OPTIMAL DIGITAL MECHANIZATIONS OF
STOCHASTIC FILTERING ALGORITHMS

By
VIJAYENDRA MOHAN gUPTA

Bachelor of Engineering (Honours)
Birla Institute of Technology and Science
Pilani, Rajasthan, Indis
197

Master of Secience
Oklahoms State University
Stillwater, Oklahoma

f 1973

Submitted to the Faculty of the Graduate College
of the Oklahome State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1976



7-{ &
/776 D
& 977
Cop. 2



R

OMA o\
GQ}H' SZO
UNIVERSITY 6\\)
LIBRARY ./

OPTIMAL DIGITAL MECHANIZATIONS OF
STOCHASTIC FILTERING ALGORITHMS

Thesis Approved:

S;Lboo~‘¢ﬂifez 44&:"U1fi¥4ﬂ141—
P Thesis Adviser

Wm

2)/;L¢4/}y1414{L 27/A) /<§/b04/%£4/r¢\,

Dean of the Graduate College

96415¢Y

ii



ACKNOWLEDGMENT

I wish to express my sincere appreclation to my thesis adviser and
committee chairman, Dr; James R. Rowland, for suggesting the problem
and for spending many hours in valuable guidance to enable m; to carry
out this research. His constant encouragement and great insight into
the problem made this thesis possible. I wish to acknowledge the other
members of my committee, Dr. Bemnett L. Basore, Dr. Robert J. Mulholland,
and Dr. Donald W. Grace, for suggestions and teaching excellence;

Gratitude is expressed to the Rama Watumull Foundation for the
scholarship grant during the summer of 1975.

This research was made possible by the graduate research and
teaching assistance provided by the School of Electrical Engineering
during the entire study.

Sincere appreciation is also expressed to Mr. Sunil Jhobalia for
making drafting equipment available.

I would like to thank my wife, Neeru, for helping me during the
preparation of the figures in this thesis. Also, I would like to thank
her for her patience and encouragement during this study.

A loving thanks is eXpressed to ﬁy brother, sister-in-law, and
parents-in-law for their encouragement and faith.

Finally, I would like to dedicate this thesis to my parents for
their constant encouragement aﬁd unwavering confidence in my ability to

successfully complete this dissertation.

iii



TABLE OF CONTENTS

Chapter Page

I . INTRODUCTION e e o o o o e o o o o o o o o o o o o o o o o o 1

History of the Problem. « « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o 2
Basic APProache. « « o « o ¢ o « o ¢ o ¢ o ¢« s ¢« o o o« B
Optimal Digital Simulations . « ¢« « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢« « o 1
Outline of the ThesiS « « ¢ « « ¢ o o« o o« o o o o « « o 14

IT. PRELIMINARY COMPARISON STUDIES . ¢ o ¢ ¢ o o o o o o o o o o 17

Mathematical Problem Statement. . . . . « . . ¢« ¢« o o« 17
Steady-State Optimizations. « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ & o o« 22
Numerical Comparisons with the Euler Method e« o o« 25
Numerical Comparisons with the RK2 Integration

Formula . ¢« ¢« ¢ o « o o o ¢ o o o o o o o o o o o o o 39
SUMMATY « « o « o o ¢ o o o o o o o o o« o o o o o o « o kO

IIT. OPTIMAL DISCRETE REPRESENTATIONS & v « « ¢ o o o o o o o o« o U1
Development of the Optimization Procedure . . . . . . . 4q
Numerical Results « o « ¢ o ¢ ¢ o ¢ o o ¢ ¢ o o s o o« o 52

Sum]nal’y' ® e o e © o © o o o o o o o o o o o e o o o o o 5 ,'l'

IV. ACCURACY-VERSUS~SPEED TRADEOFFS. ¢ ¢ ¢ « o o o o o o o « « o 69

Constraint Concepts « « « ¢« « ¢ ¢ ¢« ¢ ¢ ¢ ¢ o ¢« o « o« o« 69
The Hard Constraint Case. « « ¢« ¢« ¢ ¢« ¢ ¢ ¢« ¢« s o« o o« « 70
The Soft Constraint Case. « « ¢« ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ ¢« o« « « 11
An EXample. « « o o o o o o o o o o o o o 6 o o o o o o 13
SUMMATY ¢ ¢ o e o o o o o o o o o o o o o o o o o o o o 3

V. TRAJECTORY OPTIMIZATION. « ¢ o o o « o o s o o o s o o o « o T6

Mathematical Development. « « « « ¢« o ¢ o ¢ o o o o o+ 76
S‘lmal‘y- L] L] L] L] Ll L] L] L) L] L) L) L] . L) L] L] L) L) L] L] L] L] . L] 9 O

VI. CONCLUSIONS AND RECOMMENDATIONS. « o« ¢ ¢ o ¢ o o o o o « « « 91

Results and Conclusions « « « o ¢ ¢« ¢ o ¢ o o ¢ ¢ s o o 9N
Recommendations for Further Work. « ¢ ¢« ¢« ¢« ¢ ¢« ¢« o « o« 92

SELECTED BIBLIOGRAPHY ® e o e e e © o o o o o o o o o o o o o o o o 9""

iv



LIST OF FIGURES

Figure
1. Percent Error Obtained by Using the Approximate
Relationship for Variance Ratio . .« « ¢ ¢ ¢« o ¢ ¢ o o o & &
2. A Schematic Diagram of Filtering Equacions with Optimization
Parameters Included in o and g Matrices . . . « ¢« ¢« « o ¢« &
3. The Difference in Modeling as QV/T and by (2.33) for
the First-Order Linear System . « « « ¢ ¢ « « o ¢ o o o o o
4. The Parameter g Plotted for Different Values of o in
Steady-state fOI' T = 0-1 . . . . . . 3 3 . . 3 3 3 . . . .
5. The Cost Functionals from Optimal (o,B) Values and
the Euler Method for the First-Order Linear System. . . . .
6. Comparisons of Error Covariance E{(x - x )2} for Steady-State
Optimizations for the First-Order Linegr System for T = 0.1
7. Comparisons of Error Covariance E{(x - x )2} for
Steady-State Optimizations for the Firgt-Order
Linear System for T = 0.25 . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o«
8. Comparisons of Error Covariance E{(x - x )2} for
Steady-State Optimizations for the Firgt-Order
Linear System for T = 0.5 & ¢ ¢ ¢ ¢« ¢« ¢ o ¢ o s o o o o o &
9. Comparisons of Error Covariance E{(i -x )2} for
Steady-State Optimizations for the First-Order
Linear System for T = 0.1 ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o
10. Comparisons of Error Covariance E{(i -x )2} for
Steady-State Optimizations for the First-Order
Linea-r System fOI' T = 0.25 e o o e e o e o o o o o o?: e o o
11. Comparisons of Error Covariance E{(x - x )2} for
Steady-State Optimizations for the First-Order
Linear System for T = 0.5 ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o'
12. Comparisons of the Error Covariance E{(x - x 2} Obtained

)
by Using Fletcher and Powell's and OptimaldDiscrete
Representation Methods for T = 0.1 « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o &

Page

15

21

28

31

32

33

34

35

36

37

38

25



Figure

13.
14,
15.
16.
17.
18.
19.
20.
21.
22,
23.
ok,
25.
26.
27.

28.

Comparisons of the Error Covariance E{(x - x ) } Obtained

by Using Fletcher and Powell's and Optimal“Discrete
Representation Methods for T=0.5 . «. « « ¢« ¢« &« « &

Error Coveriance E{(x -

)2} for the First-Order
Linear System for T = 0.1

O M>

Error Covariance E{(x - ; )2} for the First-Order
Linear System for T =0.25 « « ¢ ¢ o ¢ ¢ o o o« o o &
Error Covariance E{(x - ) } for the First-Order
Linear System for T = O T
Error Covariance E{(i -x )2} for the First-Order
Linear System for T = 0.1 . ¢ ¢ ¢ ¢ o o o o o o o &
Error Covariance E{(x - x )2} for the First-Order
Linear System for T = 0.25 « ¢ ¢ ¢ ¢ ¢ o o ¢ o o o &
Error Covariance E{(x - x )2} for the First-Order
Linear System for T = 0.5 « ¢ « ¢ ¢ o o o o o o o @
Error Covariance E{(&x - i

} for the Second-Order
1

)2
Nonlinear System for T = O

Error Covariance E{(6x Gid)g} for the Second-Order
Nonlinear System for T = "0.25 &« ¢ ¢ ¢ o o o o & & &

Error Covariance E{(dx Gid)e} for the Second-Order
Nonlinear System for T = "0.5 . . . « ¢« ¢« o o« o .

Error Covariance E{(sx i ) } for the Second-Order
Nonlinear System for T = O O

Error Covariance E{(sx 5id)2} for the Second-Order

Nonlinear System for T = "0.25 ¢ ¢« ¢« ¢« o ¢ ¢ ¢ o o &

Error Covariance E{(6x - )2} for the Second-Order
Nonlinear System for T 0 D e e e e e e e e e e

Cost Functional J in (4.3) Versus T for K = 0.01,
O 05 , and 0 2 L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]

Comparison of Optimal Constrained Filter with
MQ , RK2 , a-nd RK2 e L] L] . L] L] L] L] . . L] L] L]
var oxt

var

Comparisons of Error Covariance E{(sx - §x )2} Obtained
from Trajectory Optimization, Optimal DiScrete
Representation and Euler Methods for the Second-Order
Nonlinear System for T = 0.1 ¢ ¢ ¢« ¢ &+ ¢ o o o o o &

vi

Page

56

>7

58

29

60

61

62

63

64

65

66

67

68

T2

7

80



Figure

29.

30.

31.

32.

33.

