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ABSTRACT 

Free Space Optical Communication (FSOC) has become a popular wireless 

communications technique for providing and supporting optical high-speed bandwidth 

data transmission for telecommunication and computer networking. FSOC is expected to 

supplement traditional Radio Frequency (RF) technologies and successfully aid in 

removing congestion from the overly crowded RF spectrum, and its optical fiber 

communications. 

FSO system performance is highly dependent on channel conditions, wherein 

background noise poses a significant problem, even in the absence of weather and/or 

atmospheric turbulence. Transmitted signals are significantly affected by background 

noise (e.g., thermal, shot noise, dark currents) primarily on the receiver side, which leads 

to system performance deterioration. Such effects are often described by Additive White 

Gaussian Noise (AWGN). This phenomenon affects the communication link and can 

hinder the accurate detection of information. 

The work reported in this thesis investigated the addition of generated AWGN to 

single FSOC links, as well as the extraction of noise signals at the receiver end via a 

subtraction method. Test results demonstrated that AWGN can be extracted from an 

FSOC signal when standard deviation and noise signal mean are estimated using a 

Gaussian Mixture Model (GMM). Outcomes show there is approximately 80% cross-

correlation when compared with an original Pseudorandom Binary Sequence (PRBS) 

signal.  
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Chapter 1: INTRODUCTION 

1.1 Free Space Optical Communication Technology 

The global Free Space Optical Communication (FSOC) market is projected to 

increase by a compound annual growth rate of ~ 40% from 2018-2023 with sales expanding 

from USD 0.27 billion to USD 1.45 billion [1]. This escalation can be attributed to an ever-

growing need for fast, reliable, secure optical wireless technologies and applications (e.g., 

area site connection, fiber optic cable network extension to nearby buildings, local loop 

bypass, backhaul, disaster recovery, last-mile applications, and inter-satellite links, as well 

as links between spacecraft and satellites, as shown in Figure 1-1 [2]).   

 

Figure 1-1. Space FSO links. 

 

Radio Frequency (RF) is currently the most commonly used communication 

technology. Continuing demand for an increase in data and multimedia services has 

congested the conventionally used RF spectrum. Consequently, there is a need to shift from 

an RF carrier to an optical one. Furthermore, RF is vulnerable to security threats and 

susceptible to electromagnetic interference (EMI). Optical wireless communication 
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(OWC) leverages the optical carrier to transfer data from one point to another through an 

unguided atmospheric or free space optical channel. OWC is widely recognized as the next 

frontier for high-speed broadband connection, as it offers high bandwidth, ease of 

deployment, unlicensed spectrum allocation, reduced power consumption (e.g., ~1/2 of 

RF), reduced size (e.g., ~1/10 of the RF antenna diameter) and improved channel security 

[3].  

OWC can be classified into two broad categories, namely indoor and outdoor, as 

shown in Figure 1-2.  

 

Figure 1-2. Classification of the optical wireless communication system. 

 

Indoor OWC using Infra-Red (IR) or visible light has proven impractical within a 

building, especially when it is possible to set up a physical wired connection. Outdoor 

OWC is classified as Free Space Optical Communication (FSOC), which can further be 

classified into terrestrial and space optical links [2]. Non-directed links (e.g., no 

requirement for precise alignment between transmitter and receiver) are desirable for 

applying wireless infrared communication. Links can be categorized as either line-of-

sight (LOS) or diffuse. LOS links require an unobstructed path for reliable 

communication, whereas diffuse links rely on multiple optical paths from surface 
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reflections. FSOC typically involves directed LOS and point-to-point laser links through 

the atmosphere from transmitter to receiver. FSOC achieved distances of only a few 

kilometers has been validated at multi-Gbps data rates [4]. Although FSOC offers higher 

levels of security and is immune to EMI, it is hindered by limitations. Since an LOS path 

is required, narrow beam point-to-point FSO links are subject to atmospheric turbulence 

and obscurations from clouds, rain, fog, snow, and background noise, which degrade 

performance and risk loss of connectivity. Table 1.1 summarizes the key features of 

FSOC and RF technologies [5] 

Table 1.1. Comparison of FSOC and RF Technologies 

 

Property FSO RF 

Operating Frequency THz GHz 

Bandwidth Unregulated and Unlimited Regulated and Limited 

Data Rate Medium to High 

(> Gbps) 

Low to Medium 

(Gbps) 

Transmitted Beam Size Small (2 m) Large (> 2 m) 

Data Density High Low 

Electromagnetic 

interference 

No Yes 

Line of Sight (LOS) Yes No 

Multipath Fading No Yes 

Beam Pattern High Degree of Control 

with Lenses 

Difficulty to Constrain on 

Antenna Size 

Obstacle Interference Medium Low 

Services Communication, Sensing Communication, 

Localization 

Noise Sources Sunlight Ambient light Electrical, Electronic 

Appliances 

Power Consumption Low Medium 

Mobility  Limited  Good 

Latency  Low High 

 

Assuredly, FSOC will not replace RF communication technology. Rather, the two will co-

exist. Hybrid FSO/RF networks are targeted to combine the advantages and circumvent the 
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disadvantages of each method alone. Although FSO connectivity cannot be available at all 

times,  the aggregated data rate in such networks is clearly greater than RF links used alone. 

