
Non-Contact Respiration Monitoring

Oklahoma State University

ECEN 4024: Capstone Design

Spring 2021

Andrew Fry, Hasan Hamoud,
Brenden Martin, Kyle Roth

Table of Contents

Responsibility Breakdown .. 1

Background ... 2

Parent Project ... 2

Breathing Phantom ... 2

Design ... 2
Design Elements: .. 2
Endoskeleton.. 3
ACTUATORS .. 4
Skin ... 6
MICROCONTROLLER ... 6
WIRING ... 7
SOFTWARE ... 7

Bill of Materials and Budget Summary ... 9

Reflections .. 10
Andrew ... 10
Hasan.. 10
Brenden .. 11
Kyle ... 11

Appendix ... 13

Operating Instructions ... 13
Setup .. 13
Raspberry Pi ... 13
Arduino .. 13
Sensor Only .. 14

Motor Calculations... 15

Gantt Chart .. 16

Servo Specifications ... 18

 1

Responsibility Breakdown

Student Responsibility

Andrew Fry
Andrew.fry@okstate.edu

Motor Control
UI Programming

Hasan Hamoud
hasan.hamoud@okstate.edu

Recorder
Hardware Assembly/Design
Actuator Design

Brenden Martin
brenden.martin@okstate.edu

Hardware Assembly/Design
Alternative Sensor Interfacing

Editor

Kyle Roth

Kyle.roth@okstate.edu

Point of Contact

Physical Design
Sensor Interfacing

 2

Background
Respiration rate is a valuable

indicator of many respiratory
ailments. However, due to the
difficulty and time consumption
associated with taking respiration
rate manually—especially with
children—it is often forgone. Non-
contact systems for monitoring

respiration increase the likelihood of
these measurements actually being
taken. Determination of respiration
rate in a timely and automatic
manner frees medical professionals
to complete tasks not yet realizable
by machine. Another advantage of

using an automated system is the
richness of the data. When respiration
rate is taken manually (counting
breaths over a period of time), only
the rate is obtained. With a
monitoring system in play, the shape
and extent of the breathing can also

be readily observed, providing
greater insight into the condition of
the patient. Such systems have
already proven their usefulness in the
field, but there are some concerns
regarding the existing solutions that
the parent project of our capstone

design seeks to address.

Parent Project
Health monitoring devices are a
nearly $60 billion industry. The goal of

the parent project (NSF CNS 2008556)
is to evaluate and lay a foundation
for a new method for non-contact
respiration and heart rate monitoring
with non-coherent light-wave sensing
(LWS) technology. Existing methods
use approaches based on radio

frequency (radar) and visual
methods (imaging with cameras).

The argument against camera-
based sensing lies in the privacy
concerns associated with this
method. On the other hand, the RF-

based method raises concerns of
electromagnetic interference with
other nearby medical instruments. To
test the LWS devices, a suitable
measurement setup was required,
which thereby motivated our design
project.

Breathing Phantom
The goal of our work was to create a

breathing-motion-replicating dummy

(sometimes called a breathing

phantom) to be used in the testing

and calibration of the

aforementioned non-contact

respiration monitoring apparatuses.

Usage of such a device has two

distinct advantages over human

subjects: no special permissions must

be obtained to perform

measurements on the phantom and

the breathing patterns can be

precisely controlled. This allows for

better understanding of the behavior

of the instrumentation.

Design
The design of the breathing phantom

was split into a handful of sub-

elements, which are detailed below.

DESIGN ELEMENTS:

• Endoskeleton

• Actuators

• Ribs

• Upper Body

 3

• Skin

• Microcontroller

• Wiring Diagram

• Software

• Control System

• Data Acquisition

• Graphical User Interface

Following, we discuss each of these

design components in greater depth.

