
Elder Care Wearable
Device

Final Report

ECEN 4024 – Capstone Design

Lauren Brown

Scott Kincannon

Bill Liando

Elinor Rowe

Oklahoma State University

Abstract:
Elderly care is an important area of research as a high proportion of our population is

reaching old age. The current care system can be very costly and hiring a personal aid is
unrealistic for some. The ASCC lab at Oklahoma State University has developed a Personal
Assistive Robot to interact with elderly people in their homes. This robot can monitor and
communicate with the user, but it is restricted to one part of the home. In this lab report for the
Final Project of ECEN 4024 Capstone Design, four undergraduate students were tasked with
creating a wearable device for elderly users that is low-powered, compact, able to monitor daily
activities, collect images, interact with the user and wirelessly communicate with a Personal
Assistive Robot (ELSA) while the user is not near the robot. To complete this project, our team
designed a wearable device with multiple sensors such as an accelerometer, microphone and
camera that would track movement data. The device was also able to exchange messages with
ELSA, closing the gap between ELSA and our device.

1

Table of Contents:
Abstract …………………………………………………………………………...………………1

Written by Bill and Lauren
Team Structure …………………………………………………………………………………... 5

Written by Elinor and Bill
Problem Statement ………………………………………………………………………………. 5

Written by Lauren
Design Constraint ……………………………...………………………………………………... 5

Written by Lauren and Elinor
Initial Part Comparison ………………………………………………………………………….. 6

Speaker ……………………………………………………………………………………6
Written by Scott
Worked on by Elinor

Microphone …………………………………………………………………………….... 6
Written by Scott
Worked on by Elinor

Battery ………………………………………………………………………………….... 6
Written by Lauren
Worked on by Lauren

Accelerometer ………………………………………………………………………….... 6
Written by Bill
Worked on by Bill

Microcontroller ………………………………………………………………………….. 6
Written by Scott
Worked on by Scott

Camera …………………………………………………………………………………... 7
Written by Lauren
Worked on by Scott

Ambient Light Sensor ………………………………………………………………….... 7
Written by Bill
Worked on by Bill and Lauren

Final Part Comparison …………………………………………………………………………... 7
Speaker …………………………………………………………………………………... 7

Written by Scott
Worked on by Scott

Microphone ……………………………………………………………………………… 8
Written by Scott
Worked on by Scott

Vibration Motor …………………………………………………………………………. 8
Written by Scott

2

Worked on by Scott
Battery …………………………………………………………………………………… 9

Written by Lauren
Worked on by Lauren

Accelerometer …………………………………………………………………………… 9
Written by Bill
Worked on by Bill and Scott

Camera ……………………………………………………………………………...…… 9
Written by Scott
Worked on by Bill

Microcontroller …………………………………………………………………………. .9
Written by Lauren
Worked on by Bill and Lauren

LEDs …………………………………………………………………………………… 10
Written by Scott
Worked on by Scott and Bill

Software Design Strategy …………………………………………………………………….... 10
Written by Bill and Lauren
Worked on by Bill and Lauren

Physical Appearance/Dimensions …………………………………………………………….... 12
Written by Elinor
Worked on by Elinor

Schematic for Raspberry Pi ……………………………………………………………………. 13
Written by Scott
Worked on by Scott

GPIO Pin Connections …………………………………………………………………………. 13
Written by Scott
Worked on by Scott

Programming Flowchart ………………………………………………………………………...15
Written by Bill
Worked on by Bill and Lauren

Power Consumption Analysis …………………………………………………………………..14
Written by Lauren
Worked on by Lauren

Operating Instructions …………………………………………………………………………..16
Written by Lauren
Worked on by All

Test code for Individual Parts …………………………………………………………………...16
Written by Bill
Worked on by Bill and Lauren

3

Accelerometer …………………………………………………………………………...16
Camera …………………………………………………………………………………..17
Ambient Light Sensor …………………………………………………………………...17
Vibration Motor ………………………………………………………………………....17
Speaker …………………………………………………………………………………..18
Microphone ……………………………………………………………………………...19
LED ……………………………………………………………………………………...20
File Transfer SCP ………………………………………………………………………..21
Initial Client ……………………………………………………………………………..21
Initial Server ...………………………………………………………………………….. 25

Final Source Code for Device …………………………………………………………………...27
Written by Bill
Worked on by Bill and Lauren

Source Code for Raspberry Pi Configuration Files …….……………………………………….30
Written by Bill
Worked on by Bill and Lauren

Initial Schedule ………………………………………………………………………………….33
Written by Elinor
Worked on by All

Final Schedule …………………………………………………………………………………...33
Written by Elinor
Worked on by All

Gantt Chart ……………………………………………………………………………………....35
Written by Elinor
Worked on by All

Budget Summary ………………………………………………………………………………..36
Written by Elinor
Worked on by All

Things to change ………………………………………………………………………………...36
Written by All
Worked on by All

Future Ideas ……………………………………………………………………………………...36
Written by All
Worked on by All

References ……………………………………………………………………………………….37
Appendix A ……………………………………………………………………………………...38

4

Team and team structure:

Bill Liando: I was the point of contact for the group. I was also in charge of programming,
configuring the software and integrating the component’s software.

Lauren Brown: I worked on programming, configuring the software and ensuring power
efficiency.

Elinor Rowe: I worked on the designing the component’s layout and 3D printing design and
production.

Scott Kincannon: I was responsible for integrating the component’s hardware.

Problem statement:
Our project objective was to design a wearable device to assist elderly users by

communicating with a Personal Assistive Robot (ELSA). This device must monitor the activities
of the user while the user is out of view of the robot, providing the robot with the information
necessary for effectively aiding the user. The device was to be designed to be comfortable, easy
to use, and power efficient.

Design Constraints:
● Minimal size and weight of device
● Low power
● Privacy/Consumer awareness of camera use
● Limited time available to complete project
● Parts delays due to inclement weather
● Safety of consumer and design engineers
● Precision of 3D printers
● Budget requirements

5

Initial Part Comparison:
1. Speaker

a. Our original choices for the speaker were the CLS0231MA-1-L152, K 16-8 ohm,
and the AS03008M R-R speakers. As all the speakers are 0.5 W and 8 ohm
impedance, we chose to use the CLS0231MA-1-L152 for its size and its sound
pressure level. This speaker was intended to be paired with the ReSpeaker 2-Mic
Pi HAT v1.0, which would act as the speaker driver.

2. Microphone
a. Our three preferred options for the microphone were the ReSpeaker 2-Mic Pi

HAT v1.0, the POM-2738L-LW100-R, and the CMA-4544PF-W. We decided to
use the ReSpeaker 2-Mic Pi HAT v1.0 because it included a microphone and
microphone driver, but also provided a speaker driver. The size and weight was
larger than our other options, but this device acted as an all in one for our audio
needs.

3. Battery
a. Our original design options for batteries were the Attom Tech Compact Battery

Pack, the Lithium Ion Polymer Battery - 3.7v 2500mAh, and the TG90 External
Battery Pack. The battery packs had the advantage of large capacity and simple
connection to the device, but were larger and heavier, while the lithium ion
battery had less capacity and required extra connection circuitry, but was smaller
and lighter than the battery packs. Since minimizing size and weight was a major
concern during our initial design, we chose to use the Lithium Ion Polymer
Battery - 3.7v 2500mAh.

4. Accelerometer
a. Our three options for accelerometers were MPU-6050, MMA8451 and

ADXL345. These were selected because they were small and power efficient. We
decided to go with the MMA8451, since it was the smallest of the three and
consumed the second lowest amount of power.

5. Microcontroller
a. For the microcontroller our three preferred options were the Raspberry Pi Zero W,

The Sancloud BeagleBone Enhanced Wifi-1G, and the ESP32-wroom-32e. We
decided to go with the Raspberry Pi Zero W for its size, weight, low power
requirements, and module attachments. Since the goal of this project was to create
the smallest device possible we went with the smallest option. Because this option
also required the least power, it would allow us to reduce the size of the battery as
well. We also chose this microprocessor because it is widely used. Since the
Raspberry Pi is a common choice for small projects, there are plenty of available
coding libraries and components specifically designed to work with the pi.