Available state-of-the-art FSO solutions for space- and air-based networks have been 

introduced by private companies and government agencies. FSOC is also gaining much 

interest in space applications [6]. Deep-space Optical Communications will provide a 10X 

to 100X increase in data returns over present RF space communication (e.g., future 

advanced instruments, live high definition (HD) video, tele-presence, and human 

exploration beyond cis-lunar space).  Notably, DSOC is considered a radically different 

operational domain than near-Earth FSOC, primarily due to effects from the vastly 

increased range between transmitter and receiver. To date, no optical communications link 

has been closed beyond Earth-Moon distance [7]. Of interest is that the National 

Aeronautics and Space Administration (NASA) has been pursuing research and 

development toward deep-space lasercom demonstrations for the past three decades.  

 

1.2 Free Space Optical Communication System Model 

FSOC systems are composed of and utilize light that propagates in free space to 

transmit data for telecommunications and computer networking by leveraging air as its 

medium. Commonly known as laser communication, FSOC operates in the range of 780-

1600 nm wavelength with data transmission of up to 2.5 Gbps [8]. 

Figure 1-3 illustrates two basic modules requirements, transmitter and receiver—for 

FSOC system.  
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Figure 1-3. Diagram of a simple Free Space Optical Communication system. 

 

The transmitter module consists of a modulator connected to an electrical to-optical 

convertor (e.g., light-emitting diodes or laser diodes). Through spontaneous emission, the 

module emits photons with wavelengths corresponding to the energy difference between 

energy states when an atom drops from a higher to a lower energy level. Photons are 

focused to optical lenses before transmission into the air medium, primary to shape the 

light beam propagation and create a collimated ray to minimize light divergence. The 

receiver module is composed of receiving optical lenses that capture transmitted light. 

The lenses focus photons to the light detector (e.g., an optical-to-electrical convertor). 

After passing the de-modulator, the electrical output will then contain the transmitted 

data. 

 

1.3 Challenges in Free Space Optical Communication 

FSO technology uses atmospheric channel as a propagating medium wherein 

properties are random functions of space and time. This fact makes FSOC a random 
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phenomenon dependent on weather and geographical location. This section details 

various challenges to system design in terrestrial and space FSO links. 

1.3.1 Line-of-Sight Communication 

In the previous section, FSO communication was described as highly dependent 

on LOS between transmitter and receiver. Additionally, LOS must be maintained 

throughout the entirety of data transmission. Thus, FSOC network link availability is 

crucial. Achieving availability might be challenging, as the environment is typically 

populated with physical obstructions, such as vegetation and buildings. Although, finding 

a clear LOS for ground-to-ground, ground-to-air and air-to-ground communication might 

be difficult, finding a clear LOS is definitely possible and advantageous when employing 

FSOC systems for air-to-air and sea-related communication. 

1.3.2 Atmospheric Effects 

With air as its medium, FSOC is greatly affected by nature. Atmospheric 

turbulence can significantly degrade free-space optical link performance. 

Inhomogeneities in atmospheric temperature and pressure lead to variations of the 

refractive index along the transmission path. These can deteriorate received image quality  

and cause fluctuations in both intensity and phase of the received signal, which, in turn, 

can lead to an increase in link error probability and limit performance. Aerosol scattering 

effects caused by rain, snow and fog can also degrade FSOC system [9]. 

1.3.3 Background Noise 

The main sources of background noise include a) diffused extended noise from the 

atmosphere, b) noise from the Sun and other stellar (point) objects and c) scattered light 

collected by the receiver [10]. Additional sources are detector dark currents, signal shot 
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noise, and thermal noise. Total noise contribution is the sum of background noise and noise 

due to other sources. Background noise is a significant problem for FSOC, even when there 

are no weather or atmospheric turbulences. Contributions of background noise, thermal 

noise and dark current noise are modeled and described as AWGN [11], which describes 

background noise attributes: ‘additive’ to the received desired signal; ‘white’ flat spectral 

density over a wide range of frequencies; and follows ‘Gaussian’ distribution. 

 

1.4 Modulation Schemes in Optical Wireless Communication 

In optical wireless systems, the intensity of an optical source is modulated to 

transmit signals. For digital data transmission, there are no practical alternatives to digital 

modulation since the process provides source coding (e.g., data compression), channel 

coding 40 (e.g., error detection/correction), and easy multiplexing of multiple information 

streams [12]. Digital data transmission can be accomplished on a bit-by-bit basis (e.g., 

binary encoding) or on a bit-word basis (i.e., block encoding). 

