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ABSTRACT 

Mississippian reservoirs are among the most prolific oil and gas producing 

reservoirs in the mid-continent. Understanding regionally and locally where 

Mississippian sweet spots for petroleum exploitation are located is a key to fully 

exploiting their resources. Assuming a petroleum system exists, rock properties as 

determined from petrophysical logs are one of the most important factors in 

determining how a well will perform. As decline curves can be used to predict 

future performance of a well, based on direct production measurements, 

petrophysical log signatures should be related to predicting future well 

performance. Based on this premise, a novel approach using petrophysics and data 

science is tested to find and rank similar packages of rock to each other based on 

percent sameness using cosine similarity and K-means clustering. This study 

explores the methodology, practicality, and limitations of evaluating the 

relationship of basic petrophysical log signature packages to production volumes 

within the Anadarko Basin, as well as the greater ancient “Oklahoma Basin” using 

an integrated petrophysical, data science, and sequence stratigraphic approach. The 

workflow discussed herein is designed to search through a data set comprised of 

25,673 petrophysical well logs in search of Gamma Ray signatures that are 

correlative with that of a designated Mississippian sweet spot from one given well. 

Not only is this method important in the search for petroleum, but it can also be 

applied to other commercial means of global resource exploitation. 
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INTRODUCTION 
 

The Anadarko Basin of Oklahoma has had successful hydrocarbon 

exploration and production since the early 20th century (Brown, 2020), and still 

today there are many untapped resources for both conventional and 

unconventional drilling (Brown, 2020). The Anadarko Basin has also been the 

location of many technological advancements in oil and gas (Brown, 2020). One 

problem encountered while working in this basin that most certainly exists in all 

other petroleum basins, is the use of close proximity exploration in order to 

purchase acreage and drill new wells. Horizontal drilling may appear to be 

statistical, but that would only be true to the extent of the reservoir. That is, after 

a few good wells are completed in an area, the price to purchase acreage in 

adjoining sections suddenly increases, which can mean that companies can pay 

more for the riskiest assets. With the exception of Ball et al. (1991) Petroleum 

Geology of the Anadarko Basin and the USGS system assessment (2010), few 

studies have looked at this amount of data and tried to make a regional 

comparison of lithological units with the advent of contemporary unconventional 

exploration with respect to close proximity exploration. Presented herein is a 

novel approach to comparing reservoir electrofacies across the basin, in which 

log attribute analysis was performed, and then clustering based on sameness, and 

finally a comparison of well production profiles.   

Previous studies have investigated the usefulness of machine learning in 

different aspects of geosciences. For example, with respect to geophysical data, 

Bougher (2016) argued that most geophysical data analysis was based on visual 
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correlations and pattern recognition, which can be used to train a supervised 

learning framework. He argued that with the complexity of the Earth’s 

sedimentary layers and with issues that often come up during seismic acquisition 

and processing, using unsupervised learning could prove to be more useful in 

extracting information directly from the data than using conventional physical 

models. With respect to geological exploration and exploitation, others have used 

machine learning to try and determine what the most important factors are for 

successful well performance. For example, when comparing the effects of 

different geologic and completion parameters, Luo et al. (2018) found that 

normalized volume of proppant, thickness, and structural depth of Middle 

Bakken Shale reservoirs proved to have the greatest effects on reservoir 

performance. Others have successfully used Artificial Neural Networks (ANN) to 

predict lithology, such as has been used in the area of investigation by 

Wethington (2017), Drummond (2018), Miller (2018), Hickman (2018), Miller 

(2019), and others. Of these, Wethington (2017), Drummond (2018) and 

Hickman (2018) also employed the use of Derivative Trend Analysis which can 

aid in the interpretation of high order relative sea level cycles (Appendix B-2). It 

is important to note when using Derivative Trend Analysis, that it is up to the 

interpreter to determine if the cycles are a result of lateral or vertical 

accommodation fill. That is, that if the cycles are local, they are likely horizontal, 

but if they are regional, they are likely vertical (Pigott and Bradley, 2014).  For 

this study the focus will be aimed at a few of the most prolific oil and gas 

reservoirs in Oklahoma, primarily the Mississippian-aged Meramec, Osage, 
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Sycamore Lime and Caney Shale. A big data approach is taken to try and answer 

some questions that have been posed from previous studies and determine the 

correlation between Anadarko Basin Meramec reservoirs and its laterally 

equivalent constituents in other locations of the Anadarko as well as Ardmore 

and possibly Arkoma Basins. A regional picture of the tectonic provinces of the 

study area is shown in Figure 1. 
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Figure 1: Regional map of tectonic provinces of Oklahoma and Texas panhandle. 
(from Miller (2019) and Miller et al. (2021); modified from Dutton, 1984; Campbell 
et al., 1988; McConnell 1989; Northcutt and Campbell, 1995; Johnson and Luza, 
2008; LoCriccho, 2012) 
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Mississippian time in Oklahoma consisted of many cycles of high stands 

and low stands, with carbonates dominating during transgressions and 

siliciclastics dominating during regressions. The Meramec of the STACK 

(Sooner Trend of the Anadarko (Basin) in Canadian and Kingfisher (Counties)) 

consists primarily of carbonate and siliciclastic sediments that were deposited on 

a large shallow carbonate ramp and move laterally into a basinal setting (Price et 

al., 2017; Miller, 2019; Miller et al., 2021). Miller (2019) and Miller et al. (2021) 

identified five primary lithologies in his study using cored wells and applied a 

form of supervised machine learning for non-cored wells. He designated five 

lithologies: mudstone, argillaceous siltstone, argillaceous-calcareous siltstone, 

calcareous siltstone, and silty limestone. Other previous studies have found 

comparisons to the Meramec of the STACK in different locations in Oklahoma. 

