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Abstract 

 

This study develops a decision support framework for community resilience planning in 

the context of multiple hazards. The ability to prepare for and adjust to changing 

circumstances, as well as to withstand and recover from future hazards, is referred to as 

community resilience planning. Although different mitigation strategies have been 

established for each form of hazard, it is critical to choose the right plan for the community 

considering the combined risk of multiple hazards. Coastal areas are particularly 

vulnerable to deadly earthquakes and tsunamis. Communities must create a new vision for 

their post-disaster existence in order to successfully address the devastating effects of these 

multiple events, this analysis will aid community leaders in making these critical decisions. 

The study was carried out in Seaside, Oregon to address resilience planning under multiple 

hazards. This framework has the potential to optimize economic, social, and physical 

viability of the community by identifying the most effective mitigation strategies for a 

given budget. The approach describes in depth how to integrate models built by specialists 

in the fields of social science and civil engineering to construct a multi-objective 

optimization model.  
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1. Introduction 

 

 
Communities around the world are prone to natural hazards and are oftentimes not just subject 

to a single hazard, but to multiple hazards (Kappes et al. 2012). Nuances in the definition of 

multiple hazards exist. For example, cascading hazards refer to one event triggering another, 

such as earthquakes triggering landslides and tsunamis (Gasparini et al. 2014;De Risi and Goda 

2016; Park, Cox, Alam, et al.); whereas compounding hazards refer to one event posing 

multiple threats, such as hurricanes resulting in high winds, heavy rainfall, and storm surge (Li 

et al. 2012; Sebastian et al. 2017). The impact that these hazards have on communities can be 

devastating. Not only do natural hazards pose threats to life safety, but damage to infrastructure 

can disrupt communities. The effects of which can last years following the initial event (Cutter 

et al. 2006);, Costa, Haukaas, and Chang 2021).  

Megathrust earthquakes and subsequent tsunamis, such as the 2004 Indian Ocean tsunami, the 

2010 Chile tsunami, and the 2011 Tohoku tsunami, have resulted in devastating casualties and 

damage to the developed and natural ecosystems over the last two decades. Post-disaster 

assessments of building damage demonstrate the need for measures to improve community 

resilience in order to plan for potential tsunami disasters and reduce structural damage and 

losses. Planning for tsunami-prone areas face significant challenges since tsunami danger is 

unclear in most coastal areas along the Pacific basin, and the likelihood of occurrence and 

recurrence periods are unknown in most areas. Unlike the earthquake, winter storm surge, or 

general flood danger, where recurrence data is used to guide planning decisions, the science of 

tsunami probability can be summarized as an attempt to measure a very low probability yet 

extremely high impact threat.  

Assessing and quantifying the probability of natural disasters is beyond the reach of this study. 

However, the information is accessible from a variety of other outlets. Many natural disasters 

have occurred often enough in the past that researchers have established estimates of regional 

probabilities of possible natural disaster events. Maintaining the performance of infrastructure 

following extreme events is critical for post-event rescue and response operations as well as 

long-term community recovery. However, in comparison to single-hazard assessments, 

examining multiple hazards presents a number of additional difficulties due to the differences 

in process characteristics. This relates to the evaluation of the losses, as well as the exposure 

to specific processes and the resulting risk level. Since the comparability of single-hazard 
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outcomes is critical, an equivalent method must be chosen that allows for the estimation of the 

overall hazard and consequent risk level. (Kappes et al. 2012) and (Park et al. 2019) have 

presented study on probabilistic seismic and tsunami damage analysis (PSTDA) due to 

earthquake shaking and tsunami inundation caused by tsunamigenic earthquake events in a 

coastal community. The PSTDA assesses the cumulative impacts of earthquake and tsunami 

using a stochastic approach that considers accumulated damage from seismic shaking and 

eventual tsunami inundation. Because of the relative simplicity of quantifying the damage for 

selected scenarios versus the difficulty associated with probabilistic-based danger and damage 

assessment, deterministic scenario-based hazard and damage assessment has become a 

common approach to predict potential threats of a tsunamigenic earthquake occurrence. This 

motivates us to include multiple hazards in our decision-making process for improving 

community resilience. 

Community resilience is characterized as a community or society's ability to adapt in the face 

of hazards by acting to achieve and sustain an appropriate level of operation and structure. In 

light of multi-hazards, mitigation strategies that reduce the damages can be employed. These 

are dependent on a number of factors including hazards, economic and time constraints, and 

community values. Differences in mitigation strategy by hazard include retrofitting buildings 

and bridges against earthquakes (Zhang and Nicholson 2016; Wen, Nicholson , González’, 

2021; Kameshwar et al. 2019), vs. relocating structures from tsunami inundation zones and 

strengthening buildings to be more resistant to tsunami forces (Goltz et al. 2020). 

To improve how communities respond to hazards, resilience planning has emerged as an area 

of study to both quantify and reduce these negative impacts (What et al. 2009; Oregon Seismic 

Safety Policy Advisory Commission (OSSPAC) 2013; NYC Emergency Management 2019). 

