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Abstract

The Great Plains region is characterized by highly variable and often extreme precipitation.

Devastating multi-year droughts are common in the region, and can often be followed by

years of above normal precipitation. Drought onset can be difficult to predict, especially

in cases known as flash drought when both onset and intensification are rapid. These flash

drought events can often lead into longer term drought such as was observed across much

of the central United States during 2012.

On the other side of the precipitation distribution lies excessive rainfall, and the

impacts of resulting flooding can be just as detrimental to agriculture and society in the

region. While landlocked states in the Great Plains aren’t typically associated with tropical

cyclones, recent studies have begun to draw attention to the idea that these storms may

reintensify over land in the presence of anomalously wet soils. This is colloquially known

as the Brown Ocean Effect. It has been hypothesized that above normal precipitation during

spring of 2015 provided sufficiently wet soils to aid in the reintensification of Tropical

Storm Bill as it propagated inland over the Great Plains and Midwest.

Though the flash drought/drought of 2012 and Tropical Storm Bill during 2015

seem unrelated except for shared geography, both extremes may have been influenced by

land-atmosphere feedbacks. It is well known that drought and heavy precipitation are often

tied to larger scale atmospheric forcing, however, numerous studies have demonstrated that

land-atmosphere feedbacks may also amplify extremes in the region. It remains a chal-

lenge to disentangle the influence of the land surface from that of the overall atmospheric

pattern. However, the key to increased predictability for events such as flash drought

may rely on answering the question ”to what extent does the land surface really influ-

ence hydroclimate extremes?” This study presents new approaches to better estimate the

relative contributions of land-atmosphere feedbacks toward precipitation extremes in the

Great Plains, with a primary focus on the flash drought/drought of 2012 and the overland

maintenance/reintensification of Tropical Storm Bill during 2015.
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Chapter 1

Introduction

The United States National Academy of Sciences Decadal Survey (2017) established a list

of key science and application questions to be addressed in the ensuing decade (Board

et al. 2017). Among the most important science questions was how changes in the water

cycle, including changes to evapotranspiration, could impact the “frequency and magnitude

of precipitation extremes such as droughts and floods” (science question H-1). In other

words, what is the relative contribution of the terrestrial surface to the evolution of extreme

precipitation events?

Straddling the 100th meridian, the Great Plains marks the transition zone from a

more arid climate to the west and humid climate to the east (Seager et al. 2018). Like

other transitional climates throughout the world, land-atmosphere (L-A) interactions are an

important influence on the Great Plains hydroclimate (Koster et al. 2004; Guo et al. 2006;

Koster et al. 2006; Basara and Christian 2018). Soil moisture gradients and associated

differential diabatic heating can drive localized boundaries (Taylor et al. 2007; Frye and

Mote 2010), and on the seasonal scale, persistent soil moisture anomalies can influence the

quasi-persistent location of the dryline (Flanagan et al. 2017). Anomalous soil moisture can

also reinforce seasonal extremes through soil moisture memory (Koster and Suarez 2001)

and can influence changes in large scale dynamics (Namias 1988). Further, widespread

anomalously dry soils may result in local L-A feedbacks that reinforce existing drought

(Atlas et al. 1993; Hong and Kalnay 2000; Pal and Eltahir 2003; Dong et al. 2011; Su

and Dickinson 2017) but they may also support drought propagation through suppression

of precipitation downstream (Fernando et al. 2016; Koster et al. 2016; Su and Dickinson

2017). At the same time, land-atmosphere feedbacks are part of the much larger climate

system, and as such, the relative contribution of such feedbacks to regional precipitation
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extremes may be muted or amplified depending upon the large scale synoptic environment

(Song et al. 2016; Welty and Zeng 2018).

Excessive precipitation impacts are similarly experienced within the Great Plains

region. In some cases, this excess is welcome, as it may provide long awaited relief

from multi-year drought (Wu and Dirmeyer 2020). Such drought-terminating precipita-

tion events are often the result of atmospheric rivers, but they may also be attributed to

rainfall from landfalling tropical cyclones. While tropical cyclones are not typically asso-

ciated with the interior of the United States, recent studies have shown that L-A feedbacks

can contribute to the overland maintenance and/or reintensification of landfalling tropi-

cal cyclones (Emanuel et al. 2008; Arndt et al. 2009; Evans et al. 2011; Monteverdi and

Edwards 2010; Andersen et al. 2013; Andersen and Shepherd 2014). Tropical cyclone

maintenance and/or reintensification (TCMI Andersen et al. 2013) is colloquially referred

to as the Brown Ocean Effect as anomalously wet soils are thought to supply sufficient

latent heat fluxes to the tropical cyclone to mimic latent heat fluxes over the ocean. While

much of the existing research focuses on the contributions of latent heat fluxes in regions

along the tropical cyclone’s path, however studies of tropical cyclones over the ocean imply

that latent heat fluxes along the storm’s inflow may also play a vital role in its evolution

(Fujiwara et al. 2017).