ENDOSKELETON
The endoskeleton of the breathing

phantom is a primarily 3D-printed

structure designed in SolidWorks

mounted to a tripod for height

adjustment. The structure is smooth

and round to approximately the

shape of a chest cavity. The

endoskeleton is comprised of a back

panel which is fixed to a base

connected to the tripod. The base

serves as a mounting point for the

Raspberry Pi and the other wiring.

Attached to the top of the back

plate is an overhanging pivot about

which the chest plate rotates. The

back panel and the overhanging

pivot each possess a platform for

attaching the actuators. The rib plate

is stabilized and restricted to linear

motion by the presence of four linear

bearings, which enable the rib plate

to freely move in and out.

Figure 1: Endoskeleton Design

The plastic segments of the

endoskeleton (base, back plate,

chest plate, and rib plate) were

printed on the CraftBot 2 using PLA

filament. Because of the size

limitations of the print beds, the

individual segments had to be further

divided and required the addition of

finger joints to help align and

connect the finished parts.

Figure 2: 3D-Printing

Figure 3: Endoskeleton Interior

 4

Figure 4: PLA Base

Figure 5: Assembled Mechanism

ACTUATORS
Several different actuation methods

were considered for producing the

desired motions: piston style using DC

motors, rack & pinion using servos,

and pneumatic cylinders. We

decided not to pursue pneumatics

because of the difficulty to

accurately control them. There were

several key motor-actuator

requirements to be considered,

predominantly the force, linear

velocity, and full travel of the

actuator. The upper bounds of

human respiration are around 30

millimeters of travel (during deep

breathing) and the maximum rate is

upwards of 55 breaths per minute

(after heavy exercise). From this

information, we knew we needed to

ensure the actuator could both

extend at least 30 millimeters and

have a linear velocity of at least 60

millimeters a second (one full in-out

cycle per second equates to 60

breaths per minute. None of the

piston style kits we found possessed

both a long enough stroke and high

enough speed at the same time, so in

order to use this actuation style, we

would have needed to build our own.

The piston kit would also have been

far less direct to control, since we

would have to add an encoder, and

the rotation-extension is a nonlinear

function. The 2000 Series motor was

chosen in conjunction with rack &

pinion style, meeting our travel

requirement, and well exceeding the

necessary linear velocity. Motor

calculations & details are shown in

the table below.

Figure 6: Motor Calculations Table

Equations used for motor calculation:

Linear Velocity: (
𝑅𝑃𝑀

60
) × (𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛) ×

2𝜋) × 25.4(𝑚𝑚)

Full Travel: (
𝐷𝑒𝑔 𝑇ℎ𝑟𝑜𝑤

360
) × (𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛) ×

2𝜋) × 25.4(𝑚𝑚)

Force: (
𝑇𝑜𝑟𝑞𝑢𝑒(𝑜𝑧−𝑖𝑛)

𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛)
) × 0.0625(𝑙𝑏)

 5

Figure 7: 2000 Series Super Speed Servo

The 2000 Series Super Speed Servo is

a standard size servo that is driven

with a pulse width modulation (PWM)

signal from a microcontroller and has

a supply voltage range of 4.8-7.4 V.

This servo’s no-load speed can reach

up to 230 RPM. See Appendix C for

more servo specifications.

The rack and pinion kit we selected is

called a single perpendicular gear

rack and was found at Servocity, a

company specializing in servos,

actuator kits, and associated

hardware. When purchased

altogether, the selected kit includes a

Hitec HS-785HB servo, so it was

necessary to purchase each part

alone along with our chosen 2000

Series Super Speed Servo. The parts

comprising the kit are:

• (1) Standard Servo Plate B

• (2) Beam Bracket

• (1) Side Tapped Pattern Mount

A

• (25 pack) 1/4 Zinc-Plated

Socket Head Machine Screws

• (25 pack) 5/16 Zinc-Plated

Socket Head Machine Screws

• (25 pack) 5/8 Zinc-Plated

Socket Head Machine Screws

• (25 pack) 6-32 Nylock Nuts

• (25 pack) #6 Undersized

Washers

• (1) 32P, 16 Tooth, 25T 3F Spline

Servo Mount Gear (Metal)

