

ARCH 5226 SPRING 2021

HONORS THESIS

REBECCA DEMPEWOLF

	PRELIMINARY DESIGN		CONSTRUCTION DOC
	PROJECT INTRODUCTION	02	GENERAL NOTES
	DESIGN APPROACH	03	SITE PLAN
7	STRUCTURE	04	GROUND FLOOR PLA
	CODE COMPLIANCE	05	BASEMENT FOUNDAT
	BUILDING	05	FOUNDATION PLAN
	ENVIRONMENTAL	06	FRAMING PLAN
7	FINAL DESIGN		WALL SECTION
	ARCHITECTURAL DESIGN	07	FOUNDATION DETAIL
\bigcirc	EXTERIOR PERSPECTIVE	08	FLOOR DETAILS
()	INTERIOR PERSPECTIVE	09	ROOF DETAILS
\bigcirc	SYSTEMS DESIGN	10	LFRS DETAILS
	HVAC	10	SCHEDULES
\bigcirc	LIGHTING	11	WIND DIAGRAMS
\bigcirc	DAYLIGHTING	12	SEISMIC DIAGRAMS
	GRAVITY LOADS	13	STRUCTURAL AXONC
	STRUCTURAL DESIGN	13	
	WIND LOAD	14	
	SEISMIC LOAD	16	
\triangleleft	STRUCTURAL CALCULATIONS	18	
	RISA ANALYSIS	19	

CUMENTATION

AN - ARCH TION PLAN

LS

OMETRIC

PROJECT INTRODUCTION

THE JOHANNESBURG EMERGENCY MANAGEMENT DEPARTMENT IS SEEKING A DESIGN FOR A NEW FIRE STATION IN ORLANDO WEST, SOWETO, SOUTH AFRICA.

SERVING INFORMAL AND FORMAL SETTLEMENTS THE STATION WILL SERVE THE DIVERSE POPULATION OF THE AREA WHICH LARGELY HAS POOR RELATIONSHIPS WITH GOVERNMENTAL ORGANIZATIONS. THIS STRAIN DUE TO THE APARTHEID, WHICH HAS ONLY RECENTLY BEEN ABOLISHED, ALSO CONTRIBUTED TO THE STARK POLARIZATION OF WEALTH IN THE AREA.

WHILE THE APARTHEID HAS BEEN ABOLISHED, INFORMAL SETTLEMENTS STILL REMAIN AND POSE MANY DANGERS TO THOSE LIVING IN THEM, ESPECIALLY FIRE HAZARDS. THE FLAMMABLE **BUILDING MATERIALS USED, DENSELY POPULATED** SPACES UNREACHABLE BY FIRE FIGHTERS, AND UNSAFE METHODS OF COOKING ALL CREATE GREAT **RISKS THAT CAN DESTROY ENTIRE SETTLEMENTS** AND DISPLACE THOUSANDS OF PEOPLE IF FIRE STARTS. FURTHERMORE, RELATIONSHIPS BETWEEN THOSE LIVING IN INFORMAL SETTLEMENTS AND FIRE FIGHTERS HAS BEEN STRAINED, SO COOPERATION WITH OFFICIALS IS NOT COMMON AND DETRIMENTAL TO A RAPID EXTINGUISHING OF A FIRE.

THIS PROPOSAL FOR THE ORLANDO WEST FIRE STATION SEEKS TO BUILD CONNECTIONS BETWEEN THE COMMUNITY AND THE FIRE FIGHTERS THROUGH A CONTEXTUALLY INSPIRED DESIGN THAT CATERS TO THE NEEDS OF THE COMMUNITY, ENSURES A HEALTHY ENVIRONMENT FOR THE FIRE FIGHTERS, AND SERVES AS A NODE OF INTERACTION BETWEEN THE COMMUNITY AND FIRE FIGHTERS.

DESIGN APPROACH

UPON CONTEXTUAL RESEARCH AND SITE EXPLORATION, LARGE TESSELLATED PATTERNS BECAME A CONTEXTUAL MOTIF, EVEN VISIBLE IN THE SITE'S HISTORIC INFORMAL SETTLEMENT. THE NODES WITHIN THESE PATTERNS BECAME AN INSPIRATION FOR PATHS CONVERGING AND DIVERGING, AN INTERSECTION OF TWO THINGS DISTINCT THAT LEAVE THE NODE AND ARE CHANGED BECAUSE OF THE INTERACTION THAT OCCURRED THERE.

FROM THIS INSPIRATION THE FORM OF THE BUILDING WAS MOLDED BY PLACING THE NODES WITHIN HISTORIC SITE PATHS AND MASSAGING THE RESULT TO CREATE AN EFFICIENT YET UNIQUE LAYOUT THAT RESPONDED TO PROGRAMMATIC NEEDS AND IN SITU DEMANDS. REFLECTING THE DESIGN GOAL OF INTERACTION AND INTERSECTION, MULTIPLE STRUCTURAL MATERIALS AND SYSTEMS WERE CHOSEN TO INTERACT THROUGHOUT THE DESIGN TO VISUALLY ENTICE OR EXEMPLIFY SUCH CONNECTIONS.

STRUCTURE

DURING PRELIMINARY DESIGN, THREE STRUCTURAL SYSTEMS WERE EXPLORED.

STEEL : WIDE FLANGE COLUMNS AND BEAMS WORKING WITH DIAGONAL X BRACING SUPPORTING LOW SLOPE ROOF TRUSSES.

STEEL AND CONCRETE : CONCRETE BEAMS AND COLUMNS WITH STEEL ROOF JOISTS TO SPAN LONGER DISTANCES AT SHORTER DEPTHS.

STEEL AND MASONRY (SELECTED SYSTEM) : MASONRY SHEAR AND LOAD BEARING WALLS WORKING WITH THE STEEL FRAMING, ROOF JOISTS, AND A SPACE FRAME AIM TO RELATE TO CONVERGING PATHS IN THE INTERSECTING MATERIALS AND TO DEFINE SPACES THROUGH MATERIALITY.

THE SPACE FRAME WAS INSPIRED BY THE DESIRE FOR A LIGHT UNIFORM STRUCTURE CONNECTING THE TWO ADJACENT FORMS ABOVE THE ENTRANCE NODE. THE FACT THAT THE SPACE FRAME MEMBERS MEET AT NODES WAS FURTHER DESIGN MOTIVATION.

CODE COMPLIANCE BUILDING

DURING DESIGN, COMPLIANCE WITH THE IBC 2018 WAS CHECKED.

OCCUPANCY LOADS WERE CALCULATED TO DETERMINE REQUIRED EXITS, EGRESS WIDTHS, TRAVEL DISTANCES, NUMBER OF PLUMBING FIXTURES, AND MORE.

ENVIRONMENTAL

Envelope Compliance Dempewol

DURING DESIGN, COMPLIANCE WITH THE IECC 2021 WAS ENSURED THROUGH THE USE OF MULTIPLE SOFTWARES.

COVETOOL WAS UTILIZED TO ANALYZE THE DAYLIGHTING AND GLARE POTENTIAL IN THE BUILDING, AS WELL AS DETERMINE BASELINE ENERGY USAGES BASED ON ENVELOPE PROPERTIES AND MECHANICAL SYSTEM SELECTIONS. COMPARED TO BASELINE, THIS DESIGN REDUCES CO2 EMISSIONS BY 51% AND IS 9% MORE ENERGY EFFICIENCY THAN BASELINE CONDITIONS.

