*¥COS(FX I*FN1*FK*DSTR)
BCII+NN)=(1.0-PNUEPNU) ¥(F I*FM1 ) %3 %ESUMZ*ESTREASTR/(2.0%P [ %
1RSHEL *ESHEL *HSHEL )

COMPUTE SHELL TERMS

IF(2%)-1X1I)118,119,118
CUIL NN)==-BCII NN)
GO TO 120

CUIIoNN)==FIXFMI *¥FIEFIRFN2/4 ¢ 0-F I X3 AFM22FM1/4.0-B( I 1,NN)

CONTINUE
CONTINUE

COMPUTE V EQUATION MATRIX

UVCF109
UVCF110
UVCF111
UVCF112
UVCF113
UVCF1l1ia
UVCF11S
UVCF116
UVCF117
UVCF118
UVCF119
UVCF120
UVYCF121
UVCF122
UVCF123
UVCF124
UVCF125
UVCF126
UVCF127
UVCF128
UVCF129
UVCF130
UVCF131
UVCF132
UVYCF133
UVCF134
UVCF13S
UVCF136
UVCF137
UVCF138
UVCF139
UVCF140
UVCFl141
UVCF 142
UVCF143
UVCF144

€01



noon

noho

000

131
132
135

DO 160 Q=1,-ISIZE
II=11+41
INTGQ=(Q—-1)/ISTAR
IZETA=Q- INTGQ*ISTAR
IXI=INTGQ+]
FZETA=IZETA

FXI=IXI

SUBMATRIX UeeeV EQUATION

NN=0

D0 135 P=1,ISIZE
NN=NN+1
INTGP=(P-1)/1ISTAR
I=P-=INTGP*ISTAR
J=INTGP+1

FI=1

FJy=3

COMPUTE SHELL TERMS

IF(J-IXI)135,131,135

IF(I-IZETA) 135,132,135
CCIIJNN)I=FI®FM1%2F J*FN1¥(1.0+PNU)/2.0
CONTINVE

SUBMATRIX VeeeV EQUATION

DO 140 P=1.1SIZE
NN=NN+1
INTGP=(P-1}/1ISTAR
I=P—INTGP*ISTAR
J=INTGP+1

FI=1

FJa=4

UVCF145
UVCF146
UVCF147
UVCF148
UVCF149
UVCF150
UVCF1S1
UVCF152
UVCF153
UVCF1S4
UVCF155
UVCF156
UVCF157
UVCF158
UVCF159
UVCF160
UVCF161
UVCF162
UVCF163
UVCF164
UVCF16S
UVCF166
UVCF167
UVCF168
UVCF169
UVCF170
UVCF171
UVCF172
UVCF173
UVCF174
UVCF17S
UVCF176
UVCF177
UVCF178
UVCF179
UVCF180

y01
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00N

0oon

0o0oonn

COMPUTE RING TERMS UVCF181

UVCFi1 82

IF(J=-IXI)140+136,140 UVCF183

136 SUM2=0,00 UVCFLl184
DO 137 K=1,NRNG UVCF185
FK=K UVCF186

137 SUM2=SUM24COS(FI*FM]1*FK*¥DRING)*COS{FZETAF M1*FK*DRING) UVCF187
BUIIsNN)=2.0%(1.0-PNUXPNU IXFJI*FJEXFN2*ER ING*ARING*SUM2/{ ESHEL UVvCF188
1*¥HSHEL*SHLT) UVCF189
UVCF190