• (1) Actobotics Beam Gear

Rack (32 Pitch, Acetal)

• (1) Aluminum Flat Beam (33

Hole, 12.32” Length)

A two-actuator design was selected

(each rack & pinion), one for each of

the primary manifestations of motion

caused by respiration: the outward

movement of the ribs and the

upward motion of the chest. The core

of each actuator is identical, varying

only in means of affixture. Both rails

are attached to their respective

actuation plates via a pin and slot for

easy removal when access to the

interior is required.

For the lower plate, the actuator is

mounted to the platform of the back

panel aligned with and centered

between the linear bearings. It was

necessary because of the rotating

motion and the position of the

actuator in the chest piece, to add

an additional degree of freedom. This

 6

was accomplished using a hinge

coupling the servo bracket to the

mounting platform.

SKIN
To accurately replicate the

movements of the human body, we

used a flexible membrane as a

covering of the internal armature. This

skin aids in distribution of the

movement of the actuation plates

smoothly across the surface of the

breathing phantom. We were able to

locate a fairly realistic silicone torso

being sold as a costuming element

online. The thickness of the skin

proved to be far greater than our

suspicions, causing more tension than

expected on the internal workings.

For this reason, and to better adjust

the fit of the skin, we made an incision

from neck to waist down the middle

of the back and added grommets

down each side. The grommets were

laced like a corset using a length of

paracord.

Figure 8: Front & Back View of The Skin

MICROCONTROLLER

To control the actuators in the

dummy, a microcontroller was used.

This was to allow for greater variability

and control of breathing patterns

than a simple speed controller could

provide. Deliberations were made to

decide between the Raspberry Pi

and the Arduino as the best

microcontroller for this application.

The Arduino has far less overhead,

making it generally more ideal for

simple embedded tasks. This initially

suggested that it could be the

correct choice. However, we elected

to use the Raspberry Pi because of its

onboard memory and remote

accessibility. Using the Arduino, to

add or update breathing patterns, it

would be necessary to either

reprogram the device each time or

to have designed an interface for

entering and storing new patterns in

an offboard memory. The Raspberry

Pi, on the other hand, can be

interfaced with over network using a

program such as VNC or TeamViewer

or directly observed by attaching a

standard computer monitor and

peripherals. Our hope was that this

would provide the necessary means

to create a simple interface for

altering and switching breathing files

that would not necessarily require the

user to physically access the

microcontroller in the breathing

phantom nor recompile the program.

Use of the Raspberry Pi also makes it

possible to keep a copy of the entire

 7

documentation for the device

onboard, making it readily available

wherever the phantom is taken.

During the programming phase, we

discovered some unexpected

challenges with the Raspberry Pi. A

more involved description of the

software iterations and

accompanying issues can be found

in the software section, but the

essence of the problem was that the

Graphical User Interface (GUI) was

bogging down the Raspberry Pi to

the extent that it could no longer

drive the actuators smoothly while

also plotting data. This eventually led

to a reevaluation of the Raspberry Pi

as the optimal microcontroller. We

came to realize that the features we

desired from the Pi could be realized

from an external computer, and

further, that a microcontroller within

the phantom could be made

responsible for dispatching

instructions to the actuators

exclusively, while the control

interface runs on the external device.

For this alternative architecture, an

Arduino became the better option

due to its ease of serial

communication. In this final design

variant, the external computer sends

the position information to the

Arduino over serial via USB cable. The

Arduino converts the information

from the computer into a PWM signal

to control the actuators. The

computer is also responsible for

reading sensor data and plotting the

target motion and measured data.

