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CHAPTER I 

INTRODUCTION 

Let X and Y be topological spaces. In the ensuing discussion we 

will use the following standard notation: C(X,Y) and H{X,Y) are the 

collections of continuous surjections and homeomorphisms, respectively. 

In the event that X= Y we agree to write C(X) and H(X). All function 

spaces will be endowed with the compact- open topology. In this topol

ogy we will write (F,U) for the collection of maps which take F into U, 

F compact and U open. We use C, ~ and N to denote the standard middle

thirds Cantor set, "is homeomorphic to", and the positive integers, 

respectively. Our only nonstandard notation is the letter P for the 

space of irrationals. 

The literature is quite wealthy in results that relate properties 

of X and H(X). In particular, Whittaker (18) shows that two compact, 

locally euclidean manifolds are homeomorphic if and only if there is a 

group isomorphism between their homeomorphism groups. Wechsler (17) 

obtains the same equivalence for spaces satisfying a strong homogeneity 

condition. If we set x• ={hE: H(X) : h(x) = x}, then we obtain a sub

group of H(X). In (11), Mostert gives conditions on X which guarantee 

that X and H(X)/x• are homeomorphic. A complete listing of the major 

papers in this category would indeed be lengthy and inappropriate at 

this time. All of the papers, however, share a common feature. Each 

imposes topological conditions (usually rather severe) on X which al

lows an algebraic statement about H(X), or a subgroup of H(X), to take 
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on topological significance. While the three results just mentioned 

are indeed elegant, their proofs share little common ground and there-

fore there is room for improvement. 

The techniques presented in this paper are certainly not offered 
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as a general panacea for all problems, but rather as a viewpoint whi~h 

provides a common ground from which to attack. That in itself is useful. 

1.0. Definition. Let f E C(X,Y) and set G(f,Y) ={he H(X) : fh = f}. 

G(f,Y) is a subgroup of H(X). We define f to be a standard map if and 

only if 

i) f is an identification map and 

ii) x,w e f- 1(y) implies there are xn in X and hn in G(f,Y) such 

that xn + x and hn(xn) + w. 

If X = C and Y is compact and metrizable, then Vobach (14) shows 

that standard maps exist. The existence of such maps provide us with 

a classification theorem for the class of compact metric spaces. The 

statement and proof of this theorem will be provided later. 

It is easy to show that any locally compact, separable metric 

space is the continuous image of N x C where N and C are the positive 

integers and Cantor set, respectively. It is certainly well known 

that any complete, separable metric space is the continuous image of 

P, the irrationals. The following questions, in view of (14), are there

fore quite naturally posed: Are theorems similar to Vobach's theorem 

for compact metric spaces available for locally compact (complete) sep

arable metric spaces stated in terms of H(N x C) ( H(P) )? Part of 

this research is devoted to providing affirmative answers to these 

questions. 
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Having established these theorems one naturally speculates as to 

whether algebraic or topological properties of G(f,X} determines any 

topological properties of X. Unfortunately, very little t;Jas been estab

lished in this direction. However, there are fixed-point theorems and 

connectivity conditions for X in terms of G(f,X} and some structure 

theorems for the group G(f,X) itself given in this paper. 

In the course of proving these theorems it will be necessary to 

develope a few of the elementary properties possessed by C and P. No 

claims of originality are made and because of their "folklore" nature 

complete proofs are given. We will also develop a few elementary topo

logical properties of standard maps (in the Cantor set - compact metric 

space setting}. 



CHAPTER II 

C AND P 

2.0. Proposition. H(C) is totally disconnected. 

Proof: Let a E H(C) and D its component (assume the compact-open topol-. a 

ogy) in H(C). Let o1 be the component of the identity. o1 is a normal 

subgroup of H(C) (see (12)~ According to a theorem of R.D. Anderson (1) 

H(C) is simple. Hence o1 = {lc} or H(C). If o1 = {lc}, then a-loa= 

{lc} which in turn implies Da = {a}. If o1 = H(C), then evidently H(C) 

is connected. But if x is any fixed point of C, the map p : H(C) + C de

fined by px(h) = h(x) is continuous and onto. Thus, we deduce that C is 

connected, a contradiction. We conclude that H(C) is totally discon

nected. 

2.1. Proposition. H(P) is totally disconnected. 

Proof: The proof is similar to that of 2.0. 

2.2. Theorem. For each i let A1 = N. Then rr{A.; i E N} and P 

are homeomorphic. 

Proof: Let P' = Pn[l,oo). Since P' and P are homeomorphic it will suf

fice to show that P' and JI{Ai : i E N} are homeomorphic. First, let us 

note that each element a in P' has a unique representation as a contin-

ued fra~tion a= Ca1, a2, ... J where aiEN (see (13)). Topologize P' by 

4 
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d(a,B) = 1/n where n is the first integer such that an ~ Bn (d is a com

plete metric and is equivalent to the Euclidean metric). 

If a E P' and Bn-+ a then !Ca0 , a1, ... ]- [(3~, B~, .•. JI-+ 0, or 

equivalently, l(a0 - B~) + (1/Ca1, ... ]- 1/[B~, ... J)I-+ 0. If for 

each n E N there is an m > n such that a0 ~ B~ ~ 0, then evidently 

k 1/Ca1, ... ]- 1/Cs1, ... J converges to some integer. However, both 

fractions are smaller than one and hence their difference does not ex~ 

ceed one. Therefore a0 = B~ eventually. It follows by induction that 

ak = B~ eventually for each k 2 N. 

Define h: TI{Ai: i EN}-+ P' by h((a1, a2, ... )) = [a1, a2, ... ]. 

Clearly h is well-defined, one to one, and onto. The continuity of 

both h and h- 1 follows from the discussion in the preceding paragraph. 

2.3. Corollary. C x P and P are homeomorphic. 

Proof: For each i in N let B; = {0, 2} with the discrete topology. 

Let A; = N for each i in N with the discrete topology. Then A. x B. 
1 1 

and A; are homeomorphic for each i. Therefore C x P and Pare homeo

morphic. 

2.4. Corollary. Let P1 = P for each i in N. Then n{Pi : i E N} 

and P are homeomorphic. 

Proof: By theorem 2.2 Pi 

Thus n {Pi : i E N} 

= TI {A1 j E 

= TI{TI{A~ 

N} where A~ = N for all i and j 
J 

. J 
j E N} • i E N} ~ in N. 

where A. = N for each i in N. Therefore n{P. i E N} ~ 
1 . 1 

TI{A. : i E N} 
1 

P. 

Let C(N,N) be the space of maps of N into N endowed with the com-

pact - open topology. Assume that P' has the metric of 2.2. 

2.5. Proposition. f(N,N) ~ P'. 



6 

Proof: Define. cp: f(N,N) -+ P' by <t>(f) = [f(l), f(2), ... J. Clearly cf> 

is well-defined and onto. 

cf> is continuous. Let s11n(a) be the open ball in P' at a of radius 

1/n and f E f(N,N) with ~(f) = a. Define BJ. = ({j},{a.}) = {g E C(N,N): 
J -

g(j) = aj} where a= [a1, a2, ... ]. Clearly Bj is open in f(N,N). 

Choose m > nand define B = n{B. : 1 ~ j ~ m}. Then B is open and 
J 

<t>(B) c s1/n(a). 

cf> is one to one: Let f,g E f(N,N) with f ~ g. Then there is an 

i E N such that f(i) ~ g(i). Thus, <t>(f) ~ cp(g). 

-1 . t. 
cf> 1s con 1nuous: Let a E P' and aj a sequence in P' which con-

1 . . . 
verges to a. Then cf>- (aJ) = (ai, a~, 

j j 
where. [a1, a2, ... ] = aj (Recall that 

••• )-+ (a1' a2' ... ) = cp-1(a) 
j j [a 1 , a 2 , ... ] -+ [a 1 , a2 , ... ] if 

and only if a~ -+a.). 
1 

Therefore f(N,N) ~ P'. 

