¹School of Chemical Engineering, Oklahoma State University, ²Department of Chemical and Biomolecular Engineering, University of Delaware, ³Department of Chemical and Biological Engineering, University at Buffalo

Objectives

- Create a physics-based computer model of the lung's inner mucus layer
- Include the mucociliary effect and the rheology of mucus
- Simulate the convection of aerosolized drug particles across that layer

Lung Diseases

Non-aerosol Treatment Challenges

- Few treatments exist
- Tend to be invasive and extremely rigorous
- Poor bioavailability

Aerosol Treatment Potential

Localized Treatment of Lung

- Maximize the amount of drug that reaches the diseased portion of the lung
- **Reduce off-target side effects**
- Take advantage of large lung surface area
- Minimize administration inconveniences

Blake Bartlett¹, Yu Feng¹, Catherine A. Fromen², Ashlee N. Ford Versypt³

Computer Modeling of Aerosol Particle Transport through Lung Mucosa

Equations

Laminar flow $\rho(u \cdot \nabla)u = \nabla \cdot [-pI + K]$ $\rho \nabla \cdot (u) = 0$ $K = \mu(\nabla u + (\nabla u)^T)$ **Transport of a dilute species** $\nabla \cdot J_i + u \cdot \nabla c_i = 0$ $J_i = -D_i \nabla c_i$ **Bulk diffusivity** $k_B T$ $D_{0} =$ $6\pi\mu r_i$ **Effective diffusivity** $= \exp(-0.84f^{1.09})\exp(-a\phi^b)$ Carreau fluid $\mu_{eff}(\dot{\gamma}) = \mu_{inf} + (\mu_0 - \mu_{inf})(1 + (\tau \dot{\gamma})^2)^{\frac{n-1}{2}}$ **Relevant parameters** $k_{R} = \text{Boltzmann's constant}$ T = Temperature μ = Viscosity of fluid r_i = Stokes radius of *i* $\lambda = \text{Fiber radius}/r_i$ ϕ = Fiber volume fraction $\rho = \text{Density of fluid}$ p = Fluid pressureu = Fluid velocity = 5 mm/min at inlet

20 nm Particle Penetration at Different Mucus Depths (Log Scale)

Summary

- Smaller particles diffuse faster
- Thinner mucus is crossed faster and at higher concentrations
- At some point upstream of the dosage site there is a maximum delivered dosage • Can be used in the development

of disease treatments