Comparisons of Error Covariance E{(déx - 6x )2} Obtained
from Trajectory Optimization, Optimal Digcrete
Representation and Euler Methods for the Second-Order
Nonlinear System for T = 0.5 ¢ ¢ ¢« ¢ ¢ o o o o o o o &

Comparisons of Error Covariance E{(8x - 6x )2} Obtained
from Trajectory Optimization, Optimal DisScrete
Representation and Fuler Methods for the Second-Order
Nonlinear System for T = 0.1 & v ¢ ¢« ¢ ¢ ¢ ¢ o « o &

Comparisons of Error Covariance E{(dx - ox )2} Obtained
from Trajectory Optimization, Optimal Digcrete
Representation and Euler Methods for the Second-Order
Nonlinear System for T = 0.5 « ¢« v ¢ ¢« ¢ ¢ ¢ o o « « &

Comparisons of Error Covariance E{(éx - 6x )2} Obtained
from Trajectory Optimization, Optimal DiScrete
Representation and Euler Methods for the First-Order
Nonlinear System for T = 0.1 . + ¢« ¢ ¢« ¢ ¢« ¢ ¢ o o & &

Comparisons of Error Covariance E{(Gﬁ - 8x )2} Obtained
from Trajectory Optimization, Optimal DisScrete
Representation and Euler Methods for the First-Order
Nonlinear System for T = 0.1 ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o « & o &

vii

Page

81

82

83

88

89



CHAPTER I
INTRODUCTION

The digital mechanization of stochastic filtering algorithms for
nonlinear system applications has received an increasing amount of atten-
tion in recent years. Due in part to the availability of ultra-fast
digital computers and to the sophistication called for in a broad range
of applications, the digital mechanization problem has taken on a renewed
importance in research and development circles. A major research emphasis
has evolved on the discrete representation of continuous stochastic algo-
rithms and equatiops. Often the resulting digital mechanization is to
be performed on-line in real time for continuous nonlinear system appli-
cations. Such cases require suitable tradeoffs betﬁeen computational
speed and algorithm accuracy.

Previously, estimation algorithms were usually developed on the
basis of achieving the best accuracy possible. It was assumed that any
equipment needed for mechanization would be not only available but also
capable of operating fast enough for use in realtime applications.
Therefore, the physical realizability of the developed algorithm was the
primary design consideration. Computer operations were counted and
cataloged for existing filtering algorithms, and a particular digital
mechanization corresponding to one of the'developed algorithms was
selected over the other candidates on the basis of accuracy and computer

operation counts. It is apparent that this separate development of the



estimation algorithm and the selection of the mechanization procedure
may result in an overall non-optimal solution. Moreover, digital
mechanizations were often performed under the assumption that only
discrete formulations of filtering algorithms should be used. On the
contrary, efficient utilization of numerical integration formulas for
discretizing continuous algorithms, involving computational speed-
versus-accuracy considerations, can provide a useful alternative to
discrete algorithms for nonlinear systems. |

In this thesis résearch optimal digital mechanizations of stochastic
filtering algorithms were investigated. A systematic procedure for
simultaneously optimizing the realtime digital mechanization with the
filtering algorithm for nonlinear systems was developed. The imbedding
of established filtering algorithms as well as standard numerical
formulas into a generalized format provided an appropriate framework for
optimization. Trajectory optimization was utilized within this framework
to further improve the optimal discrete representations for stochastic
algorithms. The background information needed to develop these optimi-

zation results is given in the next section.
History of the Problem

The basic problem of estimating the state of a noise-corrupted
physical process leads to the stochastic filtering problem. It was
approximately two centuries ago when Gauss developed the least-squares
method while trying to determine planet orbits‘from»many observa-
tions. The first explicit solutions for least-squares estimates of
stochastic processes were given by Wiener in 1942 (1) under the assump-

tions of a scalar observation process, a semi-infinite observation



interval (to = —») and jointly stationary signal and noise processes.
Wiener used a variational argument to determine the optimum estimate

and showed that it satisfied the Wiener-Hopf equation (1). The similar
discrete-time filtering problem was solved by Kolmogorov (2). In 1961
Kalman and Bucy (3) developed new'techniques based on the state-space
approach. They presented a nonlinear differential equation of the
Riccati type for the optimal filtering error. The estimate of the state
obtained by the Kalman-Bucy theory was optimal for linear systems with
Gaussian noise. This theory has been very useful in space activities
such as thé‘Gemini and Apollo missions.

For either linear or nonlinear systems with non-Gaussian inputs
the optimal mean-square filter is nonlinear. The search for improved
methods of state estimation has resulted in exact nonlinear filtering
algorithms based on Bayesian estimation theory and approximate non-
linear recursive filtering.

Several approximate algorithms for implementing exact nonlinear
filters have been developed in recent years. Kushner (4) derived exact,
infinjte-dimensional dynamical equations for the conditional mode and
developed finite-dimensional approximations involving moment sequences
for their solution. Ho and Lee (5) formulated the discrete nonlinear
filtering prdblem in terms of Bayesian estimation theory, and Bucy (6)
and Mortensen (7) applied Bayesian results in function space to contin-
uous systems. Kuo and Rowland (8,9) demonstrated that demsity storage
and Bayesian solutions can be achieved effectively by using moments of
the measurement data. Bucy and Senne (10) considered a point-mass
representation on a floating grid of indices for implementing the

indicated Bayesian computations. Sorenson and Alspach (11) and Lo (12)



approximated conditional density functions by a sum of Gaussians for
nonlinear Bayesian estimation, and Jan and de Figueiredo (13) performed
Bayesian calculations by using a multiveriate B-spline for approximating
density functions.

Probably the most common approximate method for nonlinear filtering
is to expand the system message model in a Taylor series which is
truncated after the first few terms. The series may then be substituted
into the equations for the conditional mean and covariance of the state
derived from thé Fokker-Planck equation (14,15). Depending upon how
many terms are retained, eithef a first, second, or higher order
approximate filter is obtained. If the nonlinear system equations are
expanded about a deterministic nominal trajectory, a linearized varia-
tional Kalman filter is obtained by using the linear perturbation
equatioﬁs. The extended Kalman filter is the approximate nonlinear
filter obtained by expanding the message model about the current state
estimate. Other approximate nonlinear filters include the truncated
second-order filter (16,17) and the Gaussian second-order filter
(18,19).

Schwartz and Stear (20) compared several filtering algorithms on
the basis of their estimation error history. They observed that no
particular4approximate filter is consistently better than any other.
They concluded that the nonlinear filters examined are better than a
strictly linear one (Kalman Filter). Wishner et al. (21) examined three
distinct methods for the recursive estimation of the state variables of
a continuous-time nonlinear planf oﬁ the basis of measuring the
discrete-time outputs of the plant in the presence of noise. They

concluded that the single-stage iteration filter has superior mean-



squared error performance under all conditions, followed by the second-
order filter. Square-root filtering (22,23) has been developed as a
means of controlling the divergence problem encountered during filtering.
Realtime applications of the recursive filtering algorithms for on-
line state estimation depends upon acceptable tradeoffs between accuracy‘
and computational séeed. The practicality of the Kalman filter for on-
line operations is answefed in part by Mendel (24) by providing computa-
tional requirements, such as computing time per iteration and storage,
for a discrete Kalman filter. Kaminski et al. (22) presented four
efficient square—roét implemeﬁtations and compared them with three
common conventional implementations in terms of computational complexity
and precision. Bierman (23) continued these comparisons and developed
several improvements in the digitai mechanization of the filters. While
the computational time per iteration has been determined in these papers,
meaningful comparisons between filtering algorithms for realtime
applications must utilize data rates compatible with the speed of a
particular filtering mechanization. Moreover, the choice between
discrete and continuous fiitering algorithms must be examined for given
classes of problems. Much of the previous work has been based on the
agsumption that discrete filters should be used if the implementation is
to be digital. However, this approach requires that discrete transition
matrices are determined a priori, which is difficult to realize for
extended Kalman filters. This problem is circumvented when continuous
filters are utilized, even if implemented digitally. Gaston and
Rowland (25) obtainedrrealtime digital integration results for mechaniz-
ing continuous Kalman filters for nonlinear systems by making compari--

sons between variational and extended Kalman filtering algorithms as



functions of input noise levels and system nonlinearity characteristics.
Specific operating conditions were identified in typical cases for
which certain combinations of numerical formﬁlas, step sizes, and
filtering algorithms should be used for improved performance.

In addition to realtime applicétions of mechanizing filtering
algorithms digitally, the use of the hybrid computer as a realtime
simulation tool has also provided a motivation for improvements on a
speed-versus-accuracy basis. Bucy, Merritt, and Miller (26) dem-
onstrated the enormous computational advantage in using hybrid computers
for a particular nonlinear estimation problem. Holmes and Rowland
(27,28) investigated the sampling and hybridization errors inherent in
the mechanization of Kalman filtering algorithms on the hybrid computer.
Reduced errors were achieved by re-partitioning of the dynemical system
model between the analog and digital computers and by performing an on-
line modification of the Kalman gains.

The discrete representations of céntinuqus systems and signals, in
the present context of filtering mechanizations, depends on the
efficient numerical integration of dynamic system equations based on
both speed and accuracy. Reporting the results of seven years of
simulation experience, Benyon (29) showed that in particular aerospace
simulations, second-order numerical formulas were over 30 percent faster
with comparable accuracy than the commonly used fourth-order Runge-Kutta
formula. These results were used by Gaston and Rowland (25) in their
selection of numerical integrafion formulas for comparing different
Kalman filtering algorithms with respect to nonlinear characteristics
of a typical system. A variational techﬁigue was developed by Rowland

and Holmes (30) to yield improved results over Runge-Kutta formulas for



mildly nonlinear applications. Instead of developing new, highly
efficient, numerical integration formulas, the alternate approach of
developing computer-aided analysis and design programs was used by Nigro
et al. (31) and Rowland and Holmes (32). The program by'Nigro et al.
(31) considered consistenéy requirements, stability, truncation error,
roundoff error, propagated errdr, and required computing time in the
derivation of optimum methods as well as in the evaluation of user-
supplied methods for realtime digital flight simulation. Rowland and
Holmeé (32) developed a computer-aided design tool for optimally
allocating digital execution time for the numerical integration of
several selected subsystems in a hybrid simulation. The precise
objective was to minimize the sum-squared error of the given subsystems
under the constraint that the total time allowed for executing all
subsystem integrations is specified in advance. This problem definition
permitted the use of different integration formulas within the complete
system. Most significantly, the ufilization of this computer-aided
design approach makes it possible to uniquely tailor the solution
technique to the given problem.