2.6. Corollary. Let A1 = N for each i inN. Then P' ~ 

rr{C(A., A) : i EN}. 
- 1 ' 

Proof: Follows immediately from 2.5 and 2.4 

2.7. Theorem. Let tt(N,N) = {h E f(N,N) h is one to one}. 

Then P' "' tt(N ,N). 

Proof: Let cf> : f(N,N) -+ P' be the homeomorphism given in 2.5. Let 

p# = {"' E pI • • [ J} "" : 1 ~ J -+ ai ~ aj, a = al' a2, . . . . Clearly <t>(tt(N,N)) 

= P#. · Thus, we show p# and P' are homeomorphic. 

Define Pk = {S E P' : i, j ~ k, i ~ j implies si ~ Sj}. Let a E Pk 

and choose n E N such that n > k. Then s E s11n(a) if and only if aj= sj 

for j satisfying 1 ~ j ~ n. 

for each k. Now p# = n{Pk 

Therefore s E Pk and so Pk is open in P' 

k E N} and therefore P# is an absolute G0 . 



According to (8) we can conclude that P' and P# are homeomorphic if no 

non-empty open subset of P# is compact. Let U = P# n V, V open in P'. 

# Let p E u and choose n such that sl/n(P) c v implies p n sl/n(P) cu. 

Define Pl = [pl,p2, ... ,pn+l'Pn+3'Pn+2'Pn+4'Pn+5''''J 

P2 = [pl,p2, ... •Pn+l'Pn+4'Pn+3'Pn+2'Pn+5'Pn+6''''J 

Pk = [pl,p2, ... ,pn+l'Pn+k+2'Pn+k'Pn+k-l'''''Pn+2'Pn+k+3''''J 

where p = [p1,p2, ... J. {pj : j En} c U and has no limit point in U. 

Therefore U is not compact. Hence P# ~ P'. 

2.8. 

; E N}. 

Corollary. Let A. = tl(N,N) for each i. 
1 

Proof: Follows from 2.4 and 2.7. 

Then P' ~ {A. 
1 
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CHAPTER III 

CLASSIFICATION THEOREMS 

This section is devoted to the classification theorems mentioned 

in the introduction. We will also present the proof of Vobacn's funda

mental lemma which appears in (14). 

Let us recall the definition of a standard map and set S(X,Y) = 

{f £ C(X,Y) : f is standard}. We shall show for certain choices of X 

and Y that S(X,Y) r ~· The classification theorems will then follow 

quite easily. 

We first prove a stronger version of a proposition by Fort (4). 

3.0. Definition. Let F be a set-valued map from a separable 

metric X to a complete, separable metric spaceY. F is upper semi

continuous at x if and only if 1) F(x) is closed in Y and 2) for each 

neighborhood V of F(x) there is a neighborhood U of x such that 

F(U) C V. 

3.1. Lemma. Let {f : n £ N} be a sequence of upper semi-continn 

uous set-valued maps from X toY, X andY as in 3.0. If for each x £X 

fj(x) C fj+1 (x) for all j and diam fn(x) + 0, then f defined by f(x) = 

n{fn(x) : n £ N} is a continuous function. 

Proof: For each k choose yk £ fk(x). {yk} is a Cauchy sequence and so 

has a limit pointy. Let U be any neighborhood of y and k any fixed 

positive integer. Then U n fk(x) ~ ~ and therefore y £ fk(x). 

8 
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Therefore y t: n{fk(x) k t: N}. If z t: n{fk(x) : k t: N}, z ~ y, then 

diam n{fk(x) : k £ N} > 0 which contradicts the hypothesis that 

diam fk(x) + 0. Clearly f(x) must be a singleton. Let U be any neigh

borhood of f(x). If for each m £ N there is an n ~ m such that fn(x) 

t U, then there is a yn £ fn(x) - U for:each n and necessarily yn + 

f(x), a contradiction! Thus, there exists an m such that n ~ m implies 

fn(x) c U. By upper semi-continuity for each y ~ m there is an open 

set Vj such that fj(Vj) cU. Now fm(Vm) ::J fm+ 1 (Vm) ::J fm+2 (Vm) ::J • • • 

Hence f(V ) c U and therefore f is continuous at x. m 

We omit the proof of the following standard fact. See, for exampl~ 

( 3). 

3.2. Lemma. Let X, Y and Z be spaces, f : X + Y an identifica

tion, and g : X + Z continuous. If gf-1 is single-valued, then gf-1 is 

continuous. 

3.3. Lemma. Let X be homogeneous and f £ S(Y,Z). Then fan : 

X x Y + Z is standard where n is the projection map on the Y - coor

dinate. 

Proof: Suppo~e f(n(x,y)) = f(n(a,b)). Then f(y) = f(b) and so there 

are xn £ Y and h £ G(f,Z) such that x + y and h (x ) + b. Choose n n n n 
g £ H(X) with g(x) =a. Then H , defined by H = (g,h ) t: G(fan,Z), n n n 
(x,xn) + (x,y), and Hn(x,xn) + (a,b). fan is an identification since 

f is and n is an open map. Thus, fan is standard. 

3.4. Lemma. Let X, Y and Z be topological spaces and f t: S(X,Y). 

Then Y and Z are homeomorphic if and only if there is a g t: S(X,Z) sa-

tisfying G(f,Y) = G(g,Z). 
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Proof: Suppose h Y ~ Z is a homeomorphism. Clearly hof E S(X,Z) and 

G(f,Y) = G(hf,Z). 

On the other hand, let us assume there is a standard map g of X 

onto Z satisfying G(f,Y) = G(g,Z). Define h : Y ~ Z by h(y) = gf-1(y). 

We assert that his single-valued. If f(a) = f(b), then there ·are 

xn E X and hn E G(f,Y) satisfying xn ~a and hn(xn) ~ b. Therefore h 

is single-valued. Similarly, h- 1 is single-valued. By lemma 3.2 both 

h and h- 1 are continuous and therefore h is a homeomorphism. This lem

ma is essentially contained in the main theorem of A. Vobach (14). 

At this point our strategy should be clear: Namely, for each class 

of spaces S .for which there is a •universal' space X (each element of 

S is a continuous image of X) we want to establish that S(X,Y) ~ ¢ for 

each Y E S. By virtue of that fact and lemma 3.4 we will have a clas-

sification of all elements inS. 

3.5. Lemma. Let X be a complete metric space and for each posi

tive integer i let A. c N, A. ~ ¢. If there is a family of closed 
1 1 

k covers Fk = {F (a1 ,a2, ... ,ak) (a1 ,a2, ... ,ak) E A1 x A2 x ... x Ak} 

which satisfy the conditions 

1. 

2. mesh Fk ~ 1/k, and 

n( n+1 3. F a1,a2, ... ,an) :JF (b1,b2, ... ,bn+1) 
n+1 mE An+1 such that F (a1,a2, ... ,an,m) = 

implies there is a 
n+1 

F (b1,b2, ... ,bn+1)' 

then there is a map f E C(A,X) (set A = rr{Ai : i E N}) such that f(a) = 

f(b) implies there are sequences an E A and hn E G(f,X) satisfying 

an ~a and hn(an) ~ b. 



Proof: ·If a= (a1,a2, ... ) E A then set En(a) = E(a1, ... ,an) ={bE A 

b.= a., 1:,; i :,; n}. Let A have the follow.ing (Baire type) metric: 
1 1 

d(a,b) = 1/n where n is the first integer for which an ~ bn. d is a 

complete metric and agrees with the product topology. Clearly the set 

E (a) is both open and closed for each a E A and n E N. 
n 

Define f : A -->- X by f(a) = n{Fn(a1' ... ,an) : n E N}. f E C(A,X) 
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by lemma 3.1. f(E (a)) = Fn(a1, ... ,a ) since on the one hand bE E (a) n · n n 
implies f(b) =n{Fk(b1,b2, ... ,bk): k E N}C Fn(a1, ... ,an). On the 

other hand, if x E Fn(a1, ... ,a ), then there is a sequence {a~ : 
n . J 

aj E Aj' n + 1 :5 j < oo} such that X= n{Fn+k(a1, ... ,an,a~+1'"""a~+k) 
kEN}= f(b) where b = (a1,a2, ... ,an,a~+l'a~+2 , ... ). Clearly b EEn(a). 