1.4.1 On-Off Keying 

The simplest type of binary modulation scheme is one-off keying (OOK). In an 

active high OOK encoding, a ‘one’ is coded as a pulse, while a ‘zero’ is coded as ‘no’ 

pulse or an ‘off’ field. To restrict the complexity of the modulator, pulse shape is 

rectangular. Bit rate is denoted as 𝑅𝑏  =  1/ 𝑇𝑏 , where 𝑇𝑏 is the bit duration and is 

directly related to the rate at which the source can be switched on and off. Normalized 

transmit pulse shape for OOK is given by 

                                      𝑝(𝑡) = {
1,         𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇𝑏) 
0,                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

}                                Eq (1) 
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Given that channel impulse response ℎ𝑐(𝑡) is a delta function and the received signal 

is corrupted by only AWGN, then the resulting channel is deemed an AWGN channel. 

Consider a binary digital communications system where signals 𝑝1(𝑡) and 𝑝2(𝑡) represent 

data bits ‘1’and ‘0’, respectively. The received signal r(t) over an AWGN channel can be 

expressed as, 

            𝑟(𝑡) = {
𝑝1(𝑡) + 𝑛(𝑡),               𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑖𝑡 𝑖𝑠 ′1′,

𝑝2(𝑡) + 𝑛(𝑡),                𝑖𝑓 𝑡𝑟𝑎𝑚𝑖𝑠𝑠𝑡𝑒𝑑 𝑏𝑖𝑡 𝑖𝑠 ′0′   
}                  Eq (2) 

OOK modulation was adopted as the modulation scheme in the study reported in 

this thesis. OOK is a binary level modulation format widely used in FSOC due to its 

simplicity and high-power efficiency [13]. 

 

1.5 Thesis Objective 

The contribution of the work presented in this thesis is discovering answers to the 

following research questions through data collection, preprocessing, analysis, subtracting, 

and applying a gaussian mixture model (GMM). 

1. Can we emulate the effects of a background noise signal that affects and limits the 

performance of an FSOC signal? 

2.  Can we extract and separate the known additive noise from a generated FSOC signal, 

using the subtraction method? 

3. If the parameters sigma (σ) and mu (μ) for additive noise signals are unknown, can we 

estimate parameters, and then extract and separate the noise from the combined, noisy 

signal? 
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1.6 Thesis Outline 

The thesis is organized as follows.  

• Chapter 2 presents background information and a literature review for FSOC 

systems, as well as a summary of the accompanying challenges of background 

noise and atmospheric turbulence. 

• Chapter 3 presents the experimental accumulation and detection of additive noise 

in FSOC signals. Experimental setup, data collection, analysis, and results are 

also described.  

• Chapter 4 introduces the GMM, providing a description, the motivation behind 

utilizing the model, and the way in which the model is implemented to estimate 

parameters for additive noise in an FSOC signal.  

• Chapter 5 summarizes the thesis’ conclusions, proposes possible future work and 

emerging developments.  
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Chapter 2: BACKGROUND AND LITERATURE REVIEW 

FSOC systems have garnered much interest because of the technology’s ability to 

meet the growing demand of high-data-rate connection and to be rapidly deployed [2]. 

Some terrestrial FSO products provide data rates on the order of Gbps, which is much 

greater those provided by digital subscriber lines or coaxial cables [4]. Additionally, the 

installation of an FSO system requires only a few days, making it flexible and effective 

for deployment. Recently, FSOC system applications have advanced to include high data-

rate hybrid networks (i.e., RF/FSO hybrid communication systems) for high speed 

connection, ultra-low latency networks for stock market trading [5], and quickly 

deployed networks for communication recovery).  

FSOC systems can be categorized into two types: intensity modulation with direct 

detection (IM/DD) and coherent. In an IM/DD system, the lens system and photodetector 

operate to detect the instantaneous power in the collected field when it arrives at the 

receiver. In coherent systems, the collected field is optically mixed with a local generated 

field through a front-end mirror before reaching the photodetector.  

OOK modulation is widely used for IM/DD FSOC systems, since those with higher 

order modulation are complex to implement [14, 15]. In [16], the authors described 

several communication techniques to mitigate turbulence-induced intensity fluctuations 

for an IM/DD OOK system.  

The building sway problem for an FSO system with OOK modulation was studied in 

[17]. In [18], the authors presented error rate performance bounds for an OOK FSOC 

system over K fading channels. In [15], a multiple-input multiple-output (MIMO) FSO 

link over K turbulence channels was studied, wherein IM/DD with OOK modulation was 
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assumed. In [19], the authors analyzed the OOK FSOC system performance with Hoyt 

distributed misalignments. In [20], the authors conducted an experimental evaluation of 

error performance for IM/DD FSOC links with various modulation schemes, including 

OOK, pulse position modulation (PPM) and binary phase-shift keying (BPSK). In 

coherent FSO systems, the provision of phase information allows a variety of digital 

modulation formats when compared to irradiance modulation with direct detection 

IM/DD. In such systems, the signal can be amplitude-, frequency- or phase-modulated on 

the optical carrier. Received signals can be made shot-noise-limited through the use of a 

local oscillator.  

The main challenge in FSOC system design is that the deleterious effects in the 

atmospherical channel can severely degrade performance. Atmospheric attenuation can 

sometimes cause FSOC system outage, which also considerably limits its link range. 

