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Background 
Respiration rate is a valuable 

indicator of many respiratory 
ailments. However, due to the 
difficulty and time consumption 
associated with taking respiration 
rate manually—especially with 
children—it is often forgone. Non-
contact systems for monitoring 

respiration increase the likelihood of 
these measurements actually being 
taken. Determination of respiration 
rate in a timely and automatic 
manner frees medical professionals 
to complete tasks not yet realizable 
by machine. Another advantage of 

using an automated system is the 
richness of the data. When respiration 
rate is taken manually (counting 
breaths over a period of time), only 
the rate is obtained. With a 
monitoring system in play, the shape 
and extent of the breathing can also 

be readily observed, providing 
greater insight into the condition of 
the patient. Such systems have 
already proven their usefulness in the 
field, but there are some concerns 
regarding the existing solutions that 
the parent project of our capstone 

design seeks to address. 
 

Parent Project 
Health monitoring devices are a 
nearly $60 billion industry. The goal of 

the parent project (NSF CNS 2008556) 
is to evaluate and lay a foundation 
for a new method for non-contact 
respiration and heart rate monitoring 
with non-coherent light-wave sensing 
(LWS) technology. Existing methods 
use approaches based on radio 

frequency (radar) and visual 
methods (imaging with cameras). 

The argument against camera-
based sensing lies in the privacy 
concerns associated with this 
method. On the other hand, the RF-

based method raises concerns of 
electromagnetic interference with 
other nearby medical instruments. To 
test the LWS devices, a suitable 
measurement setup was required, 
which thereby motivated our design 
project. 

 

Breathing Phantom 
The goal of our work was to create a 

breathing-motion-replicating dummy 

(sometimes called a breathing 

phantom) to be used in the testing 

and calibration of the 

aforementioned non-contact 

respiration monitoring apparatuses. 

Usage of such a device has two 

distinct advantages over human 

subjects: no special permissions must 

be obtained to perform 

measurements on the phantom and 

the breathing patterns can be 

precisely controlled. This allows for 

better understanding of the behavior 

of the instrumentation. 

 

Design 
The design of the breathing phantom 

was split into a handful of sub-

elements, which are detailed below. 

 

DESIGN ELEMENTS: 

• Endoskeleton 

• Actuators 

• Ribs 

• Upper Body 
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• Skin 

• Microcontroller 

• Wiring Diagram 

• Software 

• Control System 

• Data Acquisition 

• Graphical User Interface 

Following, we discuss each of these 

design components in greater depth. 

 

ENDOSKELETON 
The endoskeleton of the breathing 

phantom is a primarily 3D-printed 

structure designed in SolidWorks 

mounted to a tripod for height 

adjustment. The structure is smooth 

and round to approximately the 

shape of a chest cavity. The 

endoskeleton is comprised of a back 

panel which is fixed to a base 

connected to the tripod. The base 

serves as a mounting point for the 

Raspberry Pi and the other wiring. 

Attached to the top of the back 

plate is an overhanging pivot about 

which the chest plate rotates. The 

back panel and the overhanging 

pivot each possess a platform for 

attaching the actuators. The rib plate 

is stabilized and restricted to linear 

motion by the presence of four linear 

bearings, which enable the rib plate 

to freely move in and out. 

Figure 1: Endoskeleton Design 

The plastic segments of the 

endoskeleton (base, back plate, 

chest plate, and rib plate) were 

printed on the CraftBot 2 using PLA 

filament. Because of the size 

limitations of the print beds, the 

individual segments had to be further 

divided and required the addition of 

finger joints to help align and 

connect the finished parts. 