Now, let us suppose that a~ b, f(a) = f(b), and let E > 0 be given~ 

Choose n such that E (a) n E (b) = ~ and 1/n < E. Since f(E (a)) = n n n 
n . n . · · . 

F (a1, ... ,an), f(En(b)) = F (b1,b2, ... ,bn) and both cpnta1n f(a) = f(b), 

there is a Fn+1(c1, ... ,cn+1), a 1 n+1 E An+1 and b1 n+1 E An+1' such that 

f ( ) f ( b) Fn+ 1 ( ) _ Fn+ 1 ( 1 ) _ a = E c1, ... ,cn+1 - a1, ... ,an,an+1 -

Fn+1(b1, ... ,bn,b~+1). 

Let a E E(a1, ... ,an,a~+ 1 ). d(a,a) < 1/n < E as required and we 

must now exhibit hE G(f,X) such that d(h(a),b) <E. We define h in 

ternis of a sequence of set-valued maps. On A- {En+l(a1, ... ,an,a~+ 1 ) 

U En+1(b1, ... bn,b~+ 1 )} let h be the identity; on En+1(a1, ... ,an,a~+ 1 ) 

UEn+1(b1, ... ,bn,b~+1 ) we use a sequence of set~valued maps. Set 

En+1(a1, ... ,an,a~+ 1 ) if dE En+1(b1, ... ,bn,b~+ 1 ) 
H1 (d) = 1 1 

En+ (b1, ... ,bn,b~+ 1 ) if dE En+ (a1, ... ,an,a~+ 1 ) 
N En+ 1 ( 1 ) _ { En+2 ( 1 1 ) • 1 A } ow a1, ... ,an,an+1 - u a1, ... ,an,an+1'an+2 . an+2 E n+2 

and En+2(b1, ... ,bn,b~+ 1 ) = U{En+2(b1, ... ,bn,b~+ 1 ,b~+2 ) : b~+2 E An+2}. 

Moreover, for some choice of subscripts in the (n + 2)th coordinate, 



f(En+2(a1, ... ,an,a~+1 ,a~+2 )) = f(En+2(b1, ... ,bn,b~+ 1 ,b~+2 )). Let's 

assume, as indicated, that the choice is a~+2 and b~+2 . No generality 

is lost by this assumption. Set 

12 

if. dEEn+2(b1, ... ,bn,b~+l'b~+2 ) 

if dEEn+2(a1, ... ,an,a~+1 'an+2 ) 

fo.r each such pair a~+2 ,b~+2 in An+2. In general, set 

En+k(a1, ... ,an,a~+ 1 , ... ,a~+k) if dEEn+k(b1, ... ,bn,b~+ 1 , ... ,b~+k) 
Hk(d) = n+k k 

E ( b b b, b, ) . f d En+ ( , , ) 1'"""' n' n+1'"""' n+k 1 E a1, ... ,an,an+1'"""'an+k 

where the above pairs of sets are chosen so that they have identical 

f - images. 

Now we define h on En+1(a1, ... ,an,a~+ 1 ) U En+1(b1, ... ,bn,b~+ 1 ) by 

h(d) = n{Hk(d) : k EN}. By lemma 3.1 h is continuous and onto. But 

2 -1 ( ) h = 1A and therefore h is continuous and onto. h E G f,X since it 

fixes each point or switches it with a point in the same pre-image. 

Finally, d(h(a),b) < 1/n <E. 

Remark: We should note at this point that lemma 3.5 does not estab

lish that f is standard. 

The next lemma is a generalization of a useful fact established 

by Vobach in (15). 

3.6. Lemma. Iff E S(X,Y) and h is a homeomorphism from Z to X, 

then fh is an element of S(Z,Y). 

Proof: Let h be a homeomorphism between X and Z. If f(h(a)) = f(h(b)), 

then there is a sequence xn in X and hn E G(f,Y) such that xn ~ h(a) 

and h (x ) ~ h(b). Define an in H(Z) by a = h- 1oh oh. fohoa = n n. n n n 
fohoh- 1ohnoh = foh. Thus, an E G(foh,Y). Set zn = h- 1(xn). Then 
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. zn ~a and an(zn) = h- 1(hn(h(h-1(xn)))) = h-1(hn(xn)) 4 h- 1(h{b)) = b. 

Therefore foh E S(Z,Y) 

The next result appears in (14). It is the main conclusion of 

· Vobach's paper. It is mentioned here only because .we obtain it so 

easily from lemma 3. 5. 

3.7. Theorem. If X is compact and metrizable, then S(C,X) • •· 

Proof: Let {T(j) : 1 ~ j ~ n1} be a finite closed cover of X whose 

mesh does not exceed 1. For .each T(k) choose a finite number of closed 

subsets T(k,l) of diameter less than or equal to 1/2 whose union is T(k). 

Label this collection {T(k,l) : 1 ~ 1 ~ k2}. Now consider each T(k) n 

T(m) which is non-empty and write it as a finite union of closed sub

sets none of whose diameter exceeds 1/2. Label each set in this union 

in two ways: T(k,l) and T(m,l). We now add each set to the collection 

already obtained for T(k) and T(m). We now have the closed cover 

. {T(k,l) : 1 ~ k ~ n1 and 1 ~ 1 ~ k2} where k2 is some integer larger 

than k2 which accommodates the sets obtained by considering the inter-

sections. Define n2 = maximum {k2} and go back to each collection 

{T(k,l) . k fixed, 1 ~ 1 ~ k2} and add a sufficient number of sets 

(diameter ~ 1/2) to obtain a total of n2 sets. The induction is clear. 

To establish our assertion we need only to note that the family of 

closed covers {T(a1, ... ,an) : 1 ~a; ~ ni, n EN} satisfies the condi

tions of lemma 3.5. Each A; (see proof of 3.5.) is finite and there

fore A is a Cantor set. The proof is completed by observing that f is 

an identification since f is closed. 



3.8. Theorem. (Vobach (14). Let X andY be compact metric 

spaces and f a standard map of C onto X. X and Y are homeomorphic if 

and only if there is a standard map g of C onto Y satisfying G(f,X) = 

G(g,Y). 

Proof: Lemma 3.4. 

Our next task is to extend the results just obtained, namely 3.7 

and 3.8, to the class of locally compact, separable metric spaces. 

Notation: Let us denote C - {1} by C 1 • Si nee C is homogeneous it is 

clear that c .;. {a} "' C1 for all a E: c. 

3.9. Lemma. C1 "' C x N. 
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Proof: Choose a pairwise disjoint collection {Ck : k e: N} of open Can

tor subsets of C such that C 1 = U{Ck : k e: N}. For each n e: N 1 et hn 

c X {n} -+ en be a homeomorphism. Define h : c X N -+ C1 by h{c,n) = 

hn(c). Clearly h is well-defined, one-to-one and onto. Let U be an 

open subset of C1 • Then U = U{Ck n U : k e: N}. We have h- 1(U) = 

U{h- 1(ck n U) : k e: N} = U{h;1(ck n U} k e: N} which is open in c x N. 

Accordingly, h is continuous. Let V be an open subset of C x N. Then 

V = U{Vn x {kn} : Vn is open in C, kn e: N, n e: N} and h(V) = U{h(Vn x 

{kn}) : n e: N = U{hk (Vn) : n e: N} which is certainly open in C1 since 
n 

each en is an open subset of C. Therefore h is a homeomorphism. 

3.10. Theorem. If M is a locally compact separable metric space, 

then S(C x N, M) ~ ¢. 