EQUEST HELPED DETERMINE PERIMETER AND INTERIOR THERMAL ZONE LOADS BASED ON DIFFERENT SHADING, VOLUME, AND MATERIAL PROPERTIES INPUTS. COMPARED TO BASELINE, THIS DESIGN REDUCES THE PERIMETER THERMAL LOAD BY OVER 40%

DETAILED **CALCULATIONS** FOR ENVELOPE R AND U VALUES WAS ACCOMPLISHED FOR USE IN THESE PREDICTIVE MODELING SOFTWARES.

	Code Compliance	approx.	Outside Air (R or R/in)	total	Exterior Finish (R)	thick ness	total	Continuous Rigid Insulation (R/In)	thick ness	total	Sheathing (R)	total	Cavity Insulation (R)	total	Interior Finish board (R)	total	Interior Air Film *	total	Total R	Total L
Roof			15mph summer		Standing Seam Metal Roof		Ĩ	Extruded Polystyrene			Structural Decking						horizontal surface downward heat flow,		R	U
	R-25ci U-0.039	25 0.039	0.25	0.25	0		0	3	5	25	D	0	0 Therm Bridge for U	0	0	ŋ	0.92	0.92	26.17 vl.*F/Btum	D.038 Blub/sl.7F
Wall			15mph summer		4" Clay Face Brick		-	Extruded Polystyrene Board			Plywood 3/4"	-	Rockwool Batt Insulation 5"	1.1	Gypsum Board 5/8"	1	Vertical surface, horiz heat flow		R	U
	R-13+R-7.5ci U - 0.064	21.5	0.25	0.25	0.24	3.68	0.88	5	1.5	7.5	0.93	0.93	19 THERM BRIDGE FOR U	19 7.03	0.59	0.59	0.58	0.68	29.832 st.*F/Btule	0.056 Btuh/sl, T
Wall Below	C - calcula	ition	soil		12" CMU		1	Extruded Polystyrene Board		1		1			-		Vertical surface, horiz heat flow	1	R	c
Grade	NR C-1.14	NR 1.14	0.041	0.04	1.28	-	1,28	5	2	10	0	0	0	0	0	0	0.68	0.68	12,0005 sf.°F/Btuin	0.084 Bhuh/si.*
Slab	U/F - calcu	lation	soil					Extruded Polystyr from perimeter	ene Bo nsulati	ard on							horizontal surface upward heat flow		R	F*
<u></u>	NR F-0.73	NR 0.73	0.021	0.02				5	2	10	0	0	0	0	0	0	0.61	0,61	10.631 sf. F/Btuh	0.560 Btuh/sf.°F
-							1	-		_		-	"F-factor	from	ASHRAE 90.1 Table	A6.3.	1 for Unheated slab	with	R-10 @ 24	4" vertica
	W. ere		Glazing	-				Insulation Com	pliance	2	Wall above grade	: R13+	7.5d	-	Roof: R-25cl, U-0.	039	-	_		
skylight	0-0.55	0.55	0.33								Wall Cavity Insu	-note	19	N.	- Re	of II -	25			
Vindows	U-0.46	0.46	0.33	1							**₩	all U =	0.0550	1	no.		0,0352			
	SHGC-0.30	0.3	0.27	_									Yes				Yes	Arrest		
								0	omplia	neer	Walls below grad	e: R-N	R. C-1.14		Slab on grade: NF	E. F-0.7	3			
											"W "W	all C=	10 0.0836		*Slab Perime	ter ci = liab F =	10 0.5600			
												- 11	Yes			-	Yes	_	2	

ARCHITECTURAL DESIGN

FINAL ARCHITECTURAL DESIGN OF THE FIRE STATION INCORPORATED REVISIONS FROM PRELIMINARY DESIGN, UPDATES FROM ENERGY ANALYSIS, AND CODE UPDATES.

FURTHERMORE, STRUCTURE AND BUILDING SYSTEMS HAVE BEEN INTEGRATED TO ENSURE SYSTEMS DO NOT CLASH.

MATERIALITY AND PROGRAM SPACES HAVE BEEN REVISITED TO MEET NEEDS AND DESIGN GOALS.

① Main Floor Plan 3/32" = 1'-0" \oplus

EXTERIOR PERSPECTIVE

INTERIOR PERSPECTIVE

SYSTEMS DESIGN

HVAC

UTILIZING A VRF HEAT PUMP SYSTEM, ONLY FRESH AIR IS NEEDED TO BE SUPPLIED TO EACH SPACE BASED ON AREA AND OCCUPANCY. DUE TO VRF'S LIMITATIONS, DUCTWORK NEEDS TO BE **CLOSER TO THE GROUND** PLANE TO ENSURE THE AIR WILL EFFICIENTLY MIX WITH THE NEARBY WATER PIPES OF THE AUXILLARY VRF COMPONENTS. HOWEVER, WITH EXPOSED CEILING PLANES IN A GABLED FORM,

THE DUCTWORK IS RUN ALONG THE WALLS OF THE IMPORTANT SPACES, OR NODES. THIS WORKED WELL IN COMBINATION WITH THE MASONRY AND STEEL STRUCTURE BECAUSE FEWER LARGE DUCTS CUT THROUGH THE WALL PLANES.

IN THE CONTAMINATED ZONES OF THE FIRE STATION, SEPARATE SYSTEMS ARE USED TO SUPPLY FRESH AIR AND **REMOVE EXHAUST. EXHAUST** FROM KITCHEN AND WATER CLOSETS WAS INCLUDED.

THE VRF VARIABLE REFRIGERANT FLOW SYSTEM IS TYPICALLY A MORE ENERGY EFFICIENT SYSTEM DUE TO THE CONTROL OVER THE REFRIGERANT DELIVERED TO EACH TERMINAL SUPPLYING THE ZONES DIFFERING DEMANDS EFFECTIVELY.

LIGHTING

IN A SELECTED FOCUS SPACE, THE SYSTEM DESIGN WAS **DEVELOPED FURTHER** AND INCORPORATED THE FIRE SUPPRESSION SYSTEMS AND LIGHTING DESIGN WITH THE HVAC SYSTEM.

THE REFLECTED **CEILING PLAN SHOWS** THESE SYSTEMS COORDINATED.

THE LUMEN METHOD WORKSHEET SHOWS THE LIGHTING DESIGN WHICH PROVIDES THE DESIRED LUMINANCE AT 30% MORE EFFICIENT THAN CODE.

SIZING OF THE SYSTEM $W_{sq} = W + [(L-W)/3] = ...35 ft.$ $RCR = (10 \text{ x } h_{RC}) / W_{sq} =2.57$ 0.97 CU Light Loss Factor = LLF = c. Calculate useful lumens from one luminaire (on the workplane): d. Determine total lumens needed on the workplane: Total lumens needed on the workplane e. Determine needed number of luminaires: Number of luminaires Number of luminaires = Actual illumination level provided = ...27 * (6/5.05) = 32.07Light load index = ____(0.5156 W/sf) / 32.07fc = 0.0161 W/sf*fc Area covered per luminaire =

System's overall efficiency = .

