
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EFFECTS OF PREPROCESSING TECHNIQUES ON COUGH BASED

MACHINE LEARNING DIAGNOSIS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

BY

TAHIR MAHMOOD
Norman, Oklahoma

2021



EFFECTS OF PREPROCESSING TECHNIQUES ON COUGH BASED
MACHINE LEARNING DIAGNOSIS

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Ali Imran, Chair

Dr. Samuel Cheng

Dr. Hazem Refai



© Copyright by TAHIR MAHMOOD 2021

All Rights Reserved



Acknowledgments

I would like to express my deepest gratitude to my adviser Dr. Ali Imran who guided

me throughout my Masters. His dedication and passion inspired me to appreciate

the importance of research which led me in devising a practical thesis topic.

I would also like to thank the rest of the committee, Dr. Hazem Refai and Dr.

Samuel Cheng for taking the time reviewing the manuscript and attending my

thesis defense.

To all my friends and colleagues in AI4Networks Center who supported and helped

me, I am very grateful and proud to be a part of this Center.

Lastly, I would like to dedicate this work to my beloved family who always believed

in me, gave me strength and endless encouragement.

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Related Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Under preparation for submission . . . . . . . . . . . . . . . . . . . 7

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Facts and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Need of the Hour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Machine Learning Classifiers . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Classifiers Used . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Preprocessing Approaches . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Time Stretching only . . . . . . . . . . . . . . . . . . . . . . 25

5.1.2 Pitch Shifting only . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.3 Pitch Shift then Time Stretch . . . . . . . . . . . . . . . . . 28

5.1.4 Time Stretch then Pitch Shift . . . . . . . . . . . . . . . . . 30

5.2 User-based Cross Validation . . . . . . . . . . . . . . . . . . . . . . 31

v



6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 Performance Enhancement . . . . . . . . . . . . . . . . . . . 36

6.2.2 Cascaded Approaches are Generally Superior . . . . . . . . . 39

6.3 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.1 Background Noise . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.2 Illtreated Samples . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.3 Misleading Samples . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.4 Extraneous Sounds . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.5 Unusual Cough . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.6 Too Loud for the Microphone . . . . . . . . . . . . . . . . . 46

6.3.7 Too Many Bouts . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.8 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Negative Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4.1 Off the Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.2 Customized Development . . . . . . . . . . . . . . . . . . . 51

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 53

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



List of Figures

1.1 The 10 most common causes of death in 2008. Source: World Health
Organization (WHO) World Health Statistics 2011. . . . . . . . . . 2

4.1 Grand scheme of things for machine learning based diagnosis . . . . 18

4.2 Comparison of features extracted from samples of 4 categories . . . 21

5.1 Confusion matrices for six classifiers without pre-processing . . . . . 25

5.2 Confusion matrices for six classifiers subjected to time stretch . . . 26

5.3 Confusion matrices for six classifiers subjected to pitch shift . . . . 28

5.4 Confusion matrices for six classifiers subjected to cascaded pitch shift
followed by time stretch . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Confusion matrices for six classifiers subjected to cascaded time stretch
followed by pitch shift . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Prediction time for the six different classifiers in seconds . . . . . . 34

6.2 Training time for the six different classifiers in seconds . . . . . . . 35

6.3 Accuracy box plots for pitch shift . . . . . . . . . . . . . . . . . . . 36

6.4 Accuracy box plots for time stretch . . . . . . . . . . . . . . . . . . 37

6.5 Box plots of features when time stretch (stretching factor=9) was
applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.6 Box plots of features when pitch shift (n-step=-14) was applied . . 39

6.7 Accuracy box plots regarding cascaded preprocessing techniques dur-
ing iterations of validation procedure . . . . . . . . . . . . . . . . . 40

6.8 Box plots for accuracies regarding cascaded preprocessing techniques
during iterations of validation procedure . . . . . . . . . . . . . . . 41

6.9 Time domain and frequency response of a sample with background
noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.10 The encircled bout shows an untimely audio clipping . . . . . . . . 44

6.11 misleading sample that doesn’t resemble a typical cough . . . . . . 45

6.12 Time domain and frequency response of a sample with extraneous
audio effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.13 Time domain and frequency response of a sample that isn’t exactly
a cough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



6.14 Time domain and frequency response of a sample with amplitude
saturation of device . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.15 Time domain and frequency response of a sample with too many bouts 49

6.16 Time domain and frequency response of a sample with white noise . 50

viii



List of Tables

1.1 List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.1 Average efficiency matrices for the classifiers, over several iterations,
for time stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Average efficiency matrices for the classifiers, over several iterations,
for time stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Average efficiency matrices for the classifiers, over several iterations,
for pitch shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Average efficiency matrices for the classifiers for cascaded preprocess-
ing techniques, that is, first pitch shift then time stretching . . . . . 30

5.5 Average efficiency matrices for the classifiers for cascaded preprocess-
ing techniques, that is, first time stretching then pitch shift . . . . . 31

6.1 Performance metrices for various values of time stretch with Logistic
Regression as the classifier . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Performance metrices for various values of pitch shift with Logistic
Regression as the classifier . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Performance metrices for promising pre-processing techniques with
Logistic Regression as the classifier . . . . . . . . . . . . . . . . . . 52

ix



Abstract

COVID-19 pandemic outbreak has taken the world by storm in the 18 months and

the ramifications are by no means curtailing. The need of the hour with COVID-19

and other pulmonary diseases is a quick online diagnosis by handheld devices. In

the light of these constraints, scientists are relying on audio based automated tech-

niques since clinicians routinely use audio cues from the human body (e.g. vascular

murmurs, respiration, pulse, bowel sounds etc) as markers for diagnoses of diseases

or the development of ailments. Until recently, such signals have been commonly

obtained during scheduled visits via manual auscultation. Research has also begun

to use digital technologies to collect body sounds for cardiovascular or respiratory

tests, e.g. from stethoscopes, which can then be used for automated artificial-

intelligence-based analysis. An early study has promised to detect COVID-19 from

cough and speech diagnostic signals. This research work describes how preprocess-

ing techniques can enhance the performance of a methodology established over a

large-scale crowd-sourced dataset of respiratory audios and in what ways preprocess-

ing techniques ameliorate the performance of cough based diagnosis. Our findings

demonstrate that a machine learning classifier will better distinguish a healthy in-

dividual from individual with cough due to bronchitis, pertussis or COVID-19 by

applying preprocessing techniques. Robust results have been procured by user-based

data split-up for the K-fold learning methodology. The results show a noticeable

increase in the efficacy of the application of preprocessing techniques in an algo-

rithmic pipeline. These results are rudimentary and only the tip of the iceberg of

the potential of cough and audio-based machine learning. The research opens the

door for enhancing the performance of lightweight machine algorithms to be com-

parable with their more complicated and resource-consuming counterparts. Such

advancements can be of paramount significance in the practical field of application

deployment.
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CHAPTER 1

Introduction

1.1 Importance

Pulmonary maladies account for four of the top ten causes for death worldwide and

are especially prevalent in low-income countries [1]. It is estimated that more than

1 billion people worldwide suffer from respiratory ailments [2]. Not only this but

figure 1.1 gives brief statistics of deaths resulted from pulmonary diseases worldwide

in 2008. Cough is a common symptom of many of these ailments, including (but not

limited to) tuberculosis, lower respiratory infection, asthma, COPD, cystic fibrosis

and over a hundred others [3]. Symptom tracking is an important part of the health

care process at all stages including screening the general public to find new cases,

assessing new patients and tracking long-term cases [4, 5].

1.2 Background

Audio sounds generated by the human body (e.g. lung, heart, bowel sounds, vas-

cular murmurs etc) have been used by clinical researchers and physicians in iden-

tification and diagnosis of diseases. Howbeit, these signals were generally obtained

during planned visits, until recently, by means of a manual auscultations. Current

systems to track pulmonary ailments through cough sounds include patient self-

reporting, manual cough counting and analysis, and automated cough frequency

trackers [5, 6, 7]. Self-reporting of cough frequency and cough characteristics have

been shown to lack the accuracy necessary for usage in clinical situations [8]. Man-

ual cough counting, due to the unpredictable and intermittent nature of coughs,

can be a very time-intensive process requiring a dedicated listener to record all
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Fig. 1.1: The 10 most common causes of death in 2008. Source: World Health Organiza-
tion (WHO) World Health Statistics 2011.

cough events over a time duration large enough to gather cough data for diagnostic

purposes.

