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Abstract. 

The Caucasus is a diverse region with many climate zones that range from subtropical lowlands 

to mountainous alpine areas.  The Caucasus region also contains irrigated agricultural lands, 

heavily vegetated wetlands, reservoirs, and canals in various states of repair. This study evaluates 

logistic regression models based on multiple optical water indices to establish the best-

performing water detection method (MNDWI) for three Landsat path/row tiles and introduces 

the optimal probability cut-off method (OPC).  The OPC logistic regression model is applied to 

the Caucasus region covering 19 Landsat tiles from May to October 2019.  The global water 

product from the European Commission Joint Research Center (ECJRC) (1) was used to 

generate training and validation data points by stratified random sampling.  We used 6745 

manually classified points (3261 non-water, 3484 water) to validate the OPC and ECJRC max 

extent water products' performance using an estimated proportion of area error matrix to evaluate 

accuracy.  This approach produced Max extent water maps with higher accuracy (89.2%) and 

detected 392 km2 more water than the ECJRC Max extent product (86.7%) for the entire year.  

Despite high levels of overall accuracy, the error matrix is evaluated using the proportion of area 

to create user’s and producer’s accuracy by class (2); we witness a significant loss in 

performance in detecting accuracy for the water class (15.6% OPC, 11.5% ECJRC). Evaluation 

of the accuracy of land cover products solely by overall accuracy can be misleading to the user, 

emphasizing the need for a more rigorous assessment of water detection performance metrics 

beyond the traditional methods of evaluating accuracy.    
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Chapter 1 

1. Introduction 

Water is arguably the most essential compound related to carbon-based life (3). However, our 

relationship with water can change with the quantity present in a system. Too much water 

Flooding can cause loss of life and disease prevalence, while drought can cause famine and 

dehydration (4). With satellite imagery availability starting in the 1970s, applying satellite data 

to detect water bodies has been an effective means to inventory and quantify the amount of 

surface water present at a location (5). 

The inception of the EROS (Earth Resources Observation Satellites) project was announced in 

September of 1966 by Department of  Interior (DOI) secretary Stewart L. Udall (6).  This 

program's design was, and still is, to observe and collect data about the Earth's natural resources 

using orbiting remote sensing satellite platforms.  Udall believed that this type of observational 

data would influence future resource management policies, stating that,  

"Facts on the distribution of needed minerals, our water supplies and the extent of water 

pollution, agricultural crops, and forests, and human habitations, can be obtained on a global 

basis and used for regional and continental long-range planning" (6). 

 The DOI, in collaboration with the National Aerospace and Space Administration (NASA), the 

US Geological Survey (USGS), and other agencies launched the Earth-observing satellites in 

July of 1972, referred to as the Earth Resources Technology Satellite (ERTS-1) or, starting in 

1975, as Landsat 1 (7).  Landsat 1 consisted of two systems, the Return Beam Vidicon (RBV), 

the primary, and the Multispectral Scanner (MSS), the secondary (8).  Since then, there have 

been seven more Landsat satellites, with Landsat 8 (OLI) being the most recent and Landsat 9 

scheduled for launch around September 2021(9). The Landsat satellite missions have provided 
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the world's most continuous Earth observation data for almost fifty years, generating its nine 

millionth image as of September 19, 2020 (9,10).    

The Landsat 8 satellite launched into orbit on February 11, 2013, from the Vandenberg Air force 

Base in California (11).  This satellite maintains a near-polar, sun-synchronous orbit at an 

inclination of 98.2 degrees (12).  At an altitude of 705 km, Landsat 8 orbits the Earth every 99 

minutes, with a 16 day revisit time(12).  Landsat 8 carries two sensors, the Operational Land 

Imager and the Thermal Infrared Sensor (TIRS).  The OLI has a nine-band capacity with a 

bandwidth range of 0.43µm to 2.29 µm at 30 m resolution. The panchromatic band (Band 8) has 

a resolution of 15 meters.  Two thermal bands make up the TIRS, ranging from 10.60 µm to 

12.51 µm at a resolution of 100 meters(11). 

In 2008, the USGS announced a change to its data distribution policy.  This new policy's goals 

were to provide up-to-date data products to all users and retain ownership of the data created by 

the Landsat Satellite series, including ensuring that all products are freely available or shall not 

exceed the cost of fulfilling user requests (13).  By 2016, after the launch of the Sentinel 1&2 

satellites, the European Space Agency also made its Earth observation data freely available.   

Following the release of such large quantities of data distributed freely to the public, data 

acquisition's monetary barrier was effectively removed.  Unfortunately, the amount of data 

available was disproportional to the general user’s ability to store and process data.  Using all 

these resources' full potential requires a high level of storage and processing capability which can 

be a significant barrier to many regular users (14).  The Google Earth Engine platform was 

developed to address this type of technological barrier to access.  Available to users at no 

monetary cost, the Google Earth Engine is a cloud-based platform designed to grant access to 

computing and storage resources to the general public, while paid commercial licenses are 
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available for commercial endeavors. The Earth Engine data catalog contains multi-petabyte 

analysis-ready geospatial datasets and eliminating the user's need to gain additional storage 

capacity.  This data can be obtained and manipulated by an application programming interface 

(API) available through the internet, including an associated web-based interactive development 

environment (IDE) that provides visualizations of the data (14).  Since 2017, several studies have 

been conducted to delineate surface water using Google Earth Engine (15–18).   

Numerous remotely sensed water detection indices had been developed by applying algebraic 

operations to specific wavelength combinations to take advantage of multispectral imagery and 

the unique spectral reflective qualities of water (16,19–27).   McFeeters (19) used a band ratio 

method derived from the normalized difference vegetation index (NDVI).  NDVI calculated by 

dividing the red (0.6 -0.7µm) and near-infrared (NIR) (0.7- 1.1µm) band's difference by its sum 

takes advantage of the contrast between the reflectivity of various land cover types to highlight 

vegetation and suppress all other land cover types present in multispectral imagery (28).  

McFeeters (19) found that this method could detect water by reversing the band order in the 

numerator and replacing the red band with the green.  This new band combination suppresses 

vegetation's spectral reflectance patterns while highlighting those of water, referred to as the 

normalized difference water index (NDWI) (19). 

The NDWI method for water detection, however, is not without its shortcomings.  The NDWI 

method tends to perform poorly in detecting water around areas that contain built-up or urban 

areas (20) and needs to be more resilient to misclassifying built-up areas as water; thus, a 

different band was selected.  Instead of the NIR band, Xu (2006) replaced this band with a larger 

bandwidth, the mid or shortwave infrared (SWIR) (1.55- 1.75µm) band creating the modified 

normalized difference water index (MNDWI).  Changing the NIR band with the SWIR band 
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results in lower index values for water than the NDWI method, suggesting a default threshold 

value of zero to delineate water features.   The generic threshold value of zero to detect water 

features is more of a starting point. An adjustment to the threshold value is needed to 

accommodate the variations in chemical and biological components and atmospheric conditions 

present during image acquisition (29,30).  Manual adjustment to the threshold value is a time-

consuming and subjective process that is not interchangeable between images (30,31).  Our 

method removes the need for the researcher to determine a threshold by allowing the individual 

logistic regression model for the scene to determine the optimal threshold. 

The South Caucasus region is made up of three countries: Armenia, Azerbaijan, and Georgia.  

This region hosts many different climate zones ranging from mountainous alpine climates to dry 

subtropical lowland plains (32–34).  From the 1800s, malaria has been prevalent in the Caucasus 

Region, with a recorded 600,000 cases in Azerbaijan in 1934 (35).  By the 1950s, the number of 

documented malaria cases totaled 781,239 (36).  After a comprehensive effort from the Global 

Malaria Eradication Campaign in the 1960s, the number of malaria incidents declined, and two 

malaria species were eradicated.  A third malaria species (P. vivax) escaped elimination and 

precipitated a surge of malaria cases in the mid-1990s (37).    Each of the three countries 

experienced land reform and privatization of the agricultural sector in the 1990s, which led to the 

segmentation of large agricultural plots into smaller private and commercially owned farms, 

leaving irrigation systems in disrepair or inadequate in some agricultural areas (32–34). 

The P.vivax species of malaria is vector-borne through the anopheles mosquito.   The anopheles 

mosquito requires persistent breeding pools caused by intraseasonal rainfall to proliferate.  A  

relationship can be observed between the increased surface area of persistent pools of water and 

the abundance of mosquitoes in mechanistic models (38).  It is essential to be able to inventory 
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the spatial distribution and area of standing surface water to understand the magnitude of 

potential breeding environments for mosquitoes.   Due to limitations of flight range and survival 

rate, mosquitoes are restricted to areas that contain persistent pools of water (39,40).  Human 

interactions with mosquitoes are most likely to occur in close proximity to mosquito habitats. An 

increase of mosquito breeding areas may contribute to an outbreak of malaria, making the 

detection and quantification of surface water in malaria-prone regions of great importance in 

predicting malaria-based endemics. 

This study aims to improve the band ratio water index's detective capability by establishing a 

relationship between water's spectral characteristics, the index value, and threshold selection 

using a logistic regression model to create probability maps and the optimal probability cut-off 

(OPC) method to generate water maps.  I will further this technique by applying the OPC method 

to the entire Caucasus region for the period May to October 2019.  Manual evaluation of training 

points can be a time-consuming, challenging process producing temporally static data that is less 

representative of the conditions as time increases from the acquisition date.  This study will be 

using open-source global water products through progressive time steps to train the logistic 

regression water model and OPC value.  I will show that it is possible to improve water mapping 

capabilities by taking advantage of existing land cover detection datasets to train and classify 

more accurate surface water maps. 

Chapter 2 begins with evaluating the performance of logistic water models and probability 

threshold using different water indexes to establish the index with the best performance using 

three Landsat tiles over two dates in Georgia, Armenia, and Azerbaijan. I compare the accuracy 

of water detection of the best performing logistical model to a global water dataset from the 

European Commission Joint Research Center (ECJRC).  
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 Chapter 3 expands this technique across 19 Landsat tiles for May-October 2019 in Georgia, 

Armenia, and Azerbaijan, using stratified random sampling of a global water dataset to generate 

training points for the logistic water model.  

Chapter 4 will consist of synthesis and general conclusions from the previous two chapters. 
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Chapter 2. Surface Water Detection in the Caucasus  

Worden, James, and Kirsten M. de Beurs. "Surface water detection in the Caucasus." 

