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CHAPTER I 

INTRODUCTION 

Hypothalamic regulation of hormonal secretions from the hypophysis 

is well documented and constitutes so-cq.lled "neuroendocrine systems" 

(Beyer and Sawyer, 1969; Cross~ 1973), However the neuronal mechanisms 

responsible for the control and release of hormone from the manunalian 

hypothalamus have not been identified, A major assumption motivating 

this investigation is that an understanding of the magnocellular neuro­

endocrine system controlling blood antidiuretic hormone and oxytocin 

levels will provide insight to basic mechanisms which underly operation 

of all neuroendocrine systems, Furthermore it seems inevitable that 

gross neuroanatomical analogies will give way to detailed explanations at 

the functional level of neuroendocrine cells, including their electro­

physiology and functional coordination with other neuroendocrine cells, 

interneurons and receptors, 

As early as 1947, Verney demonstrated that an increase in the 

osmolality of brain blood could elicit the release of antidiuretic hor­

mone (ADH). This implied the existence of specialized neurons, within 

the brain, sensitive to changes in osmotic pressure, It now seems cer­

tain that the neuroendocrine system responsible for synthesis and release 

of both ADH and oxytocin is localized within the supraoptic nucleus (SON), 

internuclear zone of Greving (INZ) and the paraventricular nucleus (PVN) 

(Sachs and Takabatake, 1964; Sachs, et aL, 1969; Thorn, 1970; Hayward, 
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1975; Jewell and Verney, 1957). 

Neurons of the SON and PVN were the first hypothalainic units to be 

recorded (Cross,and Green, 1959); since they are readily identifiable 

(Yagi, et al,, 1966), neuroendocrine cells of the~e nuclei have often 

been used to associate neural activity with hormone release, 

2 

Numerous differences of nomenclature are present in the literature 

pertaining to the cells of the SON, INZ and PVN, As early as 1960 Ortman 

called these cells neurosecretory cells and defined them as true neurons 

with axons and dendrites in which secretory activity could be morpho­

logically demonstrated, Dellman (1973) stated that the main function of 

neurosecretory neurons was.to produce and release chemical mediators 

which reach their target organs indirectly through the blood circulation 

or directly through synaptoid contacts, These definitions·could con­

ceivably then include all neurons,as being neurosecretory, Dellman went 

on to point out that in "cla~sic'' neurosecretory neurons the chemical 

mediators are octapeptides and truly hormonal in character, Cross, et 

al, (1975) introduced the term endocrine neuron to emphasize concern only 

with hormone forming nerve cells that pass their products into the vas­

cular system, Probably the most specific definition is that used by 

Hayward and Jennings (1973a), They called the neurosecretory cells of 

the SON, INZ, and PVN magnocellular neuroendocrine cells, This definition 

is particularly use~ul since it provides a distinction between this 

neuroendocrine system and that which is involved in synthesis, transport 

and secretion of hypothalamic releasing factors and adenohypophysial 

regulation, namely the parvocellular neuroendocrine system, 

Hayward and Jennings (1973a) recorded single.unit activity of magna­

cellular neuroendocri11:e cells in the hypothalamus of unanesthetized 
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monkeys and observed three basic patterns of spontaneous activity: 

silent, continuously active and low frequency bursting, However it was 

not known if these represented functional cell types or merely different 

levels of excitatory drive, In isolated rat neurohypohyses Dreifuss, et 

al, (1971) noted that a given number of action potentials were most 

effective in releasing hormone when they occurred close together in time 

implying that rate is more important than the total number of spikes 

(action potentials), Wakerley and Lincoln (1973) in a similar study in 

urethane anesthetized rats concluded that an explosive burst of paraven­

tricular unit activity brought.on the release of oxytocin just prior to 

milk ejection, · Furthermore, Hayward and Jennings (1973b) noted that a 

five second pulse of hypertonic sodium chloride into the common cq.rotid 

artery of unanesthetized monkeys evoked a burst of activity followed by 

inhibition in identified supraoptic cells, It is surprising in view of 

these findings. that most conclusions drawn are still based on analysis of 

mean firing rate which may not be of great physiological importance 

(Uttall, 1972), 

To date the behavior of identified supraoptic magnocellular neuro­

endocrine cells has not been studied during a slow continuous rise in 

plasma osmolality, The research in this dissertation is designed to test 

the following hypotheses, in unanesthetized sheep: 

l, the spontaneous firing pattern~ of magnocellular neuroendocrine 

cells previously recorded in the rat and monkey are exhibited by 

magnocellular neuroendocrine cells of the unanesthetized sheep; 

2, neuroendocrine cells do not exhibit all firing patterns of 

neurons recorded in hypothalamic and septal areas; 

3, the activity of .a magnocellular neuroendocrine cell evoked by 



osmotic drive is inversely related to cell size of the magna­

cellular neuroendocrine cell in question; 
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4, that activity patterns exhibited by magnocellular neuroendocrine 

cells are dynamically and/or tonically related to changes in 

plasma osmolality; and 

5 ,. a single neuroendocrine cell can exhibit all patterns of 

activity found in supraoptic neuroendocrine cells depending on 

the level of osmotic stimulation, 

Since behavioral state seems to be. an important factor in regulation 

of ADH (Verney, 194 7; Hayward and Jennings, 1973d), the study of neuronal 

activity in an unanesthetized animal appears imperative, Almost all 

studies done previously have been conducted on anesthetized animals; how­

ever most anesthetics depress pituitary secretion (Beyer and Sawyer, 

1969), Conversely, urethane, one of the most commonly used anesthetics 

in neu'rophysiological research, produc~s high blood levels of ADH and 

milk ejection activity, possibly by a direct action on neurosecretory 

nerve terminals (Dyball, 1971; Dyball and Dyer, 1971), Ginsburg and 

Brown (1957) noted that urethane altered the ratio of oxytocin and ADH in 

the neural lobe as well as increased plasma levels of these hormones, 

Furthermore anesthetics qften block the milk ejection reflex and there­

fore any response. to teat stimulation may .be,unspecific, Low doses of 

urethane depress the number of active hypothalamic units (Hayward and 

Vincent, 1970), Spontaneous firing patterns in urethane anesthetized 

rats were poorly correlated with blood ADH and m:i,.lk ejection ac;:tivity 

(Dyball, 1971), In fact, Hayward and Vincent (1970) noted that about 

one-half the anesthetizing dose of urethane converts continuously active 

magnocellular neuroendocrine cells of the SON to silent phases in the . 
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unanesthetized monkey and depresses their responsiveness to osmotic 

stimuli, Later studies (Novin and Durham, 1973) achieved similar 

results when the investigators concluded that urethane blocked the reflex 

activation of magnocellular neuroendocrine cells to orthodromic stimuli 

possibly by stimulation of a central monoaminergic pathway, Antidromic 

facilitation in the PVN was also blocked but antidromic inhibition was 

not, Therefore, although informative, the use of anesthetized prepara­

tions in the study of hypothalamic unit activity presents serious draw­

backs, For these reasons considerable effort was expended. in order to 

record from magnocellular neuroendocri~e cells in unanesthetized behaving 

sheep. 

An intracarotid pulse of hypertonic solution is a good means of 

evoking the release of ADH and the excitation of single neurons although 

it suffers from serious disadvantages, Holland, et aL (1959) demon­

strated that a pulse injection of hypertonic sodium chloride altered both 

blood pressure and EEG pattern. These changes may bring about a non­

specific unit response, It also releases oxytocin (Abrahams and Pickford, 

1954) and may induce sympathetic nervous system discharge (Holland, et 

aL, 1959), Normal water and electrolyte balance does not involve such 

dramatic changes in osmolality. In addition, osmolalities at the osmo­

receptive zone are impossible to measure and therefore, a quantitative 

relation between neuronal firing and plasma osmolality cannot be 

developed, Therefore the problem of magnocellular neuroendocrine cell 

control of ADH was approached using changes in plasma osmolality which 

could be quantitated, 

The technique of single unit recording although suffering from dis­

advantages in acquiring adequate sample sizes has the advantage that 
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results are easy to interpret since there is no doubt that they repre­

sent action potentials generated by neurons close to the recording micro­

electrode (Morrell~ 1967), It therefore seems reasonable that recording 

of single neuron activity should be the method of choice for studying 

hypothalamic cells and their responses to environmental.changes. 



CHAPTER II· 

REVIEW OF LITERATURE 

This chapte~ is not intended to represent an exhaustive review of 

the.literature. The in~ent is rather to introduce the reader to the 

problem and to familiarize him w~th t4e aurrent status in this area of 

investigation, Sections have been included which are meant to introduce 

the reader to humoral and neuronal mechanisms of the maintenance of ADH 

levels. 

Structure anq Organization of the 

Supraoptic .Nucleus 

Magnocellular neuroendocrine cells of the richly vascularized supra­

optic nucleus evolve from the ,paired nucleus preopticus, pars magno­

cellularis, of cyclostemes and. fish (Crosby and S~owers, 1969). In many 

animals ·the SON consists of two to feur parts linke.d by strands of 

scattered cells (clustered arc;mnd and along blood vess~ls) between the 

nucleus proper and the PVN, · In general, t{le main· portion of the SON 

follows • the dorsolateral border of the optic chiasm and optic tract, 

Another portion lies at the ventromedial edge of the optic tract 

(Haymaker, et al., 1969). 

Eranko (1951) and later Recha+dt (1969) demonstrated the presence of 

both light and dark cells in the .SON, the differenc~ being the num'Qer of 

free ribosomes (Rechardt, 1969), The light ce~ls are larger and circular 
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or oval with large pale eccentric nucleL The smaller dark cells, rela­

tively few in number, are scattered among the light cells and have a 

fusiform shape with smaller and less electron dense nuGlei, 
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Vesicles of neurosecretory material are found in the somata, axons 

and terminals of supraoptic magnocellular neuroendocrine cells and have 

diameters of 1000 to 3000 angstroms (Sachs, et al,; 1969; Dyer, et al., 

1973), These large neurosecretory vesicles are present.in addition to 

common cellular organelles, They may contain ADH or oxytocin, and 

carrier proteins, neurophysin-II or -I, respectively (McNeilly, et al,, 

1972a,b), Synthesis and liberation of these peptide mediators led to 

their classification as peptidergic neurons (Thorn, 1970; Dellman, 1973), 

A characte:ristic of these peptidergic neurons is the presence of 

large (two microns or more) dilatations'· These Herring bodies may con­

tain various types. of vesicles, lysosomes and tubular formations, The 

significance of Herring bodies is still in doubt although an autophagic 

process seems likely (Dellman, 1973). 

By following retrograde, d,egeneration in the SON after section of the 

infundibular stalk in the monkey, Magoun and Ranson (1939) concluded that 

the main body.of each SON contain~d 30,000 to 40,000 cells, In addition 

they observed that eighty per cent of the cells were lost following sec­

tions that were placed through the. median eminence whereas only seventy 

per cent were lost .following transection below the .median eminence, This 

localization of magnoceUular neuroendocrine cell terminals in the median 

eminence has been cqnfirmed by recent immunocytochemical techniques which 

have shown that·in addition to forming the supraopticohypophysial tract, 

axons of supraoptic magnocellular neuroendocrine cells also terminate in 

both the zona. interna and zona externa of the median .eminence and border 



on the primary portal plexus in man, monkey, cow, guinea pig and mouse 

(Silverman and Zimmerman, 1975; Zimmerman, et al., 1974). 

Synthesis, Transport, Storage and Release 

of Neurohypophysial Hormones 

The concept that ADH and its carrier prote~n neurophysin-II are 

synthesized in neurons of the SON, INZ and PVN of the hypothalamus is 

well established (Bargmann and Scharrer, 1951; Sachs and Takabatake, 

1964; Fawcett, et al,; 1968; Sachs, et al., 1969; and Thorn, 1970), The 
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unmyelinated nerve fibers forming the hypothalamo-hypophysial tract. are 

practically all derived from the supraoptico-hypophysial tract (Sachs, et 

aL, 1969; Thorn, 1970). In the neurohypophysis, terminals of these 

fibers are separated from capillary;basement .membranes by well defined 

perivascular spaces,which are.characteristic of secretory organs in gen-

eral, It seems certain that the initial step in .the ADH neurosecretory 

process~ biosynthesis.· and packaging of ADH into neurosecretory vesicles 

(Bargmann and Scharrer, 1951), occurs in the somata of neurons of the 

supraoptico-hypophysial tract and involves a protein molecule (Sachs and 

Takabatake 1 1964), .!E..Vitro studies (Sachs, 1967) have shownthat hypo­

thalamic tissue can incorporate cysteine- 35s into protein.while the 

distal hypothalamic neurohypophysial system does not, implying that axons 

cannot synthesize neurosecretory material, 

Isotope studies have provided the most evidence for a precursor 

model of ADH synthesis (Sachs, 1967; Sachs, et al, , 1969; Cross, et al, , 

1975), After infusion of cysteine- 35s into the third ventricle, labeled 

ADH is not found in association with ribosomes but appears packed in 

granules ready for transport after a delay of ninety minutes between the 
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incorporation of label into peptide and the appearance of ADH (Jones and 

Pickering, 1972; Sachs, 1967), In fact, puromycin if given prior to the 

· 35s · h f d' · h cyste1ne- will prevent t e appearance o ra 1oact1ve ormone, 

Sachs, et al, (1969) suggested that the biosynthetic process forming 

a precursor of ADH also forms a neurophysin precursor, and that the re-

lease of octapeptide takes place in the maturation of the large (1000 to 

3000 angstroms) neurosecretory vesicles. As stated by Cross, et al, 

(1975), three criteria should be met if hormone and neurophysin arise 

from the same process. One, it does appear that synthesis rates for ADH 

and neurophysin are the same under all conditions, and two, claims of 

specific neurophysins for each neurohypophysial hormone are now well 

founded (McNeilly, et al,, 1972a,b; Dean, et al,, 1968), Only the third 

prediction nee~s substantiation, that of an active neurosecretory vesicle 

enzyme "maturase" which promotes the conversion of the precursor to hor-

mone and neurophysin. The function of neurophysin is currently unknown 

but since hormone and neurophysin associate readily it may function as a 

carrier molecule to keep the hormone within the vesicles as they are 

transported down the axons and are stored in the magnocellular neuroendo-

crine cell terminals (Ginsburg, 1968). 

The stimulus to hormone synthesis is a point of active investiga-

tion. It does not appear that an acute secretory stimulus causes an in-

crease in biosynthetic activity but a prolonged chronic stimulus such as 

dehydration may increase ADH synthesis (Sachs, et al,, 1969), 

Whatever the origin of the material found in the neurosecretory 

vesicle it must be transported to the magnocellular neuroendocrine cell 

terminals before it can be released into the blood circulation, This 

second step of the neurosecretory process may be simply protoplasmic flow 
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(Bargmann and Scharrer, 1951), pressure exerted by hormone synthesis in 

the soma, or pulsation of the oligodendroglia (Sloper, 1966), A more. 

likely explanation includes a neurotubular function since colchicine has 

been shown to. block axonal flow in the· magnocellular neurohypophysial 

system (Flament~Durand and Dustin~ 1972), The rate of transport never­

theless is very rapid, neurosecretory material accumulating in the 

posterior pituitary only. one-half hour. after initiation of transport· 

(Jones. and Pickering, 1972; Norstrom and Sj ostrand, 1971), implying a 

rate of one to four millimeters per hour .. Fast axoplasmic flow in the 

range of 40- to 400 mm per day has now been demonstrat,ed in several . 

systems (Lubinska, 1975), 

The last step in the neurosecretory process .outlined by Bargmann and 

Scharrer (1951) is release of the hormone. into. the blood circulation upon 

appropriate stimulation. The stimulus for ADH release is .action potential 

generation and. conduction in. the magnocellular neuroendocrine cell by 

common sodium dependent and tetrodotoxin sensitive spike mechanisms 

(Dreifuss, et al,; 1971) o Evidence has now accumulated which indicates 

that calcium is es.sential for the. excitation-secretion coupling (Douglas 

andPoisner, 1964; Russelland Thorn, 1974a,b; Nakazato and Douglas, 

1974; Muller, et al,, 1975), Calcium is essential whether terminal depo­

larization occ1;1rs by electrical stimulation or high extracellular potas­

sium concentrations (Douglas and Poisner, 1964; Fawcett, et alo, 1968; 

Dreifuss, et aL, 1971), 

The bulk of a neurosecretory vesicle is made up of neurophysin­

hormone complexes (Fawcett, et al,, 1968) o The observation that small 

changes in calcium concentrations detach ADH from its protein.carrier 

neurophysin-II led to elaboration of the complex dissociation hypothesis 
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for release of ADH occ~rring at deploarization of the magnocellular 

neuroendocrine cell terminal (Ginsburg and Ireland, 1966), Under this 

hypothesis calcium detaches· the ADH from its carrier and the hormone then 

passes through the barriers into the blood stream, 

Probably the most. tenable hypothesis is the cellular mechanism for 

ADH release, According to this theory an action potential at the magna­

cellular neuroendocrine cell terminal triggers reverse pinocytosis, 

Contents of the neurosecretory vesicle are disch~rged to the exterior 

while the vesicular membrane is retained (Douglas, 1968). There does not .. 

appear to be a fixed ratio of hqrmone to neurophysin release (Fawcett, et 

al,, 1968), although recent evidenc~ indicates that the release of neuro­

physin does parallel that of ADH in response to a stimulus for ADH re­

lease (Cheng, et aL 1 1972a,b; Forsling, et al., 1973; McNeilly, et aL, 

1972a, b), This may reflect free ADH and neurophysin in the cytoplasm 

(Barer, et aL, 1963; Ginsburg, 1968), or different:i,al binding by the 

neurophysin molecule (Wuu and Saffran, 1969), 

Evidence for the cellular mechanism of ADH release is both chemical 

and morphological, Electron microscope studies in.the hamster (Douglas, 

et al. , 1971) and in the rat (Dreifuss, et al. , 1974; Dempsey, et al., 

1974) have revealed exocytotic images, Edwards; et al, (1973) using the 

en~ymes lactic acid dehydrogenase and adenylate kinase as .markers of axo­

plasm revealed that a strong stimulus for the release of ADH did markedly 

increase plasma ADH with no increase in either lactic acid dehydrogenase. 

or adenylate kinase, 

Data have also been presented that indicate distribution of ADH in 

the magnocellular neuroendocrine cell terminal .. into at least two pools, 

This material has been reviewed by Cross, et al, (1975) and only a 
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cursory view will be presented here. Pulse labe~ling techniques indicate 

that most of the hormone is present in .the larger less accessible pool. 

Acute stimulation elicits the release of only a small portion of the 

readily accessible pool which amount~ to approximately two percent of the 

total hormone in the neural lobe, 

Preferential Localization of Antidiuretic Hormone 

and Oxytqcin Within the Supraoptic Nucleus· 

Recent.evidence indicates that in at least two species (rat and cow) 

ADH- and oxytocin-producing neurons are distributed preferentially in 

both the supraoptic and paraventricular nuclei (Swaab, et al., 1975; 

Vandesande and Dierickx, 1975). Immunoenzyme. stains of both magnocellular 

nuclei revealed that oxytocin containing cells .were .localized more in the 

rostral part and ADH containing cells more in.the caudal part. 

In addition Vandesande and Dierickx (1975) found that both hypo­

thalamic magnocellular nuclei of the rat contained ADH and oxytocin 

neurons in about the same number. Swaab, et al. (1975) observed also in 

the rat that the two hormones are fonnd in.both nuclei in similar per­

centages but due to the large size of the supraoptic nucleus. it had about 

2. 5 more oxytocin containing cells. These data do not. support the 

classical view of a functional separation of the supraopt~c nucleus. and 

paraventricular nucleus. 

Control of Antidiur.etic Hormone, Release 

Osmotic 

In 1947 Verney demonstrated that short term infusions (5-20 seconds) 

of hypertonic.· sodium chloride into the common carotid artery would 
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decrease the urine flow rate of a conscious dog in a water diuresis. He 

proposed that the release of ADH from the neurohypophysis into the blood 

was triggered by osmoreceptors located somewhere in the brain (anterior 

hypothalamus) in the distribution of the common carotid artery. Verney 

also hypothesized that the osmoreceptors were not stimulated by a change 

in body fluid tonicity per ~but by a change in .extracellular fluid 

tonicity which in turn affected the volume of the receptors. Injections 

of hypertonic sodium salts, sucrose, and glucose caused an antidiuresis 

in hydrated dogs while hypertonic urea had no effect due to its high 

diffusibility or. to da.J11age. to the blood brain barrier (Hayward and 

Jennings, 1973c). 

Later work using the techniques of electrical stimulation (Harris, 

1955), arterial ligation (Jewell and Verney, 1957), hypothalamic deaf­

ferentation (Sundsten and Sawyer, 1961; Woods, et aL, 1966), and single 

unit recording (Hayward and Vincent, 1970), narrowed the osmoreceptor 

zone to the SON and its immediate perinuclear zone. · 

Andersson, et al. (1967) used injections into the third ventricle of 

goats to study regulation of ADH secretion. They found that both hyper­

tonic sodium .chloride and ammonium chloride produced antidiuretic effects 

and presumably an increase in ADH release, In addition, the antidiuretic 

effect of ammonium chloride was greater than sodium chloride and there 

was no effect of d-glucose, A similar study (Olsson, 1969) showed that 

an intraventricular infusion of sucrose had no effect on water diuresis 

or urine osmolality in female goats and that the antidiuretic effect of 

ammonium chloride remained even when an isotonic solution was adminis­

tered, A later study in sheep (Olsson and MacDonald, 1970) demonstrated 

an antidiuresis when hypertonic sodium chloride was given via the carotid 
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artery, However this osmotic stimulus could be overridden in the. . . 

presence of a water diuresis~ 

Shimizu, et a~, · (1973) established a quantitative relationship be-: 

tween plasma osmolality and plasma ADH, Using pentobarbital anesthetized 

dogs these investigators observed t~at plasma ADH increased progressively 

in response to an increasing plasma osmolality causeci by an intrajugular 

infusion of hypertonic sodium chloride, A rectilinear relationship was 

found to exist between plasma ADH and plasma osmolality in·the range 

studied (270-330 mQsm/kg), . A similar relationship has been observed in 

unanesthetized rats (Dunn) et aL, 19 73), where plasma ADH increased two 

to four times with each 1% increase in plasma osmqlality, 

A ~ighly significant and direct correlation between pla~ma osmolality 

and plasma ADH has been observed in healthy recumbent adults (Robertson, 

1974), A 1% change in plasma osmola~ity was sufficient to evoke,a 1 pg/ml 

change in plasma ADH, c;hanges of this magnitude are large enough to 

cause pronounced changes in urine osmolality. A significant correlation 

between plasma ADH and urine osmolality was also found. 

The previous discussion has dealt with the response of plasma ADH to 

increases in plasma osmolality. Arndt (1965) and Arndt and Gauer (1965) 

demonstrated that a water diuresis normally follows an infusion of water 

into a c~rotid loop of. conscious dogs. Th~s implied an inhibition of ADH 

secretion by hypotonicity and ,confirmed the osmoreceptor concepts .of 

Verney as important in urine flow in the dog, · 

Zehr, et al, (1969) followed plasma ADH and plasma osmolality down 

to control values in unanesthetized ewes following a 72-hour water.depri-

vation, They observed that plasma osmolality decreased to control values 

four hours after the beginning of hydration but that plasma ADH had 
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decreased to control values two and one~half hours after the beginning of 

hydration, This is suggestive of a dynamic component in the ADH regula~ 

tory mechanism,· However, these times were not found to be statistically 

significant, A follow up study (Johnson, et al., 1970) i where plasma 

osmolality decreased with no change in either left atrial pressure or 

mean arterial blood pressure, showed a significant decrease in plasma ADH 

with a large and significant increase in urine flow, These investigators 

concluded that a decrease in plasma osmolality of 3.5 mOsm/kg could block 

the release of ADH, 

Volumetric 

Along with the osmotic effects on ADH first noted by Verney (1947), 

volumetric effects also appear impor"l;:ant, (Henry and Gauer, 1951; Atkins 

and Pearce, 1959; Weinstein, et al., 1960; Baratz and Ingraham, 1960; 

Thorn, 1970). Henry and Gauer (1951) were among the .first to observe 

that hemorrhage decrease4 urine flow rate, presumably due to an.increase 

in ADH release. (Ginsburg and Hellert 1953; Weinstein, et al., 1960; 

Baratz and Ingraham, ·1960), Many investigators have noted that a hemor­

rhage equivalent to an 8 to.lO% decrease in blood volume can increase 

plasma ADH in both anesthetized and unanesthetized animals· (Dunn, et aL, 

1973; Henry, et al., 1968; Goetz, et al,, 1974; Johnson, et al., 1970; 

Share, 1968; Szepanska-Sadowska, 1972), 

Shade and Share (1975a,b) studied the effect of a.slow non-. 

hypotensive hemorrhage on plasma ADH in anesthetized dogs, Blood volume 

was first expanded to a value 17 percent greater than that in norma­

volemic dogs. Arterial pressures and plasma osmolalities were maintained 

at.control values in both groups. They observed the same significant 
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correlation between plasma ADH and blood volume for normovolemic and ex­

panded dogs. In other words acute,volume expansion did not alter volume 

control of ADH. 