Another adverse effect in atmospheric channel is scintillation caused by thermally 

induced changes in the refraction index of air along the beam transmit path. As a result, 

the received irradiance at receiver will randomly fluctuate. Such fluctuation can 

dramatically degrade FSOC system performance [20, 21]. In addition to scintillation 

effects, pointing and alignment can also affect FSOC system performance. Due to 

building sway and beam wander effects, accurate pointing cannot be easily achieved. In 

terrestrial FSOC systems, transceivers are often positioned at the top of tall buildings to 

obtain LOS. In satellite-to-ground and intersatellite communications, transmitter and 

receiver have high relative velocity, and there is mechanical noise due to satellite-based 

motion and gimbal friction [22]. Thus, it is difficult to realize perfect tracking; jitter and 

boresight can also arise as residual pointing error. In [17], the author proposed a 
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mathematical model to minimize transmitter power and the beam divergence angle in an 

urban optical wireless communication system with pointing errors caused by building 

sway. In [23], a maximum-likelihood estimator was developed to approximate the 

boresight and jitter component of the pointing error; a point detector and nonzero 

boresight component are assumed. In a follow-up work [24], the same authors further 

considered the effects of atmospheric turbulence for the lognormal and Gamma-Gamma 

fading channels, and they adopted a wave optics-based approach to evaluate channel 

capacity. 

An experimental demonstration of FSO multi-user communication is reported in 

[25]. The authors characterized an optical link by three independent users and a dual-path 

fiber bundle receiver. In their previous work, diverse O-MAC techniques (e.g., 

independent component analysis (ICA), non-orthogonal multiple access, signal 

subtraction), proved to support high-data rate multi-user communication successfully and 

accurately. However, previous techniques were tested separately with various 

experimental setups.  

The authors overcame the limitations of each method, and, in order to consider 

potential Channel State Information (CSI) availability at the receiver side, they proposed 

and experimentally evaluated combinations of the various O-MAC techniques (i.e., ICA 

and NOMA, ICA and subtraction, NOMA on one received mixed signal, and NOMA on 

both the received mixed signals). NOMA on both received signals proved to demodulate 

the signals with the greatest accuracy, although CSI at both receivers was required. ICA-

and-NOMA combination and ICA-and-subtraction combination reconstructed transmitted 

signals with a mean cross-correlation greater than 0.9 between the three users. Notably, 
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no prior work has been reported on the subtraction of known AWGN for reconstructing 

the original transmitted signal nor on the addition for estimating additive noise 

parameters, when limited CSI is available at the receiver side. 
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Chapter 3: METHODOLOGY  

3.1  Experimental Setup 

The FSO experimental setup used for research reported in this thesis is shown in 

Figure 3-1. Figure 3-1(a) depicts a flow diagram, and 3-2(b) depicts the hardware device 

configuration. Perfect alignment was assumed between transmitter and receiver. 

Furthermore, perfect time synchronization of the system and absence of intersymbol 

interference was also assumed. The setup included one user based on an intensity 

modulation—namely OOK—with direct detection scheme and an additive noise signal.  

In the Figure 3-1(a) block diagram, the black solid lines connecting the blocks 

represent electrical links; the red solid lines represent the optical fiber connections; and 

the blue dashed lines represent the free space optical links. Additive noise was generated 

using SIGLENT’S SDG6032X function generator and its noise waveform function, 

which generates white gaussian noise, driven using ThorLabs MX10B high-speed (e.g., 

12.5 Gbps) Digital Reference Optical Transmitter at a 1550 nm optical wavelength, with 

an integrated tunable C-band laser source. 

 User 1 consisted of a 1310 nm optical module transceiver (SFP) driven via 

Hitech Global SMA-to-SFP board by a PRBS, featuring 25 −1 bits length, 300 Mbps 

data-rate, 1.000 Vpp Amplitude and 2.8ns Rise/Fall. The PRBS signal was generated 

with one independent, dual-channel pulse/arbitrary waveform generator, namely 

SIGLENT’s SDG6032X.   
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(a) Depiction. 

 

 

(b) Picture. 

 

Figure 3-1. Experimental setup.  

 

PRBS and AWGN signals were split into two outputs with equal power, using 

ThorLabs’ 10202A-50-FC 50:50 Splitter (See Figure 3-2) to facilitate oscilloscope data 

collection. PRBS and AWGN signals were combined using ThorLabs’ WD1350F - 1310 

nm / 1550 nm Wavelength Division Multiplexer, (See Figure 3-3), which is designed to 
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combine the two 1310 nm and 1550 nm signals with a  ∓15.0 nm bandwidth around the 

center wavelength of each channel wavelength.  

 

Figure 3-2. ThorLabs’ 10202A-50-FC 50:50 Splitter. 

 

 

Figure 3-3. ThorLabs’ WD1350F – 1310/1550 nm Wavelength Division Multiplexer. 