International Journal of Applied Earth Observation and Geoinformation 91 (2020): 102159  

1. Introduction 

The importance of water, as it relates to living organisms on this planet, cannot be 

overstated.  Water is the essential chemical compound that allows for the creation, existence, and 

propagation of the species that claim their residence on Earth.  This fact especially holds true for 

the coexistence of human populations in rural and urban developments and the natural 

environment for the mosquito and transmission of the vector-borne disease of malaria.  In 2017, 

the World Health Organization (WHO) reported 219 million malaria cases and 435,000 malaria-

related deaths worldwide(41).  From the 1800s to around the first 25 years of the twentieth 

century, malaria was prevalent in Russia and the Soviet Union. It was especially dominant in the 

Caucasus region of Georgia, Armenia, and Azerbaijan (36).  In 1934, there were almost 600,000 

reported incidences of malaria in Azerbaijan (35).  After the completion of the Global Malaria 

Eradication Campaign, there were no reported cases of malaria by 1960 (37).  However, after the 

collapse of the Soviet Union, the number of reported malaria in cases rose again to 667 cases (in 

1994) and jumped to 13,135 cases by 1996 (41).  After the outbreak of malaria was observed, 

control and prevention measures were subsequently implemented on a large scale between 1997 

and 2011 (41).  

Malaria is a vector-borne disease that is caused by Plasmodium and distributed by 

Anopheles mosquito (42). The Anopheles mosquitoes are reliant and limited to breeding habitats 

that contain standing water.  Evaluating precipitation patterns, a relationship can be made 

between rainfall and mosquito abundance.  For example, a numerical simulation has shown that 
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39% of simulated variances in the abundance of mosquito populations can be attributed to the 

pattern of intraseasonal rainfall (43).  

 Remotely sensed data are often used to identify surface water in a landscape (5,26,44–

46). To observe and measure the variability of the surface water, a water index and threshold can 

be established for the detection of water bodies and the calculation of the total surface area.   

Over the last 25 years, numerous remotely sensed indices have been developed for the detection 

of open surface water (19–21,45). These surface water indices typically use band math to 

emphasize the spectral reflectance characteristics of water features, while suppressing the 

characteristics of non-water features.  Using a water index to delineate water features from other 

types of land cover typically requires the use of a cutoff or threshold value to establish the 

requirements a specific pixel needs to meet to be classified as water.  Unfortunately, the 

performance of these water indices can vary spatially (30,47,48). Different water indexes use 

different band combinations that can provide varying results, dependent on the distribution, type, 

consistency of surrounding land cover, and mixed pixel composition.  Mixed pixels result from 

the presence of two or more land-cover classes contained in a smaller surface area as compared 

to the native resolution of the image.  Ji (2009) found it necessary to evaluate different water 

detection indexes to determine the method that performs best for the study region, as well as, the 

importance and need to ascertain an appropriate threshold for that region to segregate waterbody 

features from other land-cover types effectively. Nevertheless, in recent years, several global 

water datasets have been developed (1). 

The Caucasus is an important global diversity hotspot and hosts a wide variety of surface 

water features, including major transboundary wetlands, in addition to large areas with irrigated 

agriculture and newly developed fishponds. In this study, we aim to evaluate different spectral 
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indices that delineate bodies of water from other topographical features in the Caucasus, to 

establish the most effective and accurate method for obtaining surface water area. Thus, different 

from other studies, we aim to capture predominantly human-made water bodies such as irrigation 

channels, making it especially important to distinguish these features from impervious surfaces.  

Besides evaluating different spectral indices, we will also compare our results with water maps 

from a globally available water dataset.  

2. Study region 

Georgia (69,700 km2), Azerbaijan (86,600 km2), and Armenia (29,743 km2) make up the 

southern Caucasus (Transcaucasia), an agrarian, mountainous, region flanked by the Caspian and 

the Black Sea, with Russia to the north and Iran and Turkey to the south (Figure 1). The region 

was part of the Soviet Union until its fall in 1991. The Greater Caucasus Mountain Range and 

the Lesser Caucasus Mountain Range create substantial elevation differences in all three 

countries, resulting in highly variable climates, ranging from cold alpine to humid subtropical.  

Agriculture is an essential component of the economy in the Caucasus. For example, in 

Armenia where 62% of the land is allocated to agricultural production (80% of the crops 

irrigated), agriculture accounted for 19% of Armenia’s gross domestic product (GDP) and 

employed 39% of the labor force (49).  In Azerbaijan, 80% of agricultural production comes 

from irrigated lands, and agriculture employed 39.7% of the country’s labor force in 2010 (50). 

In Georgia, the agricultural sector employs 52.3% of the country’s labor force, which has 

remained relatively unchanged over time.   

After the collapse of the Soviet Union, the agricultural regions in all three countries changed 

rapidly. For example, in Georgia, the croplands were re-distributed to rural families after 1992, 
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and about 80 to 90% of the newly created farms were less than 0.01 km2 in size.  After this 

redistribution about 23% was owned by private farmers, 10% leased to farmers, with the 

outstanding 67% held by the state.  This process fragmented the agricultural sector leaving the 

irrigation infrastructure to these farms inefficient or insufficient in areas (33).   In Armenia, the 

Agrarian reform and land privatization also fragmented large agricultural farms into 338,000 

smaller farms.  Here the area of irrigated lands was halved, also making irrigation and drainage 

systems unreliable (33). Poor management in an aging infrastructure led to the majority of the 

irrigation systems being in poor condition in Azerbaijan (50).  The deterioration of the irrigation 

and drainage infrastructure in all three countries has led to soil pollution from pesticides and 

fertilizer, contributing to an increase in soil salinity in the region (50).   
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 Figure 1: (A) Overview image of the Caucasus study region, (B) the Azerbaijan 

Landsat 8 tile 168/032 (6,5,7 RGB), (C) the Georgia Landsat 8 tile 170/031 (6,5,7 RGB), (D) 

The Armenia Landsat 8 tile 168/033 (6,5,7 RGB). 

 

A) 
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Data 

3.1 Google Earth Training and Validation 

We manually identified 1000 validation and training (30m by30m) grid cells (600 

land/400 water) for each of the three study areas using Google Earth images. Since we are 

explicitly interested in the detection of water, but water is a relatively rare class, we have 

developed a two-track validation approach. We first select 600 random points on the landscape. 

In the second step, we randomly select 400 points over areas identified as water according to the 

European Water Extent product, discussed below. For each of these stratified random samples, 

we visually evaluated the type of land cover, as well as the percentage of the land cover type that 

each point contained based on Google Earth imagery (5744 total points).  We then randomly 

divided the classification points into 200 validation and 800 training points. The training points 

were used to develop the classification of open surface water, and the validation points to assess 

the accuracy of the water detection product.  The majority of the Google Earth imagery was 

recorded after 2018; however, some imagery ranged back as far as 2008.  

3.2 Landsat 

We selected six level 2 Landsat 8 (OLI) satellite images from Earthexplorer 

(earthexplorer.usgs.gov) of the United States Geological Survey (USGS), at a spatial resolution 

of 30m.  These level 2 images are already atmospherically corrected, and we selected images that 

contained less than 30% cloud cover per scene.  Three Landsat 8 path/rows, one for each country 

were used for this project (Table 1).  For each country, we selected one image during July and 

one image during October, which coincides with a dry and wet period. We mask each image 

based on the provided cloud mask. 
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Table 1.  Summary of path/row and acquisition date of Landsat 8 OLI images from the 

three study areas located in Armenia, Azerbaijan, and Georgia. 

 Georgia Armenia Azerbaijan 

Landsat 8 Path/Row 170/031 168/033 168/032 

    

Landsat 8 - Date 1  07/03/2017 07/28/2017 07/21/2017 

Landsat 8 - Date 2  10/07/2017 10/25/2017 10/25/2017 

 

Based on extensive literature review, we selected the following water indices for 

evaluation (Table 2):  the Normalized Difference Water Index (NDWI; McFeeters 1996), the 

modified Normalized Difference Water Index (MNDWI; Xu 2006), the Automated Water 

Extraction Index; the shadow and non-shadow (AWEIsh and AWEInsh; Feyisa et al. 2014), and 

a water classification algorithm based on both MNDWI and EVI/NDVI (27).  The NDWI uses 

the reflected visible green (0.52-0.60µm) and the near-infrared (NIR, 0.7-1.4µm) wavelengths to 

enhance the spectral characteristics of surface water.  Mcfeeters (1996) formulated the NDWI 

using the Band Ratio Parameter (BRP), defined as subtracting the NIR band from the green band 

and dividing the difference by the sum of the two bands.  This combination of the NIR and green 

wavelengths gives positive values to water features and zero or negative values for vegetation 

and soil when applied to a multispectral satellite image (19).  

Xu (2006) found that NDWI enhanced water features in multispectral satellite images but 

could not effectively suppress built-up land features present in the scene.  To address this issue, 

Xu (2006) introduced the modified NDWI (MNDWI).  An examination of the spectral 

reflectance patterns for built-up land, vegetation, and lake water exhibited a higher average 

reflectance in the shortwave infrared (SWIR,1.55-1.75µm) band range when compared to the 

green band.  The MNDWI uses the same form as the NDWI but instead uses the SWIR band in 

place of the NIR band to increase the enhancement of open water features.  Despite being 
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resilient to built-up land features, the MNDWI has difficulties in distinguishing low albedo urban 

surfaces and shadows from water (21).  To further suppress the misclassification of water from 

shadowed and other non-water surfaces, the automated water extraction index (AWEI) was 

introduced.  As a result, two different equations are presented to improve the accuracy of water 

extraction, while suppressing non-water pixels: AWEIsh and AWEInsh. The AWEInsh index 

was created to reduce the confusion between water and non-water pixels, as well as dark surfaces 

included in urban background areas.   The subscript “nsh”, or non-shadow, identifies the index is 

best suited for areas where shadows are not present or pose no problems for classification (Table 

2). Surfaces that contain shadows exhibit low reflectance patterns over the spectral range and 

also vary in the magnitude of this low reflectance as the surface characteristic changes. 