Shelley (2016) and Shelley et al. (2019) found promising relation between the 

rock outcrops of the Pryor Quarry in northeast Oklahoma to the Shaffer 1-23 

cored well in Blaine County, further showing how siliciclastics were widely 

deposited during low stands in Oklahoma in the Mississippian. Shelley (2016) 

also determined that the best Meramec reservoir quality in Oklahoma would be 

located at the base of the sequences, and that it could even be predicted through 

human and machine learning (ML) recognition of the Facies 1 signature from his 

study using a sequence stratigraphic approach. Miller and Cullen (2018) found 

that when looking at thin sections from Meramec siltstones in Blaine County and 

comparing them to Sycamore siltstones of the Arbuckle Mountains, there are no 

discernable differences.  
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  This study takes the contributions of others and attempts to use a new 

approach to show how lithology is the dominant factor in horizontal well 

production results. Machine learning techniques are applied to analyze 

quantitative curve shape across the entire data set through comparison and cluster 

analysis. The geologic background work for these ideas was provided through 

previous studies (Wethington, 2017; Miller, 2018). The methods here are purely 

computational based well log and production analysis. This investigation asks 

three essential questions: 

1. How can one optimize vast amounts of petrophysical data to delineate 

unconventional sweetspots? 

2.  Can machine learning be used to effectively compare lithology and classify 

log sequence stratigraphy across a basin? 

3. Similarly, can machine learning incorporate vast amounts of data to predict 

well production? 

 

GEOLOGIC SETTING 

The North American paleogeography during the Mississippian and the 

eventual formation of the Anadarko Basin in Oklahoma were related to three 

principal tectonic events: the Acadian, Antler, and Proto-Oachita orogenies 

(Gutschick and Sandberg, 1983). The energy from these events gave way to the 

formation of the Transcontinental Arch which striked from northeast to 

southwest and divided the Madison Carbonate Ramp to its northwest and the 

Burlington ramp to its southeast (Appendix A-1).  
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The prominent oil and gas basins of Oklahoma were not defined to their 

current state until Pennsylvanian time (Johnson and Others, 1988). Throughout 

the Cambrian through late Mississippian, this entire region was a part of the 

ancient “Oklahoma Basin”, a shallow epicontinental sea in a tropical to 

subtropical environment (Figure 2; Appendix A-4) (Johnson and Others, 1988). 

The primary well known source rock for much of Oklahoma and specifically the 

Mississippian reservoirs of the study area is the Woodford Shale (Cardott and 

Lambert, 1985). The Woodford was deposited in euxinic seas during late 

Devonian to early Mississippian time (Cardott and Lambert, 1985). Mississippian 

time in ancient Oklahoma represented shallow well oxygenated seas and the 

deposition of fossiliferous limestones and downdip of those, siltstones and 

mudstones (Price et al., 2017). During the late Mississippian, subsidence of the 

Oklahoma aulacogen failed rift was followed by a collision of Gondwana and the 

North American plate (Johnson and Luza, 2008). More Orogenic activity during 

the Pennsylvanian compartmentalized the Oklahoma Basin into the distinct 

tectonic provinces of today. The Anadarko Basin where the test well is located is 

considered to be an asymmetrical foreland basin striking from the northwest to 

the south east (Johnson and Others, 1988). Spatial confinement of all Oklahoma 

basins are provided by the Wichita uplift to the west, the Arbuckle uplift to the 

south, the Nemaha ridge to the east, and the Ouachita uplift to the south east 

(Figure 3).  

The primary target of this study is Mississippian reservoirs. During the 

Mississippian, there were four main depositional episodes: Kinderhookian, 
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Oseagean, Meramecian, and Chesterian (Figure 4). The main focus will be on the 

Osagean and the Meramecian units at the top of the Kaskaskia sequence. Both 

the Osagean and Meramecian were deposited in mostly greenhouse conditions, 

but towards the upper Meramecian the transition to icehouse can be seen with 

higher frequency sea level changes (Appendix A-2). The Meramec is often 

characterized as being deposited on a gently sloping ramp with carbonate rich 

deposits proximally and mixed carbonate and siliciclastics basinward (Johnson 

and Others, 1988). One question that will be answered in the results of this study 

is what sort of relationship exists if any between Meramec, Osage, Sycamore 

Lime, and Caney Shale, chronostratigraphically and as reservoirs (Appendix A-

3). 
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Figure 2: Paleogeographic representation of Late Mississippian (325 Ma) 
Oklahoma. Exposed land is shown in brown and green and the color blue of the 
water grades darker with increasing depth. Ancient Oklahoma Basin is outlined. 
Modified from Blakey (2011). 
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       Nemaha Ridge 

Figure 3: Paleogeographic representation of Early Pennsylvanian (315 Ma) 
Oklahoma. Exposed land is shown in brown and green and the color blue of the water 
grades darker with increasing depth. Orogenic activity during this time separated the 
Oklahoma Basin into the Anadarko, Arkoma, Marietta and Ardmore Basins of today. 
Modified from Blakey (2011). 
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 Figure 4: Stratigraphic, onlap and sea level curves for the Carboniferous 
Period. The Mississippian has been highlighted in green as it is the primary 
Epoch of study. Modified from Haq and Schutter, (2008). 
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PETROLEUM BACKGROUND 

For this study, the primary type log is a Mississippian Meramec log 

signature package from the STACK play in Oklahoma. Miller (2018) and Miller 

et al. (2019) identified the prominent reservoir lithologies in a coarsening upward 

pattern to be primarily mudstones, argillaceous-calcareous siltstones, silty 

limestones, and fossiliferous sandstones. The maximum flooding surface caps 

the Lower Meramec, a retrogradational parasequence set (Figure 5)(Appendix B-

1). The most favorable reservoir quality is found within the higher porosity and 

permeability argillaceous lithology units, primarily the parasequences that are 

directly above and below the maximum flooding surface. The Gulf Oil 1-25 

Rohling used in the comparison is clastic dominated and would be located 

somewhere on the paleo ramp to basin transition. Previous studies have found 

lithostratigraphic correlation between the lower Meramec and upper Sycamore, 

as well as the upper Meramec with the lower Caney unit, though it is unclear 

where exactly this ramp to basin transition is regionally and stratigraphically 

(Miller (2018) and Miller et al. (2019)). According to Droege and Vick (2018), 

the Meramec is the highest producer and most commonly developed reservoir in 

the STACK, while the cherty Lower Osage formation in the western part of the 

STACK is estimated to have the highest amounts of oil-in-place volumes. In 

2017, Devon Energy completed a Meramec well that produced at a peak rate of 

6,000 BOE per day in Kingfisher County (Droege and Vick, 2018). This would 

be a new BOE peak rate record for the STACK play (Droege and Vick, 2018). 
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Figure 5: Well log responses alongside core descriptions for the Gulf Oil 1-25 
Rohling and the Gulf Oil 1-23 Shaffer. Lower to middle Meramec can be seen in the 
Gulf Oil 1-25 Rohling and middle to upper Meramec can be seen in the Gulf Oil 1-23 
Shaffer. The Meramec lithofacies from these wells was used as the prevailing 
lithology for the formation, and used to compare across the entire data set. The 
Meramec here has seven sequence stratigraphic zones separated by shaley flooding 
surfaces. The Maximum Flooding surface is seen between the retrogradational and 
progradational parasequence sets. Directly above and below the maximum flooding 
surface is where the optimal reservoir quality is found. Modified from Miller (2018) 
and Miller et al. (2019). 
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 METHODS 