COMPUTE SHELL TERMS . UVCF191
UVCF1i92 -

IF(I-IZETA?138+139,138 UVCF193

138 CUIT+NN)=B(IIsNN) UVCF19a
GO 70 140 UVCF19S

139 CUIINNI=B(TIIsNNIIFJI*FIEFN2+FIXFIRFM2%(1.0~PNU) /2.0 UVCF 196
140 CONTINUE UVYCF 197
UVCF198

SUBMATRIX WeeeV EQUATION UVCF199
UYCF200

DO 145 P=1.,1ISIZE UVCF201
NN=NN+1 . UVCF202
INTGP=(P-1)/1ISTAR UVCF203
I=P—=INTGP%ISTAR UVCF204
J=INTGP+1 UVCF205

FIl=1 UVCF206
FJ=J UVCF207
UVCF208

COMPUTE RING TERMS UVCF209
UVCF210

UVCF211

IF{(J-IXI)145+141,+145 UVCF212

141 SUM2=0.00 UVCF213
DO 142 K=1 sNRNG UVCF214
FK=K UVCF215

142 SUM2=SUM2+COS(FI*FM1*FK*DRING)*COS(FZETA*FM I *FK*DRING) UVCF216

S0t



106

cG243AN
1S2dOAN
0S2d4O0AN
6v24DAN
8v2Zd4OAN
292 A40AN
9veSd4OAN
SY2d4OAN
Y92SIIAN
E924DAN
2v2d4OAN
TvZ24DIAN
09 2Z2ADAN
6€£CHdOAN
SECAIAN
LESAIAN
9ESIOAN
SECIOAN
YECAIAN
EECHOAN
CECAIAN
TES4DAN
OEZADAN
6224OAN
8224OAND
422d40AN
92<C4OAN
S2240AN
©22H4OAN
€SSAOAN
2224DAN
12240A0
022aOAN
61Z4DAN
8 1240AN
212403AN

(NN*II)8~=(NN*II)D
BYTI6YI*BYTI(VLIIZI-1I%Z) ]

SWHE3L TIIHS 3ILNDWOD

(LTTHSETIIHSH%T

TITHSI I/SZWNSHONITUHVYRONI I3k INIXSNIXE xR I (NNIENND-0°T)I=(NN*I1)8Q
(ONTUOFNA%x IRIXVLIZ F3)SODIRZx R (ONTHOXN IR INIR I H)ISOD+Z2RNS=2HNS
A=nd
ONYUN®*T=3 4%1 OC
00°0=2nNS
OST*IvIC*0SI(IXI-F*2)d]

SWI3L ON1IY IJANAWNOD

r=rd
1=14d
I+d2ANI =
UVLISI*dOAIN1-—-d=1
UVISI/Z(I-d)=dOLIN]

TH+NN=NN

3Z1s1¢*1=d 0S1 OQqQ

NOILVNDI A®**ZxxM XIHLVWENS

ANNIAINOD

TIHSU/ZINDRC JH(NN*TITI)IC=(NN*1])D
%1 041 09

(NN®*T11)8=(NN*II1}D
EvI*HLTIEHI(VIIZI-1)3]

SW33dL TITIFIHS 3LNDWOD

(LTHS X IIHSHETIHSI ) Z7(ONITUZAON T UV RONTI NI RSNI%x INI T
XEXXT I+TIIFSU/ONIYVIONTUI R INSR T I IZRNS* (NNAdRNND—0°*T1Ix0°*Z2=(NN*1]1)8

8vl

VARS

9% 1

1= 4 §
A A A
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149
150
160

GO 70O 150
CUILsNNI==BUIT+NNI=(FJI¥FNL1)*%¥3/4,0-FIXFIXFJXFM2%FN1 /4.0
CONT I NUE

CONT INVE

RETURN

END

UVCF253
UVYCF 254
UVYCF 255
UVCF256
UVCF 2587
UVCF258
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00000

0onon (aNsNaNaN !

s N2 N

SUBROUTINE WCOEF

THIS SUBROUTINE CALCULATES THE W EQUATION COEFFICIENTS
(Us VoW WEER2 s Wk X3 ,UWs VAW D2W/7DT2) AND PLACES THEM
IN A MATRIX CALLED WCOF

INTEGER PeQ

THE DIMENSION SIZE FOR THE SUBSCRIPTED VARIABLES MUST 3E ZQUAL TO
OR LARGER THAN I[ISIZE FOR THE FIRST SUBSCRIPT AND EQUAL TD OR
LARGER THAN 8%ISIZE FOR THE SECOND SUBSCRIPT.

DIMENSION B(S540) +D(5,40)

COMMON WCOF (S940)+C(10020) 9 ISTARIJISTARsMAXINCIRSESHEIJHSHEL + PNU »
INRNGsARINGIERING ¢ ZRINGyMSTReASTReESTResZSTR» ISIZE+PI1+DRINGsDSTR
2FN1eFN2sFM1+FM29SHDENIRGDEN ¢ STDEN¢RGMI s STMI sGRINGsGSTRyRGJIsST I
3PLOADRSHEL+SHLT s IFLAGsNDOT

SET WORKING MATRICES EQUAL TO ZERO

MSIZE=8*1SI1ZE
DO 2 J=1.MSIZE
DO 1 I=1.1ISIZE
8(14¢J)=0.00
D(EieJ)=0.,00
WCOF(1I,4J)=0.00
CONTINUE

COMPUTE COMPLETE W EQUATION MATRIX

I1=0

DG 190 Q=1.1ISIZE
IE=I1I+1
INTGA=(Q-1)/ISTAR
IZETA=Q-INTGQ*ISTAR
IXI=INTGQ+1

wWCOF
WCOF
wCOF
WCOF
wWCOF
wCOF
WCOF
WCOF
WCOF
wWCOF
wCOF
WCOF
WCOF
wWCaF
WCOF
WCOF
WCOF
wCOF
WCOF
WCOF
WCOF
WCOF
wCOoF
wCQOF
wCOoF
wCOF
wCOF
WCOF
wCOF
wCoF
WwCOF
WCOF
WCOF
WCOF
WCOF
wCOF