The problem of modeling continuous noise inputs for dynamic
systems on the digital computer has been investigated by Rowland and
Gupta (33) with particular emphasis on the reduction in accuracy due to
discretizing approximations. The use of a single random variable
within each discretization interval was shown to produce the same
power spectral density as the use of a time function of several
uncorrelated randoﬁ variables. The variance of the resulting random
number sequence is the variance of the continuous white noise process

divided by the discretization interval.: Results obtained by using



time-domain techniques for matching autocorrelation functions showed
that the variance of the input random number sequence should be modified
according to the parameters of the shaping filter. Rowland (34)
developed a generalized approach for modifying discrete input signal
variances. The concepts from optimization theory were used to realize
optimal digital simulations for linear, time-varying, continuous
dynamical. systems having random inputs. The cost functional based on
the state éovariance matrices of the continuous system and its discrete
model led to a two-point boundary value problem which then was solved
by known numerical techniques. The result was a systematic procedure
for determiningvoptimal digital simulations under the constraints that
the numerical integration formula and integration step size have been
specified in advance. Previously, Brown and Rowland (35,36) had
demonstrated that with specific noﬁlinear examples considerable
improvement over the commonly used method of linearizing the system
equations about the deterministic optimal trajectory can be realized by
trajectory optimization. They concluded that, for a particular combined
estimation and cqntrol example bging considered, the system performence
was much more sensitive to the choice of the nominal trajectory than to
the selection of a nonlinear filter producing greater estimation
accuracy. The contribution of this research is the utilization in a
single optimization format of techniques for optimal digital simula-
tions and trajectory optimization to yield optimal digital mechaniza-

tions based on speed and accuracy for stochastic filtering algorithms.
Basic :Approach

The thesis research objectives were to (1)‘develop an optimization



procedure based on accuracy considerations to yield a two-point
boundary value problem whose solution gives the optimal discrete
representation for given continuous stochastic estimation algorithms,
(2) extend this optimization procedure to obtain optimal digital
mechanizations based on computational speed and accuracy tradeoffs, and
(3) apply trajectory 6ptimization éoncepts as a means of further
improving the overall optimization procedure for linearized incremental
variations about deterministic trajectories in nonlinear cases. These

objectives are described in more detail in the following paragraphs.

Optimal Digcrete Representations on

an Accuracy Basis

A major contribution of this thesis research is the formulation and
development of an optimization format for the discretization of contin-
uous sfochastic filtering algorithms. This optimization is based on -
achieving the best possible accuracy for the resulting discrete filter
.under the configuration constraints imposed in the problem. The
optimization procedure initially was developed for the lineaf systemn,
and the resulting two—point!boundary value problem was solved for -
typical cases. Later, several nonlinear cases were handled by consid-
ering linearized incremental variations about given nominal trajec-
tories. Optimal discréte results were obtained as a function of the
nonlinear system characteristics and the system noise inputs. Compari-
sons with available'techniqueé were made to demonstrate the accuracy

improvements obtained by using the 6ptimization results.
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Optimization on an Accuracy-Versus-Speed Basis

The basic optimization procedure described above was expanded to
include algorithm accuracy and computational speed tradeoffs. The
A optimal discrete representations of continuous stochastic algorithms was
developed to operate in real time. The resulting optimal digital
mechanizations are suitable for use in on-line data processing applica-
tions. Acceptable performance criteria for optimization have been
determined. These criteria indicate appropriate tradeoffs between
computational speed and accuracy in specific examples under considera-
tion. One approach was the use of constraints on computational speed in
which some positive, monotonically decreasing function of the discretiza-
tion interval T is incorporated directly into the cost functonal J for
optimization. An alternate approach, which is more appropriate in other
cases, was to treat computational speed as a hard constraint, e.g., a
definite lower bound on computational speed is specified as part of the
problem formulation. The mathematical development in both of these
approaches follows traditional optimization techniques found in the
literature, and the selection of appropriate cost functionals and/or
optimization constraints yields significant new results for fhe discrete

representation problem.

Irajectory Optimization

In the first two parts of this research, optimal discrete repre-
sentations of continuous stochastic algorithms were developed for
linearized variations abouf noiseéfree nominal trajectories for non-

linear systems. It was aséumed in those cases that message and
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measurement noises cause small perturbations about nominal operating
conditions. Deterministic nominal trajectories were obtained by
replacing noise inputs by their mean values. The resulting continuous
equations for incremental variations about these trajectories were then
linearized and discrete representations found as described above.
However,:excessive errors could be expected to occur when the system
equations are highly nonlinear. A trajectory optimization technique
could be applied in such cases to determine the best deterministic
nominal trajectory about which the linearized variations should be
formed. Numerical results have been presented in earlier papers

(35,36) indicating that for a particular example the system performance
appeared to be much more sensitive to the choice of this nominal
trajectory than to the selection of a nonlinear filter of greater
accuracy. The approach used here involved the simultaneous optimization
of the nominal trajectory, the incremental filtering algorithm parame-
ters, and the discrete representation itself on a speed-versus-accuracy
basis. Specific characteristics were identified for those nonlinear
system applications where trajectory optimization provided a significant

improvement for the discrete representation problem under consideration.
Optimal Digital Simulations

In digital simulations it is always the objective to obtain the
best possible discrete representation of a continuous system. The
modeling of continuous noise inputs for dynamical systems on the digital
computer was investigated by Royland.and Gupta (33). An accurate
digital representation of the givenvcontinuous stationary correlated

noise process was obtained by selecting both the digital shaping filter
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and the variance Qd of the discrete white noise representation as a
function éf the variance Qc of the continuous white noise process w(t),
the sampling period T, and the parameters of the corresponding contin-
uous shaping filter.

Consider a first-order continuous case
x(t) = —a1x(t) + a1w(t) (1.1)

Let the variance of colored noise process x(t) be designated as Pc(t),

where Pc(t) obeys the differential equation
P (t) = -2a,P (t) + a°Q (1.2)
c 1c 1%c '

Similarly, for the discrete case, let the variance of the noise process
xd(tk) be defined as Pd(tk). Replacing a, by o, in (1.1) yields

...a1T —OL1T
xd(tk+1) =e xd(tk) +(1-e )wd(tk) (1.3)

Thus, Pd(t ) is given by

k+1

—2a1T —a1T 5
Pt =e Ry6) +(1-e )3, (1.4)

It is assumed that the random processes x(t) and xd(tk) are stationary.

In steady-state éc(t) = 0 and Pd(t

k+1) = Pd(tk). Therefore, the steady-

state values are

-
Pl =359 (1.5)
"l ss
-, T
(1-e )%
Pd = -2a1T (1.6)
Ss (1 -e )
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Since the objective is to optimally discretize the continuous correlated
random process x(t), the right-hand sides of (1.5) and (1.6) are equated

to give
~a1T
a1(1 +e )QQ
Qd = "'OL.]T (1'7)
2(1 - e ) ‘

The relation (1.7) was obtained by requiring only that the variance of

the modeling discrete-time series process be equivalent to that of the
continuous process. The autocorrelation functions for the two cases
may also be matched. Consider the autocorrelation function for the

discrete case at the sampling instants t = nT, i.e.

R ()

E{x,(xT)x.(k+n T)}
xdxd d d

=nT

—a1T n
E{xd(kcr)[(e ) (em)
n -o,T ' -
1= 1, (o T)]}

m=0
- (1.8)

where the notation kT has been used to replace tk. Since xd(kT) is
uncorrelated with the white noise inpgt wd(E:E T), which is appl?ed to
the digital shaping filter either at t = kT or afterwards, (1:8) may be
expressed as

-a1(nT)

R (nT) = e
Xa*a

B{x5(kT) } (1.9)
Therefore, the autocorrelation function for the discrete case decays
exponentially with a time constant of 1/u1. The autocorrelation

function for the continuous case is given by
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- -, 1|
_ 1
Rxx(T) - c
ss

[¢]

_a1|T|

84
5 ch (1.10)

Tt may be concluded then that setting oy equal to a, matches the auto--
correlation functions exactly when the variance relationship is given by

1 glves

v

(1.7) with o, = a,

(1.11)

12 72 e e

% a1 e ) (1) (‘3L1T)LL
-Q—-:‘ . T = T<1 - + -
d 1 )

a1(1 + e

Since (1.3) yields an exact discrete realization of the given continuous
process, one may determine the errors resulting from earlier approxima-
tions. Figure 1 shows the percent error obtained by using Qd = Qc/T as

a function of a1T for the scalar example in (1.1).

Outline of the Thesis

The major emphasis of this thesis research was the development of
optimal discrete representations of continuous filtering algorithms for
nonlinear stochastic systems. The approach to this problem was based on
the joint development of the estimation algorithm and the digital
mechanization procedure. The system trajectory for nonlinear applica-
tions was optimized along with the digital mechanization. Chapter II
deals with the mathematical formulation of the problem. A steady-state
optimization approach is used in this chapter and the results are
compared with the existing discretization methods. In Chapter III

the optimal discrete representations are extended to the whole
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trajectory and results are compared with other discretization methods.
The optimization procedure developed is expanded to include algorithm
accuracy and computational speed tradeoffs in Chapter IV. The
simultaneous optimization of the nominal trajectory, the incremental
filtering algorithm parameters, and the discrete representation based
on speed-versus-accuracy considerations are handled in Chapter V.

Finally, in Chapter VI conclusions and recommendations are presented.



CHAPTER IT
PRELIMINARY COMPARISON STUDIES

This chapter deals with the mathematical development of the optimal
discrete‘representations. A first-order example is used to compare the
optimal discrete représentation results with the Euler Method results.
The steédybstate optimizations of this chapter are extended to the

transient regions in Chapter III.
Mathematical Problem Statement
The nonlinear dynamic system is described by
£(t) = £(x(t),8) + B(t)u(t) (2.1)
z(t) = h(x(t),t) + z(t) (2.2)

where x(t) is the n-vector representing the system state, £ and h are
vector functionals, and B(t) is an n‘by m wéighting matrix for the zero-
mean white noise input w(t). The measurement vector z(t) is an r-vector.
The system noise m-vector g(t)‘ana measurement noise r-vector z(t)

have covariance matrices‘Qw(t? and Qv(t), respectively, which are

defined by

Blu(t)e’ (1)} = Q (£)6(t - 1)
(2.3)

E(y(t)x (1)}

Q,(£)6(t - =)

17
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It is assumed that ;(to), w(t), and v(t) are a1l uncorrelated and that
Qw(t) and Qv(t) are symmetric, positive-definite matrices.