Although the concept of resilience can be applied across diverse fields such as ecology, 

psychology, and economics, the work of (Bruneau et al. 2003)is often credited with first 

applying this concept to communities in the context of natural hazards.  

In the remainder of thesis, Section 2 summarizes background of previous research. Section 3 

describes the methodology and solution approach. Section 4 is the case study on seaside 

community and Section 5 discusses the results and analyses for seaside community. Finally, 

Section 6 presents the conclusion and future work.   
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2. Background 

 

 
The literature on resilience in the context of natural hazards is extensive and multiple review 

papers summarizing the status of the field have been published. These range broadly between 

the current status of community resilience modeling (Koliou et al. 2020) to definitions of 

resilience (Hosseini, Barker, and Ramirez-Marquez 2016), and down to specifics such as 

resilience metrics within transportation systems (Sun, Bocchini, and Davison 2020). The study 

of community resilience is, by default, interdisciplinary. Subsequently, resilience planning 

should aim to sit at the intersection of the natural, built, and socioeconomic environments 

(Rosenheim et al. 2019; Koliou et al. 2020) identify that, despite ongoing research efforts in 

various disciplines, the integration of multidisciplinary elements of community resilience is 

scarcely completed. Two examples of this convergence include: (1) (Guidotti, Gardoni, and 

Rosenheim 2019) who considered population dislocation following a natural hazard and the 

ability of a water network to meet demands and (2) (Franchin and Cavalieri 2015), who 

consider population dislocation and road damage using a Bayesian network. 

Whereas resilience research has often aimed to quantify and increase how resilient 

communities are, both parallel and supplementary to the field of resilience is the study of 

decision support systems. Applied to natural hazards, decision support systems aim to reduce 

risks and/or increase resilience of communities. In a comprehensive review of decision support 

systems for natural hazards (Newman et al. 2017) evaluated 101 papers and devised a decision 

support system classification system. According to (Newman et al. 2017), decision support 

systems can relate to: (1) exploring risks associated with natural hazards under present-day 

conditions (Kappes et al. 2012; Park et al. 2019), (2) manually evaluating risk-reduction 

alternatives via “what-if” scenarios (Kameshwar et al. 2019), and (3) developing models that 

determine optimal solutions and automatically develop risk reduction plans (Frangopol and 

Bocchini 2011; Gomez and Baker 2019). Each of which, according to Newman et al., exhibit 

increasing levels of “decision support”. According to this review, the field of decision support 

systems has largely focused on the former areas, evaluating risk and resilience, whereas fewer 

works have been focused on optimization of mitigation strategies; however, this is nonetheless 

becoming increasingly popular. 

Within this subdiscipline of decision support systems applied to natural hazards, optimization 

can relate to either pre-emptive mitigation strategies or restoration strategies. Considering the 
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former, Zhang and Nicholson developed a multi-objective optimization model considering the 

performance of interdependent physical, social, and economic systems under disruption from 

earthquake hazards and (Wen, Nicholson, González’, 2021) extended that works by 

implementing new objectives to the optimization framework. On the other hand, considering 

optimization of restoration strategies, (González et al. 2016; Gomez et al. 2019) posed the 

Interdependent Network Design Problem (INDP), which is concerned with determining the 

least-cost reconstruction strategy for a partially destroyed system of interdependent 

infrastructure networks. In a similar vein, (Zhang, Wang, and Nicholson 2017) considered post-

disaster recovery of road and bridge transportation networks. 

Given that: (1) communities are often prone to multiple hazards, and (2) successful resilience 

planning sits at the intersection of the natural, built, and socioeconomic environments, the 

intention of this thesis is to present an optimization model that considers both of these facets. 

Namely, a multi-objective optimization framework for building mitigation strategies subject to 

multiple hazards is proposed. While multi-objective optimization models for resilience have 

been developed (Zhang and Nicholson 2016) (Yunjie Wen , Charles Nicholson , Andrés 

González’, 2021), the novelty of this paper lies in that multiple hazards are considered and the 

solutions provided are at individual building level. As such, mitigation options that target either 

both or one of the underlying hazards are included in the model. Further, the multi-objective 

aspect of this framework provides avenues to consider the impact that hazards, have not only 

on buildings, but also on the population and repair time. Thus, the optimization framework 

presented herein sits at the intersection of the natural, built, and socioeconomic environments. 
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3. Optimization Model Formulation 

 

 

Figure 1: Framework demonstrating the multi-objective optimization of parcel mitigation 

strategies subject to multiple hazards 

 

The multi-objective optimization of building mitigation strategies subject to multiple hazards 

is shown in Figure 1. The framework consists of four primary steps: (1) defining decision 

support options, (2) performing the multi-hazard damage analysis, (3) extracting metrics from 

the multi-hazard damage analysis to be used in the optimization model, and (4) performing the 

multi-objective optimization. The following subsections outline each of these steps in detail.  

3.1. Decision Support Options  

 

The first step in this framework is to define decision support options, which consists of 

identifying: (1) a suite of mitigation strategies to consider, and (2) constraints that are 

employed in the optimization model. In the context of disasters, the former can consist of 

either proactive or reactive strategies. Costs of implementing each of the mitigation 
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strategies should be defined. The latter consists of identifying constraints that are employed 

in the optimization model and can consist of items such as budgetary or resource limits.  