CONOO L UWN-
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000

non

0onon

aNale

101

102

103

104
10S

FZETA=IZETA
FXI=IXI

o

SUBMATRIX Ueesew EQUATION

NN=0

DO 10S P=1,1IS1ZE
NN=NN+1
INTGP=(P-1)/ISTAR
I=P=INTGPXISTAR
J=INTGP+1

FI=I

Fi=4

COMPUTE STRINGER TERMS

IFC(I-1IZETA)105+101,105
SUM2=0,00

DO 102 K=1,MSTR

FK=K

SUM2=SUM2+COS(F JE*FN1%XFK*DSTR)*COS(FXI®FN1*FK¥*DSTR)
BUIINN)I=(FIXFM]l IAEIF*ESTREASTREZSTRRSUM2/(P IXRSHEL)

COMPUTE SHELL TERMS

IF(J-IXI)103,104,103
WCOF(II+NN)=B(IIsNN)
GO TO 105

WCOF(IINN)=B(IIsNN)+ESHELEHSHELXPNU*F I®FM1/(RSHEL*(1.0-PNU%PNU))

CONT INUE

i
SUBMATRIX VeeseW EQUATION
DO 110 P=1,1ISIZE

NN=NN+1
INTGP=(P-1)/1ISTAR

WCOF
WCOF
WCOF
WCOF
WCOF
WCOF
wCOF
WCOF
WCOF
wWCOF
WCOF
WCOF
WCOF
WCOF
WCOF
WCOF
WCOF
WCOF
WCOF
wWCOF
WCOF
WCOF
wWCOF
WCOF
WCOF
wCOF
wWCOF
WCOF
wWCOF
wWCOF
WCOF
WCOF
WCOF
WCOF
WCOF
WCOF

37
38
39
40
41
42
43
44
45
46
47
48
49
S0
S1
s2
S3
sS4
S5
56
S7
S8
59
60
61
62
63
64
65
66
67
68
69
70
71
72

60T



O0o0

000

600N

000

106

107

108

109
110

120

I=P—-INTGP*ISTAR
J=INTGP+1

FI=I

FJ=J

COMPUTE RING TERMS

IF(J-IXI)11095106,+,110

SUM2=0.,00

DO 107 K=1sNRNG

FK=K

SUM2=SUM2+COSI(FI*FM1*F K*DRING) *ClS(FZETAXF M1 *FK *DRING)
BC(IIJNN)=Z%ERINGXARINGESUMZX((FJ%*FN1)*&3%ZRING+FJ%*FN1/RSHEL)/SHLT

COMPUTE SHELL TERMS

IFC(I-IZETA)108,109,108

WCOFC(IIL+NN)I=BC(II+NN)

GO TO 110

WCOF(II+NN)=8(I1I NN)+ESHEL*HSHELXFJ*FN1/ (RSHEL%(1.0-PNUXPNU))
CONT INUE

SUBMATRIX WeeeW EQUATION

D0O120P=1,ISI1ZE
NN=NN+1
CONT INVE

SUBMATRIX WEk%2,.eW EQUATION

OGC 130 P=1,ISIZE
NN=NN+1
INTGP=(P-1)}/ISTAR
I=P-INTGP¥*ISTAR
J=INTGP+1

FI=I

wWCOF
WCOF
WCOF
wCOF
wCOF
WCOF
wWCOF
wCOF
WCOF
wWCOF
WCOF
WCOF
wCOF
WCOF
WCOF
WMCOF
WCOF
WCOF
wCOF
wWCOF
WCOF
WCOF
WCOF
wWCOF
WCOF
WCOF
WCOF

73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

WCOF100
WCOF101
wCOF102
WCOF103
WCOF104
WCOF105
WCOF106
WCOF107
WCOF108

011



noon

121

122

non

123
124

1285

126
127

128

000

129

130

noon

FJ=J
COMPUTE STRINGER TERMS

IF(2%I-1ZETA)126+121+126

SUM1=0.00

00 122 K=1,MSTR

FK=K
SUMLI=SUM1+COS(FJXFNI1*FKXDSTR)**2%xCOS{FX I *FN1 *FK *DSTR)
BOILNN)=(FI®F M]1)*%Q3%kESTRAASTR*¥ZSTR*SUML1 /(P I*RSHEL*2.0)