WIRING

The wiring within the dummy has

been implemented utilizing lever nut

terminals. These terminals maintain

an exceptionally strong grasp upon

the wires but facilitate easy

troubleshooting and part

replacement through easy wire

removal. The proper pins to use can

be found in the code documentation

(and edited if a user so desires), but

also seen in the schematic below.

Figure 9: Schematic

SOFTWARE

• Motor Control Text Interface

The first control software

programmed was a simple text-

based interface written in C++, which

was navigated by entering

corresponding instruction and option

numbers. This enabled us to evaluate

the performance of the actuators but

would be a nonideal interface for the

end-user.

• Motor Control GUI

In the interest of user-friendliness, we

began to work on a GUI. Sliders were

now used to set the rate, offset, and

amplitude of the actuation. A

 8

dropdown menu was used for

waveform selection. Shown below is

the final version of this option

mentioned in the Setup section.

Figure 10: Motor Control Menu

• GUI with Realtime Data Plots on

Raspberry Pi

Once the motor control was

implemented in the GUI, we began

work to add a display for the

comparison of the commanded

motions from the Raspberry Pi and

the measured motions from a Time of

Flight (ToF) sensor.

Figure 11: Real Time Data Plot (blue = sent, red =

read)

At this point, it became evident that

the Raspberry Pi was struggling to

manage the real-time plotting while

controlling the motors. Attempts at

multithreading were made, but

though irreplicable errors (the biggest

being a memory access error) and

lack of background knowledge

made this a highly difficult challenge.

Rather than scramble to accrue

years of programming expertise over

the course of a few weeks, we

devised an alternative solution using

a microcontroller as a slave to an

external computer.

• GUI with Realtime Data Plots on

External Computer

The final version of the control

software is essentially identical to the

prior except that it is run on an

external computer and therefore runs

with minimal jitter. Jitter is a term used

to describe the time between

calculations of the location

information from the patterns to the

servos. A smaller time between

calculations means there are more

points in a period of the waveform, so

what you see is less jitter. Migrating

the software to a desktop or laptop

computer was a fairly easy task as

that the graphical versions of the

interface were programmed in

Python. For its tradeoffs, being written

in Python does add considerable

versatility to the program in that it can

run on Linux, MacOS, or Windows so

long as the host machine has Python3

installed.

 9

Figure 12: GUI for the Master-Slave Setup

Expandability is key for the usefulness

of the breathing phantom in a
research environment. The code has
been written generally, such that it
can be adapted to work with new
sensors by simply changing the
function which retrieves the sensor
value. Assuming that the new data

retrieval function has already been
written, the change is merely to
include its library at the top of the
program and swap the new one out
for the previous data retrieval
function. Though the program
currently includes sinusoidal functions

only, piecewise functions can also be
added using the same framework as
the already implemented patterns.
Further details for operating and
altering the code can be found in its
dedicated documentation and in
the operating instructions provided in

the appendix.

Bill of Materials and Budget

Summary

For the budget and bill of materials,
we had four total orders from several

websites and companies. We were
given $1400 budget to spend on this
project from the Electrical and
Computer Engineering department.

In the first week of the semester, we
had our first meeting discussing the
initial parts list and budget for the
materials that we need to
accomplish this mission. For the initial
parts list, the cost was $1090, and we
knew that this is the minimum cost to

do project, but at the same time we
knew that the range of the price to
make this robot would be between
$1090-$1400. Planning ahead and
working on the list we needed to
order in time paid off especially
during the extreme weather

condition and all of the shipment
delays. The first order took place in
week 4. We ordered actuators and
the linear motion kit, lighting stand,
power supply, Raspberry pi 4 & its
power supply, fake muscles, and
male/female jumper wires. We sent

the second list of the rest of the
actuators in week 5 since they never
got ordered in the first order. The third
order was in week 7, and this time
ordering some standard servo plates
and gears for the servos’ kits. Our
fourth order took place in week 10 to

purchase linear ball bearings & shafts,
lever wire connectors, and a PCB kit.
We also had to go to Walmart in
week 14 to different sizes/colors T-
shirts for the dummy as well as a pillow
for the abdominal part of it. Overall,
we spent $1303.21 of our budget,
coming in well under our $1400 limit.