6

6. Camera
a. The three initial design options for the camera were the Raspberry Pi Camera

V2.0, the OV7670, and the ESP32-CAM. The ESP32-CAM was intended for use
with a different microprocessor, and was not suitable once we chose to use the
Raspberry Pi. While the Raspberry Pi Camera V2.0 had the highest operating
current, it was also specifically designed for efficient use with the Raspberry Pi.
We chose to use the Raspberry Pi Camera V2.0 because it let us effectively and
easily connect to our microcontroller, allowing us to use our GPIO pins for other
parts, and made programming easier and more efficient later.

7. Ambient Light Sensor
a. We added the ambient light sensor to our initial design by request of Dr. Sheng.

We selected this ambient light sensor because it was pre-packaged and easy to
install. We did not include this sensor in our final product, because the lack of
analog input pins on the Raspberry Pi Zero limited the sensor’s usefulness.

Final Part Comparison:
1. Speaker

a. Speaker-
After getting the speaker driver to work properly with the Pi we soon realized that
the 0.5 watt speaker was too quiet. Even at the Pi’s maximum volume, we could
only hear sound if we had the speaker pressed to our ear. To replace it, we chose a
3W speaker, which worked correctly and was much louder. However, the
speaker’s casing was too large and took up too much space in our case. Finally,
we received a 2 watt speaker from Dr. Sheng and his graduate team. The overall
sound quality was roughly the same as the 3 watt speaker, but the size profile was
much smaller and allowed us to fit the speaker into a smaller case.

b. Speaker Driver-
The use of a speaker driver is required for a speaker to work properly and receive
enough power to play sound. This means that an amplifier is also needed to boost,
or drive, the speaker. Another requirement is that the driver device needs to act as
a DAC(digital-to-analog converter), as our microprocessor only has digital GPIO
pins. Our initial design contained the ReSpeaker 2-mic Pi HAT v1.0 as our
speaker driver and DAC, but this solution was found to require connection to all
40 GPIO pins on our microcontroller, so we had to look for other solutions. Our
next design involved designing and building a PCB speaker driver that would use
the Raspberry Pi’s PCM pins. Unfortunately, the Raspberry Pi was unable to
recognize the PCB speaker driver as a valid sound output, so we could not send
sound to the speaker. We then connected the speaker to the Raspberry Pi’s data
micro-USB port using several adapters and a driver. This setup worked correctly,
but was very large and heavy. In addition, the driver did not put out very much

7

power to the speaker, making it too quiet. After talking with Dr. Sheng, he
mentioned researching Adafruit for a solution, and that led us to the Adafruit I2S
3W Class D Amplifier Breakout - MAX98357A. This board includes the
required driver, amplifier, and DAC. We were able to use this board to connect
the speaker to the Raspberry Pi’s PCM pins, which were reconfigured to act as
I2S. This configuration was able to provide louder speaker output while adding
much less size and weight to the device.

2. Microphone
a. Our original plan was to use the ReSpeaker 2-mic Pi HAT v1.0 as our

microphone. We unfortunately had to replace the Pi HAT as the component used
all 40 pins on the Raspberry Pi Zero. With this device, we would have been
unable to attach any of our additional components to the Pi. Instead, we moved on
to a micro-USB connection for our microphone. We had a mini microphone with
a headphone jack that led to an adapter that plugged into the Raspberry Pi.
Unfortunately we never were able to get the Raspberry Pi to recognize the
microphone as an audio option. Our final solution was moving to the Electret
Microphone Amplifier - MAX4466 with Adjustable Gain paired with the
MCP3008 ADC. This microphone worked with our ADC, and we were able to
read volume. Our biggest issue with this solution is that we were never able to
record an audio file, we could only read the noise volume in the area. This could
potentially be fixed by recording the noise levels from the microphone and then
processing that data into a wav file using the resolution and sampling rate of the
ADC. At one point we considered solving the issue by using PCM pins for the
microphone and ADC, as we did with the speaker. Unfortunately, we do not have
enough PCM pins or channels on the Raspberry Pi for both the speaker and
microphone to run.

3. Vibration motor
a. Vibrating Motor

There were a number of commercial mini vibrating motors for us to use. We
eventually chose the DZS Elec 1027-L35-4 mini vibrating motor for its high RPM
and its 3V rating. Similar motors were the same size and weight, but the DZS
motor was able to share a voltage supply bus with the accelerometer. This was
convenient as we already needed to bus the SCL and SDA connected to the
accelerometer in order to add the haptic motor controller.

b. Motor Driver
The Motor driver was connected to the Raspberry Pi’s I2C pins (see Circuit
Schematic in Design Details Section), which required the construction of a bus,
since the I2C pins are also used for the accelerometer. It worked as intended, and
was not redesigned for our final product since we encountered no issues with it.

8

4. Battery
a. To effectively power the device, it was necessary to select a battery with enough

capacity to last at least sixteen hours, while minimizing the size and weight. In
addition, the complexity of connecting the battery to the Raspberry Pi, the size
and weight of the materials necessary for that connection, and the space efficiency
of the battery when combined with other components had to be considered. Our
initial design choice, the flat lithium ion battery, required several extra
connections to both safety circuitry and a 3.7V to 5V converter. This converter
would require a two-wire connection to the Raspberry Pi’s power pins, which
would require removing the power micro-usb port from the Raspberry Pi. In
addition, while it was small and light, it was so much wider than the Raspberry Pi
that it was making it difficult to design an efficient case without wasting extra
space. For these reasons, we chose to switch to a cylindrical battery with built-in
safety circuitry and converter that allowed for easy connection to the Raspberry
Pi. Its smaller width would also allow for more efficient use of space in case
design. While this battery was more efficient than the initial one, the placement
of the circuitry on the end of the battery caused more issues with efficient use of
space. For this reason, we switched to a similar cylindrical battery that had
circuitry placed on the side instead of the end of the battery. This allowed for
both efficient use of space and easy, reliable connection to the Raspberry Pi. All
batteries tested had a similar capacity, calculated to be enough to power the device
for 16 hours (see Power Consumption Analysis chart in Design Details Section).
The battery was connected to the power micro-USB port on the Raspberry Pi
using a standard micro-USB to USB adapter.

5. Accelerometer
a. The MMA8451 was connected to the Raspberry Pi’s I2C pins (see Circuit

Schematic in Design Details Section) according to our initial design plan. It
worked as intended, and was not redesigned for our final product since we
encountered no issues with it.

6. Camera
a. The Raspberry Pi Camera v2 was connected to the Raspberry Pi’s using the

Raspberry Pi’s dedicated camera interface port, according to our initial design
plan. It worked as intended, and was not redesigned for our final product since
we encountered no issues with it.

7. Microcontroller
a. Raspberry Pi OS was installed on the Raspberry Pi Zero W by downloading the

operating system onto the SD card. The Raspberry Pi’s configuration files had to
be adjusted to allow for connection with the campus wifi, as it has extra security
measures not present in most wifi systems. With wifi connection established, it
was possible to connect to the Raspberry Pi using ssh, in order to write code and

9

adjust configurations more easily. Because the campus wifi involves use of
dynamic IP addresses, the IP addresses used to ssh into the Raspberry Pi and
those present in the code had to be changed on occasion.

8. LEDs
a. Two LEDs, a green LED to indicate when the device is on and a red LED to

indicate when the camera is on. Connected to small resistors that attach to the
raspberry pi. We always planned on adding LEDs to the project but held off until
the end once the casing was completed. The coding and soldering needed were
simple additions to the project.

Software Design Strategy:
Our initial strategy was to utilize pre-existing libraries and examples for each individual

component for testing, and then integrate the code for each component into our client/server
program. We would then run the device with each individual component until they were all
working properly. If one device did not work well with what we currently had, we would take the
component out to reduce the weight and size of our total device since that sizing and weight was
a main criteria of our project.

The first software issue we encountered was getting the best operating system for our
project’s purpose downloaded onto the Raspberry Pi. There are many different operating systems
that are compatible with Raspberry Pi Zero W’s, but we needed one that would be universal with
the components we would be using in our project. We decided to use “Raspberry Pi OS” since it
came directly from Raspberry Pi, and most of the packaging libraries for our individual
components were programmed to be compatible with the operating system.