 

 
Figure 2: 3D-Printing 

 
Figure 3: Endoskeleton Interior 
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Figure 4: PLA Base 

 
Figure 5: Assembled Mechanism 

 

ACTUATORS 
Several different actuation methods 

were considered for producing the 

desired motions: piston style using DC 

motors, rack & pinion using servos, 

and pneumatic cylinders. We 

decided not to pursue pneumatics 

because of the difficulty to 

accurately control them. There were 

several key motor-actuator 

requirements to be considered, 

predominantly the force, linear 

velocity, and full travel of the 

actuator. The upper bounds of 

human respiration are around 30 

millimeters of travel (during deep 

breathing) and the maximum rate is 

upwards of 55 breaths per minute 

(after heavy exercise). From this 

information, we knew we needed to 

ensure the actuator could both 

extend at least 30 millimeters and 

have a linear velocity of at least 60 

millimeters a second (one full in-out 

cycle per second equates to 60 

breaths per minute. None of the 

piston style kits we found possessed 

both a long enough stroke and high 

enough speed at the same time, so in 

order to use this actuation style, we 

would have needed to build our own. 

The piston kit would also have been 

far less direct to control, since we 

would have to add an encoder, and 

the rotation-extension is a nonlinear 

function. The 2000 Series motor was 

chosen in conjunction with rack & 

pinion style, meeting our travel 

requirement, and well exceeding the 

necessary linear velocity.  Motor 

calculations & details are shown in 

the table below. 

 

 
Figure 6: Motor Calculations Table 

 

Equations used for motor calculation: 

Linear Velocity: (
𝑅𝑃𝑀

60
) × (𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛) ×

2𝜋) × 25.4(𝑚𝑚) 

Full Travel: (
𝐷𝑒𝑔 𝑇ℎ𝑟𝑜𝑤

360
) × (𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛) ×

2𝜋) × 25.4(𝑚𝑚) 

Force: (
𝑇𝑜𝑟𝑞𝑢𝑒(𝑜𝑧−𝑖𝑛)

𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛)
) × 0.0625(𝑙𝑏) 



 

 5 

  
Figure 7: 2000 Series Super Speed Servo 

 
The 2000 Series Super Speed Servo is 

a standard size servo that is driven 

with a pulse width modulation (PWM) 

signal from a microcontroller and has 

a supply voltage range of 4.8-7.4 V. 

This servo’s no-load speed can reach 

up to 230 RPM. See Appendix C for 

more servo specifications. 

 

The rack and pinion kit we selected is 

called a single perpendicular gear 

rack and was found at Servocity, a 

company specializing in servos, 

actuator kits, and associated 

hardware. When purchased 

altogether, the selected kit includes a 

Hitec HS-785HB servo, so it was 

necessary to purchase each part 

alone along with our chosen 2000 

Series Super Speed Servo. The parts 

comprising the kit are: 

 

• (1) Standard Servo Plate B 

• (2) Beam Bracket  

• (1) Side Tapped Pattern Mount 

A 

• (25 pack) 1/4 Zinc-Plated 

Socket Head Machine Screws 

• (25 pack) 5/16 Zinc-Plated 

Socket Head Machine Screws 

• (25 pack) 5/8 Zinc-Plated 

Socket Head Machine Screws 

• (25 pack) 6-32 Nylock Nuts  

• (25 pack) #6 Undersized 

Washers 

• (1) 32P, 16 Tooth, 25T 3F Spline 

Servo Mount Gear (Metal) 

• (1) Actobotics Beam Gear 

Rack (32 Pitch, Acetal) 

• (1) Aluminum Flat Beam (33 

Hole, 12.32” Length) 

 

A two-actuator design was selected 

(each rack & pinion), one for each of 

the primary manifestations of motion 

caused by respiration: the outward 

movement of the ribs and the 

upward motion of the chest. The core 

of each actuator is identical, varying 

only in means of affixture. Both rails 

are attached to their respective 

actuation plates via a pin and slot for 

easy removal when access to the 

interior is required. 

 

For the lower plate, the actuator is 

mounted to the platform of the back 

panel aligned with and centered 

between the linear bearings. It was 

necessary because of the rotating 

motion and the position of the 

actuator in the chest piece, to add 

an additional degree of freedom. This 
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was accomplished using a hinge 

coupling the servo bracket to the 

mounting platform. 