The linearized (or variational) Kalman filter is based on an
incremental linearization about a nominal trajectory. Both f£(x(t),t)
and h(x(t),t) are expanded in Taylor series about the nominal

deterministic trajectory given by

xo(t) = £(z(t),8) | (2.4)

where gN(t) is the noise-free nominal trajectory and §x(t) is the small

variation about ;N(t) caused by the disturbance noise w(t). Then

sx(t) = x(t) - g (t)

, (2.5)
sa(t) = &(t) - zy(t)
and
8x(t) = A(t)sx(t) + B(t)u(t)
(2.6)
8z(t) = c(t)sx(t) + w(t)
For the linearized Kalman filter, A(t) and C(t) are given by
| o 2
S R
x(t)=x, (%) (2.7)

3.1'_1(35(1")‘,1")

c(t) A €

z(t)=;5N(t)

The linearized continuous Kalman filtering equations are given by

sx(t) = A(t)sk(t) + K(t)[82(t) - C(t)sx(t)] (2.8)
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K(t) = P_(£)c(£)Q] () (2.9)
where the error covariance equation is
Pe(t)-'= A(t)P_(t) + Pe(t)AT(t) - Pe(t)c Qv C(t)P_(t)
+ B(t)Qw(t)BT(t) (2.10)

The linearized Kalman filter in (2.8)-(2.10) yieids the least mean-
square estimation error for the incremental variation sx(t) in (2.6).
The sum of §x(t) and ;N(t), denoted by x(t), is only an approximate
estimate of the system state x(t) in (2.1) because higher-order terms
were neglected in forming (2.6). This approximation provides a nearly
optimal estimate when gx(t) is sufficiently small over the time
interval of interest. Trajectory‘optimization has been described in a
later section of this thesis as one means of improving the accuracy of
the resulting state estimate.

The problem inveétigated in this thesis research is to obtain an
optimal discrete filtering model according to a given cost functional.
Let a discrete representation of % components of gi(t), where % < n,

be given by
8, (t 1) = ol )8k, (6) + 8(t,)az(t,) (2.11)

The g-vector gid(tk) represents the discrete filtering model state, and

a(tk) and B(tk) are % by % and % by r matrices composed of free
optimization parameters. While the a(tk) and e(tk) matrices in (2.11)

are indicated as functions of t, only, they are actually functions of

k

the complete system response over its entire range of operation and
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their optimel values will be determined as part of the optimization
procedure. A schematic diégram is shown in Figure 2.

A cost functional J is selected such that the minimization of J
results in a suitable discrete representation of the céntinuous
variational Kalman filter by the discrete model in (2.11). It is
required that if the discrete ﬁodel order % is equal to the system order
n and if a sufficiently small discretization interval T is selected,
then the discrete modeling error in representing (2.8) by (2.11) should
be arbitrarily small at t = tk for all k. If g equals n but T is not
sufficiently small, then the form of the discrete model should be the
same as a direct discretization of (2.8) except different values of
q(tk) and B(tk) will be obtained.

Two approaches are commonly used to obtain an estimate of gx(t) at
discrete points in time. First, the continuous linearized Kalman
filtering equations in (2.8) may be integrated on the digital computer
by using either single-step (Runge-Kutta) or multi-step (Adams-Bashforth
or Adams-Moulton) numerical intégration formulas. Second, the contin-
uous equations in (2.6) may be discretized directly, and an optimal
discrete Kalman filtering algorithm may be applied to the resulting
discrete equations. In this thesis researéh a generalized optimization
format which includes the two approaches above as special cases when g
equals n and T is sufficiently small was investigated. Two approaches
toward this more general discrete optimization is to define a cost

functional J as either

K-1
_ 1 orei A : e T
J = Trace ] 7 BULSx (b,,) - 8x,(ty )I[ex, (4 ) - 8x,(%, 4 017)

k=0
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or as
K-1 1
J = Trace 20 > E{[Qgg(t

i) = S (b D118, () = 82 ( 01
(2.13)
where le contains the % ordered states from 8x corresponding to gﬁd.
The J in (2.12) is based on forming an optimal discrete model (2.11)
for the continuous variational Kalman filter in (2.8). On the other
hand, the J in (2.13) attempts to obtain an optimal discrete fixed-
configuration filter for estimating the $x(t) in (2.6). The problem is
to obtain optimal values of a(tk) and B(tk) in (2.11) to minimize the

J in (2.12) or (2.13) subject to (2.5)-(2.10).
Steady-State Optimizations

The mathematical problem stated in the brevious section was
approached initially by considering a first-order linear system. The
first step towards obtaining the optimal stochastic representatiohs was
achieved by comparing the results for the steady-state portions. These
results were then extended for the general case by also comparing the
transient portion results. The steady—state equations were obtained for
the continuous case by equating the derivative portion to ﬁero. For the
discrete case the (k+1)th‘stage was equated to the kth stage.

Let the first-order system be
x(t) = —x(t) + w(t) (2.14)
and its state estimate x(t) be given by

x(t) = -x(t) + K(t) [x(t) + v(t) - %(t)] (2.15)
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where

P (t)

e

Q

K(t) =
(2.16)

' ~\ 2
P_(t) = Be(x - D))
The discrete representations of (2.1%) end (2.15) may be written as

x(tyy) = o7 x5(8) + (1~ 0 ug(8)

(2.17)
. T —(1+K(tk))T —(1+K(tk))TA
x(tk+1) =(e -e )xd(tk) + e x(tk)
1 -(14+K(6, )T _7
- W (1. -e )wd(tk) +(1-~-e )wd(tk)
1 ‘ —(1+K(tk))T
+ TTIETEZYY (1 -e )vd(tk)

The optimal discrete representatioﬁ of (2.15) may be written as
% () = alb)% (6) + 8tz (6) + a(b)vy(t)  (2.18)

The covariance equations for (2.14) and (2.15) are given by

P11 = 2 * 0

w

11

P12 = Fq = 3Py (2.19)

Pop = 2Py = WPy + Q

In steady-state P11 = P12 = P22 = 0, which gives
Q

=...N.
P11 72
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Q
P, = gﬂ (2.20)

Also, the covariance equations for (2.17) for K(tk) = 1 may be written

as

.2
Pa11(tyqq) = Blxg(tyq)]
, (2.21)
_ —oT -T2
= (1-0p, (1) + (1 - e,
Pd1a(tk+1) = E{xd(tk+1)xu(tk+1)}
(2.22)
= ae" TP (t,) + Be'TP (t,)
d1a\ % a11 "k
and
P. (b ,,) = E{(x>(t, )}
doo k+1 o' k+1
(2.23)

0 Baqqty) * ERyqq () + 08Py (8) + 8%y
In steady-state

P(tyyq) = B(ty)

Q- e_T)

P...(t) = Q
a11'\ 'k (1 + e—T) wd

0.586Q

Pa1alty) =

‘ 1 - ae

(2.24)

621(0.59 + Q) (1 - ae™) +ae”TQ ]
(1 - a®)(1 - ae™)

These equations are matched term-by-term in the next section to obtain
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an optimal steady-state discrete representation of the filtering

algorithm.

Numerical Comparisons with '

the Euler Method

The mathematical development'of the steady-state equations and
their comparisons are disqussed in this section. The results obtained
from the optimal discrete representation and the Euler Method are
‘plotted in several figures. |

The covariance equations in steady-state form, (2.20) and (2.24),
are matched to obtain the optimgl coefficients for an optimal discrete
répresentation.

T
- 1-e )
Pa1q(ty) = T % T2
1+ e

o

% =201 - el
de (1 + e-T)

(2.25)

which gives the exact discrete realization (33). Also
Pata(t) = Pralty)

O.SBe-TQw Q

-
1 - ae—? 6

(2.26)

and

Paualti) = Poolty)
821(0.5Q, + Q g)(1 = ae™") + ae™1Q ]

_T)

&
n

ole®

+ (2.27)

(1 - q2)(1 - oe
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To obtain the exact digital representation of Qv in steady-state
for K(t,) = 1.0, the covariance equations for (2.17) in the discrete

form mey be written as

_ T T
P(tk+1) = ¢P(tk)¢ + HQH | (2.28)
where
e—T 0
q)=
1 _ 2T =2T
5 (1 -e°7) e
1 - e—T. 0
H =
1 =2T
O ‘2(1—3 )
and
de 0
Q:
0 Qg
or

P11 (tip) = 099 0099P99 () + 090P05(8)) + 015(894P45(8) + 040 (1))
| e mT\2
ot (1 -e) Qa
Proltiesr) = 099 0009P1a () + 00521580 + 0950015 (8) + 9055 (8, ))

Ponlticr1) = 909 (0911 () + 00P15(8)) + 0p5(050Pya(ty) + 80P (1))

‘+ Q- 6;2T)de

(2.29)



27

In steady-state

CPpo(tyq) = Poplty) (2.30)
From the third equation in (2.29)
: -2T,\2
(1) = $orPy () + 205100 12(t )+ (-,
22" "k 1 - 42
22
(3 + e_QT)Qw + 6(1 - e‘gT)Qvd
= = (2.31)
oh(1 + e )
Matching the right hand sides of (2.20) and (2.31) yields
(3+e0)q, +6(1-e70q, Q Q
24(1 + ~2T)
Solving for‘de gives
6Q,(1 + 67%%) - q (1 - &™)
= - — (2.33)
v 601 -7

The difference in modeling Qv as QV/T and by (2.33) are evident in
Figure 3. It can be observed that a small modeling error ﬁould be
introduced if Qv/T were used instead of the vaiue of de given by (2.33).
- Returning now to the originai.problem with this optimal value of
Q,q» there are two unknowns, o and 8, and two equations, (2.26) and

(2.27). These two equations can be revritten to yield

a+3g-e=0 (2.34)
(o - 1)(?3 +V§!)(1 - ae™T) + 82((0.5q + Q) (1 - ae™T) + ae™Q ) =
(2.35)
These equations can further be solved in terms of B to obtain
B = € - o (2.36)
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Q
<'.T% + %)(1 - 0L2)(1 - cxe—T)

(0.50 + Q) (1 = ae™) + 0™ Q

The cost functional for the first-order example given by (2.14) may be

written as
-1
=5 Parq (i) * Paoalbien) = 2Paq0 (b)) (2.37)
Invsteady—étate
-1
T =5 Pggq () + Py () = 2Pgy (8] (2.38)

Also, the error covariance matrix

P (t) = E{(x - %))

P11(t)'+ P22(t) - 2P12(t) (2.39)
Now

Pe(t) = -2Pe(t) - + Q (2.40)

Ll

In steady-state, setting Pe(t) to 0 yields \

PP
= 4+2P -Q =0
e w

q,

Q
-2 i‘ﬁ+4—h ~i
%

P =

s

or

N
P, = Q (-1 £Y1 + 2% ) (2.41)

Q,
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As an example, choosing Qw = 3.0 and Qv = 1.0, one has

Pe =1 ' (2.42)

From (2.38), (2.39) and (2.42) at t = tk,'one has
J=0.5 | | (2.43)

- Now the equations of B in terms of a in (2.36) are plotted in Figure k.
It is aésumed that Qm = 3.0, Qv =1.0, and T = 0.1. Since the two
curves do not intersect, the exact discrete representation of the
‘filtering algorithm is not possible. In other words, the cost func-
tional will not be exactly 0.5 for this example as required by (2.43).