In some cases, the AWEInsh equation may not effectively eliminate all shadow types and 

surfaces of low albedo.  With these limitations in mind, the second equation, “AWEIsh” was 

formulated to increase the separability of water from shadows and other dark surfaces.   The 

subscript “sh”, or shadow, indicates that the index is designed to improve the accuracy of water 

feature extraction in scenarios where significant sources of shadow (urban/mountain) are present 

(Table 2). The AWEIsh may misclassify surfaces as water in areas that contain highly reflective 

surfaces, including snow, ice, and urban locations with reflective roofs (21).  Zou et al. (2017) 

use a combination of the MNDWI and vegetation indices, the Enhanced Vegetation Index (EVI) 

and the Normalized Difference Vegetation Index (NDVI), to reduce the potential commission 

error of vegetation over wet surfaces.  This algorithm requires the MNDWI value of the pixel to 

be higher than the value of NDVI or EVI and contains an EVI value of less than 0.1 to be 

classified as water (Table 2).    
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Table 2.  Explanation of band combinations based on Landsat 8 OLI data, and potential 

threshold values from previous studies used to extract water pixels from images  

a: (20); b: (30); c: (47); d: (21); e: (51); f: (52)    

  

Water Index Equation 

Potential  

Threshold  

Values 

NDWI 

McFeeters (1996) 

(𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅)
 

0 – 0.337a                    

0.015 – 0.017b  

-0.19 – 0c 

0.3877e 

-0.21f  

MNDWI 

Xu (2006) 

(𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1)

(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1)
 

0 - 0.09a                                               

-0.05 - 0.06c                               

0.005 – 0.6d  

0.35e 

0.00f 

AWEIsh 

Feyisa et al. (2014) 

𝐵𝑙𝑢𝑒 + 2.5 × 𝐺𝑟𝑒𝑒𝑛 − 1.5 × (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1)

− 0.25 × 𝑆𝑊𝐼𝑅2 

-0.15 - 0.045d                                        

-0.1 - (-0.03)c  

0.1112e 

-0.02f 

AWEInsh 

Feyisa et al. (2014) 

4 × (𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1)

− (0.25 × 𝑁𝐼𝑅
+ 2.75 × 𝑆𝑊𝐼𝑅1) 

-0.15 - 0.045d     

 -0.1 - (-0.02)c 

0.1897e 

-0.07f   

Water 

Classification 

Algorithm 

Zou et al. (2017) 

[(MNDWI > NDVI or MNDWI > EVI) and 

(EVI > 0.1)] 
n/a 
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3.3 European Water Maximum Extent Dataset 

We also evaluate the Global Surface Water Explorer (https://global-surface-

water.appspot.com/) developed by the European Commission’s Joint Research Centre (ECJRC) 

as it is a freely available global dataset.  This water dataset was derived from the entire inventory 

of the Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper-plus 

(ETM+), and Landsat 8 Operational Land Imager (OLI) brightness temperature and top-of-

atmosphere reflectance, orthorectified images, that were obtained from March 16, 1984, to 

October 10, 2015 (1).  The Global Surface Water dataset contains several different water metrics. 

For this study, we selected the maximum water extent product, which renders information on all 

regions that have ever detected water over the course of the 32-year period and the water history 

product, which aggregates this data on a monthly scale   The dataset was created by applying an 

expert system classifier that segregates the pixel to one of three target classes, water, land, and 

non-valid.  This system establishes the parameters to classify bodies of water by using a decision 

tree based on rules containing a dichotomous conditional and inference framework. The 

equations describing the conditional parameters are built upon a spectral library, established 

from visually evaluated samples of 64,254 points over 9,149 Landsat scenes, and enhanced by 

deriving the NDVI and a standard color-space transformation of the Hue-Saturation-Value 

(HSV) for the SWIR2 (2.08 – 2.35µm), NIR, Red and NIR/Green/Blue band combinations.  

Evaluating the order of reasoning applied by the inference engine gives insight into the factors 

that lead to pixel classification.  This allows for the identification, correction, and improvement 

of the shortcomings inherent in the developed evidential reasoning through an iterative process. 

This process is repeated until the system can be improved no further, and subsequently applied to 

the entire Landsat dataset.   

https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
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3.4 Shuttle Radar Topography Mission 

 The Shuttle Radar Topography Mission (SRTM) is a high-resolution digital elevation 

model (DEM) available for 80% of the Earth’s land surface.  This data was acquired from a 

collaborative effort by NASA, the German and Italian Space Agencies, and the National 

Geospatial-Intelligence Agency (NGA) over a ten-day operational flight period of 149 orbits in 

February of 2000 (53).  The SRTM utilized C band (5.6cm) and X band (3.1cm) synthetic 

aperture radar systems, designed to function as a single-pass interferometers.  With a 1 arc sec by 

1 arc sec sampling resolution, the SRTM Data were to be sampled with a linear vertical 

absolute/relative height error of fewer than 16 m/10 m and a circular absolute/relative 

geolocation error of less than 20 m/ 15 m (53). We use the DEM dataset to create a slope raster 

for the elimination of confusion between water pixels and pixels containing mountain shadows. 

3.5 Global Man-made Impervious Surface Dataset 

The Global Man-made Impervious Surface (GMIS) data set is created from the freely 

available satellite imagery from the 2010 Global Land Survey (GLS) (54).  To mitigate the 

spectral confusion of urban areas with bare surfaces and fallow lands, a non-urban mask is 

created from nightlight data and other sources of ancillary data (55).  To produce training data to 

train the cubist regression tree algorithm, 1,800 high-resolution scenes were obtained from the 

NGA WARP website to form relationships between the spectral values of Landsat data and 

subpixel imperviousness (Brown de Colstoun et al., 2017).  This dataset is provided in GeoTiff 

raster files containing two bands: percent imperviousness and standard error in percent 

imperviousness.  This data set is used to create an impervious surface raster mask to eliminate 

urban pixels that may be misclassified as water.  
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4. Methods 

The goal of this study is to evaluate the European Monthly History Water dataset, as well 

as a variety of water indices developed in the literature to establish which index performs best for 

the Caucasus region. Also, we present an alternative method for the detection of surface water in 

this region. We validate all datasets against validation points selected based on Google Earth 

images. A mask is applied to omit noise originating from cloud and snow pixels from the logistic 

modeling process. The snow/cloud mask is then applied along with the urban/ shadow mask to 

remove the misclassification of these phenomena from the final surface area calculation.  Figure 

2 provides an overview of the applied methodology.  
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Figure 2.  This figure displays the workflow process for the extraction of surface water 

body area from water index probability maps.  For consistency and continuity, the 

Cloud/Snow/Urban/Shadow mask was applied when comparing the surface water area of 

Zou et al. 2017 and the probability maps for the wet/dry seasons. 
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4.1 Logistic Regression 

We apply a logistic regression model to link the Google Earth identified water points with the 

satellite-derived water indices. Logistic regression models have been widely used to provide a 

probabilistic classification of land cover type based on values of a given set of predictors derived 

from remotely sensed data (44,46,56,57). Others stated that the logistic regression performs well 

for testing hypotheses and describing the relationship between predictor variables and a 

categorical outcome variable (58).  The variables used in logistic regression may be discrete, 

continuous, or a combination of both classes, and a normal distribution of the data is not required 

(57).  The probability equation for the logistic regression is described as follows: 

𝑝 =
1

1+𝑒−(𝑏𝑥+𝑎)
       (1) 

Where b represents the slope value of the index, x represents the index point value, which 

in our case is the derived water index, a represents the y-intercept value, and 𝑝 represents the 

resulting probability value, which provides the probability that an individual pixel contains 

water.   

4.2 Optimal Probability Cut-Off  

To derive a binary water surface map from a spectral water index, a threshold (or cut off 

value) is required.  The selection of a threshold is critical to the performance of a selected 

index’s ability to identify the land cover feature of interest.  A threshold set to a large value has 

the propensity of creating a product that has an increased omission error and resulting in the 

identification of a smaller magnitude of the number of water bodies detected.  A threshold set to 

a small value will result in a larger number of water bodies identified in the scene but also is 

more likely to misidentify land features as water.  As table 2 demonstrates, selecting the 
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threshold value to distinguish between water and other land surfaces is not straightforward, and a 

constant value cannot be used for all scenes due to the variations of the temporal and subpixel 

land-cover components in the scenes.  This changing of physical and temporal characteristics 

between scenes makes the threshold value dynamic in nature, making it necessary to evaluate 

and establish the threshold that is appropriate for the region of study (30).  There have been 

several methods used to determine a threshold that provides a cut-off parameter to minimize the 

commission and omission errors inherent in segregating land cover into classes.  Jiang et al. 

(2014) applied a series of water index thresholds values from -0.1 to 0.1 in increments of 0.01, 

evaluated via visual inspection and pixel by pixel assessment of the image, along with using 

high-resolution images from Google EarthTM as a complementary reference in order to assist in 

distinguishing confusing water pixels from mountain shadows or urban areas.  

In the modification of the normalized difference water index, a series of thresholds tested 

manually were adjusted and evaluated by confusion matrices produced with a pixel-by-pixel 

comparison between the predicted and reference images (20).  Others also used a “trial and 

error” method, stepping through a series of thresholds with 0.05 increments between -1 and 1, to 

find the highest overall accuracy and kappa (51).  

The AWEI water extraction index considered multiple thresholds by calculating commission and 

omission errors and plotting the percentage errors against threshold values (21). The commission 

and omission errors were established by comparing the reference data by manual digitizing 

multiple polygons evenly distributed on true-color composites of Landsat bands to the threshold 

values selected.  The intersection point of the commission and omission errors was regarded as 

the optimal threshold value for the index in the study area (21).  From the water delineation 

indices previously described, the method for determining the most accurate threshold for these 
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water detection studies involves a manual pixel-by-pixel or use of manually digitized polygons 

to evaluate and assess the performance (or overall accuracy) of the selected water index.  This 

process works well for studies that involve evaluating a hand full of images from different areas.  

Unfortunately, this method proves inefficient when applying such a technique of thresholding to 

large-scale regions of study across time series on a decadal scale, due to the temporal and 

physical variations between the areas.   

 To compensate for the variability of thresholds between scenes, we propose that the 

threshold selection process should represent the dynamism of variability inherent in each scene.  

This can be achieved by allowing for the temporal and physical characteristics present in each 

scene to determine its own threshold value. In general, there are two statistical approaches used 

to approach the issue of identifying and applying an optimal threshold, the use of the Receiver 

Operator Characteristic (ROC), and the application of an appropriately selected statistical test 

(59).  In this study, we will be focusing on the former.  The OPC is an iterative process that 

applies all possible probability cut-off values to the actual and predicted values of the selected 

index to determine the cutoff value that produces the highest degree of accuracy for classifying 

water that best fits the regression model established by the validation points.  From the resulting 

OPC value, a comparison of accuracy can be made between the different water indices  

4.3 Cloud, Urban areas, and Mountain Shadow Removal 

The loss of data due to cloud cover is a natural and unavoidable phenomenon woven into 

the nature of optical satellite remote sensing.  To ameliorate this issue, we remove the clouds 

present in the scene by applying a cloud mask derived from the pixel QA raster included with the 

Landsat image.  While this method eliminates the data obscured by clouds, the benefit is that the 

non-selective scattering characteristic of the cloud is not misclassified as water.   
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Each of the water detection methods applied in this region struggled with the 

misclassification of water pixels due to the presence of built-up, mountain shadow, and snow 

cover in the scene.  To assist in the removal of mountain shadows in the image, the SRTM digital 

elevation model was used to create a slope value raster of the region.  To effectively remove 

unwanted mountain shadow from the scene, areas with a slope of more than ten percent were 

masked out. The distribution and composition of urban land cover vary between locations. For 

this reason, the Global Man-made Impervious Surface (GMIS) dataset is used.  Pixels with more 

than ten percent impervious surface, according to the GMIS dataset, were masked out.  