This analysis assumes a community with one or more distinct zones. A community zone is 

any defined geographic region that contains structures of interest. Such zones could be 

based on census tracts, topographically distinct regions, or areas of relative homogeneity 

in structure types or purposes. Furthermore, it is believed that the community has 

information related to structure type, retail market value, and population at the parcel level. 

 

3.2. Multi-Hazard Damage Analysis 

 
Following the identification of decision support options, a multi-hazard damage analysis is 

then performed to determine the probability of being in damage states for each individual 

parcel. This step consists of mapping spatially explicit hazard intensity measures of the 

underlying individual hazards to the built environment. This is shown in Figure 1 via the 

connections between the multiple hazards and parcel/building inventory box. Methods to 

employee a multi-hazard damage analysis are numerous and can range from the use of 

fragility surfaces to assuming the underlying hazards and damages are statistically 

independent (‘FEMA’,2015; ‘FEMA’, 2013; Park et al., 2019). For a comprehensive 

review of multi-hazard risk and damage analyses, readers are directed to (Kappes et al. 

2012). 

The multi-hazard damage analysis consists of overlaying hazard maps on the parcel 

inventory to get parcel-level damage state probabilities. The earthquake and tsunami 

hazards employed in this work were defined from the PSTHA performed by (Park et al. 

2017). The PSTHA resulted in earthquake and tsunami hazard maps for Seaside associated 

with 7 discrete recurrence intervals (100-, 250-, 500-, 1,000-, 2,500-, 5,000- and 10,000-

year). The parcel inventory was collected by (Park et al. 2017) and follows the same 

methodology that was originally outlined in (‘FEMA’, 2013) 

Within this framework, the multi-hazard damage analysis is informed by the mitigation 

strategies that were defined as decision support options. These strategies have an impact on 

the damage state probabilities of each individual parcel. The damage state probabilities then 

inform a set of optimization metrics that are to be minimized (or maximized) across the 

entire community. Examples of optimization metrics include direct and/or indirect 
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economic losses, individual parcel repair times, and residential population dislocation. 

Additional metrics can be defined to meet community needs.  The end result is a set of 

optimal solutions that minimize (or maximize) the objectives under the given constraints. 

In this work pyIncore, an open-source community resilience modelling environment, is 

used to perform structural damage analysis (van de Lindt et al., 2018; (Gardoni et al. 2018). 

HAZUS fragility models were used to determine the probability of being in or exceeding a 

given damage state (‘FEMA, 2013; ‘FEMA’, 2015) and are characterized by a lognormal 

distribution given as: 

𝑃[𝑑𝑠|𝐷] =  Φ[
1

𝛽𝑑𝑠
ln (

𝐷

�̅�𝑑𝑠

)] 

 

(1) 

Where 𝑑𝑠 is the damage state, D is the demand on the structure, 𝛽𝑑𝑠 is the lognormal 

standard deviation, and �̅�𝑑𝑠 is the median of the lognormal distribution associated with 

damage state ds. This parameterization of lognormal distributions is used for both the 

earthquake and tsunami fragility curves. For earthquake hazards, spectral displacement is 

employed as the demand type, whereas momentum flux is employed for the tsunami hazard.  

 

𝑃𝑐𝑜𝑚𝑏[𝐷𝑆 = 𝐶]
= 𝑃[𝐷𝑆 = 𝐶|𝐸𝑞𝑘𝑒] + 𝑃[𝐷𝑆 = 𝐶|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 = 𝐶|𝐸𝑞𝑘𝑒]
∙ 𝑃[𝐷𝑆 = 𝐶|𝑇𝑠𝑢] + (𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒] − 𝑃[𝐷𝑆 = 𝐶|𝐸𝑞𝑘𝑒])
∙ (𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 = 𝐶|𝑇𝑠𝑢]) 

 
 

 

 

 

 (2) 

𝑃𝑐𝑜𝑚𝑏[𝐷𝑆 ≥ 𝐻]
= 𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒] + 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒]
∙ 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] + (𝑃[𝐷𝑆 ≥ 𝑀|𝐸𝑞𝑘𝑒] − 𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒])
∙ (𝑃[𝐷𝑆 ≥ 𝑀|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢]) 

 

 

 

 

 (3) 

𝑃𝐶𝑜𝑚𝑏[𝐷𝑆 ≥ 𝑀]
= 𝑃[𝐷𝑆 ≥ 𝑀|𝐸𝑞𝑘𝑒] + 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 ≥ 𝑀|𝐸𝑞𝑘𝑒]
∙ 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] 

 

 

 

 (4) 

 

The lognormal fragility parameterization depends on the structure type and seismic code. 

