
OSUBLACK 2021

CRITICAL DESIGN REVIEW

OUTLINE

- 1. PROJECT UPDATE
 - SCHEDULE
 - SPEEDFEST CHALLENGE & CONCEPT OF OPERATIONS
 - PDR RECAP
 - UPDATED DESIGN
- 2. AERODYNAMICS DESIGN
- 3. Propulsion System
- 4. STRUCTURAL LAYOUT
- 5. MARKETING

SCHEDULE

SPEEDFEST 2021 OBJECTIVES

- DESIGN A HIGHSPEED, AEROBATIC, JET HOTLINER IN THE 30N CLASS, THAT IS RELIABLE AND FAST TO ASSEMBLE
- FIT IN A BOX OF MAXIMUM SIZE 6FT PER SIDE
- FLY AS MANY FLAGS AS POSSIBLE IN 3 MIN IN A FIGURE 8 PATTERN
- FLY A 4 MIN AEROBATICS SHOW
- DESIRABLE FOR PURCHASE BY HOBBYISTS
- UNIT COST UNDER \$3,000 WITH A THRESHOLD PRICE OF \$5,000

DESIGNMETHODOLOGY

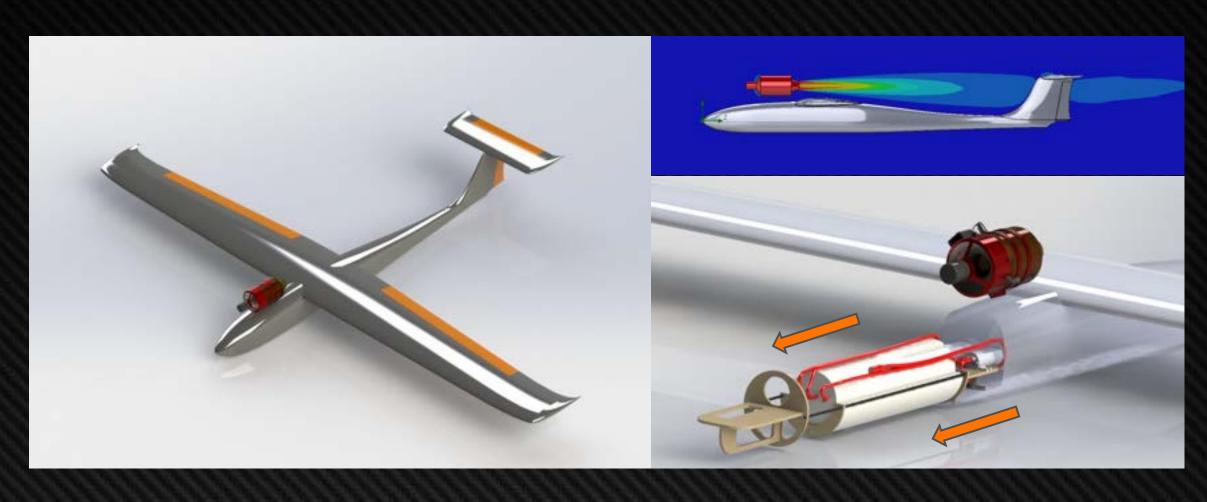
KEEPITSIMPLE

KEEP IT LIGHT

MAKE IT LOOK GOOD

- FEWEST COMPONENTS
- FEWEST MOLDS
- EASY ACCESS OF COMPONENTS

- DESIGN FOR PURPOSE
- INTENTIONAL USE OF STRUCTURE ATTENTION TO DETAIL
- USE THE RIGHT MATERIAL


- FIT FOR PURPOSE

PDRRECAP

- THE TURBINE HOTLINER
 - EXTERNALLY MOUNTED ENGINE
 - SLEEK, STREAMLINED DESIGN
 - INTENTIONAL JETWASH IMPINGEMENT FOR EXTREME MANEUVERABILITY & HAND LAUNCH
 - SIMPLE, USER FRIENDLY DESIGN

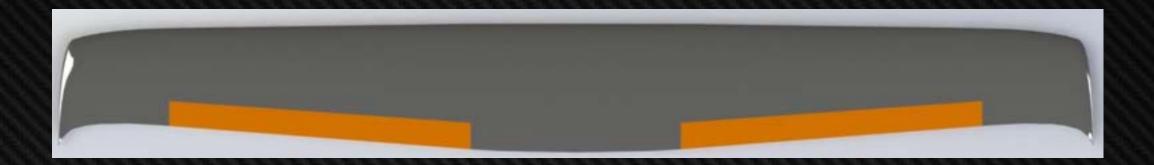
UPDATED DESIGN

AERODYNAMICS

SINCE PDR

- 1. HAND LAUNCHING CAPABILITIES TESTING
- 2. FINAL WING GEOMETRY AND SIZING
- 3. SELECTION OF AIRFOIL
- 4. Tail sizing and airfoil selection
- 5. CFD analysis for jet wash considerations
- 6. CONTROL SURFACE AND SERVO SIZING

HANDLAUNCHING


- TESTING REVEALED A
 COMFORTABLE HAND LAUNCH
 SPEED OF 25 FT/S
- THIS CONSTRAINT, COUPLED WITH SPAN CONSTRAINTS, GUIDED WING AREA DECISIONS
- DESIGNED FOR 0 WIND SPEED LAUNCH TO ENSURE WIDE CONSUMER USE

WING GEOMETRY AND SIZING

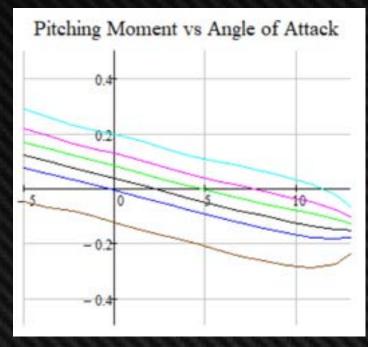
- SPAN CONSTRAINT
 - Lays flat in truck bed
 - SPAN LESS THAN 5.5 FT
- FLAG ESTIMATES AT ~31.3 FLAGS