 

Two collimators with 37.17 mm focal length (i.e., 1550 nm wavelength 

dependent) were used for transmission and reception of the signals (See Figure 3-4[a]). 

Additionally, one collimator with 36.90 mm focal length (i.e., 1310 nm wavelength 

dependent) was also utilized for transmission and reception of these optical signals (See 

Figure 3-4[b]). 
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(a) 1550 nm wavelength dependent. 

 

 

 

 

 

 

 

 

 

(b) 1310 nm wavelength dependent. 

Figure 3-4. Transmission and reception collimators. 

 

3.2 Data Collection  

The combined (PRBS + AWGN), PRBS, and AWGN signals were propagated 

through free space for 1.1-m independently, and then collected by three 5 GHz InGaAs 

photodetectors, namely ThorLabs DET08CFC, (See Figure 3-5), which were used for 
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optical-to-electrical conversion. Although three wavelengths were employed at the 

transmitting side, no wavelength selective filter was implemented at the receiving side. 

Photodetector outputs were then connected to a WavePro 254HD-MS Oscilloscope with 

a 20 GSample/s sampling rate for data collection and visualization, including the 

combined (PRBS + AWGN), PRBS, and AWGN signals, simultaneously.  

 

Figure 3-5. ThorLabs’ DET08CFC 5 GHz InGaAs photodetector. 

 

 

3.3 Data Analysis  

After the optical-to-electrical conversion, 100,000 samples were collected for each 

of the three optical signals examined in this research. Acquired data was formatted in .csv 

files. Data was then post-processed offline and entered to into the MATLAB software on 

a 1.80-GHz Intel Core i7 processor. Before further analysis of collected data, the noise 

produced from the function generator and driven by the optical transmitter was tested to 

determine if it followed the corresponding distribution. To verify that the additive white 

noise signal followed a Gaussian distribution, an empirical 1-D histogram was computed 
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for verification, shown in Figure 3-6. The histogram proved that the additive noise did 

indeed follow a Gaussian distribution, thus was fit for use in the research for this thesis.  

 

Figure 3-6. Additive noise empirical 1-D histogram. 

The visual representation of three signals (i.e., 2000 samples for better visualization), along 

with their corresponding histograms (a) AWGN- (b) PRBS; and (c) combined signals are 

shown in Figures 3-7, -8, and -9, respectively.  
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(a) Signal. 

 

(b) Histogram. 

Figure 3-7. Addition White Gaussian Noise (AWGN). 
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(a) Signal. 

 

 

 

(b) Histogram. 

 

 

Figure 3-8. Pseudorandom Binary Sequence (PRBS). 
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(a) Signal. 

 

(b) Histogram. 

Figure 3-9. Combined (PRBS + AWGN). 
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3.4 Results 

3.4.1 Subtraction and Extraction of Synchronized Noise Signals 

This section presents the subtraction method to used extract AWGN signals from 

the combined, noisy (PRBS + AWGN) signals. As mentioned in the previous section, 

100,000 samples were collected for each of the three optical signals for this research. The 

acquired data was formatted in .csv files. Acquired data was entered into MATLAB in 

the form of 100,000x1 arrays. Because three signals were captured simultaneously, they 

were synchronized to the same time samples. Given the internal memory of the 

oscilloscope for data acquisition (i.e., 100,000 samples), normalized cross-correlation 

was used for evaluating performance of the extracted PRBS signal vs. the original PRBS 

signal. In Figure 3-10, the red and blue lines represent the combined signals and AWGN 

signals, respectively. 

 

Figure 3-10. Synchronized combined (PRBS + AWGN) vs. AWGN signals.  
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Since channel state information (CSI) is known, extracted signals were 

reconstructed and subtracted from the combined, noisy received signal. Using the 

subtraction method, AWGN signal was shown and proven viable for subtraction from the 

combined signals for extracting the original PRBS signal. It was assumed that the ideal 

subtractor condition without loss signal occurs during subtraction. Figure 3-11 shows the 

original PRBS vs. extracted PRBS signal. Figure 3-12 shows that a normalized cross-

correlation of 0.9964 was obtained for the PRBS signal vs. extracted PRBS signal. 

  

 

Figure 3-11. Original PRBS vs. extracted PRBS signal. 
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Figure 3-12. Normalized cross-correlation of PRBS vs. extracted PRBS signals. 

 

Using this method demonstrates that the subtraction process can be used to extract 

the original PRBS signal from the combined, noisy signal when all three signals are 

simultaneously collected, at the receiver end and show nearly complete accuracy (i.e., 

cross-correlation of 0.9964). 

 

3.4.2 Subtraction and Extraction of Unsynchronized Noise Signals 

As mentioned above, the subtraction method of all three synchronized optical 

signals yields an accurate cross-correlation (i.e., 0.9964) of the original PRBS signal vs. 

the extracted PRBS signals.  