RCP - Focus Space

1/8" = 1'-0"

RENNA SUSPENDED SQUARE LED FIXTURE

RETURN AIR GRILL AND DUCT

SUPPLY AIR DUCT AND SPOT DIFFUSER

FIRE SPRINKLER SYSTEM (THROW @ 10' O.C.)

lux=300

Designer: Space type:

PHOTOMETRIC DATA IESNA Illuminance category:P. [Refer to IESNA tables] Lamp type: RNNAD 90CRI TUWH PROR 40K 700LMF 4FT SQ. 30 Recommended spacing ratio ...0@1.23; 90@1.24 Lumen output from one lamp (initial): 2861.4 ... (lumens) Fixture efficiency: 100

ROOM DESIGN

ROOMBESIGN	
L =45	
W =30	
$H = \frac{18}{10000000000000000000000000000000000$	
Ceiling cavity reflectance = CCR =	80
Room cavity reflectance (walls) = RCR =	70
Assumed floor cavity reflectance = FCR	=20

AVERAGE ILLUMINANCE WORKSHEET-ELECTRIC LIGHTING ILUMEN METHOD-SIMPLIFIED

Last updated October, 18t, 2019

DAYLIGHTING

Daylighting Calculations

 $IL_{predicted} = IL_{standard} X DF X Vt_{glass} X M_{glass}$

1239 fc
5%
23%
85%

IL_{predicted} = 11.77211 fc

NUMEROUS STUDIES OF A SPACE IN THE BUILDING WERE CONDUCTED IN THE DAYLIGHTING LAB WHICH INFLUENCED SHADING DESIGN AND GLARE REDUCTION MEASURES. UNEVEN DISTRIBUTION OF DAYLIGHT WITHIN THE SPACE WAS ALSO ADDRESSED THROUGH EXTENDED OVERHANGS AND CANOPY COVER. #3

#4 - FINAL

#2

DAYLIGHTING LAB TRIALS

STRUCTURAL DESIGN GRAVITY LOADS

CONCRETE/DECK = 45 PSF **ROOFING SYSTEM: 8 PSF** STRUCTURE = 7 PSF MEP: 4 PSF STANDING SEAM = 2PSF FLOORING = 3 PSFROOF LIVE: 20 PSF DIFFUSERS DUCTS MECH = 4PSFINSULATION = 6 PSF STRUCTURE: 8 PSF SPRINKLERS 3 PSF BEAMS/GIRDERS/SPACE FRAME = 6 PSF COLLATERAL = 3 PSF VRF ELECTRICAL STRUCTURAL DECK = 2 PSF SPRINKLERS: 3 PSF FLOOR LIVE: 100 PSF 1000

Floor

Dead Loads Roof Dead Loa

Dea	ad Load:		
	HSS Structure	9.0 psf	
	Roofing System	8.0	
	Mech, Elec, Plumb	4.0	
	Sprinklers	3.0	
	Collateral	3.0	
	Total	27.0 psf	
	Adjusted for slope :	35.2 psf	

Total	26.0 psf
Collateral	3.0
Sprinklers	3.0
Mech, Elec, Plumb	4.0
Roofing System	8.0
Space Frame	8.0

	Total	65.0 psf
	Collateral	3.0
	Sprinklers	3.0
	Mech, Elec, Plumb	4.0
	Finish Flooring	3.0
	Structure	7.0
	(2" conc on 3" deck)	45.0 psi
Deau	Con/Metal Decking	45.0 psf
Dead	Load.	

Façade Dead Load: Wall Framing 6" Metal Stud 4.0 @ 16" O.C. Sheathing and Gypsum 5.0 Insulation 2.0 Collateral 2.0 Total 13.0 psf Face brick 42.0 psf with wall framing 55.0 psf Glass 15.0 psf

FLOOR DEAD: 65 PSF

	Live Loads	from ASCE 7-1	0
	Roof Live Load:		
4.0	Root	live on horizontal:	20.0 psf
5.0	Floor Live Load:	8	
2.0	R (pr	rivate) room =	40.0 psf
2.0	R (pi	ublic) room =	100.0 psf
.3.0 psf	Rec.	rooms=	100.0 psf
	Floo	r live load:	100.0 psf
2.0 psf			
5.0 psf			

13

WIND LOAD

34

70

188

42

35

72

53

42

188

53

								_
Wind Calculations								
Locatio	on	Orlando West, South Africa						
Importa	nce	IV						
Exposu	ire	В						
Basic Wind	Speed	120	mph					
Variabl	es:							
	WW 8	& LW	1.000		Car	пору	1	
	p=q	GC _p	ww		p=q	InGCn		
		Ср	0.8					
Controlling								
variables in green	Ro p=qGC _p -	of ·q _i (GC _{pi})						
Building Region	B (II gable)	L (gable)	L/B	h _{roof}	Z _{walls}	θ _{max}	h/L	
A (ne-sw)	72	34	0.472	20	24	62	0.588	1

2.118

0.757

0.223

4.476

1.514

Can	юру					
p=q	_n GC _n					
				L	eeward Wal	ls
					p=qGC _p	
			d _{min,} ridge	B (11) B (1)	From figure	27.4-1
Zwalls	θ _{max}	h/L	from WW	Building Region	Cp _{trans}	Cplong

12

30

70

15

50

12

pz= q	$GCp = q_z^* 0.68$	Net Design Pressure
	Height (ft)	P _{WW}
	0-15	12.24744901
	20	13.29665565
- E	22	13.66371841
Г	24	14.00766139
	25	14.17199522
Г	30	14.92980757

Leeward Walls	
p=qGC _p	

G=	0.85
	G=

P. 11.11	From figure	27.4-1	q _h =.00256K	Net Design Pressure	
Building Region	Cp _{trans}	Cplong	q _h	P(LW-trans)	P(LW-Long)
A	-0.5	-0.3	19.55	-8.31041	-4.986246
В	-0.5	-0.43	18.01	-7.654656	-6.583004
С	-0.5	-0.2	19.55	-8.31041	-3.324164

Roof			
p=q _h GC _p -q _i (GC _{pi})	q=.00256K _h K _z	KdV	
	G=	0.85	
	GC _{pi} =	0.18	Table 26.11-1

La	пору
p=c	q _h GC _n
G	0.85

				Net Design Pr	essure (psf)	S		
Puthling Pusher		Win	d to roof	gable		Wind II to	roof gable	
Building Region	q _h	P(+)	P(-)	p _{ovh} =0.75p _(+/-)	p _{0-h/2}	Ph/2-h	Ph-2h	P _{2h} <
А	19.55	7.31	-12.96	-9.72	-22.44	-14.63	-14.63	-14.63
В	18.01	-7.35	-7.35	-5.51	-16.53	-16.53	-10.41	-7.35
С	19.55	8.14	-12.96	-9.72	-17.95	-17.95	-11.30	-7.98

Building Region	Wa	alls	Roof	gable	1	Roof II g	able, Cp	
	WW, Cp	LW, Cp	Cp+	Cp-	0-h/2*	h/2-h	h-2h	2h<
A (ne-sw)	0.8	-0.5	0.62	-0.6	-1.17	-0.7	-0.7	-0.7
A (nw-se)	0.8	-0.3	0.4	-0.6	-0.9	-0.9	-0.5	-0.3
В	0.8	-0.5	-0.3	-0.3	-0.9	-0.9	-0.5	-0.3
C (n-s)	0.8	-0.5	0.25	-0.6	-0.9	-0.9	-0.5	-0.3
C (e-w)	0.8	-0.2	0.67	-0.6	-0.9	-0.9	-0.5	-0.3
		Cn (+/-)		Cn (+/-)		
Canopy			1.3	0.3	0.8	0.8	0.6	0.3

