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CHAPTER I 

INTRODUCTION 

The digital mechanization of stochastic filtering algorithms for 

nonlinear system applications has received an increasing amount of atten

tion in recent years. Due in part to the availability of ultra-fast 

digital computers and to the sophistication called for in a broad range 

of applications, the digital mechanization problem has taken on a renewed 

importance in research and development circles. A major research emphasis 

has evolved on the discrete representation of continuous stochastic algo

rithms and equations. Often the resulting digital mechanization is to 

be performed on-line in real time for continuous nonlinear system appli

cations. Such cases require suitable tradeoffs between computational 

speed and algorithm accuracy. 

Previously, estimation algorithms were usually developed on the 

basis of achieving the best accuracy possible. It was assumed that any 

equipment needed for mechanization would be not only available but also 

capable of operating fast enough for use in realtime applications. 

Therefore, the physical realizability of the developed algorithm was the 

primary design consideration. Computer operations were counted and 

cataloged for existing filtering algorithms, and a particular digital 

mechanization corresponding to one of the developed algorithms was 

selected over the other candidates on the basis of accuracy and computer 

operation counts. It is apparent that this separate development of the 
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estimation algorithm and the selection of the mechanization procedure 

may result in an overall non-optimal solution. Moreover, digital 

mechanizations were often performed under the assumption that only 

discrete formulations of filtering algorithms should be used. On the 

contrary, efficient utilization of numerical integration formulas for 

discretizing continuous algorithms, involving computational speed

versus-accuracy considerations, can provide a useful alternative to 

discrete algorithms for nonlinear systems. 

2 

In this thesis research optimal digital mechanizations of stochastic 

filtering algorithms were investigated. A systematic procedure for 

simultaneously optimizing the realtime digital mechanization with the 

filtering algorithm for nonlinear systems was developed. The imbedding 

of established filtering algorithms as well as standard numerical 

formulas into a generalized format provided an appropriate framework for 

optimization. Trajectory optimization was utilized within this framework 

to further improve the optimal discrete representations for stochastic 

algorithms. The background information needed to develop these optimi

zation results is given in the next section. 

History of the Problem 

The basic problem of estimating the state of a noise-corrupted 

physical process leads to the stochastic filtering problem. It was 

approximately two centuries ago when Gauss developed the least-squares 

method while trying to determine planet orbits from many observa

tions. The first explicit solutions for least-squares estimates of 

stochastic processes were given by Wiener in 1942 (1) under the assump

tions of a scalar observation process, a semi-infinite observation 



interval (t0 = -oo) and jointly stationary signal and noise processes. 

Wiener used a variational argument to determine the optimum estimate 

3 

and showed that it satisfied the Wiener-Hopf equation (1). The similar 

discrete-time filtering problem was solved by Kolmogorov (2). In 1961 

Kalman and Bucy (3) developed new techniques based on the state-space 

approach. They presented a nonlinear differential equation of the 

Riccati type for the optimal filtering error. The estimate of the state 

obtained by the Kalman-Bucy theory was optimal for linear systems with 

Gaussian noise. This theory has been very useful in space activities 

such as the Gemini and Apollo missions. 

For either linear or nonlinear systems with non-Gaussian inputs 

the optimal mean-square filter is nonlinear. The search for improved 

methods of state estimation has resulted in exact nonlinear filtering 

algorithms based on Bayesian estimation theory and approximate non

linear recursive filtering. 

Several approximate algorithms for implementing exact nonlinear 

filters have been developed in recent years. Kushner (4) derived exact, 

infinite-dimensional dynamical equations for the conditional mode and 

developed finite-dimensional approximations involving moment sequences 

for their solution. Ho and Lee (5) formulated the discrete nonlinear 

filtering problem in terms of Bayesian estimation theory, and Bucy (6) 

and Mortensen (7) applied Bayesian results in function space to contin

uous systems. Kuo and Rowland (8,9) demonstrated that density storage 

and Bayesian solutions can be achieved effectively by using moments of 

the measurement data. Bucy and Senne (10) considered a point-mass 

representation on a floating grid of indices for implementing the 

indicated Bayesian computations. Sorenson and Alspach (11) and Lo (12) 
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approximated conditional density functions by a sum of Gaussians for 

nonlinear Bayesian estimation, and Jan and de Figueiredo (13) performed 

Bayesian calculations by using a multivariate B-spline for approximating 

density functions. 

Probably the most common approximate method for nonlinear filtering 

is to expand the system message model in a Taylor series whic~ is 

truncated after the first few terms. The series may then be substituted 

into the equations for the conditional mean and covariance of the state 

derived from the Fokker-Pianck equation (14,15). Depending upon how 

many .terms are retained, either a first, second, or higher order 

approximate filter is obtained. If the nonlinear system equations are 

expanded about a deterministic nominal trajectory, a linearized varia

tional Kalman filter is obtained by using the linear perturbation 

equations. The extended Kalman filter is the approximate nonlinear 

filter obtained by expanding the message model about the current state 

estimate. Other approximate nonlinear filters include the truncated 

second-order filter (16,17) and the Gaussian second-order filter 

(18, 19). 

Schwartz and Stear (20) compared several filtering algorithms on 

the basis of their estimation error history. They observed that n? 

particular approximate filter is consistently better than any other. 

They concluded that the nonlinear filters examined are better than a 

strictly linear one (Kalman Filter). Wishner et al. (21) examined three 

distinct methods for the recursive estimation of the state variables of 

a continuous-time nonlinear plant on the basis of measuring the 

discrete-time outputs of the plant in the presence of noise. They 

concluded that the single-stage iteration filter has superior mean-
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squared error performance under all conditions, followed by the second

order filter. Square-root filtering (22,23) has been developed as a 

means of controlling the divergence problem encountered during filtering. 

Realtime applications of the recursive filtering algorithms for on

line state estimation depends upon acceptable tradeoffs between accuracy 

and computational speed. The practicality of the Kalman filter for on

line operations is answered in part by Mendel (24) by providing computa

tional requirements, such as computing time per iteration and storage, 

for a discrete Kalman filte~. Kaminski et al. (22) presented four 

efficient square-root implementations and compared them with three 

common conventional implementations in terms of computational complexity 

and precision. Bierman (23) continued these comparisons and developed 

several improvements in the digital mechanization of the filters. While 

the computational time per iteration has been determined in these papers, 

meaningful comparisons between filtering algorithms for realtime 

applications must utilize data rates compatible with the speed of a 

particular filtering mechanization. Moreover, the choice between 

discrete and continuous filtering algorithms must be examined for given 

classes of problems. Much of the previous work has been based on the 

assumption that discrete filters should be used if the implementation is 

to be digital. However, this approach requires that discrete transition 

matrices are determined ~ priori, which is difficult to realize for 

extended Kalman filters. This problem is circumvented when continuous 

filters are utilized, even if implemented digitally. Gaston and 

Rowland (25) obtained realtime digital integration results for mechaniz

ing continuous Kalman filters for nonlinear systems by making compari- ·. 

sons between variational and extended Kalman filtering algorithms as 
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functions of input noise levels and system nonlinearity characteristics. 

Specific operating conditions were identified in typical cases for 

which certain combinations of numerical formulas, step sizes, and 

filtering algorithms should be used for improved performance. 

In addition to realtime applications of mechanizing filtering 

algorithms digitally, the use of the hybrid computer as a realtime 

simulation tool has also provided a motivation for improvements on a 

speed-versus-accuracy basis. Bucy, Merritt, and Miller (26) dem

onstrated the enormous computational advantage in using hybrid computers 

for a particular nonlinear estimation problem. Holmes and Rowland 

(27,28) investigated the sampling and hybridization errors inherent in 

the mechanization of Kalman filtering algorithms on the hybrid computer. 

Reduced errors were achieved by re-partitioning of the dynamical system 

model between the analog and digital computers and by performing an on

line modification of the Kalman gains. 