To evaluate if the subtraction method can similarly be used to extract the PRBS 

signal from a combined, noisy signal, AWGN with the same parameters sigma (σ) and 

mu (μ), was used to subtract and analyze combined signal output.  
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Previously, the AWGN signal was simultaneously captured with the same sample 

sequence as the original PRBS and Combined signals. In this analysis, when using the 

same subtraction method, the random AWGN signal (i.e., blue lines) with known sigma 

(σ) and mu (μ) parameters—albeit collected on its own with separate time sample, was 

subtracted from the combined, noisy signal (i.e., red lines), as shown in Figure 3-13.  

 

Figure 3-13. Unsynchronized combined (PRBS + AWGN) vs. AWGN signals.  
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Figure 3-14 displays the original PRBS vs. extracted PRBS signal. Additionally, 

Figure 3-15 shows that a normalized cross-correlation of 0.8044 was obtained for the 

PRBS signal vs. extracted PRBS signal, when a random, unsynchronized AWGN signal 

with known parameters was subtracted from the combined, noisy signal. 

 

Figure 3-14. Original PRBS vs. extracted PRBS signals. 
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Figure 3-15. Normalized cross-correlation of PRBS vs. extracted PRBS signals. 

 

3.4.3 Signal-to-Noise Ratio (SNR) 

To quantify the performance of a direct detection receiver, the output signal-to-

noise ratio (SNR) is defined as the ratio of the detector signal power to the total noise 

power. In practice, the received power is typically large enough such that the signal 

current dominates over the dark current and background illumination noise 

SNR serves as a benchmark indicator for optical transmission system performance 

assessment. SNR values most valued are at the receiver end. Consequently, a low SNR 

indicates that the receiver will most likely not detect or recover the signal as well as a 

higher SNR value. The SNR limit is one of the key parameters that determine how far a 

wavelength can travel prior to regeneration.  
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The optical SNR ratio is given by the equation, 

                                             SNR = 10 dB ∙  log10(
𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
)                                    Eq. (2) 

The signal given in Eq. (1) is represented by the range of the original PRBS 

signal, which is the difference between the maximum and minimum values of the input 

data signal itself. On the other hand, the noise in Eq. (1) is represented by the range of the 

AWGN, which remained constant during the SNR calculation, only varying PRBS signal 

range. 

SNR was utilized to observe cross-correlation accuracy of the original PRBS vs. 

extracted PRBS signals vs. SNR (dB), as shown in Figure 3-16. Results demonstrated 

that cross-correlation of the extracted PRBS signal vs. the original PRBS signal increased 

as SNR increased, meaning that as PRBS signal power—compared to AWGN power,—

increased, the extracted PRBS signal vs. original PRBS cross-correlation increased. In 

other words, the extracted PRBS signal was more fitting to extract when the PRBS signal 

power dominated the AWGN signal power. 

 

Figure 3-16. SNR vs. PRBS cross-correlation accuracy. 
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3.4.4 Jitter 

Jitter is the random delay occurring from the time a photon is incident on a photo-

detector to the time a photoelectron is detected. Figures in the previous section evidenced 

that, PRBS, AWGN, and combined signals were simultaneously collected in the same 

time sample sequences. Consequently, the subtraction process was leveraged to extract 

the PRBS signal, compared to the original PRBS signal with almost ideal cross-

correlation (i.e., 0.9964). In this scenario it was assumed that there was no jitter in 

collected signals.  

To further investigate the effects on these signals, the AWGN signal was jittered 

before it was subtracted from the combined, noisy signal. Figure 3-17 shows that as the 

jitter increased, cross-correlation accuracy between the extracted PRBS signal vs. the 

original PRBS signal decreased. This proposes that as the AWGN signal becomes no 

longer synchronized with the combined, noisy signal, the accuracy of PRBS decreases. 

At and around 20 jitter samples (i.e., 20 ns), cross-correlation hovers at approximately 

75- to 77% cross-correlation (i.e., 0.75-0.77) accuracy, implying that the PRBS signal 

reassembles over the extracted PRBS signal throughout all time samples collected. 
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Figure 3-17. Jitter vs. PRBS cross-correlation accuracy. 
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Chapter 4: GAUSSIAN MIXTURE MODEL (GMM) 

4.1 Motivation  

As demonstrated and proven in the previous sections, the subtraction method was 

successfully used to extract AWGN signals from the combined, noisy signals when the 

AWGN parameters were previously known. The motivation behind choosing GMM was 

finding a model to derive, output, and estimate the AWGN parameters sigma (σ) and mu 

(μ) in order to generate a random AWGN signal with the estimated parameters for 

subtracting and extracting the AWGN from the combined, noisy signal (e.g., PRBS + 

Noise) in this thesis research work. In addition, GMMs maintain many of the theoretical 

and computational benefits of Gaussian models, making them practical for efficiently 

modeling large datasets. Recall that in Figure 3-8(b), the histogram of the combined, 

noisy signal has two peaks, which suggests that data might follow a mixture model. 