1.3 Related Studies

Research has utilized digital technology to acquire pulmonary sounds via digital

stethoscopes and carry out automatic analysis on the data [9], such as for wheeze

detection in asthma patients [10, 11]. Researchers have been exploiting the utility of

human respiratory sounds to aid early diagnosis of several ailments such as Parkin-

son’s disease, which is, associated with softness of speech resulting from plummeted

coordination of the vocal muscles [12, 13]. Studies have shown that the detection

of coronary artery disease is related to voice frequency; hardening of arteries af-

fect voice generation [14] while pitch, vocal tone, rhythm, volume and rate correlate

with maladies such as traumatic brain injury, post-traumatic stress disorder [15] and

psychiatric conditions [16]. In Kosasih et al. [17], the frequencies having a range

far beyond the human perception are leveraged along with wavelet analysis to pro-
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Table 1.1: List of Acronyms

Acronym Description
AI Artificial Intelligence
NB Näıve Bayes

SVM Support Vector Machine
TD-DNN Time Delay Deep Neural Network

DT Decision Tree
LCM Leicester Cough Monitor
MRI Magnetic Resonance Imaging
NN Neural Network

CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
k-NN k Nearest Neighbor
DA Discriminant Analysis
LR Logistic Regression Model

BGS Bispectrum Score
LogE Log Energy
Zcr Zero Crossing

Kurt Kurtosis
COPD Chronic obstructive pulmonary disease
CNN Convolutional Neural Network
RF Random Forest

MLP Multilayer Perceptrons
MFCC Mel Frequency Cepstral Coefficents
NGS Non-Gaussian score
FFT Fast Fourier Transformation

HACC Hull Automatic Cough Counter
PCA Principal Component Analysis

CPNN Constructive Probabilistic Neural Network
CHF Congestive Heart Failure

3



cure information that is diagnostically significant for cough. DWT and CWT were

applied to these samples in parallel with frequency time analysis after amplitude

normalization. Various features are chosen from CWT and DWT. Lastly, regression

analysis accompanying thresholding was used for classification purposes. Using two

microphones, 90 or more cough sounds were explored along with demographic and

clinical features from 4 patients. Recording information include Audition software

with audio interface connection at a sampling rate of 192 KHz, running on a 16-bit,

stereo, Windows XP laptop. Coefficients of determination of 77-82% at high fre-

quencies ranging from 15 kHz to 90 kHz were acquired. An increase of coefficients

of determination to 85-90% was observed by the combination of high and low fre-

quencies below 15kHz. This paper is trying to procure useful information at high

and low frequencies that can help in better diagnosing various diseases. Crook et al

[18] was aiming at the objective cough monitoring via HACC and LCM software to

detect the decrease in cough frequency during AE-COPD Convalescent. The fact

that objective cough monitoring is sensitive to clinically meaningful change was

demonstrated through cough frequency decrease during AE-COPD convalescence.

Cough was monitored 24-hours via a hybrid system comprising of LCM software

and HACC along with other tests and questionnaires. The aggregated specificity

of cough counting through hybrid system was 98.2% and a sensitivity of 57.9%

along with a positive predictive value of 80.9% while a negative predictive value

of 94.6%.The research of objective cough monitoring through the LCM and HACC

software indicates that the hybrid system has the potential to narrow down the dis-

ease, during AE-COPD convalescence. This study can be a predecessor of COPD

patients home monitoring. Knocikova et al [19] aims at figuring out AB and COPD

from non-infectious individuals based on the analysis of the properties of volun-

tary cough audio. After an initial study of tussiphonogram, wavelet transform was

applied since the cough sounds were non-stationary. For better feature selection,

backward selection algorithm was adopted to lessen cross-correlation among vari-

4



ables. Lastly, the classification among three classes were carried out by two linear

functions. As far as the data set is concerned, a total of 65 cough audios were gath-

ered from normal being while patients with AB and COPD provided 26 recordings.

Among healthy subjects 15 were females and 11 were males with a median age 22

year whereas a total of 22 COPD patients involving 6 females and 16 males with

median age 67 years were considered during the research work. Lastly, 17 patients

were related to AB with 8 males, 9 females having a median age 32 years. The

sampling frequency was kept to 11025 Hz. Cough sounds were classified using DA

with a accuracy rate of about 85-90%. Such an approach of cough analysis provides

an objective quantification of cough sounds with a fruitful diagnostic and prognos-

tic value. There is a research study that aimed at using crowdsourced collection of

COVID-19 related audios worldwide [20]. Most of the research techniques out there

collect the data and allow the features to be extracted from these signals prior to the

classification stage. A lion’s share of the research work does not stress enough on

the vitality of preprocessing techniques and how these techniques are corelated to

the upcoming stages of feature extraction, feature engineering and classifier-based

categorization within the big picture 4.1.

1.4 Contributions

To the best of our knowledge, this is the first endeavor to adopt a similar ap-

proach [20, 21] with the introduction of preprocessing techniques between the data

collection and feature extraction stages considering the grand scheme of events.

Not only this but how a combination of these resource light pre-processing effects

lead to a better performance in stark contrast to their absence. On top of that,

this research work describes our preliminary findings for the fact that how these

pre-processing techniques can boost the efficiency of resource easy classifiers (those

machine learning classifiers that require less time and memory to get trained and

5



give out predictions) to their resource heavy (those machine learning classifiers that

require much time and memory to get trained and give out predictions) counter

parts by diminishing the effects of noise, amateur audio clipping/trimming for data

generation, faulty samples and last but not the least, mic based incompatibilities.

To better test the veracity of our results, user based cross validation is carried out

such that no same user’s cough samples are used in both training as well as testing

which undermines overfitting, by any means.

We collected data from various sources. For further details, section 2.2 of Imran et

al. [21] may be visited. Patients with three different types of diseases were taken

into consideration including Pertussis, Bronchitis and COVID-19. A control group

of normal individuals was also accounted for as the fourth category. For this re-

search work, only cough sounds were collected and audios such as wheezing, snoring,

sneezing etc were avoided altogether. More precisely, the main contributions of this

research work are:

• Nullify the effect of distracting factors during sound recording that confuse the

classifier.

• Initial finding of how a pre-processing technique can assist in enhancing efficacy

metrices of a spectrum of classifiers from low resource dependence to high resource

dependence.

• Illustration for the fact that how an average performing classifier be made com-

parable to better performing classifiers by the introduction of pre-processing effects

for speech recognition in general and cough based diagnosis in particular.

• How a combination of pre-processing techniques (cascaded) can be more useful

than the individual ones. Moreover, how their order is of any significance concerning

the performance.

• Adding robustness to the results by applying the inconspicuous, yet cardinal,

6



approach of user-based k-fold validation

• Discussion of the findings, their promise, and an illustration of some future direc-

tions in the COVID-19 progression-detection and pre-screening for our study and

sound diagnosis.

1.5 Under preparation for submission

1. Preprocessing Techniques on Machine Learning Based Diagnosis via Cough

Tahir Mahmood, Usama Masood and Ali Imran

2. A Survey on Cough Sound Analysis Using Artificial Intelligence for Detection

and Diagnosing Pulmonary Diseases

Aneeqa Ijaz, Tahir Mahmood, Muhammad Nabeel, Mayda Sajid Hashmi, Iryna

Posokhova and Ali Imran

1.6 Organization

The rest of this thesis is organized as follows: Chapter 2 highlights the motivation

to venture for such a research. It provides a clinical background on top of the

related work in the domain of artificial intelligence. Chapter 3 is pertaining to

the data collection and gathering protocols and standards. The dire demands of

the present day are also addressed. In Chapter 4, the basic methodology is being

discussed. The emphasis is on pre-processing techniques. Not only this, but the

feature extraction methods are also taken into consideration. Moreover, classifiers

are also addressed in that section.Chapter 5 deals with the preprocessing approaches

that were taken into consideration including both, single techniques and cascaded

ones. The validation procedure is also discussed in that chapter.Chapter 6 deal

7



with the timing diagrams for training and prediction timings, how well the pre-

processing techniques enhance the accuracy and some deep insights that can allow

use to comprehend categorization from the classifier’s prospect. Finally, chapter 7

gives the conclusions and future lines of research.
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CHAPTER 2

Motivation and Related Work

Cough is produced as a response to irritants, trauma or diseases. This condition

is characterized by gases gushing out of the mouth from the nasal and pulmonary

track. Not all coughs are considered same, medically speaking, since every respira-

tory condition may effect the human body in a very specific manner and leads to a

different type of cough such as wet cough, dry cough etc. Although a challenging

task in its own right, the cough produced in response to a particular stimulus may

hold the secrets to its identification and root causes. By the same token, cough

sounds can play a crucial part in automated diagnosis of the diseases.