To obtain the minimum value of performance index based on the
optimal values of o and B for given T, Qw, and Qv’ Fletcher and Powell's
unconstrained minimization technique is used (37,38). The cost func-
tional obtained from optimal (o,B) values and the Fuler Method are
plotted in Figure 5 for three values of T. This figure shows that a
smaller cost functional is obtained by using the coefficients of the
optimal discrete representation of the filtering algorithm.

These values of o and B were used in (2.18) and (2.38) for 100
Monte Carlo simulation runs which were ensemble—averaged to obtain
error covariance results. These results are compared with the same
number of Monte Carlo simulation runs for the Euler Method in Figure 6
through 8 using step sizes T = 0.1, 0.25, and 0.5. These curves
verify the optimal discrete representation of the filtering technique
for the first-order linear system in the steady-state for the cost
functional J given by (2.13). 1In Figures 9 through 11, the curves are

plotted for the cost functional J given by (2.12) by using the optimal
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o and B parameters determined from (2.13).

Numerical Comparisons with the RK2

Integration Formula

The optimal discrete representations may also be compared with the
second-order Runge-Kutta method (RK2). The recursive relation for the

general case using RK2 may be written for the integration interval T as

[2(x(t,),t,) + &zt 4),t,,)]  (2.41)

3

E(tyyq) = 2(t) +
where
x(t) = g(x(t),t) (2.45)

The recursive relation for the state using the above method for the

first-order system given by (2.14) may be written as

%d(tk+1) = (1 - T(14K) + 0.5T2(1+K)2)§d(tk)

+ 0.5TK((1 - T(14K))=z(t,) + =z(t,,,)) (2.46)

k+H1

Thé error covariance curves are plotted for 100 Monte Carlo runs using
the above method and using the optimal discrete representation in
Figures 6 through 8 for T = 0.1, 0.25, and 0.5 for the cost functional
J in (2.13). The results obtained using the cost functional given‘by
(2.12) are plotted in Figures ‘9 through 11 for T = 0.1, 0.25, and 0.5.
It can be concluded from the cur#es that the second-order Runge-Kutta
integration method is better than the first-order optimal discrete
representation results. A second-order optimal discrete representation
using Fletcher and Powell's method of minimization failed to converge.

Another method of minimization is developed in Chapter III for the
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general, time-varying case by converting the problem to a two-point

boundary value problem.
Summary )

In this chapter the basic problem was defined. A first-order
example wﬁs selected and steady-state optimization results were compared
with the results from Euler and RK2 integration methods. It was shoﬁn
that considerable improvement was pbtained in the cost functional J over
the Euler Method of integration by using the optimal discrete represen-

tation.



CHAPTER IIT

OPTTMAL DISCRETE REPRESENTATIONS

This chapter deals with the development of the optimization
procedure for both tranhsient and steady-state regions using Lagrange
multipliers. The'cost functionals defined in the previous chapter as
the difference between the discrete filter states of interest and the
corresponding continuous filter states or system states are utilized.

In both cases matrix difference equations are formed for the appropriate
covariance matrices, and the optimization.is performed to minimize J
subject to the constraint equetions. A second-order nonlinear system

is selected to illustrate the procedure.

Development of the Optimization

Procedure

The J defined in (2.13) is repeated again here

K~1 |
_ 1 ~ . T
J = Irace kzo 5 BULsx, (tyq) - 82 (4 )T 8% (1, 0) - 8%, (%, )17
(3.1)
Taking expected values as indicated, (3.1) may be written as
K-1 o
J = Trace kzo 5 [B{sx (tk+1)6x (ty4q)? fE{g;d(tkH)sx (tk+1)
AT -
- Blox, (b 14)8%, (8, 1)} - Blax( 1‘:+1)‘Sx (tyyq) ]
(3.2)

1
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T

J = Trace Z : (Pq (bigpq) + Pop(tyq) = Pyoltyg) = Poolty )]
(3.3)
~where the Pij's in (3.3) are yet to be determined. Let
! T
Pia(tiesq) & BLEE(ty )00 (4)) .
(3.4)

' T
Proltier) & BLax(ty,)axy (b))

The & by & matrix P (t which is the covariance matrix of §_ (

b)) b )

is obtained from the n by n matrix P (t ) by selecting only those

k+1
elements corresponding to the g by & entries in P (tk+1)’ which is the

covariance matrix of g;d(tk+1). Similarly, the % by 2 matrix P12(tk+1)’

defined as B{sx, (b )aég(tk+1)}, is obtained from P Sty 4q) by

k+1 k+1

retaining appropriate entries. An example is included later in this
section to illustrate these details.

The optimization approach to be used here first requires that
matrix difference equations be formed for P12( k+1) and P, (tk+1) in
terms of a(tk) and B(tk). In addition, a matrix difference equation

can be determined for P11(t The problem of minimizing J in (2.13)

k+1)'
subject to the difference equation constraints on P12(tk+1) and

P22(tk+1) is solved by using Fletcher and Powell's minimization
technique.
The matrix difference equation for P (tk+1) may be obtained by
using (2.6) in g;(tk+1) to form
bt
8x(ty,q) = oty 1t )0x(t,) + { 2ty qoT)B(T)a(r)dr  (3.5)
k

where @(tk+1,tk) is the state transition matrix. Therefore, from (3.4)
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1 _ . T
Piq(tyyq) = Blox(ty )87 (4 1))

tk+1

& E{[0(ty,q,t ) 8x(t, ) + {k ?(ty4q,0)B(1)u(r)dr] -
Yt .
[0ty b 0x(ty) + [ ety 0B(ule)an)™y - (3.6)
k

Since g;(tk) and p(t) are uncorrelated

!
Pyq( k+1) = o(t, 11 JE{8x(t, )Gx (ty )1oT (typq oty )
Yt Yie T . r o
+ [ 0(t,,o7)B(T)E{w(t)n (o) B (p) 2" (), 450 )drdo.
t t A
| .o | (3.7)
Using (2.3) and the sifting property of the delta function
1 1
Py (bepq) = 2ty st Py (520 (tk+1’t )
b
+ [ oty ,,,0)B(0) (1B (1)e" (v, ,7)dr.
t
k | (3.8)

The matrix difference equation for P (t ) may be obtained by using

k+1
(2.11) to yield

P (t )}

25 )Gx (t

A E{sx, (b

1) & b1 et

= E{[a(tk)ax (t, ) + 8(t,)C(t, )ax(t ) + (b )x, (b, )]

v[a(t )6x (t ) + e(t )c(t )Gx(t ) + 8(t )xd(t )] }
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Pon(tyyq) = u(tk)ng(tk)éT(tk) + Bty )0ty )P (6,67 (8, )67 (t,)
+ 86,0 4 (887 (5) + a(t )P, (106" (1,)8" ()
+ Bt )0(5, )P (8 )o (5,). | (3.10)
Similarly, .
Pyo(tyq) & BLEx(b,, )8 (8, 1)} (3.11)
= B{[o(t, 4 % )3x(t,) + tz+1 2(t, ,4,7)B(r)ulr)dr]"
K

la(t,)8x, (t,) + 8(8,)0(t )8x(s,) + 8t )z, (617}

= @(tk+1,tk)P;2(tk)aT(tk) + @(tk+1,tk)P;1(tk)CT(tk)BT(tk).
(3.12)

1
The matrix P11(t ) in (3.8) is a known time-varying matrix which

k+1
serves as a forcing function in (3.10) and (3.12).
. . s
Let two % by & matrices A12(tk) and Agg(tk) of Lagrange multipliers
for P12(tk) and P22(tk), respectively, be introduced. It is known that
A12(tk) and X22(tk) satisfy adjoint difference equations which have the
boundary conditions
A12(tK) =0
(3.13)
Aoplty) =0

where tK is the terminal time. One method for obtaining the adjoint

equation is to define the Hamiltonian H as
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T

) - P12

(t

H = Trace { 1 [P, (¢ P (b 1))

er1) T Ponligq) = Pioltyyy

7 7
+ Pyo (b oty g) + Pon(ty )25t ) (3.1%)

The procedure for optimization is to substitute (3.10) and (3.12) into
(3.14) and then minimize the resulting H with respect to the entries in

the a(tk) and B(tk) matrices. If the minimized H is represented by H*,

then
3
12 'k 3P12(tk)
(3.15)
SH
Aan(t, ) = =—=—=— .
22"’k 3P22(tk)

The right hand sides of the equations in (3.15) include terms involving

(t,,,) and A22(t ) and, therefore,‘the optimization result may be

22 et i1
obtained by solving simultaneously .(3.10), (3.12), and (3.15). The
resulting two-point boundary value problem has boundary values specified
in (3.13) at t = tK for k12(tk) and A22(tk) and some known initial
conditions for P12(tk) and P22(tk).