Forsling, et al. · (1973) in pentobarbital anesthetized rats noted 

that hemorrhage released not only ADH but its carrier protein, 

~europhysin-II as well, and that there.was a direct relation between 

plasma levels of these substances, On the basis of these investigations 

the authors tentatively assumed that one molecule of neurophysin is re­

leased for each molecule of hormone, McNeilly, et aL · (1972b) noted in 

the ,goat that plasma hormone and neurophysin levels were closely related 

after.both experimental and physiological stimuli, 

An 8% hemorrhage is known to block, the water diuresis produced by 

intracarotid injection of distilled water into unanesthetized trained 

dogs (Arndt, 1965; Arndt and Gauer, 1965), Conversely, increases in 

blood volume have been shown to increase urine flow (Atkins and Pearce, 

1959; Baratz ·and Ingraham, 1960; Henry, et al, , 1956; Henry and. Pearce, 

1956; Ledsome and Lind.en, 1968), 

Zehr, et al. (1969) and Johnson, et al, (1970) observed that left 

atrial pressure, an indirect .estimate of .blood volume, was particularly 

suited to studies in unanesthetized ewes, They noted that a three day 

water deprivation or a.lO% decrease in blood volume (with no change in 

plasma osmolality) decreaseq left atrial pressure by 5 em of water and 

increased plasma ADH to 4 microUnits/ml from a control value of 1,7 

microUnits/mL Similarly in the goat (McNeilly, et aL, l972b) a low 

left atrial pressure induced by hemorrhage increased ADH secretion, In 

man 1 an isovolemic decrease in arterial blood pressure will increase ADH 

only if the .decrease is greater than 5 to 10% of the resting recumbent 
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value (Robertson, 1974), 

In the dog within a few minutes following a large hemorrhage and 

maintenance of arterial blood pressure at 50 mm Hg there is a massive 

release of ADH into the blood (Weinstein, et al.; 1960), Antidiuretic 

activity peaks at two to five minutes post bleeding. This initial rapid 

secretory response is not maintained.and the rate of hormone release de­

creased in spite of a continuing hypovolemia again implying a dynamic 

component in the ADH regulatory mechanism. 

In contrast to the rather large changes.in blood volume discussed 

previously, Claybaugh and Share (1973) noted in urethane and chloralose. 

anesthetized dogs.that a decrease in blood volume as small as 2,6% could 

affect the system controlling ADH release, However, as Goetz, et al, 

(1974) pointed out, blood loss .during preparative surgery could have 

elevated plasma ADH levels prior to the beginning of the experimental 

hemorrhage, 

Henry, et al, (1956) were the first to use a balloon to distend the 

left atrium in an attempt to demonstrate the presence of volume receptors, 

They found that a continuous left,atrial distension produces a transient 

diuresis that·returns. to control values after thirty minutes (cf. 

Lawrence, et al., 1973), This was the first evidence that atrial stretch 

receptors might; be involved in regulating ADH release. Since that time 

additional evidence has accumulated to substantially support the idea 

that acute distension of the left atrium increases the activity of 

stretch receptors and this activity is transmitted via the vagus to de­

crease ADH release.(Share, 1965; Ledsome and Linden, 1968; Zehr, et al., 

1969; Johnson, et al.; 1969; 1970; Szcepanska~Sadowska, 1972; Kinney and 

DiScala, 1972; Share and Claybaugh, 1972; Claybaugh and Share, 1973; 
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Gillespie, et aL, 1973; Lawrence, et aL, 1973; Kappagoda, et aL, 

1974a), The mechanism appears to involve the stimulation of subendocar­

dial stretch receptors, the majority of which lie at the junctions of the 

pulmonary veins and the left atrium (Coleridge. et al,, 1957). There 

appear to be.two functional types of receptors involved (each type found 

in both atria) although they have not been differentiated histologically 

(Goetz, et al,, 1975), The natural stimulus for type A receptors may be 

atrial tension while that for type B is definitely atrial volume (Paintal; 

1973). Electrical activity of type A receptor occurs during the a wave 

of the atrial pressure curve, Less is known about the type A receptors 

because their scarcity makes study difficult, The activity of type B re­

ceptors .is associated with the v wave of the atrial pressure tracing and 

is linearly related to blood volume, Type B receptors are therefore con­

sidered to be the receptors which have the most effect.on ADH release, 

Their afferent fibers .travel in the vago-sympathetic trunk (Szcepanska­

Sadowska, 1972), It also appears that there may be ventricular receptors 

which are connected with nonmyelinated fibers in the right vagus and 

which may inhibit normally excitatory influences on ADH release (Harris 

and Spyer, 1973), 

The effect on urine flow of stimulating right atrial receptors 

(unencapsulated nerve endings) appears to be qualitatively the same as 

that brought about by stimulation of left atrial receptors, Kappagoda, 

et al, (1973) found that distension of a balloon in the lumen of the 

right atrium of chloralose anesthetized dogs and at the superior vena 

caval-right atrial junction produced an increase in both urine flow rate 

and sodium excretion, 

Although the previous discussion presents a rather strong case for 
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left atrial distension producing a decrease in antidiuretic activity, the 

area remains one of active interest. Using chloralose anesthetized dogs 

Kappagoda, et al. (1974a) distended balloons .in the left atrium to pro­

due~ a diuresis and measured ADH via bioassay. They.found no correlation 

between diuresis and ADH activity of the plasma and suggested that a 

diuretic agent might be invol~ed, In a follow up study (Kappagoda, et 

al,, 1974b) similar maneuvers were employed; intravenous ADH was found to 

suppress the. evoke.d diuresis. The bioassay faithfully detected changes 

in plasma antidiuretic activity resulting from these injections. These 

workers concluded that a decrease in.plasma ADH level did not accompany 

the diuretic response to left atrial distension in their preparation 

Osmotic and Volumetric 

The strong role for left atrial regulation of ADH release presented 

thus far is diminished when one compares osmotic and volume stimuli sepa­

rately and simultaneously. Work in unanesthetized ewes (Zehr, et al,, 

1969) demonstrated that osmoreceptor. activity becomes more prominent . as 

stimulus intensity increGJ,sed, Changes in plasma osmolality within the 

range of 2 to 3% could be modified by. increasing left atrial pressure; 

however. a progressively greater role is played by the osmoreceptor sys­

tem at osmolality changes greater than 2 to 3%. A subsequent study 

(Johnson, et a1 .• 1970) using simultan~ous and separate,osmotic and 

volume stimuli led to the conclusion that neither receptor. system was 

dominant over the other. However, as pointed out by Goetz, et al. 

(1975), changes in plasma osmolality of approximately 1% were being com-. 

pared with changes, in blood volume of 10%. · In view of this it appears 

that the osmoreceptor system plays a much greater role.in day to day 
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regulation of ADH secretion, Similar studies in rats (Dunn, et al,, 

1973) and in man (MosesJ et al,, 1967; Moses and Miller, 1971; Robertson, 

1974) support this concept, In other words, the magnitude of the neces­

sary changes in blood volume and the highly variable response seem to 

argue against a primary role for blood volume control of ADH secretion,. 

It appears more likely that left atrial pressure is. a modulator of the 

osmotic response; and the incre.ase in ADH after sufficient hemorrhage may 

not be a physiological response but is only elicited to adapt the .cardio­

vascular system to a significant blood loss (Goetz, et aL, 1974), 

Along. the. same lines. evidence has· accumulated that the distribution 

of blood within the body can influence receptors that normally block ADH 

release (Segar and Moore, 1968; Robertson, 1974), ADH levels in human 

plasma vary with position aiJ.d are maximal when the subject is erect and 

minimal when supine, Similarly, Hayward and Baker (1969) produced a 

diuresis in a variety of animals by preoptic cooling. The diuresis was 

presumably due to.an inhibition of ADH release by an increased central 

blood volume caused by peripheral vasoconstriction due .to the preoptic 

cooling, 

Other Influences 

Magnocellular neuroendocrine cells of the supraoptic nucleus have· 

rich connections with the limbic system and brain stem as demonstrated by 

electrical stimulation (Aulsebrook and Holland, 1969; Hayward, 1972; 

Koizumi and Yamashita, 1972; Negoro, et al.; 1973b; Slotnick and 

Rothballer, 1964), It therefore seems likely that a multitude of inputs 

could influence the release of ADH. It has been noted that pain (Verney, 

1947; Ginsburg, 1966) as ~ell as osmotic stress can produce an 
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antidiuretic response; therefore behavioral state may be important in 

hormone release. Indeed Hayward and Jennings (1973d) observed that be­

havioral state (pain) was an import<;~.nt correlate to magnocellular neuro­

endocrine cell activity. 

Neuronal Properties of Magnocellular 

Neuroendocrine Cells 

This section is intended to discuss evidence which supports claims 

that magnocellular neuroendocrine cells are tr:uly neuronal in character, 

At the light microscope level, magnocellular neuroendocrine cells of 

the supraoptic nucleus exhibit features similar to neurons of the central 

nervous system, including neurofilaments and Nissl substance (Scharrer 

and Scharrer, 1954), · 

Electron microscope studies (Rechardt, 1969) of magnocellular neuro­

endocrine cells of the supraoptic .nucleus revealed that cells of this 

nucleus receive all three of the basic types of synapses: axodendritic, 

axosomatic and axoaxonic, Dendrites were usually densely covered with 

synapses which contained large granular, small granular and agranular 

vesicles,· Axoaxonal synapses were rare and always found near a capillary, 

Electrophysiological investigation of the neuronal character of 

supraoptic magnocellular neuroendocrine cells began when von Euler (1953) 

recorded slow de osmopotentials from anesthetized cats given injections 

of hypertonic saline or glucose, Later, Cross and Green (1959), who were 

the first to record from single units in the hypothalamus, noted that 

action potentials of supraoptic neurons were similar in shape to those 

recorded from other brain areas. 

Intracellular recording of magnocellular neuroendocrine cells was 
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(1964). Resting membrane potential, on the average• was found to be 
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50 mV. Action potentials .up to 117 mV in magnitude and up to 10 msec 

(average 3.5 msec) duration were observed. Action potential duration in. 

mammalian magnocellular neuroendocrine cells is slightly less, averaging 

2. 7 msec (Novin, et al., 1970). These were further characterized by a 

prominent diphasic hyperpolarizing afterpotential consisting of a small 

and brief first phase followed by. a larger and longer lasting second 

phase. These magnocellular neuroendocrine cells spontaneously fired at a 

rate of two to eight spikes per second and could be stimulated to sustain 

a slow firing rate in response to constant current. This behavior is 

similar to that of spinal motoneurons which may also have a prominent 

hyperpolarizing afterpotential,· 

Both orthodromic and antidromic potentials were evoked in the magna­

cellular neuroendocrine cells of the goldfish. By stimulating the olfac­

tory tract Kandel (1964) was able to evoke a long latency depolarizing 

synaptic potential (EPSP) in the neuroendocrine cell which was graded and 

could trigger an action potential if a threshold voltage was reached, 

Adequate stimulation of the pituitary stalk could evoke an antidromic 

potential or an inhibitory.post synaptic pote~tial (latency slightly 

longer than antidromic spike) if the ,stimulus intensity was subthreshold. 

for activation of the neuron. These observations led Kandel to conclude 

that neuroendocrine cells have electrical membrane properties similar to 

other neurons. Antidromic activation also enabled Kandel to calculate a 

mean conduction velocity from conduction distance. and measurement of. 

antidromic latency. A conduction velocity of 0.46 m/sec was found which 

was similar to that observed earlier also in neuroendocrine cells of fish 



24 

(Potter and Loewenstein, 1955). 

The·earliest.atte~t to extend t~e techniq_ue of antidromic identifi­

cation to cells of the mammali~n SON was. that of Yagi; et al. in 1966. 

They were able to record spontaneous as .well as. antidromic. impulses 

evoked by.stimulati.on of the.pituitary stalk of.the rat both in vivo and 

in vitro, Since proces~es of these cells project to .the neurohypophysis, 

this was an ~ffective demonstration tha~ mammalian magnocellular neuro­

endocrine cells can generate and conguct action potentials. These in­

vest~gators were able to go one step further in vitro. They noted that 

the observed excitability disappeared in the_ absence-of sodium (a result 

later confirmed by Dreifuss, et al., 1971 and Ishida, 1970) and in the 

presence of high potassium, thus again suggesting that magnocellular 

neuroendocrine cells have·membrane properties similar to those of non-. 

neuroendocrine neurons. In.~ddition, on the ba~is of antidromic latency 

and an estimation of conduction distance (Eccles, eta~.; 1Q58), they 

calculated conduction velocity of t4ese.fibers to be approximately 

1 m/sec. Conduction velocities similar to these observed by Yagi, et al. 

(1966) have been observed in goldfish (Kandel, 1964; Hayward, 1974),.cats 

(Koizumi and Yamashita, 1972), dogs. (Koizumi. and Yamashita, 1972), 

monkexs ·(Hayward and Jenrlings, 1973a), and rabbit (Sundsten, et aL, 

1970; Navin, et al.; 1970). 

Intracellular recording of manunalian magnocellular neuroendocrine 

cells (SlU1dsten~ et al., 1970; Novin 1. et al., 1970; Koizumi and 

Yamashita,.l972) revealed a resting· mem~rane potential of 40 to so·mv and 

often a complet~ separation of A and B components of the antidromic 

spike. The· complete separation and lcmg interval between the A and B. 

spikes· can be accentuated by. shortening the interval between two stimuli · 
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(Navin, et al., 1970) and may. be due to the presence of recurrent axon 

collateral inhibition which has been demonstrated in both the SON and PVN 

(Sundsten.; et aL, 1970; Navin, et al., 1970; Koizumi and Yamashita, 

1972; Dreifuss and Kelly, 1972). Navin, et al. (1970) hypothesized that 

the absolute refractory period of the B spike may be greater than that of 

the A spike resulting in this separation. Similar results are seen in 

pyramidal tract neurons. The height of the B spi~e is also about twice 

the magnitude of the A spike, a phenomenon noted in lateral geniculate 

neurons . (Bishop, et al. , 1962) • 

Stimulation of the pituitary stalk has been shown to set up a hyper­

polarization of the somatic membrane. at intensities subthreshold for 

antidromic ac~ivation (Kandel, 1964; Koizumi and Yamashita, 1972; 

Dreifuss and Kelly, 1972). This hyperpolarization is of considerable 

magnitude and duration (80-125 msec) and may delay or prevent invasion of 

the soma by late antidromic spikes. Antidromic stimulation leading to 

inhibition of spontaneous activity has now been demonstrated in several 

species (Kandel, 1964; Koizumi and Yamashita, 1972; Dreifuss and Kelly, 

1972; Driefuss, etal.; 1973; Sundsten, et al., 1970; Novin, et al., 

1970; Hayward and Jennings, l973a). Again this may be due to the 

presence of recurrent axon collaterals with or without imposition of an 

inhibitory interneuron. 

Morphological support for the existence of recurrent collaterals is 

limited. Branching of nerve fibers of the hypothalamo-neurohypophysial 

tract has been described (Christ, 1966), Degeneration studies in the rat 

(Olivecrona, 1957) also support the concept of recurrent outflow of 

supraoptic and paraventricular neurons, · Hayward (1974) usi~g the tech­

nique of procion yellow marking to study magnocellular cells of the 
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characterized by multiple branched axons (cell type. I). 
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Koizumi and Yamashita (1972) recorded intracellularly from single 

neurons in or near the SON of anesthetized cats and dogs and found that 

some fired 5 to 7 spike.s at a rate of 500 to 800 spikes per second when 

excited by pituitary stalk stimulation, Weaker stimulation produced 

fewer spikes. These cells may be inhibitory interneurons between the re­

current collateral branches and magnocellular neuroendocrine cell somata, 

In summary~ magnocellular neuroendocrine cells exhibit no properties 

not reported for other neurons of the central nervous system. They gen~ 

erate action potentials, respond to strength duration parameters as ex­

pected (Sundsten et al.; 1970) and have conduction velocities in the 

range of mammalian type C fibers, An approach to this system as a 

neuronal system should lead to new views concerning the control of all · 

neuroendocrine systems. 

Electrical Activity and Hormone.Release 

As mentioned earlier, Verney (1947) introduced the technique of an 

intracarotid injection of hypertonic saline as a means of releasing ADH, 

The zone of specialized brain cells s.ensi ti ve to ch,anges in. osmotic 

pressure was later (Jewell and Verney, 1957) localized in the hypothalamus 

and thought to be in the area of the supraoptic nucleus. 

von Euler (1953) sought to correlate electrical activity of these 

cells with pituitary secretion. He recorded slow potential changes in 

the SON region under conditions which were conducive to ADH release from 

the neurohypophysis. The de shifts were interpreted to be due to a sum­

mation of generator potentials (similar to that of peripheral receptors), 
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or of potential changes from neurons activated by osmorec~ptors. 

Although enlightening. the work of von.Euler suffered from the fact 

that the meaning and origin of de potential changes are still unknown. 

Shortly afterwards recording of single supraoptic neurons was done in the 

urethane anesthetized rabbit (Cross and Green. 1959). Electrical activity 

in these cells was. increased by stimuli which also promoted the release 

of ADH from the neurohypophy. sis. Hypertonic NaCl and glucose. affected . . 

the spont~eous rate of discharge of m~;~.ny neurons, Neurons responding to 

osmotic stimuli were highly specific and rarely responded to non-noxious 

arousing stimuli. This is quite in line with ·the proposal of von Euler 

(1953); a neuron is an osmoreceptor only if it responds specifically to 

osmotic stimuli. 

Not only do supraoptic magriocellular neuroendocrine cells respond to 

an incre~;~.se in osmotic pressure·with an incre~;~.se in firing rate. they 

also show slow spontaneous activity in the absence of any apparent stimu­

lation (0.1 to 5,0 spikes/sec in the chloralose anesthetized cat 

(Koizumi. et al.; 1964)). In addition, intracarotid distilled water has 

been shown to block firing of these supraoptic magnocellular neuroendo-

crine neurons , (Vincent • et al. • 19 72) • The slower firing of these 

neurons is significant in the s.ense that hypothC!lamic island .preparations. 

fire faster than those in control animals (Navin and Durham• 1969) and 

still respond to changes .in the osmQtic .condition (Woods, . et al. , 1966; 

Sundsten and Sawyer. 1961). This may be a reflection of volume inhibi-

tion, Often.the neuronal response to an osmotic stimulus was stronger in 

the island preparation (Navin and Durham, 1969). 

Hayward and Vincent (1970) were,the first to record extracellularly 

single units of the SON and their responses to intracarotid injections of 
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hypertonic NaCl and other arousing stimuli in the conscious behaving 

rhesus monkey. They sought to determine if previous results in anesthe­

tized animals and in vitro could be observed in the unanesthetized ani­

mal. In addition, they attempted to.distinguish between osmoreceptors a 

and magnocellular neuroendocri:t').e cells in the region of the SON, Fifty 

percent ofthe neurons recorded by these investigators were specifically 

sensitive to osmotic changes while the remainder were sensitive to both 

sensory arousing stiruli and osmotic changes •. Cells responding to both· 

osmotic and sensory stimuli were calle~ nonspecific osmosensitive cells; 

both excitatory (34%) and inhibitory. (16%) responses were observed, 

Specific osmosensitive cells responded to intracarotid injections of 

hypertonic sodium chloride but rarely responded to nonnoxious arousing 

stimulL Of the specific osmosensi ti ve cells 30% responded monophasically 

with either a shortlived accelerated.firing (20%) or inhibition (10%). 

These monophasic osmosensi ti ve cells were found mainly in the perinuclear 

zone of the SON, and were postulated to be the osmoreceptors as defined 

by von Euler (1953), The remainder (20%) of the specific osmosensitive 

cells responded biphasically (a J?eriod of excitation followed by inhibi­

tion) to an intracarotid pulse of hypertonic saline. This pattern of 

neuronal firing may be significant to the normal maintenance of ADH 

levels as has been suggested (Harris, et al., 1975; Wakerley, et al., 

1975; Walters and Hatton, 1974; Arnauld, et al,, 1974, 1975), These 

cells were regarded as the neuroendocrine cells responsible for synthe­

sizing and releasing ADH. A serious drawback however to the study of 

Hayward and Vincent (1970) was .the fact that identification of these. 

cells was based strictly on histological location and osmotically evoked 

discharge .patterns; the:refore one cannot be certain. that the biphasic 
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cells actually had their terminals in the post~rior pituitary. 

In a follow-up study~ Vincent, et al. · (1972) observed an inhibition 

of antidromically identified SON units during water drinking and an op­

posite response.to osmotic stress in the.unanesthetized monkey; These 

investigators also noted that some,of these antidromically identified 

cells did show patterns of excitation followed by inhibition, Hayward 

and Jennings (1973b) confirmed, these findings when they recorded from 

identified neurons.in unanesthetized monkeys, Their work corresponded 

exactly with that of Hayward and Vincent (1970), Specific biphasic osmo­

sensitive responses occurred only in identified magnocellular neurons, 

and monophasic ~onspecific responses occurred only in nonidentified 

cells, It may be that biphasic responses .emerge when excitatory drive 

increases beyand a certain threshold and collateral branches (discussed 

previously) lead to the excitation-inhibition sequence af bursting noted 

in the monkey (Hayward and Vincent, 1970; Hayward, and Jennings, 1~73a,b) 

and in the rat (Wakerley and Lincoln, 1973; Wakerley, et al,, 1975; 

Harris~ et al •• 1975), 

Dyball (1971) used the ,technique of antidromic identification tQ 

study supraoptic and paraventricular neurons in the urethane, anesthetized 

rat, It was observed that an intracarotid injection of 0,25 ml of 1 M 

sodium chloride accelerated discharge of SON units and elevated plasma 

ADH to a peak concent~ation of 1300 microUnits/ml in 3 minutes, 

Th~se results support the concept that the release of ADH·is triggered by 

a discharge of action potentials down magnocellular neuroendocrine cell 

axons ... 

Knowing that 2% sQdium chloride substituted.for drinking water would 

release both ADH and oxytocin (Jones and Pickering 1 1969), Dyball and 
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Pountney (1971, 1973) studied antidromically identified cells in urethane 

anesthetized rats which had drank 2% sodium chloride ad libitum for three 

days prtor t9 neuronal recording.· Compared to controls they observed a 

significan"t;: increas~ in the firing rate .of both nuclei which was 

associated with a.depletion of neural lobe hormqne. 

Blood Volume·. and Hypothalamic t,Jnit Activity 

Littl~ information is .available concerning the .effects of changes .in 

bl0od volume or left atrial pressure qn hypothalamic unit activity. 

Menninger and. Frazier (1972) s.tudied the effects of. changes in blood 

volume and left atrial distension OIJ. the-electrical activity of.non­

identified hypothalamic nelJ,rons in urethane q.nestheti~ed cats. A total 

of nineteen. cells were tested for response to bqth balloon inflati0n and 

injec~ion of hype~tonic ,sodium chloride. · Eight .of these neuroiJ.s responded 

in a manner.consistent with the differeJ].tial effects of volume.and osmotic 

st:i,.muU. This study t}J.en neither refute~ nor supp0rts the concept of. 

differential effects of osmqtic and volume stimuli. 

A more recent ,investigation, Wakerley, et al. (1975), studied the 

effects of a hemorrhage of 15% bl0od volume on ~hasic PVN neurons of 

urethane anesthetized rats. The stimulus was.observed to convert the 

phasically active neurons to continuously active or to increase their 

burst duration, · The. authors . conc+udeq thai;: phasic activity is a func­

tiona~ state of the cell, and that during a stimulus many phasic cells 

are s:ynchronized · tq prQdUCC;;) a pe~iodic di~cha~ge of neurohypophysial 

hormone, This synchronization may b~ a modulating mechanism of hormone 

re+ease. 
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Spontaneous and Evoked Firing Patterns 

In previous sections .mention ha.s ·been made of continuously. active 

cells, burster cells, silent cells, and biphasic and monophasic responses, 

The functional significance of these firing patterns is .unknown. 

Many studies have now confirmed that an opt~mal frequency for stimu­

lation of the pituitary stalk to produce hormone release is in the neigh­

borhood.of 40 spikes per second (Harris, et al., 1969; Ishida, 1970; 

Sundsten, et al,, 1970; Dreifuss, et al,, 1971), Hormone output. also 

decreases markedly above and below this frequency. Sundsten, et aL 

(1970) noted in anesthetized rats that the lowest frequency of stimula­

tion which would produce a milk ejection response was 15 spikes per 

second and that the magnitude of this parameter did not increase.when the 

frequency was increased above. 100 spikes per. second. 

In vitro studies (Dreifuss, et aL, 1971) have shown that at fre­

quencies less .than 35 spikes per second hormone. release depends on the 

number of action potentials and their frequency. At frequencies greater 

than 35 spikes per .second numbers of action potentials are less effective 

and frequency dependence is less obvious. The authors concluded that a 

discrete number of action potentials released the most hormone when they 

occurred close together in time. 

Again in anesthetized animals, Dyball (19}1) studied the responses 

of antidromically identified units in both the SON and PVN during injec­

tions of sodium chloride. A high proportion of the units in both nuclei 

were firing at a rate of less than 1 spike per second, Changes in action 

potential activity of the SON were associated with hormone release; how­

ever, both excitatory and inhibitory responses were.observed, It was 

generally found that units firing spontaneously at rates less than two 
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per second were excited and that units firing spontaneously at rates 

greater than 2 per second were inhibited by intracarotid hypertonic sodium 

chloride. In addition, blood ADH levels did not return to cqntrol levels . 

at the same rate as firing rate of the individual neurons, 

Many laboratories have now demonstrated that a subs.tantial number 

(up to 32%) of magnocellular neuroendocrine cells fire intermittently in 

a pattern caHed phasic or bursting in both ane~thetized (Wa~er1ey and 

Lincoln, 1971a; Negoro and Holland, 1972; Negoro, et al., 1973a,b; 

Wakerley and Lincoln, 1973; Walters and Hatton, 1974; Dyball and Pountney~ 

1973; Harris, et al.; 1975; Wakerley, et aL; 1975) and unanesthetized 

animals (Hayward and Jennings, 1973a,b; Arnauld, et al., 1974, 1975), 

Although the. data were collected from differently prepared animals under 

';"idely varying experimental conditions, characteristics of bursts are 

remarkably similar, 

Responses of antidromically identified cells of the paraventricular 

nucleus to pain, vaginal distension and suckling have been studied (Waker­

ley and Lincoln, 1973; Negoro, et al., 1973a,b) in anesthetized rats .. It· 

was concluded that suckling did not directly modulate neuronal activity 

but could influenc~ the .generation of phasic ac-t;ivity. A burst firing 

rate of 40 tG 80 spikes/sec was reached during the .bursts that preced~d 

milk ejection. The excitatory. response was again followed by a period of 

inhibited firing which was found to increase as the firing rate .of the 

responsive cell increased. Graded milk ejection responses with periods of . 

exci taticm below a. threshold for hormone release were not observed. 