 

SKIN 
To accurately replicate the 

movements of the human body, we 

used a flexible membrane as a 

covering of the internal armature. This 

skin aids in distribution of the 

movement of the actuation plates 

smoothly across the surface of the 

breathing phantom. We were able to 

locate a fairly realistic silicone torso 

being sold as a costuming element 

online. The thickness of the skin 

proved to be far greater than our 

suspicions, causing more tension than 

expected on the internal workings. 

For this reason, and to better adjust 

the fit of the skin, we made an incision 

from neck to waist down the middle 

of the back and added grommets 

down each side. The grommets were 

laced like a corset using a length of 

paracord. 

 

 
Figure 8: Front & Back View of The Skin 

 

MICROCONTROLLER 

To control the actuators in the 

dummy, a microcontroller was used. 

This was to allow for greater variability 

and control of breathing patterns 

than a simple speed controller could 

provide. Deliberations were made to 

decide between the Raspberry Pi 

and the Arduino as the best 

microcontroller for this application. 

The Arduino has far less overhead, 

making it generally more ideal for 

simple embedded tasks. This initially 

suggested that it could be the 

correct choice. However, we elected 

to use the Raspberry Pi because of its 

onboard memory and remote 

accessibility. Using the Arduino, to 

add or update breathing patterns, it 

would be necessary to either 

reprogram the device each time or 

to have designed an interface for 

entering and storing new patterns in 

an offboard memory. The Raspberry 

Pi, on the other hand, can be 

interfaced with over network using a 

program such as VNC or TeamViewer 

or directly observed by attaching a 

standard computer monitor and 

peripherals. Our hope was that this 

would provide the necessary means 

to create a simple interface for 

altering and switching breathing files 

that would not necessarily require the 

user to physically access the 

microcontroller in the breathing 

phantom nor recompile the program. 

Use of the Raspberry Pi also makes it 

possible to keep a copy of the entire 
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documentation for the device 

onboard, making it readily available 

wherever the phantom is taken. 

 

During the programming phase, we 

discovered some unexpected 

challenges with the Raspberry Pi. A 

more involved description of the 

software iterations and 

accompanying issues can be found 

in the software section, but the 

essence of the problem was that the 

Graphical User Interface (GUI) was 

bogging down the Raspberry Pi to 

the extent that it could no longer 

drive the actuators smoothly while 

also plotting data. This eventually led 

to a reevaluation of the Raspberry Pi 

as the optimal microcontroller. We 

came to realize that the features we 

desired from the Pi could be realized 

from an external computer, and 

further, that a microcontroller within 

the phantom could be made 

responsible for dispatching 

instructions to the actuators 

exclusively, while the control 

interface runs on the external device. 

For this alternative architecture, an 

Arduino became the better option 

due to its ease of serial 

communication. In this final design 

variant, the external computer sends 

the position information to the 

Arduino over serial via USB cable. The 

Arduino converts the information 

from the computer into a PWM signal 

to control the actuators. The 

computer is also responsible for 

reading sensor data and plotting the 

target motion and measured data. 

 

WIRING 

The wiring within the dummy has 

been implemented utilizing lever nut 

terminals. These terminals maintain 

an exceptionally strong grasp upon 

the wires but facilitate easy 

troubleshooting and part 

replacement through easy wire 

removal. The proper pins to use can 

be found in the code documentation 

(and edited if a user so desires), but 

also seen in the schematic below. 

 

 
Figure 9: Schematic 

 

SOFTWARE 

• Motor Control Text Interface 

The first control software 

programmed was a simple text-

based interface written in C++, which 

was navigated by entering 

corresponding instruction and option 

numbers. This enabled us to evaluate 

the performance of the actuators but 

would be a nonideal interface for the 

end-user. 

 

• Motor Control GUI 

In the interest of user-friendliness, we 

began to work on a GUI. Sliders were 

now used to set the rate, offset, and 

amplitude of the actuation. A 
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dropdown menu was used for 

waveform selection. Shown below is 

the final version of this option 

mentioned in the Setup section. 