4.4 Evaluation of Index Performance  

 To compare the performance of the different water indices, we calculated accuracy 

measures for each season (wet/dry) and each research area using the Google Earth validation 

points. The ROC, sensitivity, specificity, concordance, and overall accuracy for all water 

detection methods and areas are evaluated and compared to determine the best performing index 

for the region.  The ROC curve is a visual representation of classifier performance, derived from 

plotting the false positive rate (FPR) against the true positive rate (TPR). This curve establishes 

the boundaries of a test’s capability to differentiate between two different states (60).  Others 

disclosed the advantage of using a ROC curve to measure the performance (accuracy) of the 

different water detection methods (61).  To assess the discriminative ability for a model of 

logistic regression, a concordance statistic is also calculated.  The concordance statistic is a unit-

less index that indicates the likelihood that a pixel selected at random that has water present will 

have a higher value of predicted probability, as opposed to a randomly selected pixel that does 

not contain water (62).  This value is derived from the proportion of the pairs of pixels that 

contain water and their predicted probability, with the pairs of pixels and probability values that 



24 
 

do not contain water (63).  A concordance result with the value of one represents the quality and 

reliability of a perfect classification model. The TPR (also known as sensitivity) is a ratio that is 

calculated by dividing the number of true positives (TP the number of correctly classified 

positive) by the sum of the true positives and false negatives (the number of incorrectly classified 

positive states).  Sensitivity is the measure of the accuracy of an index for water detection.  The 

value range of sensitivity is between 0 and 1.  The closer the value is to one, the higher the 

magnitude of confidence in the actual existence of water in that pixel (64).  Specificity is a ratio 

calculated by dividing the number of the true negatives (the number of correctly classified 

negative states) by the sum of the true negatives and false positives (the number of incorrectly 

classified negative states).  The values range from 0 to 1, and the closer the value is to 1, the 

higher the confidence in the actual non-existence of water in that pixel (64).  The overall 

accuracy of the individual models tested is calculated by summing the number of true positive 

and true negative classification points and dividing by the total sum of all classification points.  

The result is then multiplied by 100, and the value obtained is the overall percent accuracy of 

water classification for the specific detection method.  To determine the highest performing 

water index, each method was evaluated individually for their performance in each category.  We 

assigned a value of one to the highest performing index and a value of zero to all other indices.  

The index with the highest summed value across all metrics will be determined as the best 

performing water detection model for use in the Caucasus region.  

5. Results 

We have evaluated four different optical water indices (NDWI, MNDWI, AWEIsh, 

AWEInsh, and the method described in Zou et al. (2017) to identify water in the three different 

countries that make up the southern Caucasus region. We also have evaluated the performance of 



25 
 

these indices on a seasonal scale (July vs. October) and by combining all results within one year. 

Below we will first provide the overall accuracy by country and month for each of the water 

indices. We then present results on the overall estimated water surface based on the European 

Monthly History Water dataset from the ECJRC. We will also describe some general errors 

when detecting water with optical indices.   

Table 3: Results of Logistic Regression and the OPC  values. An optimum probability cut-

off of 0.227 (NDWI), indicates that a water present/absent map is most accurate if any pixel 

with a probability of more than 0.227 is set to water. Note that the probability cut-off for 

the European Monthly History Water dataset is close to 0, since any probability that water 

is detected should be selected as water present.  

 Slope Intercept Optimum 

Probability cut-off 

European Monthly 

History 

4.911 -3.014 

 

0.049 

NDWI 6.975 

 

-0.095 

 

0.227 

 

MNDWI 5.864 

 

-0.765 

 

0.182 

 

AWEIsh 9.708e-04 

 

6.642e-01 

 

0.527 

 

AWEInsh 4.938e-04 

 

1.091 

 

0.419 

 

Zou et al. 2017 3.357 

 

-1.568 

 

0.177 

 

5.1 Water index accuracy by seasons and country 

Based on the Google Earth selected random validation points, we determined the overall 

accuracy for each water index by season and country (Table 1). Apart from the method described 
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by Zou et al. (2017), we found that the overall accuracy was relatively high for all countries and 

all indices. Generally, the indices appeared to perform best for Azerbaijan, with overall accuracy 

above 95% for all indices, and worst for Georgia, with all indices revealing an overall annual 

accuracy of slightly greater than 90%.  The method described by Zou et al. (2017) exhibited the 

weakest performance out of all tested indices (overall accuracy 78%).  This method performed 

the best in Georgia (accuracy 79% and the worst in Azerbaijan (accuracy 63%expressing an 

inverse trend of accuracy compared to the other tested indices in individual countries. 

Table 4: Overall accuracy for each water index by seasons and country. 

                Annual Georgia Armenia Azerbaijan All Countries 

European Monthly History 89.4% 90.7% 96.1% 92.2% 

July 88.6% 88.9% 96.4%  

October 90.5% 92.6% 95.9%  

MNDWI - Annual 90.9% 93.0% 95.7% 93.0% 

July 91.8% 92.4% 96.4%  

October 90.6% 94.8% 94.9%  

AWEIsh - Annual 90.6% 93.6% 96.3% 93.3% 

July 91.8% 92.4% 96.4%  

October 90.0% 94.8% 96.1%  

AWEInsh - Annual 90.1% 93.6% 96.5% 93.1% 

July 91.3% 92.4% 96.4%  

October  88.9% 95.4% 96.6%  

NDWI - Annual 90.9% 92.4% 94.4% 92.3% 

July 91.8% 91.3% 94.4%  

October 90.0% 93.6% 94.9%  

Zou et al. 2017 79.9% 78.8% 63.0% 78.0% 

July 82.5% 77.8% 63.0%  

October 77.2% 80.0% 63.5%  

 

Using the OPC  value, we calculated accuracy percentages for each index.  To better 

understand the under and overestimations that make up the overall accuracy, we have calculated 

these percentages for each index (Table 5). The European Monthly History Water dataset reveals 

an underestimation of water pixels, underestimating 15.7% of the water validation points.  All 
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the evaluated indices tended to overestimate water pixels, with MNDWI having the most 

significant percentage of overestimation at 11.6% and AWEIsh the lowest percentage at 9.0%.  

The water detection method described in Zou et al. 2017 had the highest percentage of 

underestimated water pixels at 23.2%, while AWEInsh recorded the lowest percentage of 

underestimated water pixels at 5.1%, based on the collected Google Earth validation data.  

Table 5: Percentages of over and underestimation of validation water pixels.  

All Areas Annual  Overall accuracy Under Estimated Over Estimated 

European 2017 Water Map 

 
92.2% 15.7% 4.27% 

MNDWI 93.0% 5.2% 11.6% 

AWEIsh 93.3% 5.7% 9.0% 

AWEInsh 93.1% 5.1% 10.7% 

NDWI 92.3% 6.6% 10.3% 

Zou et al. 2017 78.2% 23.2% 10.9% 

  

The difference in overall accuracy between the four methods and the ECJRC Monthly 

History product was less than 1% (MNDWI, AWEIsh, AWEInsh, and NDWI). Thus we 

evaluated other performance metrics of sensitivity/specificity, concordance, and ROC area 

(Table 6).  Evaluating each method by study area on an annual scale and using the other 

performance metrics (Table 6), we determine that the MNDWI performed the best in Georgia, 

Armenia, and Azerbaijan. We found that the sensitivity, ROC area, and concordance were 

highest for the MNDWI index. 

  



28 
 

Table 6: Other performance metrics to evaluate water index performance 

All Areas Annual Overall 

Accuracy 

Sensitivity Specificity Concordance ROC 

Area 

European Monthly Water 

History   

92.2% 0.843 0.957 0.807 0.900 

NDWI 92.3% 0.850 0.956 0.949 0.949 

MNDWI 93.0% 0.885 0.950 0.957 0.957 

AWEIsh 93.3% 0.870 0.962 0.953 0.952 

AWEInsh 93.1% 0.885 0.952 0.938 0.935 

Zou et al. 2017 78.2% 0.850 0.956 0.327 0.658 

 

5.2 Water surface area 

To understand the total surface area estimates, we calculated the total water surface for 

each index and each country and season (Table 7).  The estimation of surface water area between 

the four water index probability maps was reasonably consistent when compared to each other.  

With few exceptions, the MNDWI (OPC) map generated the largest surface area values when 

applied to all tiles for both periods. In contrast, the AWEIsh (OPC) map produced the lowest 

surface water area over the study region tiles.  The NDWI probability water map, however, 

greatly overestimated the area of surface water in the Armenia tile in both wet/dry periods. The 

overestimation resulted from the NDWI index having difficulty in differentiating between snow 

and water pixels in the Armenia tile.   

When comparing the OPC surface water estimation to the ECJRC Monthly History water 

map, we observe an underestimation of surface water pixels detected.  Across all study regions 

and periods, the ECJRC water map identified less water than the probability index maps.  This 

underestimation of the surface water area is consistent with the percentage of underestimated 

validation points, as described in Table 5. 
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The method described by Zou et al. 2017 underestimated the area of surface water bodies 

in all tiles in both wet/dry periods as compared to the other selected water detection methods. 

This result is consistent with the method’s tendency to underestimate the percentage of total 

water pixels in the study area (Table 5). 

Table 7:  Surface water area using OPC value and the ECJRC Monthly History water 

map, from each of the two periods (wet/dry) over three study areas.  A Pixel QA raster 

snow/cloud mask was applied to all Landsat tiles to remove pixels containing clouds from 

the final area calculation.   

  Georgia (km2) Armenia (km2) Azerbaijan (km2) 

European Water 

dataset 

Monthly Water 

History   

210.1 / 212.5 

 

65.0 / 51.5  644.0 / 610.0 

 

Landsat 8 NDWI 233.2 / 238.7 143.4 / 186.3 742.0 / 644.4  

Landsat 8 MNDWI 251.9  / 233.5 82.9 / 62.4  744.7 / 623.5 

Landsat 8 AWEIsh 222.4 / 217.2 66.0 / 50.9 663.9 / 570.2 

Landsat 8 AWEInsh 237.0 / 256.7 72.3 / 58.0 735.0 / 619.0 

Landsat 8 Zou et al. 2017 44.3 / 99.3 37.9 / 28.5 552.7 / 456.4 

 

Evaluating the OPC method, we find that there are strengths and weaknesses between the 

performance of the different water probability maps.  Figure 3 displays the different water 

detection capabilities between the indices and the ECJRC Monthly History water map.  The 

ECJRC Monthly History water map detects the least amount of surface water in this scene, while 

all water probability maps using an OPC prove more successful in identifying the water present 

in the canal.  The MNDWI water probability map generates a more complete representation of 

the surface water area as compared to the other water index probability maps.   
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Figure 3. This figure displays the difference in water detection ability based on the OPC 

maps of a canal just East of the city of Agjabedi, Azerbaijan.  (A) displays the water canal 

in Agjabedi, Azerbaijan.  (B) the ECJRC Monthly History water map.  (C) MNDWI water 

probability map.  (D) NDWI water probability map.  (E) AWEIsh water probability map. 