Data Availability and Quality 

With Oklahoma’s long history of oil and gas exploration and production, 

a tremendous amount of data has been generated.  The dataset includes 43,111 

digital well logs from across the state of Oklahoma, spanning the Anadarko, 

Arkoma, Marietta and Ardmore Basins (Figure 6).  These logs were provided by 

Cosmo Energy in Oklahoma City. With the goal of the project being to take a big 

data approach to some traditional and novel well log pattern recognition 

techniques, the LAS data set had to be normalized and transformed from the raw 

form into a more useful dataset. 

The first step in order to be able to compare all of the logs together was 

the need for a tabular format database in which all well data could be stored. For 

this a free python package that is very well maintained and published by the 

Canadian Well Logging Society that can read and write LAS files called “Lasio” 

was used.  Lasio is compliant with many types of LAS files even those with 

errors and non-traditional formatting (Inverarity, 2020). Post Lasio extraction it 

was imperative to breakout the tables into a “well_header” table, a 

“master_table” and a “well_digits” table to get a better grasp on the data and for 

simplicity of normalization and calculations. The data is stored in a MySQL 

database (Figure 7). 

 Normalization 

 Next the digital well log mnemonics and the digital well log digits were 

normalized. The curves that were chosen to retain are the primary lithology 
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indicator logs which are Gamma Ray, Bulk Density, Neutron Density, 

Spontaneous Potential, Sonic, and Photoelectric Factor (Appendix C-1). 

According to Hancock (1992), these are the most useful of the logs that are 

normally recorded. Hancock (1992) also said that when determining lithology 

from logs, the best logs would be those that take into account rock properties 

over fluid properties, thus giving a more accurate measurement of the actual rock 

down the well bore. The mnemonic normalization was completed by determining 

the most common mnemonic unit that goes with each of the curve descriptions of 

interested (i.e. Gamma Ray and GR.GAPI). Next it was important to rename all 

of the descriptions that go with GR.GAPI to “Gamma Ray” and this step will be 

repeated for each of the key curves of interest. After completing the curve 

naming standardization, the database could now be filtered to only include the 

curves and values of interest. The well digits of the usable 25,673 well logs could 

then be normalized to be on a scale from 0-1 to ensure a level playing field 

before any further calculations or comparisons. For this a code from the sklearn 

preprocessing normalization module called “MinMaxScaler” was used. This 

coding allowed the data set to have the range be between 0 and 1 and scaled the 

data set appropriately (Pedregosa et al., 2011) (Appendix C-2). 
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Figure 6: Well log data set comprised of 43,111 digital well logs 
spanning all major petroleum Basins of the state. Curves utilized are 
GR, Density, Sonic, SP, and PEF. Map from Drilling Info 

Figure 7: Example image taken from the MySQL data base where all 
log data and calculations are stored and viewed. 
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Quantitative Curve Shape 

 In order to compare sections of rock between different well bores, a 

relative curve shape based off of the change from point to point on a foot-by-foot 

basis needed to be created. This was completed using the previously calculated 

normalized well digit values that were scaled from 0-1 and finding the difference 

between each point and the point above it. 

 The main assumption when using this method is that the logging tools 

used in oil and gas exploration and production measure consistently down one 

hole, but should not be trusted to measure consistently across multiple holes of 

spatial variability in log properties. Therefore, curve shape must be generated 

based on relative values rather than absolute values so that an attempt can be 

made to compare signatures between wells. Figure 8 shows an example of a 

calculated curve shape. 
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Figure 8: Relative quantitative curve shape generated by scaling 
original well digit data to the range of 0-1, and then taking the 
difference from point to point on a foot by foot basis and re-plotting 
the curves. 
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DTA Modeling in Python 

 Derivative trend analysis (DTA) is a novel form of log attribute analysis 

developed by Techlog of Schlumberger (Figure 9). It is designed similarly to 

other forms of attribute analysis such as those applied in seismic interpretation, 

with the goal being to enhance subtle information in hopes of being able to draw 

better geologic conclusions from the data. DTA can be incredibly useful in quick 

glance petrophysical analysis. When Geologists examine a cross section with the 

intent of interpretation, they are not simply looking at absolute measured values 

across wells. What they are looking for is trends, patterns, and shapes throughout 

the depth section. This is a similar approach that adds another dimension to the 

method above when it was discussed how the quantitative curve shape was 

created to compare relative values between different wells. DTA will place 

emphasis on the geologically significant curve shapes while drowning out the 

insignificant noise. This approach does not take into account quite the detail as 

the quantitative curve shape model, but what it does do greatly is aid in the 

interpretation of sequence stratigraphic cycles. These cycles can then be 

compared and correlated between multiple wells in an area, or wells with a high 

percent sameness score in different areas.  

 The first step in creating a Gamma Ray derivative curve is to create a 

smoothed curve based on a specified window of the original curve. Techlog’s 

version of DTA uses a technique by Shapiro and Stockman (2000) in which a 

Gaussian smoothing function is applied to the data. Using their methodology, all 

values that fall within the specified window are weighted according to their 
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distance from the original point. These points are recalculated as a weighted 

average of the surrounding points. What was found to work better when using 

python, is to apply this methodology using exponential weighted moving average 

(Pandas Dev team 2020)(Appendix C-3). Gaussian smoothing mentioned in the 

Shapiro and Stockman article was primarily designed for smoothing images, 

while exponential weighted moving average had much more literature in regards 

to usage in python and it achieved the same results. The goal of the weighted 

averages throughout the defined window is to smooth curves by calming high-

frequency noise and preserving low frequency trends. The central difference 

equation is then applied to differentiate the smoothed curves (Wethington, 2017).  