The three types of errors which occur in forming optimal discrete
representations are filtering error due to signal and measurement noise,
discretization errors in modeling the filter, and errors in using a
reduced-order filter. The first of these is inherent in all filtering
problems, but its effect can sometimes be reduced by using improved
continuous filtering algorithms, e.g., using the extended Kalman filter
or trajectory optimization. The second type of error can be handled

on accuracy alone by minimizing the cost functional in (2.12) and

(2.13). The third error has been investigated extensively for reduced-
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order, fixed-configuration filters by Sims and Melsa (39,40).

Example

Consider the second-order nonlinear system described by

Xy = -2x, + x. + Yxp

1 2 2
,;2 = -x, + u(t) (3.16)
z(t) = x, + v(t)

1

where vy > 0, o > 1, and w(t) and v(t) are zero-mean, Gaussian, white
noise processes with variances Qw(t) = 1.0 and Qv(t) = 0.1, respectively.
Let the known initial conditionsvbe x1(0) = 0.0 and x2(0) = 0.1.

The linearized equation for §x(t) about the noise-free nominal

trajectory is obtained from (2.6) as

6x1

—26x1 + 6x2 + (pyxg§1(t))6x2
(3.17)

6x2 = -6x2 + w(t)

where xéN(t) may be determined as x2(0)e_t from (2.4). Using (2.8)-

(2.10), the variational Kalman filter is given by

~ > "t p—1 ~
4 = —26%, + 6k, t py(xg(o)e ) 8%,

o
el
1l

+ K, (6)[63(t) - o%,]
(3.18)

= —s%, + K, (t)[s2(t) - 6%,]

&
>
n

|

where

. 0 0
B (t) = A(6)P_(t) + P_(8)AT(t) - Pe(t)(1)q;1(t><o 1P (4) + (1)Qw(t)(0 1)

(3.19)
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and

A(t) = (3.20)

The discrete representation in (2.11) may be written as

6%4(ty 1q) = ot )ox, (8, ) + (% )oz(t)

oty )ox, (1) + 8(b)ex, (1) + 8(t)v,(8)  (3.21)

where £ = 1 and n = 2 in this example. Let the cost functionai J

corresponding to (3.1) be written as

J

1 K-1 . )
2 kzo Bk () = 075 ()17 (3.22)

which, as in (3.3), simplifies to
1 K-1
I=3 kzo (P1q (i) + Pop(tyq) = 2P (8 )1 (3.23)
The state transition matrix ¢(tk+1,tk) satisfies the matrix dif-

ferential equation
2(t,t) = A(t)o(t,t,)
(3.24)

@(tk,tk) =T

where I is the 2 by 2 identity matrix and A(t) is defined in (3.20).
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Let @(tk+1,tk) be expressed in component form for this problem as
1 2
bo1 %o

Numerical values for the component ¢ij's for each t, is determined by

k

sufficiently accurate digital computer programs for numerical integra-
tion.

1 R
The\P11(t ) matrix is determined numerically by integrating the

k+1
matrix differential equation (15)

o1 | _ 1 " T O)
Pyq(t) = A(£)P (8) + Py (£)A°(%) +<1 Q (£)(0 1) (3.26)

' .
Let P11(tk) be denoted as

(b)) pyo(t)
P11(tk) = , (3.27)

\

Pio(t,)  Doylty)

1 » ’
The time function P11(tk) is used as.a forcing function in the vector

1
difference equation for P12(t ) from (3.12) and scalar difference

k+1
equation for P22(tk+1) from (3.10). Let P12(tk) be denoted as

, P1og (ty)
P12(tk) A (3.28)

P1ob Yy

From (3.12)
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1]
911 %12 Py (t,)

Proltp) = D N olty)
P t
boq  bgp) NT12BT K
: . 1
019 b2\ /P11t pyolty) ]
+ | o e(tk)
1 1
bo1 %20/ \Pyalty)  Poplty)
(3.29)
Using (3.10) yields
P (%, ,.) = a2(t )P, (t.) + a=(t )p.. (t,) + (¢, )Q_, (t,)
Foplbypq) = 0 (o Pty ) + B (8 )P (8 )+ B(8 000,y
o+ 2a(t)8(5 )P, () (3.30)

The problem of determining just which of these difference equations
should be treated as constraint equations for optimization may be
resolved by forming the covariance matrix of the'augmented vector
~ T ) »
(ex(ty)  axg(s)"
1 ! !

Prelty)  Pplty) Py ()
sx(t,) ‘

1 t

1
Gxd(tk) ' '
Proalty) | Prap(ty)  Poolty)
Since only the first incremental state 6i1(t) is to be modeled by the

discrete filter in (2.11), the second row and second column of the

matrix in (3.31) are deleted and all other entries retained to give
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Pialty)  Ppolty) Pq(t)  Pioe(ty)
' = ' (3.32)
Piolty)  Poylty) Piog(ty)  Poolty)

Therefore, the scalar difference equation in (3.30) and the equation for

1
P12(tk) = P1Qa(tk) in (3.29) serve as the required constraint equations.

Note that if only Gxg(t) had been modeled by the discrete filter, then
the first row and first column would have been deleted in (3.31) and
all other entries retained. In that case the constraint equations

’ ]
would have been for P22(tk) from (3.30) and for p12b(tk) from (3.29).

The Hamiltonian is defined as

) +P. )] + P

22(t

=1 _op
H=7 [P, (% 2P, ,(t

11 % ie+1) It 12{te1 )22 (i)

+ P (3.33)

20t Moo ltyeyq)
Substituting (3.29) and (3.30) into (3.33) yields

3 P11 (p) + L3+ (b )1 62(6)P55(0) + 6%t )y, ()

H =
+ 824,00 (8,) + 2a(t)6(t )b, (8,)]
# 11+ A0 )1 1Coy1P10a () + 64904, (8 aty)

+ 86080401 () + 808, )0 p1o(t,)] | (3.34)

* ’
H (optimum) is found by setting

Bu?i#) =0=1 %  hop by )20 (8, )P, (1) + 28(tlc)p1'2a(tk)]

+[-1 + x12(tk+5)][¢11p;2a(tk) + ¢12p;2b(tk)] (3.35)
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oH

o __,_ 1
38(t) 0= 1[5+ Ayt

er) TRE(E IR, () + 28(8)Q (1)

+ 2u(tk)p;ga(tk)]
11 A ()T T0y4Pyq (8) + bypp(8)1 (3.36)

and substituting values of a(tk) and S(tk) into (3.34). Therefore, the

adjoint difference equations may be determined from (3.15) as

i | |
Malty) = P = [ 5+ Aty ) 1126t )8(8,)]
P14 () |
b4 () 14008 (3.3)
3*
=98 ____r1l 2
ol = = lat ALY (3.38)

The optimal discrete filter, constrained to be of the form in (2.11),
may be determined by solwving the two-point boundary value probiem
specified by the difference equations for p;ga(tk), P22(tk), A12(tk),
and X22(tk) in (3.29), (3.30), (3.37), and (3.38), respectively.
Observe that the use of H instead of H* in (3.37) and (3.38) requires
that the algebraic equations (3.35) and (3.36) must also be satisfied.
The standard formulation for the two-point boundary value problem
requires the inversion of the algebraic equations in (3.37) and (3.38)
to express the A's at time tk+1 in terms of the A's at time.tk. The
gradient technique is used to solve the constraint equations in (3.29)
and (3.30) and the adjoint equations in (3.37) and (3.38) without
inverting (3.37) and (3.38) or even solving (3.35j and (3.36) for a(tk)
and B(tk). In (34) a simpler problem was solved in which only the

discrete representation of system neise.(g(t)) covariance matrix qﬂd(tk)
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was to be determined. The initial starting value was chosen as
de(tk) = Qw/T’ where T was the integration step size, and the term
-e[aH/ade(tk)] was added to the previous value of de(tk) to obtain
the next iteration value. In this thesis research, arbitrary values
were assigned to a(tk) and B(tk) and then the constraint équations in
(3.29) and (3.30) were solved forward in time from t = 0 to t:=\tK.
Thereafter, (3.37) and (3.38) were solved backwards in time from t = tK
using x12(tK) = A22(tK) = 0. The values of u(tk) and B(tk) for the
next iteration were obtained by ;dding to the previous corresponding
values the terms -e1[3H/3u(tk)] and -32[3H/38(tk)], respectively, which

were evaluated by using the p's and A's from the last iteration in

(3.35) and (3.36).
Numerical Results

This section deals with the comparison of optimal discrete
representation results obtained using the two optimization techniques
described earlier.' These resultsvare compared for the first-order
example. The optimal discrete representations for the first and second-
order examples are presented using the optimization technique developed
in the last section.

The optimization techﬁique developed in last section was applied
to the first-order example given by (2.14). The example is rewritten

here as

x(t) = =x(t) + w(t)

(3.39)

z(t) = x(t) + v(t)
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The Hamiltonian for the cost functional given by (2.13) may be written

as

1

H= g Prglt) * Popltyg) = 220508001+ Poolty g Dyoltyey,)
+ Pon by gp ) | - (30
where
=(tyepq=ty)
Pioltyyq) = e lalty )Pip(tg) + 88 )Py, (1)) "
; (3.41
Papltir) = @ (6 )Pos(t) + B5(5IP (8 + €2(8 00, (8,)
+ 20t(tk)8(tk)P12(tk)
and P11(tk) is a known time-varying covariance of x(t) at t = tk. Now
| 3 _ ~_ 1 '
aalty) 0=1l3+ A22(tk+1)][2a(tk)P22‘tk) + 28t )P, 5 ()]
~(t, -t )
SRRV [CRES SN C)
- 1 (3.42)
FIC B I Moo (tycyq )1 (28 (8 )P (8] + 28(8,)Qp, (8,)
-(t, =t )
+20(t )P (8] + [=1 + 4, (8 D1l T B (4)]
The adjoint difference equations now may be written as
3H 1
ol = Ty = [ 3+ haaltyer)] 2alt s
-(t,  ,-t.)
F1-1 +ag,(t, e K
3H 1 > (3:43)

The results obtained by using the above optimization procedure and from

Fletcher and Powell's optimization technique are plotted in Figures 12
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and 13 for T = 0.1 and 0.5. The new optimization techniqueAshows
results that are better or at least ag good as those obtained from
Fletcher and Powell's technique. The results corresponding to the cost
functionals given by (2.12) and (2.13) are plotted in Figures 14 through
19 and are compared with the results obtained using the Euler Method.
The optimal parameters o and B were determined by using only (2.13) in
all cases. For all these results 100 Monte Carlo results were ensemble-
averaged at 10 points‘between zero and five seconds. It can be observed
that a considerable reduction in the error covariance was o6btained by
using these optimal discrete representations.