(F) AWEInsh water probability map. 
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Urban areas and mountain shadows pose a threat to the accuracy of water index detection 

methods, as these areas can have positive water index values causing a misclassification of the 

water features presents in the scene. Figures 4 and 5 highlight the misclassification in areas that 

contain urban and mountain shadow land features.  In Figure 4, we see that the best performing 

probability index, as it relates to urban misclassification, is the AWEInsh water map.  The other 

index water probability maps had varying levels of success with the misclassification of urban 

areas, with the NDWI water probability performing the poorest and the AWEInsh water 

probability performing the best out of the set.  However, the success of the AWEInsh probability 

water map does not carry over to areas containing mountain shadows.  Figure 5 displays the 

performance of the water index probability maps when applied to a region Northwest of Tbilisi, 

Georgia.  In this location, the NDWI probability index performed the best, while AWEInsh 

performed the worst as it relates to mountain shadow misclassification.    
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Figure 4: This figure shows the difficulties of urban pixel confusion of the OPC method 

between the selected water index probability maps and the ECJRC dataset for the month 

of July.  (A) shows a true-color image of Tbilisi, Georgia.  (B) the ECJRC Monthly History 

water map.  (C) the MNDWI water probability map.  (D) the NDWI water probability 

map.  (E) the AWEIsh water probability map. (F) AWEInsh water probability  
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Figure 5. This figure shows the difficulties of mountain shadow pixel confusion of the OPC 

value method between the selected water index probability maps.  (A) shows a true-color 

image of the mountain region Northwest of Tbilisi, Georgia.  (B) Displays water detected by 

the ECJRC Monthly History water map.  (C) Displays water detected by the MNDWI 

water probability map.  (D) Displays water detected by the NDWI water. probability map.  

(E) Displays water detected by the AWEIsh water probability map. (F) Displays water 

detected by the AWEInsh water probability 
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Evaluating Figures 3, 4, and 5, we observe variation in the performance of the water 

index probability maps depending on the landcover type present in the scene.  To reduce the 

misclassification of built-up urban areas, an urban area mask is utilized.  Figure 6 shows the 

water index probability maps before and after the urban areas mask was applied. 
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Figure 6: Displays the misclassification of urban pixels when OPC water map (left) and the 

application of the urban area mask for the resulting water probability index (right). 

MNDWI water probability map (A) and the MNDWI water probability map with the 

urban mask applied (B); the NDWI water probability map (C) and NDWI water 

probability map with the urban mask applied (D); the AWEIsh water probability map (E) 

and AWEIsh water probability map with the urban mask applied (F); the AWEInsh water 

probability map (G) and AWEInsh water probability map with the urban mask applied 

(H).   
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Many studies have used water indices with other methods to reduce the misclassification 

of shallow water bodies (26,27,47).  This study focuses on the unique characteristics of water 

that are lost by the derivation of a generic water index. To establish a more meaningful 

relationship between surface water in the region, and the water index values that are generated, 

the specific spectral and environmental characteristics of the water must be considered.  

Differences in atmospheric conditions, the variation of the incident angle of the sun, and changes 

in the chemical and biophysical properties of the water can influence the pattern of reflected 

wavelengths exhibited by surface water bodies (29).  Applying a logistic regression to the water 

index incorporates the specific spectral properties of water in that region into a range of 

probabilistic values that are as unique as the environmental conditions in which they exist; 

resulting in more separation between the values of vegetated and water land cover types (Figure 

7).   
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Figure 7: This figure highlights the increased separation of water and vegetation values 

between the water index and water index probability maps.  The figure includes the 

MNDWI water map (A) and the MNDWI water probability map (B); the NDWI water map 

(C) and NDWI water probability map (D); the AWEIsh water map (E) and AWEIsh water 

probability map (F), and the AWEInsh water map (G) and AWEInsh water probability 

map (H).  Both AWEI water map values were normalized for comparison between the 

different indices. 
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Looking at the spectral reflectance tendencies of water, MNDWI values of water are 

generally greater than zero (20).  The equations for the AWEI products use coefficients in order 

to force water pixel values to be positive and negative values pixels for non-water pixels, 

allowing for an initial threshold value of zero for varying environmental conditions (21).  To 

compare the effectiveness of the water probability maps with OPC value to the selected water 

indexes, a default threshold of zero was chosen in Figure 8 for the extraction of surface water.  

Despite having a value of zero for the threshold, the MNDWI, NDWI, AWEIsh, and AWEInsh 

had difficulties extracting the water pixels in the scene.  Comparing the results of the water 

probability map and the water index maps, the OPC value water map exhibits a more complete 

representation of the water canal’s location and surface water area, than the traditional 

thresholding of the raw water index values.  The inability of these indices to effectively detect 

the water in this canal by using a default threshold is due to the water in this canal having 

negative index values. 
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Figure 8: Compares the ability to detect the Upper Garabakh Canal, Azerbaijan, between 

the selected water indices and the MNDWI probability water map, using the OPC method.  

The thresholds chosen for the selected water indices were determined by applying a 

threshold value of zero for each water index. (A) shows a true-color image of the Upper 

Garabakh Canal.  (B) Canal water detected by the MNDWI probability water map.  (C)  

Canal water identified by MNDWI water index (D) Canal water identified by the NDWI 

water index (E) Canal water detected by the AWEIsh water index.  (F) Canal water 

identified by the AWEInsh water index.   



40 
 

To accurately extract the water present in the canal, an adjustment of the water threshold 

value is required.  After applying the lowest potential threshold implemented in the previously 

discussed studies for the selected water index (Table 2), the water indices present difficulties in 

detecting the water present in the canal.  Comparing the results of the water probability map and 

the water index maps, the OPC value water map exhibits a more complete representation of the 

water canal’s location and surface water area, than the traditional thresholding of the raw water 

index values.   
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Figure 9: Compares the ability to detect the Upper Garabakh Canal, Azerbaijan, between 

the selected water indices, the ECJRC Monthly History water map, and the MNDWI 

probability water map, using the OPC value method.  The thresholds chosen for the 

selected water indices were determined by applying the lowest potential threshold value for 

each water index, as listed from previous studies. (A) shows a true-color image of the 

Upper Garabakh Canal.  (B) Canal water detected by the MNDWI probability water map.  

(C)  Canal water identified by the MNDWI water index (-0.05 threshold).  (D)  Canal water 

identified by the NDWI water index (-0.19 threshold).  (E) Canal water detected by the 

AWEIsh water index (-0.15 threshold). (F) Canal water identified by the AWEInsh water 

index (-0.15 threshold). 
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6. Discussion 

Establishing a threshold for any type of land cover detection method is complicated. 

Selecting a threshold can be a time consumptive process and may lead to a somewhat subjective 

decision of the derived threshold value that is to be used (30).  This issue stems from the lack of 

a stable threshold value for water across different types of water bodies in different locations 

(although see Fisher et al., 2016).  Others found that stable spectral profiles can be found in deep 

clean bodies of water while becoming unstable in shallow/narrow water bodies (65).  Once an 

appropriate threshold is determined, the threshold value is only representative of the conditions 

temporally present in that scene but does not necessarily hold true when applied to different 

scenes in different conditions at different times.  Ji et al. (2009) suggested that an adjustment of 

the threshold value, to suit the conditions present better, could improve the extraction results of 

the water index.  However, these adjustments would be difficult in the automation of a time 

series that requires a manual adjustment of the threshold between images (31).  Zou et al. 2017 

addressed this issue by leveraging vegetation indices values (NDVI and EVI) against a water 

index (MNDWI) to alleviate the need to establish a static threshold for water delineation.  

However, an EVI threshold 0.1 was applied to exclude noise from vegetated wetland pixels.  Zou 

et al. (2017) found an overall water accuracy of 94% derived from a confusion matrix containing 

3216 water and 6726 non-water ground reference pixels.  Our analysis reveals that this high 

accuracy is location-specific as a result of the conditions inherently found in the study area.  The 

study area of Oklahoma has more human-made lakes than any other state and has 55,646 miles 

of shoreline among the lakes and ponds (66).  While the method works well in Oklahoma, the 

validity of this method deteriorates when applied to water bodies in the Caucasus that contains 

vegetation, resulting in an overall accuracy of just 78%.  Our method of selecting an OPC value 
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from a logistic regression can allow for an automated adjustment of the cut-off threshold values 

based on the probability which minimizes the misclassification of the confusion matrix. 

Tulbure et al. (2016) employed the use of multiple explanatory variables in a random 

forest classification tree algorithm.  These explanatory variables consisted of all top of 

atmosphere (TOA) bands, selected water indexes (NDWI, MNDWI, AWEI), vegetation indexes 

(NDVI, EVI), brightness temperature, as well as slope and hillshade datasets derived from the 

SRTM digital elevation model.  The resulting water surface product produces an overall 

classification accuracy of 99.9%.  The validation of the proposed surface water dynamic product 

was evaluated based on a stratified random sampling of 500 water/non-water points(26).  The 

water stratum employed was derived from a water body map from Geoscience Australia (2006) 

and a maximum extent water map where water was observed at some point during a 26-year 

period.  The high degree of accuracy found by Turbule et al. (2016) might partly be the result of 

having a low amount of reference water pixels (0.5%) as compared to the non-water pixels 

(99.4%) used in the confusion matrix.  To avoid a small number of training/validation water 

pixels, we used a stratified random sampling of 400 water and 600 non-water pixels for each 

study area based on a global maximum water extent product (1).  Once completed, each sampled 

pixel was then classified manually using Google Earth data.  After the removal of pixels 

obscured by cloud and snow, the validation of the logistic regression model was based on 1095 

total (756 non-water, 339 water) validation points. 

As with the methods described (Zou et al., 2017, Turbule 2016), the monthly water map 

from the ECJRC boasted a high degree of accuracy when evaluated by statistical performance 

metrics.  However, despite having a high degree of accuracy, the performance of the ECJRC 

Monthly History water map’s performance can vary significantly in the detection in the type of 
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water body being evaluated.  In Figures 4 and 9, we observe that the ECJRC Monthly History 

water product retains poor performance when detecting the water present in the water canals in 

Azerbaijan.  The misclassification of water in Figures 4 and 9 are consistent with the differences 

in surface water area detection in Tables 5 and 7.  We must apply caution with the use of 

statistical performance metrics when evaluating the effectiveness of a water detection method.  A 

high degree of water detection accuracy is excellent, but it means very little if the method does 

not detect the landcover type the technique was designed to identify. 

In addition to the misclassification errors of built-up areas and mountain shadows 

experienced by our proposed method, floating vegetation in water bodies has also provided a 

source of misclassification error in the extraction of surface water area.  Variation in floating 

aquatic vegetation can shift the surface reflectance of wetland areas, causing surface water 

containing a large percentage of floating vegetation to be evaluated as dry land (67).   The 

wetland area of Lake Arh Gol, Azerbaijan, is one such source of confusion between vegetation 

and the surface water area residing underneath.  In this wetland area, the amount of floating 

vegetation is excluded by the logistic regression model, due to the high spectral reflectance of the 

NIR and red bands on the surface of the water. 