 

 
Figure 10: Motor Control Menu 

 

• GUI with Realtime Data Plots on 

Raspberry Pi 

Once the motor control was 

implemented in the GUI, we began 

work to add a display for the 

comparison of the commanded 

motions from the Raspberry Pi and 

the measured motions from a Time of 

Flight (ToF) sensor.  

 

 

 
Figure 11: Real Time Data Plot (blue = sent, red = 

read) 

 

At this point, it became evident that 

the Raspberry Pi was struggling to 

manage the real-time plotting while 

controlling the motors. Attempts at 

multithreading were made, but 

though irreplicable errors (the biggest 

being a memory access error) and 

lack of background knowledge 

made this a highly difficult challenge. 

Rather than scramble to accrue 

years of programming expertise over 

the course of a few weeks, we 

devised an alternative solution using 

a microcontroller as a slave to an 

external computer. 

 

• GUI with Realtime Data Plots on 

External Computer 

The final version of the control 

software is essentially identical to the 

prior except that it is run on an 

external computer and therefore runs 

with minimal jitter. Jitter is a term used 

to describe the time between 

calculations of the location 

information from the patterns to the 

servos. A smaller time between 

calculations means there are more 

points in a period of the waveform, so 

what you see is less jitter. Migrating 

the software to a desktop or laptop 

computer was a fairly easy task as 

that the graphical versions of the 

interface were programmed in 

Python. For its tradeoffs, being written 

in Python does add considerable 

versatility to the program in that it can 

run on Linux, MacOS, or Windows so 

long as the host machine has Python3 

installed.  
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Figure 12: GUI for the Master-Slave Setup 

 
Expandability is key for the usefulness 

of the breathing phantom in a 
research environment. The code has 
been written generally, such that it 
can be adapted to work with new 
sensors by simply changing the 
function which retrieves the sensor 
value. Assuming that the new data 

retrieval function has already been 
written, the change is merely to 
include its library at the top of the 
program and swap the new one out 
for the previous data retrieval 
function. Though the program 
currently includes sinusoidal functions 

only, piecewise functions can also be 
added using the same framework as 
the already implemented patterns. 
Further details for operating and 
altering the code can be found in its 
dedicated documentation and in 
the operating instructions provided in 

the appendix. 
 

Bill of Materials and Budget 

Summary 
 
For the budget and bill of materials, 
we had four total orders from several 

websites and companies. We were 
given $1400 budget to spend on this 
project from the Electrical and 
Computer Engineering department. 

In the first week of the semester, we 
had our first meeting discussing the 
initial parts list and budget for the 
materials that we need to 
accomplish this mission. For the initial 
parts list, the cost was $1090, and we 
knew that this is the minimum cost to 

do project, but at the same time we 
knew that the range of the price to 
make this robot would be between 
$1090-$1400. Planning ahead and 
working on the list we needed to 
order in time paid off especially 
during the extreme weather 

condition and all of the shipment 
delays. The first order took place in 
week 4. We ordered actuators and 
the linear motion kit, lighting stand, 
power supply, Raspberry pi 4 & its 
power supply, fake muscles, and 
male/female jumper wires. We sent 

the second list of the rest of the 
actuators in week 5 since they never 
got ordered in the first order. The third 
order was in week 7, and this time 
ordering some standard servo plates 
and gears for the servos’ kits. Our 
fourth order took place in week 10 to 

purchase linear ball bearings & shafts, 
lever wire connectors, and a PCB kit. 
We also had to go to Walmart in 
week 14 to different sizes/colors T-
shirts for the dummy as well as a pillow 
for the abdominal part of it. Overall, 
we spent $1303.21 of our budget, 
coming in well under our $1400 limit. 