20

15

20

17

16

24

13

22

22

-

40

2

24

67

24

0.278

0.283

0.476

0.090

0.302

* A(ne-sw) 0-h/2 uses area reduction of 0.9

Windward Walls

A (nw-se)

C (n-s)

C (e-w)

Canopy

q=.00256	5K _z K _{zt} K _d V ^e
V=	120
Kz=	vaires see below
Kzt=	1.000137
Kd=	0.85

Terrain Expos	ure, Table 26.9-1
α	zg
7	1200

h	Kh	Kz	Tabel 27.3-1
0-15	0.57	0.57	Exposure B
20	0.62	0.62	
22	0.636	0.64	
24	0.652	0.66	
25	0.66	0.67	
30	0.7	0.70	

Topographic	al Factor, Figure	e 26.8-1&2	
K1	0.75	z	12
Ŷ	2.5	μ	4
х	7	LH	3.5
K2	0.5		
КЗ	0.000182		

G=	0.85	section 26.9.4
C _p =	0.8	figure 27-4.1

	Velocity	Pressure Calcu	ulated				
	q=	q= 31.33868 *Kz					
→ 0-15	qz _{@h} =	18.01					
	20		19.55				
	22		20.09				
	24		20.60				
	25		20.84				
	30		21.96				

THE FIRE STATION WAS DESIGN AS IMPORTANCE IV WITH TERRAIN **EXPOSURE B AND A BASIC WIND** SPEED OF 120 MPH. THE WIND WAS APPLIED IN THE WORST CASE DIRECTION BASED ON THE LOCAL AXES OF THE BUILDING'S **REGION. (IE. PERPENDICULAR TO** TRANSVERSE FACE OF REGION, LONGITUDINAL FACE OF REGION, AND AT CORNERS).

THESE WIND LOAD DIAGRAMS SHOW THE CHANGE OF WIND LOAD BASED ON THE REGION OF THE STRUCTURE, ITS HEIGHT, AND THE DIRECTION OF THE WIND.

3

SEISMIC LOAD

Loc	Location Orlando West, South Africa		Ord. Steel Cantilevered Columns (Region B & Canopy)	Ord. Reinf. Masonry Shear Walls (Region A & C)	Cantilevered Columns (Region B & Cano			
Impo	ortance	IV			Region B			
Site	e Class	D - Stiff Soil	ASCE 7-10, Table 12.2-1, G - detail req. in 14.1	ASCE 7-10, Table 12.2-1, A - detail req. in 14.4	Base	Shear	$V = C_s$	$s \cdot W$
			R= 1.25 NL	R= 2 NL		V	= 28.47	kips
Basic Pa	arameters:		$T = C_u T_a$	$T = C_{\mu}T_{a}$		-		1
S _S =	0.263	-	$T = C h^x$	$T = C h^x$			AS	CE 7-10,
S ₁ =	0.077	-	$T_a = C_t n_n$	$r_a = o_t n_h$				
S _{MS} =	0.418	-	ASCE 7-10 Table 12 8-2	ASCE 7-10 Table 12 8-2	ASCE 7-	interpola	te for k if 0.	.5 <t<2.5< td=""></t<2.5<>
Spc=	0.185	4	Ct= 0.02 x= 0.75	Ct = 0.02 $x = 0.75$	10, 12.8.3	(T<0.5) or	r 2 (T>2.5)	
Sp1=	0.123		h _n = 24	h _n = 24		Т	k	_
01		-	T _a = 0.2	T _a = 0.2		0.	5 1	1
Addit	itional Inform	mation:	No. of the second second			0.36600.	2 0.93300	1
SDC	С	Seismic design category	ASCE 7-10, Table 12.8-1	ASCE 7-10, Table 12.8-1		2	<u> </u>	2
Fa=	1.59	Site amplification factor at 0.2s	Cu= 1.6877	Cu= 1.6877		N.	- 1	-
Fv=	2.4	Site amplification factor at 1.0s	1= 0.366002	1= 0.366002	Level	Wx	hx	w.(h
CRS=	0.859	Coefficient of risk (0.2s)	ASCE 7-10 Figure 22-12	ASCE 7-10 Figure 22-12	Roof	66.95	14	937.
	1.5	ASCE 7-10, Table 1 5-2	T _i = 12	$T_1 = 12$			Σw _i h _i ^k =	937.
'e	1.0		$T \leq T_L$ Use corresponding Cs upper limit	$T \le T_L$ Use corresponding Cs upper limit				_
Table 12.6	5-1: Equivalen	t Lateral Force Analysis Permitted	Cs Calculated ASCE 7-10, 12.8.1	Cs Calculated ASCE 7-10, 12.8.1	Cantilevere	d Columns	1 54	-
			$C_{D} = \frac{S_{DS}}{S_{DS}}$	$C_{S} = \frac{S_{DS}}{S}$		Roof	FX 28 47201	7 K
SEISMIC	l loae	D WAS NOT	$cs = \frac{R}{R}$	$rac{R}{T}$		RUUI	20.47307	K
CONTRO	OLLIN	G EXCEPT WHERE	Cs= 0.3348	Cs= 0.20925	ρ=	1	ASCE 12.3	3.4.1
THE CEN	NTFR (OF MASS AND	Cs Upper Limit $C_{s} = \frac{S_{DS}}{S_{DS}}$	Check Cs Upper Limit $Cs_{m} = \frac{S_{DS}}{D}$		Level	Eh	Ev
			Cs= 0.403276 $T \cdot \frac{R}{T}$	$C_{s} = 0.252048 \qquad T \cdot \frac{R}{L_{c}}$		Roof	28.47	3.73
CENTER	COF RI	GIDITY WERE	. 1 _e	-e				
DISTAN	t fro	M EACH OTHER		North Contract of Contract States and			Canopy	1
WHICH			Check Cs Lower Limit $C_{slow} = 0.044 \cdot S_{DS}.I_e \ge 0.01$	Check Cs Lower Limit $Cs_{low} = 0.044 \cdot S_{DS} I_e \ge 0.01$	Base	Shear	$V = C_s$	$s \cdot W$
TODCIO			Cslow= 0.018414	Cs _{low} = 0.018414		V	= 14.36	i kips
IORSIO	NAL IV	IOMENT, AS		- Cours				
OCCUR	RED IN	I THE WEST	≤ Csup 0.403	≤ Csup 0.252	Level	Wx	hx	w _x (h,
			05e Cs= 0.555 2 Cslow= 0.018	CS= 0.209 2 CS _{low} = 0.018	Roof	0	17	0
REGION		IL STRUCTURE.					Σw _i h _i *=	0
			Seismic Weight					
SEISMIC	DESI	GN CATEGORY	Façade Weights and Loads		Cantilevere	d Columns		

SE C WAS UTILIZED WITH **IMPORTANCE IV AND SITE** CLASS D.

THE SEISMIC WEIGHTS WERE BROKEN UP BY THE BUILDING REGIONS AND C_s VARIED BASED ON THE LATERAL FORCE **RESISTING SYSTEM OF THE REGION**.