The second thing we did was to configure the Raspberry Pi to use OSU's “eduroam” wifi.
This network has a special protocol that the Raspberry Pi cannot automatically connect to unless
we configure the “Wi-Fi Protected Access” (WPA) files. With the help from Dr. Sheng’s
graduate student Zhidong and some research online [4], we were able to set up the Raspberry Pi
to automatically connect to the eduroam wifi. On the Raspberry Pi command line, we would run
“sudo nano /etc/wpa_supplicant/wpa_supplicant.conf” to edit the “wpa_supplicant.conf” file.
The file is easy to edit and your own login information can be used to log into the eduroam wifi.

After we configured the Raspberry Pi we implemented the components as we received
them. The first components we received were the Accelerometer and Ambient Light Sensor.
With pre-existing libraries for each, it was easy to test the functionality of both sensors and to
add it to our device. When testing the ambient light sensor we concluded that it would not make
a significant impact on our design since we were only able to receive digital values on the
Raspberry Pi. The accelerometer did not have any issues so we used it in our final project. To
determine which acceleration values indicated a fall, we secured the sensor to a student’s shirt
and we had the student walk around and replicate a fall. We then used the corresponding values
as criteria to signal that a fall had occurred. After testing, we concluded that the values reached
when a fall occurred were greater than 14m/s2 in the X-axis, greater than 14m/s2 in the Y-axis,

10

and less than 3m/s2 or greater than 14m/s2 in the Z-axis. The Z-axis had two parameters since the
MMA8451 has a 9.81m/s2 acceleration built in due to gravity. The two parameters ensured a fall
would be recorded on the Raspberry Pi. Other components we received later include the
vibration motor, which required us to set up an effect number to determine what vibration pattern
it would use.

To initialize the camera we followed the instructions from Raspberry Pi’s website and we
were able to get it to work without a problem. When implementing the camera into our device
we designed it to take multiple pictures when a fall was detected and be turned off otherwise. We
had the camera take pictures when any of the accelerometer’s threshold values was reached. We
placed the capture command in a for loop, causing the camera to take 10 pictures, one every 50
milliseconds.

The next component we included in our device was a speaker. The speaker went through
many different iterations as mentioned earlier, but the programming process remained the same
for most of them. We would construct a speaker and format our audio configuration files
accordingly. The command “sudo nano /boot/config.txt” was used to edit the “config.txt” file
which determined which audio output the Raspberry Pi would use. The initial speaker setup
using the PCB board had us convert GPIO pins 13 and 18 to PWM pins using the command
“dtoverlay=pwm-2chan,pin=18,func=2,pin2=13,func2=4”. When we edited the configuration
file to update the pins, the Raspberry Pi did not detect any audio output source so we were
unable to output any audio. This was because the Pi requires its audio devices to have a power
audio driver, which was not present in this design. The next speaker we attempted to implement
was a USB-speaker driver. Once we edited the audio configuration file using the command
“dtoverlay= USB Audio [USB Audio]”, the Raspberry Pi detected the Speaker and we were able
to play audio. However, the audio was very faint and would be difficult to hear especially for an
elderly person, so we had to consider other solutions. Our final speaker used converted PCM
pins to act as I2s pins. We edited the audio configuration file by adding
“dtoverlay=hifiberry-dac” and “dtoverlay=i2s-mmap”. The Raspberry Pi recognized the audio
and we were able to successfully play audio at different volumes that would be easily detectable.
The speaker driver had to be initialized with a sampling frequency, number of bits per sample,
and channel number corresponding to that of the sound file it needed to play. We also used an
online text-to-speech software to create sample audio messages to interact with the user. This
allowed us to play a specific message if a fall was detected.

Our first attempt to implement communication on our device required us to use a TCP
socket to create a client/server connection between the device and the server. We chose to use
another Raspberry Pi to act in place of the server for this project. While we successfully
programmed a TCP socket that allowed communication between the client and server, it became
apparent that the server socket could not effectively receive the pictures and data sent to it by the
client. The server attempted to receive data from the socket in chunks, but was unable to detect
when all chunks had been received, creating an endless loop as the server searched for data that
was no longer being sent. We attempted to fix this problem by setting a certain number of bytes

11

or amount of time for the server to search for data, but the variability in file sizes being received
made this difficult. We also tried to add end-markers to the files being sent which could be
detected by the server, but searching through all of the picture data that was being sent in byte
format was time consuming. Eventually, we moved away from the TCP socket as our
communication protocol, and chose to use an SCP socket protocol instead.

With the SCP socket, we were able to connect the client to the server through “SSH”.
This allowed the client to send whole files directly to the server and have them stored, avoiding
the issues encountered with the receiving loop. Using SCP protocol allowed for successful
communication between the client and server, and we were easily able to send files back and
forth. The working code for the individual components was then integrated with the SCP
communication program to create the device’s logic.

Physical Appearance/Dimensions:
The component layout and case were designed to be small

but still be functional. The microphone and the LED lights face
upwards towards the user. This allows for the microphone to pick up
a better quality of sound from the user, as well as allowing them to
see when the device is running and when the camera is on. The
camera faces outwards to allow for pictures to be taken of the
surroundings in case the user falls outside the view of ELSA. The
speaker also faces away from the body, since its surface area did not
allow it to be on the top of the box. The power switch is located on the side of the box so it does
not accidentally get pressed. The layout of the rest of the pieces inside is designed to help keep
the overall dimensions small.

The final weight of the component parts and connections
alone are 3.7oz. With the added weight of the plastic case, the
device comes to 5.6oz. The strap attachment and corresponding
backing added another 1.2 oz, for a final weight 6.8oz. The
dimensions of the case with the plain backing is 95mm x 63mm x
40mm. With the backing that has the pocket clip, the dimensions
increase to 95mm x 63mm x 44mm. The backing that fits the strap increases the dimensions to
95mm x 63mm x 49mm, but this does not include the dimensions of the strap.

12

Schematic for Raspberry Pi GPIO Pin Connections:

GPIO Pin Connections:
Accelerometer-
SDA - Pin 3(I2C SDA)
SCL - Pin 5(I2C SCL)
VDD - Pin 1(3.3V)
GND - Pin 6(GND)

Haptic Motor Driver-
SDA - Pin 3(I2C SDA)
SCL - Pin 5(I2C SCL)
VDD - Pin 1(3.3V)
GND - Pin 6(GND)

Speaker Driver-
VDD - Pin 2(5V)
GND - Pin 14(GND)
BCLK - Pin 12(PCM CLK)
DIN - Pin 40(PCM DOUT)
LRCLK - Pin 35(PCM FS)

ADC-

13

VDD - Pin 17(3.3V)
VREF - Pin 17(3.3V)
AGND - Pin 25(GND)
DGND - Pin 25(GND)
CLK - Pin 23(SPI SCLK)
DOUT - Pin 21(SPI MISO)
DIN - Pin 19(SPI MOSI)
SHDN/CS - Pin 15(GPIO 22)

Microphone-
VDD - Pin 17(3.3V)
GND - Pin 25(GND)

Green LED-
VDD - Pin 36(GPIO 16)
GND - Pin 34(GND)

Red LED-
VDD - Pin 32(GPIO 12)
GND - Pin 30(GND)

With the use of a perf board All the devices
were attached together and then soldered to the
raspberry pi. The accelerometer and haptic motor were
soldered to the perf board with the VDD, GND, SCL,
and SDA pins being bused to the same raspberry pi
pins. The vibrating motor is soldered to the haptic
motor and is attached to the bottom side of the case.
The Speaker driver was soldered to the perf board with
connecting wires between the raspberry pi and the perf
board. The 2 watt speaker that attaches to the speaker driver is directed to face outward on the
front of the device. The microphone ADC is soldered to the perf board and has connecting wires
to the microphone and to the raspberry pi. The microphone itself is wired to the ADC for output
with the VDD and GND being bused with the VDD and GND of the ADC. The microphone is
directed to the top of the device and faces outward. The Camera is attached via a ribbon cable. It
has its own connection on the raspberry pi and points outward on the front of the device. The two
LEDs are connected to 330ohm resistors that are soldered to the raspberry pi. The LEDs are
positioned to sit on top of the device and point upward from the device. The Device is powered
by a separate battery that connects via the micro usb port.