The discrete representations of continuous systems and signals, in 

the present context of filtering mechanizations, depends on the 

efficient numerical integration of dynamic system equations based on 

both speed and accuracy. Reporting the results of seven years of 

simulation experience, Benyon (29) showed that in particular aerospace 

simulations, second-order numerical formulas were over 30 percent faster 

with comparable accuracy than the commonly used fourth-order Runge-Kutta 

formula. These results were used by Gaston and Rowland (25) in their 

selection of numerical integration formulas for comparing different 

Kalman filtering algorithms with respect to nonlinear characteristics 

of a typical system. A variational technique was developed by Rowland 

and Holmes (30) to yield improved results over Runge-Kutta formulas for 



7 

mildly nonlinear applications. Instead of developing new, highly 

efficient, numerical integration formulas, the alternate approach of 

developing computer-aided analysis and design programs was used by Nigro 

et al. (31) and Rowland and Holmes (32). The program by Nigro et al. 

(31) considered consistency requirements, stability, truncation error, 

roundoff error, propagated error, and required computing time in the 

derivation of optimum methods as well as in the evaluation of user

supplied methods for realtime digital flight simulation. Rowland and 

Holmes (32) developed a computer-aided design tool for optimally 

allocating digital execution time for the numerical integration of 

several selected subsystems in a hybrid simulation. The precise 

objective was to minimize the sum-squared error of the given subsystems 

under the constraint that the total time allowed for executing all 

subsystem integrations is specified in advance. This problem definition 

permitted the use of different integration formulas within the complete 

system. Most significantly, the utilization of this computer-aided 

design approach makes it possible to uniquely tailor the solution 

technique to the given problem. 

The problem of modeling continuous noise inputs for dynamic 

systems on the digital computer has been investigated by Rowland and 

Gupta (33) with particular emphasis on the reduction in accuracy due to 

discretizing approximations. The·use of a single random variable 

within each discretization interval was shown to produce the same 

power spectral density as the use of a time function of several 

uncorrelated random variables. The variance of the resulting random 

number sequence is the variance of the continuous white noise process 

divided by the discretization interVal. Results obtained by using 
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time-domain techniques for matching autocorrelation functions showed 

that the variance of the input random number sequence should be modified 

according to the parameters of the shaping filter. Rowland (34) 

developed a generalized approach for modifying discrete input signal 

vari~ces. The concepts from optimization theory were used to realize 

optimal digital simulations for linear, time-varying, continuous 

dynamical. systems having random inputs. The cost functional based on 

the state covariance matrices of the continuous system and its discrete 

model led to a two-point boundary value problem .which then was solved 

by known numerical techniques. The result was a systematic procedure 

for determining optimal digital simulations under the constraints that 

the numerical integration formula and integration step size have been 

specified in advance. Previously, Brown and Rowland (35,36) had 

demonstrated that with specific nonlinear examples considerable 

improvement over the commonly used method of linearizing the system 

equations about the deterministic optimal trajectory can be realized by 

trajectory optimization. They concluded that, for a particular combined 

estimation and control example being considered, the system performance 

was much more sensitive to the choice of the nominal trajectory than to 

the selection of a nonlinear filter producing greater estimation 

accuracy. The contribution of this research is the utilization in a 

single optimization format of techniques for optimal digital .simula

tions and trajectory optimization to yield optimal _digital mechaniza

tions based on speed and accuracy for stochastic filtering algorithms. 

Basic Approach 

The thesis research objectives were to (1) develop an optimization 
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procedure based on accuracy considerations to yield a two-point 

boundary value problem whose solution gives the optimal discrete 

representation for given continuous stochastic estimation algorithms, 

(2) extend this optimization procedure to obtain optimal digital 

mechanizations based on computational speed and accuracy tradeoffs, and 

(3) apply trajectory optimization concepts as a means of further 

improving the overall optimization procedure for linearized incremental 

variations about deterministic trajectories in nonlinear cases. These 

objectives are described in more detail in the following paragraphs. 

Optimal Discrete Representations 2a 

~ Accuracy Basis 

A major contribution of this thesis research is the formulation and 

development of an optimization format for the discretization of contin

uous stochastic filtering algorithms. This optimization is based on

achieving the best possible accuracy for the resulting discrete filter 

under the configuration constraints imposed in the problem. The 

optimization procedure initially was developed for the linear system, 

and the resulting two-point _boundary value prpblem was solved for 

typical cases. Later, several nonlinear cases were handled by consid

ering linearized incremental variat~ons about given nominal trajec

tories. Optimal discrete res~ts were obtained as a function of the 

nonlinear system characteristics ana the system noise inputs. Compari

sons with available techniques were made to demonstrate the accuracy 

improvements obtained by using the optimization results. 
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Optimization ~ ~ Accuracy-Versus-Speed Basis 

The basic optimization procedure described above was expanded to 

include algorithm accuracy and computational speed tradeoffs. The 

optimal discrete representations of continuous stochastic algorithms was 

developed to operate in real time. The resulting optimal digital 

mechanizations are suitable for use in on-line data processing applica

tions. Acceptable performance criteria for optimization have been 

determined. These criteria indicate appropriate tradeoffs between 

computational speed and accuracy in specific examples under considera

tion. One approach was the use of constraints on computational speed in 

which some positive, monotonically decreasing function of the discretiza

tion interval T is incorporated d~rectly into the cost functonal J for 

optimization. An alternate approach, which is more appropriate in other 

cases, was to treat computational speed as a hard constraint, e.g., a 

def:inite lower bound on computational speed is specified as part of the 

problem formulation. The mathematical development in both of these 

approaches follows traditional optimization techniques found in the 

literature, and the selection of appropriate cost functionals and/or 

optimization constraints yields significant new results for the discrete 

representation problem. 

Trajectory Optimization 

In the first two parts of this research, optimal discrete repre

sentations of continuous stochastic algorithms were developed for 

linearized variations abeut noise-free nominal trajectories for non

linear systems. It was assumed in those cases that message and 
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measurement noises cause small perturbations about nominal operating 

conditions. Deterministic nominal trajectories were obtained by 

replacing noise inputs by their mean values. The resulting continuous 

equations for incremental variations about these trajectories were then 

linearized and discrete representations found as described above. 

However, excessive errors could be expected to occur when the system 

equations are highly nonlinear. A trajectory optimization technique 

could be applied in such cases to determine the best deterministic 

nominal trajectory about which the linearized variations should be 

formed. Numerical results have been presented in earlier papers 

(35,36) indicating that for a particular example the system perfo~1ce 

appeared to be much more sensitive to the choice of this nominal 

trajectory than to the selection of a nonlinear filter of greater 

accuracy. The approach used here involved the simultaneous optimization 

of the nominal trajectory, the incremental filtering algorithm parame

ters, and the discrete representation itself on a speed-versus-accuracy 

basis. Specific characteristics were identified for those nonlinear 

system applications where trajectory optimization provided a significant 

improvement for the discrete representation problem under consideration. 

Optimal Digital Simulations 

In digital simulations it is always the objective to obtain the 

best possible discrete represent~tion of a continuous system. The 

modeling of continuous noise inputs for dynamical systems on the digital 

computer was investigated by Rowland,and Gupta (33). An accurate 

digital representation of the given continuous stationary correlated 

noise process was obtained by selecting both the digital shaping filter 
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and the variance Qd of the discrete white noise representation as a 

function of the variance Q of the continuous white noise process w(t), c 

the sampling period T, and the parameters of the corresponding contin-

uous shaping filter. 