As previously mentioned, mitigation option 1 corresponds to retrofitting the structure to 

the highest seismic code, thus shifting the seismic fragility curves. Example fragility curves 

for a reinforced concrete structure under high seismic code is shown in Figure 2.   
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PyIncore uses four damage states (none/insignificant, moderate, heavy, complete), thus the 

above results in the probability of being in each of the four damage states for both 

earthquake and tsunami hazard. There is a cumulative building damage module in pyIncore 

that combines the damage state probabilities of individual hazards to a cumulative damage 

state probability assuming statistical independence. The probability of being in each 

damage state considering both the earthquake and tsunami hazard is given as 

 

Figure 2: Example fragility curves for a reinforced concrete structure under high seismic 

code. 

 

The multi-hazard damage analysis results in damage state probabilities at each parcel under 

each of the mitigation options.  

3.3. Optimization Metrics 

 

Let 𝑙𝑖𝑘 denote the expected economic loss due to a multi-hazard scenario for building in 

parcel 𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦. The direct economic losses are computed using 

damage ratios and each parcel’s real market value. Here it is assumed that the four damage 
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states of none/insignificant, moderate, heavy, and complete have damage ratios of 0.005, 

0.155, 0.55, and 0.90, respectively these damage ratios vary for each hazard and since the 

current research is done for earthquake and tsunami, the constants used by (Kameshwar et 

al. 2019) are followed in this model as well . The expected economic loss is a function of 

retail market value of the building and probability of being in a damage state. 

𝑙𝑖𝑘 = 𝑅𝑀𝑉𝑖𝑘( ∑ 𝑃𝑑𝑠 ∗ 𝐷𝑅𝑑𝑠

𝑑𝑠

 ) 

 

(5) 

Where 𝑅𝑀𝑉𝑖𝑘 is the retail market value of the building in parcel 𝑖 ∈ 𝒵 and mitigation option 

𝑘 ∈  𝒦, 𝐷𝑅𝑑𝑠 is the damage ratio associated with the damage state (ds) of building in parcel 

𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦,. For this study, 4 damage state probabilities are 

considered and each of it has a damage factor depending on a hazard.  

The damage state probabilities are additionally used for the calculation of population 

dislocation, the second community resilience metric in our research, was computed by 

(Rosenheim et al. 2019). The human systems response, household dislocation, was 

modeled using data and results from housing unit and household surveys conducted in the 

aftermath of Hurricane Andrew (Girard 1997).Based on the loss of property value, the 

model forecasts the likelihood of household dislocation. During an off-season earthquake, 

the population dislocation study predicts that Seaside, Oregon will have 4,628 households 

dislocated, accounting for roughly 80% of total households. This shows that it is vital for 

the integration of social science and engineering data opens up previously unexplored 

avenues for coupling engineering and social science modeling, as well as enhancements to 

post-hazard resilience models.  

Let 𝑑𝑖𝑘 be the expected population dislocation due to a multi-hazard scenario for building 

in parcel 𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦. The dislocation is computed from four 

dislocation probabilities based on a random beta distribution of the four damage factors 

provided by (Bai, Hueste, and Gardoni 2008). These four damage factors correlate to a loss 

of value. The likelihood of dislocation is calculated as the sum of the four probabilities 

multiplied by the four probabilities of damage states. The probability of dislocation is 

calculated using the logistic regression equation given below, 

𝑃𝑟𝐷𝑖𝑠𝑖𝑘 =
1

1 + 𝑒−(𝑏0+𝑏1𝑝𝑙𝑜𝑠𝑠𝑖𝑘+𝑏2𝑑𝑠𝑓𝑘+𝑏2𝑝𝑏𝑙𝑎𝑐𝑘𝑘+𝑏2𝑝ℎ𝑖𝑠𝑝𝑘)
 

(6) 
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Once we have the information of probability of dislocation, we calculate the expected value 

of population dislocation by multiplying probability of dislocation with number of people 

living in each building at parcel 𝑛𝑢𝑚𝑝𝑟𝑒𝑐𝑖𝑘  𝑖 ∈ 𝒵. 

𝑑𝑖𝑘 = 𝑃𝑟𝐷𝑖𝑠𝑖𝑘 ∗ 𝑛𝑢𝑚𝑝𝑟𝑒𝑐𝑖𝑘 

 

(7) 

The final community resilience metric is the amount of time it will take to restore each 

community to their former natural state, i.e. restoration time, which has been studies in 

detail by (Kameshwar et al. 2019). HAZUS provides median repair time estimates for each 

building type and damage state. Here it is assumed that the four damage states 

none/insignificant, moderate, heavy, and complete have median repair times of 0.5, 60, 

360, and 720 days, respectively. Following (Kameshwar et al. 2019), it is assumed that 

these median repair time estimates correspond to a lognormal distribution, each with a 

dispersion of 0.5. The mean associated with each lognormal repair time curve is determined 

(𝑢𝑟𝑑𝑠
), and the expected repair time at each parcel is computed as: 

𝑅𝑖𝑘 =  ∑ 𝑃𝑑𝑠 ∗ 𝑢𝑟𝑑𝑠

𝑑𝑠

 

 

(8) 

The average repair time of the community will be, 

𝑇𝑖𝑘 =
𝑅𝑖𝑘

𝛴 𝑏𝑖𝑘
 

 

(9) 