14

Programming Flowchart:

Power Consumption Analysis:

Item Worst Case (mA) Expected Case (mA) Best Case (mA)

Microcontroller 150 100 80

Camera 225 15 12

Speaker 2.85 1 0.40

Motor 3.5 3 2.3

Accelerometer 0.165 0.165 0.165

Mic 0.060 0.060 0.024

Total 380.375 124.299 96.089

Operational Time 5.26 Hours 16.10 Hours 20.81 Hours

15

Operating Instructions:
Put the desired backing on the device, and attach to the user, with an upright initial

position. Press the power button to start the device, and wait a few minutes for wifi connection
to be established. Then use wifi to connect to the device through an ssh terminal on another
computer. Begin functionality by running the eldercare.py program on the device. The device
should then function correctly, detecting falls and sending data to the server. When finished
using the device, stop the program from running in the ssh terminal, and press the power button
to turn the device off. Charge the device by plugging the micro-USB charging port into a
standard wall socket.

Test Code for Individual Parts:

Accelerometer

import time

import board
import busio

import adafruit_mma8451

i2c = busio.I2C(board.SCL, board.SDA)

sensor = adafruit_mma8451.MMA8451(i2c)

while True:
z, x, y = sensor.acceleration
print('Acceleration: x={0:0.3f}m/s^2 y={1:0.3f}m/s^2 z={2:0.3f}m/s^2' .format(x, y,z))
orientation = sensor.orientation

print('Orientation: ', end='')
if orientation == adafruit_mma8451.PL_PUF:

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_PUB:

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_PDF:

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_PDB:

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_LRF:

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_LRB:

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_LLF:

16

print('Portrait, up, front')
elif orientation == adafruit_mma8451.PL_LLB:

print('Portrait, up, front')
time.sleep(1.0)

Camera

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
sleep(5)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()

Ambient Light Sensor

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(23,GPIO.IN)

for i in range(0,5):
#print(GPIO.input(14))
x =GPIO.input(23)
if x == 1:

print("It is dark")
else:

print("There is light")
time.sleep(3)

Vibration Motor

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of the DRV2605 haptic feedback motor driver.
Will play all 123 effects in order for about a half second each.
import time

17

import board
import busio

import adafruit_drv2605

Initialize I2C bus and DRV2605 module.
i2c = busio.I2C(board.SCL, board.SDA)
drv = adafruit_drv2605.DRV2605(i2c)

Main loop runs forever trying each effect (1-123).
See table 11.2 in the datasheet for a list of all the effect names and IDs.
http://www.ti.com/lit/ds/symlink/drv2605.pdf
effect_id = 1
while True:

print("Playing effect #{0}".format(effect_id))
drv.sequence[0] = adafruit_drv2605.Effect(effect_id) # Set the effect on slot 0.
You can assign effects to up to 7 different slots to combine
them in interesting ways. Index the sequence property with a
slot number 0 to 6.
Optionally, you can assign a pause to a slot. E.g.
drv.sequence[1] = adafruit_drv2605.Pause(0.5) # Pause for half a second
drv.play() # play the effect
time.sleep(0.5) # for 0.5 seconds
drv.stop() # and then stop (if it's still running)
Increment effect ID and wrap back around to 1.
effect_id += 1
if effect_id > 123:

effect_id = 1

Speaker

from pygame import mixer

Initialize pygame mixer
mixer.init(frequency=44100, size=16, channels=1)
#mixer.init()
sound = mixer.Sound('okay.wav')
while True:

sound.play()
#sound.stop()

18

Microphone

import os
import time
import busio
import digitalio
import board
import adafruit_mcp3xxx.mcp3008 as MCP
from adafruit_mcp3xxx.analog_in import AnalogIn
from time import sleep
create the spi bus
spi = busio.SPI(clock=board.SCK, MISO=board.MISO, MOSI=board.MOSI)

create the cs (chip select)
cs = digitalio.DigitalInOut(board.D22)

create the mcp object
mcp = MCP.MCP3008(spi, cs)

create an analog input channel on pin 0
chan0 = AnalogIn(mcp, MCP.P0)
#use wav file, chan0.value
#75ksps,10bit resolution
#wav header
print('Raw ADC Value: ', chan0.value)
print('ADC Voltage: ' + str(chan0.voltage) + 'V')

last_read = 0 # this keeps track of the last potentiometer value
tolerance = 250 # to keep from being jittery we'll only change

volume when the pot has moved a significant amount
on a 16-bit ADC

fs = 44100
freq = 440

for i in range(10000):
print("raw audio:" , chan0.value)
sleep(.5)

def remap_range(value, left_min, left_max, right_min, right_max):
this remaps a value from original (left) range to new (right) range
Figure out how 'wide' each range is
left_span = left_max - left_min
right_span = right_max - right_min

Convert the left range into a 0-1 range (int)
valueScaled = int(value - left_min) / int(left_span)

19

Convert the 0-1 range into a value in the right range.
return int(right_min + (valueScaled * right_span))

while True:
we'll assume that the pot didn't move
trim_pot_changed = False

read the analog pin
trim_pot = chan0.value

how much has it changed since the last read?
pot_adjust = abs(trim_pot - last_read)

if pot_adjust > tolerance:
trim_pot_changed = True

if trim_pot_changed:
convert 16bit adc0 (0-65535) trim pot read into 0-100 volume level
set_volume = remap_range(trim_pot, 0, 65535, 0, 100)

set OS volume playback volume
print('Volume = {volume}%' .format(volume = set_volume))
set_vol_cmd = 'sudo amixer cset numid=1 -- {volume}% > /dev/null' \
.format(volume = set_volume)
os.system(set_vol_cmd)

print("raw audio:" + chan0.value)
save the potentiometer reading for the next loop
last_read = trim_pot

hang out and do nothing for a half second
time.sleep(0.5)

LED

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(26,GPIO.OUT)
print("LED on")
GPIO.output(26,GPIO.HIGH)
time.sleep(1)
print("LED off")

20

GPIO.output(26,GPIO.LOW)

File Transfer using SCP

from paramiko import SSHClient
from scp import SCPClient

ssh = SSHClient()
ssh.load_system_host_keys()
ssh.connect(hostname='10.227.13.49',

username='pi',
password='elder')

SCPCLient takes a paramiko transport as its only argument
scp = SCPClient(ssh.get_transport())

scp.put('/home/pi/Desktop/acc_image/imagez5.jpg', '/home/pi/Desktop/imagez5.jpg')
#scp.get('/home/pi/Desktop/imagex4.jpg', 'file_path_on_local_machine')

scp.close()

Initial Client

Main Driver Code for Elder Care Wearable Device

Simple demo of reading the MMA8451 orientation every second.
from picamera import PiCamera
import RPi.GPIO as GPIO
camera = PiCamera()
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(26,GPIO.OUT)
import board
import busio
import adafruit_drv2605

import adafruit_mma8451

socket code

import socket

21

host = '10.227.13.49'
port = 5560

def setupSocket():
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
print("server connected")
return s

Initialize I2C bus & motor driver.
i2c = busio.I2C(board.SCL, board.SDA)
drv = adafruit_drv2605.DRV2605(i2c)
Initialize MMA8451 module.
sensor = adafruit_mma8451.MMA8451(i2c)

#initialize socket
s = setupSocket()

End = 0xFDE23BC2379

#set motor strength
effect_id = 16
drv.sequence[0] = adafruit_drv2605.Effect(effect_id)

def sendPic(s, filePathC, filePathS):
print(filePathC)
print(filePathS)
pic = open(filePathC, 'rb')
chunk = pic.read()
s.send(str.encode("STORE " + filePathS))
s.send(chunk)
#while chunk:

print("Sending Picture")
s.send(chunk)
#chunk = pic.read(5120)

pic.close()
print("Done sending")
#s.close()
return "Done sending"

Optionally change the address if it's not the default:
sensor = adafruit_mma8451.MMA8451(i2c, address=0x1C)