 Derivative(i) = (Value(i+1) – Value(i-1)) / (Depth(i+1) – Depth(i-1)) 

The central difference method calculates the slope on a curve of neighboring 

points in order to determine the approximate derivative of the point of interest. 

The end results will show positive and negative derivative values. Positive values 

are indicating the original curve is decreasing upwards or shallowing upwards 

and becoming sandier. Negative values are indicating the original curve is 

increasing upwards or becoming shalier. Large positive or negative values are 

likely indicating a distinct change in lithology (Wethington, 2017). 

 Wethington (2017) also mentioned that improving this methodology to 

work on multiple wells in an area would greatly help with geological 

interpretation, and this is what has been done here in python.  
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Figure 9: Here is an example of the 3 curves of interest in the 
Derivative Trend Analysis (DTA) study. The curves from left to right 
are as follows: Original Gamma Ray curve, smoothed GR curve, and 
the derivative of the smoothed GR curve. Note when the GR 
derivative curve is positive, the original GR curve is decreasing 
upwards, while the opposite is true for a negative GR derivative curve 
(Modified from Wethington, 2017). 
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Bipartite Petrophysical Process Energy Motifs 

 Sequence stratigraphy is one of the most common and most useful 

approaches used to infer how and when sediment accumulated in a basin. It can 

be an especially insightful tool to use when exploring for oil and gas and trying 

to determine the spatial extent of reservoirs. A sequence stratigraphic 

(allostratigraphic) approach is much more desirable than a basic 

lithostratigraphic approach especially in oil and gas exploration. An 

allostratigraphic method will provide a more holistic picture to the interpreter by 

taking into account different timing of sediment accumulation and accounting for 

erosional, non-depositional, and flooding surfaces (Robinson, 2014) (Appendix 

B-3). The two common approaches are the Galloway method and the Vail 

method. The Vail et al (1987) approach places sequence boundaries at the top of 

high stand systems tracts (HSTs) at unconformities where the shoreline is 

stationary at a high point, while the Galloway (1989) approach places sequence 

boundaries at maximum flooding surfaces which are at the top of transgressive 

systems tracts (TSTs)(Appendix B-1). Two other abbreviations are also used in 

the model. These are regressive systems tracts (RSTs) which categorize the 

falling stage of relative sea level, and lowstand systems tract (LSTs) where the 

shoreline is stationary at a low point (Pigott and Bradley, 2014). The best and 

most ideal way to use sequence stratigraphy in exploration geology is to use a 

combination of seismic, logs, core, and outcrop data to get a full understanding 

of the geology. The focus of this study is to determine how existing well log data 

can be used to draw more complete conclusions of the geology and why a well 
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performed the way that it did. So in this case the Bipartite Petrophysical Process 

Energy Motif (2021) (Figure 10) adapting from the Galloway method will be 

used which has a higher vertical resolution but not much horizontal resolution. 

But with a large log dataset, lateral conclusions similarly to that of seismic can 

be drawn. Derivative Trend Analysis coupled with the Bipartite Petrophysical 

Process Energy Motif (2021) will help give better local and regional sequence 

stratigraphic interpretations for areas and formations of interest.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 10: Modified from Pigott et al., 2021. Showing petrophysical method for 
categorizing GR log signatures with a sequence stratigraphic approach of 
determining basin accommodation changes through the use of Gamma Ray motifs. 
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Clustering Techniques 

 After the quantitative curve shapes were created, a technique was needed 

that could determine if the geologic section of interest in the Meramec was seen 

anywhere else in the data set regardless of location and to what degree of 

similarity. For this cosine similarity (Appendix C-3) was chosen. Cosine 

similarity appeared to be appropriate, as it was designed to be used with text 

formatted documents such as Word where it would count the number of words 

that any documents had in common. However, a common flaw with this 

technique would be that as the document’s size increased the chances of it 

having many words in common regardless of the similarity of the topic with 

another document would be high. This problem would operate the same in 

geology, where most well logs are very likely to have multiple of the same points 

in common. However, the order of these points in which they occur determines if 

the words are in a sense telling the same story. When using this operation on a 

text document, even if 500 words are in common with another paper, if those 

words are not in a similar order, the documents are more than likely not talking 

about the same topic (Prabhakaran, 2020). The same logic applies to the 

application of such an analysis to petrophysical logs. 

 To use Cosine Similarity with the well logs, a list of vectors over 500ft 

intervals needed to be created, with stem of 200ft (0-500, 200-700, 400-900 etc). 

This vector list was created across all 25,673 files. For this study, the test was to 

use a specific 500ft section of file number 4384 in the data base that is known to 

be upper and lower Meramec from previous log and core studies, and compare 
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the similarity of all other vectors across the 25,673 well data set to it. The results 

from the comparison analysis were then clustered by percent sameness using the 

most optimal method of K-means clustering and plotted on a chart in order to 

separate outliers. K-means is used to determine the smallest amount of squared 

distances from every point of interest to the nearest centroid that exists inside of 

each cluster (Hartigan, 1975). First a decision on an appropriate number of 

centroids to be dispersed throughout the data had to be made. After different 

statistical tests and comparisons, nine was chosen to be the optimal K. Once K 

was chosen, the rest of the data points are grouped in relation to the nearest 

centroid. Data points and centroids are then reassigned and recalculated until 

each data point has been placed closely to an appropriate centroid (Hartigan, 

1975) (Appendix C-4).  
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RESULTS 

Cluster Analysis 

 The main purpose of employing machine learning techniques to the data 

set was to determine if comparing well bore lithology signatures from one well 

to many others was a viable way to draw conclusions about what production 

curves may look like. Limitations will be discussed in a later section, but while 

preliminary results show some promising results, unfortunately many low 

correlation values also exist. A five-hundred-foot interval of the Gulf Oil 1-25 

Rohling from 9500’ to 10000’ was used in the comparison as the Meramec 

model to compare against all other wells. The figures below show the three 

curves that were available for the 1-25 Rohling, and how those curve values 

compare with all 25,673 wells across five-hundred-foot intervals of the other 

wells, regardless of depth and location.  