S (ft²)	b (in)	Sweep (deg)	Taper Ratio
3.25	66	2.0	0.7

WING AIRFOIL SELECTION

ASHFALL 300

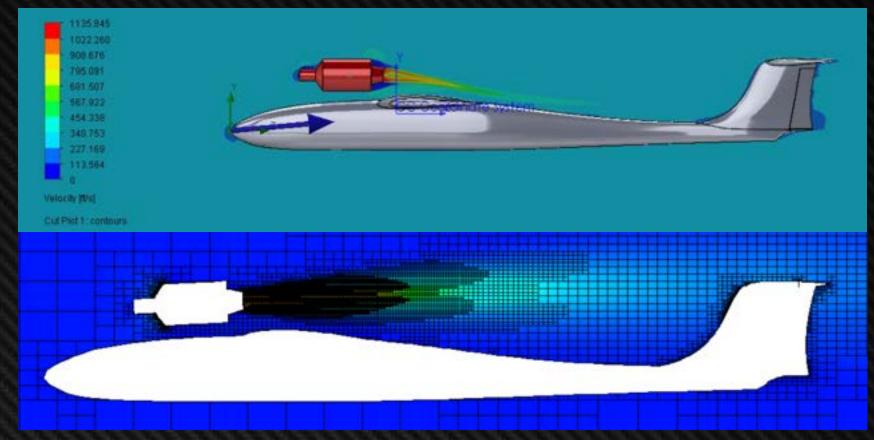
- 11° STALL ANGLE
- ADVANTAGEOUS DRAG POLARS IN OUR PRIMARY OPERATING ENVIRONMENT
- CUSTOM AIRFOIL OPTIMIZED FOR PYLON RACING


ASHFALL 400

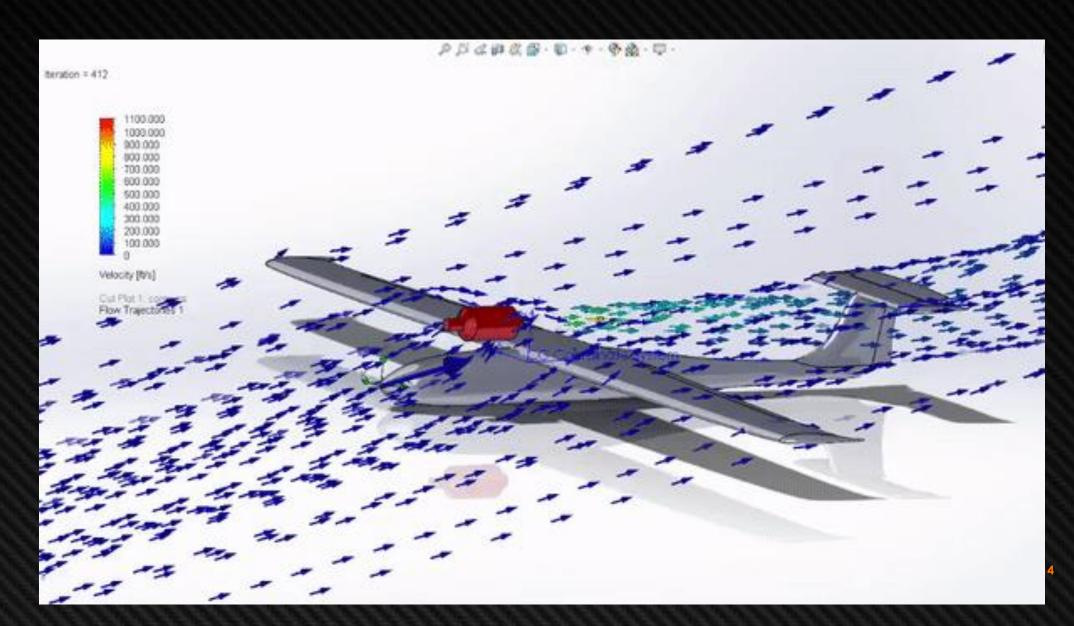
- INCREASED STALL ANGLE (12°)
- IMPROVED HAND LAUNCH AT THE EXPENSE OF A FRACTION OF A FLAG
- Custom airfoil optimized for hand launch

TAIL SIZING

Surface	Area (ft²)	Span (in)	Above Centerline (in)	Tail Volume Coefficient	Static Margin (Launch)	Static Margin (Cruise)	Sweep (°)	Incidence (°)
Horizontal Tail	0.4	12	6.5	0.5	13.2%	21.1%	2	-2
Vertical Tail	0.25	6.5	2.17	0.03	153.0%	201.0%	-	-



NACA 0010


JET-WASH CONTRIBUTIONS

- ELEVATOR AUTHORITY
- COANDA EFFECT

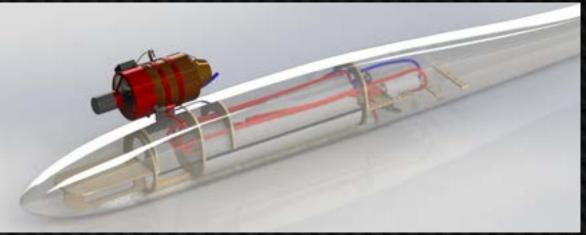
Speedfort 2021

FLOWSIMULATION

CONTROL SURFACE AND SERVO SIZING

Surface	Chord (in)	Span (in)	ΔH Servo (ozf * in)	Servo Selection
Flaperons	1.44	21.0	127	205 oz-in, Mini, BLS
Elevator	1.56	10.2	32	D85MG Micro, 32 Bit,
Rudder	1.44	5.16	21	Metal Gear Servo

AERODYNAMICS NEXT STEPS...


- Assist structures with lay-ups
- CONFIGURE AVIONICS
- CONTINUE ANALYSIS FOR POSSIBLE IMPROVEMENT ON FINAL DESIGN

PROPULSION

- SINCE PDR:
 - LAYOUT IMPROVEMENTS/DEVELOPMENTS
 - ENGINE MOUNTING
 - HEAT TESTING
 - Fuel Consumption Testing
 - TANK SIZING
 - SMOKE TESTING
 - Nozzle Development
 - ENVIRONMENTAL IMPACT CONSIDERATIONS