Harris, et al. (1975) studied the response of antidromically identi­

fied supraoptic magnocellular neuroendocrine cells to bilateral occlusion 

of the.common carotid arteries; a stimulus known.to release ADH (Clark 
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and Rocha e Silva, 1967). Phasic neurons,responded with increased burst 

firing rates four·to nine seconds after the start of occlusion. On the 

basis of these and previous data showing that approximately. SO% of con­

tinuously active cells were excited during milk ejection (Lincoln and 

Wakerley, 1974), . the authors suggested that phasic neurons might repre­

sent a dist~nct class of ADH secreting neurons and that irregular neurons 

were secreting oxytocin. 

Phasic cells have also been implicated as being ADH neurons in other 

studies (Dyball and Pountney, 1973). Activity of-these cells increased 

in sodium chloride treated rats but rarely exhibited the 20- to 40-fold 

increase in firing rate of paraventricular neurons noted by Wakerley and 

Lincoln (1973). Substituting 2% NaCl for drinking water, Dyball and 

Pountney noted that in treated rats the interburst interval had increased. 

as well as the mean burst firing rate, Although these effects are in.an 

opposite direction, the result was an overall increase in mean firing 

rate, 

In unanesthetized female rhesus monkeys, antidromically identified 

magnocellular neuroendocrine cells exhibited three discrete patterns of 

spontaneous firing distributed randomly in the SON and INZ (Hayward and 

Jennings, 1973a,b), Silent cells (3%) were .discovered only by stimula­

tion of the pituitary stalk. The most common pattern (63%) of firing was 

that described as continuously active. Twenty-one,percent of the cells 

exhibited a pattern of firing described as low frequency bursting, AU 

three firing pattern types were found to be specifically osmosensitive 

with a biphasic response. Two of these patterns, continuously active and 

silent, have been described elsewhere in the hypothalamus and are not 

t~erefore unique to the hypothalamic magnocellular neuroendocrine system. 
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However cells of the class of low frequency bursters do appear to be 

limited to neuroendocrine systems, especially in invertebrates (Kater and 

Kaneko, 1972; Strumwasser, 1971; Stennakre and Tauc, 1969), Hayward and 

Jennings hypothesized that specif~c input cc;mnections might be responsible 

for e9-ch firing pattern type .which may reflect c~llular s~cretion of 

specific neurohypophysial hormones and neurophysins, In addition, the 

bursting pattern may be related to an inhibitory recurrent collateral 

pathway. An alternate hypotqesi~ was that each firing pattern represel).ted 

a secretory state of a celL In other words, synthesis and transport 

without.release occurs in silent cells, continuously active cells maintain 

basal hormone levels and low frequency bursting cells are releasing 

pulsatile amounts of hormone (see also Sachs, et al,, 1969), In fact, it 

was· observed tl).at osmotic loading could convert some silent cells to COJ?.-

tinuously active and some,conttnuously active cells to low frequency 

bursting patterns of firing (Hayward and Jennings, 1973c; Hayward and 

Murgas, 1973), 

Similar conclusions ,.were reached in a recent study of the response· 

of phasic paraventricular neurons .to hemorrhage. amounting to 15% blood 

volume (Wakerley, et aL, 1975), a stimulus probably more physiologic 

than 5 second intr.acarotid pulses of hypertonic saline, . Hemorrhage was 
' . 

found to increase overall mean firing rate by increasing burst duration 

as well as intraburst frequency, although the latter effect was not as 

consistent as the former, These investigators, like Hayward and Jennings, 

felt that the pattern of discharge described as phasic is a functional 

state of activity of a.neurosecretory cell which can at other times be 

continuously active or silent, Furthermore, it appeared to the authors 

that a synchronization (normally absent) of phasic cells occurs under the. 



35 

appropriate stimulus.· This synchronization (overlapping of activity) ap­

pears unavoidable as burst duration increases. A possible mechanism then 

of the regulation of hormone release is this modulation of burst duration 

which could provide a pulsatile discharge of neurohypophysial hormones, 

In addition, they proposed that neurons synthesizing and releasing oxy­

tocin were· the ones· whose· firing was characterized by a high frequ~ncy 

discharge during suckling, ADH release in turn is determined by the fre~ 

quency and duration of the burst of the phasic cells, 

Walters and Hatton (1974) used a water deprivation from 0 to 5 days 

to study the effects of a.progressive dehydration on histologically 

identified SON neurons. The overall firing rate of neurons in the SON 

was ~een to change significantly during the deprivation (days 1, 3, and 4 

significantly greater than day 0 with days 2 and 5 intermediate). In 

addition, the percentage of neurons firing phasically changed with water 

deprivation, · Th~ highest percentages were observed at days 0 and 2 and 

the lowest at day 5. The mean firing rate of these neurons.was again 

significantly higher at days 1, 3, and 4 with 2 and_5 being intermediate, 

No significant differences in burst duration or interburst intervals were 

noted although there was.a trend for burst duration to be shorter in de­

prived animals, A highly significant increase in burst mean firing rate 

was observed during deprivation which the authors believed reflected the 

progressive dehydration. Supraoptic neurons were observed to be more 

likely phasic than nearby cells. 

A concurrent study had one.distinct advantage over the one just dis­

cussed (Walters and Hatton, 1974), Arnauld, et aL (1974, 1975) studied 

the effects of prolonged water deprivation on antidromically identified 

magnocellular neuroendocrine cells of the SON of unanesthetized female 
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rhesus monkeys. Antidromic identification has the advantage of definite 

recognition of neuroendocrine cells where histological identification of 

cells in the nucleus.does,not distinguish between interneuron~ and magno­

cellular neuroendocrine cells. Like previous studies, Arnauld, et aL 

found that an overall increas~ in mean firing rate of supraoptic neuro­

endocrine cells occurred with dehydration and decreased upon rehydration. 

At plasma osmolalities less than 300 mOsm/kg they observed that most 

cells were spontaneouslyactive in a pattern much like the continuously 

active cells of Hayward and Je~nings (1973a,b) with only about, 13% firing 

phasically. Upon water removal the ratio of phasic to continuously 

active patterns .of firing increased as well as the overall mean firing 

rate, One mechanism for the increased firing rate involves these phasic 

cells, Both .• the burst duration and burst firing rate inc.reased following 

water removal. At osmolalities greater than 310 mOsm/kg, continuously 

active patte~s of firing appeared which had fluctuations similar to the 

phasic cells, With further increases in plasma osmolality, the propor­

tion of this type. of. cell increased, On the basis of these data the 

authors, like others, suggested a.switching in firing pattern from con­

tinuously active to phasic with the appropriate stimulus. 

Genesis of Firing Patt~rns 

The previous section indicated that neurons of both the paraventric­

ular and supraoptic nuclei have·similar spectra of firing patterns 

ranging from silent to continuously active to bursting. A question re­

garding the functional significance of the spontaneous patterns of firing 

is obvious and the answer probably lies in an understanding of the modes. 

of their generation, 
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Some.authors have suggested that these patterns of neuronal activity 

represent a specific hormona~ state, each releasing a different neuro­

hypophysial peptide and its specific carrier protein (Hayward and 

Jennings, 1973b; Cross, et al., 1975; Harris, et al., 1975; Wakerley, et 

al., 1975), Other authors. have suggested that the patterns of firing 

represent different secretory states in which each type of activity is, 

performing a function specific to a particular aspect of hormonal regula­

tion (Hayward and Jennings; 1973c; Sachs,·et al., 1969). 

Hayward and Jennings (1973a) suggested that the bursting pattern may 

be.related to a recurrent collateral inhibitory pathway whose existence 

was discussed earlier. Perhaps the reduced hormone output at pituitary 

stalk stimulation frequencies greater than 35 per second. is due to an en­

hanced recurrent collateral inhibition and not due to reduced impulse 

transmissions as suggested by Dreifuss, et al. (1971). 

Specific neural inputs were also suggested as .possible mechanisms 

for firing pattern genesis by the work of Wakerley and Lincoln (1973), 

They noted that the explosive increase in paraventricular unit activity 

preceding milk ejection did not occur as a result of a cue from the suck­

ling pups and therefore must be a reflexive event, They further sug­

gested that the biphasic pattern was suggestive of positive and negative 

feedback effects due to intrinsic neuronal wiring of the neurosecretory 

cells (recurrent collaterals), This concept is furth,er supported by the 

work of Negoro and Holland (1973a,b) which demonstrated that the attain­

ment of a higher firing rate resulted in. an· increased length of the 

following inhibitory period. 

The generation of succeeding bursts may be due to a post inhibitory. 

rebound as indicated by.the work of Hayward and Jennings (l973d), · The 
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authors did not discuss this phenomenon although post inhibitory rebound 

appears likely from inspection of figure 1 of the cited work. 

It seems reasonable then to· propose. that the bursting pattern of 

firing originates by an,increased excitatory drive which sets up a volley 

. of. impulses in the neuroendocrine cell. These impulses are fed back in 

an inhibitory .manner to produce the period of hyperpolarization and ab­

sence of cell firing recorded intracellularly and extracellularly, 

respectively,· The post inhibitory.rebound as well as the subsequent 

excitatory. drive may be import:;mt in generating subsequent bursts, 

Generation of. the silent and. continously active firng patterns may 

be randemnoise or the type of activity resulting from a.particular 

threshold of excitation for that cell. 

Modeling of Firing Patterns 

The making of models eften provides answers to problems which may 

seem insurmountable when approached by current experimental techniques, 

The extensive review by Harmon and Lewis (1966) sets forth three .advan­

tages of modeling to physiologists, Firstly, it provides a convenient 

means of testing hypotheses, Secondly, it ·may often synthesize diverse 

data in to a unified picture, an~ thirdly, it ,can provide direction for 

further physiological experiments, This· section will deal with the 

genesis of bursting"- patterns of firing and their relation to other spon­

taneous. activity patterns where. applicable. In most cases qualitative 

and not quantiative examples are discussed. 

Burns (1954, 1955) modeled afterbursts observed in the ,cortex of the 

cat. These afterbursts of cortical neurons.last up to one hour and can 

be elicited in response to strong stimulation of the cat .cort~x, The 
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author proposed that this was due to a differential repolarization of the 

neurons and used electrical analogs to quantitatively test his hypothesis. 

The major assumption was that the two ends of cortical neurons have dif­

ferent time courses for their repolarization, the central ends repolar­

izing more slowlythan the distal ends. The potential difference between 

these tw:o points then·might,accumulate to a point where current flow be­

tween them is greater than threshold,and excitation can occur. Burns' 

model closely approximated his physiological observations~ 

A later s~udy. (Andersen, et al, ~- 1966) used a digital computer to 

simulate a neuronal network of 80 cells. Two basic assumptions were 

used. One,; all cells had a random probaqility of discharge when not af­

fected by other cells and two, this probability of discharge changed in a 

certain number of cells when one neuron fired. The resulting discharge 

patterns generated by this model paralleled those of neurons recorded 

from the animal thalamus. A transient burstlike. activity ensued follow­

ing the start of the network and was followed by a random .fluctuation in 

the number of.active cells and later periods of rhythmic activity 

occurred which were similar to physiological data, The factors most 

important to the rhythmic activity in.the model were found to be post-. 

inhibitory rebound and the degree of collateral inhibition to neighboring 

cells. 

MacGregor and Palasek (1974) modeled rhythmic activity having a 

period of 600 to 1300 msec which depended primarily on the rate of re­

covery from refractoriness in individual cells from mutually exciting 

pools of neurons. The rate of bursting was found· to be affected by. the 

av~rage level of random background activity, It was also found that the 

burst duration and spikes per burst depended on the number of 



interneurona+ connections, connection strength and the magnitude of 

change of the conductance to potassium. The bursts were found to merge 

giving an overall appearance of marginal periodicity when background 

activity was increased and other parameters were held at normal values, 

Rhythmic activity could be activated initially from random back~round 

activity· or by the presence of a leaky membrane in some or all cells. 
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Two papers have recently addressed the problem of periodicity with 

models which include recurrent inhibition (Perkel, et aL, 1974; Wigstrom, 

1974). . Perkel t et al. introduced the concept that the connections will 

establish a regularly repeating firing pattern.if one of the cells is a 

pacemaker. ·In addition, a.rela"t:ively large postinhibitory rebound will 

lead to indefinite periods of bursting from synaptic input when no pace­

maker is present. The alternative concept of a.domination principle was 

introduced by Wigstrom, · The model incorporated excitatory, inhibitory 

and unspecified input with all connec~ions random .. It was found that 

diverse patterns of output were subject to a process by which the largest 

comp9nent _was reinforced and all others were suppressed. Furthermore, 

additional input had 1i ttle or no effect after the initial decision was 

made. 

The true mechanism of burst genesis observed in.mammalian neuroendo­

crine cells is still in doubt •. The t;~.bove models do shed some light on 

what parameters of the neuronal pool may be important to phasic discharge. 

Aspects of neuroendocrine cell function particularly si~ificant may be 

recurrent inhibition, postinhibitory rebound and dynamic processing of 

input, as suggested by the .models of Perke1, et a1. (1974), Wigstrom 

(1974) and Andersen (1966), 



CHAPTER III 

MATERIALS AND METHODS 

Animal Preparation 

Southdown ewes (4-9 years of age) were conditioned to a recording 

stanchion prior to any surgery. Sodium thiamylal (Surital, Parke-Davis) 

was used for induction of anesthesia and introduction of an endotracheal 

tube. Anesthesia was maintained by connecting the .endotracheal tube to 

an Ohio 300 D/0 Deluxe Anesthesia Ventilator Machine and Vaporizer for 

methoxyflurane.gas (Metofane, Pitman-Moore). 

Animals were placed in a stereotaxic headholder (Baltimore Instru­

ment Company) modified for sheep and a craniotomy performed without 

excising the dura mater at Fr 30.0, Right 3.0 (Rogers, 1976) which would 

accommodate a bone wax filled stainless steel cylinder with an outside 

diameter of 20 mm (Trent Wells, Inc.). Subsequent craniotomies were .per­

formed for placement of stainless steel epidural platform bolts and bi­

parietal silver-silver chloride ball .electrodes for electrocorticographic 

recording. The cylinder, bolts and electrodes were cement.ed to the 

cranium and all craniotomies sealed with dental cement (Caulk Grip 

Cement) to prevent pressure. fluctuations .and minimize sepsis in the 

cranium. Periorbital stainless steel electrodes for recording extra­

ocular eye movements were also implanted. These and the EEG electrodes 

were led to, and fixed at a receptacle (Amphenol 2N052) on an elevated 

luci te platform held permanently above the scalp by the four stainless 
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steel epidural platform ,bolts (Baker, et al., 1968), Also fixed to the 

lucite platform were receptacles for a 10-pin de preamplifier and power 

input and unit output leads (Amphenol 223-1205), 

Pituitary Stimulating Electrode Placement 
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After completion of the above preparation, a titanium microposi~ 

tioner (Trent Wells, Inc.) with a specially designed pituitary electrode 

guide (Figure 1) was fixed to the implanted stainless steel cylinder, A 

radiograph was taken which allowed calculation of the correct coordinates 

for future implantation (relative to the location of the permanently im­

planted cylinder) of a pair of insulated (Isonel 31 Ins, Var., 

Schenectady Chemicals, Inc,) tungsten pituitary stimulating electrodes 

with 2 mm tips bared across the hypophyseal stalk. Radiographic land­

marks were the sella turcica and optic _foramen. 

Following radiology (4~7 days), a second craniotomy was performed 

for placement,of pituitary stimulating electrodes. Pituitary guide tubes 

and stimulating electrodes. were stereotaxically lowered through the 

electrode guide apparatus from above at a rostral-caudal angle of 29°" 

The electrodes and their guide tubes.were then firmly fixed to the 

cranium and platform with dental cement, · 

Arterial and Venous.Cannulation 

The carotid artery was cannulated through a cut end of the thyra­

laryngeal artery:and fixed without interruption of blood flow in the 

common carotid artery. This cannula was used for introduction of a 5 to 

10 second pulse of hypertonic NaCl, Pulse injections of hypertonic solu­

tions into the common carotid artery proved unsatisfactory (see Chapter 



Figure 1. Scale Drawing (1: 1) of Pituitary Stimulating Electrode Guide 
Apparatus 

(A) left lateral view; (B) top view; (C) bottom view; (D) three 
dimensional view. 
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IV) and jugular veins were cannulated in subsequent sheep, 

Cannulae (Dow Corning Silastic) were placed in both external jugula+ 

veins (rightJ 0,078 inches inside diameter and leftJ 0,06.2 inches inside 

diameter) and threaded about.6 inches toward the .heart. A small bead of 

silicone medical adhesive (Dow Corning) served to anchor each cann~la by 

suture to subcutaneous tissues. These cannulae continued subcutaneously 

to the head where they were capped with hypodermic needles and fixed to 

the lucite platform (Baker J et aL J 1968) .. Both .cannulae were filled 

with heparinized saline (1000 U/ml) and flushed daily with .one-half ml of 

the same solution. All wounds were closed with Vetaphil suture, The 

completed preparation is illustrated schematically in Figure 2, 

Confirmation of Pituitarr Stimulating 

Electrode.Placement 

Correct pituitary electrode placement was confirmed the next day by 

the production of an antidiuresis in response to pituitary stalk stimula­

tion. A Foley catheter (Fr. 12) was placed in the bladder and the exper­

imental animal was then hydrated by an intravenous infusion of hypotonic 

s.aline (0 .45% NaCl) at a rate of 3 ml per minute until a stable urine 

flow was achieved. The pituitarr stalk w~s then stimulated (Grass Model 

84) with square wave pulses of 2 msec durationJ 2-8 mA constant current 

(ELS CS-1) intensity at a rate of 40 per second for 5 seconds every.30 

seconds for 5 minutes. Stimulation of correctly placed pituita+y, elec­

trodes resulted in both an increase in urine osmolalitY and a decrease in 

urine flow rate. A typical response is illustrated in Figure 3. 



Figure 2. Diagrammatic View of the Hydraulic Microdrive, Pituit;ary 
Stimulating Electrode~, and the Carotid and Venous,Cannulae 
on the Head of a Sheep 

A cranial pl~tform holding the stereotaxic bone fixed adapter cylinder 
and capped arterial and. venous. cannulae was chronically fixed above the 
scalp on four bolts cemented in the skull. Bipolar pituitary stimulating 
electrodes were stereotaxically lowered from above· at a 29° angle and 
permanently fixed to the skull and platform with dental cement, The 
silicon rubber cannula was placed into th~ common carotid artery. through 
the cut end of the thyrolaryngeal artery and fixed without interruption 
of flow in the· common carotid artery, The silicon rubber cq.nnulae were 
threaded under the skin of the neck .and head to the cranial platform. 
Labels: l.l.t., leur-lok tip with rubber caps for the arterial and 
venous cannulae; r.e., recording electrode; p.eq pituitary electrode; 
Lm,a., internq,l maxillary artery; e,m,;:~.., external maxillary artery; 
cc., carotid cannula; j .c., jugular cannula; t.a., thyrolaryngeal artery; 
c. a., carotid artery; j,v,, jugular vein, 
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Figure 3. Antidiuresis.Produced in a Hydrated Sheep by Pituitary Stalk 
Stimulation · 

Pit, Stirn,~ pituitary stalk stimulation; Osm. J urine osmolality 
(mOsm/kg); Vol.J urine flow rat~ (ml/min). 
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Left Atrial Cannulation 

Since left atrial pressure has been implicated in the control of 

ADH, left atrial catheters were placed in 5 sheep in order to follow left 

atrial pressure·during an-osmotic forcing (to be discussed later). A 

silicone rubber. catheter with a radiopaque marker was placed in. the left 

atrial appendage by means of a. left • thoracotomy in the fifth intercostal 

space and secured by means of a purse string suture through the appendage. 

The.radiopaque marker served to locate the left atrial appendage for 

later transduc~r placement. · The cannUla was filled with heparinized 

saline (1000 U/ml) and retracted so that.a collar of silicone medical 

adhesive abutted against the purse string tie .. 

Single Unit Recording 

Following recovery from surgery, as indicated by eating at preopera­

tive lev:els, the sheep was isolated from the investigator and recording 

equipment in a recording chamber. Behavior was constantly monitored 

during the course of an experimenta+ period by means of a television 

monitor system (camera SONY AVC-3000 and monitor ~VM-920U), The head was 

held painless1y by a nqse band, head supporting platform and neck strap 

which allowed the sheep to behave normally thr~.:mghout the duration of the 

experiment, · 

Tungsten microelectrodt:~s were con!:?tructed (after Hubel, 1957) from 

0.008 inch diameter, 10~12 em long tungsten wires. Tip diameters of one 

micron or less were made by electrolytic etching and polishing in a solu­

tion of -saturated potassium nitrite. Microelectrodes were then insulated 

to within 10 to 20 microns of the tip with four coats of Isonel 31 insu­

lating varnish (Schenectady Chemicals, Inc.). A capacitance meter 
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(Tektronix Type 130 L-C Meter) was. then used to measure tip .capacitance 

(50-80 pf acceptable) and uninsulated tip length (Bak, 1967). A tungsten 

mic:roelectrode was then lowered within a 22 gauge stainless. steel guide 

tube through the Starr guide of the titanium micropositioner and bone wax 

of the stainless steel cylinder to a position 5-10 mm above the .SON .. The 

electrode was then lowered out of the protective guide tube into the SON 

and optic chiasm by means of a calibrated hydraulic micromanipulator 

(Trent Wells, Inc.). 

Extracellular single. unit activity was al!lPlified by the. de preampli­

fier on the. lucite platform and led into a high gain ac coupled band pass 

amplifier. (F. Haer). This amplifiec;l activity was directed to a wirtdow 

discriminator, audiomonitor (Grass AM3), magnetic tape recorder (SONY· 

TC 366) and oscilloscope mon~tor (Tektronix-5103N/Dl3). The magnetic 

tape recordings could later be replayed for analysis and photography. 

Two outputs from the window discriminator were led to an ink writing 

polygraph (Grass Model 7), These were a one to one pulse output and an 

analog output proportional to neuronal discharge rate. These were re­

corded simultaneously with EEG andeye movement. The polygraph written 

records could then be correlated with behavior and unit recording from 

tl}.e hypothalamus~ Th_e written records were also used to subjectively 

classify neuron discharge patterns, by visual inspection, into one.of 

seven types. A flow diagram of this recording system is illustrated in 

Figure 4. 

Single units .were tested for antidromic activation by stimulation of 

the pituitary stalk with single square wave pulses of 2 msec duration and 

2-8 rnA intensity. A unit was considered to "e an identified magnocellular 

neuroendocrine cell if, in response to pituitary stalk stimulation, it. 



Figure 4. Flow Diagram of Single Unit Recorcling System 

Labels: PA, de preamplifier; AMP, high gain band pass amplifier; AS, 
artifact suppressor; TR, tape recorc;ler; WD, window di~criminator; ,OSC, 
oscilloscope; AM, audio monitor; COM, compute:r; TO, blood pressure 
transducer; EEG, e1ectrocorticqgram; EM, eye movement; LAP; left atrial 
pressure. 
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exhibited a stable wave form and latency, followed high frequency stimuli 

(100 per second) and/or collided with a spontaneously occurring anti­

dromic spike, · An antidromically ev.oked spike and collision are illus­

trated in Figure 5, 

After detection and isolation of a .stable neuron its spontaneous 

activity was recorded for a period o~ 5-15 minutes. At that time an in­

fusion of hyperton~c saUne (1. 2 M sodium chloride) was employed to 

"force" a change in plasma osmolality of a'Qout, 10 mOsm/kg (9. 46 .:!:. 1. 60) 

in 10 minutes or a 20 mOsm/kg (17.79.:!:. 2.95) in 20 minutes. Osmolalities 

were determined with an Advanced Instruments, Inc. osmometer. In 

eighteen cases left atrial pressure was,also monitored through the left 

atrial catheter by means of a Statham P23DC transducer. Mean changes of 

plasma osmolality (mOsm/kg ~ SEM) and mean changes of left atrial pres­

sure (em H2o ~SEM) are plotted in Figure 6, 

Unit activity was .. followed,after termination of the forcing to ob~ 

serve behavior of the magnocellular neuroendocrine cell during the return 

of plasma osmolal~ty towards c9ntrol levels. Recording duration for a 

single .neuron ranged from 5 minutes to 4 hours, averaging about. 1 hour. 

Locali~ation of Recording Sites 

At th,e conclusion of e~perimentation the animal was terminGJ,lly 

anesthetized and deposits of iron from stainless steel lesion electrodes 

were stereotaxically placed at known intervals, The brain was then per- . 

fused via the c~rotid arteries with saline containing 2% sodium ferro­

cyanide and 10% formalin. The brain was exposed ventrally to allow 

visual inspection of pituitary electrode ,placement .. In animals from 

which antidromically identified magnocellular neuroendocrine cells had 



figure 5. An Antidromically Evoked Spike and Collision 

Labels: r.e,, recording electrode; s.e., stimulating electrode; O.C., 
optic chiasm; Trace 1, spontaneously.occu:rring action potential; Trace·2, 
action potential evoked by stimulation of the pituitary stalk; Trace 3, 
antidromic field resulting from collision of.spontaneously occurring 
action potential with evoked action potential; Trace 4, Trace 3 at a 
higher magnificat1on. · 
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Figure 6. Mean Response of Plasma Osmolality an<;l Left Atrial Pressure 
to a Hypertonic Forcing · 

Labels: I, change in pla$ma osmolality (mOsm/kg); 0, change in left 
atrial pressure (cm/H20). 
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been.recorded, accurate drawings were made of electrode tip placement so 

that estimates of cond~ction distance could be made. Knowing antidromic 

latency and conduction distance, an estimate of conduction vel()city for 

magnocellular neuroendocrine cells was calc~lated (Eccles, et al., 195-8). 