 The three lithology indicating curves that were available to test from the 

Gulf 1-25 Rohling were Gamma Ray, Bulk Density, and Spontaneous Potential. 

When looking at all of the data, cluster group “max p” which was the maximum 

positive correlation group had an average %sameness across the board of 49%. 

This is including the Rohling which matched at 100% for all three curves. 

Separating out the Rohling, and Gamma Ray and Spontaneous Potential had the 

worst correlation of a maximum proportion for each of around 30% (Figures 11 

and 12). Where as Bulk Density had a maximum proportion of 46% (Figure 13). 



 

27 
 

 

 

      

 

 

 

 

 

 

Figure 11: Chart showing %sameness of Cosine similarity of Gamma Ray on the 
500’ section of the Gulf Rohling well, compared against all 25,673 wells in the data 
set. Maximum correlation found for Gamma Ray with this method of K-means 
clustering was 29%.  
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Figure 12: Chart showing %sameness of Cosine similarity of Bulk Density on the 
500’ section of the Gulf Rohling well, compared against all 25,673 wells in the data 
set. Maximum correlation found for Bulk Density with this method of K-means 
clustering was 46%.  
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Figure 13: Chart showing %sameness of Cosine similarity of Spontaneous Potential 
on the 500’ section of the Gulf Rohling well, compared against all 25,673 wells in 
the data set. Maximum correlation found for Spontaneous Potential with this method 
of K-means clustering was 30%.  
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Curve Shape Comparison 

 In order to compare well log values and curve shapes to each other, the 

well digits had to be normalized for the selected curves on a 0 to 1 scale. The 

next step was to find the change from point to point on a foot-by-foot basis. 

These are termed the “up-down-delta” curves. The up-down-delta curves allow 

everything to be put on a level playing field in order to compare relative curve 

shape between wells even if the well logs were recorded by different service 

companies. Relative curve shape was graphed out in python using plotly. This is 

a quick-look tool to compare what different wells look like that matched 

similarly.  

 The cosine similarity and K-means cluster analysis that was completed 

was based on the relative curve shape from the up-down-delta curves. With 

Gamma Ray having a maximum positive correlation of 29%, Bulk Density a 

maximum positive correlation of 46%, and Spontaneous Potential a maximum 

positive correlation of 30%. Figure 14 below shows how the up-down-delta 

relative curve shape that was generated captures the shape of the curve without 

dealing with absolute values. Figures 15 and 16 below show a comparison 

between the wells with maximum positive correlation of GR and RHOB, 

respectively, and that of the Rohling 1-25.  
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     0 

Figure 14: Plot showing original Gamma Ray curve for the Gulf Rohling 1-25 well 
on the left. On the right is the up-down-delta curve which is showing the relative 
shape of the curve based on the normalized data. The depth interval for both the 
original GR curve and the up-down-delta curve are both zoomed to show the 500’ 
interval from 9500’ to 10000’ which is the Meramec model for the study. When 
comparing the two side by side, the major changes in shape are all captured by the 
up-down-delta curve with more emphasis given to the higher magnitude changes. 

9.5k 
 
 
 
 
 
 
 
9.6k 
 
 
 
 
 
 
 
 
9.7k 
 
 
 
 
 
 
 
 
9.8k 
 
 
 
 
 
 
 
 
9.9k 
 
 
 
 
 
 
10k 

D
epth in Thousands of Feet 

Rohling 1-25 



 

32 
 

 

 

 

 

 

 

 

Figure 15: The plot on the right is the up-down-delta curve for Gamma Ray for 
the Rohling 1-25 which is showing the relative shape of the curve based on the 
normalized data. The plot on the left is for the Bessie 1-18 which matched at 29% 
sameness score. The depth interval for the Rohling 1-25 on the right is zoomed to 
show the 500’ interval from 9500’ to 10000’ which is the Meramec model for the 
study. The Bessie 1-18 is zoomed in to 6700’ to 7200’ which is the depth window 
at which the highest match was found. When comparing the two side by side, the 
initial 140’ of these wells are similar in shape (shown with the green boxes). Then 
moving down the log there are a couple other packages of sediment that also have 
similar characteristics.  
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Figure 16: The plot on the right is the up-down-delta curve for Bulk Density for 
the Rohling 1-25 which is showing the relative shape of the curve based on the 
normalized data. The plot on the left is for the Cupp B 3 which matched at 46% 
sameness score. The depth interval for the Rohling 1-25 on the right is zoomed to 
show the 500’ interval from 9500’ to 10000’ which is the Meramec model for the 
study. The Cupp B 3 is zoomed in to 10500’ to 11000’ which is the depth window 
at which the highest match was found. When comparing the two side by side, the 
initial 60’ to 80’ of these wells are similar in shape and both have a lot of 
movement (shown with the green boxes). Then moving down the log they have 
similar straight line characteristics, a likely indication that these wells are seeing 
similar lithology at these depths.  
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Log Attribute Analysis 

Similarly to attribute analysis in seismic data, log attributes are used to 

attempt to enhance subtle information in hopes of being able to draw better 

geologic conclusions from the data. The attribute that was applied to the data is a 

modified novel approach to derivative trend analysis (DTA). To geologists, the 

absolute values of measured GR signatures may not mean anything, but the 

curve shape created from those values is what is useful for interpretation. DTA is 

used here to place emphasis on the geologically significant curve shapes while 

drowning out the insignificant noise. Exponential weighted moving average was 

applied over a 12ft window to create a smoothed GR derivative curve.  