Proof: In view of lemmas 3.6 and 3.9 it is sufficient to show 

S(C 1 ,M) ~ ¢. * * Let M be the one-point conpactification of M. M is a 



compact metric space. Construct the sequence of closed covers requir-

ed by lemma 3.5 in such a way that the ideal point p belongs to ex-

actly one element of each cover in the sequence. Let f be the element 

of S(c,M*) so induced. We assert that f- 1(p) is a singleton. If f(a) 

= f(b) = p, then evidently p must belong to more than one element of 

some cover, contrary to hypothesis. Hence, f- 1(p) is a singleton as 

claimed. 
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Define g from c• = C - f- 1(p) onto M by g(c) = f(c). Since each 

element of G(f,M*) fixes f- 1(p) we have the inclusion G(f,M*) c G(g,M), 

* h £ G(f,M ) restricted to c• of course. 

g is an identification: Let U be a subset of M such that g-1(u) 

is open in C'. Since p I- U, f-l(U) = g-1(U). C' is open in C and there

fore f- 1(U) is open in C. Therefore, U is open in M* and must be open 

in M since p i U. Hence g is an identification. 

3.11. Theorem. Let X and Y be locally compact separable metric 

spaces and f £ S(C x N, X). X and Y are homeomorphic if and only if 

there is a standard map g of C x N onto Y satisfying G(f,X) = G(g,Y). 

Proof: Lemma 3.4. 

3.12. Corollary. If X is a locally compact separable metric 

space, then S(P,X) ~ ~-

Proof: This follows immediately from 2.2, 2.3, 3.3, and 3.10. 

3.13. Theorem. Let X andY be locally compact separable metric 

spaces and f £ S(P,X). X and Y are homeomorphic if and only if there 

is a g £ S(P,Y) satisfying G(g,Y) = G(f,Y). 

Proof: Lemma 3.4. 
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3.14. Corollary. Let f and g be standard maps of C x N (P) onto 

locally compact separable metric spaces X and Y. X and Yare homeomor

phic if G(f,X) and G{g,Y) are conjugate in H(C x N) (H(P)). 

Proof: The proof of a similar corollary in (14) is utilized here. We 

establish the result for P only since the other case is essentially the 

same. 

Since G{f,X) and G{g,Y) are conjugate in H(P) there is an h E H(P) 

such that G(f,X) = h- 1G{g,Y)h. Define p E S(P,X) by p = foh- 1. We 

assert that G(foh- 1,X) = G(g,Y). If a E G(g,Y), then h- 1oaoh E G{f,X) 
-1 -1 -1 1 and so foh oaoh = f' or foh oa = foh . Hence a E G(foh- ' X). Con-

versely, if foh- 1os = fh- 1 then foh- 1Boh = foh- 1oh = f. Hence h~ 1 osoh 

E G(f,X), orB E G{g,Y). The proof now follows from 3.13. 

We have now established classification theorems (and assorted cor

ollarys) for the class of locally compact, separable metric spaces as 

well as for the class of compact metric spaces. Our last effort in 

this direction is to establish essentially the same set of theorems 

for the complete, separable metric spaces. 

3.15. Theorem. If X is complete, separable and metrizable, then 

S(P,X) ;l! cp. 

Proof: Let us f'i rst construct a sequence of closed covers which satisfy 

the three conditions set forth in lemma 3.5. Let {F(k) : k E N} be a 

closed cover of X of mesh one or less. For eac~ F(k) choose closed 

subsets £F(k,2n) : n E N} of diameter less than or equal to 1/2 whose 

union is F(k). For each non-empty intersection F(k) n F(n) choose 

closed subsets {F(k,4m-1) = F(n,4m-1) : m E N} of diameter no more than 

1/2 whose union is F(k) n F{n). We now reconsider each collection so 



formed for each k and add a sufficient number of subsets of diameter 

less than or equal to 1/2 to insure that each element of N appears as 

a second coordinate for each k. The induction is clear. The family 
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{F(k1, ... ,kn) k; E: N, n E: N} satisfies the hypothesis of lemma 3.5. 

Since each A; = Z (see proof of 3.5.) we have a map f : P ~X such that 

a ~ b, f(a) = f(b) implies there are an E: X and hn E: G(f,X) such that 

an ~a and hn(an) ~ b. It remains for us to show that f is an identi

fication. Unfortunately, this may not be true. However, what we can 

do is construct a second map from P to X by using the map f in such a 

way that the new map retains the 11 transitive point-inverses~' as well as 

being an identification. 

In (10), Michaels and Stone prove that any metric space which is 

the continuous image of the irrationals is also a quotient of the irra-

tionals. In proving this result they construct a sequence {Z; : i E: N} 

of spaces, each homeomorphic toP (let h; : Z; ~ P be the homeomorphis~, 

such that (1) Z = U{Zi : i E: N} and P are homeomorphic and (2) g : Z ~ X 

defined by g(z) = f(h;(z)) if z E: Z; is an identification, where f is 

a continuous map of P onto X. For our purposes, f is the map construct-

-ed at the beginning of the proof. We intend to show that g is standard. 

For each a E: G(f,X) define a .. in H(Z) by 
1J 

h: 1 ah.(z) 
J 1 

z E: z. 
1 

a .. (z) = h: 1 ah.(z) z E: z. 
1J J J J 

z z i Z; u zj 

First let us note that aij E: G(g,X). Let z E: Z and consider g(aij(z)). 

If z i Z; u Zj' then clearly g(aij(z)) = g(z). If z E: Z;, then 

g(aij(z)) = f(hj(hj 1(a(h;(z))))) = f(h;)z)) = g(z). Similarly for z E: Zj" 

Now, let a~ b, g(a) = g(b). Then f(h;(a)) = f(hj(b)) if a E: Z;, 
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n b £ z.. Therefore there are sequences p £ p and a £ G(f,X) such that J n 
p + h.(a) and an(p ) + h.(b). Consider h:1(p ). h:1(p ) +a and n 1 n J 1 n 1 n 
a~.(h: 1 (p )) = h:1(a (h.(h:1(p )))) = h:1(a (p )) + h:1(h.(b)) =b. 1J 1 n J n 1 1 n J n n J J 
Thus, g is a standard map of Z onto X. 

3.16. Theorem. Let X andY be complete separable metric spaces 

and f £ S(P,X). X and Y are homeomorphic if and only if there is a 

standard map g of Ponto Y satisfying G(f,X) = G(g,Y). 

Proof: Lemma 3.4. 

3.17. Corollary. Let f and g be standard maps of Ponto complete 

separable metric spaces X and Y. If G(f,X) and G(g,Y) are conjugate in 

H(P), then X andY are homeomorphic. 

Proof: See the proof of 3.14. 



CHAPTER IV 

SOME STRUCTURE THEOREMS FOR G(f,X) AND REMARKS 

CONCERNING EQUIVALENCE RELATIONS 

4.0. Definition. Let X be a compact metric space and G a sub

group of H(X). Define the relation -as follows: x- y if and only if 

there are sequences xn E X and hn E G such that xn + x and hn(xn) + y. 

We have already seen how each compact metric space determines a 

group which in turn classifies that space. It is therefore reasonable 

to ask the following question: Let G and - be as in 4.0. If- is an 

equivalence relation, is X/- metrizable? Such groups obviously exist 

in view of 3.7. Consider any G(f,Y) where f E S(C,Y). 

Remark: For all groups G c H(X) -is reflexive and symmetric. 

4.1. Theorem. Define x R2y (x R3 y) with respect to G c H(X) 

if and only if for each E > 0 there is a c E X and h E G such that 

d(x,o(c)) +d(o(c),y) < E (d(x,F(c)) + d(F(c),y) <E) where d, o(c) and 

F(c) are a metric for X, the orbit of c, and the orbit closure of c, 

respectively. For the moment let-= R1 (see 4.0.). If Ri is transi

tive, then Rj and Rk are transitive, i,j,k E {1,2,3}. Moreover, all 

three relations determine precisely the same set of equivalence 

classes. 
Proof: Clearly R1 transitive implies that R2 and R3 are transitive. 

Suppose x Ri y, y Ri z for i = 1, 2, 3 and R3 is transitive. Given 
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E > 0 there is a c E X such that d(x,F{c)) + d(F(c),z) < £/4. There

fore there are hand kinG satisfying d(x,h(c)) + d(k(c),z) < E. Hence, 

x R2 z. We also have d(X,h(c)) + d(k(h-1(h(c))),z) < E and sox R1 z. 

Thus, R1 and R2 are transitive. In a similar way we can show the other 

possibility as well as the last statement of the proposition. 