• K30G3 ENGINE

•THRUST: 6.61 LBF @ 59 °F

• Fuel Consumption: 120 g/min

• WEIGHT: 1 LBF

• FORWARD TOP ENGINE MOUNT

• OPTIMAL EASE OF ACCESS AND ATTACHMENT

•FUEL TANK AND FUEL PUMP SLIDE OUT NOSE CONE

• HEAT CONTROL AND DIVERSION EASILY MANAGED

•K30G3 ENGINE

•THRUST: 6.61 LBF @ 59 °F

• Fuel consumption: 120 g/min

· WEIGHT: 1 LBF

• FORWARD TOP ENGINE MOUNT

• OPTIMAL EASE OF ACCESS AND ATTACHMENT

•FUEL TANK AND FUEL PUMP SLIDE OUT NOSE CONE

HEAT CONTROL AND DIVERSION EASILY MANAGED

SPECIFICS

SEMI-CYLINDRICAL FUELTANK

MAX FUEL CAP: 0.66 L

MAX SMOKE CAP: 0.16 L

•K30G3 ENGINE

•THRUST: 6.61 LBF @ 59 °F

• FUEL CONSUMPTION: 120 G/MIN

• WEIGHT: 1 LBF

• FORWARD TOP ENGINE MOUNT

OPTIMAL EASE OF ACCESS AND ATTACHMENT

•FUEL TANK AND FUEL PUMP SLIDE OUT NOSE CONE

• HEAT CONTROL AND DIVERSION EASILY MANAGED


SPECIFICS

SEMI-CYLINDRICAL FUELTANK

MAX FUEL CAP: 0.66 L

MAX SMOKE CAP: 0.16 L

FILTER/CLUNK COMBO

• K30G3 ENGINE

•THRUST: 6.61 LBF @ 59 °F

• FUEL CONSUMPTION: 120 G/MIN

• WEIGHT: 1 LBF

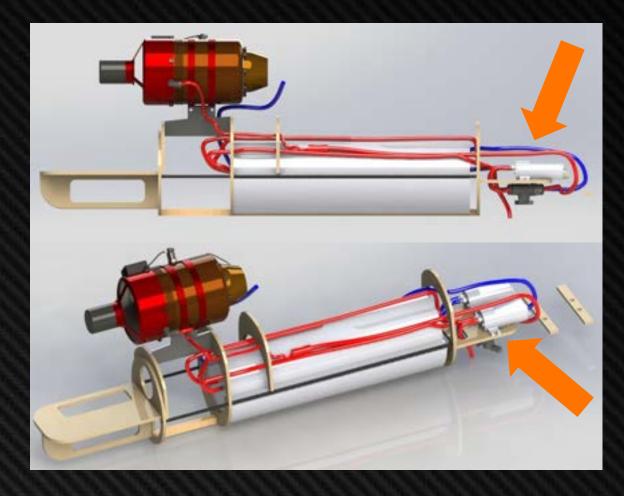
• FORWARD TOP ENGINE MOUNT

• OPTIMAL EASE OF ACCESS AND ATTACHMENT

•FUEL TANK AND FUEL PUMP SLIDE OUT NOSE CONE

• HEAT CONTROL AND DIVERSION EASILY MANAGED

SPECIFICS


SEMI-CYLINDRICAL FUELTANK

MAX FUEL CAP: 0.66 L

MAX SMOKE CAP: 0.16 L

FILTER/CLUNK COMBO

PUMPS AND VALVES AFT OF TANK ON SLED TRAY

•K30G3 ENGINE

•THRUST: 6.61 LBF @ 59 °F

• FUEL CONSUMPTION: 120 G/MIN

· WEIGHT: 1 LBF

• FORWARD TOP ENGINE MOUNT

OPTIMAL EASE OF ACCESS AND ATTACHMENT

•FUEL TANK AND FUEL PUMP SLIDE OUT NOSE CONE

HEAT CONTROL AND DIVERSION EASILY MANAGED

SPECIFICS

SEMI-CYLINDRICAL FUELTANK

MAX FUEL CAP: 0.66 L

MAX SMOKE CAP: 0.16 L

FILTER/CLUNK COMBO

PUMPS AND VALVES AFT OF TANK ON SLED TRAY

FUELING ACCESS DIRECTLY UNDER WING

•K30G3 ENGINE

•THRUST: 6.61 LBF @ 59 °F

• Fuel consumption: 120 g/min

• WEIGHT: 1 LBF

• FORWARD TOP ENGINE MOUNT

• OPTIMAL EASE OF ACCESS AND ATTACHMENT

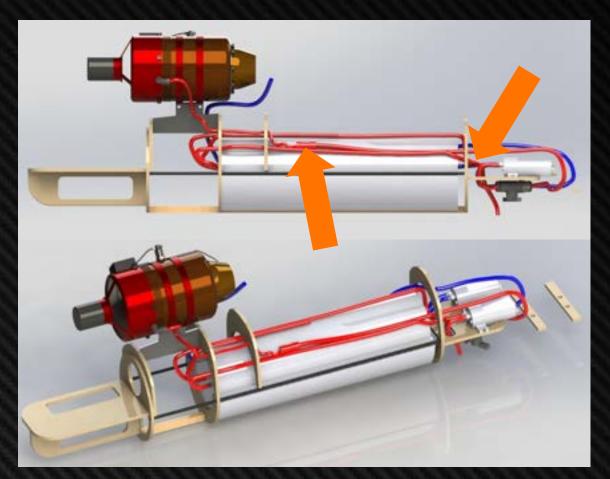
• FUEL TANK AND FUEL PUMP SLIDE OUT NOSE CONE

• HEAT CONTROL AND DIVERSION EASILY MANAGED

SPECIFICS

SEMI-CYLINDRICAL FUEL TANK

Max Fuel Cap: 0.66 L


MAX SMOKE CAP: 0.16 L

FILTER/CLUNK COMBO

Pumps and Valves Aft of Tank on sled tray

FUELING ACCESS DIRECTLY UNDER WING

QUICK DISCONNECTS FROM TANK AND VENT FOR SLED TRAY

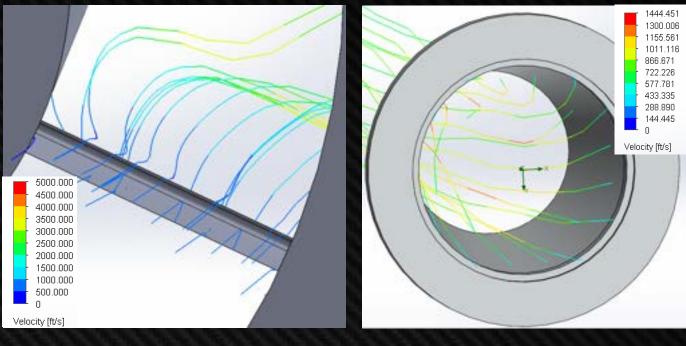
LAYOUT ADDITIONAL DETAILS

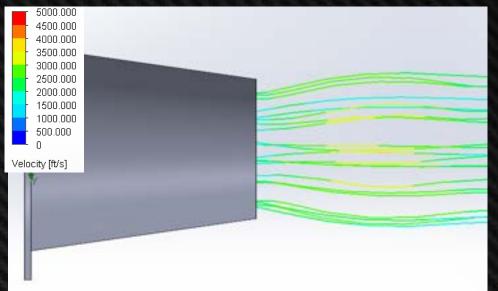
- MAJORITY OF PLUMPING STAYS WITH SLED
 - FIXED TO TANK VIA PRINTED CLIPS
- PERMANENT AND REMOVABLE PLUMBING SEPARATED BY QUICK CONNECTS
- ACCESS TO VALVES THROUGH SMALL FUSELAGE HOLES
- FUELING PERFORMED THROUGH WING MOUNT ACCESS
- SLACK ALLOWED IN THE LINES