Consider a first-order continuous case 

. 
x(t) = -a1x(t) + a1w(t) ( 1 .1) 

Let the variance of colored noise process x(t) be designated asP (t), 
c 

where P (t) obeys the differential equation c 

P (t) = -2a1P (t) + a2
1Q c c c (1 .2) 

Similarly, for the discrete case, let the variance of the noise process 

xd(tk) be defined as Pd(tk). Replacing a1 by a1 in (1.1) yields 

-a T -a T 
xd(tk+1) = e 1 xd(tk) + (1 - e 1 )wd(tk) ( 1 • 3) 

Thus, Pd(tk+1) is given by 

-2a T -a1T 2 
Pd(tk+1) = ~ 1 Pd(tk) + (1 - e ) Qd ( 1 .4) 

It is assumed that the random processes x(t) and xd(tk) are stationary • . 
In steady-state Pc(t) = 0 and Pd(tk+1) = Pd(tk). Therefore, the steady-

state values are 

a 

Pel =?Qc 
ss 

( 1 • 5) 

-aT 
(1 - e 1 )2Qd 

p dl = ----~2a~T~ 
ss (1 _ e 1 ) 

( 1 • 6) 
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Since the objective is to optimally discretize the continuous correlated 

random process x(t), the right-hand sides of (1.5) and (1.6) are equated 

to give 
-a T 

Q = a1(1 + e 1 )Qc 
d -a T 

2(1 - e 1 ) 

( 1 • 7) 

The relation (1.7) was obtained by requiring only that the variance of 

the modeling discrete-time series process be equivalent to that of the 

continuous process. The autocorrelation functions for the two cases 

may also be matched. Consider the autocorrelation function for the 

discrete case at the sampling instants T = nT, i.e. 

n 
+ I (1 -

m=O 

-aT · 
e 1 )n-m+1wd(k+m T)J} 

(1 .8) 

where the notation kT has been used to replace tk. Since xd(kT) is 

uncorrelated with the white noise input wd(k+m T), which is applied to 

the digital shaping filter either at t = kT or afterwards, (1.8) may be 

expressed as 

-a (nT) 
R (nT) = e 1 E{xd2(kT)} 
xdxd 

( 1 • 9) 

Therefore, the autocorrelation function for the discrete case decays 

exponentially with a time constant of 1/a1• The autocorrelation 

function for the continuous case is given by 
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(1.10) 

It may be concluded then that setting a1 equal to a1 matches the auto-' 

correlation functions exactly when the variance relationship is given by 

(1.7) with a1 = a1 gives 

=+-
2 4 (a1T) (a1T) 

12 + 72 - 0 0 ol (1.11) 

Since (1.3) yields an exact discrete realization of the given continuous 

process, one may determine the errors resulting from earlier approxima-

tions. Figure 1 shows the percent error obtained by using Qd = Qc/T as 

a function of a1T for the scalar example in (1.1). 

Outline of the Thesis 

The major emphasis of this thesis research was the development of 

optimal discrete representations of continuous filtering algorithms for 

nonlinear stochastic systems. The approach to this problem was based on 

the joint development of the estimation algorithm and the digital 

mechanization procedure. The system trajectory for nonlinear applica-

tions was optimized along with the digital mechanization. Chapter II 

deals with the mathematical formulation of the problem. A steady-state 

optimization approach is used in this chapter and the results are 

compared with the existing discretization methods. In Chapter III 

the optimal discrete representations are extended to the whole 
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trajectory and results are compared with other discretization methods. 

The optimization procedure developed is expanded to include algorithm 

accuracy and computational speed tradeoffs in Chapter IV. The 

simultaneous optimization of the nominal trajectory, the incremental 

filtering algorithm parameters, and the discrete representation based 

on speed-versus-accuracy considerations are handled in Chapter V. 

Finally, in Chapter VI conclusions and recommendations are presented. 



CHAPTER II 

PRELIMINARY COMPARISON STUDIES 

This chapter deals with the mathematical development of the optimal 

discrete representations. A first-order example is used to compare the 

optimal discrete representation results with the Euler Method results. 

The steady~state optimizations of this chapter are extended to the 

transient regions in Chapter III. 

Mathematical Problem Statement 

The nonlinear dynamic system is described by 

!(t) = f(~(t),t) + B(t)~(t) (2.1) 

~(t) = h(~(t),t) + y{t) (2.2) 

where ~(t) is the n-vector representing the system state, f and h are 

vector functionals, and B(t) is an n by m weighting matrix for the zero

mean white noise input ~(t). The measurement vector ~(t) is an r-vector. 

The system noise m-vector ~(t) and measurement noise r-vector y(t) 

have covariance matrices Qw(t) and ~(t), respectively, which are 

defined by 

T E{v(t)v (T)} = Q (t)o(t- T) - - v 

17 

(2.3) 
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It is assumed that ~(t0 ), ~(t), and ~(t) are all uncorrelated and that 

Qw(t) and ~(t) are symmetric, positive-definite matrices. 

The linearized (or variational) Kalman filter is based on an 

incremental linearization about a nominal trajectory. Both f(~(t),t) 

and h.(~(t),t) are expanded in Taylor series about the nominal 

deterministic trajectory given by 

iN(t) = f(~(t),t) (2.4) 

where ~(t) is the noise-free nominal trajectory and ox(t) is the small 

variation about !N(t) caused by the ·disturbance noise ~(t). Then 

ox(t) = ~(t) - ~(t) 

(2.5) 

and 

ox(t) = A(t)ox(t) + B(t)w(t) - - -
(2.6) 

~(t) = C(t)ox(t) + ~(t) 

For the linearized Kalman filter, A(t) and C(t) are given by 

(2.7) 

The linearized continuous Kalman filtering equations are given by 

. 
oi:(t) = A(t)oi:(t) + K(t)[£A(t) - c(t)ox(t)J (2.8) 
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(2.9) 

where the error covariance equation is 

P (t) ·= A(t)P (t) + P (t)AT(t) - P (t)CT(t)o-1c(t)P (t) e e e e ~ e 

+ B(t)Q (t)BT(t) (2.1P) 
w 

The linearized Kalman filter in (2.8)-(2.10) yields the least mean-

square estimation error for the incremental variation ~(t) in (2.6). 

The sum of ~(t) and !N(t), denoted by i(t), is only an approximate 

estimate of the system state ~(t) in (2.1) because higher-order terms 

were neglected in forming (2.6). This approximation provides a nearly 

optimal estimate when ~(t) is sufficiently small over the time 

interval of interest. Trajectory optimization has been described in a 

later section of this thesis as one means of improving the accuracy of 

the resulting state estimate. 

The problem investigated in this thesis research is to obtain an 

optimal discrete filtering model according to a given cost functional. 

Let a discrete representation of£ components of ox(t), where£~ n, 

be given by 

(2.11) 

The £-vector ~(tk) represents the d~screte filtering model state, and 

a(tk) and s(tk) are £ by £ and £ by r matrices composed of free 

optimization parameters. While the a(tk) and s(tk) matrices in (2.11) 

are indicated as functions of tk only, they are actually functions of 

the complete system response over its entire range of operation and 
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their optimal values will be determined as part of the optimization 

procedure. A schematic diagram is shown in Figure 2. 

A cost functional J is selected such that the minimization of J 

results in a suitable discrete representation of the continuous 

variational Kalman filter by the discrete model in (2.11). It is 

required that if the discrete model order ~ is equal to the system order 

n and if a sufficiently small discretization interval T is selected, 

then the discrete modeling error in representing (2.8) by (2.11) should 

be arbitrarily small at t = tk for all k. If ~ equals n but T is not 

sufficiently small, then the form of the discrete model should be the 

same as a direct discretization of (2.8) except different values of 

a(tk) and s(tk) will be obtained. 

Two approaches are commonly used to obtain an estimate of ~(t) at 

discrete points in time. First, the continuous linearized Kalman 

filtering equations in (2.8) may be integrated on the digital computer 

by using either single-step (Rung~-Kutta) or multi-step (Adams-Bashforth 

or Adams-Moulton) numerical int~gration formulas. Second, the contin-

uous equations in (2.6) may be discretized directly, and an optimal 

discrete Kalman filtering algorithm may be applied to the resulting 

discrete equations. In this thesis research a generalized optimization 

format which includes the two approaches above as special cases when ~ 

equals n and T is sufficiently small was investigated. Two approaches 

toward this more general discrete optimization is to define a cost 

fUnctional J as either 

J = Trace 
A A A T 

- o~u(tk+1)] [ox~(tk+1) - oxd(tk+1)] } 

(2.12) 
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or as 

J = Trace 

where ox£ contains the ~ ordered states from ox corresponding to oxd. 