4.2. Definition. Let - be as in 4.0. Set V(X) = {G c H(X) - is 

transitive and G is a group}. For the remainder of this section [xJG' 

or simply [xJ if G is understood, will denote the equivalence class con-

taining x. 

* 4.3. Definition. let F c X. F = U{[xJG [xJG n F ~ $}. 

. . * 
4. 4. Lemma. If G E V( X), then F is closed for each closed .sub-

set F of X. 

~ 
Proof: Let F be a closed subset of X and w E F • Then there is a se-

* quence {~n :· n E N} in F which converges to w. Let xn be that element 

of F such that u ,..., x . Without loss of generality we assume that xn n n 
converges to some x E F. For each n E N there is a z in X and h in . n n 

G satisfying d(u ,z ) + d(h (z ),x ) < 1/n. · nn · nn n But d(w,zn) + d(h0 (zn),x) 

~ d(w,un) + d(un,z0 ) + d(hn(zn),xn) + d(xn,x) and d(w,un) + d(xn,x) + 0 

* * as n + oo, Therefore w - x and wE F . Hence F is closed. 

Notation: Let X/"'= {[xJG : x t X}. 

4.5. Theorem. If G E V(X) and X/"' has the quoti'ent topology, then 

XI,..., is compact and metrizable. 

Proof: By lemma 4.4. {[xJG : x E X} is an upper semi-continuous decom

position of X .. Since X is compact, a well-known theorem (see (9)) for 
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example) gives us that X/~ is Hausdorff. Hence X/~ is metrizable. 

We have presented a collection of subgroups whose associated quo

tient spaces are metrizable. Namely, the collection V{X). An inter

esting question therefore is: If G is a subgroup of H{X), what are 

sufficient {algebraic or topological) conditions that insure G e V{X)? 

Unfortunately, no substantial progress has been made in this direction. 

There are sufficient conditions known which force G e V{X), but as we 

shall see, they are far too severe to be of any value. 

4.6. Definition. {Gottschalk and Hedlund {6)). LetT be a top-

ological group. ACT is left-syndetic if there is a compact KC T 

satisfying KA = T. 

4.7. Definition. {Gottschalk and Hedlund {6)). LetT be a sub

group of H{X) and assume H{X) is a topological group. T is almost 

periodic at x if and only if for each neighborhood U of x there is a 

left-syndetic subset A of T such that xA c U. 

4.8. Theorem. {Gottschalk and Hedlund {6)). Let X be a compact 

Hausdorff space. If T is almost periodic at x for each x in X if and 

only if the class of ,orbit-closures is an upper semi-continuous con

tinuous collection. 

sion. 

{a{c) 

' 4.9. Theorem. Let X be a compact metric space of positive dimen~ 
def 

There does not exist a map f e C{C,X) such that cG(f,X) 

a e G{f,X)}-- = f- 1{f{c)) for each c e C. 

Proof: Suppose such a map f does exist. Since C is compact and X is 

metrizable, certainly f is closed. On the other hand, {cG(f,X) : c e C} 



decomposes C and hence the projection map p : C + C/- (x - y iff x and 

y belong to the same orbit closure) is open (see (6), p. 7). We have 

the following commutative diagram 
p 

C C/-

f"" /h = fop-i 

X 

where h is a homeomorphism defined by hop = f. Hence f is open and X 

must be zero dimensional, a contradiction. 

4.10. Corollary. Let X be a compact metric space with positive 

dimension. Iff is a standard map of C onto X, then G(f,X) is notal-

most periodic. 
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Proof: If G(f,X) is almost periodic 

Surely we have xG(f,X) c f- 1(f(x)). 

then we claim f- 1(f(x)) = xG(f,X). 

If y £ f- 1(f(x)) and Un is a neigh-

borhood base at x, then y £ n{DIG : n £ N} by the standardness of f. n 

But, a well-known theorem (2.31 (6)) gives n{UnG(f,X): n £ N} = xG(f,X). 

Therefore {cG(f,X) : c £ C} is a decomposition of C. However, this 

implies (4.10 (6)) that G(f,X) is almost periodic, contrary to 

theorem 4.9. 

4.11. Theorem. Let X be a locally compact, separable metric 

space. Iff £ C(N x C, X) and zG(f,X) = f- 1(f(z)) for each z £ N x C, 

then X has dimension zero. 

Proof: Let p : N x C + N x C/- be the projection map. Then p is both 

open and closed (see 1.41, 4.10, 4.17, and 4.18 in {6)). We have 
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p 

where h is a homeomorphism defined by hop = f. Therefore f is both open 

and closed. Hence dim X = dim (N x C) = 0. 

Notation: If G c H(X), let X/G be the orbit space with the quotient 

topology. 

4.12. Corollary. Let X be a compact space of positive dimension. 

If f E S(C,X). then C/G(f,X) is not T1. 

Proof: Consider the following diagram: 

p 

C C/G(f,X) 

~/h 
X 

where h is a homeomorphism defined by hp = f. If X/G(f,X) is T1 then 

cG(f,X) = {a(c) : a E G(f,X)} = cG(f,X) p~rtitions C and so G(f,X) is 

almost periodic (see 4.10. (6)), contrary to the conclusions of 4.10. 

Let X be a compact metric space and G a subgroup of H(X). Let us 

assume that G is almost periodic so that X/~ (x ~ y iff x and y belong 

to the same orbit closure) is metrizable. Let p : X -+ X/~ be the pro

jection map. Surely pis a standard map .. The price we must pay is 

dim X/~= 0 which somewhat limits the scope of our study. 

There are some algebraic statements that can be made about G(f,X). 
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They are completely structural in nature and have little bearing on X 

since virtually all G(f,X) must possess these properties. 

4.13. Theorem. Let M be a compact metric space not homeomorphic 

to the Cantor set C. Iff E S{C,M), then 

(1) G{f,M) is not free, and 

(2) G{f,M) is centerless. 

Proof: (1). Since f is not one-to-one G{f,M) ~ {1c}. The proof of 

3.5 allows us to construct h E G{f,M) such that h2 = 1c. 

(2). Choose m E M such that f- 1(m) is not a singleton. There is 

an x E f- 1(m) such that h(x) ~ x, hE G(f,M). Using the technique in 

3.5 we can construct a E G(f,M) such that a(x) = x, a(h(x)) ~ h(x). 

Then h(a(x)) = h(x) ~ a(h(x)). Thus, 'G(f,M) is centerless. 

The next theorem is a generalization of a result by Vobach {15). 

4.14. Theorem. Let D be a compact homogeneous metric space such 

that IT{D; : D; = D for each i E N} and D are homeomor~hic. Let {X; : 

i EN} be a collection of Hausdorff spaces for which S(D;,X;) ~ • for 

each i E N. Set X = rr{X. : i E N}. Then there are p E S(D,X) and p. E 
1 1 

S(D,X;) satisfying G(p,X) = n{G(p;,X;) : i EN}. 

Proof: LethE H(D, rr{D; : i EN}) and qi E S(Di,Xi). Define P; E 

S(D,X.) by p. = q.orr.oh where rr. : IT{D. : i EN}-+ D1. is the projection 
1 1 1 1 1 1 

map on the ;th coordinate. By successive applications of 3.3 and 3.6 

P; is standard for each i. Define p : D -+ X by p(x) = {pi (x) : i E N}. 

Note that p = {q.on.oh : i E N} is equivalent to h followed by q = {q. : 
1 1 1 

i EN} : rr{D. : i EN}-+ rr{X. : i EN}. Accordingly, we show q is stan-, 1 

dard., Suppose {q1.(x1.): i EN}= {q.{y.) : i EN}. Then q.(x.) = 
1 1 1 1 

q;(Y;) for each i and so there are sequences z~ in D; and a1 in 
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G(q.,X.) satisfying z~ + x. and a~(z~) + y .. 
11 1J 1 11 J 1 

j E N} in rr{D. i E N} by z. = {z~ i E N}. 
1 J 1 

Define the sequence {zj 

Clearly z.-+ {x. i EN}. 
J 1 

Let hJ. = {aJ1: i EN}. Then h.(z.) = {a~(z~) 
J J 1 1 

i E N}+ {y. i E N}. 
J 1 

Furthermore, gh. = {q. : i E N} o h. = {q.oa~ 
1 1 1 1 1 

i E N}= {qi i E N} = q 

as required. Clearly q is an identification. 