HEATINGFROMENGINE

Testing fuselage directly behind engine Layup 1.5" below centerline of thrust

Testing tail in jet wash, 15" behind nozzle exit


HEAT MITIGATION


- WB400/CS215 DISTORTS AT 200°F
- FUSELAGE AND WING SAFE AT 1.5" BELOW THRUST CENTERLINE
- SIGNIFICANT DAMAGE AT LESS THAN 0.5" FROM CENTERLINE
 - IMAGE ON THE RIGHT SHOWS RESULTS OF LAYUP DIRECTLY IN EXHAUST
- TAIL REQUIRES MORE TESTING TO CONFIRM IMPACT
- Prevention Measures
 - BALSA CORE
 - HEAT PAINT IN MOLD
 - ALUMINUM FOIL IN LAYUP

NOZZLE

- STATOR BLADES ADDED TO STRAIGHTEN FLOW
- NOZZLE PCA SHOWS FOR MACH 0.9 NOZZLE
 EXIT DIAMETER OF 1.06" WILL BE NEAR PERFECT
 EXPANSION
- Manufacturing
 - 3D PRINTING VELO 3D

ENGINEMOUNT

- MOUNTED INTO MAJOR BULKHEADS
- MATERIALS
 - ALUMINUM
 - STAINLESS STEEL
- RING DESIGN ALLOWS FOR EASY ENGINE SWAP

FUELCONSUMPTION

 TESTING PERFORMED TO DETERMINE AN ACCURATE FUEL BURN RATE

TANK VOL. WORST CASE: 0.66 L

AVG FUEL VOL. ESTIMATE: 0.48 L

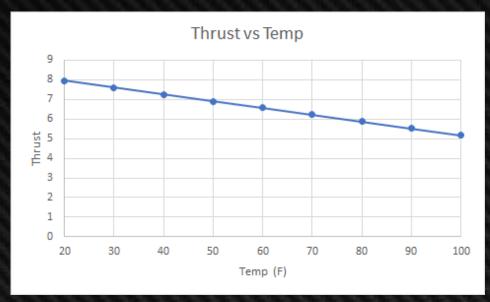
Full Throttle	
Maximum	117.9 g/min
Minimum	54.4 g/min
Average	86.1 g/min

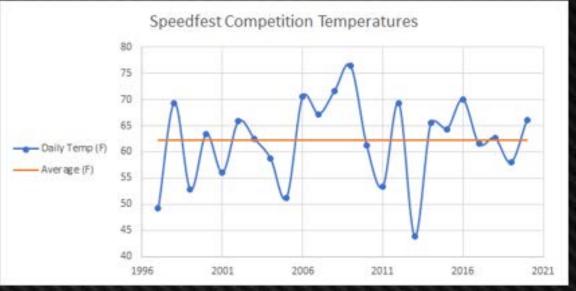
Variable Throttle
Average 75.6 g/min

120 G/MIN AT FULL THROTTLE PER MANUFACTURER

SMOKE

- FUEL AS SMOKE TESTS PRODUCE SUBPAR RESULTS
- MOVING TO SAFE PLAN:
 - USING A SEPARATE 0.16 L FUEL TANK FOR SMOKE OIL
 - SEPARATE PUMP AND PLUMBING SYSTEM FOR OIL
- KYNETIC R/C SMOKE OIL