Despite the overall accuracy obtained in this water detection method, the limiting factor 

in all remotely sensed data is the spatial resolution capabilities of the sensing platform.  The 

spectral values obtained in a pixel are not only influenced by the percentage of the dominant land 

cover class present in the pixel but is also influenced by the proportions of the subordinate 

landcover classes present (30).  As technology progresses and the spatial resolution gets finer, 

the number of mixed pixels present in the scene will decrease, resulting in a more accurate 

mapping of surface water bodies.  Huang et al.’s (2018) review of surface water detection from 
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space using optical sensors, concluded that the future of water monitoring techniques involves 

the integration of multisource data.  Passive remote sensing platforms rely on the magnitude of 

reflected wavelengths received at sensor from the Earth’s surface to create the multispectral 

datasets that are used in the application of spectral indices to delineate between landcover types.  

Water tends to absorb almost all incident radiation, resulting in reflectance values of a lesser 

magnitude when compared to reflectance values of vegetation and urban landcover.  Mountain 

and urban shadows present in multispectral images, tend to reduce the amount of incident 

radiation available to be reflected and received by the sensor.  The wavelength absorbance of 

water and the reduced magnitude of reflected wavelengths from shadows, result in similar water 

index values derived from the selected bands received by the sensor, leading to misclassification 

of pixels in water detection indices that rely on the normalized differencing of specific bands.  

To ameliorate the potential for misclassification of urban and mountain shadow, contemporary 

water detection methods will require the use of multiple datasets ranging from passive and active 

sensing platforms to produce water detection products with greater levels of accuracy.  

7. Conclusion 

  The goal of this study was to establish the best performing water detection index in the 

Caucasus region.  Using all validation points from all three study areas and both the wet and dry 

season, we find that the application of a logistic regression model using an optical surface water 

index (MNDWI) resulted in the most accurate open surface water maps if we are using an 

impervious surface and elevation mask to prevent apparent urban and elevation based 

confusions. This approach achieved an overall accuracy of 93%, which was similar to what was 

found for freely available global surface water products. However, we demonstrate that while the 

global surface water product has a high overall detection accuracy, it was not as reliable in 
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detecting small water features, such as irrigation channels.  This result agrees with the findings 

from Ogilvie et al. 2018.  In this study, the authors observed that the ECJRC Monthly History 

water maps performed well in large bodies of water, but had substantial water omission errors in 

water bodies of 5 hectares and less; which correlates with the inability of the ECJRC water 

product to detect surface water in small water canals. 

 Our results also correspond with a study focused on shoreline detection (48) but disagrees with a 

study in Australia that did not find MNDWI to perform the best (52). It is important to note that 

we did not evaluate the best performing index from that study. 

 Threshold values established for the extraction of surface water bodies using any type of 

water index are based on the individual conditions and characteristics of the specific scene being 

evaluated.  The logistic regression, when applied to a water index and classified training points, 

generates a slope and intercept value that best fits the model of regression.  The probability map 

derived from this logistic regression creates a scale for the selected water index, unique in its 

relationship to the physical characteristics of the area. We demonstrate that the use of flexible 

OPC values adapted to individual images allow for the accurate detection of water in complex 

landscapes without the need to establish rigid thresholds which are unlikely transferable to 

different study regions. 
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Chapter 3. Application of Spectral Index-Based Logistic Regression to Detect Water in the 

Caucasus 

1. Introduction 

Since 1972, the Landsat sat program has been instrumental in resource mapping and land cover 

change and has fostered a new generation of academic research and analytic methods in the 

remote sensing community (7).  Many studies around the world have utilized Landsat imagery in 

the detection of surface water dynamics (26,51,67–69)  

There are many ways to detect water from the images obtained by remote sensing satellites, such 

as single band, spectral index, machine learning, and spectral mixture analysis-based methods 

(70).    Single-band procedures apply a single bandwidth to describe land cover features.  Such 

single band techniques include density slicing, contour model-based segmentation, and simple 

linear iterative clustering (SLIC) (71–73).  Combining spectral bands using band ratio methods 

improves the discriminative ability of the single band method.  Using the normalized difference 

of bands or applying coefficients to highlight or suppress land cover features allows for a default 

threshold value of zero as a starting point for water landcover delineation.  Commonly used 

water indexes are the NDWI, MNDWI, AWEI, and the enhanced water index (EWI) 

(20,21,74,75).   Machine learning (ML) algorithms attempt to train models to learn by 

association.  The machine learning approach falls into two categories of regression and 

classification algorithms, while classification algorithms can be classified into two sub-

categories: supervised and unsupervised (70).  Artificial neural network (ANN), maximum 

likelihood classification, and support vector machine (SVM) are commonly used ML 

approaches.  Spectral unmixing consists of breaking down mixed pixels into smaller spectral 

components to increase water detection accuracy (70). 
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The advantage of choosing a logistic regression model is establishing causal relationships and 

understanding which variables have the most substantial influence on the predicted outcome 

(76).  ML methods that require multiple variables in their decision-making can make identifying 

these relationships difficult, and the internal logic of the models are not as transparent to the user 

(76,77).   

Training data quality can significantly impact a classification model's accuracy or effectiveness 

and should be derived from in situ data (78).  Obtaining quality training data can be a 

consumptive process as requirements of cost, time, and processing power are a common barrier 

to access (79).   Landsat imagery has been used to create training data used in different land 

cover classifiers as an alternative to in situ training (80,81).  For regions with high landcover 

class homogeneity, fewer training pixels may suffice. Still, heterogeneous areas require a large 

number of training points to be considered representative of the scene's conditions (78).  

Currently, many global landcover datasets are distributed freely to the public, such as the Global 

Man-made Impervious Surface (GMIS), the Shuttle Radar Topography Mission (SRTM), and the 

European Commission's Joint Research Centre (ECJRC) Global Surface Water datasets 

(1,53,54).   

The ECJRC is a freely available global water dataset based on over thirty years of Landsat data 

from 1984-2015 and is updated frequently with current data for its products.  The water products 

offered by the ECJRC are highly accurate in the detection of surface water but struggles in 

detecting small  or vegetated water bodies as a result of a flooded landscape (82,83) 

Past studies have shown that it is possible to improve upon existing global land cover products 

by using these datasets to generate training samples(84,85).  Combining training samples from 
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existing land cover products with other land cover classification techniques such as random 

forests (RF) has led to improvements in accuracy for detecting vegetation compared to the 

original training dataset(86). 

For this study, we will train an MNDWI logistical regression water model for the Caucasus 

region using a global surface water product distributed by the ECJRC.    

2 Data  

2.1 Landsat  

For this study, we used level 2 images from the Landsat 8 (OLI) mission, consisting of 19 tiles 

covering the Caucasus region from May to October 2019.  These level 2 images are 

atmospherically corrected and have a spatial resolution of 30 m.  The Landsat images must meet 

the criteria of having less than 30% cloud cover present in the scene to be included in the study.   

The quality assessment pixel_qa band associated with each Landsat 8 image is used to create a 

cloud mask.  The cloud mask removes clouds, cloud shadows, and snow pixels from the 

training/validation dataset.  
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Figure 1.  All Landsat 8 Path/Row tiles covering Armenia, Azerbaijan, and Georga in the 

Caucasus region. 

 

2.2 Training Dataset 

We developed the training points as follows. First, the ECJRC Monthly Water History map was 

selected using the path/row set's corresponding month.  We then selected a stratified random 

sample of 1500 points (750 water, 750 non-water)  based on the ECJRC water map using the 

Landsat tile extent of the path/row set as the region of interest.  Using the sampled points, the 

MNDWI values were extracted from each Landsat path/row set to train the logistic regression 
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model.   The validation dataset to determine the performance metrics and the OPC value was 

validated using Google Earth imagery. 

2.3 Validation Dataset 

Within the country boundaries of Georgia, Armenia, and Azerbaijan, we randomly selected and 

then evaluated and classified 6491 stratified validation points (3238 non-water and 3253 water) 

using Google Earth Imagery. We used the ECJRC Yearly Max Extent water map for 2019 to 

generate the validation by stratified random sampling. Each point was manually evaluated and 

classified using Google Earth Imagery. The validation point locations were limited to the 

Landsat tile paths' overlapping sections to increase the number of uses in validating the model 

across the Caucasus region (Fig. 2).  With the validation points located in the overlapping areas 

of the path/row sets, each validation point can be used twice to validate the logistic regression 

model in adjacent path/row sets.   
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Figure 2.  This figure displays the Path/Row sets and validation points located in the 

overlapping sections of the Path/Rows.  

Besides identifying the random points based on the ECJRC water dataset, we also added 500 

additional water validation points focusing on points that showed a divergence between the 

ECJRC data and the data generated in this study.  These post-classification validation points 

were sampled from a difference water map derived from the OPC and ECJRC extent maps, using 

grid cells where the OPC method detected water and ECJRC did not.  The 500 additional points 

were manually classified using Google Earth Imagery, separating the points into four classes: 

water, not water, unclear, and seasonal/ water fraction (SWF).   Pixels were labeled as SWF if 

there was subpixel water present (water fraction less than 50%).  This class includes seasonal 

water, which are pixels that contain no water in the image, but observational evidence suggests 

that water was present at one time. Points labeled as unclear were either obscured by cloud cover 
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or were otherwise unable to verify the land cover type from the Google Earth images.  Pixels 

classified as unclear or SWF were omitted from the additional water validation points, leaving 

254 points added to the validation dataset.  The post-classification validation points' inclusion 

increases the total number of the validation sample size to 6745 points (3261 non-water, 3484 

water).   

3 Methods 

3.1 Generating OPC water maps 

Previously (Worden and de Beurs, 2020), we used the MNDWI water index to train and validate 

a logistic regression model and produce water probability maps.  Using the Optimal Probability 

Cut-off (OPC)  method, we created water maps over three Landsat 8 tiles in the Caucasus 

Region(82).  The previously developed method depended heavily hand selected training and 

validation points. This study aims to scale this methodology up and apply the OPC method to all 

Landsat images covering the Caucasus region from May to October 2019. Instead of hand 

training thousands of validation points, we use training data sampled directly from the ECECJRC 

Monthly Water History.  In Fig. 3., we present an overview of the methodology applied to each 

Path/Row set date in the time series.  
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Figure 3.  This figure describes the process of generating OPC water maps from multiple 

path/row sets using the ECJRC Monthly Water History for training and manually 

classified validation points using Google Earth imagery. 

We used the ECJRC Monthly History water product to generate each Path/Row date set's logistic 

regression training points.  After generating the training points, MNDWI values are extracted 

from the point locations and used to train a logistic regression model, resulting in a slope and 

intercept value for the water model.  The slope and intercept values are then entered into the 

logistic regression probability equation (1), described below. 

𝑝 =
1

1+𝑒−(𝑏𝑥+𝑎)
       (1) 

In this equation, p represents the probability value of the presence of water in a pixel, b 

represents the index's slope value, x represents the MNDWI value of the pixel, with a as the y-

intercept.  Applying the probability equation from the logistic regression model allows us to 

create water probability maps, in which the value for each pixel is the probability water is 

present.  The threshold determination between water and non-water landcover is evaluated to 
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develop the water map using the optimal probability cut-off (OPC).  The OPC is an iterative 

process based on the receiver operator characteristic (ROC), testing all probability cut-off values 

that produce the most significant degree of accuracy for water classification. A cloud/snow mask 

derived from the pixel_qa band included in Landsat images was applied to remove this pixel type 

from the logistic model's training and validation datasets.  