Final cost and parts list are shown in 
the figure below. 
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Figure 13: Parts List & Total Cost 

 

Reflections 

ANDREW 
Ideally C++ would have a GUI library 
that is efficient and easy to use. 
Tkinter is great for GUI programming, 
but Python cannot keep up. I 
suppose then that I would have 
preferred to delve into the more 
difficult C++ GUI programming early 
on then attempted plotting along 

with that. I do not know if that would 
solve the problem in terms of plotting 
time, but then I guess the same issues 
would result regardless if not. I believe 
having the Raspberry Pi upload its 
information to a database would be 
the best for ease of use in terms of 

maintaining the simple user interface 
while allowing an experimenter to 
have access to the data from 
anywhere they wanted. As for the 
way the calculations are done, it 
could have been set up in a way that 
calculations are done for one period 

at startup and stored in an array for 
every function you wanted then 
looped through when called. This 
would allow for completely arbitrary 
functions. With the current 
framework, a future user could easily 
set something like this up if they 

wished to use arbitrary functions. Also, 
the Raspberry Pi does the 

mathematical calculations so quickly 
that this would not be a reasonable 
method to save calculation time. The 
main issue was how long it takes to 

plot data. Luckily, switching to the 
Arduino made that much better (still 
not as smooth as with no plotting at 
all), but it would be nice to have a 
system that was completely self-
contained while meeting all the 
desires of the researchers. 

  

HASAN 
The current design of the dummy is 

very useful for research purposes and 
can be a reference for future 
medical breathing phantom devices. 
For the physical design, 3d printing 
option is not a bad idea for this kind 
of project, however it took a lot of 
time and effort from designing the 

module in SolidWorks to printing it on 
CraftBot 2 using PLA filament. The first 
design that we discussed as a team 
was to create our robot using a 
flexible thin-long metal sheets as ribs 
and aluminum plates that act as 
lungs with a total of six actuators to 

provide a stable and smooth linear 
motion. The current actuation design 
with our servos can handle up to 
16.25 lb of force. That is more than 
enough to us, but I would 
recommend searching for a more 
expensive servo that has a 

reasonably high speed and can 
handle more force when using heavy 
materials to also avoid the overload 
heat in the servo. For the software 
part, we have a variety of breathing 
patterns that is helpful for the 
researcher who wants to collect data 

of a human-like breathing rates such 
as |sin (𝑤𝑡)|, sin2(𝑤𝑡), sin4(𝑤𝑡), and 
sin6(𝑤𝑡) with a user-friendly motor 
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control GUI. Adding more functions 
such as exponentials would also let 
the user to have a wider range of 
patterns to study. Overall, I believe  

 

BRENDEN 
My preferred design would use 
flexible metal ribs being deflected by 
actuator pairs (pairs for increased 
force). Each rib would be vertically 
adjustable along a rail. The ribs would 
be tunable, but identical. They would 
be designed from simple extruded 
forms to make their manufacture at 

the physics machine shop a 
straightforward task. I would use 
aluminum for the frame and spring 
steel for the deflecting plates. I would 
gladly employ the same 
approximate actuators, although I 
would attempt to find a servo with 

slightly greater force output to make 
it more rugged. At each the top and 
bottom of the vertical mounting rail 
would be a metal pipe ring upon 
which the silicone skin could be 
fastened. Individual adjustment of 
the ribs would be used to set the 

body shape and help fit it to the skin. 
I would keep the master-slave 
configuration between the 
microcontroller and an external 
computer, but rather than implement 
breathing patterns using functions, I 
would use a file-based method in 

which a completely arbitrary 
breathing pattern can be defined. A 
breathing description file would have 
a column for each actuator, and 
time would be the vertical axis. 
Waveforms would be of a fixed 
length and be normalized to the 

same frequency. I would select a 
frequency of around 0.1 Hertz (slow 
breathing) so that there are plenty of 

data points for smooth motion even 
at the low end of respiration rates. For 
the data monitoring software, I would 
use the serial and plotting capabilities 

of MATLAB, which we have reason to 
suspect may be better able to 
update plots quickly. This would also 
allow easy integration with other 
laboratory code already written for 
the MATLAB environment.  
 