Optionally change the range from its default of +/-4G:
sensor.range = adafruit_mma8451.RANGE_2G # +/- 2G

22

sensor.range = adafruitrom picamera import PiCamera
from time import sleep

#camera = PiCamera()_mma8451.RANGE_4G # +/- 4G (default)
#sensor.range = adafruit_mma8451.RANGE_8G # +/- 8G

Optionally change the data rate from its default of 800hz:
sensor.data_rate = adafruit_mma8451.DATARATE_800HZ # 800Hz (default)
sensor.data_rate = adafruit_mma8451.DATARATE_400HZ # 400Hz
sensor.data_rate = adafruit_mma8451.DATARATE_200HZ # 200Hz
sensor.data_rate = adafruit_mma8451.DATARATE_100HZ # 100Hz
sensor.data_rate = adafruit_mma8451.DATARATE_50HZ # 50Hz
sensor.data_rate = adafruit_mma8451.DATARATE_12_5HZ # 12.5Hz
sensor.data_rate = adafruit_mma8451.DATARATE_6_25HZ # 6.25Hz
sensor.data_rate = adafruit_mma8451.DATARATE_1_56HZ # 1.56Hz

Main loop to print the acceleration and orientation every second.
while True:

z, x, y = sensor.acceleration
print(

"Acceleration: x={0:0.3f}m/s^2 y={1:0.3f}m/s^2 z={2:0.3f}m/s^2".format(x, y, z)
)
print("before if")

if(abs(x) >= 12):
print("inside if")
GPIO.output(26,GPIO.HIGH)
drv.play()
camera.start_preview()
start_time = time.time()
for i in range(10):

sleep(0.05)
camera.capture('/home/pi/Desktop/acc_image/imagex%s.jpg' % i)

for i in range(10):
sleep(0.05)

sendPic(s, "/home/pi/Desktop/acc_image/imagex%s.jpg" %
i,"/home/pi/Desktop/imagex%s.jpg" % i)

camera.stop_preview()
print("picture taken x")
drv.stop()
GPIO.output(26,GPIO.LOW)
end_time = time.time()
total_time = end_time - start_time
print(total_time)

elif(abs(y) >= 12):
print("inside if")

23

GPIO.output(26,GPIO.HIGH)
drv.play()
camera.start_preview()
start_time = time.time()
for i in range(10):

sleep(.05)
camera.capture('/home/pi/Desktop/acc_image/imagey%s.jpg' % i)

for i in range(10):
sleep(0.05)

sendPic(s, "/home/pi/Desktop/acc_image/imagey%s.jpg" %
i,"/home/pi/Desktop/imagey%s.jpg" % i)

camera.stop_preview()
print("picture taken y")
GPIO.output(26,GPIO.LOW)
drv.stop()
end_time = time.time()
total_time = end_time - start_time
print(total_time)

elif(abs(z) >= 12 or abs(z) <= 7):
print("inside if")
GPIO.output(26,GPIO.HIGH)
drv.play()
camera.start_preview()
start_time = time.time()
for i in range(10):

sleep(.05)
camera.capture('/home/pi/Desktop/acc_image/imagez%s.jpg' % i)

for i in range(10):
sleep(0.05)

sendPic(s, "/home/pi/Desktop/acc_image/imagez%s.jpg" %
i,"/home/pi/Desktop/imagez%s.jpg" % i)

camera.stop_preview()
print("picture taken z")
drv.stop()
GPIO.output(26,GPIO.LOW)
end_time = time.time()
total_time = end_time - start_time
print(total_time)

else:
print("all good")

orientation = sensor.orientation
Orientation is one of these values:
- PL_PUF: Portrait, up, front
- PL_PUB: Portrait, up, back
- PL_PDF: Portrait, down, front
- PL_PDB: Portrait, down, back

24

- PL_LRF: Landscape, right, front
- PL_LRB: Landscape, right, back
- PL_LLF: Landscape, left, front
- PL_LLB: Landscape, left, back
print("Orientation: ", end="")
if orientation == adafruit_mma8451.PL_PUF:

print("Portrait, up, front")
elif orientation == adafruit_mma8451.PL_PUB:

print("Portrait, up, back")
elif orientation == adafruit_mma8451.PL_PDF:

print("Portrait, down, front")
elif orientation == adafruit_mma8451.PL_PDB:

print("Portrait, down, back")
elif orientation == adafruit_mma8451.PL_LRF:

print("Landscape, right, front")
elif orientation == adafruit_mma8451.PL_LRB:

print("Landscape, right, back")
elif orientation == adafruit_mma8451.PL_LLF:

print("Landscape, left, front")
elif orientation == adafruit_mma8451.PL_LLB:

print("Landscape, left, back")
time.sleep(0.5)

Initial Server

import socket
#from cookieLED import callLED

host = '10.227.9.34'
port = 5560

def setupServer():
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print("Socket created.")
try:

s.bind((host, port))
except socket.error as msg:

print(msg)
print("Socket bind complete.")
return s

def setupConnection():
s.listen(1) # Allows one connection at a time.
conn, address = s.accept()

25

print("Connected to: " + address[0] + ":" + str(address[1]))
return conn

def storeFile(filePath):
picFile = open(filePath, 'wb')
print("Opened the file.")
pic = conn.recv(1024)
while pic:

picFile.write(pic)
pic = conn.recv(1024)
continue

print("Done Receiving")
picFile.close()

def dataTransfer(conn):
A big loop that sends/receives data until told not to.
while True:

print("Receiving data")
Receive the data
data = conn.recv(1024) # receive the data
data = data.decode('utf-8')
Split the data such that you separate the command
from the rest of the data.
dataMessage = data.split(' ', 1)
command = dataMessage[0]
if command == 'GET':

reply = GET()
elif command == 'REPEAT':

reply = REPEAT(dataMessage)
elif command == 'STORE':

print("Store command received. Time to save a picture")
print(dataMessage[1])

storeFile(dataMessage[1])
print("Storage Complete")
reply = "File stored."

elif command == 'LED_ON':
callLED()
reply = 'LED was on'

elif command == 'EXIT':
print("Our client has left us :(")
break

elif command == 'KILL':
print("Our server is shutting down.")
s.close()
break

else:

26

reply = 'Unknown Command'
Send the reply back to the client
conn.sendall(str.encode(reply))
print("Data has been sent!")

conn.close()

s = setupServer()

while True:
try:

conn = setupConnection()
dataTransfer(conn)

except:
break

Final Source Code for Device:

Final Driver Program

Main Driver Code for Elder Care Wearable Device

Libraries
from picamera import PiCamera
import RPi.GPIO as GPIO
import time
import board
import busio
import adafruit_drv2605
import adafruit_mma8451
from paramiko import SSHClient
from scp import SCPClient
from time import sleep
from datetime import datetime
from pygame import mixer

#Initialize SCP/SSH
ssh = SSHClient()
ssh.load_system_host_keys()
ssh.connect(hostname='10.227.13.49', username='pi', password='elder') #update to new server

SCPCLient takes a paramiko transport as its only argument
scp = SCPClient(ssh.get_transport())

#initialize GPIO Pins

27

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(16,GPIO.OUT)
GPIO.setup(12,GPIO.OUT)

Initialize I2C bus & motor driver.
i2c = busio.I2C(board.SCL, board.SDA)
drv = adafruit_drv2605.DRV2605(i2c)

Initialize MMA8451 module.
sensor = adafruit_mma8451.MMA8451(i2c)

#Initialize Camera
camera = PiCamera()

#set motor strength, effect_id = (1-123)
effect_id = 16
drv.sequence[0] = adafruit_drv2605.Effect(effect_id)

#Initialize Audio
mixer.init(frequency=44100, size=16, channels=1)
sound = mixer.Sound('okay.wav') #Add your own audio files

Main loop to print the acceleration and orientation every half second.
Sends pictures to server and turns on indicators

while True:
GPIO.output(16,GPIO.HIGH) #"On" indicator
z, x, y = sensor.acceleration
#Prints out accelerometer data to command line
print("Acceleration: x={0:0.3f}m/s^2 y={1:0.3f}m/s^2 z={2:0.3f}m/s^2".format(x, y, z))

#X-axis
if(abs(x) >= 13):