ENVIRONMENTAL CONSIDERATIONS


• THRUST VARIANCE EXPECTED WITH COMPETITION DAY TEMPERATURE

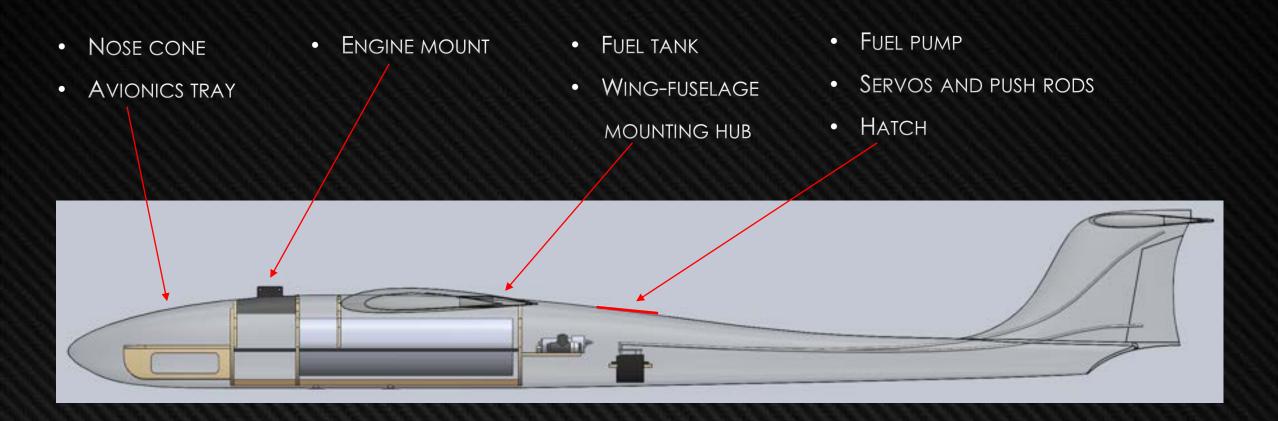
• BEST: 7.1LBF

WORST: 6.0 LBF

AVERAGE: 6.5LBF

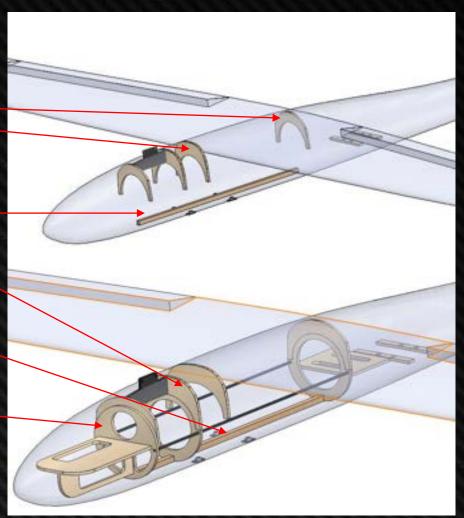
PROPULSIONNEXTSTEPS

- TAIL HEATING TESTING
- ENVIRONMENTAL TESTING
- THRUST/SFC TESTING
- Nozzle Testing
- SMOKE OIL TESTING
- TEMPERATURE PROBING
- 3D TANK DESIGN/TESTING
- FINISHING TOUCHES ON LAYOUT


STRUCTURES

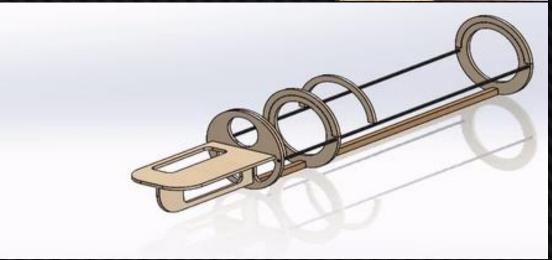
SINCE PDR

- 1. WING SPAR PRELIM DESIGN
- 2. WING STRUCTURAL LAYOUT
- 3. REFINED WING MOUNT DESIGN
- 4. FINALIZED SERVO PLACEMENT
- 5. REFINED FUSELAGE STRUCTURAL LAYOUT
- 6. WEIGHT AND CG ESTIMATES
- 7. ACCESSORY MOUNT LOCATION DETERMINED
- 8. Prelim proof of concept designs built



FUSELAGELAYOUT

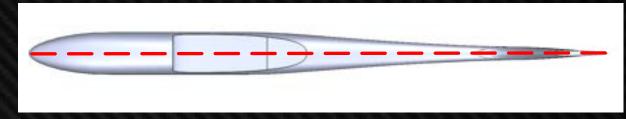
INTERNAL FUSELAGE DESIGN


- PERMANENT BULKHEADS
 - WING ATTACHMENT
 - ENGINE MOUNT STRUCTURE
- GUIDE BAR
 - SUPPORT FOR LANDING
 - PROTECT FUEL TANK
 - GUIDE REMOVABLE TRAY
- SLIDING BULKHEADS
 - STRENGTHEN HALF BULKHEADS
 - HOLD AVIONICS AND FUEL SYSTEMS

INTERNALSTRAY

- DIRECT ACCESS TO ALL INTERNALS
- Less hatches required
- OPTIMIZATION OF INTERNAL COMPONENTS
 - LARGER FUEL TANK
- More options for internals layout
- FOLLOWS GUIDE FOR PERFECT FIT
- AVIONICS TRAY FASTENS TO BULKHEAD

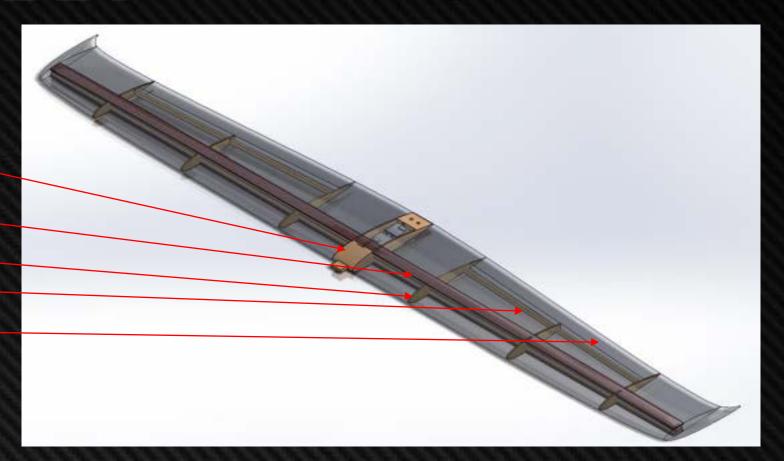
ACCESSORY MOUNT


- Marketable mounting point for additional components
- OPTIONS:
 - HIGH-START HOOK
 - LANDING GEAR
 - CAMERA
- CUSTOM MOUNTS CAN BE MADE FOR ALL OPTIONS
- ATTACH WITH 4 CLICK BONDS
 - LOCATED ON BOTTOM OF FUSELAGE
 - THESE WILL BE INSERTED IN THE LAYUP PROCESS

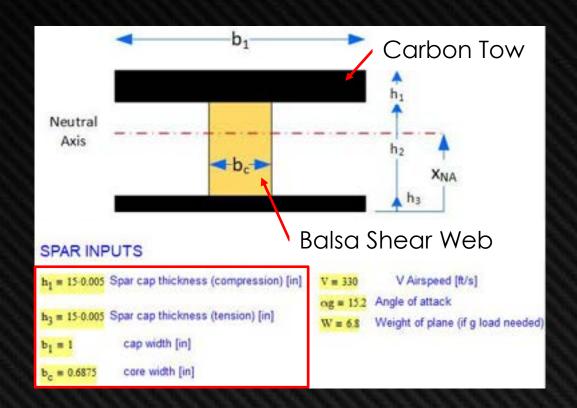
FUSELAGE MANUFACTURING

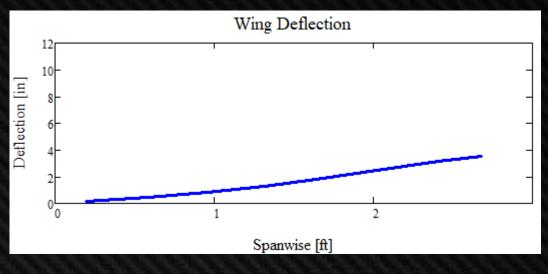
- MATERIAL
 - BULKHEADS AND TRAYS
 - AIRCRAFT GRADE PLYWOOD (1/8" THICKNESS)
 - SKIN
 - SCORED DIVINYCELL FOAM (1/8" THICKNESS)
- LAYUP
 - MOLD SPLIT TO HAVE LEFT AND RIGHT FUSELAGE
 - START WITH 4-PART LAYUP
 - Use of unidirectional carbon fiber for tail stiffening