The brain was then, removed and frozen sections of the diencephalon were 

cut at 100 microns in the stereotaxic plane. · Location of the. Prussian . 

blue spots (Figure 7) aided in reconstruction of electrode tracts and 

placement of unit locations on outline drawings of the areas section,ed. 

Data Analysis 

Analysis of data began when a unit was isolated from baseline 

activity. After noting the recording period to be further analyzed, mag­

netic tape. sections were replayed. and unit action potentials led into the. 

window discriminator. Short duration. (0. 5 msec) square wave pulse out­

puts of the window discriminator triggered by unit action potentials were 

further recorded on magnetic tape·and used for subsequent computer 

analysis, 

Some computer analysis was performed by Mr. Mike Davis at the Brain 

Research Institute, University of California, Los Angeles. The program 

directed a POP 8 Digital Computer to c~lculate mean firing :rate, mean 

interspike interval, standard deviation, coefficient of variation and 

histogram of any desired order •. The coefficient of variation as c~lcu­

lated by. the computer program is. the reciproca+ of that discussed .in 

textbooks of statistics. Some or all of this data was used to classify a 

neuron discharge .pattern into one of seven types. 

Subsequent computer analysis was performed on the campus of Oklahoma 

State University. An Interdata 7-16 computer system with a Centrionic 



Figure 7. Lesion Verification of.Recording Sites in Two Sheep 

Prussian blue spots were made aft~r passing a de current through ·stain­
less steel elec;trodes supported from the recording platform. The lesions 
were placed 3 mm above the optic chiasm level (determined physiologically 
with recording electrodes) to ensure their visibility. Frontal coordi­
nates for thes.e lesions are Fr. 30.0 (Sheep 6) and, Fr. 30,1 (Sheep 8). 
Labels: e .1. ~ electrode lesion; NSO, supraoptic nucleus, OC, optic . 
chiasm. 
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Line Printer (capable of generating plots) was programmed to calculate 

mean firing rate, mean interspike interval and, its standard devi~tion, 

mean instantaneous rate and its standard deviation and confidence limits 

regarding increasing or decreasing int~rspike interval length (trend 

analysis). The line printElr also plotted interspike interval histograms 

and:cumulative time histograms. Mean firing r~te was calculated by taking 

the reciprocal of the mean interspike in~erval. Mean instantaneous rate 

is the. firing rate calculated by ave~aging the reciprocals of each inter-. 

spike interval.· 

Trend analysis, based on the R~k Correlation Method of Kendall 

(1970), calculate,d the confidence limits for. the tendency of interspike 

intervals to progressively. increase or decrease spontaneau~ly or in re­

sponse ta an, osmotic forcing, · The value Ka., produced by. the trend 

analysis was used as a measure of osmos~nsitivity. Trend_analysis was 

calculated from succ~ssive bins of the cumulative time histogram or 

instantaneous rate plot .. _ These values were eithe:t: used alone to define 

osmosensitivity or divided by the change in mOsm/kg for the analysis. 

period. 

Since. neuronal. respons.e. to a continuous linear c~ange in plasma 

osmolality was the major concern of tQ.is dissertation, it was imperative 

that a method for displaying this response be designed. Some experi~ 

mental periods ·ran into hours, therefore.large amounts.of magnetic tape 

and polygraph tracings were ac<?urnulated. The need for compressing spike. 

trains into a form which displayed the-neuronal response-without the 

presence of-a large amount of material was obvious. Chung, et al. (1974) 

designed a simple device for int;erspike interval analysis. The-instru­

ment d~signed and· constructed for display of this data is similar in 



the.ory. A binary counter was used to generate a linear voltage change 

amounting to a. series of discrete. jumps. This voltage change was used to 

drive a single sweep of the oscilloscope lasting up to 40 minutes. The 

vertic~l deflectio~ scale amounted t9 a logri thmic voltage change across 

a capacitor. . Pulses from the_ window discriminator served as . input to the 

device which generated a one to one QUtput to the z_:axis of the oscillo­

scope. Interspike interval then was.:.expressed .on tl1,e verticaLscale in a 

logrithmic.fashion while spike occurrence appeared as a "dot" generated 

by input to the z-axis. Spike trains up to 4Q minutes in duration could· 

then be displayed as a single oscilloscope sweep. This enabled one to 

observe spontaneous activity patterns as well as changes evoked by a 

hypertonic. forcing. 

Statistical Anal:rsis 

Anal:rsis of variance (ene-way classification) and Duncan's new mul­

tiple range test _were.employed.to fil).d, significant differences.where more 

than two means were to be compared. Least significant ranges for groups 

with unequal replication were found by the method described in Steele_and 

Torrie (1960). 

Statistical analysis involved comparisons between antidromically 

identified magnoceUular neuroendocrine cells and nonidentified cells 

located outside the supraoptic nuclear region (defined to be,within 1 mm 

of the histologic _boundaries of the Sc;JN). Nonidentified cells were not 

included in the analysis due t0 the possibility that they might be magna­

cellular neuroendocrine cells whose axons were not stimulated by the 

electrodes across the hypophyseal stalk. 

A chi-square analysis ._of cqunts ,was used to approximate the 
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probability that the distribution of counts was .due to chance for the 

parameter in question (e, g. , distribution of firing pattern, s leep-wc;~.king 

and sensory responsiveness within an area). Yates' correction for con­

tinuity was employed with this analysis to 9btain a more exact probability 

value from the chi ... squal;.'e taole. 

The t test for nonpaired experiments .was employed"where comparisons 

between two means were to be made. 

The cor1;:elation coefficient, r, was cal~ulated tq determine the 

~egree of reliability of the relationship between two variables 

(conduction velocity and measures of osmosensitivity). 



CHAPTER IV 

RESULTS 

Spike trains from over 125 neurons were recorded from hypothalamic 

and septal areas of 10 unanesthetized sheep. Of these, 116 were found 

sui table for further analysis, Spike trains from 75 supraoptic magno-

cellular neuroendocrine cells.were studied in 8 animals. The low number 

of neuroendocrine cells recorded "per sheep" was due to several factors. 

Two major.problems were difficulty in obtaining optimal pituitary stimu­

lating electrode placement and recording from a well isolate.d neuroendo-

crine cell throughout the necessarily long recording period which 
. . 

included blood sampling and behavioral testing. · Other problems encoun-

tered included long term anesthesia in a ruminant and the maintenance of 

patent chronic jugular cannulae. A large stimulus artifact which some";' 

times obsc-qred' antidromically evoked action potentials was introduced by 

necessary placement of the stimulus isolation unit several feet from the 

experimental animal. 

Categorization of Firing Patterns 

Activity of all recorded units could be cat~gorized into one of 

seven firing patterns ranging from silent through periodic .bursting to 

continuously active. Cat~~orization was based on some or all of the fol­

lowing parameters: mean spontaneous firing rate, mean interspike inter-

val, interspike interval mode, interspike interval standard de"\lliation, 
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interspike interval histogram shape and coefficient of variation. Burst~ 

ing cells were further categorized on the basis of burst duration, inter­

burst interval, period, spikes per burst and burst mean firing rate, 

Means .::. SEM of the parameters used for classification of spike trains 

into firing pattern types are listed in Tables I and II. 

Silent cells (3%} were discovered OJ1,ly by stimulation of the hypoph-. 

yseal stalk which eyoked an antidromic; potential in .the soma. These 

cells were found only in the supraopt~c nuclear region, 

Continuously active slow cells (21%) were found in both the supra­

optic nuclear region and widespread hypothalamic and septal areas. The 

mean firing rate was defined to be less than one spike per second, The 

interspike interval histogram tended tq have a Poisson distribution 

(assymetrical unimodal peak) with the mode generally less than the mean 

interspike intervaL Several long. intervals were usually present in the . 

spike train, The coefficient of variation was always found to be greate~ 

than 0, 5. 

Low frequency bursting cells (14%) fired in relatively long duration 

(2-lp seconds) low frequency bursts (2-8 spikes per second) and had a 

period from 6 to 50 seconds. The mean firing rate was usually greater 

than 1 spike per second and the interspike interval histogram showeda 

narrow unimodal peak with the mode greater than 60 milliseconds. Any low 

frequency bursting train of action petentials. could have singly occurring 

spikes during the interburst interval although these were .uncommon. The 

coefficient of variation was usually less than 0.5. These cells were 

also found in both the supraoptic nuclear region aJ1,d in hypothalamic and 

septal areas. · Mean burst characteristics are listed in Table II, 

Continuously active fast cells (45%) were defined to have a train of 



TABLE I 

MEAN PARAMETERS1 OF SPONTANEOUS FIRING PATTERNS 

Cell Type MFR2 ISI 2 Mode 2 cv2 MIR2 J3 

-
CAS 2 .42 + .OS 7. OS + 2 .• 1S 364.29 + 123.98 .80 + .04 19.92 + S.89 

n=37 n=37 n-;;7 n-;;20 n-;;20 

LFB 2 LS7 + .20 .86 + .09 140.00 + 18.28 .46 + .08 6.43 + LS7 
n=25 n=2S n=9 n=24 n=8 

CAF 2 4.84 + o44 .34 + ..• 03 84.70 + 8.97 .92 + .17 17.98 + 3.85 
n=81 · n=81 . . n=23 n=68 n=29 

HFB 2 3.24 + .51 .39 + .06 13.78 +. 4.08 .36 + .08 
n=ll n=ll n=9 n=lO 

CAB 2 7.13 + 1.03 .15 + .02 40.67 + 20.57 .4~ + .10 
n=6 n=6 n;-3 n=6 

CAR2 5.02 + .83 ,25 + .03 214.00 + 62.00 3.19 + 1.15 
n=lS n=lS n-;;5 n=l3 

lMeans + standard error of the mean. 

2Abbreviations used are: MFR 1 overall mean firing rate; ISI 1 interspike interval; Mode 1 mean inter­
spike interval mode; CVJ coefficient of variation; MIR; mean instantaneous rate. 

3Available for antidromically identified neurons only. 
(]\ 
--.J 



TABLE II 

MEAN PARAMETERS1 OF SPONTANEOUS BURSTING PATTERNS 

Cell Type MFR2 BD2 S/B2 BMFR2 IBI 2 Pd2 n 

-
AD+ LFB2 1.26 + .15 9,76 + 3.05 33.99 + 9.01 4.03 + .70 20,86 + 4AO 30. 75 + 6' 78 (MFR = 11) 

8 

AD- LFB2 1.83 + .36 6,22 + 1.23 23.23 + 6.84 4.05 + .51 12.43 + 2 .63. 18,65 + 3.24 (MFR = 9) 
14 

HFB2 3.14 + .57 .57+ .. 11 9,22+1.76 19,19 + 4.20 1. 71 + .23 2.29 + • 31 (MFR = 6) 
11 

CAB2 6.62 + .97 .66 + .14 7.09 + 1.52 11.37 + 1.07 • 34 + ,03 .99 + .15 (MFR = 5) 
6 

lMeans + standard error of the mean. 

2Abbreviations used are: MFR, overall mean firing rate; BD, burst duration; S/B, spikes per burst; 
BMFR, burst mean firing rate; IBI, interburst interval; Pd, pe~iod; AD+ LFB, antidromically identified low 
frequency burster; AD- LFB, nonidentified low frequency burster located outside the supraoptic nuclear 
region; HFB, high frequency burster; CAB,; continously active burster. . . 

0"-
00 
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singly occurring spikes having a mean firing rate.greater than one spike 

per second. The interspike interval histogram like that of the continu­

ously active slow cells was assymetrical with a unimodal peak also tend-. 

ing toward a Poisson distribution, · In contrast to the continuously 

active slow cell the interspike interval histogram was. broad. The mode 

again was generally less than the mean, This firing pattern type can 

have some clusters (less than 10 spikes per second) and may exhibit ir­

regular cyclic variations in mean firing rate. Cells in both the supra.,. 

optic nu~lear region a.I}d hypothalamic and septal areas .exhibited this 

pattern of firing. 

High frequency bursting cells (6%) exhibited short duration (0,3 to 

5 seconds) high frequency (greater than 10 spikes per second) bursts 

usually characterized by irregular periods not less. than twice the burst 

duration, Theinterspike interval histogram showed a narrow unimodal 

peak with a random distribution of longer intervals and a mode of 5 to 40. 

milliseconds. Singly occurring spikes did occt:tr and the .standard devia­

tion of the inters pike int.erval was. greater than 1000. Cells exhibiting 

the high frequency bursting pattern of firing were found in both the 

supraoptic nuclear region and in.hypothalamic and septal areas. Mean 

burst characteristics can be .found in Table IL No magnocellular neuro­

endocrine cell exhibited this pattern of firing. · 

Continuou;;ly active bursting cell,s (3%) were found to fire in short. 

rapidly occurring bursts giving a superficial appearance of continuous 

activity with few> if any> singly occurring s.pikes. The interspike 

interval histogram was bimodal with a relatively short interspike inter­

val mode of 10 to 70 milliseconds. The standard deviation of the inter­

spike interval was large. Cells exhibiting the continuously active 
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bursting pattern of firing were found in both the supraoptic nuclear 

region and in hypothalamic and septal areas. Mean burst characteristics 

can be found in Table II. No magnocellular neuroendocrine cell exhibited 

this pattern of. firing.· 

Cells exhibiting the continuously active regular pattern of firing 

(8%) exhibited a train of single spikes occurring at regular.intervals 

and had a mean firing rate of 5, 02 ~ 0, 83 (SEM). The inter spike interval 

histogram had a na~row symmetrical modal peak with the mode being nearly 

equal to the mean and a small standard deviation, The coefficient of 

variation was greater than 1. 0, This firing pattern was also found in 

both the supraoptic nuclear region and hypothalamic and septal areas o No 

magnocellular neuroendocrine cell exhibited this pattern of firing. 

Example spike trains and interspike interval histograms for each 

firing pattern type (with the exception of silent which s~ows. no spon­

taneous activity) are shown in Figures 8 and 9. 

Spike trains for the same cells are shown.in Figures 10 through 15 

as they are generated by the dot raster display, 

Stability of Firing Patterns. 

Stability of firing patterns was defined as the ratio of time spent 

in a firing pattern divided by the total recording time of that neuron o 

Most neurons had a stability of 1. 

The continuously active patterns of firing were.the least stable. 

Very slow firing cells were often placed in the silent category.until 

closer inspection revealed the presence.of occasional spikes, Other 

cells exhibiting the continuously active slow pattern.of firing fired in 

clusters giving the appearance of occasional low frequency bursting. 



FigureS, Example Spike Trains and Interspik~ Interval Histograms of 
Three Continuous!¥ Active Neurons 

A, continuously active slow; B, continuously active fast; C, continuously 
active regular. Labels: EEG, electrocorticogram; B.W., bin width in 
mill isecond.s, 
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Figure.9. Example Spike Trains and Interspike Interval Histograms of 
Three Bursting Neurons 

A, low frequency bursting neuron; B, high frequency bursting neuron; C, 
continuously active bursting neurqn. Labels: EEG, · electl,'ocorticogram; 
B,W., bin width in milliseconds. 
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Figure 10. Dot Raster Display of a .Continuously Active Slow Cell 
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Figure 11. Dot Raster Display of a ,Low Frequency Bursting Cell 
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Figure 12. Bot Raster Display of a Continuously Active Fast Cell 
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Figure 13. Dot Raster Display of a High Frequency Bursting Cell 
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Figure 14. Dot Raster Display of a Continuously Active Bursting Cell 
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Figure 15. Dot Raster Display of a Continuously Active Regular Cell 
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Cells firing in a continuously active fast pattern also generated 

clusters of spikes giving the train an appearance of continuously active 

bursting for a short segment. · 

The low frequency bursting pattern of firing at times. could appear 

to be continuously active slow or continuously active fast since singly 

occurring spikes were sometimes present in thes.e trains. 

Only the continuously active regular pattern of firing was more 

stable than h,igh frequency bursting and continuously active bursting 

patterns of activity. Th~se patterns only changed level of firing rate 

in response to a stimulus (to be discussed later), Continuously active 

regular cells rarely responded to any stimulus or changed their pattern . 

of firing for any reason. 

Statistical Analysis of Firing Pattern Parameters 

Analysis of variance for each parameter used to classify spike 

trains into a pattern of activity demonstrated significant differences 

(P < .05) in most cases. Significant differences were not observed in 

some cases where the mean values "look" different. This may be due to 

heterogeneity of variances or lack of sensitivity of the Duncan Multiple 

Range test for separation of means. 

The mean firing rate of continuou~ly active bursting cells was found· 

to be significantly greater (P < • 05) than the mean firing rate of all 

other cells, The mean firing rate of continuously active regular cells 

was significantly greater (P < • OS) than that of low frequency bursting 

and continuously active slow cells. Continuously active fast cells had a 

mean firing rate greater (P < .05) than that of eith,er the low frequency 

bursting cells or continuously active slow cells. The .mean firing rate 
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of high frequency bursting cells was significantly greater. (P < • OS) than 

the mean firing rate of continuously active slow cells. No other signif~ 

icant differences were found (Table III) o 

The me~ interspike interval of contint1ously active slow spike 

trains was significantly greater (P < .OS) ·than the mean interspike 

intervals of all other firing patterns o · No other significant differences 

were found (Table IV) o 

Interspike interval modes of each activity pattern were significantly 

different (P < .OS) in each comparison with the exception that continu­

ously. active bursting was not different from either continuously active 

fast or high frequency bursting (Table V)o 

The coefficient of variatio~ for continuously active regular spike 

trains was significantly greater (P < o 05) than the coefficient of varia­

tion for all other firing pattern~ o No other significant differences 

were found (Table VI). 

Mean instan~aneous rate was compared for continuously active slow, 

low frequency bursting and continuously active fast firing patterns. No 

significant differences were founc;l (Table VII). 

Statistical Analysis of Bursting 

Pattern Parameters · 

Parameters used to classify spike trains into one.of·the bursting 

patterns of activity were mean firing rate, period, burst duration, burst 

mean firing rate, spikes per burst J and interburst interval. Comparisons 

were made between continuously active bursting, high frequency bursting, 

nonidentified low frequency bursting cells outsi1de the supraoptic nuclear 

region .and antidromically identified low frequency bursting cells o 
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TABLE III 

COMPARISON OF MEAN FIRING RATES 1 OF SPONTANEOUS FIRING PATTERNS 

CAF2 

7.13 S.02 4.84 3.24 l.S7 0.42 

1Any two means unqerscored by the s~e line are not significantly 
different. Any two means nGt underscored by the same line are signifi­
cantly different (P < • OS). · 

2 Abbreviations ,used are: CAB, continuously active burster; CAR, 
continuously active regular; CAF, continuously active fast; HFB, high 
frequency burster; LFB, low frequency burster; CAS, continuously active 
slow. 

TABLE IV 

COMPARISON OF MEAN INTERSPIKE INTERVALSl OF SPONTANEOUS FIRING PATTERNS 

7.05 ,86 • 39 .34 .25 .15 

1Any two means unders~ored by the same line are not significantly 
different. Any two means not underscored by the same line are signifi­
cantly different (P < .OS). 

2Abbreviations used are: CAB, continuously active burster; CAR, 
continuously active regular; CAF, continuously active fast; HFB, high 
frequency burster; LFB, low frequency burster; CAS, continuously active 
slow, · · 



TABLE V 

COMPARISON OF-MEAN INTERSPIKE INTERVAL;MODES 1 OF 
SPONTANEOUS FIRING PATTERNS 
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364.29 214.00 140.00 84.70 40.67 13.78 

1Any two means underscored by the same line are not s.i.gnificantly _ 
different. Any two means not-underscored by the same line are signifi­
cantly differe~t (P < .05), 

2Abbreviations usec:l are: CAB • continuously active burster; CAR 1 

conti.nuously active regular; CAF, continuously active fast; HFB, high 
frequency burster; LFB, low frequency burster; CAS, '-continuously active 
slow. 

3.19 

TABLE VI 

COMPARISON OF MEAN COEFFICIENTS OF VARIATION 1 OF 
SPONTANEOUS FIRING PATTERNS 

.92 .80 .46 .42 0 36 

1Any two means.underscored by the same line are not significantly 
different._ Any two means _not underscored by the same Hne are signifi":" 
cantly different (P <.OS). 

2Abbreviations used are: CAB 1 continuously active burster; CAR, 
continuously active regular; CAF 1 continuously active fast; HFB, high 
frequency burster; LFB, low frequency burster; CAS, continuously active 
slow. · 



TABLE VII 

·COMPARISON OF MEAN INSTANTANEOUS RATES 1 ' 2 OF 
SPONTANEOUS FIRING PAITERNS 

CAP~ 
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19.92 17.98 6.43 

1Any two means underscored by the same line are not significantly 
different. Any two means not underscored by the same line are signifi­
cantly different (P < .OS). 

2Available for identified neuroendocrine cells only. 

3Abbreviations used are: CAS, continuously active slow; CAP; con­
tinuous~y active fast; LFB, low frequency burster. 
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Means ~ SEM for these parameters are listed in Table II. 

The mean firing rate of continuously active bursting cells was,found 

to be significantly greater (P < • OS) than the mean firing rate of all 

othe;Jr firing pattern types .considered (Table VIII). High frequency 

bursting cells had a significantly greater (P < .OS) mean firing rate 

than antidromically identified low frequency bursting cells. No other 

significant difference~ were found. 

The mean burst durations, of antidromically identified low frequency 

bursting cells and of antidromically negative low frequency bursting 

cells were found to be,significantly greater (P <.OS) than all othE;lr 

means to which they were compared. The meq.n burst durations. of the low 

frequency bursting cells were not significantly different, Similarly, no 

significant differenc~ was .. found when mean burst durations of high fre­

quency bursting and cont~nuous+y active bursting cells were comparec;l 

(Table IX), · 

The number of spikes .per burst (Table X) in the antidromically 

identified low frequency bursting cel~s was significantly greater 

(P < .OS) than that of all other bursting spike trains .except for non­

identified low frequency bursting cells outside the supraoptic nuclear 

region. No other significant differences were found. 

The· burst mean firing rate of high frequency bursting neurons and of 

continuously active bursting neurons were significantly higher (P < .05) 

than the burst; mean firing rates of both groups of low frequency bursting 

neurons. Burst mean firing rate . of high frequency bursting neurons was 

not different from that of continuou~ly active bursting neurons. Simi­

larly burst mean .firing rates of the two groups of low frequency bursting 

neurons were not significantly different (Table XI). 
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TABLE VIII 

COMPARISON OF MEAN FIRING RATES 1 OF 
SPONTANEOUS BURSTING PATTERNS 

AD- LFB2 

3.14 L83 1.26 

1Any two means underscored by the same line are not significantly 
different. Any two means not underscored by the sa~e line are signifi­
can~ly different (P < .OS), 

2Abbreviations used are: CAB, continuously active burster; HFB, 
high frequency burster; AD- LFB, nonidentified low frequency burster 
located outside the supraoptic nuclear region; AD+ LFB, antidromically 
identified low frequency burster. 

TABLE IX 

COMPARISON OF MEAN BURST DURATIONS 1 OF SPONTANEOUS 
BURSTING PATTERNS 
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9.76 6.22 ,66 ,57 

1Any two means underscored by the same line are not significan~ly 
different, Any two means not underscored by.the same line are signifi­
cantly different (P < .05). 

2Abbreviations used are: CAB, continuously active burster; HFB, 
high frequency burster; AD- LFB, nonidentified low frequency burster 
located outside the supraoptic nuclear region; AD+ LFB, antidromically 
identified low frequency burster, 



TABLE X 

COMPARISON OF MEAN SPIKES PER BURST 1 OF 
SPONTANEOUS BURSTING PATTERNS 
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AD- LFB 2 CABZ 

33.99 23.23 9.22 7.09 

1Any two means underscored by the same line are not significantly 
different,· Any two means not unders<;.ored by the same line are signi_fi­
cantly different (P < ,05), 

2Abbreviations used are: CAB, continuously active burster; HFB, 
high frequency burster; AD- LFB, nonidentified low frequency burster 
located outside the supraoptic nuclear region; AD+ LFB, antidromically 
ident~fied low frequency burster. 

19,19 

TABLE XI 

COMPARISON OF MEAN BURST MEAN FIRING RATES 1 OF 
SPONTANEOUS BURSTING PATTERNS 

AD- LFB2 

11.37 4.05 

AD+ LFB2 

4,03 

1Any two means underscored by the same line are not significantly 
different, Any two means not underscored by the same line are signifi­
cantly different (P <.OS). 

2Abbreviations used are: CAB, continuously active burster; HFB, 
high frequency burster; AD- LFB, nonidentified low frequency burster 
located outside the supraoptic nuclear region; AD+ LFB, antidromically 
identified low frequency-burster, 
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Comparison of mean interburst interval (Table XII) and mean period 

(Table XIII) reve~led that these parameters of antidromically identified 

low frequency bursting cells were significantly greater (P < .05) than 

those of all other neurons • In addition these parameters of anti­

dromically negative low frequency bursting cells were significantly 

greater (P < .05) than those of the high frequency bursting and continu­

ously active bursting spike trains. · Comparison of mean interburst 

interval and:mean.period revealed no.significant differences between high 

frequency bursting and continuously active bursting firing patterns. 

Distribution of Firing Patterns Within 

the Hypothalamus 

That firing patterns are not distributed equally between anti­

dromically identified neurons and antidromically negative neurc:ms. cmtside 

the supraoptic nuclear region is·apparent from inspection of Table XIV. 

This distribution may not. be completely accurate since sampling was not 

entirely random but based on firing patterns particularly interesting to 

the investigator. No magnocellular neuroendocrine cell exhibited a 

continuously active regular, high frequency bursting or continuously 

active bursting pattern of firing although all these patterns were found 

within the limits of the supraoptic nuclear region. 