The results shown in Figure 17 indicate that positive values on the 

derivative curve translates to the original curve decreasing upwards or 

shallowing upwards and becoming sandier, while negative values are indicating 

the original curve is increasing upwards or becoming shalier. This has proven to 

be an effective tool to aid in interpreting sequence stratigraphic cycles, and even 

more granularity can be obtained when overlaying a Bipartite Petrophysical 

Process Energy Motif (2021) on to the derivative curve (Figure 18). When 

looking into the production volume analysis, the DTA Bipartite Petrophysical 

Process Energy Motifs (2021) of multiple wells can be compared alongside each 

other to determine if it is possible that similar basin evolution and depositional 

episodes were at work in different areas. 
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Figure 17: The first track on the left is the original Gamma Ray curve of the 
Rohling 1-25 exported from Petrel using a yellow to brown color scale with the 
lighter color being sandier, and darker shalier. The track on the right is the GR 
Derivative curve used to enhance geologically significant curve shapes while 
drowning out the insignificant noise. The increasing positive values from base to 
top are shown with blue arrows, and they indicate generally that the original curve 
is decreasing upwards and becoming sandier. The decreasing negative values are 
shown with red arrows, and they indicate the original curve is increasing upwards 
and becoming shalier.  
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Figure 18: The first track on the left is the original Gamma Ray curve of the 
Rohling 1-25 exported from Petrel using a yellow to brown color scale with the 
lighter color being sandier, and darker shalier. The track on the right is the GR 
Derivative curve used to enhance geologically significant curve shapes while 
drowning out the insignificant noise. A Process Energy Motif (2021) has been 
overlain onto the GR Derivative curve in order to aid in sequence stratigraphic 
interpretation. Blue arrows represent HSTs, yellow RSTs, red LSTs, and green 
TSTs. The Meramec here appears to have seven sequence stratigraphic units 
capped by the maximum flooding surface illustrated with the dashed green line. 
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Production Analysis 

The intent of this study was to create a new and practical tool to analyze 

and compare horizontal well performance across the state, regardless of location. 

While this tool is still in rudimentary form, it could still prove valuable to take a 

look at the production curves and target formations of the top matched wells. The 

wells that matched best to the benchmark, the Rohling 1-25, are shown on the 

map in figure 19. A few of them are regionally close by, but others are spread 

much farther away from the Rohling, and would be located in entirely different 

fields. The question to answer was could there be any relationship between the 

rock at these different well sites. Was it possible that when these reservoir units 

were deposited in the ancient Oklahoma Basin, that similar depositional events 

were happening simultaneously in different parts of the basin. Other previous 

studies have found lithostratigraphic and thin section correlation between the 

lower Meramec and upper Sycamore, as well as lithostratigraphic correlation of 

the upper Meramec with the lower Caney unit (Miller (2018) and Miller et al. 

(2019)).  

The horizontal wells most closely associated with the Rohling 1-25 are 

the Oppel wells. The parent well was drilled by Continental in 2016 and had an 

IP of around 900 BOE. The increased densities were drilled by Ovintiv in 2019 

and they came on at around 600 BOE. All of these wells are located in sections 

24 and 25 of 16N-10W Blaine County Oklahoma and were completing the 

Mississippian Meramec with roughly 7000ft laterals and perforating in the depth 

range of the lower Meramec from 9700ft to 10000ft vertical depth (Figure 20). 
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Rohling 1-25 

Figure 19: A map of Oklahoma obtained from Drilling Info showing the 
locations of the Meramec marker well, the Rohling 1-25, and the wells which had 
lithology indicator logs with the highest match percentage in the cluster analysis 
when searching for Mississippian Meramec signatures. 
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Rohling 1-25 

Oppel Unit 

Figure 20: A map of Oklahoma obtained from Drilling Info showing the locations 
of the Meramec marker well, the Rohling 1-25, the wells which had lithology 
indicator logs with the highest match percentage in the cluster analysis, and the inset 
map shows the zoomed in location of the Ovintiv Oppel wells. 
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The first matched well to investigate is the Bessie 1-18 located in Woodward 

County Oklahoma. This well was only a 29% match with the benchmark of the 

Rohling 1-25, but when comparing the GR derivative curve with the Bipartite 

Petrophysical Process Energy Motif (2021) there are a lot of comparisons that 

can be seen (Figure 21). The horizontal that is most closely associated with the 

Bessie is the Johnson 24 1H, which was drilled by Tapstone Energy in 2018 and 

had an IP of around 800 BOE (Figure 22). Tapstone’s target formation for this 

well was Mississippian, which from the data available it is not known which 

reservoir exactly in the Miss, but based on the Bipartite Petrophysical Process 

Energy Motif (2021) and the production curves, it looks like it very well could 

be Meramec or one of its lateral constituents.  Looking at the production curves 

for these two wells, a conclusion can be drawn that reservoir properties must be 

reasonably similar, being that both have a similar IP and similar decline rate 

(Figure 23) (Pigott and Bradley, 2014). The Mississippian reservoir formation 

here was seen at a shallower depth than that of the Oppel’s in Blaine County, but 

based on what is known about the Anadarko, the Oppel’s are located down dip of 

the Johnson, thus the sediments that the Johnson is tapping into were deposited 

farther up on the low relief ramp setting. 

The next well to look into is the Thompson 2-11 located in Hughes 

County Oklahoma. The relative curve shape of this well matched with the 

benchmark at a meager 27%, but again, there are many similarities that can be 

seen when comparing the production curves as well as the GR derivative curve 

with the Bipartite Petrophysical Process Energy Motif (2021) overlain  



 

41 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: The first track on the left is the original Gamma Ray curve of the Bessie 1-
18 exported from Petrel using a yellow to brown color scale with the lighter color being 
sandier, and darker shalier. The track on the right is the GR Derivative curve used to 
enhance geologically significant curve shapes while drowning out the insignificant 
noise. A Process Energy Motif (2021) has been overlain onto the GR Derivative curve 
in order to aid in sequence stratigraphic interpretation. Blue arrows represent HSTs, 
yellow RSTs, red LSTs, and green TSTs. Comparing with figure 18, there are very 
similar depositional energies at work and this very well could be the Meramec or one of 
its lateral constituents. 
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Rohling 1-25 

Johnson 24 1H 

Figure 22: A map of Oklahoma obtained from Drilling Info showing the locations 
of the Meramec marker well, the Rohling 1-25, the wells which had lithology 
indicator logs with the highest match percentage in the cluster analysis, and the inset 
map shows the zoomed in location of the Tapstone Johnson 24 1H well which was 
completed in sec. 24 of 20N-18W and is the horizontal well most closely related to 
the Bessie 1-18. 
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Figure 23: Comparison of the production curves with public production data 
obtained from Drilling Info and decline curves created in PHDwin. The Oppel unit 
wells on top which are located in Blaine County OK, and the Johnson 24 1H on the 
bottom which is located in Woodward County OK are over 50 miles apart, yet with 
their similar Process Energy Motifs (2021) and their similar production volumes 
and decline rates, it looks as though they could be neighbors. 
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Fields 19-1HX 