LEFT/RIGHT-HAND FUSELAGE



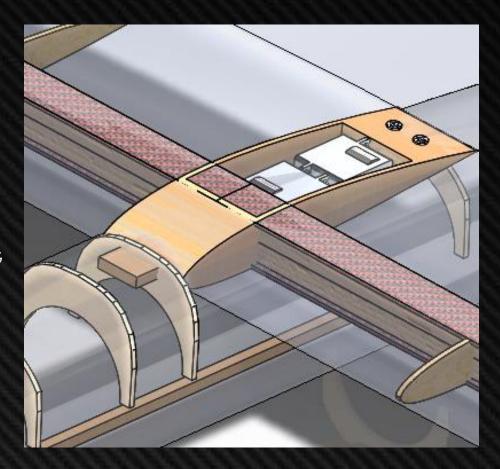
FUSELAGE AND VERTICAL TAIL




WINGLAYOUT

- WING MOUNTING HUB
- MAIN SPAR
- RIBS
- SHEAR WEB
- CONTROL SURFACE

MAIN SPAR DESIGN



$\frac{L(\alpha g)}{1} = 82.7$	g load. The highest g-load possible for the wing
W = 82.7	will be a near-stall α , and the highest speed V.

$h_{2\text{root}} = 0.88$	Core Height [in]				
$L(\alpha g) = 562$	Lift [lb]				
$V_{s} = 281$	Root Shear Force [lb]				
$M_{r} = 4107$	Root Bending Moment [in-lb]				

WING MOUNT DESIGN

- LE TAB
 - SLOTTED BULKHEAD FOR TIGHT FIT
- TE CAMLOC QUARTER TURN FASTENERS
 - QUICK ASSEMBLY
 - COMPOSITE VERSIONS FOR EASIER BONDING DURING MOLDING
 - STRONG CLAMPING FORCE
 - Possible "WIGGLE ROOM"

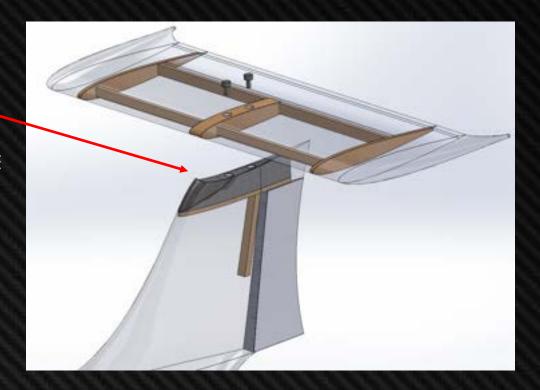
WINGSERVOPLACEMENT

- FLAPERON SERVOS
 - LOCATED IN THE WING-FUSELAGE MOUNTING HUB
 - CONTROL RODS RUN INTERNALLY THROUGH THE WING
- ELEVATOR/RUDDER SERVOS
 - LOCATED WITHIN THE FUSELAGE AFT OF THE FUEL TANK
 - CONTROL RODS RUN INTERNALLY THROUGH THE TAIL

WINGMANUFACTURING

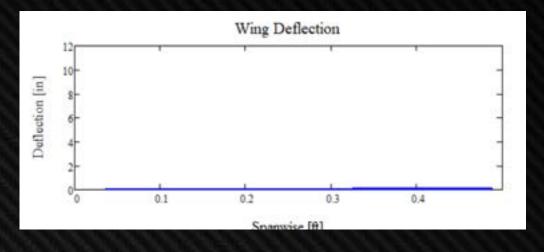
- MATERIAL
 - SPAR
 - BALSA WOOD (11/16" THICKNESS)
 - Unidirectional Carbon Fiber (1" wide)
 - I-BEAM CAPS
 - RIBS
 - AIRCRAFT GRADE PLYWOOD (1/8" THICKNESS)
 - SKIN
 - Balsa Wood Core (1/16" THICK)
- LAYUP
 - ASYMMETRIC AIRFOIL
 - MOLD SPLIT FOR TOP AND BOTTOM OF WING
 - CONTROL SURFACES CUT FROM THE LAYUP

TOP/BOTTOM WING



WING

EMPENNAGELAYOUT

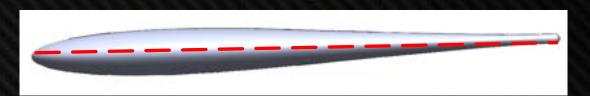

- HORIZONTAL-VERTICAL MOUNTING POINT
 - CONTACT POINTS TO BE MADE OF A "SHOWER-DRAIN" EPOXY MIX
 - THREADED METAL BUSHINGS MOLDED INTO THE EPOXY MIX FOR BOLTING
 - WIDENED BASE AT THE TOP OF THE VERTICAL TAIL FOR MORE STABLE MOUNTING
- RIBS AND SPARS
 - MINIMAL

HORIZONTAL TAIL SPAR

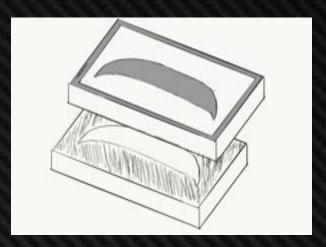
DESIGN

 $\frac{L(\alpha g)}{W}$ = 5.3 g load. The highest g-load possible for the wing will be a near-stall α , and the highest speed V.