Thus, opposite extremes of the hydroclimate spectrum are likely influenced by L-A

interactions. The impact of land-atmosphere feedbacks on local PBL development during

extreme events such as drought as well as the influence of these feedbacks on propagation

of such events remain key questions in the scientific community (Miralles et al. 2019). This

challenge is the primary motivation behind the work of this dissertation. In other words,

how can the relative contributions of L-A interactions be distinguished from large scale

atmospheric forcing during precipitation extremes in the Great Plains?

Specifically the hypothesis of this dissertation is that L-A interactions exert influ-

ence locally, in the immediate vicinity of extreme events, but also non-locally, through
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modification of upstream air masses. The contributions of these L-A interactions can be

discerned from the background atmospheric state associated with excessive precipitation

or extreme drought driven by L-A interactions.

The first step in testing this hypothesis consisted of preliminary work to identify

how existing L-A coupling frameworks may be further leveraged to address the influence of

both local and non-local L-A interactions. Additionally, the broader hypothesis motivating

this study was further broken down into two event-specific hypotheses highlighted below

with their respective studies. The L-A coupling framework analyses and the two event-

specific analyses are summarized below:

• Chapters 2 and 3 used observational data to test, select, and modify/improve frame-

works for quantifying L-A coupling that can best address local, versus non-local,

versus large-scale influences during extreme events. The frameworks were modified

to more closely approximate closure of boundary layer moisture and energy budgets

and therefore, better quantified the relative contributions of each source and sink to

these budgets.

• Chapter 4 was motivated by the first event specific hypothesis that anomalously

wet soils due to above normal antecedent precipitation during 2015 provided

sufficient fluxes of moisture over land to support the inland maintenance and

reintensification of Tropical Storm(TS) Bill (2015). The novelty of this study was

that it also introduced a method for considering non-local surface flux contributions

to the storm’s evolution through evaluating surface fluxes along inflow trajectories.

• Chapter 5 used coupled model simulations to test the sensitivity of PBL moisture and

energy budgets during the 2012 flash drought to extreme wet and dry soil moisture

states using the modified coupling metric method demonstrated in Chapter 3. The

goal of this analysis was to specifically test the hypothesis that L-A feedbacks am-

plified the background atmospheric state to support the 2012 flash drought and

extended period of drought that followed.
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Together these studies provide a novel contribution to the science of L-A coupling

by introducing new methods and associated insights that demonstrate how the relative con-

tributions of L-A feedbacks can amplify the background atmospheric state to support wet

and dry precipitation extremes.
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Chapter 2

Evaluation of a land-atmosphere coupling metric computed from a

ground-based infrared interferometer

2.1 Introduction

Land-atmosphere interactions play a critical role in both the atmospheric water and energy

cycle. The sensitivity of the atmosphere to changes in land surface conditions is particu-

larly pronounced in semi-arid regions throughout the world (Guo et al. 2006; Koster et al.

2006; Dirmeyer 2006). Changes in soil moisture and vegetation health alter the partitioning

of surface water and energy fluxes, influencing diurnal evolution of the planetary bound-

ary layer (PBL), and even subsequent cloud and precipitation development. Along the

same lines, persistence in soil moisture states may drive longer term precipitation anoma-

lies and geopotential height anomalies (Koster et al. 2016). As such, extreme events such

as drought, heatwaves (Miralles et al. 2014; Schumacher et al. 2019), heavy rainfall (Wei

et al. 2016; Song et al. 2016), or even the overland re-intensification of tropical cyclones

(Emanuel et al. 2008; Arndt et al. 2009; Andersen et al. 2013; Andersen and Shepherd

2014) can be impacted by land-atmosphere feedbacks. Greater understanding of how the

atmosphere and land surface covary, also referred to as land-atmosphere coupling (LA cou-

pling), is essential to improving predictability of such extremes (Seneviratne et al. 2006;

Koster et al. 2011; Dirmeyer and Halder 2016). Numerical modeling approaches to study

LA coupling range in scale from single column models (Ek and Mahrt 1994; Ek and Holt-

slag 2004) to atmospheric general circulation models (Dirmeyer 2001; Koster et al. 2004;