			Faç	ade Distribu	ted Weight	t (plf)			
Region A 20 ft Region B 14 ft Region C 20 ft									
Level	Roof	Framing	Found.	Roof	Framing	Found.	Roof	Framing	Found.
VenBrick	•	510.00	510.00	-	-			510.00	510.00
VenStud	550.00	-	550.00	220.00		550.00	550.00	-	550.00
Clerestory	-	230	550.00		1 s. 1			390	550.00
Curtain wall	-		•	220.00	-	150.00	550.00	•	150.00
Roof Dead Lo	bad	35.246	psf						

Total Dead Load Load Dead Façade Floor Total 208.46 Region A 120.7914 87.67 Region B 66.95 85.05 18.10 412.5191 251.33 64.35 Region C 728.20 TOTAL Dead Load 2,043.40 k

downward or upward. No le, Ip, nor Rho is applied to Ev. (NCSEA, "...Common errors in Seismic ...")

Fx

0

ASCE 12.3.4.1

Eh

Level

Roof

1

Level

Roof

p=

EV Factor 0.0558

51

STRUCTURAL CALCULATIONS

COMPOSITE BEAMS, EXAMPLE SUMMARY

MASONRY SHEAR AND LOAD BEARING WALLS, EXAMPLE SUMMARY

-		1	2	3	
	P (k/ft)	1.27	1.69	0.70	k
Applied Loads	M (k*in/ft)	55.50	16.83	8.02	k-in

Point	Label	P (k/ft)	M (k*in/ft)	Point	Label	P (k/ft)	M (k*in/ft)
Pure Axial	1	43.15	0	k=.25kd	5	-8.67	-49.35
Pure Moment	2	0	54.11	Balanced Cond.	3	-8.16	-9.92
Balanced Cond.	3	(8.16)	-9.92292277	k=.5kd	4	0.07	0.39
k=.5kd	4	0.07	0.387029282	Pure Moment	2	0.00	54.11
k=.25kd	5	(8.67)	-49.3536602	kd=d	6	16.88	77.51
kd=d	6	16.88	77.50921119	kd=,75h	7	29.81	95.95
kd=.75h	7	29.81	95.95	kd=h	8	37.77	124.37
kd=h	8	37.77	124.37	kd=2h	9	58.17	55.51
kd=2h	9	58.17	55.51	Pure Axial	1	43.15	0.00

Required Load falls within Interaction Diagram - Design works

HAND CALCULATIONS WERE UTILIZED TO DESIGN SPECIAL MEMBERS UNABLE TO BE DESIGNED THROUGH SOFTWARE.

ce Frame Ca	intileve	r Columns					
e Frame Sy	stem F	orces					
Hori	zontal	forces					
d	11	k	distribut	ing 2/3 total l	ateral load to	individual co	lumn for
nic	27	k	max con	dition approx	imation		
Vert	tical For	ces					
d Uplift	-16.5	pst					
	26	pst					
	20	psf					
		330	ft2 per c	olumn			
		15	ft avg co	lumn height			
ored Loads							
)+1.6L		20.055	1				
	e 111	20.856	ĸ				
1+1.61+0	.5 W	15 411					
grav	nty	15.411	K L				
late	ian lat	3.000000000/	K				
M Ir	omiat	55	8-16				
+ 100 + 10		11.451			000.10		
grav	rol	7 333333333	K.		0.90+1W	maulto	2.377.1
late	an let	1.333333333	1.4.			Internal	7 2222222 h
+ 15 + 1	om lat	110	K-16			M from Int	1.333353 K
ALT L	dita	16 006	L.		000.11	in nom lat	110 K-IL
grav	ral	10.090	2		0.9 0 + 1W	provito	7 733 6
hater	iom lat	10	k.ft			lateral	10 L
141.11	Sin iat	270	n-11			M from lat	270 4.4
						winterniat	270 8-11
		Maximum Ford	PS.	gravity	20.85	5 k	
		and the second second	22	lateral	11	8 k	
			Mo	ment from lat	270	0 k-ft	
		Round HSS	14x0.5	AISC Table	5		
			Flexure	294	k-ft		
			Tension	820	k		
			Compre	isic 745	k		
Cha	pter H						
Pr/P	°c	0.027994631	less tha	n 1	assuming ha	alf moment g	oes x axis half g
						y axi	s
		unity equation	0.9323	65 <1			
		HSS14x0.5	works				
СГ	<u>م م</u>						ITV
16	AC		VIE			APAC	IIY
Round H	ISS	10.					
Fy		46	(SI	E	29000) ksi	
L		42 i	n	r	0.543	3 in2	
D		1.66 i	n	Ag	0.635	in2	
t		0.13 i	n				
Compre	ssion						
Section	E3			500 A	in the second		
D/t (sler	ndernes	s) 12.76923	<	Slender	ness limit	69.3	5 B4.1a
	1.1		-	Membe	r is nonslende	er: good	-
	Lc/	r= //.34807	<	infective slend	erness limit	118.2	$\left(\frac{Fy}{F_{1}}\right)$
		-		TOTA	Use	Fcr = 0.0	585(re) * Fy
		Fe	4	1.84 KSI			
		Fcr		1.97 KSI			
Sec. 1		ΦP=ΦFcr*Ag	1.4	18.27 kips			
Tension	1						
Table 5-	7	OPn yeild	3	25.90 k			
		ΦPn rupture		21.8 k			
		Lune - and				- C	
		HSS 1.66X0.	14				
		ΦPn=	3	18.27 k (comp	ression)		
				the second se			

		Spr	ead footing	Design		
	1000	HSS6x6x4	HSS9x9x4	HSS8x8x4		
re Base Plate	BXN	12	15	14	in	
	t	0.5	0.5	0.5	ìn	
re Footing	ft, B X L	4	4	4	ft	
	height (in)	16	16	16	în	
each way:	w/	4	4	4	bars	
	sizr	#6 bar	#6 bar	#6 bar		
	bar spacing	14	14	14	in, with 3" cc.	

	St	em Wall De	esign	
Wall thickness	12	12	8	in
d	10.75	10.75	6.75	in
h	12	12	8	in
Wall height	10	6	3.5	ft
each way: # bars	1	1	1	bars
size	#5 bar	#5 bar	#4 bar	
db	0.625	0.625	0.5	
bar spacing	12	12	12	in, with 3" cc.
As =	0.31	0.31	0.2	in²/ft

Strip Footing Design						
h	16	12	12	inches		
d	13.5	9.5	9.5	inches		
L square	4	4	4	ft		
#bars	#4 bars	#4 bars	#4 bars	@		
spacing	8	11	11	inches O.C. EW		

RISA ANALYSIS

THE STEEL STRUCTURE WAS ANALYZED AND DESIGN USING RISA 3D, A STRUCTURAL MODELING SOFTWARE. THE MASONRY WALLS AND FOUNDATIONS WERE DESIGN FROM LOADS RECEIVED FROM PLACE HOLDERS WITHIN THE RISA MODEL.

THE STEEL FRAME SYSTEM WAS MODELED SEPARATELY FROM THE SPACE FRAME SYSTEM DUE TO THE COMPLEXITY OF THE SPACE FRAME SYSTEM.

THE SPACE FRAME WAS PRELIMINARILY DESIGNED AND WILL BE COMPLETED BY A SPECIALTY ENGINEER.

THE RESULTS OF THE DESIGN FROM RISA AND HAND CALCULATIONS IS COMPILED IN THE CONSTRUCTION DOCUMENTS FOLLOWING.

RISA MODEL

SECTION 1.1 - DOCUMENTS

1.1.1 Structural Construction Documents consist of Project Specifications and Structural Drawings. Structural drawings include General Notes and Typical details in addition to plans, sections.