COMPUTE RING TERMS

IF(2%4-IXI)127,124,127

SUM1=0.00

D0 125 K=1+NRNG

FK=K
SUM1I=SUM1+COS{FI*FM]1*FK*DRING) *#*2%COS(F ZETAXFM1 *FK*DRING)
DUII+sNN)=2.0%SUMLX(FIEFIEXFN2/(4,.0%RSHEL })~(FJ*FN1)%%4%FZETA/2.0) *
1ERINGS®ARING/SHLT

IF(2%I-1ZETA)128,129,128

IF(2%9-1IX1)130.123+130

WCOF (LI NN)=-B(I1INN)

GO TO 130

WCOF(IISNN)=D(II.NN)

GO TO 130

COMPUTE SHELL TERMS
WCOF(IIsNN)=—B(ITNNI+D{IL+NNI+ESHELERHSHEL *PNU*(FI*F I*
LEFM24F JEF JXFN2) 7 (8 s O ¥RSHEL % (1 «0—PNUEPNU ) )

COMTINUE

SUBMATRIX WX%3,..Ww EQUATION

DO 160 P=1,1ISIZE

WCOF109
WwCOF110
WCOF111
WCOF112
WCOF113
wWCOF114
WCOF115
WCOF116
WCOF117
WwCOF118
WCOF119
WCOF120
WCOF121
WCOF122
WCOF123
WCOF124
WwCOF12S
WCOF126
wWCOF 127
wWCOF128
wWCOF129
WCOF130
WCOF131
WCOF132
WCOF133
WCOF134
WCOF13S
WCOF136
WCOF137
wCOF138
WCOF139
WCOF140
WCOF 141
WCOF 142
WCOFi143
wWCOF144

[93¢



s N aNe!

131
132

133

134
135

136
137

anon

138

139

noo

140

NN=NN+1
INTGP=(P~1)/ISTAR
I=P—=INTGPEXISTAR
J=INTGP+1

FI=1

FJ=J

COMPUTE STRINGER TERMS

DEL1=0.00

DEL2=0.00
IF(I-1IZETA)134.,1315134
DEL1=41.0

SUM1=0,00

DO 133 K=1sMSTR

FK=K

SUMLI=SUM1+COS(FJ*FN1*FK*DSTR)**3%COS{FXI*FN1*FK%*DSTR)
BOITIsNN)=DELI1*SUMI*ESTR*ASTRE®(FI*FM1)*%*4/(PI*RSHEL%*8.,0)

GO YO 136

IF(3%I-1ZETA)136+,135,136

DEL1=-1.0
GO 70 132
IF(J-IXI)147:137,147
DEL2=+1,0

COMPUTE RING TERMS

SUM1=0.,00
DO 139 K=1sNRNG

SUML =SUML1 +COS{FI®FM1*FK*DRING) *%*3*COSI(FZETAXFM1 #FK*¥DRING)
DCII+sNN)=DEL2%2,0%SUML%*(FJ*FN1)*%x4%kERINGE.ARINGZ (B.0%SH.T)

IF(DEL1)140,151,140

COMPUTE SHELL TERMS

IF(DEL1%DEL2)141,141,144

WCOF145
WCOF146
WCOF147
WCOF148
WCOF 149
WCOF 150
WCOF151
WCOF 152
WCOF153
WCOF154
WCOF 1S5S
WCOF156
WCOF1S57
WCOF 158
WCOF159
WCOF160
WCOF161
WCOF162
WCOF163
WCOF164
WCAaF165
WCOF166
WCOF167
wCorF168
WCOF169
WCOF170
WCOF171
wWCOF172
WCOF173
WwCOF174
WCOF17S
WCOF176
WCQOFL177
WCOF178
WCOF179
wCOF 180

eIt



0ono6n

141
142

143

144
145

146

147
148

149
150

151
160

IF(DEL1)142,142,143
WCOF(IIJNN)=BLIIsNN)H+DIII+NNI)+(ESHELX®XHSHEL )*( -3 ¢0*%(FI%~M]1)%%x4+
120%F 1%F [¥F M2%F JXFJERFN2% (1 ¢« 0—2%PNU) +(FIEFN1 )%x%4 )/
2(32s0%(10-PNUXPNU))

GO Y0 160
WCOF(IT«NN)=B(IIL+NN)+D(IINN)+(ESHELXHSHEL )*((F 1%XFM]1)*&4
142 0%FIXFIXFM2E2F JAXFJ¥FN2%( 1 e0—20%PNU)Y=30%(FJUXFN1)*%4)/
2(32.0%{ 1 -PNUPNU) )