If a E G(p,X), then p(a(x)) = {pi(a(x)) : i E N} = {pi(x) : i E N} 

which implies pi(a(x)) = pi(x) for all i. HenceaEn{G(p.,X.) :iEN}. 
1 1 

Similarly, a E G(p.,X.) for each i EN gives p.oa = p., or equivalently, 
1 1 1 1 

pea = p. Hence a E G(p,X). 

4.15. Definition. (See (2)). Let G, {G. 
1 

i E I} be groups such 

that G = miGi. Define rri : G -+ Gi by rri {gi i E I} = gi. 
1
, A subgroup 

H of G such that rri(H) = Gi for each i E I is called a subdirect sum of 

the Gi. 

A well-known theorem in group theory (see (2)) is the following. 

4.16. Theorem. Let G be a group with normal subgroups {Gi : i E I} 

satisfying n{Gi : i E KC I}= {1G}. Then G is isomorphic to a sub

direct sum of the groups {G/G. : i E I}. 
1 

Let M be a compact metric space and p E S(C,M). If H c M, let 

S(p,H) = {h EG(p,M) : h(x) = x for each x E C- p-1(H)}. According to 

(16), S(p,H) is a normal subgroup of G(p,M). Again, we generalize a 

result of Vobach's (16). 

4.17. Theorem. Let M be a compact metric space and p E S(C,M). 

If M = U{H : a E A}, then G(p,M) is isomorphic to a subdirect product a 

of {G(p,M) I S(p,Ha- U{HS : S ~a}). 

Proof: We need only to show that {S(p,Ha - U{HS s ~a})} is a disjoint 



collection of normal subgroups of G(p,M). Suppose B ;t a and let h £ 

S(p,H 8 - U{H : a ;t B}) n S(p,H - U{H : a ;t a}). Then h(x) = x for 
a a a 

each x in {C - p-l(H8 - U{Ha : a ;t S}) U {C - p-1(Ha - U{Ha a ;t a} = 

p- 1(u{H : a ;t B}) U p-1(u[H : a ;t a}) = C. Therefore h = 1c. The 
a a 

conclusion follows from 4.16. 

Let X be a compact metric space and f £ S(C,X). Th~ last results 

in this section deal with the relationship between G(f,X) and X/F, F 

a non-empty closed-open subs·et of X. 
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Let X, f and F be as in the preceding paragraph. Then f- 1(F) is a 

Cantor subset of C. For each a £ H(f-1(F)) define a in H(C) by 

l c c i f- 1 (F) 
a(c) = 1 

a ( c ) c £ f- ( F) 

Define F = fa£ H(C) : a£ H(f- 1(F))J. F is a subgroup of H(C). 
* . 

For each a £ G(f,X) define a £ G(f,X) by 

* I c c £ f- 1( F) 
a (c) = 

a(c) c i f- 1(F) 
* * * Define G = {a : a£ G(f,X)}. Clearly G is a subgroup of G(f,X). 

4.18. Theorem. The following statements are true. 

1) F is a subgroup of H(C), 

* 2) G is a normal subgroup of G(f,X), and 

* 3) G is a continuous homomorphic image of G(f,X). 

Proof: 1) is obvious. 2) Let a £ G*, h £ G(f,X), and x £ f- 1(F). Then 

h(x) £ f- 1(F) and a(h(x)) = h(x). Thus, h- 1(a(h(x))) = x. Hence 

( -1 )* -1 -1 * * h oaoh = h oaoh and h oaoh £ G . For a, S £ G we surely have 
-1)* -1 . * * (aoS = aoB . 3) Define e : G(f,X) + G by e(a) = a (assume 
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* G(f,X), G have the c/o topology). Clearly 8 is onto and well-defined 

* * by definition. If a -+a, then certainly a -+a . Therefore 8 is con-n n 

tinuous. If c i f- 1(F) and a, BE G(f,X), then a(c), B(c) i f- 1{F). 
* * * Thus, a {B (c)) = (aoB) (c). 

* 4.19. Theorem. G ED FE V{C) and c;~"' X/F where~ is given by 

* 4.0. with respect to the group G ED F. 

Proof: ~ is certainly reflexive and symmetric. Suppose c1 ~ c2, 

* c2 ~ c3, and E > 0 is given. There are a, b E C and h, k E G ED F such 

that d(c1,a) + d(h(a),c2) < E and d(c2,b) + d(h(b),c3) <E. If c1 i 

f- 1(F), then we can assume a i f- 1(F). Now h = goa, g E G* and a E F. 
-1 -1 Therefore a(a) =a, h(a) = g(a) if (F), and b i f (F). Thus, c1 ~ c2 

(with respect to G{f,X)) and in a similar way c2 ~ c3 (with respect to 

G(f,X)). Therefore there is an e E C and g' E G{f,X) such that d(c1 ,e) 

+ d(g'(e),c3) <E. Again we assume e i f- 1(F). Thus g'(e) = {g')*(e). 

If c1 E f- 1(F), then a E f- 1(F) and h(a) E f- 1(F). Therefore, c2 E 

f- 1(F) and c3 E f- 1(F). f- 1(F) is homogeneous and we have c1 ~ c3 (with 
* * * respect to G @ F) as asserted. Hence, G @ F is transitive and G ~ F 

E V(C). 

* * Clearly G n F = {1c} and ga = ag for each g E G and a E F. 
* Therefore G ~ F is a group. 

Consider p : C-+ X/F given by p{c) = n(f(c)), n : X-+ X/F the 

* quotient map. G{p,X/F) is precisely G ED F and therefore C/~ (with 

* respect to G ED F) ~ X/F. 



CHAPTER V 

TOPOLOGICAL PROPERTIES OF STANDARD MAPS AND 

SOME RELATIONSHIPS BETWEEN X AND G{f,X) 

In this section all spaces are compact and metrizable. We will 

also be considering the function spaces S(C,X) and G(f,X) as well as 

the group G{f,X). All function spaces are endowed with the compact

open topology. 

We will develop some of the basic topological properties possessed 

by S(C,X) and G(f,X). We will also determine sufficient conditions on 

G(f,X) which force X to have certain characteristics. 

A reasonable starting point is the investigation of the relation-

ship between S{C,X) and C(C,X). 

5.0. Theorem. Let M be a compact metric space and f E C(C,M). 

If p E S(C,M), then there is a g ~ S{C,C) such that pog E S{C,M) and 

dist{f,pog) < E for any E > 0. 

Proof: Given E, let {Cj : 1 :::; j :::; n} be a decomposition of C satisfy

ing following conditions: 

1. Each c. is both open and closed, 
1 

2. c. n C. = ¢, i ;t j , and 
1 J 

3. diam f(Cj) < E for each i. 

Define Ej = p- 1(f(Cj)) and Dj = C x Ej x {1/j}. Let V = U{Dj : 

1 :::; j :::; n} and note Dj ~ V ~ C. If h E G{p,M), then h(ej) = Ej for all 
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j. Construct as H(C,V) such that a(Cj) = Dj and define q saC{C,C) by 

q = lloa where ll is the projection map on the Ej - coordinate. ll s 

S(V,C). If ll(c1,e1,1!j 1) = ll(c2,e2,1/j 2), then e1 = e2 by definition of 

ll. Let xn = (c1,e1,1/j 1) for each n and choose h s H{C) and k s 

H({1/1,1/2, ... ,1/n}) sue~ that h(c1) = c2 and k(1/j 1) = 1/j2. 

Then (h,1C'k) s G(ll,C) and (h,1c,k)(xn) + (c2,e2,1/j2) {equals in fact) 

as required. In view of 3.6 lloa s S{C,C). Define g s C(C,M) by q = 

poq = {poll)o a. By 3.6 g £ S{C,M) ·if poll E S{V,M). But poll E S(V,M) 

by 3.3. Hence g s S(C,M). 