GPIO.output(12,GPIO.HIGH)
drv.play()
camera.start_preview()
for i in range(10): #loop 10 times when a fall is detected in the X-axis

sleep(0.05)
camera.capture('/home/pi/Desktop/acc_image/imagex%s.jpg' % i)

camera.stop_preview()
print("picture taken x")
drv.stop()
GPIO.output(12,GPIO.LOW)
sound.play()
for i in range(10): #send 10 pictures to server using SCP

28

sleep(.5)
scp.put('/home/pi/Desktop/acc_image/imagex%s.jpg' % i ,

'/home/pi/Desktop/fall/imagex%s.jpg' % i)

#Y-axis
elif(abs(y) >= 13):

GPIO.output(12,GPIO.HIGH)
drv.play()
camera.start_preview()
for i in range(10):

sleep(.05)
camera.capture('/home/pi/Desktop/acc_image/imagey%s.jpg' % i)

camera.stop_preview()
print("picture taken y")
GPIO.output(12,GPIO.LOW)
drv.stop()
sound.play()
for i in range(10):

sleep(.5)
scp.put('/home/pi/Desktop/acc_image/imagey%s.jpg' % i ,

'/home/pi/Desktop/fall/imagey%s.jpg' % i)

#Z-axis
elif(abs(z) >= 13 or abs(z) <= 3):

GPIO.output(12,GPIO.HIGH)
drv.play()
camera.start_preview()
for i in range(10):

sleep(.05)
camera.capture('/home/pi/Desktop/acc_image/imagez%s.jpg' % i)

camera.stop_preview()
print("picture taken z")
drv.stop()
GPIO.output(12,GPIO.LOW)
sound.play()
for i in range(10):

sleep(.5)
scp.put('/home/pi/Desktop/acc_image/imagez%s.jpg' % i ,

'/home/pi/Desktop/fall/imagez%s.jpg' % i)

else:
print("all good")

#orientation definitions
orientation = sensor.orientation
print("Orientation: ", end="")
if orientation == adafruit_mma8451.PL_PUF:

29

print("Portrait, up, front")
elif orientation == adafruit_mma8451.PL_PUB:

print("Portrait, up, back")
elif orientation == adafruit_mma8451.PL_PDF:

print("Portrait, down, front")
elif orientation == adafruit_mma8451.PL_PDB:

print("Portrait, down, back")
elif orientation == adafruit_mma8451.PL_LRF:

print("Landscape, right, front")
elif orientation == adafruit_mma8451.PL_LRB:

print("Landscape, right, back")
elif orientation == adafruit_mma8451.PL_LLF:

print("Landscape, left, front")
elif orientation == adafruit_mma8451.PL_LLB:

print("Landscape, left, back")
time.sleep(0.5)

Source Code for Raspberry Pi Configuration Files:

sudo nano /boot/config.txt

For more options and information see
http://rpf.io/configtxt
Some settings may impact device functionality. See link above for details

uncomment if you get no picture on HDMI for a default "safe" mode
#hdmi_safe=1

uncomment this if your display has a black border of unused pixels visible
and your display can output without overscan
#disable_overscan=1

uncomment the following to adjust overscan. Use positive numbers if console
goes off screen, and negative if there is too much border
#overscan_left=16
#overscan_right=16
#overscan_top=16
#overscan_bottom=16

uncomment to force a console size. By default it will be display's size minus
overscan.
#framebuffer_width=1280
#framebuffer_height=720

30

uncomment if hdmi display is not detected and composite is being output
#hdmi_force_hotplug=1

uncomment to force a specific HDMI mode (this will force VGA)
#hdmi_group=1
#hdmi_mode=1

uncomment to force a HDMI mode rather than DVI. This can make audio work in
DMT (computer monitor) modes
#hdmi_drive=2

uncomment to increase signal to HDMI, if you have interference, blanking, or
no display
#config_hdmi_boost=4

uncomment for composite PAL
#sdtv_mode=2

#uncomment to overclock the arm. 700 MHz is the default.
#arm_freq=800

Uncomment some or all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
#dtparam=i2s=on
dtparam=spi=on

Uncomment this to enable infrared communication.
#dtoverlay=gpio-ir,gpio_pin=17
#dtoverlay=gpio-ir-tx,gpio_pin=18

Additional overlays and parameters are documented /boot/overlays/README

Enable audio (loads snd_bcm2835)
#dtparam=audio=on
dtoverlay=hifiberry-dac
dtoverlay=i2s-mmap

[pi4]
Enable DRM VC4 V3D driver on top of the dispmanx display stack
#dtoverlay=vc4-fkms-v3d
max_framebuffers=2

[all]
dtoverlay=vc4-fkms-v3d
enable_uart=1
start_x=1

31

gpu_mem=128

#changes made to GPIO 13 and 18
#dtoverlay=pwm-2chan,pin=18,func=2,pin2=13,func2=4
#dtoverlay= USB Audio [USB Audio]
#dtoverlay=pwm-audio-pi-zero

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=US

network={
ssid="eduroam"
key_mgmt=WPA-EAP
auth_alg=OPEN
eap=PEAP
identity="bliando@okstate.edu"
password="K@m1nsk4"
phase2="auth=MSCHAPV2"
priority=999
proactive_key_caching=1

}

32

Initial and Final Schedule:
The table below is the initial action item chart that we made at the beginning of the

semester. The chart lists out the task, who is responsible for each part, the start date, and when it
needs to be completed.

Task Team Member Start Date End Date

Research Parts All 1/28/21 2/5/21

Submit Design Proposal All 2/1/21 2/5/21

3D Printing Certification All 2/2/21 2/15/21

Order Parts Bill 2/8/21 2/19/21

Floor Plan Layout Elinor & Scott 2/8/21 2/19/21

Research Parts All 1/28/21 2/5/21

Find Libraries for Each
Component

Lauren & Bill 2/9/21 2/26/21

Create Programming
Flowchart

Lauren & Bill 2/23/21 3/1/21

Debugging Programming Lauren & Bill 3/1/21 3/15/21

3D Print Various Cases Elinor & Scott 2/21/21 3/1/21

The table below is the final updated action item chart for the semester. Again, the chart
lists out the task, who is responsible for each part, the start date, and when it needs to be
completed. This chart’s dates start after the mid-semester meeting and continue to the end of the
project.

Task Team Member Start Date End Date

Research Parts All 1/28/21 2/5/21

Submit Design Proposal All 2/1/21 2/5/21

3D Printing Certification All 2/2/21 2/15/21

Order Parts Bill 2/8/21 2/19/21

Test Best Location All 2/8/21 2/12/21

Floor Plan Layout Elinor & Scott 2/8/21 2/19/21

Find Libraries for Each
Component

Lauren & Bill 2/9/21 2/26/21

Create Programming
Flowchart

Lauren & Bill 2/23/21 3/1/21

Attach Accelerometer to Scott 3/1/21 3/5/21

33

RPi

Implement Accelerometer
Program

Lauren & Bill 3/1/21 3/5/21

Add Ambient Light Sensor
and Camera

Scott 3/8/21 3/12/21

Research Parts All 1/28/21 2/5/21

Submit Design Proposal All 2/1/21 2/5/21

3D Printing Certification All 2/2/21 2/15/21

Order Parts Bill 2/8/21 2/19/21

Test Best Location All 2/8/21 2/12/21

3D Print Various Cases Elinor & Scott 2/21/21 3/1/21

Connect and test all parts Scott & Bill 2/19/21 4/23/21

Solder speaker driver and
speakers

Scott 3/8/21 3/12/21

Implement software for
Speaker driver

Lauren & Bill 3/15/21 3/26/21

Attach sensors to box Scott 3/8/21 4/23/21

Test all code while inside
box

Lauren & Bill 3/15/21 3/19/21

Finish First Prototype All 3/22/21 3/26/21

Design Case Backings Elinor 3/22/21 4/20/21

Testing Device All 4/19/21 4/21/21

3D Print Various Cases Elinor & Scott 2/21/21 3/1/21

Connect and test all parts Scott & Bill 2/19/21 4/23/21

Solder speaker driver and
speakers

Scott 3/8/21 3/12/21

Implement software for
Speaker driver

Lauren & Bill 3/15/21 3/26/21

Attach sensors to box Scott 3/8/21 4/23/21

Test all code while inside
box

Lauren & Bill 3/15/21 3/19/21

Finish First Prototype All 3/22/21 3/26/21

Design Case Backings Elinor 3/22/21 4/20/21

Testing Device All 4/19/21 4/21/21

34

The figure below is the Gnatt chart for the entire project. The chart lists out the milestone
descriptions, who was responsible, when the start date was, and how many days it took to
complete each part.