2.1 Motivation

Cough may come up as a common symptom for numerous respiratory ailments [22].

Once this symptom shows up, patients reach out to a physician or some sort of

therapeutic care. Depending on its severity and nature, different diseases can be

associated with the patient. In case of a severe cough, primarily caused by the upper

respiratory tract infections, coughing lasts up to several weeks. More often than

not, patients don’t need special attention [23] but in some other cases such as that

of a chronic cough, lasting more than 8 weeks, medical consultation is necessary.

Early diagnosis of an unremitting cough can provide assistance in controlling the

infection’s outbreak at its initial stages. However, once the cough sets in, it becomes

all the more painstaking to narrow down the disease at a domestic level, and its root

cause, because of a long list of respiratory conditions related to the same apparent

symptom [24]. Consequently, a visit to a health care center becomes all the more

9



inevitable for accurate diagnosis of the disease. In some cases, clinical testing, with

all its protocols, is conducted that take up much of the time for the diagnosis of the

aliment. It may already be too late by the time patients are accurately diagnosed.

Hence, a triage screening is the need of the hour so that the infected patients could

take some rudimentary precautions prior to the mainstream clinical and medical

diagnostic procedures.

2.2 Related Work

As a possible indicator of health and behaviour, researchers have long recognised

the significance of cough. Previous studies have shown that unique latent features

are associated with distinct respiratory syndromes. Such distinct features can be

obtained by applying appropriate mathematical transformations and signal pro-

cessing techniques over the cough sounds. These features can then be utilized to

train a sophisticated AI engine for the preliminary diagnosis solely based on cough.

To detect sounds from the lungs or heart via stethoscopes, purpose-built external

microphone recorders have been used. Such devices needs a specialist to use and

interpret although recent trends suggest that such devices are better at the hands of

a common man as well due to the ease of the usage in technology. Albeit expansive

yet techniques such as MRI and sonography are becoming easier to use making the

disease analysis all the more swift. Moreover, trends in commodity devices, app de-

velopment and automated audio interpretation has shown the potential to further

the idea to offer sound as a less-expansive alternative that better deals with the di-

agnosis of diseases. Microphones on commodity devices including smartphones and

wearables have used sound to perform better speech analysis techniques. In [25], the

audio from the microphone was used to comprehend the user context (spoken words

by people, objects recognized or text written on signs in the environment) and this

information is accumulated to make up a view of the ambience of places around

10



a city. In Emotionsense [26], Gaussian mixture models are utilized for detecting

users’ emotion in-the wild through the microphone acting as a sensor. In [27],

authors analyze audios emitted while the user is asleep to determine sleep apnea

episodes. Similar research works have also utilized sounds to distinguish wheezing

and asthma [10, 11]. Machine learning methods have been devised to identify and

diagnose respiratory ailments from audios [9] and more particularly cough. [28]

uses CNNs to detect cough in the presence of background audio, and diagnose three

potential maladies namely: bronchitis, pertussis and bronchiolitis based on their

unique audio characteristics. Clinical work has focused on using voice analysis for

specific maladies. For instance, in Parkinson’s disease, laryngograph equipment

and microphone have been used together to detect the softness of speech as a con-

sequence from lack of coordination over the vocal muscles[12, 13]. Voice features are

also utilized to diagnose bipolar disorder [16]. It also correlates pitch, tone, rhythm,

volume and rate with signs of invisible conditions like post traumatic stress disor-

der, traumatic brain injury and depression[15]. Voice frequency has been associated

with the coronary artery disease caused by the hardening of the arteries that may

affect voice production [14]. Companies such as the Mayo Clinic and Israeli-based

Beyond Verbal have expressed in press releases that they are piloting these method-

ologies. The outbreak of COVID-19 has caused researchers to see whether cough

audio can be of any good in diagnosing the corona virus or not [29]. In [30], dig-

ital stethoscope data from lung auscultation is utilized as a diagnostic signal for

COVID-19. In [21], a research work for the detection of cough audios related to

COVID-19 is elucidated using a cohort of 48 COVID-19 patients that are tested

positive versus other pathological causes of cough, on which an ensemble model is

trained. In [31], speech recordings gathered from COVID-19 patients are analyzed

to categorize the health state of patients automatically from four aspects namely

sleep quality, severity of illness, anxiety and fatigue. Quatieri et al. [32] showed

that variations in vocal patterns can be a potential bio-marker for COVID-19.[20]
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used an entirely crowd-sourced dataset to distiguish COVID-19 patients from the

rest of the lot, for which the ground truth is considered to be what the users state

is in terms of symptoms and COVID-19 testing status. Not only this but there

were challenges that they overcame for data coming from different microphones and

possibly in very different environments. The closest to our work is [20], from which

our approach differs in two significant ways. Firstly, their data is gathered from

crowd sources whereas in comparison our data is collected in a controlled setting,

which means that we have a more challenging task at our hands to come up with

good performance metrices with lesser amount of data. Secondly, they used an end

to end deep learning model on their data set consisting of around 100 samples; deep

learning models often over-fit on such very small data-sets, so we chose a different

strategy. We use simple machine learning models such as SVM with various fea-

tures (handcrafted and obtained through transfer learning) and data augmentation

to overcome such issues. Other crowd-sourced approaches of this kind are starting

to emerge: in [33] a web form to gather sound data is presented, which collected

about 570 samples but does not report any COVID-19 detection analysis.

In Swarnkar et al [34], an objective method of automated analysis of accessing acute

asthma was developed via cough audios. Several features were extracted for each

fragment, that is, the segmentation of each cough audio in three non-overlapping

fragments. For every cough sound, a total of 76 features were extracted and 13

wavelet features were also procured. Leave-one-out cross-validation methodology

was employed for training LR algorithm in a variety of parameter settings. Lastly,

information extracted from the respiratory rate was merged with cough features.

Along with this, RR was transformed into BI for LR models.

In [35], authors made the pioneering effort for the categorization of Wet and Dry

cough using LR based model. The extracted features were LogE, Zcr, BGS, NGS,

Kurt, formants frequencies and MFCC. The recording of the data was done by a
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low-noise microphone for 4-6 hours by a hypercardiod beam pattern. The distance

varied from 40 cm to 70 cm between patient and the microphone as a consequence

of movements by the patient while recording the data.

Parker et al [36] utilized various machine learning classifiers to categorize cough

sounds into pertussis and non-pertussis. Cough samples were gathered belonging to

patients with pertussis, croup and other similar maladies by a series of recordings.

After manual segmentation, features such as MFCC were obtained to classify using

three different classifiers including k-NN, RF with 200 trees and NN.

In Windmon et al [37] , TussisWatch, a smart-phone based system for early iden-

tification of CHF or COPD was proposed to process and record cough episodes.

This approach can be broken down into five key steps :(1) filtering noise; (2) using

domain expertise to chunk down every cough episode into multiple segments that

are indicative of disease or of a non-infective being; (3) for each cough segment,

narrowing down a limited number of audio features; (4) nullifying inherent biases

as a consequence of sample size differences; and lastly, (5) designing a two-level

classification scheme based on the idea of processing a recorded cough segment at

two stages using classifiers such as RF,k-NN, SVM and NB.