To reduce confusion between water pixels and other land-cover classes, we used a cloud/snow, 

mountain shadow, and urban area mask applied in our previous study to develop the final water 

map (82).   

3.2 Performance Evaluation of Water Maps 

The ECJRC and OPC dataset's performance are assessed by comparing the Max Extent water 

datasets' accuracy for the entire Caucasus Region, including comparing the accuracy between the 

individual path/row sets of the ECJRC Monthly water history and the OPC water maps. To 

evaluate the two Max Extent datasets for the Caucasus Region, we have developed an error 

matrix of sample counts and an error matrix of estimated proportions. Olofsson et al. (2012) 

warn of calculating overall and producer's accuracy estimations directly from a sample count 

error matrix, suggesting that such a matrix would not account for the variation in estimation 

weights based on the mapped classes' proportion.  Instead, they argue that an error matrix 

describing the estimated proportion of the area is more appropriate for evaluating producer's and 

overall accuracy for land cover classification maps. Since water is a relatively uncommon land 

surface category, we believe that this is especially relevant in our case.  We calculated the overall 

accuracy from the sample count matrix and compared the result to the overall, user's and 

producer's accuracy based on the mapped area class proportion (10).   We compare the ECJRC 
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Monthly history and OPC water maps' performance for each path/row set in addition to the 

Caucasus region.  

For each observation, the path/row sets' comparison uses the sample count matrix to calculate 

overall accuracy. The producers' accuracy for the water class is derived from the estimated 

proportion of mapped area by class.   

3. Results 

This study used a random stratified sample of the ECJRC yearly max extent water map to 

construct a dataset to train a logistic regression water model to classify water across Armenia, 

Azerbaijan, and Georgia from May to October 2019 using the OPC method.  

Below, we compare the overall accuracy between the ECJRC monthly water history and OPC for 

each observation of the Path/Row date sets.  We then evaluate the ECJRC yearly water max 

extent (12 months) and OPC max extent (6 months) with a traditional error matrix including the 

overall estimated area of surface water/land detected and an error matrix in terms of an unbiased 

estimator of the proportion of area. 

3.1 Overall accuracy 

To thoroughly assess landcover classification maps' performance, we provide an error matrix, the 

proportion of mapped area for each category (water/non-water), including the user's, producer's, 

and overall accuracy (2).  Table 1 displays an error matrix that includes the area and proportion 

of the mapped landcover classes for the ECJRC and OPC max extent water map.  We find that 

the OPC 2019 water extent map detects almost 400 km2 more water in 6 months than the Yearly 

ECJRC water extent map (4130 km2 vs. 3738 km2, Table 1).  Calculating the overall accuracy of 

the two detection methods using the error matrix in Table 1 results in the ECJRC max extent 
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water map with an overall accuracy of 85.2% and the OPC max extent map with an overall 

accuracy of 88.6%.   

Table 1.  Error matrix of sample-based validation points from the ECJRC Yearly Max 

extent water map for 2019 and the OPC Max extent water map from May to October 2019. 

ECJRC 

Jan - Dec 

2019 

Non-

Water Water Total 

Mapped Area by Class 

(km2) 

Proportion of the Mapped 

Area by Class (Wi) 

Non-Water 2675 408 3083 182060 0.9799 

Water 586 3076 3662 3738 0.0201 

Total 3261 3484 6745 185798 1 

     

  

OPC  

May-Oct 

2019 

Non-

Water Water Total 

Mapped Area by Class 

(km2) 

Proportion of the Mapped 

Area by Class (Wi) 

Non-Water 2834 342 3176 181668 0.9777 

Water 427 3142 3569 4130 0.0222 

Total 3261 3484 6745 185798 1 

 

Considering the error matrix using the estimated proportion of area, both datasets are highly 

accurate, retaining an overall accuracy of 86.7 % (ECJRC) and 89.2% (OPC) (Table 2).  In the 

Caucasus region, the ECJRC and OPC water maps accurately detect the non-water landcover, 

having a commission/omission error of 13%/0.4% (ECJRC) and 11%/0.3% (OPC).  In the 

detection of the water landcover class, the ECJRC and OPC methods' performance drops 
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considerably.  Examining the producer's accuracy for detecting the water class, we see the 

ECJRC dataset correctly detects 11.5% of the surface water, omitting a large proportion of water 

from the map.  The OPC water map performs only slightly better, having a producer's accuracy 

of 15.5%, indicating a loss of performance from the underestimation of surface water area.   

Table 2.  The estimated proportion of area error matrix, including user's, producer's, and 

overall accuracy, between the ECJRC Yearly Max Extent water map for 2019 and the 

OPC max extent water map from May to October 2019. 

ECJRC 

Jan - Dec 

2019 Non-Water Water Total 

User's 

Accuracy 

Producers 

Accuracy 

Overall 

Accuracy 

Non-Water 0.8502 0.1297 0.9799 0.8677 0.9962 0.8671 

Water 0.0032 0.0169 0.0201 0.8400 0.1153   

Total 0.8534 0.1466 1 

  

  

  

     

  

OPC  

May-Oct  

2019 Non-Water Water Total 

User's 

Accuracy 

Producers 

Accuracy 

Overall 

Accuracy 

Non-Water 0.8725 0.1053 0.9778 0.8923 0.9970 0.8921 

Water 0.0027 0.0196 0.0222 0.8804 0.1567   

Total 0.8751 0.1249 1       
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3.2 Accuracy Assessment by Region 

The previous section evaluated the ECJRC and OPC max extent water products' overall accuracy 

from all validation points across the Caucasus region. However, because the spatial and temporal 

distribution of surface water is not uniform across the study region, it is also essential to assess 

the ECJRC and OPC methods' overall accuracy for each Path/Row set in the study period.  

 In Fig.4., we describe the overall accuracy (%) between the two datasets across all Path/Row 

sets from May to October. 

 

Figure 4.  The overall accuracy between the ECJRC monthly water history and the OPC 

method from May to October 2019 reveals that the most significant differences in accuracy 

can be found in the far eastern and far western path/rows. 
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With Path/Row set 6,7 and 8 being the exception, we observe that the overall accuracy for both 

water detection methods remains high, ranging from 87% to 98%.  In each of the Path/Row sets, 

the ECJRC and OPC max water extent share similar accuracy trends, each outperforming the 

other in various observations throughout the time series.  

 As mentioned, the OPC and ECJRC methods' accuracy dropped in Path/Row sets 6, 7, and 8,  

with the lowest overall accuracy of 80% between the sets.  The three most western sets (6-8) 

cover the western half of Georgia and have the least amount of surface water area out of the eight 

total Path/Rows that comprise the Caucasus study region. Visually verifying the surface water 

types in these Path/Row sets with high-resolution imagery, we find that these Path/Row sets 

contain sinuous and nonsinuous braided river systems, with a few small reservoirs and lakes.  

Braided river systems can rapidly change due to seasonal flow regimes and sediment transport, 

causing changes in water location and discharge (87).  High discharge events and water channel 

drift can influence the spectral signature and MNDWI values of a pixel by changing the fraction 

of subordinate land cover classes within the satellite image's spatial resolution (30).  Variations 

on these river conditions can change the landcover type of a validation point, making it 

unreliable. A result of confining the validation points to the Landsat tiles' overlapping areas has 

led to a condensed sampling of the river systems in these Path/Row sets', exhibiting a loss of 

overall accuracy for these Path/Row sets.  
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Figure 5.  The ECJRC and OPC Max extent water map producer's accuracy for detecting 

the Caucasus region's water class for 2019.  The Path/Row sets order is reversed for the 

graph (west to east) to assist in the spatial orientation of the paths to the region.  

The ECJRC and OPC Max Extent water datasets' high overall accuracy is due to the detection of 

both water and non-water classes across the study area. However, the focus of these two water 

detection methods is to detect water.  When we focus on just the accuracy of detecting the water 

class, the performance of these is not necessarily as significant as the high values of overall 

accuracy would suggest. Fig. 5 gives insight into the water detection difficulties among the 
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different Path/Row sets.  Fig. 5 allows us to visualize the relationship between the type and 

temporal stability of the surface water that dominates the terrain and the loss of performance of 

the ECJRC and OPC water maps among the individual Path/Row sets.  The path/row sections in 

the eastern part of our study area (1 and 4) boast the highest producer's accuracy in detecting 

surface water because they contain the largest and most stable water bodies to extract the 

MNDWI values for the model's training and validation points.  The water bodies in Path/Row set 

2 and 3 are temporally unstable due to heavy vegetation growth in the larger water bodies, which 

can vary throughout the year, causing a loss in performance. As previously mentioned, the drop 

in performance in the western Path/Row set (6-8) can be attributed to the braided river systems' 

temporal instability.  

3.3 Detection of Small Water Bodies and Irrigation Canals 

Evaluating the two water datasets' performance solely by statistical evaluations does not fully 

represent the method's ability to discriminate between the different sizes and types of water 

bodies present in the satellite image.  Previous studies have shown that the ECJRC water dataset 

is highly accurate in detecting large bodies of surface water but tends to omit smaller bodies of 

water, including water bodies that contain significant amounts of vegetation(82,83).  Examples 

of the omission for these types of water bodies are highlighted in Figs. 6 and 7.  Fig. 6 shows the 

difference in performance between the two water detection methods in detecting the small 

floodwater areas within agricultural plots west of Zəngənə, Azerbaijan.  The OPC method can 

detect this water, whereas the ECJRC method remains insensitive to this water type.  In addition 

to the floodwater areas omitted by the ECJRC water map, small irrigation channels that are 

present can also go undetected. In contrast, the OPC method has the ability to delineate these 

water types, giving a more accurate representation of the surface water present in the scene.  
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Figure 6.  There is a clear difference between the OPC's and ECJRC's ability to detect 

small water bodies present in the scene. (A) displays the true-color Google Earth image of 

the area surrounding Zəngənə, in Azerbaijan. (B) displays the water detected by the 

ECJRC Yearly Max Extent water map for 2019. (C) shows the water detected by the OPC 

Max Exent water map from May to October 2019. 
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We find that the ECJRC dataset struggles to represent shallow, vegetated water bodies fully 

(Figure 7).  Vegetated waterbodies are typical in Azerbaijan's agricultural areas.  The presence of 

vegetation in water can change the water's spectral signature, depending on the distribution of its 

subpixel components(30).  The OPC method proves to be more resilient to the spectral 

deviations from water pixels containing vegetation and various compositions. 
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Figure 7.  There is a clear difference between the OPC's and ECJRC's ability to detect 

small and vegetated water bodies. (A) displays the true-color Google Earth image of the 

area North-East of  Zəngənə, Azerbaijan. (B) shows the water detected by the ECJRC 