3.4.  Multi-Objective Optimization 
 

The set of objectives can be chosen as any metric of community resilience. The information 

of the metric must be available at building level. For this research we consider the 

objectives based on the scenario is Seaside, Oregon. After a catastrophe, the economic loss 

from building damage in Seaside, Oregon, can reach $1.2 billion (Wiebe and Cox 2014), 

This value is obtained using a methodology for estimating building damage on a 

community scale using fragility curves. A fragility curve is a statistical function that reflects 

a given demand's performance (or damage state). The curves are usually S-shaped, 

indicating uncertainty in the system's ability to withstand a loading condition (Schultz et 
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al. 2010). Fragility curves are usually created using one of four methods: judgmental, 

empirical, analytical, and hybrid (Schultz et al. 2010). Fragility curves for tsunami 

performance have historically been constructed empirically through field observations, 

laboratory experiments, and numerical simulations. The use of fragility curves has the 

advantage of incorporating all of the risks and uncertainty into a single function. (Wiebe 

and Cox 2014). The methodology has the capability to calculate damage at individual 

building level. Only the direct tangible economic loss, which is building damage, was 

assessed for this paper. Direct intangible loss, such as death, and indirect tangible loss were 

not considered. Though this may be evident, the most significant economic losses caused 

by hazards are to buildings and their contents. 

Once, we have calculated these three metrics at parcel level, we convert the information to 

community level by multiplying the number of buildings in each parcel. The number of 

buildings in each parcel 𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦 can be defined as 𝑏𝑖𝑘. 

The expected economic loss, population dislocation and repair time of the community is 

given by eq 10,11,12 respectively, 

∑ ∑ 𝑙𝑖𝑘𝑏𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(10) 

∑ ∑ 𝑑𝑖𝑘𝑏𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(11) 

∑ ∑ 𝑇𝑖𝑘𝑏𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(12) 

 

 

The mitigation strategy/policy used on the community would be the difference between 𝑥𝑖𝑘 

and 𝑏𝑖𝑘. The objective functions for the model would simply be replacing 𝑏𝑖𝑗𝑘 with 𝑥𝑖𝑗𝑘 

from the equations 10,11,12 and adding whether we want to minimize or maximize the 

metrics. It is evident in the current case that these metrics need to be minimized to reach 

optimum values.  
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Therefore, the objective functions will be, 

𝑚𝑖𝑛 ∑ ∑ 𝑙𝑖𝑘𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

    

(13) 

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑘𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(14) 

𝑚𝑖𝑛 ∑ ∑ 𝑇𝑖𝑘𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(16) 

The optimization approach, in turn, strategically allocates scarce resources to retrofit as 

many buildings as possible by mitigation options while simultaneously attempting to 

mitigate direct loss, population dislocation, and repair time at the community level. 

Given the scarce in resources to retrofit the buildings, it is considered that we have a total 

maximum budget B. The cost of improving from mitigation option 𝑘 ∈  𝒦 to mitigation 

option 𝑘′ ∈ 𝒦, in parcel 𝑖 ∈ 𝒵 is 𝑆𝐶𝑖𝑘𝑘′𝑦𝑖𝑘𝑘′ . The optimization model is informed with the 

constraint (17) to maintain the retrofit building to be below the total available budget. 

∑ ∑ ∑ 𝑆𝐶𝑖𝑘𝑘′𝑦𝑖𝑘𝑘′

 𝑘′ ∈ 𝒦  𝑘 ∈ 𝒦𝑖∈𝒵

≤ 𝐵 

 

(17) 

Another constraint is making sure that the total number of building after retrofitting from 

mitigation option 𝑘 ∈  𝒦 to mitigation option 𝑘′ ∈ 𝒦 in parcel 𝑖 ∈ 𝒵 is equal to the total 

number of buildings before retrofitting.  

𝑥𝑖𝑘 = ∑ 𝑦𝑖𝑘′𝑘𝑘′:(𝑘′,𝑘)∈ℒ  
+  𝑏𝑖𝑘  − ∑ 𝑦𝑖𝑘𝑘′

𝑘′:(𝑘,𝑘′)∈ℒ  
     

∀𝑖 ∈ 𝒵, ∀ 𝑘 ∈ 𝒦 

 

(18) 

The next constraint is to maintain a balance in number of buildings in each parcel 𝑖 ∈ 𝒵 

before and after retrofitting. 

∑ 𝑥𝑖𝑘

𝑘∈𝒦

= ∑ 𝑏𝑖𝑘

𝑘∈𝒦

   ∀𝑖 ∈ 𝒵, 𝑘 ∈ 𝒦  

 

 (19) 
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Finally the last set of logical constraints are to have non-negative values. 