35

Budget summary:
The table below includes the final parts for the project and their prices. The cost of the

parts used in the finished project came out to $135.87. This price can be reduced by selecting the
parts from different suppliers where they would be less expensive. The department gave us a
budget of $200. Since ordering through the university took longer than desired, the majority of
the final parts were paid for by the undergraduate students. Only $131.77 was spent from the
budget, while $232.05 was spent by the students. This differs from the cost of the final project
because many parts were replaced as the design evolved.

Quantity Price Description

Raspberry Pi Zero W Camera pack 1 $61.81 Kit that includes microcontroller and camera

MMA 8451 1 $7.95 Accelerometer

Micro SD Card 1 $16.34 Micro SD Card for Raspberry Pi Zero W

2W 8Ohm Speaker 1 $3.73 2w speaker

DZS Elec 1027-L35-4 1 $1.38 vibration motor

DRV2605L 1 $16.79 motor driver

MAX98357A 1 $8.59 Speaker Driver

MCP3008 1 $3.15 ADC

MAX4466 1 $4.20 Microphone Driver

FST18650·2000mAh 1 $6.20 Battery

Micro USB Cable 1 $4.99 Micro USB Cable

LED 2 $0.74 LED’s

Total $135.87

Things to Change and Future Ideas:
What we would have done differently:

● Choose a microcontroller with I2S pins or with two PCM channels to allow for easier
implementation of components

● Figure out a way to attach the parts without USB since the cords caused issues with space
in the case design.

● Use a 3350mah cylindrical battery with a similar 3.3V-5V converter and charging PCB to
allow the device to run for longer

Future Ideas:
● Design our own drivers and surface mount components to reduce space
● Create a server powerful enough to process image dataDesign our own drivers and

surface mount components to reduce space
● Have the server include a display interface with the user (i.e. TV)
● Wireless charging

36

● Use the Arduino Nano 33 IoT
● Move to a USB microphone that includes its own driver
● Remove micro usb connection used for power and solder wires to cut down on space

from cables

References:

[1] Ada, Lady. “Adafruit DRV2605L Haptic Controller Breakout.” Adafruit Learning
System,
learn.adafruit.com/adafruit-drv2605-haptic-controller-breakout/python-circuitpython.

[2] Ada, Lady. “Adafruit MMA8451 Accelerometer Breakout.” Adafruit Learning System,
30 June 2014,
learn.adafruit.com/adafruit-mma8451-accelerometer-breakout/python-circuitpython.

[3] “Getting Started with the Camera Module.” Projects.raspberrypi.org,
projects.raspberrypi.org/en/projects/getting-started-with-picamera/5.

[4] Khalid, Muhammad Yasoob Ullah. “Yasoob Khalid.” Connecting Raspberry Pi to
Eduroam Wifi, 14 Apr. 2019,
yasoob.me/posts/raspberry-pi-eduroam-wifi/#:~:text=If%20you%20are%20not%20familiar
,automatically%20out%20of%20the%20box.&text=Raspberry%20Pi%20uses%20wpa%2
Dsupplicant,wpa%2Dsupplicant%20has%20a%20wpa_supplicant.

[5] Linuxize. “How to Use SCP Command to Securely Transfer Files.” Linuxize, Linuxize,
30 May 2020, linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/.

[6] Morganti, Alessio. “Raspberry Pi Zero, Audio Output via I2S.” Lucadentella.it, 26 Apr.
2017, www.lucadentella.it/en/2017/04/26/raspberry-pi-zero-audio-output-via-i2s/.

[7] Projects.raspberrypi.org, projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2.

[8] Python Programming Tutorial: Getting Started with the Raspberry Pi,
learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspber
ry-pi/experiment-2-play-sounds.

[9] “Tutorial 30: Transfer & Backup a File Using Socket File Transfer.” The Zan Show,
thezanshow.com/electronics-tutorials/raspberry-pi/tutorial-30.

[10] “Using Light Sensor Module with Raspberry Pi.” UUGear,
www.uugear.com/portfolio/using-light-sensor-module-with-raspberry-pi/.

37

Appendix A:

Weekly Progress Reports

● 1/25/20
https://ascc.okstate.edu/content/projects.html

● 1/26/2021
Weekly Advisor Meeting

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon
● Dr. Weihua Sheng

Meeting Minutes:
This meet was an introduction for Dr. Sheng and the Wearable Device team. We covered the
requirements of the Elder Care Device. The device is required to have:

1. Low power microprocessor
2. Camera to detect predetermined activities such as eating
3. Mic/Speaker to facilitate interaction between user and the Personal Assistive Robot

The current prototype includes these features already. The Wearable Device team will need to
also include other features such as:

1. Wifi/Bluetooth option to facilitate communication between our device and the
PAR(Personal Assistive Robot)

2. Risk Analysis- Determining where the device will be located
a. Headset
b. Hat clip
c. Necklace
d. Chest clip

3. Rechargeable battery with a 16 hour lifespan
4. LEDs with coded device states
5. Case to house the device electronics
6. Accelerometer to detect falls
7. Programming- Serial Link/Check in connection

38

https://ascc.okstate.edu/content/projects.html

● 1/28/2021

Discussed each part that would be added to the device. Covered microcontroller, camera,
speaker, microphone, accelerometer, battery pack, and LEDs. Started work on our design rough
draft to be submitted the next week. Reference Design Submittal Rough Draft for what was
accomplished during the meeting.

Rough design of circuit and storage compartment

● 2/1/2021
Finished our design rough draft, reference Design Submittal Rough Draft. Created a broad list of
action items for our team to accomplish this semester. Submitted the design rough draft to Dr.
Sheng for review.

39

● 2/2/2021

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon
● Dr. Weihua Sheng
● Ricky Hernandez

Meeting Minutes:
We discussed our initial plan for our design proposal and received feedback on how the report
should be structured as well as our plans up until our next deadline. We agreed to have our final
design proposal submitted by Friday February 5th, 2021.

Feedback from Dr. Sheng and Ricky:
● Dr. Sheng and Ricky think it is redundant to have the Esp-cam as well as the Esp-wroom.

They believe that we should add a camera to the wroom for less power and less
complexity.

● Asked about other microcontrollers that we looked up, didn’t seem convinced that the
esp32 should be automatically used since the current prototype uses this microcontroller
(computational power, power efficient, small, more integration)

● Battery chosen is too big, needs to think more about the weight, smaller the better but still
needs to power everything, maybe if we only used one microcontroller we would use less
power. Size of the battery should be flat like chocolate

● Have more students researching everything, more group research on main components
● Need backups if main fails

Notes about further developing Device from past versions:
● Arm is more power efficient
● Adding Ambient light sensor to detect if person is near a window
● How to drive the speaker.
● Reminder for wearing in the morning, sound, light, vibration
● Lightweight device
● How to wear it

Proposal Requirements:
● Need a proposal, with diagrams, interface, need light sensor.
● Need to know what each student is going to do, have a list of each tasks
● Calculate power consumption

40

● 2/8/21 Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Meeting Minutes:
● OSU Snow Day, push 3D Printing Training to Wednesday and Monday
● Next steps is Ordering parts and determining best location for device
● Battery

○ Current one is too large
○ Prototype will current one, find smaller one if needed later for final prototype

● Speakers
○ Use current drivers, can use alternative speaker with an adapter

● Created Parts list, will fill out more after meeting with Dr. Sheng

41

● 2/9/21 Advising Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon
● Dr. Weihua Sheng

Meeting Minutes:
We discussed our Design Proposal and proposed new battery ideas.