GO TO 160

IF(DEL1)145+,145+146
WCOF(TIIJNN)=B(IIJNNI+D{ITI+NNI+{(ESHELXHSHEL )*{(-(FI*FM1)%*x%x4
1=20%FIXFIR¥FM2AF JSF JEFN2~-{F JXFN1)*%4) /(32 0%( 1+ 0—-PNU¥PNU))
GO TO 160

WCOF(IEoNN)=BUIT+NNI)FD(IINN)+(ESHELEHSHEL )®(3,0%(F1I*FM1)%*%4
1=2¢0%FIXF I *FM2AF JAF JSFN2%( 1604 4 04%PNU}+3*(FJEXFN1)%%4) /(32,0
2% 10-PNUXRPNU) )

GO TO 160

IF(3%J)~-1IX1)1499148,149

DEL2=—-1.0

GO TO 138

IF(DEL1)150,160,150

WCOF(IIsNN)=B(II ,NN)

GO TO 160

WCOF(IIeNNI=D(IXIsNN)

CONTINUE

SUBNATRIX U%XWeeseW EQUATION

DO 165 P=1.ISIZE
NN=NN+1
INTGP=(P—-1)/ISTAR
I=P—INTGP*ISTAR
J=INTGP+1

FI=1

FJ=J

WCOF181
wCorF182
wCOF183
WwCOF184
WCOF 185
WCOF186
WCOF187
WCOF188
wCOF189
WCOF190
WCOF191
wWCOF192
WCOF 193
WCOF194%
WCOF195
WCOF 196
wWCOF197
WCaF198
WCOF 199
wWCOF200
WCOF 201
WCOF202
WCOF203
WCOF 204
WCOF205
WCOF206
WCOF207
WCOF208
WCOF209
WCOF210
wCOF211
wCOF212
WCOF213
WCOF214
WCOF215
WCOF216

g1t



114

2sed40Dom
152400m
0S2400A
6v2400M
8v2400M
292300
9v2Z40dA
SY2T=00M
vo240DM
£42300M
TvZH0om
192400R
O¥240DR
6EZHODM
B8ESH0DA
LE2H40DR
9EZTHODM
SEZH0OM
YEZJ0DM
££240DM
2€TH400/
1£24008
0£2400M
622400m
822400M
422400R
922400R
S22300M
©22300R
£22 400
22e400N
122400m
02240D0m
612400M
et2400m
212008

LTHS/E€Ex X% ( INARM ) XONTUHVAONIHIXIWNS=(NN*TI1 )8
(ONTHA*IAk TWIRV IIZIPSOD%Zx % (ONTHANI INIX]I 4)SOD+TNNS=TIWNS

A=

ONAN* I=X 291 0Q
0CO0*O0=1INNS
0LT499T*02T1(IXI-%2)d1]

SHY¥3L1L ONIY 3ALNDNOD

r=rd
I=I4

I4+dOLINI=F
VLS I2dDINI-d=}
v iSi/Z(1=-d)=dS1INI

TH+NN=NN

321S1°*1=d 041 0OQ

NOILVNDI M***AxA XIUHILVYWENS

3NN1 INDD

((NNDANND-0°T)%0*¥ )1

Z(ZNAECHARCIk INIX T IH+EXR ( TWIXT D) I TIHSHETIIHSIH+ (NN T I IG=(NN*11)40DM
S91 04 09

(NN®II)8=(NN*11)I40DOR

E9I*YOTICEOTI( IXI~T22)d]
(TI3HSUXIdR0°2 ) /HLSVHHISIXINNSAE Xk ( INIET A)=(NN*11)G

SW¥31 1I3HS ILNDNOD

(YISO IIEINSRI XSISOOX 22l BASAENIX INIRT J)ISOD+TANS=TIRNS

N=iJ

HISW®* I=% 291 0aQ
00°0=1INNS
S91¢I9T1*S9TI(viIaZI~-I*2)d]

SKWY31L YIONIULS 3L1NdWNOD

491

991

S91t

Y91

£91

eIt
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C
C
C

c
C
C

00N

0o0n

168

169

170

171

172

173

174

17S

COMPUTE SHELL TERMS

IF(2%I-1ZETA)168+169.168

WCOF(IIsNNJ)=B(IIsNN)
GO TO 170

WCOF{(II+NN)=B(II+NN)H+ESHELEHSHEL%X((FJ*FN1 )2%x3+F IXFI*FM2%
IFJ¥FN1) /(4. 0%( 1-PNU*PNU))