Yearly Max Extent water map for 2019. (C) indicates the water detected by the OPC Max 

Exent water map from May to October 2019. 
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The difficulties in detecting surface water from the ECJRC dataset are not limited to small and 

vegetated bodies of water.  Major water canals can also be a source of confusion in the ECJRC 

water map, as shown by the omission of the canal infrastructure in Azerbaijan (Figure 8).  Here 

we can see that the ECJRC Max extent water map almost completely ignores this section of the 

water canal presented in the figure.  Alternatively, the OPC method proves to be more reliable in 

detecting the water present in the canal, giving an accurate representation of the surface water 

present in the scene.  The omission of shallow, vegetated, and unstable water bodies can 

significantly affect the reported surface water area and possibly alter the conclusions of studies 

that use this dataset in their model. Note that some of the very small irrigation channels are also 

not accurately detected in the OPC data.  
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Figure 8.  This figure contrasts the OPC and ECJRC methods' ability to detect water in the 

Bash Shirvan Canal, Azerbaijan. (A) the true-color Google Earth image of the canal. (B) 

displays the canal water detected by the ECJRC Max extent water Map 2019. (C) displays 

the canal water detected by the OPC Max extent water map from May to October 2019. 
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4. Discussion 

4.1 Issues with Cloud Masking 

Cloud presence and removal adds a level of complexity not easily resolved when conducting 

time series analysis.  In Worden and de Beurs (2020), we selected images with zero to minimal 

cloud cover, but in this case, we worked in image time series, which included some cloudy 

images.  One of the limitations of the proposed method is our use of the pixel_qa quality 

assessment band, which occasionally had low quality.  In Fig. 9, we provide an example of 

clouds present in a scene but omitted from the pixel_qa mask.  Located around the Yenikend 

Reservoir, Azerbaijan, we observe a significant amount of cloud cover present in the true-color 

image (A).  These clouds are not present in the pixel_qa mask (B) and which causes confusion 

by classifying the clouds as water in the final OPC water map (C).  The Landsat 8 pixel_qa band 

is derived using the CFMask algorithm.  As reported in the Landsat 8 Land Surface Reflectance 

Code (LaSRC) Product Guide, there are known issues with the CFMask cloud detection relating 

to targets with a high albedo, including sand, building rooftops, and ice and snow(88). The 

CFMask also struggles to identify clouds when there is a significant difference between the 

cloud's temperature and its surrounding landcover (88).   

Even if all cloud masks were perfect in optical imagery, the presence of clouds results in data 

loss and reduces land cover classification effectiveness.  Using active sensors would assist in this 

process by recovering data loss from clouds 
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Figure 9.  This figure shows the undetected cloud/cloud shadows in the pixel_qa cloud 

mask around the Yenikend Reservoir, Azerbaijan. (A) True -color Landsat 8 image of 

Path/Row set 4 acquired on October 22, 2019. (B) The pixel_qa cloud mask, where the 

clouds detected are represented by grey areas. (C) Final OPC water map containing 

cloud/cloud shadows present in the scene but omitted from the pixel_qa cloud mask. 
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4.3 Challenges in Water detection 

Olofsson et al. (2013) found that a map can be highly accurate but can still have low accuracy in 

detecting individual classes due to bias, suggesting that commonly used accuracy metrics such as 

overall accuracy and kappa coefficient do not take full advantage of the accuracy assessment 

data.   To utilize this data to its full potential, we must include user’s, producers’, and overall 

accuracy, area adjusted map classification error, and generating confidence intervals for the 

adjusted area estimates (2).   

In this study, we evaluated the overall, user’s and producer’s accuracy, along with an area 

adjusted accuracy from the estimated proportion of the area. We applied these accuracy metrics 

to the max extent water maps from the ECJRC and OPC methods for 2019.  Due to clouds' 

presence (masked or unmasked) in the imagery, the area calculation for each observation date 

can not be considered representative of surface water area from the loss of data from cloud 

obscuration. With a lack of complete representation of both classes' areas in the OPC water 

maps, we did not evaluate the accuracy of the estimated proportion of area by class for each 

observation in the path/row sets.  As an area adjusted accuracy metric was not an option, we only 

included the two water detection products' overall accuracy for each path/row set date.  

 In comparing the overall accuracy between the two max extent water maps for the time series, 

we see that both datasets are highly accurate when evaluating both classes together (86.7% 

ECJRC, 89.2%).  Despite retaining high overall accuracy across the study area, assessing the two 

water maps' accuracy by class tells quite a different story about the datasets' effectiveness related 

to water classification.  When evaluating the estimated proportion producer's accuracy for water, 

the accuracy drops for the ECJRC and OPC max extent water maps (11.5%/15.7%), displaying a 
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substantial underestimation of the surface water present.  Across the path/row sets (Fig. 5), we 

observe a significant reduction in the producer’s accuracy for detecting the water class.  The 

water maps' overall accuracy is misleading in evaluating performance because each class is 

weighted equally in the calculation directly from the sample count error matrix (2,89).  In this 

region, inland water is a rare class making up around 2% of the total landcover in both water 

maps. The unweighted accuracy of both water datasets suggests that the water detection methods 

accurately detect water.  However, a proportionally weighted accuracy assessment tells us the 

water maps are accurate in distinguishing non-water land cover, which is great if we were 

making non-water land cover maps. By weighing the error matrix by the proportion of estimated 

area, we observe a very low producer’s accuracy suggesting that a large portion of water is 

omitted from both water maps, contradicting the viability of traditional unweighted accuracy 

assessments. Such a loss in the performance between the ECJRC and OPC in detecting the water 

class shows that it is necessary to use an unbiased estimator of the area's proportion to properly 

weigh each class in a sample count error matrix to avoid bias and strengthen accuracy 

assessments.   

4.4 Building Upon Global Datasets 

Global land cover datasets are becoming essential in land cover detection in remote sensing 

communities, with several products freely available to users (1,90–92).  These datasets are 

especially useful as reference data in areas with little opportunity to collect sample data (86).   A 

study focused on urban regions improved urban area maps using the European Space Agency’s 

GlobCover product to train a classifier based on a  multinomial logistic regression (86).   Global 

datasets can be used to overcome an insufficient number of samples to train classifiers (85). For 

this study, we used the ECJRC monthly water history product to generate a new stratified 
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training dataset for each path/row to create an equal number of training points representing the 

water and non-water classes for each time step.  Using these training points and the validation 

points derived from the ECJRC max extent dataset, we created a water map with improved 

performance compared to the parent dataset. 

5. Conclusions 

This study aimed to apply the OPC method across the entire Caucasus region for May – October 

2019 using training and validation points (manually classified) generated from the ECJRC 

monthly history and yearly max extent water datasets.  

Comparing the ECJRC and OPC max extent water maps, both maps are highly accurate, with an 

overall accuracy of 86.7% / 89.2% when applied over the Caucasus region for the time series.  

The OPC method proved to be more sensitive to small water body detection, detecting 392 km2 

more water in 5 months than the ECJRC max extent water map for the entire year and proving 

the viability of using existing global datasets to train and improve upon existing datasets to 

create maps with greater degrees of accuracy, giving a better representation of surface water 

areas.  

 Using the logistic probability map and OPC method, we can improve the performance of 

existing water indexes and existing global datasets by allowing a dynamic thresholding process 

that responds to the environmental conditions present to create more accurate water detection 

products.  Arne Bomblies (2012) concluded that changes in mosquito populations could be better 

explained by pooled water rather than the magnitude of precipitation.  Moreover, mosquitoes are 

also limited to areas that surround their preferred breeding habitat (39).  We can use remotely 

sensed data to inventory the magnitude and distribution of surface water available for mosquito 

breeding areas.  By knowing where conditions of standing water exist, we can better anticipate 
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the potential for human-mosquito interaction.  Understanding where this interaction can occur 

will grant early insight into possible scenarios in the resurgence of malaria.  This result agrees 

with the findings of Lacaux et al. (2007), stating that the use of remotely sensed data could 

improve predictions of malaria-based models in preventing epidemics. 

In this study, there was a significant loss in water detection performance from accuracy based on 

the class's estimated area proportion. We are reminded that water as a landcover class remains 

challenging to detect from satellite imagery.  Caution must be observed when establishing 

overall accuracy for land cover delineation. These values can be misleading, emphasizing the 

need for a more rigorous assessment of water detection performance metrics beyond the 

traditional methods of evaluating accuracy.    
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Chapter 4 

The importance of mapping water resources is essential for anticipating trends in availability and 

managing human-environmental interactions.  In the second chapter, we demonstrated that we 

could make accurate water maps by applying a logistic regression water model to the region's 

best-performing water index (82).  Combining logistic regression with the appropriate water 

index, we capture the temporal characteristics of the region's water bodies to create probability 

maps with a dynamic threshold that responds to the environmental conditions that give an area's 

water its unique spectral identity.  The ECJRC Global water history products are highly accurate 

but tend to experience confusion when detecting small bodies of water (82,83). Our water 

detection approach applies a flexible optimal threshold method to a basic classification and 

regression model that produced better results than an existing global water product.   

Chapter 3 expands the OPC water detection method to evaluate the Caucasus Region (Armenia, 

Georgia, and Azerbaijan) in a time series from May to October 2019.  Global landcover datasets 

have been used to train and calibrate other land cover classification methods without the need to 

collect measurements in the field, which can be costly or inaccessible from terrain (84–86,90).   

The ECJRC monthly history water product was used as training data for a logistic regression 

water model from a stratified random sample using water and non-water as strata.  Chapter 3 

shows that it is possible to improve water detection accuracy by applying a dynamic probability 

threshold generated from training data derived from a global landcover dataset.  

Both the ECJRC and OPC max extent water maps displayed a high percentage for overall 

accuracy and exhibited a loss of accuracy from omission error when evaluating accuracy by 

class.  As traditional pixel counting accuracy metrics of kappa and overall accuracy can be 

misleading to the user, we find it necessary to apply the estimated proportion of area to sample 
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count matrixes to give an unbiased assessment of accuracy that provides a complete performance 

evaluation (2).   

The OPC method's biggest weakness lay in the data loss from cloud obscuration and 

misclassification of clouds in the cloud mask.  The issue of cloud presence in satellite imagery is 

two-fold. The presence of clouds affects the area calculation by either removing cloud data over 

water bodies from masking or the inclusion of cloud pixels in area calculation.   

In the future, using a more robust cloud masking method is needed to obtain accurate max extent 

water maps; and the inclusion of multiple inputs from different observation platforms (passive 

and active) to overcome the data loss from clouds in water maps aggregated into smaller time 

steps.  

Global land cover datasets have given us great insight into the presence, distribution, and 

temporal behaviors of land cover (1,91,92).  These global datasets' effectiveness builds the 

foundation for future detection methods by providing training data for other classifiers to 

improve surface water detection and inventory.  By understanding the temporal behaviors in 

quantity and distribution of water, we can better prepare for the management and allocation of 

water resources for potential water scarcity scenarios in the future. 
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