Figure 24: The first track on the left is the original Gamma Ray curve of the 
Thompson 2-11. The track on the right is the GR Derivative curve used to 
enhance geologically significant curve shapes while drowning out the 
insignificant noise. A Process Energy Motif (2021) has been overlain onto the GR 
Derivative curve in order to aid in sequence stratigraphic interpretation. Blue 
arrows represent HSTs, yellow RSTs, red LSTs, and green TSTs. Comparing 
with figure 18, there are very similar depositional energies at work and this very 
well could be a lateral constituent of the Meramec or a genetically related 
package. 
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(Figure 24). The horizontal well that is most closely related to the Thompson 2-

11 is the Calyx Energy Fields 19-1HX well (Figure 25). The Fields was drilled 

and completed in 2016 and came on at around 300 BOE, which is a much lower 

IP, but this is a Gas well with very little oil production. Calyx Energy’s target 

formation with the Fields was the Mississippian, which again with the available 

data we cannot be sure which reservoir in the Miss Calyx was targeting. Based 

on the results that were generated from the Bipartite Petrophysical Process 

Energy Motif (2021) and the production curves, it does appear that it could be a 

lateral constituent of the Meramec, or a related package that had similar factors 

acting upon it during the time of deposition. When analyzing the production 

curves of the Oppels and the Fields, it is distinct that the Gas curves are 

relatively similar, likely due to similar reservoir properties (Figure 26). With the 

Mississippian occurring at a much shallower depth on the East side of the state, it 

would definitely be expected to see this as a primarily gas producer. Another 

interesting fact about the Fields well is that it is in line with the Oppels and the 

Johnson on the north west trending ramp of the ancient Oklahoma Basin. 

The last well to look into was the highest match from the clustering results. 

The Cupp B 3 is located in Beckham County Oklahoma and the RHOB curve 

matched with that of the Rohling 1-25 at 46% (Figure 16). The horizontal well that 

is most closely associated with the Cupp is the Mustang Fuel Mills 8-19H (Figure 

27). The Mills drilled and completed in the Granite Wash play in western 

Oklahoma, so comparing the production curve to that of the Oppel’s is rather 

irrelevant. However, being that the RHOB curves matched below the granite wash, 
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it would be beneficial to point out that Mississippian strata does in fact exist below 

the granite wash in this area (Figure 28).  

Based on the results from the rest of this study, it is possible there may be similar 

reservoir quality in the Mississippian strata below that Granite Wash to that of the 

Oppels, the Johnson, and the Fields, but more research would need to be done to 

test this theory.  
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Rohling 1-25 

Figure 25: A map of Oklahoma obtained from Drilling Info showing the locations 
of the Meramec marker well, the Rohling 1-25, the wells which had lithology 
indicator logs with the highest match percentage in the cluster analysis, and the inset 
map shows the zoomed in location of the Calyx Fields 19-1HX well which was 
completed in sec. 24 of 09N-10E and sec. 18 and 19 of 09N-11E and is the 
horizontal well most closely related to the Thompson 2-11. 

Fields 19-1HX 
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Figure 26: Comparison of the production curves with public production data 
obtained from Drilling Info and decline curves created in PHDwin. The Oppel unit 
wells on top which are located in Blaine County OK, and the Fields 19-1HX on the 
bottom which is located in Hughes County OK are over 180 miles apart, yet with 
their similar Process Energy Motifs (2021) and their similar gas production 
volumes and decline rates, it is plausible that the reservoirs are quite similar.  
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Rohling 1-25 

Mills 8-19H 

Figure 27: A map of Oklahoma obtained from Drilling Info showing the locations 
of the Meramec marker well, the Rohling 1-25, the wells which had lithology 
indicator logs with the highest match percentage in the cluster analysis, and the inset 
map shows the zoomed in location of the Mustang fuels Mills 8-19H well which was 
completed in sec. 19 of 10N-26W and is the horizontal well most closely related to 
the Cupp B 3. This well matched RHOB with the highest percentage of 46%. 
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Figure 28: A south to north cross-section in far western Oklahoma capturing the 
area where the Mills 8-19H was drilled. The Mills drilled and completed in the 
Granite Wash play as many wells do in Beckham County. The green circle on the 
map shows where Mississippian sediments are located below the Granite Wash, 
and this is due to the nature of the Basin during Mississippian time when the 
entire Oklahoma Basin was a shallow epicontinental sea. The RHOB curve 
match of 46% was located below the Granite Wash, could this mean that there is 
a Mississippian reservoir with similar quality to that which the Oppels, Johnson, 
and Fields tapped into? More research would need to be done to test this theory 
(Fierstien, 2014). 
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Limitations 

A discussion of some of the limitations that were discovered while 

working through this project and how they could be improved is now warranted. 

First, the log data set that was available was extensive, but many logs were very 

low quality, and did not have the lithology indicating curves that the study 

required which reduced the amount of wells that could be used in the study. One 

of the main issues that was encountered was with the strength of the computer 

that this volume of data required. A very powerful AWS machine was used to 

perform the operations, but it was only enough to process cosine similarity with 

stems of 200ft. Financially speaking it would be incredibly expensive to get a 

machine with the power to run stems of 10ft or even 1ft, but that is the 

granularity that is truly needed to make this work as it was envisioned. In 

addition to cosine similarity, the K-means clustering could have also benefited 

from a more powerful machine, as clustering all of the well log signatures is a 

complex combination of inputs and drags down accuracy when the operations 

that can be performed are limited due to power and time. The ability to 

experiment with different clustering techniques and analysis would have also 

been useful, but due to time constraints with how long it takes for the operations 

to run, it was not possible for this study. This thesis research is a preliminary 

study and the first time that machine learning has been used to attempt to 

compare well log signatures for similarity across an entire basin, so it should be 

expected that results will improve with time and additional work. 
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CONCLUSIONS 

This study presents a novel approach to using well logs and clustering 

techniques to find and rank similar packages of rock to each other based on 

percent sameness, and then applying log attributes to compare log responses to 

production results. The basis behind this study was a desire to push the envelope 

and try and draw conclusions from the conglomerate of well log data that has 

been amassed in the Anadarko Basin using modern technology such as advanced 

clustering techniques. Machine learning as viewed in this investigation is 

learning from the past (previous wells) in order to predict the future (exploration 

wells). Decline curves are used to predict future performance of a well, based on 

direct production measurements; log signatures should also be used to predict 

future performance of wells, which are based on direct rock measurements. The 

only way to do this with the shear amount of data that is out there is with 

machine learning, and an unsupervised learning study like that which has been 

performed will let the data speak for itself. With the current method of acquiring 

new acreage being either long expensive studies, or using close proximity 

exploration, it seems time for a new, practical method that can serve as a quick 

look analysis.  