1.1.2 General Notes and Typical Details describe general criteria that apply to all similar conditions throughout the project regardless of whether or not they are specifically referenced in the plans or details.

1.1.3 Do not scale plans, details and sections for quantity, length or fit of materials

1.1.4 The structural documents are protected by U.S.A. Copyright Laws. They shall not be used for any purpose other than construction of the structure shown on the site indicated on the Architectural Drawings

1.1.5 The design represented by these documents is valid only for the building site and the purposes shown on the Architectural Drawings

1.1.6 The GEOTECHNICAL REPORT is a separate document (not 11.5. The GEOTECHNICAL REPORT is a separate document (no part of contract documents) furnished by the project owner. The contractor is urged to obtain a copy of the report for reference as it describes sub-surface conditions that may be encountered during installation of foundations and contains other information pertinent to construction of the project.

1.1.7 The contractor must coordinate Structural Documents with electrical, HVAC and fire protection. Every attempt is made to coordinate drawings prior to issue, however, some requirements are not known prior to issue, and change may occur during construction as ayout and fabrication drawings are developed.

1.1.8 Promptly report deviations and interferences with structural onents for resolution by the Enginee

1.1.9 Verify dimensional location and depth of slab recesses and offsets with Architectural Drawings.

1.1.0 Verify weights, location and details of structurally supported mechanical equipment prior to construction of the supporting structure. Report deviations from assumed conditions to the Engineer prior to fabricating materials.

1.11 Verify the location, size and detail of roof openings and curbs or mechanical equipment prior to fabricating materials. Report eviations from assumed conditions to the Engineer before proceeding with work

1.1.12 Verify location and size of floor and roof penetrations and ents. Openings in beams. for mechanical and electrical compon irders, columns and slabs must be submitted for approval

1 1 13 Verify dimensions, details, plumbness and squareness of tructures meeting or tieing into new co

1.1.14 Heights of floor and roof decks and various framing components are given on the drawings relative to a reference elevation of 100°0°. This reference elevation is equivalent to a Mean Sea Level Elevation of <u>S03°</u>.

SECTION 1.2 - CODES AND STANDARDS

1.2.1 Building Code: 2015 International Building Code (IBC)

- 1.2.2 Concrete Code: American Concrete Institute ACI 318-14
- 1.2.3 Steel Code: AISC Steel Construction Manual 15th edition

SECTION 1.3 - DESIGN LOADS

1.3.1 Live Loads:

Living, Assemb, Floor 125 psf Offices, Typical Floors 50 psf (1) Roof, Slope Less than 4:12 20 psf

(1) Plus partition loading (see Dead Loads) (2) Minimum load, or weight of equipment (the heavier)

1.3.2 Dead Loads:

2" Slab		45.0) psf	
Flooring		3	psf	
Typical Ceilings		4	psf	
Mech, Elec, Plumbing	4	psf		
Floor Collateral		3	psf (1)	
Floor Sprinklers		3	psf (3)	
Floor System		7	psf	
Partition Loading	15	psf (4)		
Roof Collateral		3	psf (1)	
Roof Insulation		8	psf	
Roof Sprinklers		3	psf (3)	
Roofing System		9	psf (2)	

(1) Collateral loads include: lighting, ductwork. Collateral leads include; lighting, ductwork, miscellaneous framing;
 Roofing system weight is the maximum unit weight of roofing materials and ballast (where applicable) for which the roof structure is designed.
 Sprinker loadings are for distribution lines and heads, exclusive of mains, which are included Separately as concentrated dead hoads.
 Applied where noted under "Live Loads".

1.3.3 Wind Loads: MWFRS

Base Mean Wind Velocity 120 mph Wind Exposure Classification Occupancy Category Analysis Procedure -Analytical Method

Seismic Loads:

0.263
0.077
0.279
0.123
D
1.5
IV
С
ORMSV
1 3/4
2 1/2
cedure

SECTION 2: FOUNDATIONS AND RELATED EARTHWORK GEOTECHNICAL REPORT

> 2.1 Design of foundations and structural components in contact with soil is based on the recommendations given in the follow

Geotechnical Services Inc. Report by Date of Report Report Reference : February 7, 2011 : GSI Project No. 116023

2.2 Refer to the geotechnical report for subsoil conditions that may be encountered in the installation of foundations, and other information relevant to foundations and site preparation.

Design of soil-supported building slabs is based on a range of soil movement of 0 to 1 inch(es), based on the recommendations of Geotechnical Report.

- 2.4 Refer to Specifications for soil stabilization under soilsupported building slabs.
- 2.6 Design Criteria: Lesign Criteria: Bearing Material: Bearing Material: Bearing Elevation: (For Bickling Purposes Only) Spread Footing Bearing Capacity: Continuous Footing Bearing Capacity: 4000 psf 4000 psf

2.7 Required footing thickness is minimum and shall be adjusted as necessary to achieve required bearing conditions.

2.8 Steel dowels at tops of footings shall extend 30 bar diameters above and shall be hooked 3" above bottom of footing unless noted otherwise.

2.9 Top of footing elevations given are relative to reference elevation of 100'-0" at top of slab at grade level.

SECTION 3: STRUCTURAL CONCRETE

3.0.1 Concrete shall have a min. compressive strength at 28 days of 4000psi UNO.

SECTION 3.1 - CONCRETE FORMS

3.1.1 Formed Voids - Provide relained void spaces between bottom of structural members and sub grade as follows: Grade Beams 4 inches

3.1.2 Grade Beams - shall be formed both sides unless specifically shown or noted otherwise in the details.

SECTION 3.2 - STEEL REINFORCING

STEEL REINFORCING

3.2.1 All bars shall be deformed in accordance with ASTM A615. Reinforcing indicated to be welded shall conform to ASTM A796.

3.2.2 Strength of bars shall be as follows:

All Bars Grade 60 SPLICING OF REINFORCING BARS

3.2.3 Top bars in beams, slabs or joists shall be spliced at

midspan between supports, unless noted otherwis 3.2.4 Bottom bars in beams, slabs or joists shall be spliced at

innorts, unless noted otherwise

3.2.5 Column reinforcing shall be spliced at top of concrete above floors, unless noted otherwise.

LAPPED SPLICE LENGTHS

3.2.6 Lap reinforcing 30 bar diameters at splices unless noted or detailed otherwise.

CONCRETE COVER TO REINFORCING

3.2.7 Clearance from face of concrete to face of reinforcing: Footinas Formed Grade Beams 5 Formed Grade Beams 1-1/2" top, 2" sides, 3" bottom Columns 1-1/2" interior, 2" exterior exposure Slabs

1-1/2" interior. 2" exterior exposure

PLACEMENT OF REINFORCING

3.2.8 Offsets in reinforcing bars shall be bent at a ratio of 1 (normal to bar axis) to 6 (parallel to bar axis).

3.2.9 Provide dowels from grade beams or foundation equal in size and spacing to vertical bars in walls or pilasters and extend one splice length above and below joint line, unless noted otherwise

3.2.10 Place first bar of slab reinforcing parallel to side 2 inches from a free edge or half of required bar spacing from face of edge