KYLE 
We spent a lot of time discussing the 
physical design and construction of 

the  
Breathing Phantom and lot of 
preliminary design work was done in 
SolidWorks to help cull bad or overly 
complex designs. Then, we 3D printed 
a prototype of the chosen design. 
This prototype helped to teach us 

many things about the dummy, and 
it showed a few places it could be 
improved. First, the frame of the 
dummy was slightly too large for the 
skin to fit nicely over it. Shrinking the 
overall dimensions of the frame 
would allow ‘dressing’ the robot to be 

easier and reduce load on the servos. 
Second, the chest piece doesn’t 
appear to fill out the dummy well. I’m 
quite certain this is because there are 
no shoulders on the dummy. While this 
shouldn’t affect the sensor data 
horribly, adding shoulders would 

make the dummy more lifelike. Third, 
the lower plate region could stand to 
be slightly taller. While there is motion 
in the lower stomach region, 
extending this plate just 2-3 inches 
would help exaggerate this motion. 
Finally, when testing the prototype, 

there was a decent amount of strain 
put on the servos. We had only one 
servo actuating each plate. The 
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design could be altered to allow 
multiple servos on each plate, 
distributing the load amongst them 
all. Given all of these, the Breathing 

Phantom produces very lifelike 
breathing motion. With these design 
considerations in mind, I would slightly 
modify the current design and get 
the dummy built from a more rigid 
material, maybe aluminum. 
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Appendix 
Operating Instructions 

SETUP 
The control software is written in Python 3 and therefore, a valid installation of 

Python 3 is required to run the program. Complete and detailed instructions on 
the installation process can be found on the Python website: 
https://wiki.python.org/moin/BeginnersGuide/Download 
 
To install the additional required libraries, run the following in a command line in 
the software’s directory: 
 

> pip3 install --user  -r "requirements.txt" 
 
For completeness, we have provided several variations of the control software 
from throughout the design process. Following is a list of these versions and 
accompanying instructions: 
 

RASPBERRY PI 
Inside the 'NoGraph' folder are programs to run the breathing phantom that 
produce no respiration plots. For maximally smooth actuation, it is recommended 
that the phantom be run with this version of the program. To run this version, 

navigate in the command-line to the ‘NoGraph’ folder and run: 
 

> python3 DNFM.py 
 
Inside the 'RPi' folder are programs which both poll the sensor and control the 
phantom from the Raspberry Pi. These utilities produce a graph of the data. 
Because of the resultant degradation of actuation, these programs are not 

recommended, but are included should they become helpful. 
 
> python3 DNFM.py  does not plot either measured or target motion. 
> python3 DNFM2.py  plots both data sets. 

 
Stored within the 'threading' folder are our attempts to utilize threading to smooth 
the motion of the phantom despite also plotting data. Though it consumed much 

energy and many hours, this approach unfortunately did not come to fruition. 
Though the Raspberry Pi has multiple cores, each core is single threaded, so this 
code implemented scheduling rather than true threading. 
 

ARDUINO 
Inside the 'Arduino' folder is code to control the phantom using an Arduino. The 
Arduino listens for serial data from an external computer over USB and converts it 
into a PWM signal to drive the actuators. On the external computer: 
 

https://wiki.python.org/moin/BeginnersGuide/Download
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> python3 DNFMServo.py 
> python3 DNFMEvo.py 

 
This will open two separate windows. The DNFMServo window controls the 

phantom and the DNFMEvo window plots the sensor data. Alternatively, the 
DNFM.py program in the Arduino folder can be used to attempt running both 
plots in the same window, but is not recommended for its choppiness. 
 

SENSOR ONLY 
In the 'TeraRanger_Evo' folder, there are programs that poll the sensor only. There 
is a C++ program to write the data from the sensor to a Binary file. This was tested 
on a MacBook, however, it should run in Linux as well. 
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Motor Calculations 
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Gantt Chart 
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Servo Specifications 

 

Figure 14: Servo Specifications 