The J in (2.12) is based on forming an optimal discrete model (2.11) 

for the continuous variational Kalman filter in (2.8). On the other 

22 

hand, the J in (2.13) attempts to obtain an optimal discrete fixed

configuration filter for estimating the ~(t) in (2.6). The problem is 

to obtain optimal value's of a ( \:) and 8 ( tk) in ( 2. 11 ) to minimize the 

J in (2.12) or (2.13) subject to (2.5)-(2.10). 

Steady-State Optimizations 

The mathematical problem stated in the previous section was 

approached initially by considering a first~order linear system. The 

first step towards obtaining the optimal s~ochastic representations was 

achieved by comparing the results for the steady-state portions. These 

results were then extended for the general case by also comparing the 

transient portion results. The steady-state equations were obtained for 

the continuous case by equating the derivative portion to zero. For the 

discrete case the (k+1)th stage was equated to the kth stage. 

Let the first-order system be 

i(t) = -x(t) + w(t) (2.14) 

and its state estimate i(t) be given by 

. 
i(t) = -x(t) + K(t)[x(t) + v(t) - x(t)] (2.15) 



where 

p (t) 
K(t) = ~ 

• • A 2 
P (t) = E{(x - x) } 

e 

23 

(2.16) 

The discrete representations of (2.14) and (2.15) may be written as 

(2.17) 

1 - ( 1 +K ( tk) ) T . T 
- (1+K(tk)) (1 - e )wd(tk) + (1 - e- )wd(tk) 

1 . -(1+K(tk) )T 
+ (1+K(t )) (1 - e )vd(tk) 

k 

The optimal discrete representation of (2.15) may be written as 

(2.18) 

The covariance equations for (2.14) and (2.15) are given by 

(2.19) 

. 
p22 = 2P12 - 4P22 + ~ 

. . .. 
In steady-state P11 = P12 = P22 = 0, which gives 

Q 
p - _jjl, 

11 - 2 
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(2.20) 

Also, the covariance equations for (2.17) for K(tk) = 1 may be written 

as 

and 

In steady-state 

(2.21) 
(. -2T) ( ) ( -T)2 = 1 - e pd11 tk + 1 - e Qwd 

(2.22) 

(2.23) 

= a~dac/tk) + S~d11(tk) + 2aSPd1a(tk) + 82~d 

These equations are matched term-by-term in the next section to obtain 



25 

an optimal steady-state discrete representation of the filtering 

algorithm. 

Numerical Comparisons with 

the Euler Method 

The mathematical development .or the steady-state equations and 

their comparisons are discussed in this section. The results obtained 

from the optimal discrete representation and the Euler Method are 

plotted in several figures. 

The covariance equations in steady-state form, (2.20) and (2.24), 

are matched to obtain the optimal coefficients for an optimal discrete 

representation. 

Qw _ 2(1 ... e-T) 

Qwd - (1 + e-T) 

which gives the exact discrete realization (33). 

and 

0.5Se-TQ Q 
w w ---_-T= = 6 

1 - ae 

pdaa(tk) ~ P22(tk) 

s2 [(0.5Qw + ~d)(1 - ae-T) + ae-TQw] 

(1 - a2)(1 - ae-T)· 

(2.25) 

Also 

(2.26) 

Qw ~ --+-- 12 4 (2.27) 



To obtain the exact digital representation of ~ in steady-state 

for K(tk) = 1.0, the cova~iance equations for (2.17) in the discrete 

form may be written as 

26 

(2.28) 

where 

~ = 

H = [ 1 

and 

or 

-T e 

1 (1 - e-2T) 
2 

-T - e 

0 1 (1 
2 

0 

-2T e 

: 0 -2TJ 

p 11 ( tk+1 ) = <I> 11 ( cp 11 p 11 ( tk) + cp 12p 12 ( tk) ) + cp 12 ( cp 11 p 12 ( tk) + <I> 12p 22 ( tk) ) . 

- + ( 1 - e -T) 2Q 
wd 

p22(tk+1) = cp21(cp21p11(tk) + cp22P12(tk)) + <l>22(cp21p12(tk) + cp22p22(tk)) 

+ t (1 - e-2T)~d 
(2.29) 



In steady-state 

From the third equation in (2.29) 

· 2 1 -2T 2 
~21P11(tk) + 2~21~22P12(tk) + ~ (1 - e ) ~d 

p22(tk) =. . 2 
1 - ~22 

= (3 + e-2T)Qw + 6(1 - e-2T)~ 

24(1 + e-2T) 

Matching the right hand sides of (2.20) and (2.31) yields 

(3 + e-2T)Qw + 6(1 - e-2T)~d = Qw + ~ 
24(1 + e-2T) 12 4 

Solving for ~d gives 

_ 6~(1 + e~2T) - Qw(1 - e-2T) 

~d- . 6(1 - e-2T) 

27 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The difference in modeling ~ as ~T and ·by (2.33) are evident in 

Figure 3. It can be observed tha,t a small modeling error would be 

introduced if VT were used instead of the value of ~d given by (2.33). 

Returning now to the original problem with this optimal value of 

~d' there are two unknowns, a. and S, and two equations, (2.26) and 
I 

(2.27). These two equations can be rewritten to yield 

T 
a. + 3S - e = 0 (2.34) 

2 Qw ~ -T 2 T T 
(a. - 1)(12 + 4)(1- a.e ) + S ((p.5Qw + ~d)(1- a.e-) + a.e- Qw) = 0 

(2.35) 

These equations can further be solved in terms of S to obtain 

T 
S = (e - a.) 

3 (2.36) 
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and 

13 = 
(0.5Q + Qvd)(1 - ae-T) + ae-TQ 

w w 

The cost functional for the first-order example given by (2.14) 

written as 

In steady-state 

Also, the error covariance matrix 

Now 

In steady-state, 

or 

A 2 
P (t) = E{(x- x) } 

e 

• p2 
P (t) = -2P (t) - ~ + Q 
e e Qv w 

. 
setting P (t) to 0 yields e 

p2 

~+2P -Q =0 
~ e w 

-2±R 
p = e g_ 

~ 
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may be 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

\ 

(2.41) 
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As an example, choosing Qw = 3.0 and~= 1.0, one has 

p = 1 
e (2.42) 

From (2.38), (2.39) and (2.42) at t = tk' one has 

J = 0.5 (2.43) 

Now the equations of S in terms of a in (2.36) are plotted in Figure 4. 

It is assumed that Qw = 3.0, ~ = 1.0, and T = 0.1. Since the two 

curves do not intersect, the exact discrete representation of the 

·filtering algorithm is not possible. In other words, the cost func-

tional will not be exactly 0.5 for this example ~s required by (2.43). 

To obtain the minimum value of performance index based on the 

optimal values of a and S for given T, Qw' and ~' Fletcher and Powell's 

unconstrained minimization technique is used (37,38). The cost func

tional obtained from optimal (a,S) values and the Euler Method are 

plotted in Figure 5 for three values of T. This figure shows that a 

smaller cost functional is obtained by using the coefficients of the 

optimal discrete representation of the filtering algorithm. 

These values of a and S were used in (2.18) and (2.38) for 100 

Monte Carlo simulation runs which were ensemble-averaged to obtain 

error covariance results. These results 84"e compared with the same 

number of Monte Carlo simulation runs for the Euler Method in Figure 6 

through 8 using step sizes T = 0.1, 0.25, and 0.5. These curves 

verify the optimal discrete representation of the filtering technique 

for the first-order linear system in the steady-state for the cost 

functional J given by (2.13). In Figures 9 through 11, the curves are 

plotted for the cost functional J given by (2.12) by using the optimal 
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a and 8 parameters determined from (2.13). 