Figures 16, 17, and 18 depict location of each cell record~d on a 

schematic drawing of brain stem cross sections, 

A chi-square analysis of counts was used to approximate the proba­

bility that the distribution of firing patterns within the hypothalamus 

is due to chance. The numbers of antidromically positive cells were com­

pared with the numbers of antidromically negative cells located 
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TABLE XII 

COMPARISON OF MEAN INTERBURST INTERVALS 1 OF 
SPONTANEOUS BURSTING PATTERNS 
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20.86 12.43 L71. 0.34 

1Any two means underscored by the same line are not significantly 
different, Any two means not underscored by the same iine are signifi­
cantly different (P < ,05). 

2Abbreviations used are: CAB, continuously active burster; HFB, 
high frequ~ncy burster; AD- LFB, ncmidentified low frequency burster 
located outside the supraoptic nuclear region; AD+ LFB, antidromically 
identified low frequency burster, 

TABLE XI II 

COMPARISON OF MEAN PERIODSl OF-SPONTANEOUS BURSTING PATTERNS 

AD- LFB2 

30,75 18,65 2.29 .99 

1Any two means underscored by the same line are not significantly 
different,· Any two means not_underscored by the same line are signifi­
cantly different (P < ,05). 

2Abbreviations used are: CAB, continuously active burster; HFB, 
high frequency burster; AD- LFB, nonidentified low frequency burster 
located outside the supraoptic nuclear.region; AD+ LFB, antidromically 
identified low frequency burster. · 
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TABLE XIV 

COUNTS OF SPONTANEOUS FIRING PATTERN TYPES IN THREE GROUPS 
OF NEURONS IN THE HYPOTHALAMUS 

Firing Pattern AD- not soNl AD- SON1 AD+ soN1 

sl 0 0 6 

CAS 1 9 8 24 

LFB 1 9 5 12 

CAF 1 39 13 33 

HFB 1 6 5 0 

CAB 1 5 1 0 

CAR 1 11 5 0 

Total 79 37 75 

97 

Total 

6 

4.1 

26 

85 

11 

6 

16 

191 

!Abbreviations used are: AD- not SON, neurons outside the supra­
optic nucleus not antidromically identified; AD- SON, neurons located in 
the supraoptic nucleus not antidromically identified; AD+ SON, anti­
dromically identified supraoptic neuroendocrine cell; S, silent; CAS, 
continuously active slow; LFB, low frequency burster; CAF, continuously 
active fast; HFB, high frequency burster; CAB, continuously active 
burster; CAR, cont~nuously active regular. 



Figure 16, Schematic of Recording Sites: Frontal 31,0 to 34,0 

Symbols: X~ HFB (high frequency burster); t, CAS (continuou~ly active 
slow); 8, LFB (low frequency burster); ~~ CAB (continuously active 
burster); 0. , CAR (continuously active regular); 0, CAF (continuously 
active fast); A, S (silent). Labels: VL, lateral ventricle; SR, septal 
region; C, caudate; CO, optic chiasm; VIII, third ventricle; THAL, · 
thalamus; MT, mammilothalamic tract; FX, fornix; TO, optic tract; 
NSO, supraoptic nucleus. 
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Figure 17. Schematic of Recording Sites: Frontal. 2 7, 0 to 31.0 

Symbols: X, HFB (high frequency burster}; •~ CAS (cont~nuously active 
slow);. t:., LFB (low frequency burster); 1!0, CAB (continuously active 
burster); 0, CAR (continuously active regular); 0, CAF (continuously 
active fast); ,, S (silent). Labels: VL, lateral ventricle; SR, septal 
region; c, caudate; CO, optic chiasm; VIII, third ventricle; THAL; 
thalamus; MT, mammilothalamic tract; FX, fornix; TO, optic tract; 
NSO, supraoptic nucleus. · 
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Figure 18. Schematic of Recording Sites: Frontal 24.0 to 27.0 

Symbols: X, HFB (high frequency burster); t, CAS (continuously active 
slow); !::., LFB (low frequency burster); 181, CAB (continuously active 
burster); [],CAR (continuous+y active regular); 0, CAF (continuously 
active fast);!, S (silent). Labels: VL, lateral ventricle; SR, septal 
region; C, caudate; CO, optic chiasm; VIII, third veiJ.tricle; THAL. 
thalarus; MT, mammilothalamic tract; FX, fornix; TO, optic tract; 
NSO, supraoptic nucleus. 
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outside the supraoptic nuclear region (Table XV). The probability that 

the.observeddistribution of all cell types in·the two areas could occur 

by chance was less than . OOL The probability that the observed distri­

bution of silent Sll.d high frequency bursting cells was due to chance was 

found to be less than . OS. The· probability that the observed distribu­

tion of continuously active slow and continuously active regular cells 

was due to chance was found to be less than .Ol; The probability that 

the observed distribution of low frequency bursting and continuously 

active fast cells was due to chance was found to be less than .90. The 

probability the observed distribution of continuously active bursting 

cells was due to chance .was found to be ·le~s than .10. 

An illustration of percentages of the total cell number found within 

antidromically identified, nonantidromically identified SON neurons and 

hypothalamic and septal areas is shown, in· Figure .19. 

Statistical Analysis of Firing Pattern 

Parameters Between Areas 

The t test for non paired experiments was used to test for signifi­

cant differences between mean firing rates, interspike intervals, modes 

and coefficients of variation of continuously active slow, low frequency. 

bursting and continuously active fast activity patterns found in magno­

cellular neuroendocrine cells and. in antidromically negative neurons 

located outside the supraoptic nuclear region. Means for these parameters 

are·listed.in Table XVI. Values for "t" and significance levels for 

these comparisons are given in Table XVII. 

Antidromically positive cells exhibiting the· continuously active 

slow firing pattern had significantly greater modes·. (P. < • 001) and . 
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TABLE XV 

CHI-SQUARE ANALYSIS OF SPONTANEOUS FIRING PATTERN TYPE DISTRIBUTION 

Firing Pattern x21 p 

sl 4.Sl < .OS 

CAS 1 6.64 < .01 

LF.B 1 0.33 < .90 

CAF 1 0.14 < .90 

HFB 1 3.8S < .OS 

CAB 1 2.89 < .10 

CAR1 8.74 < .01 

Total 27.10 < .001 

1Abbreviations used are: x2, calculated value of chi-square; S, 
silent; CAS, contimwusly active slow; LFB, low frequency burster; CAF, 
continuously active fast; HFB, high frequency burster; CAB, continuously 
active burster; CAR, continuous~yactive regular. 



Figure 19. Percentages of Firing Pattern Types in Three Groups of 
Neurons of the Hypothalamus 

Abbreviations used are: S, silent; CAS, continuously active slow; LFB, 
low frequency burster; CAF, continuously active fast; HFB, high frequency 
burster; CAB, continuously.active burster; CAR, continuously active 
regular; NSO AD+, antidromically identified supraoptic neuroendocrine 
cells; NSO, nonidentifed cells in the supraoptic nucleus; Hyp & Spt, 
neurons recorded from hypothalamic. areas exclusive of the supraoptic 
nucleus and its perinuclear zone. 
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TABLE XVI 

MEAN SPONTANEOUS FIRING PATTERN PARAMETERS OF NEURONS IN TWO AREAS OF THE·HYPOTHALAMUS 1 

Firing Pattern 
AD+2. AD-2 

MFR2 rsr2 Mode2 · cv2 MFR lSI Mode cv 

CAS2 .38+.08 10.54+3.87 2.70+.23 • 78+ .07 .48+ •. 10 2. 72+ 0 47 .13+.02 . 78+. 09 
n=20 n~2o· n=8 n=ll n=9 n=9 n=2 n=5 

LFB2 1.26+,16 .94+.14 .13+,_025 .37+ •. 04 1.83+.38 .73+.13 .15+.03 • 43+. 06 
n=ll n=ll n=2 .. n=lO -· n-;:;9 n=3 n=9 n=9 

CAF2 4.13+.54 .38+.04 .31+,13 .95+.08 5.17+.67 .31+.03 .08+,01 .61+.10 
n-;;31 n=31 n=23 -· n=38 n=38 n=l8 n=31 n=28 

1Means + standard errors of the mean. 

2Abbreviations used are: AD+, antidromically identified supraoptic neuroendocrin~ cells; AD-, noniden­
tified cells outside the supraoptic nucleus; MFR, mean firing rate; lSI, mean interspike interval; Mode, 
mean interspike interval mode; CV, mean coefficient of variation; CAS, continuously active slow; LFB, low 
frequency burster; CAF, continuously active fast. · · 

1-' 
0 

-00 
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TABLE XVII 

COMPARISON OF MEAN FIRING PATTERN PARAMETERS BETWEEN 
. TWO AREAS OF THE HYPOTHALAMUS! 

Firing Pattern MFR2 rsr 2 Mode2 cv2 

t = 0. 811 t = 2.114 t = 11.30 t 1.018 

NS p < .• 05 p < .001 NS 

t = 1.5378 t = 1. 712 t = 0.843 t = 0.9573 

NS NS NS NS 

t = 1.2438 t = 1. 32 85 t = 1. 81 t = 2.7272 

NS NS NS p < .01 

1Comparison by nonpaired t test. 

2Abbreviations used are: MFR, mean firing rate; IS!, mean inter­
spike interval; Mode, mean interspike intenral mode; CV, mean.coefficient 
of variation; CAS, continuously active slow; LFB, low frequency-burster; 
CAF; continuously active fast. 



110 

interspike intervals (P < ,05) than did the continuously active slow 

firing cells found outside the supraoptic. nuclear region. 

No significant differences were found between any of the parameters . 

of the low frequency bursting firing patterns of the two areas, 

The only. parameter of the continuously active fast firing pattern 

found to be significantly different between the two areas was the coef-

ficient of variation with that of the anti4romically identified neuro­

endocrine c~lls .being significantly greater (P < .01) than that of the. 

antidromically negative cells found outside the supraoptic nuclear 

region, 

Sleep ... Waking an<;! Sensory Responsiveness of Two 

Groups of Neurons in the Hypothalamus. 

Antidromically Identified Neuroendocrine Cells 

Sixty-five neuroendocrine cells were testedfor responsiveness to 

either intravenous or intracarotid infusions of hypertonic NaCl. A cell 

was considered responsive .to an.intracarotid injection of hypertonic NaCl 

if it changed.its firing rate by 20% during the period of the injection •. 

Cells were considered responsive to intravenous infusions of hypertonic 

NaCl if trend analysis revaled a K of 95% or greater. Of all cells , . . . . a . . 

tested, 64.6% were osmosensitive. 

Thirty-three of these identified neuroendocrine cells were tested. 

for responsiveness to one or all of a battery of sensory arousing stimuli. 

These stimuli included such things.as sound, touch, light, odor.and 

vaginal dis.tension. No identified neuroendocrine cell responded to any 

of these stimuli. 

Two neuroendocrine cells were tested for responsiveness to changes 



in sleep-waking state. Neither of these two neuroenQ.ocrine cells . 

responded. 

Nonidentified Neurons Outside the Supraoptic 

Nuclear Region 

Only 19.2% of the 62 cells tested with osmotic stimuli were 

affected. B9th excitation and inhibition were observed. 

111 

Eleven (14, 7%) of the 75 cells tested to sensory arousing stimuli in 

this.area.responded with eitqer a decrease or increase·in.mean.firing 

rate. 

Six (31. 6%) 0f 19 cells tested to sleep-waking changes were sensi­

tive with either an excitatory or inhibitory response. 

These data are summarized in Table XVIII. 

A chi-square test (Table XIX) was employed to approximate the proba"!' 

bility that the observed frequency of occt,1rrence of responsive cells was. 

equal between antidromically identified cells and nonidentified cells 

located outside the supraoptic nucl.ear region. 

The null hypothesis ,that cells responsive to sensory arousing stim"!' 

uli. are distributed evenly. in each area waS! not rejected. A similar 

hypothesis regarding cells responsive te> changes in sleep-waking state 

was also no-t; rejected. 

The null hypothesis that cells responsive to osmotic stimuli are 

distributed evenly between the SON and other areas of the hypothalamus 

was rejected at the 99.9% confidence -level. Osmotically sensitive magna­

cellular neuroendocrine .cells outnumbered. the osmotically insensitive 

magnocellular neuroendocrine cells while the reverse was the .case for 

nonidentified neurons located outside the supraoptic nuclear region, 



TABLE XVIII 

SLEEP-WAKING AND SENSORY RESPONSIVENESS OF FIRING PATTERN TYPES LOCATED IN THE 
SUPRAOPTIC NUCLEUS AND HYPOTHALAMIC AND SEPTAL AREAS 

Area T tl Total s3 CAS 3 LFB 3 CAF 3 HFB 3 CAB 3 CAR3 
es #Tz %R2 #T %R #T %R #T %R #T %R #T %R #T %R #T %R 

SON4 Osm 33 0 2 0 11 0 13 0 7 0 0 0 0 0 0 0 
AD+ Sens 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

SDW 6S 65 6 so 20 so 13 77 26 77 0 0 0 0 0 0 

SON Osm 28 21 0 0 6 0 4 2S 8 2S 6 so 1 0 3 0 
AD- Sens 3 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

SDW 2S 36 0 0 s 20 s 40 8 38 4 so 1 100 2 0 

Hyp Osm 7S lS 0 0 11 18 9 11 36 11 6 50 5 0 8 13 
& Sens 19. ~2 0 0 1 100 3 33 9 11 3 67 1 0 2 so 

Spt SDW 62 19 0 0 10 0 9 22 32 19 5 80 4 0 2 50 
--

10sm, osmotic, stimuli consisted of intravenous or intracarotid infusions of NaCl; Sens, ·sensory 
arousal, transient response to EEG arousal associated with nonosmotic senspry stimuli; SDW, sleep, drowsy, 
and waking behavioral state changes .as .determined by EEG, eye movement, eye lid position, b0dy movement 
arousal threshold, and posture, 

2#T, number of neurons tested; %R, percent of tested neurons which responded, 

3Abbreviations used are: s, silent, CAS, continu0usly active slow; LFB, low frequency burster; CAF, 
continuously active fast; HFB, high frequency burster; CAB, continuously active burster; CAR, continuously 
active regular. 

4SON, neurons recorded from within the supraoptic nucleus and its immediate perinculear zone (within 1 
mm of the histologic boundaries .of the SON); AD+, antidromica11y identified supraoptic neuroendocrine cells; 
AD-, nonidentified cells outside the supraoptic nucleus; Hyp and Spt, neurons recorded from hypoth~lamic 
areas exclusive of the supra0ptic nucleus and its perinuclear zone, 1-' 

1-' 
N 



Test 1 

Osmotic 

Sensory 

SDW 

Total· 

TABLE XIX 

CHI-SQUARE ANALYSIS OF RESPONSIVE NEURONS IN 
TWO AREAS OF THE HYPOTHALAMUS 

x22 

14.3189 

3.5801 

0.0186 

17.9176 

113 

p 

< .001 

< .10 

< 0 001 

1osmotic, stimuli consisted of intravenous or intracarotid infusions· 
of NaCl; Sensory, transient response to EEG arousal associated with non-, 
osmotic sensory stimuli; SDW, sleep, droswy, and waking behavioral state 
changes as determined by EEG, eye movement, eye lid position, body move­
ment arousal threshold, and posture. 

2x2, caJculated value of chi-square • 
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Sleep-Waking and Sensory Responsiveness of 

Firing Pattern Types Within an Area 

Osmotic Sensitivity 

Numbers of osmotically sensitive magnocellular neuroendocrine cells 

were not found to be distributed unevenly when compare4 by the x2 method 

(Table XX), However in all firing patterns considered 1 the number of 

responsive cells was equal to or greater than the number Qf nonresponsive 

cells in all cases. This is in contrast to sensory arousal and sleep-

waking state changes where no responsive cells were found. Fifty percent 

of all cells exhibiting the silent or continuously active slow pattern of 

firing were found to be.osmosensitive. Seventy-seven of the neuroendo-

crine cells exhibiting low frequency bursting or continuously active fast 

patterns of firing were found to be osmosensitive. The response of 1 low 

frequency bursting cell was negative while 6 responses of continuously 

active fast cells were negative. 

In contrast to magnocellular neuroendocrine cells, antidromic;:ally 

negative neurons outside the supraoptic nuclear region had no response 

more often than a,response in all cases except for neurons exhibiting a 

high frequency bursting pattern. Continuously active slow and continu-

ously active bursting cells were not sensitive to osmotic stimuli, Low 

frequency bursting cells were both excited and inhibited by osmotic 

stimuli, Of the continuously active fast) 6,2% were inhibited while 

12,6% were excited in response to osmotic stimuli. Four of five high 

frequency bursting cells and 1 of 2 continuously active regular cells 

were excited. 2 
Calc~lated X (Table XXI) for high frequency bursting 

cells was 7.8125 indicating that the probability of this distribution 



TABLE XX 

CHI~SQUARE ANALYSIS OF IDENTIFIED NEUROENDOCRINE CELLS 
SENSITIVE TO OSMOTIC STIMULI 

Firing Pattern 

sl 
CAS 1 

LFB 1 

cAF 1 

Total 

.18750 

1.62'43.0 

.27830· 

.90870 

2.99880 

115 

p 

< • 75 

< ,25 

< • 75 

< • 50 

< 0 50 

1Abbreviations used are: x2, calculated value of chi~square; s, 
silent; CAS, continuously active slow; LFB, low frequency burster; CAP, 
cqntinuously active fast. 

TABLE XXI 

CHI-SQUARE ANALYSIS OF NEURONS OUTSIQE THE SUPRAOPTIC NUCLEAR 
REGION SENSITIVE TO OSMOTIC STIMULI 

Firing Pattern x2I 

CAS 1 1.2736 

LFB 1 .0290 

CAF 1 .0180 

HFB 1 7.8125 

CAB 1 .1406 

CAR 1 .0313 

Total 9.3050 

p 

.so 

.90 

.01 

'75 

. 75 

,10 

1Abbreviaticms used are: x2, calculated value of chi-square; CAS, 
continuously active slow; LFB, low frequency burster; CAF, continuously 
active fast; HFB, high frequency burster; CAB, continuously active 
burster; CAR, continuously active regular. 
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occurring by chance was less than .01. 

Figure 20 depicts the response or lack of response of different.con-. 

tinuously active cells to various external sensory .arousal stimuli and to 

intracarotid injections of 0,6 M NaCl. 

Figure 21 depiqts the response·Gr lack of response·of 2 firing 

pattern types (continuously active slow and low frequency bursting) to 

osmotic and/or sensory.arousing stimuli. 

Figure 22 illustrates the change in firing rate and burst period for 

a high frequency bursting cell in response to sensory arousing stimuli 

and behavioral state changes, 

Sensory Arousal Sensitivity 

No identified magnoceUular neuroendocrine cell responded to 

sensory arousal and therefore no statistical analysis was performed. 

The null hypothesis was .not rejected when a comparison was made of 

responsive and nonresponsive numbers of nonidentified neurons located 

outside the supraoptic nuclear regiqn. Seventy-five nonidentified cells 

located outside the supraoptic nuclear region were tested for responsive~ 

ness to sensory arousal stimuli. Two continuOU$ly active cells were 

found to be sensitive (1 excitatory and 1 inhibitory response). One low 

frequency bursting cell was excited by these stimuli. Four continuously 

active fast cells were found to be responsive (one case of inhibition). 

Three of 6 high frequency bursting cells were excited. One. continuously 

active regular cell and no continuously active bursting cells were ex­

cited. Calculation of x2 for high frequency bursting cells indicated a 

probability of 1 es s than . 10 that a 1 arger . value could be obtained by 

chance (Table XXII), In all cases except ,that .of high frequency bursting 



Figure 20. Segments of Spontaneous and.Evoked Activity From Three 
Different Types of Continuou~ly Active Neurons. 

Part A is an example of a CAF (continuously active fast) neuron, Note 
the irregularity of its interspike intervals and its nonspecific in­
creased mean firing rate in response.to a 1 ml intracarotid injection of 
,6 M NaCl and to sound, Part B demonstrates the absolute regularity of 
interspike intervals exhibited by a.CAR (continuously active regular) 
neuron and its typical nonresponsiveness to sensory stinruli. Part C is 
an example of a CAB (continuously active bursting) neuron that tends to 
fire in bursts of action potentials, EEG, bi-parietal cortical electro­
encephalogram, · 
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Figure 21. Segments of Spontaneous and Evoked Activity Recorded From 
Three Different Neurons.in the Supraoptic Nucleus 

Part A demonstrates a CAS (continuously active slow) pattern of firing. 
Note the tendency of this neuron towards "low frequency bursting"; this 
was observed ~n several neurons exhibiting this pattern. Part B shows 
three typical low frequency bursts characteristic of the LFB (low fre­
quency bursting) pattern of firing. Three of the six antidromically 
identified neuroendocrine cells in this study were of this nature, Part 
C shows another type of bursting activity which was. referred to as ,HFB 
(high frequency bursting) on the basis of estimated burst mean firing 
rates. This·neuron had longer duration bursts (2-4 sec} and.interburst 
intervals (5-8 sec) than was typical of other HFB cells recorded (see 
Figure 22); it was nonresponsive to sensory stimuli. 
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Figure 22. Segments of Spont~neous and Evoked Activity Recorded From 
a,High .Frequency Bursting Neu:ron · 

A,typical HFB (high frequency bursting) firing pattern is.demonstrated 
during waking (A) and sleepiil.g (B). Note this dorsal .hypothalamic, 
unit's increased burst firing rate in :response to touch. Photographs of 
this unit are shown in Parts C and.D. EEG, bi-pariet8;1 cortic8;1 elec-
troen~;ephalogram; EM, eye ·movement.· · 



122 

I SO!.J'ID I 

EEG ~+'I"'V~f"'-¥,....,,·,,~....,_,.,...,~.......,...,..,..,""""""""'Y'"""""n.....--......,.,"I""''Y.,.·"""'"~ JzoooN 

EM - ... · • ·: ~- '· ~c, '. J, ~~ ,~~it- 1 rr/!wYrtl· -~ 

B 
RATE ~- ____________ ----------~---------------- ---
UN I T ([ lid "' I I '"Ill I Ill !IIIII II II 1111 II I "' I IIi I II flu 

EEG~ ---~ 0 
EM __.,.,.,~-J~_.... .. _.. . ...........,......,......, ...... ,__, __ :.-...J-,,,_,,, 

~ 



TABLE XXII· 

CHI-SQUARE ANALYSIS OF NEURONS OUTSIDE THE SUPRAOPTIC NUCLEAR 
REGION RESPONSIVE AND NOT RESPONSIVE TO 

SENSORY AROUSAL STIMULI 

Firing Pattern x2I 

CAS 1 .0073 

LFB 1 .0360 

CAF 1 .1758 

HFB 1 3. 3464 

CAB 1 ,0664 

CAR 1 ,0882 

Total 3. 7201 

123 

p 

< ,90 

< • 75 

< .10 

< .90 

< .90 

< • 75 

Abbreviations used are: x2 , calculated value of chi-square; CAS, 
continuously active slow; LFB, low frequency burster; CAF, continuously 
active fast; HFB, high frequency burster; CAB, continuously active 
burster; CAR, continuously active regular. 
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cells the number of nonresponstve cells was greater than the number of 

responsive cells. 

SleeE-Waking State Sensitivity 

No id~ntified magnocellular neuroendocrine cell responded to. chang.es 

in sleep-waking state and therefore calculations of x4 were not possible. 

No differences in distribution of. cells responsive to behavioral 

state changes were found·in nonidentified cells located outside the 

supraoptic nuclear region (Table XXIII), The only continuously active 

slow cell tested was inhibited, One of 3 low frequency bursting cells 

tested responded (also an inhibition}.· One of 9 continuously active fast 

cells tested responded with an.inerease in its mean firing rate. Both 

responses of high frequency bursting cells were inhibitory. No continu­

ously active bursting cells res.ponded. One of 2 continuously active 

regular cells tested was excited. All firing patterns except continu-

ously active slow and high frequency bursting had. greater or equal 

numbers of nonresponsive cells than responsive cells. 

Conduction Velocity of Identified 

Neuroendocrine Cells 

Estimates of conduction velocity for axons of identified neuroendo-

crine cells were calculated from known'· antidromic latenci_es and estimates 

of conduction distance from electrodes across the hypophyseal stalk· 

(Table XXIV) , 

The mean latency for all cells was found to be 12,47 ~ .62 (SEM) 

milliseconds .while the mean conduction velocity was .59.~ .03 (SEM) 

meters per second. Silent.cells were found to have.the fastest 



TABLE .XXIII 

CHI-SQUARE ANALYSIS OF NEURONS OUTSIDE THE SUPRAOPTIC NUCLEAR 
REGION RESPONSIVE AND NOT RESPONSIVE TO 

SLEEP-WAKING CHANGES 

Firing Pattern x21 

CAS 1 .1905 

LFB 1 .2540 

CAF 1 .8762 

HFB 1 .5714 

CAB 1 .1904 

CAR 1 .0238 

Total 2.1063 
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p 

< '75 

< • 75 

< .so 

< .so 

< '75 

< .90 

< ,90 

1 Abbrevi~tions used are: x2 , calculated value of chi-square; CAS, 
continuously active slow; LFB, low frequency burster; CAP, continuously 
active fast; HFB, high frequency burster; CAB, continuously active 
burster; CAR, continuously active regular. 



TABLE XXIV 

MEAN LATENCIES AND CONDUCTION VELOCITIES OF IDENTIFIED 
NEUROENDOCRINE CELL FIRING PATTERN TYPES 1 

Firing Pattern Latency2 

12.77 + 2.27 
n=6 

12.86 + 0.85 
n=21 

LFB~ 12.58 + 1.09 
n-;::;-12 

12.16 + 1.16 
n=32 

All Cells 12.47 + 0.62 
n=7l 

lMeans + standard errors of the mean, 
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cv2 

.72 + .22 
n=6 

.61 + . 06 
n;-21 

. 53 + .06 
n=12 

.63 + . 05 
n=31 

.59 + .03 
n-;::;-68 

2Abbreviations used are: Latency, mean antidromiq latency of 
identified neuroendocrine cells; CV, conduction velocity; S, silent, CAS, 
continuously active slow; LFB, low frequency burster; CAF, continuously 
active fast, 
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conduction velocities while low frequency bursting cells had the slowest. 