Subirana et al [38] aimed at diagnosing COVID-19, using cough audio samples by

applying transfer learning. As a consequence of scanty nature COVID-19 data, out-

put layers of pre-trained ResNet5032 and DenseNet20131 architectures were trained

on speech data set. These layers were taken as features to further train on the tar-

get domain of scarcely available COVID-19 audio. Evaluation was performaned on

machine learning classification algorithms such as RF, SVM, k-NN and LR over a

set of 5 cross validation test splits.Finally PCA was applied to come up with a visual

differentiation between COVID-19 and non-infectious coughs after. This paper also

focused on the exchanging notes and data from medical and engineering fields along

with a worldwide template “Sigma”.
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A systematic review that provides the detailed classification/characteristics of lung

audios is elaborated in [39]. The authors also discuss the machine learning ap-

proaches being used for lung sound anomaly analysis. In [40], hybrid perceptual and

cepstral feature set (PerCepD) is proposed for automatic breath sound detection.

The research work accentuates the fact that respiratory diseases such as bronchitis,

pneumonia, flu etc can be significantly understood by using breath sounds. The

authors utilized ANN and SVM models for the categorization that showed high

accuracy.

Based on the idea that obstruction in lung airways may cause sounds like crackles,

wheezes, stridor etc, Bokov et al. [41] performed a study for the identification of

wheezing sound in infants of 20 months. The data was recorded via a smartphone.

A sensitivity of 71.4% and specificity of 88.9% was achieved in a two phase algorithm

that performed signal analysis along with SVM training.

Specifically for the identification of auscultated sounds for the tracheal–bronchial

breath audios, the authors performed a study in [42]. They compare the perfor-

mance of CPNN against SVM and for the classification of a wide range of tra-

cheal–bronchial breath sounds. CPNN achieved a 97.8% accuracy, while SVM at-

tained 96.2% and MLP has 77.8% accuracy.
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CHAPTER 3

Data Collection

In this section, we shall be discussing the data collection and preparation methods.

Details with regards to data storage and utilization is also provided.

3.1 Quality Assurance

The data was gathered under controlled environments. The sources of data were

online as well as applications on hand held devices. Once the samples were collected,

the time duration of samples was set to two by trimming them. The software

primarily used for that purpose was Audacity. On top of that, extraneous audios

were minimized by removing the chunks from the clipped audios. All these protocols

were taken into consideration for the fact that better accuracy and performance

matrices were to be maximized under clinical conditions. The work done by Brown

et al [20] had gone for the option of crowd sourcing data with less treated data with

data augmentation. The data will be more in quantity but, in our approach, the

quality of data is by no means questionable albeit less in quantity. Which leads to

the fact that the results produce by this research are better in performance, robust

and reliable.

3.2 Facts and Figures

The data was the similar to the one described in [21] gathered by the AI4Networks

lab members at the University of Oklahoma, Tulsa related to the three diseases and

one normal (non-infectious) category. For further details, section 2.2 of Imran et al.

[21] may be visited.
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3.3 Need of the Hour

Concerning the proper identification of disease, accuracy of the system is particu-

larly crucial since false positives and true negatives have a major impact in control-

ling pandemic outbreaks. For these reasons, an approach other than crowd-sourced

was utilized under controlled conditions to better ensure the robustness of the frame-

work. We are using mobile app and web portal to collect data from our medical

collaborators working from different parts of the world. Lastly, more than one sam-

ples are taken from every user to make sure that at least one sample is fulfilling all

the requirements.
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CHAPTER 4

Method

As a consequence of a mild sized dataset and the significance of performance ef-

ficacy under the public safety implications of our research, feature based machine

learning techniques are employed. In this phase, we describe pre-processing meth-

ods that help in edification of the extracted features for the purpose of training our

classifiers, considering particular idiosyncrasies of our audio database (e.g., longitu-

dinal mobile customers and cross-validation). Not only we analyse special varieties

of handcrafted features, but also the effects of pre-processsing techniques on these

classifier. We examined classifiers inclusive of LR, Gradient Boosting, SVM, RF,

k-NN and . The figure 4.1 shows our contribution to the knowledge value in the

grand scheme of things. The pre-processing techniques step is of high significance

with regards to the research work under consideration.

4.1 Preprocessing

In selecting the type of pre-processing techniques, its important to be mindful of

the fact that the techniques should modify the audio in a roughly linear and time-

invariant fashion, that is, the principle of superposition should hold true for these

techniques. These techniques are relatively easy to deal with analytically as much

theoretical research work is out there dealing with linear and time-invariant systems.

Owing to this fact, our research work has a great potential of being carried forward

and adopted well with existing machine learning cough diagnosis [21, 20]. Although

a bunch of preprocesing techniques were applied, the most important ones are time

stretching and pitch shifting. These two techniques complement each other in their
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Fig. 4.1: Grand scheme of things for machine learning based diagnosis

working mechanism, that is, time stretching is the process of changing the duration

of an audio signal without affecting its pitch. Pitch shifting is the opposite: the

process of changing the pitch without affecting the speed. We used ”librosa” library

in python to produce these effects. There are four different formats of analysis

that are being carried out namely: time shifting only, pitch shifting only, first time

stretch then pitch and first pitch shift then time stretch. The details of these shall

be provided in the next chapter.

Experimental results have shown that the order of the two techniques, taking the

two pre-processing techniques in any order, have little to no effect on accuracy

provided the appropriate values for shifting and stretching are known.
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4.2 Feature Extraction

The raw audio waveform recorded is having a sampling rate of 44100 Hz. Librosa

was used as our sound processing python library. Features were extracted based

on the principles of signal processing developed by the librosa library. These fea-

tures, after the application of statistical methods, are then engineered (combined)

together in the form of a vector. This feature vector representing and encapsulating

crucial properties, traits and other characteristics of the audio sample is referred

to as a handcrafted feature for the sake of this research work. Several handcrafted

features are extracted from the resampled audio. The features are extracted at the

segment and frame level, covering structural-based, frequency, temporal and statis-

tical attributes. A frame is a chunk (subset) of the whole sound data contained in a

segment while a segment is the complete instance of one sound recording. Research

shows that frequency-based, structural, statistical and temporal attributes can be

used to differentiate one type of audio from the other [20]. The following features

take all such attributes into consideration. A complete list is provided below:

Duration : The total time of the recording after trim leading and trailing silence.

Onset : The total number of pitch onsets (pseudo syllables) is calculated from the

signals, by figuring out peaks from an onset strength envelope, which is calculated

by summing each positive first-order difference across each Mel band .

Tempo : It is the rate of beats that occur at regular intervals temporally.

Period : The main frequency of the envelope of the signal.

RMS Energy : The power of the signal is the root-mean-square of the magnitude

of a short-time Fourier transform.
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Spectral Centroid : The average (centroid) extracted for one frame of the mag-

nitude spectrogram.

Roll-off Frequency : The center frequency such that at least 85% of the energy of

the spectrum in this frame for a spectrogram bin is found in this bin.

Zero Crossing : The rate at which sign-changes in a signal.

MFCC : On a nonlinear Mel scale, mel-Frequency Cepstral Coefficients are cal-

culated from the power spectrum that is based on a linear cosine transform for the

log power spectrum. We use the first 13 components.

-MFCC : The temporal differential (delta) of the MFCC.

2-MFCC : The differential of the delta of the MFCC (acceleration coefficients) .

For the rest of the chapters, handcrafted features are the feature vectors when the

above mentioned temporal and latent features were applied with the 11 statistical

approaches namely: mean, median, root-mean-square, maximum, minimum, 1st

and 3rd quartile, interquartile range, standard deviation, skewness, and kurtosis.

The total length of one handcrafted feature is 748. Given the high dimensionality

of the features, we cannot present all distributions. Therefore, we focus only on

the mean statistical feature of each feature family (e.g., Centroid is the values of

Centroids per frame averaged together for one sample) for illustration purposes

although the handcrafted features take into consideration all the aforementioned

statistical methods. The box plots in 4.2 show that coughs for the four different

classes.