Final cost and parts list are shown in
the figure below.

 10

Figure 13: Parts List & Total Cost

Reflections

ANDREW
Ideally C++ would have a GUI library
that is efficient and easy to use.
Tkinter is great for GUI programming,
but Python cannot keep up. I
suppose then that I would have
preferred to delve into the more
difficult C++ GUI programming early
on then attempted plotting along

with that. I do not know if that would
solve the problem in terms of plotting
time, but then I guess the same issues
would result regardless if not. I believe
having the Raspberry Pi upload its
information to a database would be
the best for ease of use in terms of

maintaining the simple user interface
while allowing an experimenter to
have access to the data from
anywhere they wanted. As for the
way the calculations are done, it
could have been set up in a way that
calculations are done for one period

at startup and stored in an array for
every function you wanted then
looped through when called. This
would allow for completely arbitrary
functions. With the current
framework, a future user could easily
set something like this up if they

wished to use arbitrary functions. Also,
the Raspberry Pi does the

mathematical calculations so quickly
that this would not be a reasonable
method to save calculation time. The
main issue was how long it takes to

plot data. Luckily, switching to the
Arduino made that much better (still
not as smooth as with no plotting at
all), but it would be nice to have a
system that was completely self-
contained while meeting all the
desires of the researchers.

HASAN
The current design of the dummy is

very useful for research purposes and
can be a reference for future
medical breathing phantom devices.
For the physical design, 3d printing
option is not a bad idea for this kind
of project, however it took a lot of
time and effort from designing the

module in SolidWorks to printing it on
CraftBot 2 using PLA filament. The first
design that we discussed as a team
was to create our robot using a
flexible thin-long metal sheets as ribs
and aluminum plates that act as
lungs with a total of six actuators to

provide a stable and smooth linear
motion. The current actuation design
with our servos can handle up to
16.25 lb of force. That is more than
enough to us, but I would
recommend searching for a more
expensive servo that has a

reasonably high speed and can
handle more force when using heavy
materials to also avoid the overload
heat in the servo. For the software
part, we have a variety of breathing
patterns that is helpful for the
researcher who wants to collect data

of a human-like breathing rates such
as |sin (𝑤𝑡)|, sin2(𝑤𝑡), sin4(𝑤𝑡), and
sin6(𝑤𝑡) with a user-friendly motor

 11

control GUI. Adding more functions
such as exponentials would also let
the user to have a wider range of
patterns to study. Overall, I believe

BRENDEN
My preferred design would use
flexible metal ribs being deflected by
actuator pairs (pairs for increased
force). Each rib would be vertically
adjustable along a rail. The ribs would
be tunable, but identical. They would
be designed from simple extruded
forms to make their manufacture at

the physics machine shop a
straightforward task. I would use
aluminum for the frame and spring
steel for the deflecting plates. I would
gladly employ the same
approximate actuators, although I
would attempt to find a servo with

slightly greater force output to make
it more rugged. At each the top and
bottom of the vertical mounting rail
would be a metal pipe ring upon
which the silicone skin could be
fastened. Individual adjustment of
the ribs would be used to set the

body shape and help fit it to the skin.
I would keep the master-slave
configuration between the
microcontroller and an external
computer, but rather than implement
breathing patterns using functions, I
would use a file-based method in

which a completely arbitrary
breathing pattern can be defined. A
breathing description file would have
a column for each actuator, and
time would be the vertical axis.
Waveforms would be of a fixed
length and be normalized to the

same frequency. I would select a
frequency of around 0.1 Hertz (slow
breathing) so that there are plenty of

data points for smooth motion even
at the low end of respiration rates. For
the data monitoring software, I would
use the serial and plotting capabilities

of MATLAB, which we have reason to
suspect may be better able to
update plots quickly. This would also
allow easy integration with other
laboratory code already written for
the MATLAB environment.