Analysis of.variance revealed no significant differences between con­

duction velocities of any firing pattern types (Table XXV). 

Osmotic Se~sitivity of Identified 

Neuroendocrine Cells 

Intracarotid Injections 

Antidromically identified neuroendocrine cells were initially tested 

with a 5-10 second pulse of 1.2 M NaCl. This stimulus proved to be less 

than satisfactory for three reasons: 1) cells were only slightly re.,. 

sponsive to these stimuli probably due to a dampening and dilution of the 

stimulus solution because of the extensive branching (rete mirabile) of 

the arterial supply to the brain of the sheep; 2) the stimulus intensity 

could not be measured and a quantitative relationship between neuronal 

activity and osmotic pressure could not b~ developed; and 3) because of 

the arterial supply to.the face of the-sheep, intracarotid injections_of 

hypertonic NaCl caused behavioral distress to the animal, The results of 

one of these tests are illustrated in Figure 23. Note-the EEG arousal 

evoked by this injection, 

Intravenous Infusions 

Of the .75 ne~rons identified a~tidromically, 61 were tested for 

responsiveness to a slow intravenous infusion of hypertonic (1. 2 M) NaCl. 

Thirty-eight neurons (62,3%) were found to change their activity in re-. 

sponse to. the osmotic stimulus, Thirty-one._ (81, 6%) of the responsive 

neuroendocrine cells were excited in response to this stimulus and seven 

(18.4%) were inhibited by the osmotic forcing. Twenty-three (37.7%) 
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TABLE XXV 

COMPARISON OF MEAN CONDUCTION VELOCITIES OF IDENTIFIED 
NEUROENDOCRINE CELL FIRING PATTERN TYPES 1 

,63 

128 

,53 

1Any two means underscored by the same line are not s~gnificantly 
different. Any two means not underscored by the same line are signifi­
cantly different (P < .OS).· 

2Abbreviations.used are: S, silent, CAP, continuously active fast; 
CAS) continuously active slow; LFB, low frequency burster, 



Figure 23, The Effects of Hypertonic, NaCl and Sleep-Waking Behavior on 
the Activity of a Low Frequency Bursting Neuro~ndocrine 
Cell in the Supraoptic Nucleus of an Unanesthetized Sheep 

Part A was recorded during a period of sleep (high voltage - slow wave 
EEG) and is .an example of the LFB (low frequency bursting) behavior 
typically exhibited by these cells, In Part B, a 1 ml intracarotid in­
jection of 1, 05 M NaCl administered during an. interburst interval evoked 
a slightly higher frequency burst than normal. Also associated with the 
injection was arousal of the sheep as indicated by the change·in.EEG 
patte~ to low voltage - fast activity. Note.that the spontaneous 
bursting behavior of this neuron was not appare~tly altered between 
sleeping and waking of the animal, Labels: EEG, bi-:parietal cortical 
electroencephalogram; Rate, analog output proportional to the discharge; 
Unit, a one-to-one pulse output from the pulse height discriminator. 
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magnocellular neuroendocrine cells showed no change.in their activity in 

response to the forcing. 

It was possible to obtain, by computer analysi,s; a "trend" for 

increasing or. decreasing inte;rval .length in, response to these forcings. 

These trends were grouped by.firing patterns. averaged (Table XXVI) and 

the means tested for significant d,ifferences. No significant-differences 

were found between trends of any two firing pattern types (Tables XXVII 

and XX\TII I) . 

From each trend (KaH and KaR) and change in mOsm/kg for the trend 

analysis period, an os.mosensitivity was calculated for each neuron, as 

described in Chapter II I. These values were grouped by. firing pattern 

type, averaged (Table XXVI), and tes~ed for significant differences.be-

tween the means. No significant differences were found between osmosen.,. 

si ti vi ties of any firing pattern· type (Tables XXIX and XXX). 

Correh.tion of Osmotic Sensitivity 

and Con~uet~on Velocity 

Osmosensitivity as defined in Chapter III was the ratio of Ka from 

the computer analysis to the change in plasma osmolality for the period 

of intravenous infusion analyzed, 

The correlation coefficient, r, was calculated for conduction 

velocities and osmosensitivity values.determined from both ·cumulative 

time histogram trend analysis and mean instantaneous rate·tr~nd analysis 

(Table XXXI). 

Trend, based on successive bins of the cumulative. time histogram, 

(K , tendency for interval length to decrease or increase) was found to 
a 

be highly correlated (r = .-0.4365, P < ,025) with calculated conduction 



Firing 
Pattern 

s2 

CAS 2 

LFB2 

CAF 2 

132 

TABLE XXVI 

MEAN TRENDS AND OSMOSENSITIVITIES OF TESTED IDENTIFIED 
NEUROENDOCRINE CELL· FIRING PATTERN TYPES 1 

KaH 
2 

KaR 
2 KaH/t.Osm2 KaR/t.Osm2 

4. 9900tl.,2304 3.5695+0.2055 .3245+.1614 .2130+0.0500 
n;-2 n=2 n=2 n=2 

4.0800+1.2143 4.1780+1.4002 .4595+.1474 .3922+0.1352 
n=lO . · n=6 n=6 n;-6 · 

5. 5700+1. 6616 5. 5356+2. 0672 .4400+.1800 .4578+0,1498 
n=6 n=5 n=5 n=5 

1.0500+1.1747 1. 4435+0. 9166 .2424+.1603 -2.1875+2.4219 
n=22 n=l4 n=l4 n=15 

1Means + standard errors.of the mean.· 

2Abbreviations use~ are: KaH• mean trend.based on hi,stogram plot; 
KaR• mean trend based on instanteous rate plot; KaH/ t.Osm, mean trend 
based on histogram plot divid~d by. the change in osmolality for the 
analy~is period; KaRl t.Osm, mean trenq. based on. instanteous rate plot di­
vided by the change in osmolality for the analysis period; s, silent, 
CAS, continuously active slow; LFB, low frequency burster; CAF, continu­
ously active fast. 
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TABLE XXVII 

COMPARISON OF MEAN TRENDS (KaH) OF OSMOTICALLY TESTED IDENTIFIED 
NEUROENDOCRINE CEEL FIRING PATTERN TYPES 1 

4.99 4.08 
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LOS 

1Any two means tmderscored by. the same line are not significantly 
different. Any two means not underscored by the same line are signifi­
cantly different (P < .OS). 

2Abbreviations used are: LFB, low frequency burster.; S, silent, 
CAS, continuously active slow; CAF, continuously active fast, 

TABLE XXVIII 

COMPARISON'QF MEAN TRENDS(KaR) OF OSMOTICALLY TESTED IDENTIFIED 
NEUROENDOCRINE CELL FIRING PATTERN TYPES 1 

s. S3S6 4.1780 3.S695 1.4435 

1Any two me~s underscored by the same line are not significantly 
different, Any two means not underscoreq by the same line are signifi­
cantly different (P < .OS). 

2Abbreviations used are: LFB, low frequency burster; CAS, continu­
ously active slow; s, silent; CAP, continuously active fast. 
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TABLE XXIX 

COMPARISON OF MEAN OSMOSENSITIVITIES (KaH/liOsm) OF IDENTIFIED 
NEUROENDOCRINE CELL FIRING PATTERN TYPES 1 

.4400 .3245 

134 

.2424 

1Any t~o means underscored by the same line are not significantly 
different, Any two means not underscored by the same line. are signifi­
cantly different (P < .OS), 

2Abbreviations used are: CAS. continuously active slow, LFB, low 
frequency burster; s, silent; CAF, ·continuously active fast. 

o4578 

TABLE XXX 

COMPARISON OF MEAN OSMOSENSITIVITIES (KaR/liOsm) OF IDENTIFIED 
NEUROEN90CRINE CELL FIRING PATTERN TYPES 1 

.3922 .2130 -2.1875 

1Any two means underscored by the same line are not significantly 
different. Any two means not underscored by the same line are signifi­
cantly different (P < ,05), 

2Abbreviations used are: LFB, low frequency burster; CAS, continu­
ously active slow; S, silent; CAP, continuously active fast, 
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TABLE XXXI 

CORRELATION OF·OSMOSENSITIVITY AND CONDUCTION VELOCITY 1 

Osmosensitivity cv 

r = -0,4365 

t = 2,4260 

p < .025 

r = -0.3597 

t = 1.9273 
p < .100 

r = -0.2940 

t = 1. 5381 
p < .200 

r = -0.2746 

t = 1.4278 

p < .200 

1Abbreviations used are: CV,. conduction velocity; KaH, !!lean trend 
based on histogram plot; KaRt mean trend based on instantaneous rate plot; 
KaH/AOsm, mean trend based on histogram plot divided by the change in 
osmolality for the analysis period; KaR/AOsm, mean trend based on 
instantaneous rate plot divided by the change in psmolality for the 
analysis period; r, calculated co:rrelation coefficient, 
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velocity. · Tr.end based on the mean instantaneous rate plot was also well 

correlated (r = -0.3597, P < .100) with calculated conduction velocity. 

Osmosensitivities (KaH/~Osm and KaR/~Osm) were not well correlated 

with calculated conduction velocity (r = -0.2940 and r = -0,2746, 

respectively'· P < • 200). Values of the correlation coefficients, r, can 

be found in Table XXXI, 

Tonic and Dynamic Osmotic Sensitivity of 

Identified Neuroendocrine Cells 

It was possible to classify 21 of the osmotically forced cells as 

dynamically or tonically osmosensitive based on their response to the 

change in plasma osmolality. 

Seven.cells (33%) were classified as tonically osmos~nsitive cells. 

The change in mean firing rate of the~e cells was proportional to the 

change in absolute value of plasma. osmolality evoked by the. osmotic. 

forcing, 

Fourteen cells (67%) were classified as dynamically osmosensitive 

neurons. They appeared sensitive primarily to the rate of change of 

plasma osmolality. Firing rates of these neurons (33%) were compared 

during and after the osmotic forcing where equal values of plasma 

osmolality occurred. If the value of the firing rate during the rise in 

plasma os~olali ty was greater than the value at the same point while 

plasma osmolality was decreasing, the cell was said to be dynamically 

osmosensitive, If the firing rates at the two points were equal, the 

cell was said to be tonically osmosensi tive. Other neurons . (33%) were 

classified as dynamically osmosensitive if their firing rate was greater 

during a faster rate of cl).ange of plasma osmolality than during a slower. 
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rate of change of plasma osmolality. 

A chi-square analysis was.again employed to approximate the proba­

bility that tonic and 4ynamic sensitivity is equal within a single cell 

type. Again~ this null hypothesis was not rejected for any firing pat­

tern (Table XXXII), Numbers of dyn~ic cells within a firing pattern 

were found to be· greater than numbers .of tonic cells in all cases except .. 

for neurons exhibiting the continuously active fast pattern of firing. 

No silent or low frequency bursting cells were found to be tonically 

osmosensitive, 

Figure 24 illustrates the response of a tonically osmosensitive 

continuously active slow cell to a 10 minute intravenous infusion of 

1.2 M NaCl. Plasma osmolality incre~sed by 10 mOsm/kg in 10 minutes 

while firing rate increased by. 2. 38 spikes per second. 

Figure 25 illustrates the response of a dynamically osmosensitive 

continuously active slow cell to a 20 minute intravenous infusion of 1.2 

M NaCL Plasma osmolality reached a peak value of 291 mOsm/kg at 10 

minutes after.initiation of the forcing. This was an increase of 17 

mOsm/kg over the control value of 274 mOsm/kg, Mean firing rate reached 

a peak value of 7.53 spikes per second, also at 10 minutes after initia­

tion of the ·.forcing. . This was an increase of 7, 09 spikes per . second over 

the control value of 0, 44 spikes per. second. After 5 minutes of hyper- . 

tonic forcing the neuron exhibited an.overall appearance of continuously 

active fast pattern of firing and the plasma osmolality was 279 mOsm/kg. 

At 20 minutes after initiation of the hypertonic forcing~ plasma 

osmolality had decreased from the peak value to 279 mOsm/kg. At this 

point this antidromically identified neuroendocrine cell was exhibiting 

a low frequency bursting pattern of firing with a mean firing rate of 
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TABLE XXXII 

CHI-SQUARE ANALYSIS OF TONIC AND DYNAMIC CELLS WITHIN A 
FIRING PATTERN TYPEl . 

Firing Pattern No, Tonic No, Dynamic x2 p 

s 0 1 0.1905 . 75 

CAS 2 3 0.0357 ,90 

LFB 0 6 L6875 

CAF 5 4 0,6964 .so 

Total 7 14 2,6101 ,50 

!Abbreviations used are: x2, calculated value ,of chi-square; S, 
silent; CAS, continuously active slow; LFB, low frequency burster; CAF, 
continuously active fast. 



Figure 24, Response of a Tonically Osmosensitive Neuroendocrine Cell 
to a Seven Minute Hypertonic Forcing 

Labels: Posm, plasma osmolality (mOsm/kg); Mfr, overall mean firing 
rate (spikes/second); Calibration Bar, 0 to 5 spikes/second; Start, 
begin hypertonic forcing; Stc;>p, end hypertonic forcing.· 
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Figure 25. Response of a.Dynamically Osmosensitive Continuously Active 
Slow Neuroendocrine Cell to a Twenty Minute Hypertonic 
Forcing 

Labels: Posm, plasma osmolality (mOsm/kg); MFR, overall mean firing 
rate (spikes/second); Calibration Ba:r,'o to 5 spikes/second. 

' ' 
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3,54 spikes per second. This is an effective demonstration of dynamic 

sensitivity, The behavior of this neuron is not exclusively dependent 

upon the absolute value of plasma osmolality but upon the directicm of 

change of plasma osmolality. 
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Figure 26 illustrates the dot raster display of the tra~n of.action 

potentials recorded from the same neuron as presented in Figure 25. On 

the same time base as the dot raster display is a plot of the course of 

plasma osmolality during and after the forcing period. Changes in firing 

patte~ from continuous+y active slo~ to continuously active fast during 

the maximum change in plasma osmolality and from cqntinuously active fast 

to low frequency bursting during the decline of plasma osmolality to 

control values are evident on inspection of the .dot raster display. 

Figure 27 illustrates the response of a dynamit:ally osmosensitive 

low frequency bursting neuroendocrine cell to a 17 minute intravenous in­

fusion of 1,2 M NaCl. After an unusual initial inhibition this neuro­

endocrine .cell~ like the previous .one, exhibited a continuously active 

fast pattern of firing with a marginal appearance of periodic activity. 

Plasma osmolality and mean firing rate again reached simultaneous peaks 

(291 mOsm/kg and 2.87 spikes per.second, respectively) at 15 minutes 

after initiation of the osmotic forcing. Although plasma osmolality did 

not change from 15 to 25 minutes after initiation Of·the forcing, the 

marginal periodicity of the continuously active fast pattern of firing 

emerged into a more definitive, slower, low frequency bursting activity 

pattern again indicating neuronal sensitivity to direction of change of 

plasma osmolality, This neuroendocrine cell although dynamically osmo­

sensitive was not as osmosensitive as the previous (Figure 25), 

increasing its mean firing rate only 41% as compared to 945% for the 



Figure 26. Dot Raster Display of the Response.of a Dynamically Osmo­
sensitive Neuroendocrine Cell to a Twenty Minute Hypertonic 
Forcing 

Overall mean firing rate, spikes/second, (MFR) and plasma osmolality, 
mOsm/kg, (Posm), are plotted below for comparison. Note changes in 
firing pattern from slow irregular spontaneou$ activity to continuously 
active fast (CAF) during maximum Posm change and low frequency bursting 
(LFB) during the decline of Posm to control values. · 
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Figure 27. Response of a Dynamically Osmosensitive Low Frequency 
Bursting Neuroendocrine Cell to a Seventeen Minute 
Hypertonic Forcing 

Labels: Posm, plasma osmolality (mOsm/kg); MFR, overall mean firing 
rate (spikes/second); Calibration Bar, 0 tq 5 spikes/second. 
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Posm MFR · Time 
rnOsm/kg spjsec min 

268 1.70 0 

280 1.58 5 

283 2.68 10 

291 2.87 15 

291 2.70 25 

275 1.50 60 
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neuron discussed previously. 

Tonically and dynamically osmosensitive cells were tested for dif­

ferences between osmosensitivity based on histogram trend analysis and on 

instantaneous rate trend analysis. No significant differences in osmo­

sensitivity were found between tonically and dynamically responsive cells 

(Table XXXIII). Calculated conduction velocities were also compared for 

tonic and dynamic cells. Again no significant differences were found 

(Table XXXIV), 

Osmotic Sensitivity of Rostral and Caudal Areas 

of the.Supraoptic Nucleus 

The·SON was arbitrarily divided into rostral and caudal portions 

(frontal.coordinates greater than 29.0 and less than 29.0, respectively). 

An outline drawing of the SON and its relation to the optic chiasm and 

optic tract are presented in Figure 28 in a frontal plane transverse to 

that of electrode penetration. Trends and osmosensitivities were grouped 

by area (rostral and caudal), averaged (Table XXXV), and tested for sig­

nificant differences between areas. In all cases osmosensitivity of the 

caudal area was greater than osmosensitivity of the rostral area. How­

ever, a statistically significant difference was found only for the case 

of osmosensitivity based on instantaneous rate trend (Table XXXVI). 

Neuroendocrine cells with significant positive trends. (Ka ;:_ 95%) in 

response to the forcing were found to be more numerous in the caudal 

portion than the rostral portion of the SON (63% and 55%, respectively). 

Neuroendocrine cells with significant negative trends (Ka ~ 95%) in re­

sponse to the forcing were found to be more numerous in the rostral area 

than in the ._caudal area (18% and 15%, respect~vely). 
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TABLE XXXIII 

COMPARISON OF MEAN TRENDS AND OSMOSENSITIVITIES OF TONICALLY AND 
DYNAMICALLY SENSITIVE IDENTIFIED NEUROENDOCRINE CELLS 

KaH 

Ill 
.-~KR ...... a 
Q) 

u 

.~ K H/~Osm 
t:: a 
0 

E-< 

K I 
aH 

t = 0.5551 
n=l9 

K I K H/~Osm 1 
aR a · 

Dynamic Cells 

t = 1.4214 
n=l9 

t = 0.2285 
n=l9 

t = 0.7281 
n=l9 

1Abbreviations used are: KaH, mean trend based on histogram plot; 
KaR' mean trend based on instantaneous rate plot; KaH/LlOsm, mean trend 
based on histogram plot divided by the change in osmolality for the anal­
ysis period; K JJ~OSm; mean trendbased on instantaneous rate plot 
divided by theachange in osmolality for the analysis period. 

TABLE XXXIV 

COMPARISON OF MEAN CONDUCTION VELOCITIES OF TONICALLY AND 
DYNAMICALLY SENSITIVE IDENTIFIED NEUROENDOCRINE CELLS 1 

Dynamic Cells 
cv2 

.;! ~ cv t = 0.3843 
n=l9 t::.-t 

0 Q) 
E-<U 

1Comparison by nonpaired t test. 

2Abbreviations used are: CV, conduction velocity. 



Figure 28. Schematic Drawing of the Re],ationship of the Supraoptic 
Nucleus to the Optic Chiasm and Tract 
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TABLE XXXV 

CHARACTERISTICS OF ROSTRAL AND CAUDAL AREAS OF THE SUPRAOPTIC NUCLEUS 1 

K 2 
aH 

K 2 
aR 

Number of 
Tonic CeUs 

Number of 
Dynamic CeUs 
% s2 
% CAS2 

% LFB2 

% CAF 2 

+SK 2 · aH 
-SK 2 

aH 
+SK 2 

aR 
-SK 2 

aR 

Rostral 
Areas I & II 

2.5057 + .1183 
n-;-9 

1. 7544 + .• 0699 . 
n-;-9 

0.1280 + .1330 
n-;-9 

0.0820 + .0790 
n-;-9 

3 (37.5%) 

5 (62.5%) 

11 

22 

11 

56 

55% 

18% 

45% 

9% 

1Means +standard errors.of the mean. 

Caudal 
Areas III & IV 

4.2511 + 2.2011 
n-;-19 

3.3161 + 0.1027 
n-;-19 

0.4360 + 0.1250 
n=l8 

0,3800 + 0.1100 
n=l8 

4 (36.4%) 

7 (63,6%) 

6 

22 

22 

50 

63% 

15% 

50% 

15% 

2Abbreviations used are: KaH, mean trend based on histogram plot; 
K R' mean trend based on instant11neous rate plot; KaH/ l10sm; mean trend 
b~sed on histogram plot divided by the change in osmolality for the anal­
ysis period; K R/l10sm, mean trend based on instantaneous. rate plot di-. 
vided, by the cltange in osmolality for t4e analysis period; S, silent; 
CAS, continuously active slow; LFB, low frequency burster; CAF, continu­
ously active fast; +SK W percent of neuroendocrine cells with > 95% con .. 
fidence.of positive trgnd based on cumulative time histogram; -SKaH, 
percent of neuroendocrine cells with > 95% confidence of negative trend 
based on cumulative time histogram; +Sk . , percent of neuroendocrine 
cells with> 95% confic;lence.of positivea~rend based on instantane~us rate 
plot; -SK R7 percent of neuroendocrine cells with .::_ 95% confidence of 
negative trend bas(;;)d on instanta"Qeous rate plot, 



TABLE XXXVI 

COMPARISON OF MEAN TRENDS AND OSMOSENSITIVITIES OF ROSTRAL 
AND CAUDAL AREAS OF THE SUPRAOPTIC NUCLEUS 1 

t p 

KaH 
2 1.1778 NS 

KaR 
2 1.2798 NS 

KaH/liOsm2 1. 8330 NS 

KaR/liOsm2 2,5000 < ,025 

1comparison by nonpaired t test. 

153 

n 

28 

28 

27 

27 

2Abbreviations used are: K H' mean trend based on histogram plot; 
K R' mean trend based on instant~neous rate plot; K H/liOsm, mean trend 
b~sed on histogram plot divided by the change in osaolality for the anal­
ysis period; K Rft.~Osm, mean trend based on instantaneous rate plot 
divided by theachange in osmolality for the analysis period, 



CHAPTER V 

DISCUSSION 

Assignment of. a specific function to a particular firing pattern 

type has been implicated. (Hayward and Vincent, 1970; Cross, et al., 1975; 

Wakerley, et al,, 1975), The material in this dissertation goes further, 

first describing spontaneous,firing patterns then their responsiveness to 

~ifferent kinds of stimuli. 

It was determined that spontaneous· firing patt~rns of neurons re­

corded from hypothalamic and septal areas .could be categorized into seven 

types: silent, continuously active slow, low frequency bursting, con­

tinuously active fast; high frequency bursting, continuously active 

bursting and continuously active regular. Statistical analysis of the 

parameters used to classify a pattern of activity into one of the seven 

types did confirm that differences do exist between firing patterns of 

these neurons. Spontaneous .firing patterns of identified neuroendocrine 

cells ranged from silent (no spontaneous activity) through periodic 

activity (low frequency bursting) to continuous activity. No identified 

neuroendocrine cell exhibited a high frequency bursting, continuously 

active bursting or continuously active regular pattern of firing. It was 

also observed that neurons do not spontaneously change their pattern of 

firing. 

Since neurons were recorded in unanesthetized animals prepared for 

chronic recording, it can be said that these firing patterns are not the 
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result of surgical stress or anesthesia. 

Nonidentified neurons in widespread hypothalamic and septal areas 

were found to exhibit all firing patterns described except silent. · No 

responsy could be .. evoked if axons of these .neurons did not pass through 

the hypephyseal stalk. Nonidentified neurons located outside the supra-

optic nuclear region were more responsive to sensory. arousing stimuli and 

changes in behaviora+ state and less responsive to osmotic .stimuli than 

were magnocellular neuroendocrine cells. 

High frequency bursting cells have been previously described 

(Hayward and Jennings, 1973; Koizumi and Yamashita, 1972) and their func-, 

tion as neuroendocrine "Renshawu cells has been implicated. No magno-

cellular neuroendocrine cell was found to exhibit this pattern of firing. 

Hayward and Jennings (1973) described .seven of these cells which were 

located at the junction of the SON and optic tract, All were inhibited 

by intracarotid injections .of hypertonic_NaCl. Eleven high frequency. 

bursting cells were recorded in this study. Five were recorded in the 

supraoptic nuclear region but not in the supraoptic nucleus itself. Both 

excitatory and inhibitory responses were recorded from these cells in 

response to osmotic stimuli. Other nonidentified cells located in the· 

supraoptic nuclear region were not as .-sensitive to osmotic stimuli as the 

high frequency bursting cell and may be "wired" to another system not·. 

involved with osmotic regulation of antidiuretic hormone levels, These · 

data then-neither refute nor support the hypothesis that high frequency 

bursting cells are neuroendocrine "Renshaw" cells, If high frequency .. 
bursting cells ,are indeed neuroendocrine "Renshaw" cells, they may be 

responsible for the alternating periods of activity observed in low fre-

quency bursting magnocellular neuroendocrine cells. Why some .high 
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frequency bursting cells are inhibited by osmotic stimuli is unknown. It. 

may be that an osmoreceptor (may or may not be the magnocellular neu~o­

endocrine cell) which transduces osmotic pressure into action potentials 

both excites the neuroendocrine cell and inhibits the high frequency 

bursting cell by collateral axons. This was observed in two cases in the 

unanesthetized shee.p. Excitement of the high frequency bursting cell 

probably arises from stimulation by a collateral axon of t4e magnocellular 

neuroendocrine cell. In support of this, high frequency bursting cells . 

often respond to stalk stimulation with a burst.of 4 or 5 action poten­

tials at a frequency of 200-600 spikes per second (see also Hayward and 

Jennings, 1973; Koizumi and Yamashita, 1972), High frequency bursting 

cells were very stable, never ch:anging their basic pattern of firing. 

Nonidentified low frequency bursting neurons were also found to 

exist outside the supraoptic nuc~ear region. These .cells were not found 

to respond as .often to osmotic stimuli as did identified low frequency 

bursting magnocellular neuroendocrine cells, The· idea. that low frequency 

bursting neurons are strictly ADH-producing cells is therefore not sup­

ported, The function of these neurons is unknown. 