Numerical Comparisons with the RK2 

Integration Formula 

The optimal discrete representations may also be compared with the 

second-order Runge-Kutta method (RK2). The recursive relation for the 

general case using RK2 may be written for the integration interval T as 

(2.44) 

where 

i(t) = g(;!!;(t),t) (2.45) 

The recursive relation for the state using the above method for the 

first-order system given by (2.14) may be written as 

A 2 2 A 

xd(tk+1) = (1 - T(1+K) + 0.5T (1+K) )xd(tk) 

+ 0.5TK((1 - T(1+K))z(tk) + z(tk+1)) (2.46) 

The error covariance curves· are plotted for 100 Monte Carlo runs using 

the above method and using the optimal discrete representation in 

Figures 6 through 8 forT= 0.1, 0.25, and 0.5 for the cost fUnctional 

J in (2.13). The results obtained using the cost fUnctional given by 

(2.12) are plotted in Figures 9 through 11 .forT~ 0.1, 0.25, and 0.5. 

It can be concluded from the curves that the second-order Runge-Kutta 

integration method is better than the first-order optimal discrete 

representation results. A second-order optimal discrete representation 

using Fletcher and Powell's method of minimization failed to converge. 

Another method of minimization is developed in Chapter III for the 



general, time-varying case by converting the problem to a two-point 

boundary value problem. 

Summary 

40 

In this chapter the basic problem was defined. A first-order 

example was selected and steady-state optimization results were compared 

with the results from Euler and RK2 integration methods. It was shown 

that considerable improvement was obtained in the cost functional J over 

the Euler Method of integration by using the optimal discrete represen

tation. 



CHAPTER III 

OPTIMAL DISCRETE REPRESENTATIONS 

This chapter deals with the development of the optimization 

procedure for both transient and steady-state regions using Lagrange 

multipliers. The cost functionals defined in the previous chapter as, 

the difference between the discrete filter states of interest and the 

corresponding continuous filter states or system states are utilized. 

In both cases matrix difference equations are formed for the appropriate 

covariance matrices, and the optimization is performed to minimize J 

subject to the constraint equations. A second-order nonlinear system 

is selected to illustrate the procedure. 

Development of the Optimization 

Procedure 

The J defined in (2.13) is repeated again here 

Taking expected values as indicated, (3.1) may be written as 

(3.2) 

41 
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K-1 1 T 
J =Trace ~O 2 [P11(tk+1) + P22(tk+1)- p12(tk+1)- p12(~k+1)] 

(3.3) 

. where the Pij's in (3.3) are yet to be determined. Let 

(3.4) 

The~ by~ matrix P11 (tk+1), which is the covariance matrix of ~~(tk+1 ), 
I 

is obtained from then by; n matrix P11 (tk+1) by selecting only those 

elements corresponding to the~ by~ entries in P22 (tk+1), which is the 
A 

covariance matrix of oxd(tk+1). Similarly, the£ by~ matrix P12(tk+1), 
AT I 

defined as E{ox~(tk+1 )oxd(tk+1 )}, is obtained from P12(tk+1) by 

retaining appropriate entries. An example is included later in this 

section to illustrate these details. 

The optimization approach to be used here first requires that 

matrix difference equations be formed for P12(tk+1) and P22 (tk+1) in 

terms of a(tk) and s(tk). In addition, a matrix difference equation 

can be determined for P11 (tk+1). The problem of minimizing J in (2.13) 

subject to the difference equation constraints on P12(tk+1) and 

P22 (tk+1) is solved by using Fletcher and Powell's minimization 

technique. 
I 

The matrix difference equation for P11 (tk+1) may be obtained by 

using (2.6) in ox(tk+1) to form 

tk+1 
~(tk+1'tk)ox(tk) + f 

tk 
(3.5) 

where ~(tk+1 ,tk) is the state transition matrix. Therefore, from (3.4) 



Since ox(tk) and ~(t) are uncorrelated 

Using (2.3) and the sifting property of the delta function 

The matrix difference equation for P~2(tk+1 ) may be obtained by using 

(2.11) to yield 

·~ 

= E{[a(tk)oxd(tk) + s(tk)c(tk)ox(tk) + s(tk)~d(tk)]· 

43 
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(3.10) 

Similarly, 

(3.11) 

I T I T T = ~(tk+1'tk)P12(tk)a (tk) + ~(tk+1'tk)P11(tk)C (tk)B (tk). 

(3.12) 
I 

The matrix P11 (tk+1) in (3.8) is a known time-varying matrix which 

serves as a forcing function in (3.10) and (3.12). 

Let two ~ by ~ matrices A12(tk) and A22(tk) of Lagrange multipliers 

for P12(tk) and P22(tk), respectively, be introduced. It is known that 

A12(tk) and A22(tk) satisfy adjoint difference equations which have the 

boundary conditions 

(3.13) 

where tK is the terminal time. One method for obtaining the adjoint 

equation is to define the Hamiltonian H as 
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(3.14) 

The procedure for optimization is to substitute (3.10) and (3.12) into 

(3.14) and then minimize the resulting H with respect to the entries in 

the a(tk) and s(tk) matrices. 

then 

* If the minimized H is represented by H , 

(3.15) 

The right hand sides of the eq~tions in (3.15) include terms involving 

A12(tk+1) and A22(tk+1) and, therefore, 'the optimization result may be 

obtained by solving simultaneously .(3.10), (3.12), and (3.15). The 

resulting two-point boundary value problem has boundary values specified 

in (3.13) at t = tK for A12(tk) and A22(tk) and some known initial 

conditions for P12(tk) and P22(tk). 

The three types of errors which occur in forming optimal discrete 

representations are filtering error due to signal and measurement noise, 

discretization errors in modeling the filter, and errors in using a 

reduced-order filter. The first of these is inherent in all filtering 

problems, but its effect can sometimes be reduced by using improved 

continuous filtering algorithms, e.g., using the extended Kalman filter 

or trajectory optimization. The second type of error can be handled 

on accuracy alone by minimizing the cost functional in (2.12) and 

(2.13). The third error has been investigated extensively for reduced-
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order, fixed-configuration filters by Sims and Melsa (39,40). 

Example 

Consider the second-order nonlinear system described by 

(3.16) 

z(t) = x1 + v(t) 

where y > 0, p > 1, and w{t) and v(t) are zero-mean, Gaussian, white 

noise processes with variances Qw(t) = 1.0 and ~(t) = 0.1, respectively. 

Let the known initial conditions be x1(o) = 0.0 and x2(o) = 0.1. 

The linearized equation for ox{t) about the noise-free nominal 

trajectory is obtained from (2.6) as 

(3.17) 

where x2N(t) may be determined as x2 (o)e-t from (2.4). Using (2.8)

(2.10), the variational Kalman filter is given by 

(3.18) 

where 

P (t) = A(t)P (t) + P (t)AT(t) - P (t)(0
1)Q-1(t)(O 1)P (t) + (0

1)Q (t)(O 1) 
e e e e v e w 

(3.19) 



and 

A(t) = 
-2 

0 

1+py(x2 (0)e -t) p-1 ) 

-1 

The discrete representation in (2.11) may be written as 

where £ = 1 and n = 2 in this example. Let the cost fUnctional J 

corresponding to (3.1) be written as 

which, as in (3.3), simplifies to 
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(3.20) 

(3.21) 

(3.22) 

(3.23) 

The state transition matrix ¢(tk+1,tk) satisfies the matrix dif

ferential equation 

(3.24) 

where I is the 2 by 2 identity matrix and A(t) is defined in (3.20). 
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Let ~(tk+1 ,tk) be expressed in component form for this problem as 

~12] 
(3.25) 

~22 

_ Numerical values for the component ~ij 1 s for each tk is determined by 

sufficiently accurate digital computer programs for numerical integra-

tion. 
I 

The,P11 (tk+1) matrix is determined numerically by integrating the 

matrix differential equation (15) 

(3.26) 

(3.27) 

I 
The time function P11 (tk) is used as.a forcing function in the vector 

I 

difference equation for P12(tk+1) from (3.12) and scalar difference 
, I 

equation for P22 (tk+1) from (3.10). Let P12(tk) be denoted as 

(3.28) 

From (3.12) 



49 

(3.29) 

Using (3.10) yields 

(3.30) 

The problem of. determining just which of these difference equations 

should be treated as constraint equations for optimization may be 

resolved by forming the covariance matrix of the augmented vector 

(ox{tk) 
A T' 

oxd (tk)) . 