3.2.11 Single layer reinforcing in walls shall be placed at center of walls unless noted otherwise.

SECTION 3.3 - CONCRETE MIX DESIGNS

3.3.1 Concrete Mix Schedule

a) "HRC" refers to hardrock concrete having air dry unit weight of approximately 145 PCF. b) Where w/c ratio is not indicated in the Concrete Mix Schedule, it shall be as necessary to meet strength requirements. c) Where the w/c ratio is shown, it shall be adhered to regardless of strenath require

 d) "Strength" is required compressive cylinder strength at 28 days Conc. Strength Agg. Agg. Slump Max

Class	psi	Туре	Size	Inches	w/o	Notes
A	3000	HRC	1-1/2"	5-7		
в	3000	HRC	1"	3-5		
С	3500	HRC	1"	2-4		
D	4500	HRC	1"	3-5		
E	3000	HRC	3/4"	2-4		
F	4000	HRC	1"	3-5		

3.3.2 Mix Usage Schedule

Concrete Air Description of Use	Class	Content
Drilled Piers	A	
Footings	А	
Grade Beams	В	4.5-6%
Interior Slab-on-Grade	С	
Basement Slab	D	
Basement Walls	D	
Retaining Walls	D	4.5-6%
Elevator Pit Walls	в	
Slab on Composite Metal Deck	E	
Structural Beams and Slab	F	
Structural Columns	F	
PCN Walls, Columns & Slabs	F	

SECTION 5.2 - METAL ROOF DECK

5.2.2 Metal Deck Connection Schedule:

36/5 36/7

SDI Deck Sheet Min. Min. Min. Deck Deck Depth Width Ix Sx(top) Sx(bot) Gauge Type (In.) (In.) (In.4) (In.3)

22 B 1.5 36 0.1.83 0.192 0.186

Conn. @ Conn. @ Sidelap Req'd Shear Supports Parallel Conn. Capacity Mark (W/N) Edges (In.) (#/span) (Ib/ft)

4 287

12

5.2.3 Support and parallel edge connections shall be 5/8-inch

diameter puddle welds. Sidelap connections shall be #10 hex screws. W/N = sheet width / # connections each sheet.

5.2.4 Roof deck shall be connected as indicated for Mark Lunless

5.2.1 Metal Deck Schedule:

SECTION 3.4 - CONCRETE SLABS

3.4.1 Slabs Placed on Grade

LocationThickness Reinforcing 6 inchesW6.5X26.5 @ 6in O.C. 8 inchesW9XW9 @ 6 in O.C.

a) Reinforcement shall be placed 2 inches from top of slab, unless detailed otherwise. b) Provide construction joints in slabs where indicated on Plans. Allow minimum of 4-day interval between placing adjacent sections of slab

Location Thickness Reinforcing 3° composite deck W1.4XW.14 @ 6in O.C. S3 2 inches

a) Reinforcement shall be placed 2 inches from top of slab, unless detailed otherwise.
 b) Provide construction joints in slabs where indicated on Plans. Allow minimum of 4-day interval between placing adjacent sections of slab.

SECTION 4.2 - REINFORCING

3.4.2 Elevated Slabs

4.2.1 Horizontal joint reinforcing shall be truss type 9 ga, welded wire spaced at 16 inches on center vertically. Provide units with 2 horizontal wires. Provide special "L" and "T" shaped sections at wall ntersections. Lap horizontal wires at least 12" at splices

4.2.2 Provide corner bars at intersections of reinforced trough tiles equal in size and number to horizontal reinforcing lapped 30 ba

4.2.3 Horizontal reinforcing in trough tiles shall be lapped 30 bar s at splices. Stagger splices in adjacent bars at least

4.2.4 Cells at corners, end of walls, and each side of openings of interior and exterior walls shall be grouted and reinforced with 1 #6 minimum unless noted otherwise.

4.2.5 Vertical reinforcing in grouted cells and pilasters shall be held in place by bar positioners set in masonry joints. Lap splices shall be as follows:

Upper and lower 1/4 of height: 40 bar diameters Middle 1/2 height of wall: 60 bar diameters

4.2.6 Refer to Architectural layout and Drawings and Specifications for details and exact dimensions of masonry work including, weep holes, waterproofing and flashing.

4.2.7 Reference Schedule for Wall Vertical Reinforcing.

SECTION 5: STRUCTURAL STEEL

SECTION 5.1 - STRUCTURAL FRAME

5.1.1 Structural Steel Properties:

W-shapes and Tees	ASTM A992
Angles, Channels, Plates, uno	ASTM A36
HSS Rectangular	ASTM A500, Grade B
HSS Round	ASTM A500, Grade B
Erection Bolts	ASTM A307
High Strength Bolts	ASTM A325N
Anchor Bolts	ASTM A36 or A307
High Strength Anchor Bolts	ASTM A193 Grade B7
Headed Stud Anchors	ASTM A108

WELDING

5.1.2 Unless otherwise noted, angles, plates, rods, and miscellaneous framing shall be welded at contact joints and supports. Weld sizes shall conform to AWS D1.1 minimum, except where noted

5.1.3 Where fillet weld sizes are not indicated on weld symbols, fillet size shall be 1/16th inch smaller than thickness of thinner of materials being joined.

5.1.4 Complete penetration welds are indicated by notation "CP" on weld symbols, partial penetration by "PP".

5.1.5 Edge angles at perimeters of floors and roofs noted as "CHORD MEMBERS" or "CONTINUOUS" on details shall be butt welded at splices to develop full allowable tensile strength of member.

5.1.6 Edge angles supporting floor or roof deck shall be spliced only over supports

STRUCTURAL BOLTS

5.1.7 — Bofts indicated on details shall be $\%^{\rm o}$ diameter, unless noted 5.1.8 Botts shall be tightened by the AISC "Snug Tight" method

5.1.9 Shelf angles supporting masonry shall have %" wide expansion joints spaced not more than 40 feet apart.

Sheet List				
Sheet Number	Sheet Name			
00	SHEET INDEX AND GENERAL NOTES			
\101	SITE			
102	GROUND FLOOR PLAN			
5101	BASEMENT FOUNDATION PLAN			
5102	FOUNDATION PLAN			
5103	ROOF FRAMING PLAN			
401	WALL SECTION			
501	FOUNDATION DETAILS			
502	FLOOR DETAILS			
503	ROOF DETAILS			
504	LFRS DETAILS			
601	SCHEDULES			
602	WIND DIAGRAMS			
603	SEISMIC DIAGRAMS			
901	STRUCTURAL AXONOMETRIC			

No.	Description	Date
		· · ·

ORLANDO WEST FIRE STATION SHEET INDEX AND **GENERAL NOTES** Project number 5226

000

Date Drawn by Checked by Issue Date Author Checker

Scale

20

No.	Description	Date
		-
OF	RI ANDO WI	EST
0.		_01
F	IRE STATIC	DN
		214
	SITE	
Proiect numb	Br	522
Date		Issue Dat
Drawn by		Autho
Observed by		Checks

 \oplus

Scale

0/2021 4:17:54 PM

① Main Floor Plan 3/32" = 1'-0"

Description

Scale

3/32" = 2-2

FOUNDATION PLAN NOTES

1. 2. 3. 4.