KYLE
We spent a lot of time discussing the
physical design and construction of

the
Breathing Phantom and lot of
preliminary design work was done in
SolidWorks to help cull bad or overly
complex designs. Then, we 3D printed
a prototype of the chosen design.
This prototype helped to teach us

many things about the dummy, and
it showed a few places it could be
improved. First, the frame of the
dummy was slightly too large for the
skin to fit nicely over it. Shrinking the
overall dimensions of the frame
would allow ‘dressing’ the robot to be

easier and reduce load on the servos.
Second, the chest piece doesn’t
appear to fill out the dummy well. I’m
quite certain this is because there are
no shoulders on the dummy. While this
shouldn’t affect the sensor data
horribly, adding shoulders would

make the dummy more lifelike. Third,
the lower plate region could stand to
be slightly taller. While there is motion
in the lower stomach region,
extending this plate just 2-3 inches
would help exaggerate this motion.
Finally, when testing the prototype,

there was a decent amount of strain
put on the servos. We had only one
servo actuating each plate. The

 12

design could be altered to allow
multiple servos on each plate,
distributing the load amongst them
all. Given all of these, the Breathing

Phantom produces very lifelike
breathing motion. With these design
considerations in mind, I would slightly
modify the current design and get
the dummy built from a more rigid
material, maybe aluminum.

 13

Appendix
Operating Instructions

SETUP
The control software is written in Python 3 and therefore, a valid installation of

Python 3 is required to run the program. Complete and detailed instructions on
the installation process can be found on the Python website:
https://wiki.python.org/moin/BeginnersGuide/Download

To install the additional required libraries, run the following in a command line in
the software’s directory:

> pip3 install --user -r "requirements.txt"

For completeness, we have provided several variations of the control software
from throughout the design process. Following is a list of these versions and
accompanying instructions:

RASPBERRY PI
Inside the 'NoGraph' folder are programs to run the breathing phantom that
produce no respiration plots. For maximally smooth actuation, it is recommended
that the phantom be run with this version of the program. To run this version,

navigate in the command-line to the ‘NoGraph’ folder and run:

> python3 DNFM.py

Inside the 'RPi' folder are programs which both poll the sensor and control the
phantom from the Raspberry Pi. These utilities produce a graph of the data.
Because of the resultant degradation of actuation, these programs are not

recommended, but are included should they become helpful.

> python3 DNFM.py does not plot either measured or target motion.
> python3 DNFM2.py plots both data sets.

Stored within the 'threading' folder are our attempts to utilize threading to smooth
the motion of the phantom despite also plotting data. Though it consumed much

energy and many hours, this approach unfortunately did not come to fruition.
Though the Raspberry Pi has multiple cores, each core is single threaded, so this
code implemented scheduling rather than true threading.

ARDUINO
Inside the 'Arduino' folder is code to control the phantom using an Arduino. The
Arduino listens for serial data from an external computer over USB and converts it
into a PWM signal to drive the actuators. On the external computer:

https://wiki.python.org/moin/BeginnersGuide/Download

 14

> python3 DNFMServo.py
> python3 DNFMEvo.py

This will open two separate windows. The DNFMServo window controls the

phantom and the DNFMEvo window plots the sensor data. Alternatively, the
DNFM.py program in the Arduino folder can be used to attempt running both
plots in the same window, but is not recommended for its choppiness.

SENSOR ONLY
In the 'TeraRanger_Evo' folder, there are programs that poll the sensor only. There
is a C++ program to write the data from the sensor to a Binary file. This was tested
on a MacBook, however, it should run in Linux as well.

 15

Motor Calculations

 16

Gantt Chart

 17

 18

Servo Specifications

Figure 14: Servo Specifications