I I I 

p11(tk) p12(tk) P12a(tk) 

( ~(tk) ) I I I 
Cov = p12(tk) p22(tk) p12b(tk) (3.31) 

· oid(tk) 
I I 

P12a(tk) p12b(tk) p22(tk) 

Since only the first incrementalstate ox1(t) is to be modeled by the 

discrete filter in (2.11), the second row and second column of the 

matrix in (3.31) are deleted and all other entries retained to give 



50 

(3.32) 

Therefore, the scalar difference equation in (3.30) and the equation for 
I 

P12(tk) = P12a(tk) in (3.29) serve as the required constraint equations. 

Note that if only ox2(t) had been modeled by the discrete filter, then 

the first row and first column would have been deleted in (3.31) and 

all. other entries retained. In that case the constraint equations 
I 

would have been for P22(tk) from (3.30) and for p12b(tk) from (3.29). 

The Hamiltonian is defined as 

(3.33) 

Substituting (3.29) and (3.30) into (3.33) yields 

(3.34) 

* H (optimum) is found by setting 
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(3.36) 

and substituting values of a(tk) and S(tk) into (3•34). Therefore, the 

adjoint difference equations may be determined from (3.15) as 

(3.37) 

(3.38) 

The optimal discrete filter, constrained to be of the form in (2.11), 

may be determined by solving the two-point boundary value problem 
. I 

specified by·the difference equations for p12a(tk), P22(tk), A12(tk), 

and A22 (tk) in (3.29), (3.30), (3.37), and (3.38), respectively. 

* Observe that the use of H instead of H in (3.37) and (3.38) requires 

that the algebraic equations (3.35) and (3.36) must also be satisfied. 

The standard formulation for the two-point boundary value problem 

requires the inversion of the algebraic equations in (3.37) and (3.38) 

to express the A1 s at tim~ tk+1 in terms of the A1 s at time tk. The 

gradient technique is used to solve the constraint equations in (3.29) 

and (3.30) and the adjoint equations in (3.37) and (3.38) without 

inverting (3.37) and (3.38) or even solving (3.35) and (3.36) for a(tk) 

and S(tk). In (34) a simpler problem was solved in which only the 

discrete representation of system noise (~(t)) covariance matrix Qwd(tk) 



52 

was to be determined. The initial starting value was chosen as 

Qwd(tk) = Qw/T, where T was the integration step size, and the term 

-daHjaQwd(tk)] was added to the previous value of Qwd(tk) to obtain 

the next iteration value. In this thesis research, arbitrary values 

were assigned to a(tk) and 8(tk) and then the constraint equations in 

(3.29) and (3.30) were solved forward in time from t = 0 to t = tK. 

Thereafter, (3.37) and (3.38) were solved backwards in time from t = tK 

using A12(tK) = A22 (tK) = 0. The values of a(tk) and S(tk) for the 

next iteration were obtained by adding to the previous corresponding 

values the terms -E1 [aH/aa(tk)] and -E2 [aH/as(tk)], respectively, which 

were evaluated by using the p's and A1 s from the last iteration in 

(3.35) and (3.36). 

Numerical Results 

This section deals with the comparison of optimal discrete 

representation results obtained using the two optimization techniques 

described earlier. These results are compared for the first-order 

example. The optimal discrete representations for the first and second

order examples are presented using the optimization technique developed 

in the last section. 

The optimization technique developed in last section was applied 

to the first-order example given by (2.14). The example is rewritten 

here as 

i:(t) = -x(t) + w(t) 

(3.39) 
z(t) = x(t) + v(t) 
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The Hamiltonian for the cost functional given by (2.13) may be written 

as 

(3.40) 

where 

-(tk+1-tk) 
p12(tk+1) = e [a(tk)P12(tK) + s(tk)P11(tk)] 

(3.41) 

p22(tk+1) = a2(tk)P22(tk) + 82(tk)P11(tk) + 82(tk)Qvd(tk) 

and P11 (tk) is a known time-var,Ying covariance of x(t) at t = tk. Now 

(3.42) 

The adjoint difference equations now may be written as 

(3.43) 

The results obtained by using the above optimization procedure and from 

Fletcher and Powell's optimization technique are plotted in Figures 12 
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and 13 forT= 0.1 and 0.5. The new optimization technique shows 

results that are better or at least as good as those obtained from 

Fletcher and Powell's technique. The results corresponding to the cost 

functionals given by (2.12) and (2.13) are plotted in Figures 14 through 

19 and are compared with the results obtained using the Euler Method. 

The optimal parameters a and S were determined by using only (2.13) in. 

all cases. For all these results 100 Monte Carlo results were ense~ble

averaged at 10 points between zero and five seconds. It can be observed 

that a considerable reduction in the error covariance was obtained by 

using these optimal discrete representations. 

The results of the second-order nonlinear example given by (3.16) 

are now compared with the results obtained by the Euler Method for 

p = 3.0 and y = 0.5. The results of these two are plotted in Figures 20 

through 25 for the cost functionals given by (2.12) and (2.13). Again, 

only (2.13) was used in solving for the optimal values of a and s. 
For this second-order nonlinear example, the optimal discrete represen~ 

tations results also showed a considerable reduction in the error 

covariance. 

Summary 

This chapter dealt with the development of the optimization 

procedure which showed results that either surpassed or were as good as 

those obtained using Fletcher and Powell's optimization technique. The 

first-order linear and second-order nonlinear examples were used to 

compare the optimal discrete representations with the results from the 

Euler Method. A considerable improvement was obtained by using the 

optimal discrete representations. 
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CHAPTER IV 

ACCURACY-VERSUS-SPEED TRADEOFFS 

In this chapter, accuracy-versus-speed comparisons are made for the 

optimal discrete representation method developed in the previous 

chapter. A procedure is developed for obtaining an acceptable accuracy 

and speed under constraint conditions. The developed procedure is 

illustrated by an example. A new cost functional is defined to allow 

these tradeoffs between accuracy and computational speed. 

Constraint Concepts 

The search for extrema in optimization problems usually is 

restricted by the parameters which define the region of search. Thus, 

the goal is to obtain the best possible solution within the defined 

region for search. Constraints in an optimization problem may be 

classified as either soft constraints or hard constraints. For the 

problems considered in this thesis, the cost functionals defined by 

(2.12) and (2.13) are functions of the sampling period T. In the 

earlier chapters, the value of T was assumed to be fixed. This assump

tion is replaced by a constraint condition in this chapter. If the 

sampling period T was restricted, e.g. T ~ 0.2, then this constraint is 

referred to as a "hard" constraint, as it is imposed directly on T. 

This restriction reduces the region of search for the minimum value of 

the cost functional. Under this condition the search direction is 

69 
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modified, if any violation,of the constraint is made, to obtain the 

constrained minimum. On the other hand, if T appears in an added 

penalty term in the performance index, as in (4.3) below, the constraint 

on T is indirect and is referred to as a "soft" constraint. Under this 

condition the minimum value of J based on some given weighting parameter 

K is to be obtained. c 

The Hard Constraint Case 

As indicated in the previous section, the accuracy-versus-speed 

problem may be treated in the context of a hard constraint. The cost 

functionals defined in (2.12) and (2.13) were based on algorithm 

accuracy for a fixed step size T. It is important to be able to incor-

porate the computational speed requirement into the optimization format. 

The computational speed is directly proportional to the step size T. 