FINISH FLOOR ELEVATION IS 100-0" (RELATIVE TO DATUM 100-0). TOP OF CONCRETE SLAB IS FINISH FLOOR UNLESS SHOWN OTHERWISE. TYPICAL CONCRETE SLAB THICKNESS IS 6", REINFORCED W6.5X26 50; 610 O.C. WUNLESS NOTED OTHERWISE. SHEET INDEX: CREMERAL STRUCTURAL NOTES 000

GENERAL STRUCTURAL NOTES	000
FOOTING SCHEDULE	S601
COLUMN SCHEDULE	S601
BEAM SCHEDULE	S601
TYPICAL DETAILS	S501

Description Date Mo

ORLANDO WEST FIRE STATION BASEMENT FOUNDATION PLAN

Project number Date Drawn by Checked by

Scale

 \bigoplus

5226 Issue Date Author Checker

3/32" =**23**

S101

FOUNDATION PLAN NOTES

FINISH FLOOR ELEVATION IS 100'-0" (RELATIVE TO DATUM

FINISH FLOOR ELEVATION IS 100-0" (RELATIVE TO DATUM 100-0), TOP OF CONCRETE SLAB IS FINISH FLOOR UNLESS SHOWN OTHERWISE TYPICAL CONCRETE SLAB THICKNESS IS 6", REINFORCED W6 5X26.5 @ 6in 0. C, E W UNLESS NOTED OTHERWISE SHEET INDEX: GENERAL STRUCTURAL NOTES 000 FOOTING SCHEDULE \$601 COLUMN SCHEDULE \$601 BEAM SCHEDULE \$601 TYPICAL DETAILS \$501, \$502, \$503

000 S601 S601 S601 S501, S502, S503

FLOOR FRAMING PLAN NOTES

 OPE FRAMING FLOW NOTES

 TOP OF SLAB ELEVATION (RELATIVE TO DATUM 100-0) IS.

 REGION B ROOF HEIGHT
 115-0

 REGION A AND C ROOF HEIGHT
 120-0

 TOP OF CONCRETE SLAB IS FINISH FLOOR UNLESS SHOWN
 OR NOTED OTHERWISE

 SLAB THICKNESS IS 2' NORMAL WEIGHT CONCRETE
 REINFORCED WITH ONE LAYER OF W1 4:W1.4 @ 6X6 N.O.C.

 ON 3' COMPOSITE DECK UNLESS NOTED OTHERWISE
 SHEET INDEX:

 SHEET INDEX:
 GENERAL STRUCTURAL NOTES
 000

 SCHEDULES
 \$501
 TYPICAL DETAILS
 \$503

000 S601 S501, S502, S503

Description

No.

Checked by

Scale

Checker

Date

ROOF FRAMING PLAN NOTES

- 1.

- TOP OF ROOF STRUCTURE IS SLOPED FOR DRAINAGE SEE ELEVATIONS NOTED ON PLAN UNLESS NOTED OTHERWISE, STEEL FRAMING SHALL BE CENTREED ON AND EQUALLY SPACED BETWEEN COLUMN CENTERLINES. GABLE FRAMING AND SPACE FRAME SYSTEMS ARE SPARATED WITH DISTINCT LFRS SHEET INDEX: GENERAL STRUCTURAL NOTES 000 SCHEDULES \$501 TYPICAL DETAILS \$501, S502, S503 4

000 \$601 \$501, \$502. \$503

S103

Project number

Checked by

Date Drawn by

Scale

 \oplus

3/32" = 1'-0"

1 Wall Section 3/4" = 1'-0"

2 SIMPLE FIN CONNECTION 1" = 1'-0"

3 BEAM RIGID CONNECTION

Ň.	Department	Data
No.	Description	Date
		_
_		_
		=
		_
		_
		-
		-
		_
	ORLANDO WES	Г
	FIRE STATION	
	ROOF DETAILS	
Project Date	i number Issu	5226 e Date
Drawn	by	Author
Project Date Drawn Checke	ORLANDO WEST FIRE STATION ROOF DETAILS	5226 e Date Author hecker
	S503	
Scale		= 1'-0"

SLAB	SCHEE	DULE	

MARK	DEPTH	FEXURAL REINFORCING	TEMPERATURE REINFORCING	NOTES
S1	6"	NA	W6.5X6.5 @ 6in O.C.	
S2	8"	NA	W9XW9 @ 6 in O.C.	
S3	2"	NA	W1.4XW.14 @ 6in O.C.	COMPOSITE

Notes: 1) Slabs are designed for one layer of reinforcing 2) Refer to S501 foundation details for placement of reinforcing in slab 3) Refer to details for reinforcement transition between slabs

COLUMN AND FOOTING SCHEDULE						
ELEMENT	COLUMN	BASE PLATE DIMENSIONS	FOOTING DIMENSIONS	REINFORCEMENT	DEPTH OF FOUNDATION	
C1	HSS6X6X4	12"x12"x1/2"	4'-0" X 4'-0" X 1'-4"	#6 @ 14" o.c.	2'-6"	
C2	HSS8X8X4	14"x14"x1/2"	4'-0" X 4'-0" X 1'-4"	#6 @ 14" o.c.	2'-6"	
C3	HSS9X9X4	15"x15"x1/2"	4'-0" X 4'-0" X 1'-4"	#6 @ 14" o.c.	2'-6"	
C4	HSS14X0.5	20"x20"x0.5"	6'-0" X 6'-0" X 2'-0"	#8 @ 9" o.c.	3'-6"	
C5						

Notes: 1) Refer to S501 for Foundation Details

WALL AND STRIP FOOTING SCHEDULE							
ELEMENT	MASON	RY WALL	STEM WALL WIDTH	REINFORCEMENT	FOOTING DIMENSIONS	REINFORCEMENT	DEPTH OF FOUNDATION
W1	12" CLAY BRICK	#6 bars and groutig @16" o.c.	12"	#5 @ 12" o.c.	4'-0" X 1'-4"	#4 @ 8" o.c.	14'-10"
W2	12" CLAY BRICK	#6 bars and groutig @16" o.c.	12"	#5 @ 12" o.c.	4'-0" X 1'-0"	#4 @ 11" o.c.	9'-6"
W3	8" CLAY BRICK	#5 bars and groutig @32" o.c.	12"	#5 @ 12" o.c.	4'-0" X 1'-4"	#4 @ 8" o.c.	14'-10"
W4	8" CLAY BRICK	#5 bars and groutig @32" o.c.	8"	#4 @ 12" o.c.	4'-0" X 1'-0"	#4 @ 11" o.c.	4'-6"
W5			8"	#4 @ 12" o.c.	4'-0" X 1'-0"	#4 @ 11" o.c.	4"-6"
W6			12"	#5 @ 12" o.c.	4'-0" X 1'-4"	#4 @ 8" o.c.	14'-10"

DEVELOPMENT LENGTH (in)						
BAR		#4 BAR	#5 BAR	#6 BAR		
DEV. LENG.	ld	11.4	14.8	29		
DEV. HOOK	ldh	7.6	9.9	15		
HOOK DIA	dh	3	3.9	6		
HOOK EXT.	lext	2.5	2.6	9		

Notes: 1) Refer to \$501 for Foundation Details 2) W4 at slab parimeter where there is no exterior structural wall 3) W6 basement wall below slab on grade with no structural wall above

Description

Date

S601

No.

No.	Description	Date
_		
		-
		_
_		
_		
		_
_		
~		TOT
0	RLANDO W	-51
1	-IRE STATIC	JN
SEI	SMIC DIAGE	RAMS
Project num	ber	5226
Date		Issue Date
Drawn by		Author
Checked by		Checker
	5603	

Scale

0/2021 4:20:26 PM