CONT INUE

SUBMATRIX D2W/DT2e..eW EQUATION

00 180 P=1.,ISIZE
NN=NN<+1
INTGP=(P~1)/ISTAR
I=P=INTGP*ISTAR
J=INTGP+1

FI=I

FJo=J3

COMPUTE STRINGER VYERMS

IF(I-IZETA)176+171,.,176
SUM1=0.00 :

DO 172 K=1+MSTR

FK=K

SUMI=SUMI+COS(FJ*FN1*FK%*DSTR)*COS{FXI%*FN1*FK*DSTR)
B(II+NN)=SUM1%STODEN*ASTR/(P I*RSHEL)

COMPUTE RING TERMS

IF(J-IXI)1T77e174,177
SUM1=0.00

DO 175 K=1,NRNG

FK=K

SUMI=SUM1 +COS(FI*FM1 *¥FK¥DORING) *COS(FZETA*F M1*FK*DRING)

WwCOF2S53
WCOF254
wCOF2S5S
WCOF 256
WCOF2S7
wCOF258
WCOF 259
WCOF260
WCOF 261
WCOF262
WCOF263
wCOF 264
WCOF265S
WCOF266
WCOF 267
WCOF268
WCOF269
WCOF 270
HCOF271
wWCaGF272
WCOF273
WCOF274
wCoOF27S
WCOF275
WCOF277
wCOF278
WCOF279
wCOF280
wCOF281
wWCOF282
wCOF283
wCorases
wCOF28S
WCOF286
wCOoF287
wCOF288

ST1



176
177

178

nonon

179
180
190

D(II+NN)=SUM1*RGDEN*ARING*2.,0/SHLT
IF(I-IZETA)1784179,178
IF(J-1IXI31809173+180
WCOF(TII+NN)=B(IIsNN)

GO 7O 180

WCOF(II+NNI=D(IXI+NN)

GO 7O 180

COMPUTE SHELL TERMS

WCOFC(IT+NNI=BLIINN)+D(IINNI+SHDENERHSHEL
CONTI NUE

CONTINVE

RETURN

END

wCOF 289
WCOF290
wCOF291
WCOF 292
wWCOF293
wCOF 294
wWCOF295
WCOF296
wCOF 297
wWCOF298
WCOF299
wWCOF300
WCOF301
wCOF302

WCOF 303
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O0OOONOAND

SUBROUTINE RUNGE(PRMT Y DERYsNDIMs IHLF«FCTsOUTPsAUX)

THIS SUBROUTINE TAKES THE PLACE OF SUBROUTINE RKGS CONTAINED IN
THE IBM SCIENTIFIC SUBROUTINE PACKAGE.

FOR A DESCRIPTION OF THE VARIABLES CONTAINED IN THIS SUBROUTINE
SEE THE IBM SUBROUTINE RKGS WRITEUP.

THE DIMENSION SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR
GREATER THAN 2*ISIZE

OIMENSION Y(10):DERY(10),PHI(10),SAVEY{(10) sSDATA(R:+2) +PRMT(3)
COMMON WCOF(S940)C(10+20)9ISTARSJSTARIMAXINCIRIESHE3«sHSHEL ¢+PNU
INRNGs AR INGIERING+ ZRING s MSTR o ASTRIESTRIZSTRISIZEPI sDRINGsDSTR
2F N1 ¢FN2 ¢ FM1 FM2 ¢ SHDEN+RGDEN s STDEN+RGMI » STRIeGRINGeGSTRIRGIeSTJ
3PLOAD sRSHEL s SHLT » IFLLAG « NDOY
1000 FORMAT(1X.E15.8)

RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RIUUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG

100S FORMAT(® %% %xk %l &k kxEBUCKL ING HAS OCCURREDe e s MAXsNCIRs PLUADX*&k *x%x&RUNG

1R XS EE R SR ERE KRR REEREKEE R RS KRR Kk EREEEE kRS EEkE )
1010 FORMAT(1X+2I5¢2X+E1548)
101S FORMAT(®* PLOAD = ?)
1020 FORMAT(10(2X+E11.5))
1025 FORMAT(®* EXPONENT OVERFLOW wWILL PROBABLY OCCUR BECAUSE OF RUNGE-
LKUTTA STEP BEING TOO BIGeeeeoCASE TERMINATED *)
X=PRMT(1)
XMAX=PRMT(2)
H=PRMT(3)
N=2%ISIZE
PNX=PLOAD*RSHEL/ ( HSHEL*HSHEL *ESHEL )
WRITE(6+1015)
WRITE(6+1000)PNX
10 CALL FCT(XsY ¢DERY)
DO 22 J=1.N
SAVEY((J)=Y(J)
PHI(J)=DERY(J)
22 Y(JI=SAVEY(J)+0.5*H%DERY( J)
X=X4+0 ¢S5 %H