 

4.2 The Model 

A GMM is a parametric probability density function represented as a weighted sum 

of Gaussian component densities. GMMs are commonly used as a parametric model of 

the probability distribution of continuous measurements or features in an application 

system. GMM parameters are estimated from training data using the iterative 

expectation-maximization (EM) algorithm or maximum a posteriori (MAP) estimation 

from a prior signal (i.e., combined, noisy signal) in this model.  
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A GMM is a weighted sum of M component Gaussian densities, as given by the 

equation,     

                                                       𝑝(𝑥|λ) = ∑ 𝜔𝑖𝑔(𝑥|𝜇𝑖 ,
𝑀

𝑖=0
Σ𝑖)                             Eq. (3)                                                                      

where 𝑥 D-dimensional continuous-valued data vector (i.e. measurement or features), 𝜔𝑖, 

𝑖 = 1,   .   .   .  , 𝑀, are the mixture weights, and 𝑔(𝑥|𝜇𝑖, Σ𝑖), 𝑖 = 1,   .   .   .  , 𝑀 are the 

component Gaussian densities. Each component density is a D-variate Gaussian function 

of the form, 

                             𝑔(𝑥|𝜇𝑖 , Σ𝑖) =
1

(2𝜋)
𝐷
2 |Σ𝑖|

1
2 

exp {−
1

2
(𝑥 − 𝜇𝑖 )

′ ∑ (𝑥 − 𝜇𝑖 )
−1
𝑖 },           Eq. (4) 

with mean vector 𝜇𝑖 and covariance matrix Σ𝑖. The Mixture weights satisfy the constraint 

that ∑ 𝜔𝑖 = 1.𝑀
𝑖=1  The complete GMM is parameterized by the mean vectors, covariance 

matrices and mixture weights from all component densities. Parameters are collectively 

represented by the notation,  

                                       𝜆 = {𝜔𝑖, 𝜇𝑖 , Σ𝑖}          𝑖 = 1,   .   .   .  , 𝑀 .                               Eq. (5) 

Several variants of GMM shown in Equation (3). Covariance matrices, Σ𝑖, can be 

full rank or constrained to be diagonal. Additionally, parameters can be shared or tied 

among Gaussian components (e.g., having a common covariance matrix for all 

components). Model configuration selection (i.e., number of components, full or diagonal 

covariance matrices, and parameter tying) is often determined by the amount of data 

available for estimating GMM parameters and how GMM is used in a particular 

application. The number of components and distributions used in this research work is 

discussed below. 
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4.3 Data Estimation  

 The research reported herein proposes using MATLAB’s GMM functions to 

estimate the AWGN parameters, and then generate a random AWGN signal using the 

estimated parameters for extracting the additive noise from the combined, noisy signals. 

The GMMs require that the component number is specified before being fit to data, 

which aids in estimating parameters.   

MATLAB’s  fitgmdist (X, k) function returns a Gaussian mixture 

distribution model (GMModel) with k components fitted to data (X) with X being the 

combined, noisy signals (PRBS + AWGN); and k being the number of components used. 

The fitgmdist (X, k) function was used, as shown in Figure 4-1. 

For many applications it might be difficult to determine the appropriate number of 

components. Thus, the empirical 1-D histogram for combined signals (PRBS + AWGN) 

was computed, as demonstrated in Figure 4-1. Number of  detected distributions was 

provided as input for the number of components to use when fitting the signal into the 

GMM. Figure 4-1 shows that the number of detected peaks in the 1-D histogram function 

was 2. Hence, 2 was used as input for the number of distributions for the GMM. 

Additionally, Figure 4-2 displays all three histograms for PRBS (See blue histogram), 

AWGN (See coral histogram), and combined, noisy signals (See orange histogram).  

 

 

Figure 4-1. MATLAB’s Gaussian Mixture Model fitted to data. 

 

gm = fitgmdist(X, k); 
 

gm = fitgmdist(CombinedSignal, 2); 
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Figure 4-2. Combined (PRBS + AWGN) signals empirical 1-D histogram. 

 

 

Figure 4-3. PRBS, AWGN and combined (PRBS + AWGN) signals empirical 1-D 

histogram. 
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4.4 Results 

The effectiveness and estimated output parameters from the GMM, random AWGN 

signal generation, subtraction method, and analysis are reported in this section.  

The MATLAB software system fitted GMM with two distinct means, covariances 

matrices, and component proportions to the data (i.e., combined, noisy signals). A 

depiction of the GMM is simplified in Figure 4-3. 

 

 

Figure 4-4. Simplified depiction of the Gaussian Mixture Model. 

 

The GMM outputs two distributions with separate estimates for parameters, (σ1, μ
1
) and 

(σ2, μ
2

), respectively. GMM output in illustrated in Figure 4-4 below. 
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Figure 4-5. MATLAB’s Gaussian Mixture Model output. 

 

Based the histograms shown in Figure 4-2, one can see that the component with the 

smaller mean (mu, μ) (i.e., component 2) corresponds to the AWGN estimated parameter 

output. Table 4.1 displays the parameters, standard deviation (sigma, σ) and mean (mu, μ) 

of the known and estimated AWGN generated from the GMM.  