Let x s C and x E Cj for some j. Consider g(x) = p(ll(a(x))). Then 

a{x) s D. and ll{a{x)) E EJ .. Therefore, p(ll(a(x))) E f(c.) which yields 
J J 

dist{f,poq) < E. 

5.1. Corollary. S{C,M) is a dense subset of C{C,M). 

Remark: Note that 5.0 actually states that pS{C,C) n S{C,M) is a dense 

subset of C{C,M) for each p s S{C,M). 

5.2. Definition. Let f E S(C,M) and K(f) the decomposition of C 

by the point-inverses of f. Define A(f,M) = {a s H(C) : a(D) E K(f) 

for each D s K(f)}. It is convenient to think of the elements of A(f,M) 

(G{f,M)) as those elements of H(C) which switch (preserve) the fibers 

of f. 

5.3. Theorem. The following statements are true. 

(1) There is a continuous homomorphism from A{f,M) to H(M) with 

kernel G(f,M). 

(2) A(f,M) is a closed subset of H(C). 

(3) G{f,M) is a closed (in H{C)) normal subgroup of A(f,M). 
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Proof: (1) Let h E A(f,M) and define a(h) by a(h)(m) = f(h(f- 1 (m)))~ 

By a well-known theorem (see (3}, page 123) a(h) is continuous if a(h) 

is single-valued. But this is clearly true since h preserves the fiber 

structure of f. Similarly [a(h)J-1 is continuous and therefore a(h) E 

H(M). 

a is continuous: Let (F,U) be any subbasic open set of H(M). Then 

a- 1((F,U)) = (f-1(F), f- 1(U)) n A(f,M). Hence a is continuous. 

a is a homomorphism: Let h1' h2 E A(f ,M). Then a(h1 oh2) = 

-1 -1) ( -1 • foh 1oh 2of = (foh1of o foh 2of ) s1nce h1 and h2 preserve the fiber 

structure of f. Thus a(h1oh2) = a(h1) o a(h2) as required~ 

kernel a= G(f,M): Clearly for each h E G(f,M) a(h) = 1M. If 

a(h) = 1M' then by definition fohof- 1 = 1M. For each m E M we have 

f(h(f- 1(m))) = m, or equivalently, h(f-1(m)) c f- 1(m). But h E A(f,M) 

and henc'e h(f- 1(m)) = f- 1(m). Therefore h E G(f,M) and G(f,M) = 

kernel a. 

(2) Let h E A(f,M) and let hn E A(f,M) be a sequence such that 

hn ~h. Let a be the continuous homomorphism defined in (1). We will 

show that a(hn) converges to some element k of H(M) and that a(h) = k. 

Let p and p+(d and d+) be complete metrics for C and C(C) (M and 

C(M)), respectively. Let E > 0 be given and choose 8 according to the 

uniform continuity off such that d(f(x),f(y)) <.E for each x andy sa

tisfying p(x,y) < 8. Since h ~ h there is an integer N such that 
n 

+ n,m > N implies p (h h ) < 8. Thus, d(a(h )(y),a(h )(y)) = n, m n m 
d(f(h (f- 1(y))), f(h (f-1(y)))) < E provided n,m > N, y arbitrary. n m 
Hence a(h ) is a Cauchy sequence in the complete space C(M). Let n 

lima(hn) = k E C(M). Then foh or 1 + k and foh ~ kof. Therefore 
n n 

foh = kof. In a similar way foh- 1 ~ foh- 1 = k 1 of, k 1 s C(M). Hence 
n 



k0 k1 = 1 = k1 ok. Therefore k E H(M). . M 

We conclude that A(f,M) is closed. 
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-1 fohof = k implies h E: A(f,M). 

(3) G(f,M) is a closed (in A(f,M)) normal subgroup of A(f,M) by 

virtue of (1). Since A(f,M) is closed in H(C), we have G(f,M) is closed 

in H(C). 

The next step, having established 5.3, is to show A(f,M) ~ G(f,M) 

for some f e S(C,M). We do not know if this is the case for all 

f E: S(C,M). Obviously G(f,M) = A(f,M) for some choices of M. For 

example, any rigid compact metric space (A space is rigid if it's homeo

morphism group is trivial . ..,This type of result can be found in (7)). 

The following definitions and theorem 5.7 are due to R.D. Anderson (5). 

We will sketch it's proof for later use. 

5.4. Definition. Y is an infinite product space if Y ~ 

i e Z where Vi ~ Y for all i and Z is the set of integers. 

II{Y. 
1 

If g. E: H(Y.,Y) for each i E: Z, then we define the infinite shift 
1 l 

i E: Z}) = {x. : i E: Z} where x. = 
1 1 

5.5. Definition. A discrete flow is a triple (Z,Y,a) where Z is 

the additive group of integers, Y is a separable metric space, and a is 

a map from Z x Y onto Y such that (1) a(n1+n2,y) = a(n1, a(n2,y)), and 

(2) a(O,y) = y for each y E: Y. If v• c Y and a(Z,Y') = v•, then we say 

that (z,v• ,a) is a subflow of (Z,Y,a). 

The flow (Z,X,S) is lifted by f to the flow (Z,Y,a) iff e C(Y,X) 

and the following diagram commutes. 



Z X Y y 

(1. f) I I f 
z X X X 

8 

5.6. Definition. The flow (Z,Y,a) is said to be guasi-universal 

with respect to~ class K of spaces if for any X s X, any flow (Z,X,s) 

can be lifted by a mapping f to a subflow of (Z,Y,a). (Z,Y,a) is uni

versal with respect to x if (Z,Y,a) is quasi-universal and f may be 

specified to be a homeomorphism. 

5.7. Theorem. For any infinite product spaceY, the infinite 

shift 0 generates a universal discrete flow with respect to the class 

of spaces which can be embedded in Y. 

Proof: Let f 0 : X~ Y be an embedding and let h E H(X). Let (Z,X,s) 

be the discrete flow defined by s(n,x) = hn(x) and let (Z,V,0) be the 

discrete flow defined by 0(n,y) = 0n(y). 
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Define f : X ~ Y by f(x) = {y. 
1 

: i E 
-1 i Z} where yi = gi (f0(h (x))). 

Clearly f is an embedding. Set A= f(X). We require (Z,A,a) to be a 

subflow of (Z,V,0) and the following diagram to be commutative. 

(Z,A,0) 
(1 ,f-1) f 

(Z,X,s) 

0 

(3 

-1 i+1 Let f(x) ={a; : i E Z}. Then ai+1 = gi+1(f0 (h (x))), or 

equivalently, gi 1(gi+1(ai+1)) = gi 1(f0(hi+1(x))) = gi 1(f0(hi(h(x)))). 

Hence 0f- 1 = f- 1h. 
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The next theorem is a slight generalization of a result by Anderson 

(5). It is a standard map version of his theorem and therefore relevant 

to our discussion. 

5.8. Theorem. Let M be compact and metrizable. If hEH{M), then 

there is a standard map ¢ s S{C,M) and a E: H(C) such that cpoa = ho¢ .. 

Proof: Let {Z,C,crc) be the discrete flow on the Cantor set C generated 

by~- Let gi be the homeomorphisms associated with the infinite pro

duct. Similarly, we define (Z,I7crioo) with associated homeomorphisms 

gi E H(I~,Ioo), where Ioo is the Hilbert cube. 

Let f0 E S(C0,r;) and define f E C(C,Ioo) by nk(f({xi : i e: Z})) = 

gk- 1(g0(f0(g01(gk{nk({xi : i E: Z})))))). We assert that f E: S(C,I 00
) and 

criooof = foaC. The latter statement follows since gk=~(gk{nk(f({x;})))) 

= gk=~(g0 (f0 (g0 1 (gk_ 1 (g;~ 1 (gk(nk({x;})))))))), or criooof = foac. Now, 
-1 00 let us assume that f( {xi}) = f( {yi}). For each k, f0g0 gk e: S(Ck,I 0) by 

lemma 3.6. Therefore, for each k E Z there are sequences {z~ : n s N} 
k -1 00 k k k in Ck and hn E G(f0og0 ogk,IO) such that zn 7 xk and hn(zn) 7 yk. De-

fine H E H(C) by H = {hk : k e: Z}. Clearly Hn e: G(f,Ioo) and n n n 
k Hn( {zn : k e: Z}) converges to {yk : k e: Z}. Since f is closed it is an 

identification and hence standard. 