RUNG
RUNG
RUNG
RUNG

QCONONLUNT

10
11
12
13
14
15
16
17
18
19
20
21

RUNG21A
RUNG218

RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG

22
23
24
25
26
27
28
29
30
31
32
33
34

L1




33

44

S5

56
57

60
70

80

CALL FCT({(XsYsDERY)

DO 33 J=1.N
PHI(J)=PHI(J)+2.0%DERY( J)
Y{JII=SAVEY(J)+0.5 +*+HEDERY( J)
CALL FCT (XY +DERY)

DO 44 J=1,.N
PHI(J)=PHI(J)+2.0%DERY(J)
Y(J)=SAVEVY(J)+HEDERY( J)
X=X4+0 « S%H

CALL FCT(XsY+DERY)

DO 55 J=1eN
YUJI=SAVEY(J)I+(PHI(J)IH+DERY(JI)I)IXH/6.0
N9=N-1
WRITE(6+41020)IXs(Y(J)sIJ=1eN9s2)
IF(ABS(Y(1))-0e5)56¢57:57
IF (X=XMAX)10+,60+60
WRITE(6,1025)

NDOT=1

GO TO 80
IF{Y(1)-0.001)80670,70
WRITE(6+1005)
WRITE(6+1010)MAXNCIRsPNX
RETURN

END

RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG
RUNG

35
36
37
38
39
40
41
42
43
44
4S5
46
47
48
49

RUNG49SA
RUNG49B
RUNG49C
RUNG49D

RUNG
RUNG
RUNG
RUNG
RUNG

50
S1
s2
54
55

811



NOOOON

nOonnNONOO

0Onon

noon

1S
16

19

SUBROUTINE FCT{(X+YsDERY)
THIS SUBROUTINE CONTAINS NO READ AND WRITE STATEMENTS.

THE DIMENSION SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR
GREATER THAN 2#%*ISIZEs WHERE ISIZE=ISTAR¥*JSTAR

OIMENSION Y(10)eDERY(10)+sA(10+s20)sR(10)+T(20),42(10)

THE DIMENSION SIZE FOR C(IIsNN) MUST BE EQUAL TO OR GREATER
THAN 2%ISIZE FOR THE FIRST SUBSCRIPT AND EQUAL TO OR GREATER
THAN 4%ISIZE FOR THE SECOND SUBSCRIPT.

THE DIMENSION SIZE FOR WCOF(II+NN) MUST BE EQUAL TO OR GREATER
THAN ISIZE FOR THE FIRST SUBSCRIPT AND EQUAL TD OR GREATER THAN
8%xISIZE FOR THE SECOND SUBSCRIPT.

COMMON WCOF{5340)+C(10520)e ISTARISTARMAXNCIRESHE3+HSHEL o PNU»
INRNG+s AR INGIERING s ZRINGIsMSTR¢ASTRIESTR«ZSTR ISIZE,PI + DRINGs DSTRs

2F N1 osFN2 ¢ FM1 +FM2 s SHDENsRGDEN o STOENIRGMI ¢ STMI sGRING¢GSTReRGJI+STJ s
3PLOAD+RSHEL+SHLT » IFLAGsNDOT

PLACE U AND V COEFFICIENTS INTO THE GAUSS~JORDAN MATRIX A(N)

MARK=0
NSIZE=2%]1ISIZE
DO 16 J=1+NSIZE
DO 15 I=1sNSIZE
A(I+:0)=C(I+J)
CONT INUVE

PLACE PROPER U AND V COEFFICIENTS INTO R(N) MATRIX

DO 19 K=1oNSIZE
R(K)=0,00

DO 21 K=1+NSIZE
DO 20 J=1,ISI1ZE

FNCT
FNCT
FNCT
FNCT
FNCTY
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCY
FENCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT

VCONCOVPLPUWUNM

"o e
Wnpe~-oOo

14
1S
16
1?7
18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
35S
36

611



000

20
21

35S
22

REDUCTION.
VECTOR .

i1

J1=Jd+2%ISIZE
J2=J+3%x]ISIZE

RIKI=RIKIACIKL ILI XY (2%I=1 )+C (Ko J2)XY(2%I=-1)%Y(2%J~-1)

CONTINUE
CHANGE SIGN OF R(I) MATRIX

D0 35 I=1.NSIZE
R(I)=-R(I)
N=NSIZE

DO 11 J=1sN
T(J)=1.0

M=N-1

DO 1 J=1M
AD=A(J+J)