 

 

 

 

>> gm 

gm =  

Gaussian mixture distribution with 2 components in 1 dimensions 

Component 1: 

Mixing proportion: 0.472597 

Mean:    0.0829 

 

Component 2: 

Mixing proportion: 0.527403 

Mean:    0.0426 

 

>> gm.Sigma 

ans(:,:,1) = 

   0.012659 

 

ans(:,:,2) = 

   0.014836 
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Table 4.1. Comparison of Known and Estimated AWGN parameters 

Additive White Gaussian Noise Standard Deviation (σ) Mean (μ) 

Original AWGN 0.0139 0.0459 

Estimated AWGN 0.0148 0.0426 

 

Next, using estimated parameters—sigma (σ) and mu (μ), an AWGN signal was 

generated using MATLAB’s normrnd(mu,sigma) function. Figure 4-5 shows how the 

function generates a random number from the normal distribution with mean parameter, 

mu, and standard deviation parameter, sigma, given from the GMM output. In addition to 

sigma and mu parameters, ‘100,000’ and ‘1’ represent the number of samples needed to 

generate a 100,000x1 array, as per the collected signals described in previous sections of 

this thesis.  

 

 

 

Figure 4-6. MATLAB’s function used for AWGN signal generation. 

 

 

 

RandomAWGN = normrnd(µ, σ, 100000, 1); 
 

RandomAWGN = normrnd(0.0426, 0.0148, 100000, 1); 
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Figure 4-6 shows an empirical 1-D histogram to verify that the random AWGN 

signal generated on MATLAB follows the AWGN parameters and distribution and offers 

a comparison with the original AWGN signal collected from the oscilloscope.  

 

Figure 4-7. Original vs. GMM-estimated AWGN signal empirical 1-D histograms 

 

The orange histogram represents the AWGN signal generated from the estimated 

GMM parameters; the blue histogram represents the original AWGN signal with known 

parameters. 

Furthermore, using the subtraction method as detailed in the previous sections, the 

newly estimated and generated AWGN signal is subtracted from the combined, noisy 

signal. Normalized cross-correlation was utilized for evaluating performance of the 

extracted PRBS signal vs. the original PRBS signal. Results in Figure 4-7 show that a 

normalized cross-correlation of 0.7952 was obtained for the PRBS signal vs. extracted 
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PRBS signal, when an AWGN signal with estimated parameters from the GMM, was 

subtracted from the combined, noisy signal. 

 

Figure 4-8. Normalized cross-correlation of PRBS vs. extracted PRBS signals 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1  Conclusion 

The new, high data-rate and high bandwidth services/applications required by the 

forthcoming terrestrial, aerial, and space networks dramatically increase the demand for 

wireless capacity. FSOC has been considered a promising technology for meeting these 

needs and supporting high data-rate, high capacity, low power consumption, secure, and 

high-density networks. Such requirements mean that next-generation wireless networks 

will face increased system complexity, especially due to the heterogeneity of supported 

services, applications, devices, and transmission technologies.  

Background noise is a significant problem for FSOC, even when there are no 

weather and/or atmospheric turbulences. In fact, signal transmission is significantly 

affected by background noise, mostly at the receiver end. An additive AWGN channel is 

assumed, wherein background illumination is the dominant source of noise. 

The research work highlighted in this thesis achieved three key objectives: a) to gain 

increased understanding of FSOC;  b) learn more about the effects of background noise 

affecting and deteriorating signals; and c) conducting the experimental setup and analysis 

for extracting AWGN from an affected signal with background noise through the use of  

the subtraction method. These objectives were investigated and experimentally validated 

to separate/subtract and extract additive noise signals from a combined, noisy signal.  

The subtraction method was confirmed to achieve these promising results. Tests and 

data analysis were conducted for one PRBS user affected with known AWGN 

parameters, while synchronized without time delays. After subtracting AWGN from the 

combined, noisy signal, a normalized cross-correlation between the original PRBS and 
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extracted PRBS—greater than 0.99—was accomplished. Furthermore, a random AWGN 

signal with known parameters was extracted from the combined, noisy signal to show a 

normalized cross-correlation between the original PRBS and extracted PRBS of about 

0.80. Lastly, GMM was used, and its results proved successful estimation of AWGN 

parameters, namely sigma and mu, for extracting the noise from a combined, noisy signal 

when the initial AWGN parameters were unknown. 

 

5.2 Future Work 

Work presented in this thesis confirms that FSOC technology is a promising 

endeavor. Successful completion of investigations reported herein lays the groundwork 

for future work. Several hardware, software, and testing research efforts could be pursued 

for practical realization of an FSOC system. Accordingly, this thesis concludes by posing 

the following research questions that should direct future research. 

• This work examined one user combined with an AWGN signal. Is it possible to 

combine at least two users with different PRBS parameters and AWGN, and then 

use the subtraction method to extract the noise? 

• Is it possible to emulate and apply the subtraction method to extract noise from a 

combined signal with a different additive noise signal? 

• What other communication/performance parameters could be estimated to 

facilitate and separate signals from additive background noise? 

• What effects does the modulation have on the combined, noisy signal? Can two 

users transmitting have different modulations? 
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