Continuously active regular cells have not been described in the 

mammalian nervous system, although they have been described in the . 

nervous systems of invertebrates such. as Aplysia (Kogan, 1973; Kim, 

1973) .. It is generally noted in the nervous system that with evolution, 

the proportion of nonsteady neurons increases. The variable response of 

these neurons with a variety of.synaptic inputs depends on previously 

existing conditions. Continuously active regular cells on the other hand 

behave deterministically when driven by afferent input. This may explain 

the remarkable unresponsiveness observed for these neurons .. 
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Only four of the seven described firing patterns were found to be 

exhibited by identified magnocellular neuroendocrine cells: silent, 

continuously active slow, low frequency bursting and continuously active 

fast, These are ;the same patterns of firing found.in magnocellular 

neuroendocrine cel~s of othe~ species (rat and monkey), Magnocellular 

neuroendocrine cells were totally unresponsive to sensory arousing 

stimuli and changes in sleep-waking state, but highly responsive to 

osmotic stimuli, Of all identified neuroendocrine cells, 62.3% were 

osmosensitive, Of these,. 84,2% (or 51% of all magnocellular neuroendo-. 

crine cells) were excited by osmotic stimulL The patterns of firing 

exhibited by magnocellular neuroendocrine cells (except continuously 

active fast) had the slowest firing rates of any cell type .recorded. 

Neuroendocrine cells did not fire in the short, high frequency clusters. 

of·action .potentials as did the high frequency bursting and continuously 

active bursting cells, 

Magnocellular neuroendocrine cells were found· to conduct action 

potentials at a velocity generally less than.l m/sec,; a.result consistent 

with the work of other investigators, Eight identified neuroendocrine 

cells were not located within the histologic boundaries of the .SON but 

were recorded above it in the INZ of Greving. According to the Henneman 

size principle, neurons with small axon diameters have a high input 

resistance and therefore.are recruited into activity prior to neurons 

with lar,ger axon diameters. Conduction velocity of a neuron is known to 

be directly related to the .diameter of its axon, On .the basis of the 

relation of axon diameter and conduction velocity and the Henneman size 

principle, it was hypothesized at the initiation of this study that cells 

exhibiting a rapid.spontaneous mean firing rate and therefore a low 
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threshold for recruitment to activity, would have the slowest conduction 

velocity. This was not found to be the case. The slowest firing 

neurons, silent, did have the .highest conduction velocity, but this re­

lationship did not·hold.true for the other patterns of firing. However, 

a significant correlation (P < .025) of conduction velocity and osmo­

sensitivity (KaH) was observed, 

A slew intravenous ,infusion of hypertonic NaCl was found to be a 

suitable stirulus for excitement of magnocellular neuroendocrine cells. 

In addition, these. infusions permitted quantitation of the osmotic 

stimulus and correlation with neuronal activity. Some anUdromically 

negative neurons were observed during osmotic forcing and were found to 

be insensitive to this stimulus. The response of antidromically 

identified neuroendocrine cells then is a specific osmosensitive 

response. 

In response to intravenous infusions of hypertonic NaCl magnocellular 

neuroendocrine cens behaved in three ways: inhibition, no change and 

excitement. Hypertonic forcing not only excited spontaneously active 

neuroendocrine cells but could recruit silent cells into activity, change 

the firing pattern of spontaneous*y active neuroendocrine ceJ)s and 

synchronize bursting of a ."pool" ·of, neuroendocrine cells, It was ob­

served that most cells during a forcing had a marginal periodicity which 

emerged after termination .. of the forcing into a low frequency burs.ting 

pattern of firing. Few dynamically osmosensitive .neurons were ever found 

to rei;urn.immediately to a continuously active slow patte~ of.firing 

during the decline of plasma osmolality toward control values. These 

cells first went through the low frequency bursting pattern and then 

eventually to continuously active slow after the forcing, The hypertonic 
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forcing appears therefore to.provide a stimulus for initiation of low 

frequency bursting in these neurons .. This bursti:n.g appeared to be synch­

ronized since many times multiunit activity "sounded" and "looked" as if. 

bursting of several neurons was simultaneous. This synchronization could 

be provided by.auto-:-• lateral and/or recurrent inhibition or excitation 

with neighboring neuroendocrine cells. Indeed, Lafarga, et aL (1975) 

noted morphologically the presence of cholinergic axosomatic synapses in 

the SON with synaptic terminals that are shared by two neural somas. 

Structures of this sort could permit interneuronal coordination and 

discharge, 

Arnauld, et al. (1975) noted that with progressive .dehydration (5 

day water deprivation) systematic changes in action potential firing oc­

curred. At control osmolality the majority of neurons fired slowly and. 

irregularly. As dehydration progressed the number of phasic cells in­

creased while the number of slow, irregular cells decreased, With fur­

ther increased.in plasma osmolality the number of phasic cells decreased 

and the number of continuously active fast cells increased. Whether or 

not these.changes in firing patte~ with increasing plasma osmolality 

were due to interneuronal coordination is .unknown, 

Computer analysis made it possible to measure osmosensitivity in 

four ways, Two of these were trend analysis based on cumulative time 

histogram and instan~aneous rate plot, . The others were based on. the 

trend analyses and the respective change in .osmolality for the analysis 

period. These estimates of osmosensitivity were not found to be statis­

tically different between firing pattern types. However. in all esti­

mates continuously active fast cells were the least osmosensitive while 

either continuously active slow or low frequency bursting cells appeared 
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to be the most.osmosensitive. It may be that continuously active fast 

cells had the lowest threshold for osmotic stimulation and were there­

fore firing at or near their maximum rate, If this is the case and the 

Henneman size principle does apply to neuroendocrine neurons, one would 

expect continuously active fast cells to have the slowest conduction 

velocity of neuroendocrine cell firing patter types o As. mentioned 

earlier, this was not. the case o 

Calculation of the correlation cqefficient did reveal, in two cases, 

a likely correlation between calculated conduction velocity and osmo- ·. 

sensitivity (KaH and KaR). When osmosensitivity (KaH/LlOsm and KaR/AOsm) 

was correlated with conduction velocity, the relationship was not· sub­

stantiated. The reason for the poorer correlation when the change in 

osmolality is taken into account is unknown, but it may be that any 

change in plasma osmolality is a stimulus while magnitude 0f the change 

is less important o · 

Cells that responded in a positive manner to the hypertonic forcing 

did so in. one of two ways, ton~cally or·. dynamically o About twice as many. 

cells were classified as dynamic as were classified as tonic (67% and 

33%, respectively). 

Dynamic sensitivity may be a mechanism necessary to prevent an 

"overshoot" of antidiuretic.hormone past the amount necessary for mainte­

nance of osmotic and/or volumetric homeostasis. As mentioned in 

Chapter II, plasma ADH levels return to control values prior to 

either osmotic .or volumetric stimuli. Although not discussed by 

Wakerley, et aL (1975), it appears.from inspection of Figure 1 of the 

cited work that identified phasic neur0endocrine cells •of the PVN are 

dynamically sensitive to changes ,in arterial blood pressure (induced by 
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hemorrhage), In fact one neuroendocrine cell was totally inhibited when 

reinfusion of blood was begun, although arterial blood pressure remained 

below control levels until reinfusion was complete. 

Tonically osmosensitive cells on the other hand may be more sensi­

tive to absolute value of plasma osmolality and/or blood volume rather 

than direction of their change. 

As reviewed in Chapter II, there is a preferential localization of 

antidiuretic hormone-producing and oxytocin-pro4ucing neurons within.both 

the supraoptic and paraventricular nuclei. It was noted in the present 

study that the caudal portion of the SON did have more osmotically 

excited neurons and fewer osmotically inhibited neurons than the rostral 

portion, 

The observation that osmosensitive neuroendocrine cells were not 

limited to a particular pattern of firing and that more than one. firing 

pattern could be exhibited in response to a stimulus by a single neuro­

endocrine cell seem to support the idea of a.specific functional state 

rather than specific secretory or hormonal states as hypothesized by 

other authors, Approximately 50% of the identified magnocellular neuro­

endocrine cells studied were found to be excited by an osmotic stimulus 

while the other 50% were either not affected or inhibited, These data do 

not support a nuclear theory of organization of the hypothalamic magna­

cellular neurosecretory system, but rather .a cellular theory, In other 

words, some neurons of the supraoptic nucleus may be related to anti­

diuretic hormone synthesis and release while others may be involved in 

synthesis and release of oxytocin or.other hypothalamic peptides, 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The purpose of this study was. to categorize and gain knowledge con-. 

cerning the functional significance of firing patt~rns . recorded from 

magnocellular neuroendocrine cells of unanesthetized sheep, Previous · 

investigators have hypothesized that these firing patterns represent 

specific secretory states (Le,, release, synthesis, transport or 

storage) or specific hormonal states (i,e,, antidiuretic hormone­

producing or o~ytocin-producing) of these neurons, For the present study 

it was hypothesized-that these firing patterns represent specific func-:­

tional states exhting in the neuron at the time it was recorded, It was 

further hypothesized that the functional state of a neuroendocrine cell 

depends on stimulus intensity and cell size, 

It was determined that all neuronal firing patterns recorded from 

random areas of·the hypothalamus all.d septal areas could be categorized 

into seven types (silen, continuously active slow, low frequency burst­

ing, continuous,ly active fast, high frequency bursting, continuously. 

active bu:r:sting and continuously active regular). Although neurons ex­

hibiting the~e patterns were distributed randomly throughout.most 

hypothalamic.and septal areas, antidromically identified supraoptic 

neuroendocrine cells exhibited only silent. 'continuously active slow, low 

frequency bursting and continuously active fast activity. 

The response of supraoptic neuroendocrine cells to a 20 mOsm/kg 
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increase in.plasma osmolality evoked by a 20 minute infusion of hyper­

tonic NaCl was studied. Of the neuroendocrine cells tested, 51% were 

excited by the increase in plasma osmolality, 11% were inhibited and 38% 

were not affected. Of those cells that were excited, 33% exhibited tonic 

osmosensitive properties (sensitive to the absolute value of plasma 

osmolality) while 67% exhibited dynamic.osmosensitive properties, Cells 

defined as dynamically osmosensitive increased their.overall activity 

while plasma osmolality was increasing, but returned towards prestimulus 

behavior if·plasma osmolality held steady at a high value or decreased 

towards control levels. Neuroendocrine cells exhibiting spontaneous, low 

frequency bursting were always dynamically osmosensitive, 

Osmotic forcing could evoke all spontaneous patterns of activity 

found in supraoptic neuroendocrine cells in a single neuroendocrine cell, 

Continuously active slow cells were driven to low frequency bursting and 

eventually to continuously active fast activity during maximum osmotic 

forcing, During the decline of plasma osmolality many neurons exhibited 

low frequency bursting even though they discharged continuously during 

control and increasing plasma osmolality periods, 

Cell size (as indicated by conduction velocity) was. found to be sig­

nificantly correlated with osmosensitivity if the total absolute change 

in plasma osmolality was not taken into account. This indicates that the 

Henneman size principle may be a factor in determining osmosensitivity of 

neuroendocrine cells. Correlation without,absolute change in osmolality 

taken into account·further indicates that direction and rate of change of 

plasma osmolality may be more important than the absolute value of plasma 

osmolality change, 

The cellular theory. of. organization of this hypothalamic 
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magnocellular neurosecretory system is supported by this investigation, 

Of the neuroendocrine cells tested, 51% were excited by increasing plasma 
- ' 

osmolality, The remaining cell~ were either inhibited or not affected by 

the hypertonic forc:j.ng. These inhibited or unaffected supraoptic neuro-

endocrine cells are presumably concerned with regulation of oxytocin or 

other hypothalamic peptides, In agreement with recent immunocytochemical 

studiesJ the caudal area of the SON had more osmotically excited cells 

(ADH neurons?) and fewer osmotically inhibited cells (oxytocin neurons?) 

than the rostral area, 

In conclusion, these studies demonstrated that: 

1, the recorded supraoptic neuroendocrine cells discharge in only 

four of the categorized firing pattern types; 

2, a single neuroendocrine ce 11 may exhibit all patterns of 

activity found in supraoptic neuroendocrine cells depending on 

the level of osmotic stimulation; 

3, 51% of the neuroendocrine cells tested were excited by 

increasing plasma osmolality; 

4. there is preferential localization of osmosensitive neuroendo-

crine cells in the caudal half of the SON; 

5. no significant differen~es exist in osmosensitivity of neuro­

eJldocrine cells spontaneously exhibiting any of the firing 

patterns found in neuroendocrine cells; 

6. relative osmosensitivity ef-neuroendocrine cells may be related 

to the Henneman size principle; and 

7. ·. the neuroendocrine system regulating ADH secretion has both 

tonic.and dynamic components, 



SELECTED BIBLIOGRAPHY 

Abrahams, V, Co, and M, Pickford, 1954, "Simultaneous Observations on 
. the Rate of Urine Flow and Spontaneous Uterine Movements in the Dog, 

and Their Relationship to Posterior Lobe Activity." J. PhysioL 
126:329-346, 

Andersen, P,, M, Gillow, and To Rudjord, 1966, "Rhythmic Activity in a 
Simulated Neural Network," .:!_, Physiol. 185 :418-428, 

Andersson, .B., M. Jobin, and K, Olsson, 1967, "A Study of Thirst and 
Other Effects of an Increased Sodium Concentration in the Third 
Brain Ventricle," ActaPhy-s. Scand, 69:29-36, 

Arnauld, E,, B, Dufy, and J, D, Vincent, 1975, "Hypothalamic Supraoptic 
Neurones: Rates and Patterns of Action Potential Firing During 
Water Deprivation in· the Unanesthetized Monkey," Brain Res, 
100:315-325, 

Arnauld, E., J. D, Vincent, and J, J, Dr~ifuss. 1974, "Firing Patterns 
of Hypothalamic Supraoptic Neurons During Water Deprivation in 
Monkeys," Science, 185:535-537, 

Arndt, J, 0, 1965, "Diuresis Induce(j. by Water Infusion Into the Carotid 
and its Inhibition by Small Hemarrhage," Arch, Ges, PhysioL 
282:313-322. 

Arndt, J. 0,, and 0, H, Gauer, 1965, "Diuresis Induced by Water In­
fusion Into the Carotid Loop of Unanesthetized Dogs." Arch, Ges, 
Physiol, 282:301-312. 

Atkins, E. L,, and J, W, Pearce, 1959; "Mechanisms of the Renal 
Response to Plasma.Volume Expansion," Can, J, Bioch. PhysioL 
37:91-102 0 • -

Aulsebrook, L•, and .R. Holland. 
Release," Am, .:!_. Physiol, 

1969. "Central Inhibition of Oxytocin 
216:830-842, 

Bak, A. 1967, "Testing Metal Microelectrodes ," ElectroencElph. Clin. 
Neurophysiol, 22:186-187, 

Baker,M. A., E, Burrell, J. Penkhus, andJ, N, Hayward. 1968, "Capping 
ancl, Stabilizing Chronic Intravascular Cannulae." J, ~· PhysioL 
24:577-579, 

165 



166 

Baratz, R. A., and R. C. Ingraham,· 1960, "Renal Hemodynamics and Anti­
diuretic Hormone Release Associated With Volume Regulation." 
2_. :I.: Physiol. 198:565-570. 

Barer, R., H. Heller, and K. Lederis. 1963. "The Isolation, Identifica­
tion and Properties of the Hormonal Granules of the Neurohypophysis." 
Proc. Roy. ~· !· 158:388-416. 

Bargmann, W,, and E. Scharrer. 1951. "The Site of Origin of the Hor­
mones of the Posterior Pituitary," Am. Scientist. 39:255-259. 

Beyer, C., and C, H. Sawyer. 1969. "Hypothalamic Unit Activity Related 
to Control of the Pituitary Gland." Front~ers .in Neuroendocrinology. 
Ed. W. F. Ganong and L. Martini. New York: Oxford, pp. 255-287. 

Bishop, P. 0. ~ W. Burke, and R. Davis., 1962. "Single-Unit Recording 
From Antidromically Activated Optic Radiation Neurones." J. Physiol. 
162:432-450. 

Burns, B. D. 1954. · "The Production of After-Bursts in Isolated Unanes­
thetized Cerebral Cortex." J, Physiol. 125:427-446, 

Burns, B. D. 1955. "The Mechanism of After-Bursts in Cerebral Cortex." 
r. Physiol, 127:168-188, 

Cheng, Ko W., H. G. Friesen, and J, B. Martin, 1972a, "Neurophysin in 
Rats With Hereditary Hypothalamic Diabetes Insipidus (BrattleQoro 
Strain)," Endo, 90:1055-1063. 

Cheng, K. W., J. B. Martin, and H. G. Friesen. 1972b. "Studies of. 
Neurophysin Release." Endo, 91:177-184. 

Christ, J. F. 1966. "Nerve Supply, Blood Supply and Cytology of the 
Neurohypophysis." ~Pituitary Gland, VoL 3, Ed. G. W, Harris 
and B. T, Donovan. London: Butterworth, pp. 62-130. 

Chung, S, l-L, J. Yo Lettvin, and S, A. Raymond, 1974, 
Simple Device for Interspike Interval Analysis." 
239 :63P-66P, 

"The CLOOGE: 
J, PhysioL 

A 

Clark, B. J,, and M. R. Rocha e Silva, 1967. "An Afferent Pathway for 
the Selective Release of Vasopressin in Response to .. Carotid Occlu­
sion and Hemorrhage in the Cat." :I.: Physiol. 191:529-542, 

Clayoaugh~ J. R., and L. Share. 1973. "Vasopressin, Renin and Cardio­
vascular Responses to Continuous Slow Hemorrhage. II Am. r. Physiol. 
224:519-523. 

Coleridge, J. C! G., H. Hemingway, R. L. Holmes, and R. J. Lind.en. 1957. 
"Tl1e Location of Atrial Receptors in the Dog: A Physiological and 
Histological Study." J. Physiol. 136:174-197. 



167 

Crosby, E. Co, and M. J. C. Showers. 1969, "Comparative Anatomy of the 
Preoptic and Hypothalamic Areas." The Hypothalamus. Ed. W. 
Haymaker, E. Anderson and W. J. H. Nauta. ·Springfield, Illinois: 
C. C. Thomas, pp. 61-135. 

Cross, B. A. 1973. "Unit Responses in the Hypothalamus." Frontiers in 
Neuroendocrinology. Ed. W. F. Ganong andL, MartinL · New York: 
Oxford~ pp. 133-17L. 

Cross, B. A., R. E. J. Dyball, R. G. Dyer, CoW. Jones, D. W. Lincoln, 
J. Po Morris, and B. T, Pickering. 1975. "Endocrine Neurons." 
Recent Progress in Hormone Research, VoL 31. Ed. R. 0. Greep. 
New York: Academic Press, pp. 243-294. 

Cross, B. A., and J. D. Green. 1959. "Activity of Single Neurones in 
the Hypothalamus~ Effect of Osmotic and Other Stimuli." 
~· Physiol, 148:544-569. 

Dean, C. R., D. B. Hope, and L Kazic. 1968. "Evidence for Storage of 
Oxytocin With Neurophysin I and Vasopressin With Neuroph:ysin II in 
Supraoptic Neurosecretory Granules." Brit. J, Pharm. and 
Chemother. 34:192P-193P. 

Dellman, H. D. 
Systems." 

1973. "Degeneration and Regeneration of Neurosecretory 
Int. Rev. of CytoL 36:215-315. 

Dempsey, G. P., S. Bullivant, and W. B. Watkins. 1974. Neurosecretion-. 
The FinalNeuroendocrine Pathway. Ed. F. G. W. Knowles and R. 
Vollrath .. New York: Springer-Verlag, pp. 301-302. [Original not 
seen. Cited in Cross, B; A., R. E. J. Dyball, R. G. Dyer, C. W. 
Jones, D. W. Lincoln, J. F. Morris, and E. T. Pickering. 1975. 
"Endocrine Neurons." Recent Progress in Hormone Research, Vol. 31. 
Ed. R. 0. Greep. New York: Academic Press, pp. 243-294. 

Douglas, W. W. 1968. "Stimulus-Secretion Coupling: The Concept and 
Clues From Chromaffin and Other Cells," Bri L J, Pharm. ---34:451-474. 

Douglas, W. W., J. Nagasawa, and R. A. Schulz. 197L "Electron Micro­
scopic Studies on the Mechanism of Secretion of Posterior Pituitary 
Hormones and Significance of Microvesicles ('Synaptic Vesicles'): 
Evidence of Secretion by Exocytosis and Formation of Microvesicles 
as a Byproduct of This Process." Subcellular Organization and 
Function in Endocrine Tissues. Ed. H. Heller and L Lederis. 
Cambridge-:- Cambridge University Press, pp, 353-378, 

Douglas, .W. W., and A.M. Poisner. 1964. "Calcium Movement in the 
Neurohypophysis of the Rat and Its Relation to the Release of Vaso­
pressin." ~· PhysioL 172:19-30. 

Dreifuss, J. J., I. Kalnins, J. S. Kelley, and K. B. RuL 1971. Action 
Potentials and Release.of Neurohypophysial Hormones in Vitro." 
J. Physiol. 215:805-817. 



168 

Dreifuss, J o J., and J. S. Kelly. 1972. "Recurrent Inhibition of Anti­
dromically Identified Rat Supraoptic Neurons." J. Physiol. 
222:87-103. 

Dreifuss, J. J., J. Nordmann, K. Akert, C. Sandin, and H. Moos. 1974. 
Neurosecretion-The Final Neuroendocrine Pathway. Ed. F. G. W. 
Knowles and R. Vollrath. New York: Springer Verlag, p. 3L 
[Original not seen. Cited in Cross, B. A., R. E. J. Dyball, R. G; 
Dyer, C. W. Jones, D. W. Lincoln, J. F. Morris, and B. T. Pickering. 
1975. "Endocrine Neurons." Recent Progress in Hormone Research, 
VoL 3L · Ed. R. 0. Greep. New York: Academic Press, pp~ 243-294. 

Dreifuss, J. J., J. J. Nordmann, and J. D. VincenL 1973. "Recurrent 
Inhibition of Supraoptic Neurosecretory Cells in Homozygous 
Brattleboro Rats." J. PhysioL 237: 25P-27P. 

Dunn, F, L., T. J. Brennan, A. E. Nelson, and G. L. Robertson. 1973. 
"The Role of Blood Osmolality and Volume in Regulating Vasopressin 
Secretion in the Rat." J. Clin. Invest. 52:3212-3219. 

Dyball J R. E. J. 1971 o "Oxytocin and Antidiuretic Hormone Secretion in 
Relation to Electrical Activity in Antidromically Identified Supra­
optic and Paraventricular Units." :I.: Physiol. 214:245-256. 

Dyball, R. E. J., and R. G. Dyer, 197L "Plasma Oxytocin Concentration 
and Paraventricular Neuron Activity in Rats With Diencephalic 
Islands and Intact Brains." ::!.· PhysioL 216:227-235. 

Dyball, R. E. J., and P, S. Pountney. 1971. "The Distribution of Hypo­
thalamic Units Activated by Antidromic Stimulation of the Neural 
Lobe in Male Rats." J, Anat. 108:593-594. 

Dyball, R. E. J., and P. S. Pountney. 1973. "Discharge Patterns of 
Supraoptic and Paraventricular Neurones in Rats Given a 2% NaCl 
Solution Instead of Drinking Water." ::!.· Endo. 56:91-98. 

Dyer, R. G., R. E. J. Dyball, and J. F. Morris. 1973. "The Effect of 
Hypothalamic Deafferentation Upon the Ultrastructure and Hormone 
Content of the Paraventricular Nucleus." J. Endo. 57:509-516. 

Eccles, J. C, R. M. EcGles, and A. Lundberg. 1958. "The Action Paten-. 
tials of the Alpha Motoneurones Supplying Fast and Slow Muscles." 
~· Physiol. 142:275-291. 

Edwards, B. A., M. E. Edwards, and N. A. Thorn. 1973. "The Release in 
Vitro of Vasopressin Unaccompanied by the Axoplasmic Enzymes: 
Lactic Acid Dehydrogenase and Adenylate Kinase." Acta Endo. 
72:417-424. 

Eranko, 0. 1951. "Th:e Cytology of the Nucleus Supraopticus of the Rat." 
Ann. Med. Exp. Penn. 29:158-173. 

Fawcett, C. P., A. Powell, and H. Sachs. 1968. "Biosynthesis andRe­
lease of Neurophysin." Endocrinology. 83:1299-1310. 



169 

Flament-Durand, J,, and P, Dustin. 1972, "Studies on the Transport of 
Secretory Granules in the Magnocellular Hypothalamic Neurons, I, 
Action of Colchicine on Axonal Flow and Neurotubules in the .Para­
ventricular Nucleus." Z. Zellforsch, 130:440-454, 

Forsling, M, L., M, J, Martin, J, C. Sturdy, and A. M, Buton. 1973, 
"Observations on the Release and Clearance of Neurophysin and the 
Neurohypophysial Hormones in the RaL" ~· Endo, 57:307-315. 

Gillespie, D. J., R. L. Sandborg, andT. L Koike. 1973. "Dual Effect 
of Left Atrial Receptors on Excretion of Sodium and Water in the. 
Dog.'' Am. ~· PhysioL 225:706-710. 

Ginsburg, M. 1968, "Production, Release, Transportation and Elimination 
of the Neurohypophysial Hormones." Handb. Exp. Pharmak. 23:286-
371.. 

Ginsburg, M., and L. M. Brown, 1957. "The Effects. of Hemorrhage and 
Plasma Hypertonicity on the Neurohypophysis." Neurohypophysis. 
Ed, H. Heller. London: Butterworth, pp. 109-124. 

Ginsburg, M., and H. Heller. 1953. "Antidiuretic Activity in Blood Ob­
tained From Various Parts of the Cardiovascular System."·:!_. Endo. 
9:274-282. 