$h_{2\text{root}} = 0.59$	Core Height [in]
$L(\alpha g) = 36$	Lift [lb]
V _s = 18	Root Shear Force [lb]
$M_{r} = 47$	Root Bending Moment [in-lb]

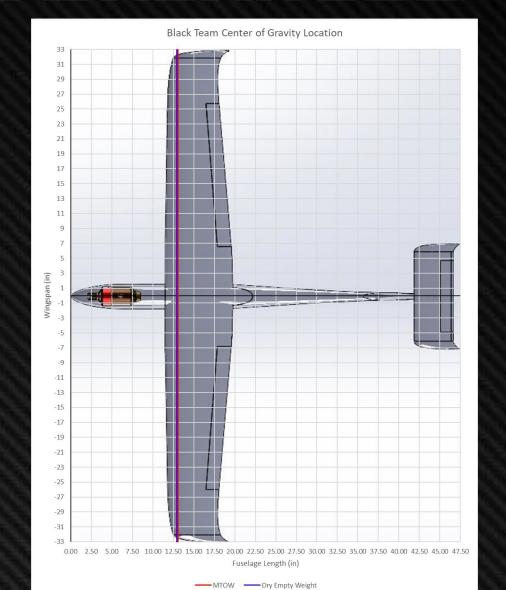

Speedfest 2021

HORIZONTAL STABILIZER MANUFACTURING


MATERIAL

- RIBS
 - AIRCRAFT GRADE PLYWOOD (1/8" THICKNESS)
- SKIN
 - Balsa Wood Core (1/16" THICK)
- LAYUP
 - SYMMETRIC AIRFOIL
 - MOLD SPLIT FOR TOP AND BOTTOM OF THE TAIL
 - CONTROL SURFACES CUT FROM THE LAYUP

TOP/BOTTOM HORIZONTAL TAIL



HORIZONTAL TAIL

WEIGHTS AND BALANCES

- MAXIMUM TAKEOFF WEIGHT (RED LINE)
 - ~6.5 LBS
 - CG: 18.9% OF CHORD
- DRY WEIGHT (BLUE LINE)
 - ~5.3 LBS
 - CG: 17% OF CHORD

Constraints

- MUST NOT EXCEED 6 FEET IN L, W, OR H
- FIT WING-SPAN OF 5.5 FEET WITHIN
- TRANSPORTABLE IN A PICK-UP BED

FEATURES

- LIGHT AND STURDY
- FOAM FORM FITTED TO PLANE COMPONENTS FOR SUPPORT
- CONVENIENT PACKAGING AND ACCESS TO COMPONENTS

MANUFACTURING CHALLENGES

- Wing-Fuselage Mounting
 - SNUG FIT
- T-Tail (Horizontal-Vertical Mounting)
 - STRENGTH
- Internals Tray
 - SMOOTH SLIDING
 - PROPER ALIGNMENT
- CUSTOMIZABILITY
 - COMPACT DESIGN THAT ALLOWS FOR POTENTIAL EXPANSION.

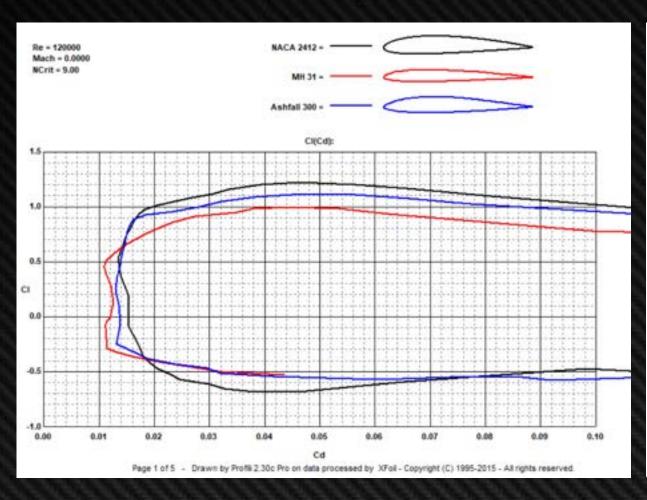
POST CDR PLANS

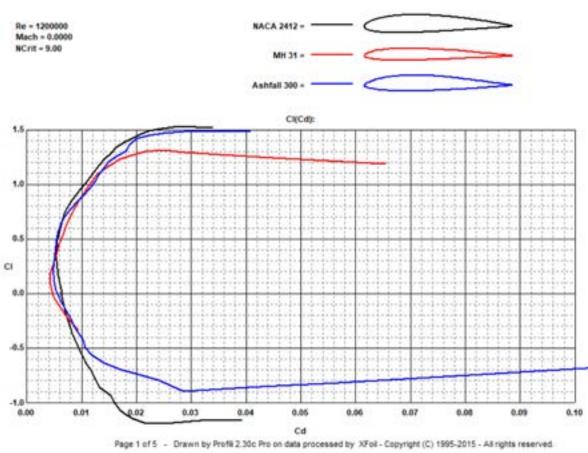
- COMPLETE OUTSTANDING TRAINING (IF ANY)
- BEGIN MANUFACTURING AND PREPPING PLUGS/MOLDS FOR LAYUP
- START WORK ON PROTOTYPE #1
- BUILD AND TEST
 - WING
 - SPAR
 - MOUNT INTERFACE
 - HORIZONTAL STABILIZER
 - SPAR
 - MOUNT INTERFACE
 - Internals Tray
 - PERMANENT BULKHEADS

MARKETING

- NAME: REDACTED
- Paint scheme
- COMMERCIAL
- WEBSITE

QUESTIONS

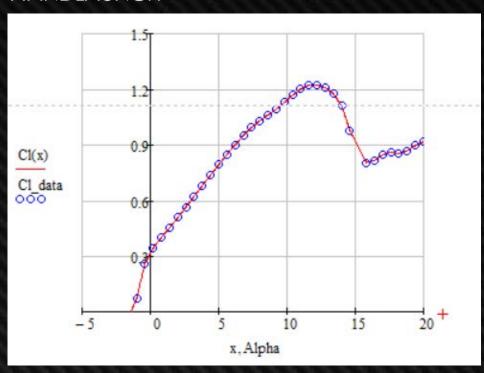

BACKUPSLIDES



AEROBACKUP SLIDES

AIRFOIL DRAGPOLARS

Ashfall 300 Comparison



ASHFALL 400

CRUISE

HANDLAUNCH

STRUCTURES

TEFASTENERCHOICES

CAMLOC QUARTER TURN

- PROS:
 - RELIABLE
 - STRONG CLAMPING FORCE
 - SIMPLE AND SMALL
 - Can be Flush
 - VARIABLE SIZES
 - COMPOSITE VERSIONS

- CONS:
 - REQUIRES TOOLS
 - NOT THE FASTEST INSTALLATION METHOD
 - Possible Give/wiggle room

CORE MATERIAL CHOICES

FUSELAGE SKIN:

- SCORED DIVINYCELL FOAM (1/8" THICK)
 - EASIER FOR COMPLEX CONTOUR LAYUP
 - ADDED RIGIDITY -> LANDING

WING SKIN:

- Balsa Wood (1/16" thick)
 - Lays up well on wing surface
 - MORE FLEXIBLE -> WING BENDING