Only for the sake of comprehension of box plots, it can be seen that for the case of

silence removal, pertussis has the most number of outliers in the box plot. The box
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Fig. 4.2: Comparison of features extracted from samples of 4 categories

plots for tempo are similar for the four classes with almost matching ranges. The

values are high and so is the mean for the box plot of COVID-19 samples for onset

frame feature. High value of RMS can be seen in stark contrast for COVID-19 then

the rest. The period of COVID-19 samples is less in magnitude and sparsity as well

from the others. Other trends of spectral centroid, spectral roll off and zero-crossing

can be seen for the four categories. This may also suggest that coughs are useful

sounds for classifying users as COVID-19 or non-COVID-19.

4.3 Machine Learning Classifiers

A machine learning classifier uses training dataset to comprehend the association

between the lables of a particular class and the data itself. As far as the scope of

this study is concerned, the audio data of cough samples, after the grouped K-fold

split, is used for training.

4.3.1 Types

Two types of classifier were given attention for our categorization task:
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Lazy Learners

Lazy learners store the data for training and wait until a testing data sample ap-

pears. When it does, categorization is carried out based on the most pertinent data

in the stored training data. Lazy learners have less training time but more time in

predicting in stark contrast to eager learners. We are using k-NN and its prediction

time is higher compared to other classifiers under consideration. It shall be viewed

quantitatively in the later chapters.

Eager Learners

Eager learners construct a model based on the training data prior to receiving the

data for classification. They commit to a single hypothesis that encompasses the en-

tire instance space. Eager learners take a long time, because of model construction,

to train and less time to predict. One example of such a classifier in our research

work is DT.

4.3.2 Classifiers Used

Once the feature matrix is established, the feature vectors, representing audio sam-

ples, are setup for the training and testing of the classifiers. Six different machine

learning classifiers namely: NB, RF, XGBoost, k-NN, SVM and LR are used. These

classifiers are analysed and compared in terms of their performance. This compar-

ative analysis can provide a blue print to better comprehend the utility of off the

shelf classifiers for cough diagnosis in particular and speech recognition in general.

The split between the training and testing samples was kept in the ratio of 4:1, that

is, 80% of the data was utilized for training and 20% for testing. In our research

work, group based k-fold cross-validation was carried out in which the data split

up is based on the users. In other words, for one iteration, the samples from the
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same user can’t be in both testing and training. If feature vectors of a particular

user are a part of training in one iteration, then they could be in the testing part

for the next iteration but not both in the same iteration. This approach curtails

over fitting and all such trends that can cause the classifier to come up with a high

value of accuracy without getting associated with incongruous traits. The details of

experimental setup shall be explained in the upcoming chapter. The overall results

are averaged out after several iterations to avoid extreme conclusions in a particular

iteration.

The tuning of the hyperparameters of these six classifiers were carried out as well

through hit and trial to set the best results for the base case, without pre-processing.

A more extensive grid search can prove to be helpful for more robust performance.
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CHAPTER 5

Evaluation

We now detail our evaluation of the classification of audio samples as for the

four different categories namely: Bronchitis, Pertussis, Normal (non-infectious) and

COVID-19 using features described in previous section. Findings and results are

discussed later in this chapter.

As far as the categorization task is concerned for our base case, the methodology de-

scribed in the previous section is carried out without the addition of pre-processing

techniques for the six classifiers. Based on the data collection we focus on four

approaches as discussed previously by applying pre-processing techniques to multi-

class classification for three clinical diseases with the fourth as normal beings. Based

on this road map four different tasks are carried out. Figure 5.1 and table 5.1 show

the results procured by the six machine learning classifiers that were trained and

validated utilizing the hand crafted features and then these results were averaged

out over 100 iteration of k-fold grouped validation.

Table 5.1: Average efficiency matrices for the classifiers, over several iterations, for time
stretching

k-NN
Näıve
Bayes

Logistic
Regression

Random
Forest

XGBoost SVM

Accuracy 92.68% 84.19% 92.8% 92.82% 94.26% 91.33%
Precision 93.07% 85% 93.05% 93.45% 94.48% 91.88%

Recall 92.68% 84.19% 92.8% 92.82% 94.26% 91.26%
F1 score 92.73% 84.22% 92.76% 92.74% 94.21% 91.45%

Mean error rate 26.02% 40.28% 21.68% 17.8% 16.18% 30.03%
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Fig. 5.1: Confusion matrices for six classifiers without pre-processing

5.1 Preprocessing Approaches

The following approaches were taken into consideration with regards to the pre-

processing techniques:

5.1.1 Time Stretching only

In this approach, only time stretching is applied to the captured cough audio signals

as a preprocessing technique.

Explanation As described previously, the cough audios are gathered and after con-

ditioning, these sounds are applied to the pre-processing technique of time stretching

only. The values of stretch are different depending on the type of classifiers to pro-

cure the best results at a sampling rate of 44100 Hz. The stretching or compressing

of a cough audio can alter the state of its features extracted, especially those that

are temporal in nature. Sounds possessing differences in temporal traits show con-

trasting values for the same feature and so time stretch plays a role in improving

the overall classification process. The exact amount of stretching required to im-
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prove the performance in a noticeable contrast to its absence was done via trial and

error methodology, that is to plug in a range of values for the stretching factor to

see which one gives the best performance. Userbased cross-validation was applied

which shall be discussed in the next section. Figure 5.2 shows the confusion ma-

trices procured when samples are subjected to time-stretching for the six machine

learning classifiers under consideration.

Fig. 5.2: Confusion matrices for six classifiers subjected to time stretch

Note that the confusion matrices are not normalized and are averaged out over

several iterations of the evaluation process. For now this approach is carried out but

theoretical analysis can be employed to come up with a formulation and statistical

framework to determine best efficacy parameters. Table 5.2 shows the performance

metrices for the aforementioned approach

5.1.2 Pitch Shifting only

In this approach, only pitch shift is applied to the captured cough audio signals as

a preprocessing technique.
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Table 5.2: Average efficiency matrices for the classifiers, over several iterations, for time
stretching

k-NN
Näıve
Bayes

Logistic
Regression

Random
Forest

XGBoost SVM

Accuracy 92.95% 87.35% 93.83% 92.34% 94.07% 92.18%
Precision 93.39% 88.92% 94.03% 92.99% 94.35% 92.59%

Recall 92.95% 87.35% 93.83% 92.34% 94.07% 92.18%
F1 score 93% 87.74% 93.81% 92.59% 93.99% 92.27%

Mean error rate 23.14% 44.34% 23.34% 21.42% 17.22% 29.42%

Explanation As previously discussed, the cough sounds are recorded and after

trimming, these audios are applied to the pre-processing technique of pitch shift

only. The values of shift vary depending on the type of classifier used. The shift in

the pitch of a cough audio can alter the state of the features extracted, especially

those that are strongly tied with the frequency response of a sound. Audios pos-

sessing differences in the properties of frequency response show contrasting values

for the same feature and so pitch shift plays a part in improving the classification

process. To obtain the best performance at a sampling rate of 44100 Hz in a notice-

able contrast to its absence, shifting factors were figured out through trial and error

methodology, that is to put in a range of different values for the pitch shift and

observe the one’s with best results. Userbased cross-validation was applied which

shall be discussed in the next section. Figure 5.3 shows the confusion matrices pro-

cured when samples are subjected to time-stretching for the six machine learning

classifiers under consideration.

Its important to note that the confusion matrices as shown in figure 5.3 are not

normalized, but rather averaged out over 100 iterations of the validation process.

The userbased validation process was carried out to nullify any over-fitting trends.

For now this approach is carried out but theoretical analysis can be employed to

come up with a formulation and statistical framework to determine best efficacy

parameters, in our case the amount of pitch shift required for ideal results. Table

5.3 shows the performance metrices for the aforementioned approach.
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Fig. 5.3: Confusion matrices for six classifiers subjected to pitch shift

Table 5.3: Average efficiency matrices for the classifiers, over several iterations, for pitch
shift

k-NN
Näıve
Bayes

Logistic
Regression

Random
Forest

XGBoost SVM

Accuracy 94.72% 85.36% 96.83% 94.43% 96.82% 93.65%
Precision 94.93% 87.52% 96.96% 94.85% 96.92% 93.92%

Recall 94.72% 85.36% 96.83% 94.43% 96.82% 93.65%
F1 score 94.7% 85.99% 96.81% 94.4% 96.8% 93.7%

Mean error rate 17.09% 45.92% 11.35% 13.45% 11.25% 23.68%

5.1.3 Pitch Shift then Time Stretch

In this case, the audio sample is initially subjected to pitch shifting pre-processing

technique and then applied to a time stretching approach in cascade.