Device Components:
● What type of charger for battery
● Plans for voltage upconverter (3.7V to 5V)
● Plan for the speaker driver weight, can be too heavy
● Ambient light sensor

○ Is it able to interface with Raspberry Pi?
■ Analog/Digital

● Vibration for alert system
● Power Supply, How long can the battery last

○ Longest lifespan with lightest power consumption mode
○ Shortest lifespan with highest power consumption mode

● Order 1200mAh battery for backup
● LED lights
● Find existing libraries for each component to interface programming with Raspberry Pi

42

● 2/11/21 Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Meeting Minutes:
● Update on ordering parts
● PCB Board if needed
● 3D Printing Certification update due to bad weather

○ Work on parts before certification
● Location for device - Armband, belt clips
● Vibration alert - coin motor to vibrate

○ https://www.mouser.com/ProductDetail/Adafruit/1201?qs=sGAEpiMZZMu%252
BmKbOcEVhFUbhUd4riIKNQ8QK%252BzDNq2UMFL5y%252B9Z6cA%3D
%3D

● 2/15/21 Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Meeting Minutes:
● Present new vibration motor to Dr. Sheng
● Parts are in transit

43

https://www.mouser.com/ProductDetail/Adafruit/1201?qs=sGAEpiMZZMu%252BmKbOcEVhFUbhUd4riIKNQ8QK%252BzDNq2UMFL5y%252B9Z6cA%3D%3D
https://www.mouser.com/ProductDetail/Adafruit/1201?qs=sGAEpiMZZMu%252BmKbOcEVhFUbhUd4riIKNQ8QK%252BzDNq2UMFL5y%252B9Z6cA%3D%3D
https://www.mouser.com/ProductDetail/Adafruit/1201?qs=sGAEpiMZZMu%252BmKbOcEVhFUbhUd4riIKNQ8QK%252BzDNq2UMFL5y%252B9Z6cA%3D%3D

● 2/17/21 Advising Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon
● Dr. Weihua Sheng

Meeting Minutes:

● Vibration motor, needs a lot of current
○ Need transistor to boost current

● How to attach a device.
○ Shoulder Mount
○ Chest Clip
○ Rectangular prism to have multiple attach points

● Raspberry Pi Operating System
○ Raspbian vs Raspberry Pi OS vs Ubuntu

Weekly Summary:
● Ordered Parts
● Still waiting on 3D Printing Certification (Snow Days)

● 2/18/21 Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Meeting Minutes:

● Bill ordered personal Raspberry Pi Zero W
● Layout presented to Dr. Sheng on Tuesday
● Have Programming Libraries and wiring schematics for Tuesday

44

● 2/23/21 Advising Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon
● Dr. Weihua Sheng
● Ricky Hernandez

Meeting Minutes:

● Schematic Box Completed
○ Currently Printing
○ 138x66x35mm
○ Add room for future additions

■ Wiring
○ Board Mount

● Pi Zero W specs
○ 512MB RAM
○ Using Raspberry PI OS

● Programing
○ Flowchart
○ Server/Client

Weekly Summary:
● Everyone has been 3D Printing Certified at Endeavor
● We have ordered a personal Pi Zero W to practice programming on and to use to compile

programs while the hardware is being installed
● Program Libraries for all the parts have been found
● Floor plan design completed. Began printing our first casing prototype

45

● 2/25/21 Meeting Notes

Attendance:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Meeting Minutes:

● Delay first Prototype?
○ Use personal Pi and ambient light sensor

● new case design
○ 80x71x48mm

● Pi HAT V1.0
○ May not work because it uses all the pins
○ Create our own speaker driver (PCB)

● March 2nd, prototype demonstration
○ Use ambient light sensor and LED Indicators
○ Program in Python

Week 6 Progress Report (2/22 - 2/28)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary
● Created a presentation
● Parts have been delivered
● Begin assembly and uploading code
● Wifi working at home but not on school’s wifi (eduroam)

○ Contacted Zhidong and got help on connectivity and will schedule a meeting to
troubleshoot

● Accelerometer and Ambient Light Sensor have been installed
● Replaced Re-Speaker with a PCB Speaker

○ Designed and ordered PCB

46

● Week 6 Progress Report (3/1 - 3/5)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary
● Wifi issue has been resolved
● PCB for speaker has been delivered and now ready for assembly
● The camera module and the accelerometer has been installed

○ Camera is alerted when accelerometer reaches a certain threshold in all three
directions

● Microphone has been researched, have three options that we are deciding between
● Alternate power supply

○ Portable battery
■ 0.8 oz extra weight
■ 3.7” x 0.9” x 0.9” dimensions
■ More power capacity: 2500mAh increased to 3350mAh
■ Simpler due to fewer parts
■ Safer due to built in safety measures in the power bank

● Less exposed elements
■ More compact case design
■ Easily replaceable due to parts already built

47

● Week 8 Progress Report (3/8 - 3/12)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary
● Microphone ordered
● 2 batteries ordered

○ Opened one, integrating into case
○ Contacting Anker for internal specifications

● Camera takes 10 pictures at 50ms intervals, around 20fps
● Vibration Motor

○ https://learn.adafruit.com/adafruit-drv2605-haptic-controller-breakout/python-circ
uitpython

○ DRV2605L
■ Driver Only

● Speaker
○ Connected to Raspberry Pi
○ Problems with initializing Raspberry Pi Configuration

■ Only audio option is HDMI output
● Begin working on creating a Server/Client connection between the two Raspberry Pi’s.

● Week 9 Progress Report (3/15 - 3/19)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary
● Socket created between the RPi
● RPi able to send pictures between each other

○ Working on integrating feature with main program
● Battery casing has been removed and still functioning
● Microphone has been delivered
● Designing multiple case backings

48

https://learn.adafruit.com/adafruit-drv2605-haptic-controller-breakout/python-circuitpython
https://learn.adafruit.com/adafruit-drv2605-haptic-controller-breakout/python-circuitpython

● Week 10 Progress Report (3/22 - 3/26)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary
● Parts Ordered:

○ 3 Watt, 8 Ohm 2 pin speaker
○ Motor
○ Micro-usb to usb cable

● Parts Delivered:
○ Motor Controller

● Task Completed:
○ Able to output from speaker, not loud enough(0.5 watts)

■ Ordered a 3 watt speaker
○ Ambient Light Sensor is working now

■ binary output, can modify the sensitivity
● Task in Progress:

○ Microphone is functional
■ Cannot verify it works with current speaker

○ Client camera uploading multiple images to Server
○ Case Design

■ New speaker

49

● Week 11 Progress Report (3/29 - 4/2)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary
● Parts Ordered:

○ ADC board
● Parts Delivered:

○ 3 Watt, 8 Ohm 2 pin speaker
○ Motor
○ Micro-usb to usb cable

● Task Completed:
○ LED indicator light

■ Lights up when camera is on
○ 3W speaker works but it needs to be louder

■ Replace with full micro-usb speaker
■ Audio amplifier circuit

○ Client camera sending multiple images to Server
● Task in Progress:

○ Designing audio amplifier for speaker
■ Constraint, amplifier needs to much supply voltage

○ Microphone is functional
■ Cannot verify it works with current speaker
■ ADC is on its way

○ Case Design
■ New speaker

○ Vibrating Motor
■ Parts arrived and now we’re building circuits

○ Battery
■ Avoid soldering Lithium battery

50

● Week 12 Progress Report (4/5 - 4/9)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary

● Task Completed:
○ Cases

■ New case design with hinges and latch system
■ 3D printed prototype

○ Vibration Motor
■ Installed and integrated into program

○ Speaker
■ Works with micro-usb and PCM pins (I2S)

● PCM has smaller size than usb set-up
○ Microphone

■ Only measures volume

● Task in Progress:
○ Battery

■ Looking at different variations
○ Final Case

■ Get all parts soldered together first
○ Heartbeat connection server/client

51

● Week 13 Progress Report (4/12 - 4/16)

Team Members:
● Elinor Rowe
● Bill Liando
● Lauren Brown
● Scott Kincannon

Weekly Summary

● Task Completed:
○ Assembled all the components into one piece
○ Presentation for final demonstration

● Task in Progress:
○ 3D Printing final case
○ Prototyping testing

■ Getting values and fine tuning project

52