For a fixed speed, i.e. ~ some minimum speed, T must be as large as 

possible, i.e. since 

then 

Speed ~ Minimum speed 

T > T . 
- mrn 

( 4.1 ) 

(4.2) 

Since the J's in (2.12) and (2.13) are ~lso directly proportional to T, 

then the smallest T possible yields best accuracy, i.e. least error and 

smallest J. Thus, a suitable tradeoff between algorithm accuracy and 

computational speed would yield minimum J. The consequence is that if 

computational speed is treated as a hard constraint, then the step size 

should be chosen as T . to yield the 'best accuracy, i.e. minimum value m1.n 
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of J. Therefore, the results obtained in Chapter III are valid for this 

case if the fixed step size T for the two examples corresponded to T . • m2n 

The speed of the particular digital processor being utilized in any 

given application will determine T . • mm 

The Soft Constraint Case 

Let a new cost functional J which treats computational speed as a 

soft constraint be defined by 

J(a,S,T) = JERROR(a,S,T) + JEXEC(T) (4.3) 

where JERROR is defined by (2.12) or (2.13) and JEXEC is some mono

tonically decreasing function of T, e.g. JEXEC = Kc/T. The subscript 

on JEXEC indicates that a penalty is incurred if the algorithm execution 

time is too large. Observe that, for fixed curves of a .and s, JERROR 

is a monotonically increasing function of T, since the error increases 

as the step size increases. Since JERROR is directly proportional to T 

and JEXEC is inversely proportional to T, a suitable choice should be 

made to obtain the minimum J in (4.3). If Tis chosen to be smaller 

than the optimal value, then the execution time would be high, which 

corresponds to a lower computational speed. While the accuracy would be 

improved somewhat, corresponding to a lower value of JERROR' the higher 

value of JEXEC would result in an overall higher value of J, as shown 

in Figure 26. On the upper side of the optimal T, JERROR is higher and 

JEXEC is lower, resulting again in a higher value of J than its minimum. 

' These curves of J were plotted for the first-order example given by 

(3.39) for three different values of the weighting parameter K • c 
' Observe that as the value of the weighting parameter K increases, the c 
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value of the optimal T also increases, indicating that a faster 

operating speed of the filtering algorithm is required. 

An Example 

To further illustrate the hard constraint case, digital computer 

simulation results using 100 Monte Carlo runs are shown in Figure 27 

for the optimal constrained (first-order) filter obtained by applying 

the optimization algorithm to the second-order nonlinear example given 

by (3.16). Comparisons are made with the second-order Adams-Bashforth 

(AB2) and Runge-Kutta (RK2) formulas integrating the continuous 
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variational Kalman filter equations and with the RK2 formula integrating 

the continuous extended Kal~ filter equations (25,41). It was assumed 

in the case of the optimal constrained filter that the choice of T was 

T . • Observe that the value of T for the three comparison curves 
II)J.n 

(AB2 , RK2 , and RK2 xt) was selected to yield approximately the var var e 

same filter computational time. On the other hand, the optimal con-

strained filter had a value ofT= 0.1 seconds, which operated eight 

times faster than the other filters. Thus, it can be concluded that the 

use of the optimal constrained filter for on-line applications will 

yield a lower error variance and will operate much faster than the 

others filters. 

Summary 

This chapter dealt with the problem of speed and accuracy tradeoffs 

for the optimal discrete representation developed in Chapter III. A 

new cost functional J was defined to take into account the computational 

time required by the filter. It was shown in this soft constraint case 
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that an optimal value ofT may be used to obtain the minimum J. However, 

the use of a different weighting parameter in the cost functional 

yielded different optimal values of T. The arbitrariness in selec~ing 

this parameter suggests that the computational speed-versus-accuracy 

problem should be treated more properly as a hard constraint case. An 

example was included for this case with comparisons between AB2 , · var 

RK2var' and RK2ext and the optimal constrained filter using Tmin" 



CHAPTER V 

TRAJECTORY OPTIMIZATION 

The simultaneous optimization of the nominal trajectory, the 

incremental filtering algorithm parameters, and the discrete representa-

tion itself for a fixed value of T = T . is handled in this chapter. m1n 

Nonlinear examples are included to illustrate the procedure. The 

coefficients a(tk) and s(tk) are simultaneously optimized with the 

nominal trajectory to obtain the minimum cost functionals defined in 

Chapter II. 

Mathematical Development 

The basic approach used here is the minimization of (2.13) subject 

to (2.1)-(2.4), (2.6) and (2.11). As Bryson and Ho (42) and Denham (43) 

indicated that the "best" nominal trajectory is not necessarily the 

deterministic optimal trajectory, a procedure for obtaining an improved 

nominal trajectory is developed in this section. The Hamiltonian in 

(3.14) is redefined with another~ by~ Lagrange multiplier A11 (tk) for 

P11 (tk+1) which satisfies the boundary condition A11 (tK) = 0. The 

Hami~tonian is defined as 

H =Trace { ~ [P11(tk+1) +P22(tk+1) - p12(tk+1)- p~2(tk+1)] 

T T . T 
+ p11(tk+1)A11(tk+1) + p12(tk+1)A12(tk+1) + p22(tk+1)A22(tk+1)} 

( 5.1) 
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Using (3.8), (3.25), (3.29), and (3.30) in the above equation yields 

(3.35) through (3.38) by minimizing the Hamiltonian with respect to 

a(tk), s(tk), p12(tk) and p22(tk). Further, 

(5.2) 

(5.3) 

where ~(tk) is the optimal deterministic trajectory. 

Example 

A second-order example given by (3.16) for p = 3.0 andy= 0.5 is 

considered here again for trajectory optimization. The Hamiltonian in 

(5.1) may be written as 

(5.4) 

Using (3.8), (3.24), (3.29), and (3.30) in the above equation yields 

(5.5) 

The minimization of the above Hamiltonian with respect to a(tk), S(tk)' 
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' p12a(tk), and P22 (tk) yields (3.35) through (3.38) and with respect to 

' x2N(tk) and p11 (tk) gives 

ClH _ Cl¢12 [ 1 ' 1 

ax (t)- ax (t) (2 + \11(tk+1)) [2¢11P12(tk) + 2<P12P22(tk) 
2N k 2N k 

2 · . 2 -3T e-2T e-4T 11 
+ 3Qwx2N(tk)(1 + 1.5x2N(tk))(3 e - ~- ~- 12)] 

and 

where, from (3.24), 

Therefore, 

<P(t,~) = 
[ -02. 

Assuming that x2N(t) is held constant over the sampling interval 

T = tk+1-tk, one has 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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-T = e 

Therefore, 

(5.11) 

The numerical results obtained by using trajectory optimization are 

compared with the results obtained from the optimal discrete representa-

tion and the Euler Method in Figures 28 through 31. These results 

correspond to the cost functionals given by (2.12) and (2.13) and are 

plotted for sampling times ofT= 0.1 and 0.5. It should be noted that 

the results obtained by using trajectory optimizations are not exact 

because of the approximatiqns involved. It was assumed that x2N(t) 

was constant over the sampling period Tin obtaining (5.10) from (5.9). 

It can be observed that except for one point in Figure 28, the 

trajectory optimization method shows an improvement over the basic 

optimal discrete representation. For higher step sizes, the results 

from trajectory optimizations approach the results obtained from the 

optimal discrete representations (Figure 29). Figures 30 and 31 compare 

the results obtained corresponding to the cost functional in (2.12). 

This amounts to comparing the state estimate obtained from the 

trajectory optimization and optimSl discrete representation with the 

results obtained from the ·variational Kalman filter. Since the 

variational Kalman filter is not the best filter, because of the 

approximations involved, the results from the trajectory optimization 

and the optimal discrete representation are different from the results 

obtained by using the Euler Method. As the step size T increases 
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(Figure 31), it can be seen that the percent error increase in the 

results of Euler Method is much higher than that of trajectory optimiza-

tion or the basic optimal discrete representation. Another example of 

a highly nonlinear system with a non-Gaussian noise input is chosen to 

illustrate the improved results obtained by using trajectory optimiza-

tion as compared to' the Euler Method and optimal discrete representation 

results. 