DO 3 K=JsN

Al JeKI=ALJIIKI/AD
R{JI=RCIDI/AD
L=N~J

NN=0

DO 1 I=1,L
NN=J+1

DA=A( NN, J)

DO 2 K=JsN
A(NNIK)=A(NNK)I-A(JIK)*DA
RINN)=R{(NN)~-R( J) *DA
DO 4 J=1.N
K=N¥1~-J

S=060
IF(K=N)9+4¢9
L=K+1

DO S I=L N

SOLVES N SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS BY A GAUSS~JORDAN
A IS THE COEFFICIENT MATRIX,
A IS DESTROYED AND R IS REPLACED BY THE SOLUTION

R IS THE CONSTANT

FNCT
FNCT
FNCY
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT
FNCTY
FNCT
FNCT
FNCY
FNCT
FNCT
FNCT
FNCT
FNCT
FNCT

37
38
39
40
a1
a2
43
aaq
a4s
46
a7
48
49
50
s1
s2
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
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noon

noOn

oon

0onn

[aNaN3)

23

33
32

34

24
25

26

S=A(K 1) %*T(I)+S
TIKI)I=(R(K)I-SI/A(K sK)
DO 6 J4=1eN

RLJI=T(JI)

IF{MARK~-1)23+30.30

SET A(NN) EQUAL TO ZERO

DO 32 I=1.NSIZE

DO 33 J=1.NSIZE

A(lI+3)=0.00

CONTINUE

MAKE A(NsN) INTO AN IDENTITY MATRIX

DO 34 I1J=1+NSIZE
A(1J+1J)=1.00

PLACE ¥ COEFFICIENTS INTO GAUSS—JORDAN MATRIX

DO 2S J=1.1S1ZE

DO 24 I=1,1ISIZE
JN=J+7%1S1ZE

A(2%1 +2%J)=WCOF(ILsJIN}
CONTINUE

SET Z(N)=ZERO

DO 26 I=1.NSIZE
Z(1)=0.00

PLACE PROPER W COEFFICIENTS INTO R(N)

DO 28 K=1,1ISIZE
Z(2%K~—-1)=Y(2%K)

A(N)

FNCT 80
FNCT 81
FNCT 82
FNCT 83
FNCT 84
FNCT 8S
FNCT 86
FNCT 87
FNCT 88
FNCT 89
FNCT 90
FNCT 91
FNCT 92
FNCT 93
FNCT 94
FNCT 95
FNCT 96
FNCT 97
FNCY 98
FNCT 99
FNCT1060
FNCT101
FNCT102
FNCT103
FNCT104
FNCT10S
FNCT106
FNCT1I07
FNCT108
FNCT109
FNCT110
FNCT111
FNCT112
FNCT113
FNCT114

 FNCT11S
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000 Nnon

0on

27

28

29

36

30
31

DO 27 J=1.1S1ZE

J1=J+ISIZE

J2=J+2%1S]1ZE

J3=J+3%1ISIZE

Ja=J4+4%ISIZE

J5=J4+5S%ISIZE

J6=J+6%1ISIZE
Z(2%K)=Z(2%¢K)+WCOF (Ko J)RR(JI+WCOF (Ko J1)%2R(J1)
1+WCOF (Ko J2) XY (2% J—]1 )+ WCOF (K J3) RV (2% 4—~1 D)%Y (2%J~1)

2+WCOF (Ko J& ) ¥Y( 2% J=1 )X XI+WCOF (Ko JS)IXR( J) *Y (2% J-1)
3+ WCOF(Ke J6 ) ¥R J1 ) %Y (2%9~-1)

CONTINUE

SET R{IN)=Z(N)

DO 29 I=1+NSIZE
R(IX=Z(I)
MARK =1

CHANGE SIGN OF R(2%K)

DO 36 K=1,1ISIZE
R(2%K)=—-R(2%K)
GO TO 22

PLACE R{N) RESULTS IN DERY

DO 31 I=1+NSIZE
DERY(I)=R(I)
RETURN

END

FNCT116
FNCT117
FNCT118
FNCT119
FNCT120
FNCT121
FNCT122
FNCT123
FNCT124
FNCT12S
FNCT126
¥NCT127
FNCT128
FNCT129
FNCT130
FNCT131
FNCT132
FNCT133
FNCT134
FNCT13S
FNCT 136
FNCT137
FNCT138
FNCT 139
FNCT140
FNCT141
FNCT142
FNCT143
FNCT144
FNCT145
FNCT146
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