Ginsburg, M., and M. Ireland. 1966. "The Role of Neurophysin in the 
Transport and Release of Neurohypophyseal Hormones. ~· Endo. 
35:289-298. 

Goetz, K. L., G. C. Bond, and D. D. Bloxham. 1975. "Atrial Receptors 
and Renal Function." PhysioL Rev, 55:157-205. 

Goetz, K. L., G. C Bond~ and W, E. Smith. 1974. "Effect of Moderate 
HemorrhGJ.ge in Humans on Plasma Antidiuretic Hormone and Renin." 
Proc. Soc, Exptl. ~· Med. 145:277-280. 

Harmon, L. D., and E. R. Lewis. 1966. "Neural Modeling." Ann. Rev, 
Physiol. 46:513-591. 

Harris, G. W, 1955. Ne-ural Control of the Pituitary Gland. London: 
Edward Arnold, Ltd. 

Harris, M. Co, A. S. Milton, and A. Peterson, 1969. "The Effects of 
Pempidine and Hexamethonium on Release of Antidiuretic Hormone by 
Incotic and Osmotic Stimuli in the Cat." Brit. ~· Pharm. 36:197P. 

Harris, M. C., J. J. Dreifuss, and J. J. Legros, 1975. "Excitation of 
Phasically Firing Supraoptic Neurones During Vasopressin Release." 
Nature. 258:80-82. 

Harris, M. C,, and K. M. Spyer. 1973. "Inhibition of Antidiuretic Hor­
mone Release by Stimulation of Afferent Cardiac Branches of the 
Right Vagus in Cats." J, Physiol, 231: 15P-16P. 



170 

Haymaker, W., E. Anderson, and W. J. H. Nauta. 1969. The Hypothalamus. 
· Springfield, Illinois: Charles C. Thomas. 

Hayward, J. N. 1972. "Hypothalamic Input to Supraoptic Neurones." 
Progress in Brain Research, Vol. 38. Ed. J. Ariens Kappers and 
J, P. Schade. Amsterdam: Elsevier, pp. 163-190. 

Hayward, J. N. 1974. "Physiological and Morphological Identification of 
Hypothalamic Magnocellular Neuroendocrine Cells in Goldfish Preoptic 
Nucleus." :!._. Physiol, 239:103-124. 

Hayward, J. N. 1975. "Neural Control of the Posterior Pituitary." 
Ann. Rev. PhysioL · 37:191-210. 

Hayward, J. N., and M.A. Baker. 1969. "A Comparative Study of the Role 
of the Cerebral Arterial Blood in the Regulation of Brain Tempera­
ture in Five Mammals." Brain Res. 16:417-440. 

Hayward, J. N., and D.P. Jennings. 1973a. "Activity of Magnocellular 
· Neuroendocrine Cells in the Hypothalamus of Unanesthetized Monkeys. 

I. Functional Cell Types and Their Anatomical Distribution in the 
Supraoptic Nucleus and Internuclear Zone." J. Physiol. 
232:515-543. 

Hayward, J. N., and D. P. Jennings. 1973b, "Activity of Magnocellular 
Neuroendocrine Cells in the Hypothalamus of Unanesthetized Monkeys. 
II. Osmosensitivity of Functional Cell Types in the Supraoptic 
Nucleus and Internuclear Zone." J. PhysioL 232:545-572. 

Hayward, J. N., and D. P. Jennings. 1973c. "Osmosensitivity of Hypo­
thalamic Magnocellular Neuroendocrine Cells to Intracarotid Hyper­
tonic D-Glucose in the Waking Monkey." Brain Res. 57:467-472. 

Hayward, J. N., and D. P. Jennings. 1973d. "Influence of Sleep-Waking 
and Nociceptor-Induced Behavior on the Activity of Supraoptic 
Neurons in the Hypothalamus of the Monkey." Brain Res. 57:461-466. 

Hayward, J. N., and K. Murgas. 1973. "Sensory Input and Firing Patterns 
of Neurons in Unanesthetized Monkey." Programs and Abstracts. III 
Meet. Soc. Neurosci. 3:120, 

Hayward, J. N., and J. D. Vincent. 1970. "Osmosensitive Single Neurons 
in the Hypothalamus of Unanesthetized Monkeys." J. Physiol. 
210:947-972. 

Henry, J.P., and 0. H. Gauer. 195L "Certain Hemodynamic Factors Con­
cerned With Control of Blood Volume." Fed. Proc. 10:62. 

Henry, J. P., 0. H. Gauer, and J. L. Reeves. 1956, "Evidence of the 
Atrial Location of Receptors Influencing Urine Flow." Circ. Res. 
4:85-90. 



171 

Henry, J, P,, P. D, Gupta, J, P, Meehan, R. Sinclair, and L. Share, 
1968, "The Role of Afferents From the Low-Pressure System in the 
Release of Antidiuretic Hormone During Nonhypotensive Hemorrhage." 
Can, :!_. Physiol, Pha.rm, 46:287-295, 

Henry, J, .P, , and J, W, Pearce, 
Atrial Stretch Receptors in 
:!_. Physiol. 131:575-585, 

1956. "The Possible Role of Cardiac 
the Induction of Changes in Urine Flow." 

Holland, R, C., J, W, Sundsten, and C H, Sawyer, 1959, "Effects of 
Intracarotid Injections of Hypertonic Solutions on Arterial Pressure 
in the Rabbit." Circ, Res, 7:712-720, 

Hubel, D. H. 
Science, 

1957, "Tungsten Microelectrode for Recording Single Units," 
125:549-550. 

Ishida, A. )970, "The Oxytocin Release and the Compound Action Poten­
tial Evoked by Electrical Stimulation of the· Isolated Neurohypophysis 
of the Rat," Jap. :!_. PhysioL 20:84-96, 

Jewell, P, A,, and E, B. Verney. 1957, "An Experimental Attempt to 
Determine the Site of Neurohormone Osmoreceptors in the Dog," 
PhiL Trans, Roy Soc. !· 240:197-324. 

Johnson, J. A., W, W, Moore, and W, E, Segar, 1969, "Small Changes in 
Left Atrial Pressure and Plasma Antidiuretic Hormone Titers in 
Dogs." Am. :!_. PhysioL 217:210-214. 

Johnson, J. A., J, E. Zehr, and W. W, Moore, 1970. "Effects of Separate 
and Concurrent Osmotic and Volumetric Stimuli on Plasma Antidiuretic 
Hormone in Sheep." Am, :!_. PhysioL 218:1273-1280, 

Jones, C, W,, and B. T. Pickering, 1969, 
Water Deprivation and Sodium Chloride 
Content of the Neurohypophysis of the 
203:449-458, 

"Comparison of the Effects of 
Inhibition on the Hormone 
Rat." J, PhysioL 

Jones, C, W,, and B, T. Pickering, 1972, "Intraaxonal Transport and 
Turnover of Neurohypophysial Hormones in the Rat.'' J, Physiol, 
227:553-564. . 

Kandel, E. R, 1964, "Electrical Properties of Hypothalamic Neuroendo­
crine Cells," :!_. Gen. PhysioL. 47:691-717, 

Kappagoda, C, T., R. J. Linden, and H, M. Snow, 1973, "Effect of 
Stimulation Right.Atrial Receptors on Urine Flow in the Dog." 
:!_. Physiol, 235:493-502. 

Kappagoda, C. T., R, J, Linden, H. M, Snow, and E. M, Whitaker. 1974a. 
"Left Atrial Recpetors and Diuresis in the Dog." J, Physiol. 
237 :48P-49P, 



172 

Kappagoda, C, T,, R. J, Linden, H, M, Snow, and E, M, Whitaker, 1974b, 
"Left Atrial Receptors. and the Antidiuretic Hormone,'·' J, Physiol, 
237:663-683, 

Kater, S •. , and C, R. S, Kaneko, 1972, "An Endogenously Bursting Neuron 
in.the Gastropod Mollusc, Helisma trivolvis." :!.: Comp, Physiol, 
79:1-14, 

Kendall, M. G, 1970, Rank Correlat~on Methods, 4th Ed, London: 
Griffin, 

Kim, M, 1973, "The Effects of Metabolic Inhibitors on and a Nonlinear 
Oscillator Model of Pacemaker Neurons," . Regulation and Control 1n 
Physiological Systems, Ed. A, S, Iberall and A. C, Guyton. 
Pittsburgh: Instrument So~ie~y of America~pp. 553-556, 

Kinney, M~ J., and V. A. DiScala, 1972, "Renal Clearance Studies of 
Effect of Left Atrial Distension in the Dog." Am. ~· Physiol. 
222:1000-1003. 

Kogan, A. B,, and Ko V, Amatreek, 1973, "Neuronal Organization With 
Reliable Neuronal Control." Regulation and Control in Physiological 
Systems, Ed. A, S, Iberall and A, C, Guyton, Pittsburgh: 
Instrument Society of America, pp. 545-546. 

Koizumi, K,, T, Ishikawa, and C, McC, Brooks, 1964, 
Activity of Neurons in the,Supraoptic Nucleus." 
27:878-892, 

"Control of 
J, NEmrophysiol, 

Koizumi, K,, and H, Yamashita. 
fied Neurosecretory Cells 
Extracellular Recorqing," 

1972. "Studies of Antidromically Identi­
of the Hypothalamus by Intracellular and 
~· Physiol, 221:683-705, 

Lafarga, M,, G '· Palaci()s, and R, Perez, 1975, "Morphological Aspects 
of the Functional Synchronization of Supraoptic Nucleus Neurons." 
Experentia, 31:348~349, 

Lawrence, M., J. R, Ledsome, and J. M. Mason. · 1973. "The Time Course of 
the Diuretic Response to Left Atrial Distension," Quart, J. Exptl, 
Physiol, 58:219-227, 

Ledsome, J. R,, and R, J, Linden, 1968, "The Role of Left Atrial Re­
ceptors in the Diuretic Response to Left Atrial Distension." 
~· Physiol. 198:487-503, 

Lincoln, D, W,, and J, B, Wakerley, 1974, "Neurosecretory Activation in 
the Rat: The Pulsatile Release of Oxytocin .. " J. PhysioL 
245:42P-43P, 

Lubinska, L~ 1975, "On Axoplasmic Flow," International Review of. 
Neurobiology, VoL 17, Ed, C. C. Pfieffer and J, R, SmythieS," 
New York: Academic Press, pp. 241-296, 



MacGregor, R, J,, and R. L, Palasek. 1974, 
Rhythmic Oscillations in Neuron Pools," 

"Computer Simulation of 
Kybernetik, 16:79-86, 

173 

Magoun, H. W., and S, W, Ranson, 1939, "Retrograde Degeneration of the 
Supraoptic Nuclei After Section of the Infundibular Stalk in the 
Monkey." Anat, Rec, 75:107 ... 123, 

McNeilly, A, S,, J, J, L~gros, and M, L Forsling, 1972a, "Release of 
Oxytocin, Vasopressin and Neurophysin in the Goat,'' ~· Endo, 
52:209-210. 

McNeilly, A, S,, M, J, Martin, To Chard, and L C. Hart, 1972b, 
"Simult~neous Release of Oxytocin and Neurophysin During Parturition 
in.the Goat.'' J, Endo, 52:213-214, 

-~ 

Menninger, R, P., and D. T, Frazier. 1972, "Effects of Blood Volume and 
Atrial Stretch on Hypothalamic Sin.gle-Uni t Activity." ~· ~· 
Physiol. 223:288-293, 

Morrell, F. 1967, "Electrical Signs of Sensory ~oding." The Neuro­
sciences, Ed. G. C, Quarton, Y, Melnech4ck, and F. O.Schmitt, 
New York: The Rockefeller University Press, pp. 452-469, 

Moses, A, M,, and M. Miller. 1971, "Osmotic Threshold for Vasopressin 
Release as Determined by Saline Infusion and by Dehydration," 
Neuroendo, 7:219-226. 

Moses, A. M,, M. Miller, and D. H, P, St:r;eeten, 1967, "Quantitative 
Influence of Blood Volume Expansion on the Osmotic Threshold for 
Vasopressin Release.'' :!: Clin, Endo. Metab, 27:655-662. 

Muller, J, R;, N, A. Thorn, and C, Torp-Pederson, 1975. "Effects of 
Calcium and Sodium on Vasopressin Release in Vitro Induced by a Pro­
longed Potassium Stimulus," Acta Endo, 79'751. 

Nakazato, Y., and W, W. Douglas. 1974. "Vasopressin Releq.se From the 
Isolated Neurohypophysis Induced by a Calcium Ionophore, X-537A," 
Nature. 249:479-481. 

Negoro, H., and R, Co Holland~ 1972, "Inhibition ·of Unit Activity in 
the Hypothalamic Paraventricular Nucleus Following Antidromic 
Activation." Brain Res, 42:385-402, 

Negoro, H,, S, Visessuwan, and R. C. Holland, 1973a, "Unit Activity in 
the Paraventricular Nucleus of Female Rats at Different Stages of 
the Reproductive Cycle and After Ovariectomy, .With or·Without 
Oestrogen or Progesterone Treatment, 11 ~· ·Endo. 59:545-558, 

Negoro, H., S, Visessuwan, and R. C. Holland. 1973b, "Reflex Activation 
of Paraventricular Nucleus Units During the Reproductive Cycle and 
in Ovariectomized Rats Treated With Oestrogen or Progesterone. 11 

J, Endo, 59:559-567. 



Norstrom, A,, and J. Sjostrand. 1971. "Effect of Hemorrhage on the. 
Rapid Axonal Transport of Neurohypophysial Proteins of the Rat." 
J. Neuroch. 18:2017-2026. 

174 

Novin, D., and R. Durham, 
Supraoptic Nucleus." 

1969. "Unit and DC Potential Studies of the 
Ann. N.Y. Acad, Sci. 157:740-753. 

Navin, D., and R. Durham. 1973. "Orthodromic and Antidromic Activation 
to the Paraventricular Nucleus of the Hypothalamus in the Rabbit." 
Exptl. Neural. 41:418-430, 

Navin, D., J, W. Sundsten, and B. A, Cross, 1970. "Some Properties of 
Antidromically Ac1;.ivated Units in the Paraventricular Nucleus of the. 
Hypothalamus." ExptL NeuraL 26:330-341. 

Olivecrona, H. 1957, "Paraventricular Nucleus and Pituitary Gland." 
~ PhysioL Scand, SuppL 40, 136:1-178, 

Olsson, K. 1969, "Studies on Central Regulation of Secretion of Anti­
diuretic Hormone (ADH) in the Goat." Acta Physiol. Scand. 
77:465-474. 

Olsson, K., and L R, McDonald. 1970, "Lack of Antidiuretic Response to 
Osmotic Stimuli in the Early Stages of a Water Diuresis in Sheep." 
J. Endo. 48:301-302, 

Ortman, R. 1960, "Neurosecretion," Handbook of Physiology, Section 1, 
VoL II, Ed, J, Field. Washington, D.C.: American Physiological 
Society, p. 1039. 

Paintal, A. S. 
Effects.'' 

1973, "Vagal Sensory Receptors and Their Reflex 
PhysioL ~· 53:159-227, 

Perke1, D. H., and B. Mullaney. 1974. "Motor Pattern Production in 
Reciprocally Inhibitory.Neurons Exhibiting Postinhibitory Rebound." 
Science, 185:181-182. 

Potter, D. D., and W. R. Loewenstein. 1955. 
Neurosecretory Cells," Am. J, PhysioL 

"Electrical Activity of 
183:652. 

Rechardt, L. 1969, "Electron Microscopic and Histochemical Observations 
on the Supraqptic Nucleus of Normal a11d Dehydrated Rats," Acta 
Physiol. Scand. 329:1-79. 

Robertson, G. L, 1974. "Vasopressin in Osmotic Regulation in Man. Ann.· 
Rev. Med, 25:315-322, 

Rogers, J, M, 1976. "A Stereotaxic Atlas of the Diencephalon of the 
Southdown Sheep." (Unpub. M.S. thesis, Oklahoma State University.) 



175 

Russell, J. T., and N. A. Thorn, 1974a. "Calcium and Stimulus­
Secretion Coupling in the Neurohypophysis. IL Effects of 
Lanthanum, a Verapamil Analog (D600) and Prenylamine on 45-Calcium 
Transport and Vasopressin Release in Isolated Rat Neurohyophyses." 
Acto Endo. 76:471-487, 

Russell, J. T., andN. A. Thorn. 1974b. "Calciu!1landStimulus­
Secretion Coupling in the Neurohypophysis. III. ca++ Ionophore. 
(A-23187)-InducedRelease of Vasopressin From Isolated Rat Neuro­
hypohphyses," ~ Endo, 77:443-450, · 

Sachs, H. 
Med, 

1967, "Biosynthesis and Release of Vasopressin." Am. J. 
42:687-700. 

Sachs, H., P •. Fawcett, Y. Takabatake, and R, Portanova.. 1969, "Biosyn­
thesis and Release·of.Vasopressin and.Neurophysin." Recent Progress 
in Hormone Research, Vol. 25, Ed. E. B. Astwood, New York: 
Academic Press, pp. 447-491, · 

Sachs, H., andY. Takabatake. 1964, "Evidence for a Precursor in 
Vasopressin Biosynthesis," Endo, 75:943-948. 

Scharrer, E., and B. Scharrer. 1954, "Neurosecretion." Handbuch der 
Mikroskopischen Anatomie ~ Mens chen~ VI/5, Ed. W. Mollendorff and 
W. Bargmann. Berlin: Springer Verlag, pp. 953-1066, 

Segar, W. E., and W, w, Moore. 1968, "The Regulation of Antidiuretic 
Hormone Release in Man. I. Effects of Change in Position and 
Ambient Temperature on Blood ADH Levels," .:!.: Clin. Invest, 
47:2143-2151. 

Shade, R.. E., and L. Share, 1975a, "Vasopressin Release During non 
Hypotensive Hemorrhage and Angiotensin- II Infusion," AI11. ~· Physiol. 
228:149-154, 

Shade, R. E., and L, Share. 1975b. "Volume Control of Plasma Antidi­
uretic Hormone Concentration rollowing Acute Blood Volume Expansion 
in the,Anesthetized Dog." Endo. 97:1048..:.1057, 

Share, L, 1965, "Effects.of Carotid Occlusion and Left Atrial Dis­
tension on Plasma Vasopressin Titer." ~· ~· Physiol. 208:219-223, 

Share, L. 1968, "Control of Plasma ADH Titer in Hemorrhage: Role of 
Atrial and Arterial Receptors," Am. ~· PhysioL . 215:1384-1389. 

Share, L., andJ. R. Claybaugh .. 1972. "RegulationofBody Fluids." 
Ann. Rev. Physiol. 34:235-260. 

Shimizu, L,, L. Share, and J, R, Claybaugh. 1973. "Potentiation by 
Angiotensin~II of the Vasopressin Response to Increasing Plasma 
Osmolality." Endo. 93:42-50, 



176 

SilvermanJ A, J, A,J and E. A. Zimmerman. 1975. "Ultrastructural Immu­
nocytochemical Localization of Neurophysin and Vasopressin in the 
Median Eminence and Posterior Pituitary of the Guinea Pig," Cell 
and Tiss, ~· 159:291-301, 

Sloper, J, C. 1966, "Hypothalamic Neurosecretion: The Validity of the 
Concept of Neurosecretion and its Physiologicg.l and Pathological 
Implications.'' Brit, Med. ~· 22:209-215. 

Slotnick, B. M,, and A. B. Rothballer. 1964, "Vasopressin Release Fol­
lowing Stimulation of Limbic Forebrain Structures in the Cat," 
Fed, Proc, 23:150, 

Steele, R, G. D., and J, H. Torrie. 1960, Principles and Procedures of 
Statistics, New York: McGraw-Hill. 

Stennakre, J., and L. Tauc, 1969, "Central Neuronal Response to the 
Activation of Osmoreceptors in the Osphradium of Aplysia." 
~· Exptl, Biol, 51:347-361, 

Strumwasser, F, 1971. 
~· Psychiat. ~· 

"The Cellular Basis of Behavior in Aplysia." 
8:237-257, 

Sundsten, J, W,, D. Navin, and B. A. Cross, 1970, "Identification and 
Distribution of Paraventricular Units Excited by Stimulation of 
Neural Lobe of the Hypophysis." Exptl. NeuraL 26:316-329. 

Sundsten, J, W,, and W, H. Sawyer. 1961. "Osmotic Activation of Neuro­
hypophysial Hormone Release in Rabbits With Hypothalamic Islands." 
ExptL NeuraL · 4: 548-56L. 

Swaab, D, F., F. Nijveldt, and C. W. PooL 1975, "Distribution of 
Oxytocin and Vasopressin in the Rat Paraventricular Nucleus,'' 
J. Endo, 67:461-462, 

Szcepanska-Sadowska, E. 1972, "The Activity of the Hypothalamo­
Hypophysial Antidiuretic System in Conscious Dogs, II. Role of the 
Left Vagosympathetic Trunk.'' Pflugers Arch, 335:147-152. 

Thorn, N. A, 1970, "Antidiuretic Hormone Synthesis, Release, and Action 
Under Normal and Pathological Circumstances." Adv, Metab. Disord, 
4:40-73. 

Uttal, W; R. 1972, "Emerging Principles of Sensory Coding." Sensory 
Coding: Selected Readings, Ed. W, R, Uttal, Boston: Little, 
Brown and Co,, pp. 457-481. 

Vandesande, F,, and K. Dierickx. 1975. "Identification of the Vaso­
pressin Producing and of the Oxytocin Producing Neurons in the Hypo­
thalamic Neurosecretory System of the Rat." Cell and Tiss. Res, 
164:153-162, . ---- --

Verney, E. B. 1947, "The Antidiuretic Hormone.and the Factors Which 
Affect its Release." Prec, Roy, ~~ ~: 135:25~106, 



Vincent, J, D., E. Arnauld, and A. Nicolescu-CatargL 1972. "Osmore~ 
ceptors and Neurosecretory Cells in the Supraoptic Complex of the 
Unanesthetized Monkey." Brain Res, 45:278-28L 

von Euler, C. 1953. · "A Preliminary Note on Slow Hypothalamic 
'Osmopotentials'," Acta PhysioL Scand. 29:133-136. 

Wakerley, J. B., and D. W, Lincoln .. 1971. "Phasic Discharge of Anti­
dromical1y Identified Units in the Paraventricular Nucleus of the 
Hypothalamus." Brain Res. 25:192-194. 

177 

Wakerley, J, B., and D. W, Lincoln. 1973, "The Milk-Ejection Reflex of 
the R,at: A 20.,. to 40-Fold Acceleration in the Firing of Paraven­
tricu1ar Neurones During Oxytocin Release." ~· Endo, 57:477-493. 

Wakerley, J. B., D. A. Poulain, R. E, J, Dyball, and B. A, Cross, 1975, 
"Activity of Phasic Neurosecret0ry Cells During Haemorrhage." 
Nature, 258:82-84, 

Walters, J. K., and G, L Hatton, 1974. "Supraoptic Neuronal Activity 
in Rats During Five Days of Water Deprivation." PhysioL and Behav, 
113:661-667. 

Weinstein, H .. , R. M. Berne, and H. Sachs. 1960, "Vasopressin in Blood: 
Effect o:f Hemorrhage." Endo. 66:712-718. 

Wigstrom, H. 
tion," 

1974. "A Mode of a Neural Network With Recurrent Inhibi­
Kybernetik. 16:103-112. 

Woods, J. W., P, Bard, .and R. Bleir. 1966, "Functional Capacity of the 
Deafferentated Hypotha~amus: Water Balance and Responses to Osmotic 
Stimuli in Decerebrate Cat and Rat;"· .::I.· NeurophysioL 29:751-:-767. 

Wuu, To Co, and M, Saffran. 1969" "Isolation and Characterization of a 
Hormone-Binding Polypeptide From Pig Posterior Pituitary Powder." 
J. Biol, Chern. 244:482-490, 

Yagi, K,, T, Azuma, and K. Matsuda. 1966. "Neurosecretory Cell: Capable 
of Conducting Impulses in Rats." Science; 154:778-779. 

Zehr, J. E., J. A. Johnson, and W. W. Moore. 1969, "Left Atrial Pres­
sure~ Plasma Osmolality and ADH Levels in the Unanesthetized Ewe." 
Am . .::I.· Physiol, 217:1672-1680, 

Zimmerman, E. A., R. Defendini, A. G. Frantz, and A. G. Robinson, 1974. 
"The Vasopressin-Neurophysin System in Man and Mouse: Hypothalamic 
Localization Studies by Immunoperoxidase Technique." Fifty-Sixth 
Annual Meeting of the Endocrine Society, Atlanta, Georgia, June· 
12-14, 1974, Abstract 216, 



VITA 

~oh~ Thomas Haskins 

Candidate for the Degree of 

Doctor of Philosoph,Y 

Thesis: RESPONSE OF SUPRAOPTIC NEUROENDOCRINE CELLS TO LINEAR CHANGES OF 
PLASMA OSMOLALITY . IN UNANESTHETIZED SHEEP . 

I ' . ' ' . 

Major Field: Physiological Sciences 

Personal Data': Born April 27, 1947, at Vinita, Oklahoma, the .son of 
Billy D; .and Janie I. Ha~kins·, 

Educat:i,.on: Graduated from Miami High School, Miami, Oklahoma in. 
May, 1965; received the Bachelor of Scienc~ degree in Zoology. 
from.the University of Tulsa in 1969; completed requirements 
for the Dactor- of Philosophy- degree at Oklahoma, State 
University in July, 1976, · 

Professional Experience: Graduat;.e·Tel:!-ching Assistant, Department of­
Physiological Sciences, Oklahoma,State Un:i,versity, Stillwater, 
Oklahoma,· fram August, '1971 through May, 1975; Summer Research 
Award, National Sci~nce.Foun~ation, 1974; Graduate Resel:!-rch 
Assistant, Department-of Physiological Sciences, Oklahoma,State 
Uni'?'ersity, Stillwater, Oklahoma, from Jtine, 1975 thrqugh · 
June.; 1976, 