Example 

A first-order nonlinear system (35,36) is given by 

0 3 5 x = -0.5x + 0.25x - 0.035x + w(t) 

(5.12) 

z = x + v(t) 

with x(O) = 1.5, Qw = 3.0, ~ = 0.1, t 0 = 0.0, and tf = 1.5. The 

probability density of the discrete samples was chosen according to the 

non-Gaussian probability density function given by 

vQ"": 12 -1 1 
6.5 Qwd wd for < wd < 1 1 - -

pw (wd) = (~)13 <VCCd)13 
d 

0 otherwise 

(5.13) 

The linearized equation for ox(t) about the noise-free nominal 

trajectory is obtained from (2.6) as 

0 2 4 
ox(t) = (-0.5 + 0.75XN(t) - 0.175XN(t))ox(t) + w(t) (5.14) 

and the variational Kalman filter using (2.8) is given by 



where 

and 

ai(t) = (A(t) - K(t))ox(t) + K(t)oz(t) 

• P2(t) 
P (t) = 2A(t)P (t) - _e_ + Q 

e e Qv w 

2 4 
A(t) = -0.5 + 0.75~(t) - 0.175~(t) 

p (t) 
K(t) - _e_ 

- Qv 

Using the Hamiltonian defined in (5.4) with 

2A(tk)T 
( ) _ 2 ( ) · (e - 1) 

p11 tk+1 - ct>· p11 tk + Qw 2A(tk) 

(5.15) 

(5.16) 

(5.17) 

where it is assumed that A(tk) is constant over the sampling interval 

T = tk+1-tk, yields 

1 2 (¢2 - 1) 
H = [ 2 + \11(tk+1)] [cj> p11(tk) + Qw 2A(tk) ] + 

where 

A(tk)T 
cj>(tk+1'tk) = e 

' 

(5.18) 

(5.19) 

An average value of ~ was selected for the calculation of A(tk) over 

the sampling interval T. The resulting A(tk) was 
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( ~(tk+1) + ~(tk))2 (~(tk+1) + ~(tk))4 
A(tk) = -0.5 + 0.75 2 - 0.175 2 

(5.20) 

The minimization of the Hamiltonian in (5.18) with respect to a{~k), 

S(tk), P11 (tk), P12(tk), P22(tk), and ~(tk) yields 

8H(tk+1'tk)- 1 
8a{tk) - [ 2 + >.11(tk+1)] [2a(tk)P22(tk) + 2S(tk)P12(tk)] 

+ [-1 + >.12(tk+1)]~{tk+1'tk)P12(tk) (5.21) 

aH(tk+1'tk) 1 
as(tk) = 2[ 2 + "22(tk+1)] [S{tk)P11(tk) + s(tk)Qvd 

+ a{tk)P12(tk)] + [-1 + >.22(tk+1)]~(tk+1'tk)P11(tk) 

(5.22) 



87 

The adjoint difference equations now may be written as 

* ()H 

+ [-1 + "12(tk+1 )J<Ps(tk) 

* 
"12(tk) 

()H 1 (5.24) = aP12(tk) = [ 2 + '-22 ( tk+1 ) ] 2a ( tk) S ( tk) 

.+ [-1 + '-12(tk+1)]<Pa(tk) 

* 
'-22(tk) = 

aH 
aP22(tk) 

= [ 1 2 2 + '-22(tk+1)]a (tk) 

The trajectory optimization results using the ensemble-averaging of 

100 Monte Carlo runs were compared with the Euler Method and the 

optimal di~crete representation results using the deterministic optimal 

trajectory. The results are plotted in Figures 32 and 33 forT= 0.1. 

Clearly, a considerable improvement is achieved by using the trajectory 

optimization method as compared to the other two methods for the cost 

functional given by (2.13). It was assumed that A(t) given by (5.16) 

was constant over the sampling period Tin (5.19). An average value of 

·XN was selected over the interval (tk,tk+1) to obtain a better approxi

mation of A(t). This reqUired i(he differentiation of H(tk+1 ,tk) in 

(5.18) with respect to XN(tk) evaluated at (tk+1 'tk) and (tk,tk_1) in 

(5.23) (15). Thus, it can be concluded from the results obtained that 

the trajectory optimization yields a considerable improvement over the 

other two methods compared. The results in Figure 33 correspond to the 

cost functional in (2.12). As shown in Figure 30 for small step sizes, 

the Euler Method shows a lower error covariance, while for higher step 

sizes (Figure 31), the other two methods show lower error covariances. 

Similarly, for the highly nonlinear system considered in this section, 
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T = 0.1 is a large step size and, thus, the results are consistent with 

those obtained earlier. 

Summary 

This chapter dealt with the development of the trajectory-optimiza

tion procedure. Two nonlinear examples were used to illustrate the 

procedure. It was shown that a considerable improvement in the error 

covariance was obtained by using this procedure as compared to the Euler 

Method or the optimal discrete representation method. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Results and Conclusions 

The basic contribution of this thesis research is the developruent 

of an optimal discrete representation for the continuous filtering 

algorithms for nonlinear stochastic systems. It was also shown that the 

trajectory optimization results showed consid~rable improvements over 

the existing methods. Two cost functionals were considered for 

comparing the results obtained by using the optimal discrete representa

tions based on the state and its estimate using the variational Kalman 

filter. It was required for the two nonlinear systems considered that 

the nonlinearity be analytic in a neighborhood of the nominal trajectory. 

During the development of the complete optimization procedure, a first

order linear system and two nonlinear systems were considered. 

In Chapter II steady-state optimizations were performed on the 

first-order linear example by using the Euler Method, the RK2 method, 

and the optimal discrete representation method based on the two cost 

functionals defined in that chapter. Since for linear systems the 

Kalman filter is the best filter, the optimal discrete representation 

results showed an improvement over the Euler Method but failed to show 

better results than the second-order RK2 method. For the second cost 

functional given by (2.12), the optimal discrete representation 
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demonstrated an improvement over both the Euler Method and the RK2 

method. These results were reconfirmed in Chapter III, which dealt with 

the development of the optimization procedure based on a two-point 

boundary value problem. Consistent results were shown for the second

order nonlinear example, except for the cost functional given by (2.12). 

Since the variational filter is not the best filter for nonlinear 

systems, the results for this cost functional were only relative. In 

Chapter IV a procedure was developed for obtaining an acceptable 

accuracy and speed under constraint conditions. A major contribution 

was demonstrated in Chapter V by using trajectory optimizations. It 

was shown that a considerable improvement was achieved using trajectory 

optimization based on the optimal discrete representations. 

Recommendations for Further Work 

There are several possibilites for the extension of the research 

work performed in this thesis. The optimal discrete representation was 

developed based on the first-order integration method. It can be 

easily extended to include the higher order integration methods. The 

basic idea required would be the same as.developed in this thesis 

research. 

The basic concepts of this research can be further extended to the 

combined estimation and control problem. This extension will require 

the development of a joint procedure which gives the optimal discrete 

representation of the state estimate as well as the optimal variational 

Riccati controller. A new cost functional will be required to obtain 

the minimum J for the combined estimation and control problem. 

A stochastic sensitivity analysis could be performed on the optimal 
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discrete representation method developed in this thesis. This analysis 

would be needed to determine system performance when the assumed 

parameters and/or input statistics vary from the design values. This 

extension will validate the optimal discrete representations for use 

in practical stochastic filtering and control applications. 

If the input noise matrices Qw and~ in (2.9) and (2.10) are 

themselves white noise processes, then a knowledge of stochastic 

integration is needed to find P (t) and K(t), which will also be random. 
e 

The relationship between stochastic integration and numerical integra-

tion formulas for deterministic systems should be investigated to obtain 

the solution of the stochastic integration problem. 
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