Explanation As stated previously, the cough sounds are collected and after edit-

ing, these files are applied to the pre-processing techniques of pitch shifting first

and then time stretching. These techniques help alter the audio’s frequency com-

ponents and temporal outlook that can divulge key aspects unique to one category

of diseases over the others. The extracted features are then better off accentuating

these aspects, assisting the classifier to make more accurate predictions. The values

of stretch and shift are different depending on the type of classifier used to obtain
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the best performance at a sampling rate of 44100 Hz. It should be noted that the

stretching and shifting factors for cascaded setup are different for the case of each

technique applied individually. The exact amounts of pitch shift and time stretch

required to enhance the performance in a noticeable contract to their absence was

done through trial and error methodology. The way it works is by plugging in a

bunch of values for the time stretch and pitch shift and monitoring those that come

up with best results. Userbased cross-validation was applied which shall be dis-

cussed in the next section. Figure 5.4 shows the confusion matrices procured when

samples are subjected to time stretch after pitch shift for the six machine learning

classifiers under consideration.

Fig. 5.4: Confusion matrices for six classifiers subjected to cascaded pitch shift followed
by time stretch

Note that the confusion matrices are not normalized and are averaged out over

several iterations of the evaluation process. For now this approach is carried out but

theoretical analysis can be employed to come up with a formulation and statistical

framework to determine best efficacy parameters. Table 5.4 shows the performance

metrices for the aforementioned approach.
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Table 5.4: Average efficiency matrices for the classifiers for cascaded preprocessing tech-
niques, that is, first pitch shift then time stretching

k-NN
Näıve
Bayes

Logistic
Regression

Random
Forest

XGBoost SVM

Accuracy 95.31% 88.24% 97.87% 94.37% 96.05% 93.37%
Precision 95.6% 90.1% 97.93% 94.66% 96.19% 93.74%

Recall 95.31% 88.24% 97.87% 94.37% 96.05% 93.37%
F1 score 95.35% 88.74% 97.87% 94.27% 96.01% 93.45%

Mean error rate 16.32% 45.23% 8.6% 19.98% 14.02% 26.62%

5.1.4 Time Stretch then Pitch Shift

In this approach, each audio sample is initially subjected to time stretching and

then applied to a pitch shifting pre-processing technique in cascade.

Explanation As previously stated, the cough audios are recorded and once the

audio files are edited, these sounds are applied to the pre-processing techniques

of time stretching first and then pitch shifting. These pre-processing techniques

vary the temporal characteristics and frequency components of the cough sound

that can uncover key aspects unique to one class of ailments over the rest. The

extracted features are then in a better position to highlight these aspects, assisting

the classifier to make more accurate predictions. The values of stretching and

shifting factors are different depending on the type of classifier used to procure

the best performance at a sampling rate of 44100 Hz. It should be noted that the

stretching and shifting factors for cascaded setup are different for the case of each

technique applied individually. The exact amount of shifting required to better the

performance in a noticeable contrast to its absence was done through trial and error

methodology, that is to plug in a range of values for the shifting and stretching to

see which give the best performance. Userbased cross-validation was applied which

shall be discussed in the next section. Figure 5.5 shows the confusion matrices

procured when samples are subjected to time-stretching prior to pitch shifting for

the six machine learning classifiers under consideration.
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Fig. 5.5: Confusion matrices for six classifiers subjected to cascaded time stretch followed
by pitch shift

Table 5.5: Average efficiency matrices for the classifiers for cascaded preprocessing tech-
niques, that is, first time stretching then pitch shift

k-NN
Näıve
Bayes

Logistic
Regression

Random
Forest

XGBoost SVM

Accuracy 94.77% 88.03% 97.81% 94.43% 96.05% 93.5%
Precision 94.86% 89.35% 97.88% 94.66% 96.18% 93.9%

Recall 94.77% 88.03% 97.81% 94.37% 96.05% 93.5%
F1 score 94.73% 88.32% 97.81% 94.27% 96.01% 93.58%

Mean error rate 19.61% 38.06% 9.29 % 13.45% 14.01% 27.49%

Note that the confusion matrices are not normalized and are averaged out over

several iterations of the evaluation process. For now this approach is carried out but

theoretical analysis can be employed to come up with a formulation and statistical

framework to determine best efficacy parameters. Table 5.5 shows the performance

metrices for the aforementioned approach.

5.2 User-based Cross Validation

We create training and test datasets from user splits that were disjoint, ensuring

that the samples from the same user do not appear in both splits. Note that this

does not lead to a perfectly balanced class splits. It is never easy to guarantee
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that a split chooses a representative test-set, so we performed a 5-fold-like cross

validation using 20 different random seeds to select disjoint users (80%/20% split).

In essence, this setup resembles a nested cross-validation [7]. For each iteration,

the number of users are divided while keeping a track of the users included in this

experimentation. We conduct extensive experiments over 100 iterations, that is,

the split was 4:1 train:test to satisfy the 5-fold-like cross validation and 20 different

random seed will give a total of 5*20 = 100 iterations. We selected several standard

evaluation metrics such as the Accuracy, Precision, mean error rate, F1 score and

Recall. In the following section we report the performance of our three tasks.
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CHAPTER 6

Discussion

In this research work, hand-crafted features were developed to establish a pipeline

based on cough audio samples. 6 classifiers were used and each had its own bench-

mark performance. The two pre-processing techniques in a varying combinations

were applied that enhanced the overall accuracy. The technique of user based K-fold

validation was carried out to come up with robust results. The following sections

elucidate various approaches to gauge performance criteria.

6.1 Timing Diagrams

Choosing the best classifier, for a problem under consideration, is an important as-

pect of developing a classification pipeline. The selection can be made by different

point of views. Generally, the obtained classification performance is the most im-

portant consideration. Howbeit, the No-Free-Lunch theorem [43] lets us know that

there is no algorithm that can be considered the best, unanimously. Moreover, if

the expected performance criteria of several algorithms are the same, the algorithm

with a lesser run-time constraint is usually preferred. Not only this but, slight plum-

met in performance may be tolerated if the reduction in run-time is significantly

less. From a practical view point, only a limited amount of time is available for the

computation of the results. This aspect is specially true for industrially deployable

apps that require run time computational assistance from the edge device. Further-

more, if the user has to pay for the computation time, he might not want to start

a possibly time-consuming process without any idea about its duration.

Classifiers can be differentiated based on various properties associated with their
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accuracy, specificity, sensitivity, error rate, training time, prediction time and mem-

ory consumption. Figures 6.1 shows prediction timing diagrams for six different

classifiers .

Fig. 6.1: Prediction time for the six different classifiers in seconds

Usually, an algorithm is elucidated by a general statement regarding its complexity.

For example, MLP are expected to have a relatively high training time instead of

a k-NN approach. Nonetheless, the actual run-time mostly depends on the dataset

and the exact parameters of the algorithm. Furthermore, categorical time approxi-

mations such as “low” or “high” do not provide the users with the same amount of

insights like actual time values leveraging real units. For example, a “high” run-time

may mean “several hours” to ”several days” to “several weeks” or even longer. Such

nominal values are only useful for comparing multiple classifiers. In noticeable con-

trast to this aspect, more precision is associated while comparing the time elapsed

by several classifiers when real numbers i.e. seconds, milliseconds, nanoseconds etc

are involved. Additionally, actual time values and units make the approximation

much more fruitful for the users. Theoretically, the computational complexity is

also known for most algorithms. Since constant terms are ignored in computational

complexity theory, the practical usefulness of these indications is limited as well. A
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method for determining the run-time of a classification algorithm was discussed in

[44]. The figure 6.2 shows the comparison of training times of six different classifiers

utilized in our study.