𝑥𝑖𝑘  ≥ 0    ∀𝑖 ∈ 𝒵, 𝑘 ∈ 𝒦 (20) 

𝑦𝑖𝑘𝑘′ ≥ 0  ∀𝑖 ∈ 𝒵, (𝑘, 𝑘′) ∈  𝒦 (21) 

 

 

3.5. Data Preparation using IN-CORE 

 

The Center of Excellence for Risk-Based Community Resilience Planning (CoE) 

(Cooperative Agreement 70NANB15H044) was funded by the National Institute of 

Standards and Technology (NIST) to improve measurement science to help community 

resilience assessment. The measurement science is applied on the Interdependent 

Networked Community Resilience Modeling Environment framework (INCORE). It 

integrates a risk-based decision-making methodology that allows for quantitative 

comparisons of alternative resilience strategies. Data from the community can be easily 

incorporated on the IN-CORE platform, allowing users to intelligently refine community 

disaster resilience planning and post-disaster recovery strategies using physics-based 

models of inter-dependent physical structures coupled with socio-economic systems. For 

this analysis we are utilizing IN-CORE’s models to develop the required data to integrate 

into optimization model. IN-CORE is used to create a virtual community, then the fragility 

mappings are developed for the selected community, using which the damage analysis are 

conducted and then economic loss, population dislocation and repair times are computed 

using the output from damage analysis. Finally the data is aggregated as required input for 

the optimization model as shown in Figure 3.  
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Figure 3: Flow Chart of INCORE Analysis 
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4. Case Study – Multi-hazard analysis for Seaside, Oregon 
 

The methodology outlined in section 2 is employed at Seaside, Oregon, and a multi-hazard 

earthquake-tsunami. Seaside is a small coastal community located in the North American 

Pacific Northwest and is subject to the rupture of the Cascadia Subduction Zone (CSZ). The 

CSZ is an approximately 1,000km. long fault that stretches from Cape Mendocino, California 

to Vancouver Island, British Columbia and is formed by the Juan de Fuca, Explorer, and Gorda 

plates converging beneath the North American Plate (Goldfinger et al. 2012). Rupture of the 

CSZ will result in a multi-hazard earthquake and tsunami.  

4.1. Seaside Community 
 

Seaside is selected as a testbed community because it is particularly vulnerable to the CSZ. 

Some studies estimate that approximately 87% of the developed land is within the 

inundation zone (N. Wood 2007). Furthermore, among Oregon coastal communities, 

Seaside has the largest number of residents with a high social vulnerability index (N. J. 

Wood, Burton, and Cutter 2010) Given this exposure to the CSZ, Seaside has been used as 

a testbed community in numerous additional studies (Park et al. 2017; Park, Cox, and 

Barbosa 2017; Guidotti, Gardoni, and Rosenheim 2019; Kameshwar et al. 2019; 

Rosenheim et al. 2019). Figure 4 shows the city of Seaside and its location within the North 

American Pacific Northwest. 
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Figure 4: City of Seaside, Oregon, and location within the North American Pacific 

Northwest 
 

4.2. Data Availability  
 

The first step consists of defining the decision support options. For the case study, four 

mitigation strategies are considered and summarized in Table 1. The mitigation options 

outlined herein are employed to demonstrate the multi-objective optimization framework 

applied to multiple hazards. Costs associated with each strategy are not exact and can be 

refined in future work.  

All parcels are initially considered under status quo conditions (Option 0). (Park et al. 2017) 

classified the buildings’ into HAZUS typologies and depend on building construction type 

(wood, reinforced concrete, etc.) and the seismic code.  

The first mitigation option (Option 1) is to retrofit the building located on a parcel to the 

highest seismic code. Retrofitting a structure to a higher seismic code improves its 
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performance to the earthquake; however, it is assumed that this has no impact on the 

tsunami damage. It is assumed that the costs associated with retrofitting a structure are 30% 

of the structure’s real market value.  

The second mitigation option (Option 2) is to relocate the building on a parcel outside of 

the tsunami inundation zone. Here, it is assumed that the building is relocated to a location 

that is near to Seaside but is safe from the tsunami. Given that Seaside covers a small 

geographic area and there is little variation in the earthquake hazard intensity measure over 

the study domain, it is assumed that Option 2 does not modify the earthquake damage that 

a building sustains. It is further assumed that the costs associated with relocating a building 

are 100% of the buildings real market value.  

The final mitigation option (Option 3) is to both relocate the structure and retrofit it to the 

highest seismic code. Whereas Options 1 and 2 are targeted towards a specific hazard, 

Option 3 is targeted towards both the earthquake and tsunami hazards. It is assumed that 

this mitigation options costs 130% of the structures real market value.  

 

Table 1: Mitigation options available at each parcel 

Optio

n 

Description Targeted Hazard Cost 

(%RMV) 

0 Do nothing (status quo) - - 

1 Retrofit structure to high-seismic code Earthquake 30% 

2 Relocate structure Tsunami 100% 

3 Relocate and retrofit to high-seismic 

code 

Earthquake and 

Tsunami 

130% 

 

Assuming these figures, we can now quantify the expense of a mitigation strategy at the 

building stage. The cost of improving from mitigation option 𝑘 ∈  𝒦 to mitigation option 

𝑘′ ∈ 𝒦, in parcel 𝑖 ∈ 𝒵 is 𝑆𝑐𝑖𝑘𝑘′ . 