While the novel methods that have been performed here are quite 

rudimentary, the potential future application of a workflow designed to search 

through thousands of well logs to find specific Gamma Ray signature packages 

of interest should not be taken lightly. The same methods can be applied to all 

other digital log curves of interest. While this study chose to analyze Gamma 
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Ray signatures of interest in oil and gas, it can also be applied to other natural 

resource exploitation such as the search for Helium. In the future it will be 

necessary for this tool to improve its accuracy, however even the current results 

were able to scan through 25,673 digital well logs and match Mississippian rock 

from one well with other sections of wells that show Mississippian rock, proving 

that even in the rudimentary form it can be used to drastically reduce time spent 

on searching through logs and increase time spent on interpretation and resource 

development. This investigation yields promising results showing that this 

technology has the possibility to be refined and used as an everyday tool.  
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Appendix A. Geologic Setting 
 

 

Figure A-1. Paleogeographic map of North America 325 million years ago 
during the Mississippian and after the formation of the Transcontinental Arch 
which separated the Madison Ramp and the Burlington Ramp. The Burlington 
carbonate ramp fed the proto-Anadarko Basin with sediments (modified from 
Gutschick, 1983 and Wethington, 2017). 
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Figure A-2: During the Mississippian, there were four main depositional episodes: 
Kinderhookian, Oseagean, Meramecian, and Chesterian. This study focused on the 
Osagean and the Meramecian units at the top of the Kaskaskia sequence. Both the Osagean 
and Meramecian were deposited in mostly greenhouse conditions, but towards the upper 
Meramecian the transition to icehouse can be seen with higher frequency sea level changes. 
The Meramec is often characterized as being deposited on a gently sloping ramp with 
carbonate rich deposits proximally and mixed carbonate and siliciclastics Basinward 
(Modified from Johnson and Others, 1988; Boyd, 2008; Haq and Schutter, 2008; Williams, 
2020). 
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Figure A-3: One of the questions that hoped to be answered in the results of this study 
were what sort of relationship can be seen if any between Meramec, Osage, Sycamore 
Lime, and Caney Shale, chronostratigraphically and as reservoirs, factoring in the fact that 
portions of these formations were all deposited at the same time in the ancient Oklahoma 
Basin (Figure modified from Boyd, 2008). 
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Figure A-4: Paleo-depositional map of North America 325 million years ago 
during the Mississippian and after the formation of the Transcontinental Arch 
which separated the Madison Ramp and the Burlington Ramp. The Burlington 
carbonate ramp fed the proto-Anadarko Basin with sediments. Blue colors 
showing the distribution of primarily carbonate sediments while tan shows the 
distribution of primarily clastic sediments. The red outlined box is zoomed in 
to show the Ancient Oklahoma Basin area in location to the paleo shelf. 
(modified from Gutschick, 1983 and Childress, 2015). 
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Appendix B: Sequence Stratigraphy 

 

 
Figure B-1: From Van Wagoner et al. (1990) 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Parasequence genetically related package of strata bounded by flooding 
surfaces 

• Transgression: ocean moves towards shore; result of sea level rise 
• Regression: ocean moves away from shore; result of sea level fall 
• Progradational: shore and nearshore deposits move outward into the ocean 

and overlie deeper water deposits 
• Retrogradational: deeper water deposits move towards land and overlie 

shallow water deposits 
• Aggradational: facies remain in the same general location and stack atop 

others of the same facies 
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Figure B-2: Chart displaying the stratigraphic cycle hierarchy showing the ranges of sea 
level variations through cycle order naming, sequence stratigraphy unit naming, time in 
millions of years, sea level amplitude, and sea level rise and fall rate (Kerans and Tinker 
1997). 
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Figure B-3: Example of the difference between a common lithostratigraphic interpretation (A) 
versus an allostratigraphic approach (B). The allostratigraphic approach will provide a more 
wholistic picture to the interpreter by taking into account different timing of sediment 
accumulation and accounting for erosional, non-depositional, and flooding surfaces (Robinson, 
2014; Prothero and Schwab, 1996; Dunbar and Roger, 1957). 
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Appendix C: Clustering and Data Techniques 
 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-1: Example figure of four of the most common lithology indicator well logs, and 
what the curve shape would be generally expected to look like for shale, dolomite, limestone 
and sandstone (Doveton, 2003). 
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Figure C-2: Equation for Sklearn preprocessing normalization module called 
“MinMaxScaler”. Scales features individually into a given range; in the case of this project 
the range is between 0 and 1. Min and max would be 0 and 1 respectively (Pedregosa et. 
al., 2011). 
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Figure C-3: Table explaining the usage of cosine similarity function, which was used to 
compare well log signatures, before comparisons were clustered (Manning et al., 2008). 
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Figure C-4: Part A is explaining the basic steps to run K-means clustering, and part B is 
the equation for Euclidean Distance between two points. Each data point is assigned to a 
cluster determined by the smallest squared Euclidian distance between them (Banerjee, 
2020). 
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Appendix D: DTA Modeling 
 

 
 

Figure D-1: Chart explaining how exponential weighted moving average runs. This was 
used while performing python DTA analysis in order to generate a smoothed curve based 
on a specified window of the original curve where all values that fall within the specified 
window are weighted according to their distance from the original point. These points are 
recalculated as a weighted average of the surrounding points. The goal of the weighted 
averages throughout the defined window is to smooth curves by calming high-frequency 
noise and preserving low frequency trends for easier more accurate quick-glance 
interpretation (Pandas Dev Team, 2020). 
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