Fig. 6.2: Training time for the six different classifiers in seconds

Albeit their performances are much better than their lighter counterparts, it can be

seen that the bulkier the classifier (those classifiers that consume more resources in

terms of processing power and memory), the more the time it takes to predict and

train. Figures 6.1 and 6.2 give a quantitative proof to this statement. This is where

the real utility of preprocessing kicks in since the preprocessing techniques improve

the accuracies in general, so then, some light weight classifiers can out perform their

bulkier counterparts after the application of these techniques.

6.2 Results

This section shows the accuracy box plots for various approaches used in previous

sections and what results and know-how we can derive from that.
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Fig. 6.3: Accuracy box plots for pitch shift

6.2.1 Performance Enhancement

It is evident for the figures 6.3 and 6.4 that preprocessing techniques increase the

overall accuracies. The accuracy in these box plots are given in probabilities. This

is due to real environment factors such as noise, erroneous samples, filtering and

compression of audios that may introduce some detrimental effects on the sounds

that confuse the classifiers. When pre-processing techniques are introduced, they

act to nullify such effects and help to increase the accuracy. In our case, time

stretching expands or compresses the audio. So if a temporal feature say period

holds distinctive property of a disease from the rest, then time stretching can help

increase or decrease the period of the audios and help the classifier, for example,

LR to predict in an improved fashion.

Figure 6.5 shows how the periods of the audio samples are decreased when a time

stretch of 9 was applied. In other words, the audio will be played-back at a speed

9 times faster. Similarly, used cases can be proposed for pitch shift as well. It is
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Fig. 6.4: Accuracy box plots for time stretch

because pitch shift can assist in focusing parts of the frequency response of the cough

samples that hold pertinent information with regards to classification. Figure 6.6

shows the reduction in the values of spectral centroid and spectral rolloff values when

pitch shift of -14 was applied. A comparison of figure 4.2, 6.5 and 6.6 shows how

these techniques can vary the type of feature vector generated. These feature vectors

have a better potential to assist in improved categorization of the disease. For

now, only one dimensional features are shown in these box plots. Two dimensional

features were also involved to generate feature vectors but that are not taken into

consideration in these plots. Tables 6.2 and 6.1 will shed more light on why time

shift was kept to 9 and pitch shift was equal to -14 in figures 6.5 and 6.6 respectively,

especially when the classifier is LR. In fact, LR gave best results for pitch shift of

-14 and time stretch of 9 in single pre-processing techniques. More on that can be

observed in tables 5.2 and 5.3.

Its important to note that not every stretching and shifting factor can guarantee
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Fig. 6.5: Box plots of features when time stretch (stretching factor=9) was applied

Table 6.1: Performance metrices for various values of time stretch with Logistic Regression
as the classifier

time stretch=9 time stretch=5 time stretch=1/5 time stretch=1/9
Accuracy 93.83% 92.96% 91.81% 91.7%

Mean error rate 23.34% 26.39% 24.31% 24.94%

enhanced accuracies but only special parameters can help come up with efficency

betterment. Tables 6.1 and 6.2 show efficiency of LR for a bunch of random values

associated with pitch shift and time stretch. It can be seen that for value of pitch

shift =14, the accuracy is worse then the base case, that is, without preprocessing.

Most shifting and stretching factors reduce the accuracies. For now, trial and error

methodology was carried out to come up with the appropriate values of shifting and

Table 6.2: Performance metrices for various values of pitch shift with Logistic Regression
as the classifier

pitch shift=14 pitch shift=2 pitch shift=-2 pitch shift=-14
Accuracy 87.41% 92.26% 94.5% 96.83%

Mean error rate 38.29% 23.88% 18.64% 11.35%
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Fig. 6.6: Box plots of features when pitch shift (n-step=-14) was applied

stretching factors.

6.2.2 Cascaded Approaches are Generally Superior

The results of figures 6.7 and 6.8 illustrate that for most of the classifiers, the

cascaded approach gives better results instead of a single pre-processing technique.

The accuarcies in these box plots are given in probabilities. The logical reason

behind is that as one technique is applied, the detrimental effects are taken care off

in that dimension. The other techniques will better describe different aspects that

were unaffected by the previous pre-processing technique. In our case, the time

shift technique ameliorates the time dimension while pitch shift technique improves

the frequency domain. By the same token, the more the techniques, the greater the

potential to gain better accuracies.

An important thing that needs to be taken into consideration is that the parameters

for a given technique may be adjusted according to the order in which the technique
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Fig. 6.7: Accuracy box plots regarding cascaded preprocessing techniques during iterations
of validation procedure

was applied. For example, in the case of NB classifier, the best accuracy was

obtained with time stretching first and then pitch shifting for half step value of -9

and stretching factor of 6. On the contrary, the best accuracy was obtained with

pitch shifting first followed by time stretching for half step value of 2 and stretching

factor of 10.

Its also important to note that, for now, the order of pre-processing techniques

doesn’t matter. Time stretch followed by pitch shift will have similar accuracy

for pitch shift followed by time stretch given the classifier remains constant. The

academic reasoning is that both theses pre-processing techniques are linear and time

invariant, that is, they don’t cause any non-linear change in the original signal.

So, the principle of superposition holds true and cumulative effect of the two pre-

processing techniques in cascade is independent of their order. This part of the

discussing has several future avenues to it as shall be pointed out in the next chapter.
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Fig. 6.8: Box plots for accuracies regarding cascaded preprocessing techniques during
iterations of validation procedure

6.3 Insights

The experimentation and analysis at a physical level of the audio reveals that there

are several physical factors that take part in misclassifying the samples. There

can be a myriad of phenomenon going at the recording level that can confuse the

classifier to misclassify. These causes can give researchers a starting point to address

the problems arising at the time of recording so the software level signal processing

techniques could be developed to mitigate the adverse effects of these factors that

may help the classifier in its classification at a later stage. The encircled parts of

the audio were determined by actually hearing the cough sound to figure out the

aberrations. The following is by no means an exhaustive list of the detrimental

aspects that can hamper the performance of the classifiers:
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6.3.1 Background Noise

A very common reason of misclassification of cough samples is background noise.

The common vindication behind this is that sound prevalent in the background

can cause to tampering with the values associated with the handcrafted features,

discussed in the previous chapters, that appear atypical to that of cough during

the training stage. This causes misdiagnosis of one type of disease to another.

Figure 6.9 shows the time and frequency domain response of COVID-19 sample

mis-categorized as Pertussis. The pre-processing techniques that are adopted can

help nullify these effects to better assist the classifiers during evaluation or testing

phase. The encircled regions in figure 6.9 are determined by hearing the original

audio.

Fig. 6.9: Time domain and frequency response of a sample with background noise
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6.3.2 Illtreated Samples

Audio samples that are gathered from masses, especially those that are not through

the app, require treatment and standardization before they can be fit for the algo-

rithm to be used. Generally these techniques are manual but some TD-DNN may

also be used [45]. In our case, manual audio trimming was carried out for the classi-

fication purposes. More often than not, the relevant bouts of the cough get trimmed

and so the information procured by the feature vector is somewhat unrepresenta-

tive from a more typical sample hence leading to a misclassification. Figure 6.10

below shows an audio cough sample of a normal individual classified as COVID-19.

The encircled bout shows the fact that it was clipped at a time when its amplitude

response was not fully manifested, that is, proper clipping would have helped ex-

press the full time domain cough signal. The encircled part of the amplitude plot

accentuates untimely clipping of the cough bout.