Speedfest 2021 5^s

STRUCTURAL MATERIALS

RIBS AND BULKHEADS:

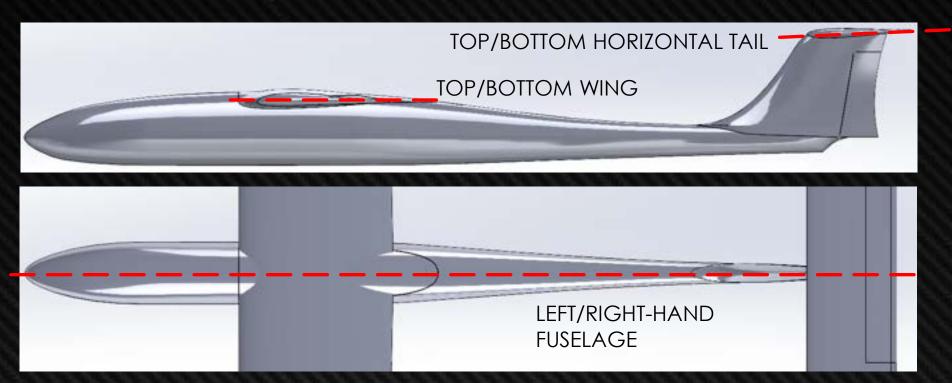
- AIRCRAFT GRADE PLYWOOD (1/8" THICK)
 - 5-PLY ADDS RIGIDITY
 - LIGHT BUT STRONG

SPAR:

- Unidirectional Carbon Fiber (1" wide)
 - STRONG IN TENSION
 - I-BEAM CAPS
- Balsa wood (various thicknesses)
 - LIGHT
 - I-BEAM SHEAR WEB

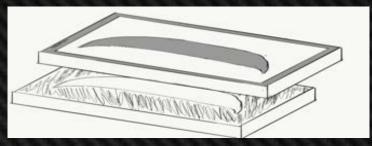
WINGTE MOUNT INTERFACE

- COMPOSITE SHELF
 - REINFORCED WITH PLYWOOD UNDERNEATH
 - PLYWOOD BONDS WITH REAR FUEL TANK BULKHEAD


WEIGHTS AND BALANCES

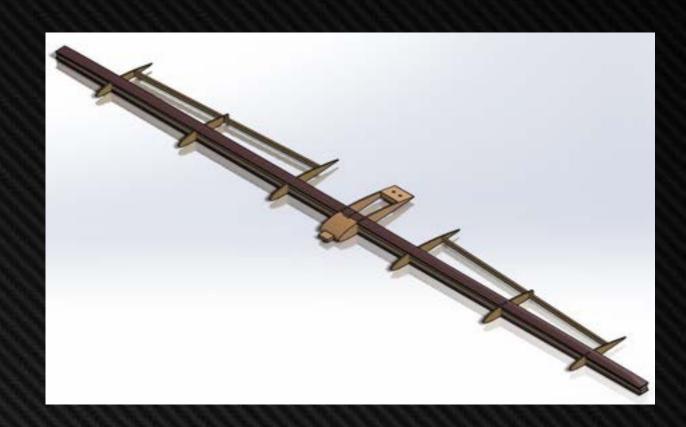
MTOW						
CG dist	13.07					
wing start	11.5					
chord	8.3					
% chord	18.89%					
DEW						
CG dist	12.91					
wing start	11.5					
chord	8.3					
% chord	17.04%					
76 CHOIG	17.04%					

MTOW Horizontal Weights Distribution			Dry Empty Horizontal Weights Distribution				
	Weight (lbf)	cg from aft of nose	W * c.g. length		Weight (lbf)	cg from aft of nose	W * c.g. length
ECU BATTERY	0.260	4.330	1.126	ECU BATTERY	0.260	4.330	1.126
ECU	0.090	4.200	0.378	ECU	0.090	4.200	0.378
FUEL PUMP	0.100	20.250	2.025	FUEL PUMP	0.100	20.250	2.025
SMOKE PUMP	0.200	20.250	4.050	SMOKE PUMP	0.200	20.250	4.050
FUEL FILTER	0.000		0.000	FUEL FILTER	0.000		0.000
REVIEVER BATTERY	0.102	5.455	0.556	REVIEVER BATTERY	0.102	5.455	0.556
RECIEVER	0.030	5.825	0.175	RECIEVER	0.030	5.825	0.175
AIRSPEED SENSOR	0.024	2.935	0.070	AIRSPEED SENSOR	0.024	2.935	0.070
PITOT TUBE	0.022	1.000	0.022	PITOT TUBE	0.022	1.000	0.022
ENGINE	1.010	7.500	7.575	ENGINE	1.010	7.500	7.575
SMOKE VALVE	0.030	20.000	0.600	SMOKE VALVE	0.030	20.000	0.600
FUEL VALVE	0.030	20.000	0.600	FUEL VALVE	0.030	20.000	0.600
FUELTANK	0.375	13.750	5.156	FUEL TANK	0.375	13.750	5.156
FUEL	1.200	13.750	16.500	FUEL	0.000	13.750	0.000
SERVO 1	0.110	14.750	1.626	SERVO 1	0.110	14.750	1.626
SERVO 2	0.110	16.500	1.819	SERVO 2	0.110	16.500	1.819
SERVO 3	0.048	20.875	1.008	SERVO 3	0.048	20.875	1.008
SERVO 4	0.048	20.875	1.008	SERVO 4	0.048	20.875	1.008
SERVO 5	0.000	0.000	0.000	SERVO 5	0.000	0.000	0.000
FUSELAGE	1.000	15.000	15.000	FUSELAGE	1.000	15.000	15.000
WING	1.710	15.000	25.650	WING	1.710	15.000	25.650
TAIL	0.000	0.000	0.000	TAIL	0.000	0.000	0.000
total structures	0.000		0.000	total structures	0.000		0.000
Sum	6.500		84.944	Sum	5.300		68.444
		CG for station 1	13.068	121 11 11 11		CG for station 1	12.914


Speedfest 202

PLUG MOLD COMPONENTS

- TOTAL PROJECTED MOLD COUNT:
 - 3 MOLD PAIRS
 - LESS MOLDS = CHEAPER TOOLING COST



FUSELAGE AND VERTICAL TAIL

INTERNAL WING DESIGN

- WING MOUNTING HUB
- Main Spar
- RIBS
- SHEAR WEBS