The results of the second-order nonlinear example given by (3.16)
are now compared with the results obtained by the Euler Method for
p = 3.0 and y = 0.5. The results of these twolare plotted in Figures 20
~ through 25 for the cost functionéls given by (2.12) and (2.13). Again,
only (2.13) was used in solving’for the optimal values of o and g.
For this second-order nonlinear exemple, the optimal discrete represen-
tations results also showed a considerable reduction in the error

covariance.
Summery

This chapter dealt with the development of the optimization
procedure which showed results that either surpassed or were as good as
those obtainéd using Fletcher and Powell's optimization technique. The
first-order linear and second—ordervnonlinear examples were used to
compare the optimal discrete representations with the results from the
Euler Method. A consideréble improvement was obtained by using the

optimal discrete representations.
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CHAPTER IV
ACCURACY-VERSUS-SPEED TRADEOFFS

In this chapter, accuracy-versus-speed comparisons are made for the
optimal discrete representation methsd developed in the previous
chapter. A procedure is developed for obtaining an acceptable accuracy
and speed under constraint conditions. The developed procedure is
illustrated by an example. A new cost functional is defined to allow

these tradeoffs between accuracy and computational speed.
Constraint Concepts

The search for extrema in optimization problems usually is
restricted by the parameters which define the region of search. Thus,
the goal is to obtain the best possible solution within the defined
region for search. Constraints in an optimization problem may be
clagsified as either soft constraints or hard constraints. For the
problems considered in this thesis, the cost functionals defined by
(2.12) and (2.13) are functions of the sampling period T. In the
earlier chabters, the value of T was assumed to be fixed. This aséump—
tion is replaced by a constraint condition in this chapter. If the
sampling period T was restricted, e.g. T < 0.2, then this constraint is
referred to as a "hard" constraint, as it is imposed directly on T.
This restriction reduces the region of search for the minimum value of

the cost functional. Under this condition the search direction is

69
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modified, if any viélation.of the constraint is made, to obtain the
constrained minimum. On the other hand, if T appears in an ddded
penalty term in the performance index, as in (4.3) below, the constraint
on T is indirect and is referred to as a "soft" éonstraint."Under this
condition the minimum value of J based on some given weighting parameter

Kc is to be obtained.
The Hard Constraint Case

As indicated in the previous section, the accuracy-versus-speed
problem may be treated in the context of a hard constraint. The cost
functionals defined in (2.12) and (2.13) were based on algorithm
~accuracy for a fixed step size T. It is important to be able to incor-
porate the computational speed requirement into the optimization format.
The computationalyspeed is directly proportional to the step size T.

For a fixed speed, i.e. > some minimum speed, T must be as large as

possible, i.e. since
Speed > Minimum speed (4.1)
then

TET : (4.2)

Since the J's in (2.12) and (2.13) are also directly proportional to T,
then the smallest T possible yields best accuracy, i.e. least error and
smallest J. Thus, a suitable tradeoff between algorithm accuracy and

computational speed would yield minimum J. The consequence ig that if
computational speed is treated as a hara coﬁstraint, then the step size

should be chosen as Tmin to yield the best accuracy, i.e. minimum value
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of J. Therefore, the results obtained in Chapter III are valid for this
case 1f the fixed step size T for the two examples corresponded to Tmin'
The speed of the particular digital processor being utilized in any

given application will determine Tmin'
The Soft Constraint Case

Let a new cost functional J which treats computational speed as a

soft constraint be defined by

T(ay8,T) = T (0,8,T) + Jor(T) (4.3)

ERROR EXEC(

where JERROR

tonically decreasing function of T, e.g. JEXEC

indicates that a penalty is incurred if the algorithm execution

is defined by (2.12) or (2.13) and JEXEC is some mono-

= Kc/T' The subscript

on Jpyrg
time is too large. Observe that, for fixed curves of o and B, JERROR
is a monotonically increasing function of T, since the error increases
as the step size increases. Since JERROR is directly proportional to T

and J. is inversely proportional to T, a suitable choice should be

EXEC
made to obtain the minimum J in (4.3). If T is chosen to be smaller
than the optimal wvalue, then the execution time would be high, which
corresponds to a lower computational speed. While the accuracy would be
improved somewhat, corresponding to a lower value of JERROR’ the higher
value of JEXEC would result in an overall higher value of J, as shown
in Figure 26. On the upper side of the optimal T, JERROR is higher and
JEXEC is lower, resulting again in a higher value of J than its minimum.
These curves of J were plotted for the first-order example given by

(3.39) for three different values of the weighting parameter K,

Observe that as the value of the weigﬁting parameter Kc increases, the
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Figure 26. Cost Functional J in (4.3) Versus T for Kc = 0.01, 0.05,
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value of the optimal T also increases, ihdicating that a faster

operating speed of the filtering algorithm is required.
An Example

To further illustrate the hard constraint case, digital computer
simulation results using 100 Monte Carlo runs are shown in Figure 27
for the optimal constrained (first-order) filter obtained by applying
the optimization algorithm to the second-order nonlinear example given
by (3.16). Comparisons are made with the second-order Adams-Bashforth
(AB2) and Runge—Kutta (RK2) formulas integrating the continuous
variational Kalman filter equations and with the RK2 formula integrating
the continuous extended Kalman filter equations (25,41). It was assumed
in the case of the optimal constrained filter that the choice of T was
T . . Observe that the value of T for the three comparison curves

min

(AB2va » RK2_ ., and Rngxt) was selected to yield approximately the

r
same filter computational time. On the other hand, the optimal con-
strained filter had a value of T = 0.1 seconds, which operated eight
times faster than tﬁe other filters. Thus, it can be concluded that the
use of the optimal constrained filter for on-line applications will

yield a lower error variance and will operate much faster than the

others filters.
Summary

This chapter dealt with the problem of speed and accuracy tradeoffs
for the optimal discrete representation developed in Chapter III. A
new cost functional J was defined to take into account the computational

time required by the filter. It was shown in this soft constraint case
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that an optimal value of T may be used to obtain the minimum J. Héwe§er,
the use of a different weighting parameter in thé cost functional
yielded different‘optimal values of T. The arbitrarinesé in selecting

| this parameter suggests that the computational speed-versus-accuracy
problem should be treated more properly as a hard constraint case. An
example was included for this case with compariéons between ABgvar’

RK2 and RK2 and the optimal constrained filter using T , .
var ext min



CHAPTER V
TRAJECTORY OPTIMIZATION

The simultaneous optimization of the nominal trajectory, the
incremental filtering algorithm parameters, and the discrete representa-
tion itself for a fixed wvalue of'T = Tmin is handled in this chapter.
Nonlinear examples are included to illustrate the procedure. The
coefficients a(tk) and B(tk) are simultaneously optimized with the
nominal trajectory to obtain the minimum cost functionals defined in

Chapter II.
Mathematical Development

The basic approach used hefe is the minimization of (2.13) subject
to (2.1)-(2.4), (2.6) and (2.11). As Bryson and Ho (42) and Denham (43)
indicated that the "besf":nominal;trajectory is not necessarily the
deterministic optimal trajectory, a procedpre for obtaining an improved
nominal trajectory is developed in this section. The Hamiltonian in
(3.14) is redefined with another % by % Lagrange multiplier A11(tk) for

P11(t ) which satisfies the boundary condition x11(tK) = 0. The

k+1
Hamiltonian is defined as

- 1 , T
B = Trace { 5 [Py (b ) + Pps(tyyq) = Pooltyy) - Pio(ty )]

T
)220 b))

(5.1)

) + P (%

+ P

T T
11 (e 29 () P12(tk+1)x12(tk+1 00
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Using (3.8), (3.25), (3.29), and (3.30) in the above equation yields
(3.35) through (3.38) by minimizing the Hamiltonian with respect to

a(tk), s(tk), P12(tk) and P22(tk). Further,

3
Ay (£) = =28 (5.2)
11k 3P11 tk
oH :
Tty = O (5.3)
xy (B

where ZN(tk) is the optimal deterministic trajectory.

Example

A second-order example given by (3.16) for p = 3.0 and y = 0.5 is
considered here again for trajectory optimization. The Hamiltonian in

(5.1) may be written as

+ 11

1
5 ¥ Aop(byyq 1P (tyeyq)

5+ At

BH=1 g+1) 1P19 (Bieyq)

+ [-1 + A (% ) (5.4)

12 (s P40 (b4

Using (3.8), (3.24), (3.é9), and (3.30) in the above equation yields

_ l 2 L U 2 1 .
= Lt g (g )T T039pyg () + 284000415(8) + 035p55(%,)

| Cict1 > 1 ‘ )
+Q [ 090t T)aT] g ()T Ta (8 )P, (1))

tk [

+ 826, )pr () + 82(£,)Q_ (1) + 20(t,)8(t)p],_ ()]
# L4 AU D100y () + 09004, (8 ) ()
+ 806 (61401, (8) + 6,015 (8,))] (5.5)

The minimization of the above Hamiltonian with respect to a(tk), B(tk),
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1 ' .
p12a(tk)’ and P22(tk) yields (3.35) through (3.38) and with respect to

1
ng(tk) and p11(tk) gives

3 a?t y =3 3¢2% ) [(% + x11(tk+1))[2¢11p;2(tk) + 2¢12Pée(tk)
Xon' “k XoN* "k \
s T b7
+ 30 (80 (1 + 155, (8,15 67T - - - g - Ty

b1 2t (el )Rl 5 (5) + Bl )pr,(6) ] =0 (5.6)

and
SH P 1 2
= Do ()0 + Do+ Aty ) 167 (%)
8p11(tk)

-

 where, from (3.24),

é(t;tk) = A(t)e(t,t,)