Let (Z,M,s) be the flow generated by he: H(M). By 5.7 (Z,M,s) can 

be embedded as a subflow of (Z,I 00 ,cr). Let (Z,F,cr) be that subflow. We 

have 
a 

z X F . ____ ._...., 

(l,k) I 
z X M 

13 
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where k- 1 : M ~ F is a homeomorphism. Set c• = f- 1(F) and consider the 

following commutative diagram. 

l X C' 

(1..) I 
z X M M 

s 

where~= k(flf-1(F)). c• is closed since M is compact. Therefore 

C X c• is a Cantor set. Define the flow (Z,C 1 X C, aC) by oC(n,c• ,c) = 

(oc(c•,n),c). Then 

oc 

Z X (C' X C) c· X C .. 

(1 ,TIC') I j TIC' 

oc 
l X C' C' 

(1,¢) 

J J 
¢ 

l X M M 

s 

is a commutative diagram and ¢ = ¢Tic• E S(C' X c, M). 

5.9. Lemma. Let M be a compact metric space, f E C(C,M), hE H(M), 

and K(f) the decomposition of C by the point-inverses of f. If fa = 

hf for some a E H(C), then a{D) E K(f) for each D E K(f). 

Proof: Let mE M. Then f(a(f- 1(m))) = h(f(f-1(m)) = h(m), or a(f-1(m)) 

-1 ( c f ( h m)). Therefore, for each D E K(f) there is a o• E K(f) such 

that a{ D) c o•. Similarly, for each D E K(f) there is a o• E K(f) such 

that a- 1(D) c o•. If a{D) ~ 01 ' then there is a d 1 E 01 such that d 1 i 



a(D). But a- 1(o•) n D 7 ¢. Hence a(D) = o•. 

We can finally state and prove the promised theorem. 

5.10. Theorem. Let M be a non-rigid compact space. Then there 

is a Cantor set C and standard map f from C onto M such that A(f,M) 7 

G(f,M). 

Proof: Follows immediately from 5.8 and 5.9. 

Chapter five up to this point has dealt only with the properties 

possessed by G(f,M) and A(f,M) and their relationship. We will now 
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establish conditions on G(f,M) which force M to assume certain topolog-

ical characteristics. 

Let M be a compact metric space and p E S(C,M). Recall that for 

N C M, S(p,N) ={a E G(p,M) a(x) = x for each x in C - p- 1(N)} is a 

normal subgroup of G(p,M). 

Remark: If N is a closed-open subset of M, then N ~ p- 1 (N)/~ (~with 

respect to S(p,N) as defined in 3.0:). This is an easy consequence of 

the following argument. Define p: p- 1(N) + N by p(x) = p(x). For 

each a E G(p,M) set 

-;;-(x) = 
a(x) 

X 

and note that-;;- E S(p,N). Thus, p(x) = p(y) implies there are sequences 

x E p-1(N) and h E G(p,M) satisfying x + x and h (x ) + y. Clearly n n n n n 
h E (Sp,N) and h (x ) + y as required. n n n 

A remark due to A.R. Vobach (16) is the following: If XU Y is a 

separation of M, then G(p,M) = S(p,X) m S(p,Y). A converse is true. 

5.11. Theorem. Let M be a compact metric space. M is not 



connected if and only if for each f E S(C,M) we have 

1) G(f,M) = H e K and 

2) a separation C = CH U CK such that H fixes each element of 

CK and K each element of CH. 

Proof: We denote C/~G' CH/~H and CK/~K by C/G, CH/H and CK/K, respec

tively. We use the symbol uF to denote free union. Define h : C/G + 

CH/H uF CK/K by 

[X]K 

Let pG : C + C/G, PH 

X E CK 

CH + CH/H and pK: CK + CK/K be the quotient 

maps. Suppose B is a closed sub~et of CH/H uF CK/K, say B = BH uF BK. 

Then h- 1(B) = pG(pH1(BH)) u pG(pk1(BK)) is closed. Clearly h is 

one-to-one and therefore a homeomorphism. Hence M is not connected. 
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The converse follows immediately from Vobach's remark since p-1(X) 

u p- 1(Y) is a separation of the desired type. 

An idea closely related to 5.11 is expressed in the following 

theorem. 

5.12. Theorem. Let HandKE V(C) be such that there is a sepa

ration CH u CK = C such that H and K fix each element of CK and CH' 

respectively. Then the following statements are true. 

(1) G = H e K E v(c) 

(2) C/G ~ CH/H uF CK/K 

Proof: (1) Clearly h m K is a subgroup of H(C). In view of 4.5 it 

suffices to show that~ (with respect to H m K, see 4.0.) is transitive. 

Suppose x - y andy ~ z, and let E > 0 be given. Choose a, b E C and 
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h1 • k1, h2 • k2 E: G satisfying d(x,a) + d(h1k1(a),y) < E: and d(y,b) + 

d(h2k2(b),z) < E. If x E: CH' then without loss of generality we can 

assume a E: CH. Thus, h1k1(a) = h1(a) which implies x ~Hy (with respect 

to H). Similarly, y ~Hz. H E: V(C) implies x ~Hz and hence x ~ z. 

Therefore, G E: V(C). A similar argument applies if x E: CK. The proof 

of (2) is contained in 5.11. 

The last two theorems in this section deal with contractibility 

and the fixed-point property. 

5.13. Definition. Let C' C C and V', V decompositions of C' and 

C, respectively. A retraction r : C + c• is cal~ed fiber-preserving if 

given D E: V we have [r(c1)J0 , = [r(c2)J0 , for each c1 ,c2 € D. 

Remark: Note that any closed subset of C is a retract of C. 

5.14. Theorem. Let X be a compact metric space embedded in ! 00
• 

Let ~ E: C(C,Ioo) be continuous and c• = ~- 1 (X). Define ~· = ~lc• and 

let K(~) and K(~') be the decompositions of C and c•, respectively, 

induced by the point-inverses of ~ and ~· respectively. If there is a 

fiber-preserving (with respect to K(~), K(~')) retraction r : C + c•, 

then X is a contractible Peano continuum. 

Proof: We identify C/K(~) and C/K(~') with Ioo and X, respectively. 
( 

Consider the following diagram 
-
r 

C'/K(~') 

1 •. 
c c• 

r 
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where r([cJK(~)) = <P'r<P- 1(CcJK(<P)). r is well-defined since r is fiber

preserving and hence is continuous. Clearly r is a retraction and thus 

X is a contractible Peano continuum. 

Remark: The interesting question, at least from our point of view, is 

what happens if we require <P to be standard? What properties must 

G(<J>,l 00
) possess in order to inducer? 

5.15. Theorem. Let X be a compact metric space. Then X has the 

f.p.p. (fixed point property) with respect to homeomorphisms if and only 

if for each f E S(C,X) and h E A(f,X) there is at least one D E K(f) 

such that h(D) = D. 

Proof: Suppose X has the f.p.p. with respect to H(X) and let f E S(C,X). 

Consider A(f,X) and let a E A(f,X). As before, theorem 5.3 we have a 

continuous homomorphism~ : A(f,X) ~ H(X). Then there is an x EX such 

that (~(a))(x) = f(a(f- 1(x))) 

a(f- 1(x)) = f- 1(x). 

= x. Since a E A(f,X), we conclude that 

Conversely, lethE H(X). By 5.10 there is a standard map f and 

a E A(f,X) such that foaof- 1 ~ h. By hypothesis there is a D E K(f) 

such that a(D) =D. Set m = f(D). Then h(m) = f(a(f- 1(m))) = m and X 

has the f.p.p. with respect to homeomorphisms. 

Remark: Again, the question to ask is which property of G(f,X) will 

produce such behavior in A(f,X)? 
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