6.3.3 Misleading Samples

Sometimes, slackness on part of the user can play a part in obtaining misleading

samples. For reasons on part of the user namely distance, angle from the mi-

crophone, too fast audio recording, recklessness etc. can make an audio appear

something that it is not. Even from the stand point of an unaided ear, the playback

sound appear to be yelling, laughing, snoring etc in lieu of coughing. These erro-

neous samples can prove to be potential pitfalls for the classifiers. Most classifiers

may not get these samples right during evaluation or training since the nature of

audio appears different to what it actually should have been. Figure 6.11 shows the

audio of a bronchitis patient that was falsely classified as pertussis patient by the

classifier. The unaided hearing of the sample appears as if the patient is laughing.
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Fig. 6.10: The encircled bout shows an untimely audio clipping

6.3.4 Extraneous Sounds

Sometimes during the process of cough recording, sounds accompany recording that

have nothing to do with the cough itself but are generated because of some random

processes occurring in the background including door knocking, table slamming,

random thud etc. The sources of these sounds are hard to pinpoint but improved

controlled conditions can ameliorate the recordings. The features extracted from

such an audio appear eccentric to those having regular audio cough. Improved

trimming procedures can slice away the unwanted part in an audio for better per-

formance. Figure 6.12 shows a misclassified sample of a normal (non-infectious)

person’s cough categorized as COVID-19 patient.
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Fig. 6.11: misleading sample that doesn’t resemble a typical cough

6.3.5 Unusual Cough

While collecting cough samples, the usual protocol is that users are told to cough

in a non-spontaneous manner. Not all users have the ability to reproduce coughs

that are typical of their sporadic counterparts. This can lead to cough samples that

are more or less unusual. These cough samples appear unnatural to any ordinary

listener and thus have an effect on the classifier as well. Classifier may get confused

in grappling with these samples during testing or validating stages as a consequence

of their aberrant nature. Although pre-processing techniques can come in handy

to ameliorate the situation but better quality of samples on users’ part can give

the required results. Users can provide better samples via the app especially when

they feel like coughing spontaneously. Figure 6.13 shows the sample of a COVID-19
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Fig. 6.12: Time domain and frequency response of a sample with extraneous audio effects

patient miscategorized as a pertussis patient .

6.3.6 Too Loud for the Microphone

In the event of capturing non-spontaneous coughs from patients, some users leverage

the devices that may not have the tolerance for loud voice signals. The microphone

of the device may get saturated during the bouts of the cough and so useful infor-

mation pertaining to cough may not get captured in the recording. Thus, leading

to a misclassification on classifier’s part. Popular mainstream approaches, such

as normalization [46], can reduce the adverse effects caused by poor microphone

recording, but the quality and quantity of data along with type of classifier has a

major role to play in overcoming such pitfalls. Moreover, standardization of devices
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Fig. 6.13: Time domain and frequency response of a sample that isn’t exactly a cough

utilized for gathering data can be of massive assistance to better the performance

during clinical trials. Figure 6.14 shows the audio cough sample of a pertussis pa-

tient misclassified as normal being. The encircled regions in the amplitude response

highlights magnitude saturation.

6.3.7 Too Many Bouts

Another issue associated with non-spontaneous cough recording is the number of

bouts associated with one episode of cough. Users may produce many cough bouts

that may not be the case for usual coughs and so these samples are anomalous to

the rest of the lot. Classifiers may have a hard time classifying these samples during

testing of validating stages because of the peculiar nature of these coughs. Generally,
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Fig. 6.14: Time domain and frequency response of a sample with amplitude saturation of
device

there is a wide spectrum associated with the number of bouts during the coughing

process. Normally, two to three bouts are there in a usual non-spontaneous cough

but when this number goes beyond five then such cough moves to the abnormal

side of the spectrum. Trimming techniques and sound conditioning can be useful

to nullify these effects. Moreover, clinical approaches of initiating natural versions

of cough via stimuli are highly useful to gather more consistent data. Figure 6.15

shows a cough sample of a normal being misclassified as pertussis patient.
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Fig. 6.15: Time domain and frequency response of a sample with too many bouts

6.3.8 White Noise

More often than not, patients are asked to record audio samples in controlled envi-

ronment with as less noise as possible. Howbeit, these effects can never be abated

altogether and some of these sounds make their way to the classification pipeline.

Electronic devices and machines, of some other sort, operating in the background

such as fan, generator etc. can produce the effect of white noise that can hamper

the overall performance. There are several off the shelf signal processing techniques

that can come up with the solution to solve the problem of white gaussian noise.

Pre-processing techniques such as the application of a filter are typical solutions to

these problems. Figure 6.16 shows white noise causing a COVID-19 audio cough

sample to be misclassified as a normal (non-infectious) by NB classifier.
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Fig. 6.16: Time domain and frequency response of a sample with white noise

6.4 Negative Findings

In the previous sections, we have seen that the techniques of time stretch and

pitch shift has helped us in achieving performance unprecedented in their absence.

Finding these two pre-processing techniques was never a stroke of luck but sev-

eral pre-processing techniques were chanced and finally the successful ones were

adopted. These are not the only two techniques out there that showed promise.

Various other techniques including filtering, envelope detection, precursive effects,

harmonic effects, pre-emphasis, normalization and several others. Moreover, cus-

tomized coded effects using the classical techniques of signal processing can also

be employed to come up with a solution to solve the problem of a pre-processing

technique that improves the performance.

50



The scope of this research work was not limited to the aforementioned frequency

and time domain techniques, but the following pre-processing were also taken into

consideration and has the potential to deliver the results but for now, their perfor-

mance isn’t up to the mark.

6.4.1 Off the Shelf

The pre-processing techniques that were procured from the pre-built libraries belong

to this section.

Filter

Once the audio is loaded, butter worth band pass filter was applied to reduce the

noise and other unwanted effects in the cough audios. The big deal was in finding

the appropriate values of lower cut-off and higher cut-off values that can promise

better performance.

Phase Vocoder

A phase vocoder analyzes the input signal via the FFT, that decomposes the signal

into its frequency components. This technique is also a part of librosa library, but it

ultimately gives you the stretched signal in which time stretching has already been

done. This is one reason why the performances of time stretch and phase vocoder

are same.

6.4.2 Customized Development

This subsection deals with the preprocessing techniques that were developed using

the principles of signal processing.
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Table 6.3: Performance metrices for promising pre-processing techniques with Logistic
Regression as the classifier

Filter
Phase
Vocoder

Imitate
Filter

Envelope
Detection

Thresholding

Accuracy 91.31% 93.87% 93.11% 85.81% 90.82%
Mean error rate 24.08% 23.58% 22.21% 39.58% 28.63%

Imitate Filter

A windowing mechanism of zeroing out the higher frequency components manually

(by multiplying frequency response with a masking sequence of zeros and ones).

The performance showed improvements with a few classifiers, but the accuracies

dropped in other cases as well.

Envelope Detection

In this approach, the signal used for the machine learning pipeline ahead was not

the signal itself but its envelope. The magnitude response was calculated by taking

the absolute value of Hilbert transform. The accuracy wasn’t as expected.

Thresholding

For a frequency response of a cough signal, only those frequencies were kept that

had magnitudes greater than a certain threshold. The accuracy wasn’t as expected.

Table 6.3 shows the accuracies and mean error rate for the aforementioned promising

pre-processing techniques.
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CHAPTER 7

Conclusion and Future Work

In this research work, we leveraged cough audios to diagnose three different diseases,

accompanied by the fourth normal (non-infectious) category, and apply a couple of

pre-processing techniques along with their combinations that can enhance the per-

formance of a pre-existing machine learning classification pipeline. Although audio

based diagnosis techniques are prevalent but to the best of our knowledge, this is

the first attempt that aimed at coming up with quantitative and qualitative aspects

of pre-processing techniques prior to a machine learning framework. Not only does

these pre-processing techniques provide edification with regards to the efficacy pa-

rameters but also improve the performance of low resource dependent classifiers to

their high resource dependent counterparts. This approach has the potential of a

prototype or blue-print study for major breakthroughs in the industrial aspects of

application deployment.

This study has the potential to give fruitful results for non-cough audios such as

breathing, snoring etc and a combination of them can prove to be useful in better

diagnostic performance. Dimensionality reduction techniques to trammel the length

of feature vector can enhance the training and prediction time for the classifies. On

top of that, better performance can also be expected from it. A cascade of more pre-

processing techniques and their combination can also enhance the performance. A

theoretical framework can be developed that can assist in recognizing the parameters

of the pre-processing techniques that can further the performance in lieu of trial

and error methodology. Mic based K-fold cross validation is also applied for better

analysis perspective. Novel pre-processing techniques can also be established, using

the principles of signal processing, that can better countermand the effects of the
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environment. Hyper parameter tuning of machine learning classifiers can play a

vital role in the future of this study. Last but not the least, other preprocessing

techniques such as normalization, filtering etc should also be utilized to improve the

accuracy metrices.
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