(5.8)
@(tk,tk) =1
Therefore,
-2 1M 5x2 (t) || ¢ ¢
: TN 11 12
o(t,t,) = | (5.9)
o - %21 %22
Agssuming that sz(t) is held constant over the sampling interval
T = tk+1_tk’ one has
019 (bepqot) = @
' 2 -T -T
¢12(tk+1,tk) =1+ 1.5x2N(tk)]e (1 -¢e7)
o (5.10)

b9 (biepqaty) =0
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: -7

bop(tycyqoty) = e
Therefore,

209904q )

T
2%y (%) :

= 3.0x2N(tk)e‘T(1 - e (5.11)

The numerical results obtained by using trajectory optimization are
compared with the results obtained from the optimal discrete representa-
tion and the Buler Method in Figures 28 through 31; These results
correspond to the cost functionals given by (2.12) and (2.13) and are
plotted for sampling times of T = 0.1 and 0.5. It should be noted that
the results obtained bj using trajectory optimizations are not exact
because of the approximations involved. It was assumed that x2N(t)

was constant over the sampling period T in obtaining (5.10) from (5.9).
It can be observed that except for one point in Figure 28, the
trajectory optimization method shows an improvement over the basic
optimal discrete répresentation. For higher step sizes, the results.
from trajectory optimizations approach the results obtained from the
optimal discrete representatibns (Figure 29). Figures 30 and 31 compare
the results obtained corresponding to the cost functional in (2.12).
This amounts to comparing the state estimate obtained from the
trajectory optimizétion and optimal discrete representation with the
results obtained from the variational Kalman filter. Since the
variational Kalman filter is not the best filter, because of the
approximations involved, the results from fhe trajectory optimization
and the optimal discrete represehtation are different from the results

obtained by usiﬁg the Fuler Method. As the step size T increases
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(Figure 31), it can be seen that the percent error increase in the
results of Euler Method is much higher than that of trajectory optimiza-
tion or the basic optimal discrete representation. Aﬁother example of
a highly nonlinear systeﬁ with a non-Gaussian noise input is chosen to
illustrate the improved results obtained by using trajectory optimiza-

tion as compared to the Euler Method and optimal discrete representation

results.

Ixample

A first-order nonlinear system (35,36) is given by

x = =0.5x + 0.25x3 - o.o35x5 + w(t)
(5.12)
z =x + v(t)

with x(0) = 1.5, Q, = 3.0;:Qv = 0.1, t, = 0.0, and t, = 1.5. The
probability density of the discrete samples was chosen according to the

non-Gaussian probability density function given by

6.5 VR, 4 wlg for -——:ﬂ——z: 2 owg S ——-—l-fi:
(\/de)13 (\/de)13

P (ws) =
Wa d
0 otherwise
(5.13)
The linearized equation for §x(t) about the noise-free nominal

trajectory is obtained from (2.6) as
5%(£) = (<0.5 + 0.75x2(t) = 0.175xe(£))ex(t) + w(t)  (5.14)

and the variational Kalman filter using (2.8) is given by



85

sx(t) = (A(t) - K(t))62(t) + K(t)8z(t) (5.15)
where
. P2(t)
Pe(t) = 2A(t)Pe(t) - Qv + Qw
A(E) = =0.5 + 0.75x2(t) - 0.175x)(+) (5.16)
and
P (t)
K(t) = =
QV

Using the Hamiltonian defined in (5.4) with

2A(tk)T
(e

_ 2 | _1)
i) = 0 Fq(y) + Q) 2A(t,) (5.17)

Pyq(t

where it is assumed that A(tk) is constant over the sampling interval

T = tk+1—tk, yields

B=[2+. (6, )10s7P,  (t) +Q ° -1 1+
T LD T A O e B Wy W 2A(t,
[ (6, )1002(t )P, (t,) + 82(8, )P, (t,) + 82(t,)Q
PP ALY 1’ 20 M /P11 b/ Qpq

+ 20(t,)8(8 )P (61 7+ [-1 + 2508, )T (alt )P (5,
+ (% )P (8))] , (5.18)
where
A(tk)T

0(tyyqoty) = (5.19)

An average value of xN was selected for the calculation of A(tk) over

the sampling interval T. The resulting A(tk) was
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(4, ) + x (8 )\ (6, ) + x (8 )\
At) = 0.5 + 0.75 <XN k+1 - A ) - 0.175 <XN k+1 5 A )

(5.20)

The minimization of the Hamiltonian in (5.18) with respect to u(tk),

Bt ), Pog(t), Poslty ), Pyslty ), and x (%) ylelds

AM(t, .. ,t, ) E
"’33%%i7"k— =[5+ 2y ()] 208 0P8, + 28(6,)7,5(8,)]
+ =1+ 2 ()0 (8 408 )P 5 (1)) (5.21)
PH(t, 5t )
1% _ 1
(6 203+ Aoplli I (P () + 8 (800,

+alt )P (8 )] + 11+ (8 ) Te (58 )P, (8)

(5.22)

H(t )

1412 B . Bty sty _q
oy (1) ax(t,)

%&5+“4%ﬁ”{%5“%)5ﬁ§7

, 5 aA(tk)
(2A(tk)¢ sgi%giy - B - ) EEE?§Z7)}

A2(tk)

+ 0.5Q

. ‘
axN(tk)

+ [(0‘.5 A, (8) {2¢P11(tk-1’) Bx;(t

+ (=14 A, 0, ) Calt)Po(h) + BLEIP (5,))

k

2 2 A )
<2A(tk_1)¢ Bx'N(tk) - (65 -1) ax‘N(tk) )}

Ag(tk_1)

(=1 () (@, )P (6, ) + 8t )P

+ O.SQ%

(t, ) —2—

11 k=177 3x(t,)

(4t )
(5.23)
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The adjoint difference equations now may be written as

Mty = ;ff%t_k-)- [+ Mg (g 167+ L3+ 250,165 (1)
b I+ ) T8 (E)
ralty) = Sifzt? = [ 34 At )2l )slt)  (5.24)
+ =1 a5 () T6alty)
Ago(ty) = aPzz*tk =1 3+ Aopltq)162(8,)

The trajectory optimization results using the ensemble-averaging of

100 Monte Carlo runs were combared with the Euler Method and the
optimal discrete representation results using the deterministic optimal
trajectory. The results are plotted in Figures 32 and 33 for T = 0.1.
Clearly; a considerable improvement is achieved by using the trajectory
optimization method as compared té.the other two methods for the cost
functional given by (2.13). It was assumed that A(t) given by (5.16)
was constant over the sampling period T in (5.19). An average value of

x,. was selected over the interval (t, ,t, ,.) to obtain a better approxi-
*N K

k+1

mation of A(t). This required the differentiation of H(tk+1,tk) in

(5.18) with respect to xN(tk) evaluated at (tk+1’tk) and (tk,tk_1) in
(5.23) (15). Thus, it can be concluded from the results obtained that
the trajectory optimization yields a considerable improvement over the
other two methods compared. The results in Figure 33 correspond to the
cost functional in (2.12). As shown in Figure 30 for small step sizes,
the Euler Method shows a lower error cbvarﬁance, while for higher step

sizes (Figure 31), the other two methods show lower error covariances.

Similarly, for the highly nonlinear system considered in this section,
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T = 0.1 is a large step size and, thus, the results are consistent with

those obtained earlier.
Summary

This chapter dealt with the development of the trajectory optimiza-
tion procedure. Two nonlinear examples were used to illustrate the
procedure. It was shown that a considerable improvement in the error
covariance was obtained by using this procedure as compared to the Euler

Method or the optimal discrete representation method.



CHAPTER VI
CONCLUSTONS AND RECOMMENDATIONS
Results and Conclusions

The basic contribution of this thesis research is the development
of an optimal discrete representation for the continuous filtering
algorithms for nonlinear stochastic systems. It was also shown that the
trajectory optimization results showed considerable improvements over
the existing methods. Two cost functionals were considered for
compafing the results obtained by using the optimal discrete representa-
tions based on the state and its estimate using the variational Kalman
filter. It was required for the two nonlinear systems considered that
the nonlinearity be analytic in a neighborhood of the nominal trajectory.
During the development of the complete optimization procedure, a first-
order linear system and two nonlinear systems were considered.

In Chapter II steady-state optimizations were performed on the
first-order linear example by using the Eu;er Method, the RK2 method,
and the optimal discrete representation method based on the two cost
functionals defined in that chapter. Since for linear systems the
Kalman filter is the best filter, the optimal discrete representation
results showed an improvement over the Fuler Method but failed to show
better results than the second—order RK2 method. For the second cost

functional given by (2.12), the optimal discrete representation
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demonstrated an improvement over both the Euler Method and the RK2
method. These results were reconfirmed in Chapter III, which dealt with
the development of the éptimization procedure based on a two-point
boundary value problem. Consistent results were shown for the second-
order nonlinear example, except for the cost functional given by (2.12).
Since the variational filter is not the beét filter for nonlinear
systems, the results for this cost functional were only relative. In
Chapter IV a procedure was developed for obtaining an acceptable
accuracy and speed under constraint conditions. A major contribution
was demonstrated in Chapter V by using trajectory 6ptimizations. It
was shown that a considerable improvement was achieved using trajectory

optimization based on the optimal discrete representations.
Recommendations for Further Work

There are several possibilites for the extension of the research
work performed in this thesis. The optimal discrete representation was
developed based on the first-order integration method. It can be
easily extended to include the higher order integration methods. The
basic ideé required would be the same as developed in this thesis
research. |

The basic concepts of this research can Be further extended to the
combined estimation and control problem. This extension will require
the development of a joint procedure which gives the optimal discrete
representation of the state estimate as well as the optimal variational
Riccati controller. A new cost functional will be required to obtain
the minimum J for the combined estimation and control problem.

A stochastic sensitivity analysis could be performed on the optimal
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discrete representation method developed in this thesis. This analysis
would be needed to determine system performance when the assumed
parameters and/or inputistatistics vary from the design values. This
extension will validate the optimal discrete representations for use
in practical stochagtic filtering and control applications.

If the input noise maﬁiices Qw and Qv in (2.9) and (2.10) are
themselves white noise processes, then a knowledge of stochastic
integration is needed to find Pe(t) and K(t), which will also be random.
The relationship between stochastic integration and numerical integra-
tion formulaé for deterministic systems should be investigated to obtain

the solution of the stochastic integration problem.
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