𝑆𝑐𝑖𝑘𝑘′ = 𝑅𝑀𝑉𝑖𝑘(𝑃𝑘𝑘′) 

 

(22) 
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Where, 𝑅𝑀𝑉𝑖𝑘 is the retail market value of the building in parcel 𝑖 ∈ 𝒵 and 𝑃𝑘𝑘′ is cost 

percentage of 𝑅𝑀𝑉𝑖𝑘 to improve from mitigation option 𝑘 ∈  𝒦 to mitigation option 𝑘′ ∈

𝒦.  

Since there is no clear budget for resilience planning as stated in (Oregon Seismic Safety 

Policy Advisory Commission (OSSPAC) 2013) an assumption of three budgets $40 million 

, $80 million and $120 million are used. Using these budgets, we examine how mitigation 

options can be implemented at the building level to decrease the community's economic 

loss, population dislocation, and repair times in two scenarios: 500-year return period 

multi-hazard and 1000-year return period multi-hazard. 

4.3. Solution Approach 

 
Using the ϵ-constraint approach which is widely implemented by researchers (Ji et al. 2018; 

Pike-burke, n.d.; Zhang and Nicholson 2016), the optimization model displays many 

solutions on Pareto front in terms of direct economic loss, population dislocation and 

average repair time as shown in Figure 4 and Figure 5 with different budget levels, the 

highlighted color red represents the solutions with a $40 Million budget whereas green and 

blue represents optimal solutions with $80 Million and $120 Million budget, respectively. 

The proposed budgets are selected to show the variety of solutions with change in money 

invested and since the available budget is unknown and (Oregon Seismic Safety Policy 

Advisory Commission (OSSPAC) 2013) discusses that the Oregon legislature has 

authorized seismic grants for different sectors ranging from $1.5 million to $150 million, 

we assume these budgets reasonable. These Figures also show details of 3 points on each 

surface as Plan 1, Plan 2 and Plan 3 which represent the least value in economic loss, 

population dislocation and repair time, respectively. Figure 5 depicts solutions for a 500-

year multi-hazard event, while Figure 6 depicts solutions for a 1000-year multi-

hazard event. These two events are chosen as for analysis from a list of 8 events as 

(Kameshwar et al. 2019) already proved that 500-year event and 1000-year event have the 

highest economic risk.   
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Figure 5: Pareto Frontier: 500-Year Event 

 

Figure 6: Pareto Frontier: 1000-year Event 

 

One is capable of selecting a plan from among all available choices that has the best course 

of action that can be taken to prepare for the event. Three plans are chosen for this case 

study. Plan 1 has the least economic loss whereas Plan 2 and Plan 3 have the least 

population dislocation and least repair times, respectively. The trade-offs of these 

conflicting metrics at each plan are being explored further at each budget level. 
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Table 2: Trade-off Analysis between the objectives at $40 million budget 

 

 

Table 3: Trade-off Analysis between the objectives at $80 million budget 
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Table 4: Trade-off Analysis between the objectives at $120 million budget 

 

 

To examine the trend of the above plans further, the economic damage, population 

dislocation, and repair times for 500-year and 1000-year incidents in the absence of a 

retrofitting strategy were estimated. 

 

Table 5: Community metrics with no mitigation strateg–y 
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5. Results and Analysis 

 
We should investigate the returns on - budget level further to determine which budget level 

would provide us with the best financial return for the money invested. In the first plan for 500-

year event, we seek the solution with the least amount of economic loss. Let us compare how 

the invested capital benefits us in terms of avoiding economic loss. At a budget amount of $40 

million, the economic loss has decreased from $237,244,445 to $195,058,236 for a 105% return 

on investment. In terms of economic loss, other budget amounts of $80M and $120M yield 

80% and 66% returns, respectively. While the return-on-investment capital to money could be 

lower in these situations, when looking at the increase of the community's repair time, the 

$40Millon investment has a 40% improvement, while the $80 and $120M investments have a 

73% and 94% improvement, respectively. Comparing outcomes across budget levels can help 

to enhance decision making even more. For example, with the least budget, the minimum 

population dislocation is 2245 households. This can be reduced by 121 predicted dislocations 

for an extra $40M. This more expensive drastic approach also results in a $61.6M reduction in 

direct economic loss. 

 

Figure 7: Improvements in Objectives for 500-year Event 
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Figure 8: Improvements in Objectives for 1000-year Event 

 

The trade-offs are numerous, and the outcomes produced by the optimization model can be 

used in a variety of analyses, allowing the decision maker to choose the best plan for their 

community based on these insights. This model's capability ranges from providing an overall 

optimum value on how much we can save in economic loss, population dislocation, and repair 

times to informing the user with which building needs to be retrofitted with which strategy to 

achieve these values within a variety of budgets.  

Looking at the spatial analysis, we can see why these results support some regions in different 

plans. The mitigation strategies for different plans and different budget levels are shown below 

in Figure10. The top row of Figure 10, panels 10a-c, show the 500-year event under different 

budget levels, ranging from $40M to $120M. The bottom row, panels 10d-f, show the 1,000-

year event under the same budget levels. In 10a-c, each plot shows the plan 2 solution, that is 

minimizing population dislocation. Conversely, panels 10d-f shows plans 2, 3, and 1 

respectively, or minimize population dislocation, repair time, and economic losses.  
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Considering panels 10a-c, it be seen that as the budget increases, an increasing number of 

parcels are show that the optimal solution is to relocate and retrofit to the highest seismic code. 

It is interesting note that few, if any, parcels are simply relocated (option 2). This akin to saying 

that if a structure is relocated, it is worthwhile for the owners to invest in retrofitting the 

structure to the highest seismic code. Panels 10a-c further show that Seaside’s urban corridor, 

the centrally located seaward-most parcels remain under mitigation option 0 regardless of 

budget level. This is due to the strategy being to decrease population dislocation, Plan 2, and 

this area is not residential as seen in Figure 9  

 

Figure 9: Seaside Community Analysis: Population Spread 

Considering panels 10d-f, these show the 1,000-year event under different budgets and 

mitigation plans. Similar to the top row of Figure 10, where the plan is to minimize population 

dislocation, panel 10d shows that the urban corridor remains in status quo conditions whereas 
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the surrounding residential areas are either retrofitted or relocated, options 1 and 2, 

respectively. Comparing panels 10a and 10d, it can be seen that with an increased recurrence 

interval, but under the same budget, a significant number of seaward parcels shift from 

retrofitting to relocating. This is due to the increased threat the tsunami plays as the recurrence 

interval increases. Panel 10f shows that when the objective is to minimize the economic losses, 

the urban corridor begins to shift from mitigation option 0 to either retrofitting or relocating.  

 

 

 

Figure 10: (a-f): Retrofitting Plans for 500-year event & 1000-year event 
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Figure 11: Plan 1 with $40Million for 500-year event 

 

 

 

Figure 12: Plan 2 with $40Million for 500-year event 

 

Figure 11 depicts Plan 1 and Figure 12 shows Plan 2 for the 500-year scenario with a $40M 

budget. In Plan 1, where we have the least economic loss, the model selects the coastal area 

with mitigation strategy 1, which is the region with the most costly buildings used for seasonal 
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and recreational use. The model's tendency to retrofit the most expensive buildings in order to 

incur the least economic loss demonstrates the model's preferences in terms of optimal 

tradeoffs. Similarly, we can see in Figure 10 that the population is broadly distributed in the 

middle area, and in Plan 2 from Figure 12 we can see that the spread of strategies is even around 

the map to help get the least population dislocation while still making sure to minimize the 

total economic loss by proposing relocated buildings in coastal regions, i.e. mitigation strategy 

3. 

 

 

Figure 13: Seaside Community Analysis, Building Type 

 

 

The transition in mitigation strategy visible in the three chosen plans represents the model's 

broader pattern of moving investments from residential to non-residential structures. When 

these are compared to the competing repair times, the decision maker gets an unique 

perspective.  
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6. Conclusion  

 

The model considers mitigation options for both tsunami and earthquake, broadening resilience 

preparation, and the results specifically select retrofitting for which hazard provides the best 

optimum metrics in the future. Community leaders, emergency managers, and local authority 

representatives face difficult decision problems and conflicting priorities when it comes to 

community resilience. This study's multi-objective optimization model for multiple hazards is 

intended to serve as a decision-making mechanism for those members as they analyze how 

investments can affect community vulnerability and planning for multiple events. We cannot 

prevent future disasters, but we can choose a future in which post-disaster losses are 

manageable. Preparing now by assessing infrastructure, developing, and implementing a long-

term retrofit and redesign plan to make Oregon more resilient to future disasters should be 

considered. One approach to improve the resilience of community is by retrofitting the 

infrastructure with multiple mitigation options by making optimal investments, which is not so 

simple. Understanding the benefits of resilience investments in one or more mitigation 

strategies is difficult when dealing with multiple hazards and a variety of assets with varying 

values. Community leaders will face difficult decisions as they attempt to address the 

economic, social, cultural, and environmental values of multiple community assets. It is critical 

to have access to reliable data in order to support these types of decisions. This research helps 

to ensure that city leaders have accurate information about the investments they can make while 

considering multiple events. 

Even though investments are made in some communities for securing the vital services and 

running operations, they are useful only if they provide a well-established rate of return on 

investment and provide insight into trade-offs that can help identify value. Trade-offs between 

population dislocation and the community's ability to recover in time and economic loss of the 

community is inadequate. Hence, we determine the community's resilience based on the 

assessment of these three metrics. Considering these as key characteristics we were inspired to 

research on seeing how investments can go toward improving these three metrics. For which, 

the multi-objective optimization framework was built to handle several competing objectives. 

The framework considers multiple future hazards which can occur concurrently and is 

informed of the community's economic losses, population dislocation, and repair time, as well 

as the community's available mitigation strategies and the cost of implementing these 

strategies. This has the potential to optimize investments for building retrofitting and generate 
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a variety of solutions within a given budget while ensuring optimum community resilience 

metrics. Community leaders' approach would most likely be unique to the community. We only 

provide information in this work to help you decide where to focus your potential investment.  
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