Guo et al. 2006; Koster et al. 2014) to conceptualize the link between surface and atmo-

spheric processes across scales. Observation based studies (e.g., Basara and Crawford

2002; McPherson et al. 2004; Phillips and Klein 2014; Tang et al. 2018) supplement these
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approaches by quantifying the true behavior of these processes in nature and can inform

more realistic representation of coupling in models. Coupling metrics arose from the need

to succinctly quantify land-atmosphere feedbacks in both modeling and observational stud-

ies (Santanello Jr et al. 2018). Numerous metrics have been developed by the LA coupling

community and exist on a spectrum of complexity. Process level metrics describe multiple

components of the local land-atmosphere coupling process chain (Santanello Jr et al. 2011;

Santanello et al. 2011), to better capture the multiple steps through which the land surface

influences the evolution of the PBL and free atmosphere.

One frequently used process-level coupling metric is the Convective Triggering Po-

tential, Low-Level Humidity Index (CTP-HIlow) framework (Findell and Eltahir 2003a,b).

This metric has been applied using its original formulation across multiple regions of the

world (Jach et al. 2020). It has also been modified based on climatology of the metric

over various regions (Ferguson and Wood 2011; Wakefield et al. 2019) or to create a new

diagnostic for land-atmosphere coupling contributions to hydroclimate extremes such as

drought (Roundy et al. 2013; Roundy and Santanello 2017). The CTP-HI framework uses

early morning vertical profiles to diagnose whether the atmosphere is preconditioned to-

ward clouds and/or convective precipitation triggered over wet or dry soils (Findell and

Eltahir 2003a,b). The use of the early morning radiosonde profiles was intended to repre-

sent the lower troposphere before substantial mixing of the PBL occurs. In the contiguous

United States (CONUS), 1200 UTC typically corresponds to a pre-convective boundary

layer, between 0400 and 0800 local time (LT). However, in different regions of the world,

neither of the synoptic radiosonde launches at 0000 UTC and 1200 UTC may coincide with

the early morning PBL (i.e., perhaps they are in the middle of the night or they represent

a well-mixed PBL in the day). One solution is to use vertical profiles corresponding to

the same local time at every location. However, this approach is limited by the availabil-

ity of vertical profiles during periods beyond the typical 1200 and 0000 UTC radiosonde

observations.
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To address this limitation, vertical profiles obtained from remote sensing platforms

such as the Atmospheric Infrared Sounder (AIRS) on board NASA’s Aqua satellite have

been used to compute CTP and HI at the same local time (0130 LT) for locations around

the world (Ferguson and Wood 2011; Roundy et al. 2013; Roundy and Santanello 2017).

Because 0130 LT is consistent with a pre-convective boundary layer, it was suggested that

little difference should exist between vertical profiles obtained at 0130 LT and those ob-

tained at 1200 UTC (which corresponds to a local time of 0700 Central Daylight Time

or CDT) across the CONUS. Indeed, there was good agreement between computations

of CTP and HI obtained from AIRS when compared to reanalysis datasets. Even so, a

lack of ground-based observations with sufficient temporal resolution made it difficult to

directly observe whether temporal variability does truly exist in CTP and HI during the

period between the AIRS overpass time and the radiosonde observation time. Furthermore,

thermodynamic profiles retrieved from infrared sounders like AIRS have relatively little in-

formation content in the PBL, resulting in coarse (e.g., order 1 to 2 km) vertical resolution

(Irion et al. 2018). As such, the temporal variability of CTP and HI will be explored further

in this study.

The lack of such studies until now is primarily driven by a lack of atmospheric

profile observations at higher spatial and/or temporal frequencies than those offered by the

traditional twice daily radiosonde observations. Ground-based thermodynamic profilers,

such as the Atmospheric Emitted Radiance Interferometer (AERI), provide an alternative

method for obtaining vertical profiles of temperature and moisture at higher temporal fre-

quencies and where radiosonde observations are absent. The AERI is a ground-based pas-

sive spectrometer which measures downwelling infrared radiation. Thermodynamic pro-

files are retrieved from the observed radiance data (method is described in Section 2.2),

but the vertical resolution is lower than that of traditional radiosonde profiles. This de-

crease in vertical resolution introduces some uncertainty when using the AERI to compute

convective indices, though these uncertainties are generally greatest for integrated indices
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such as convective available potential energy (CAPE) (Blumberg et al. 2017). Despite this

limitation, the temporal resolution of the AERI makes it a useful tool for monitoring desta-

bilization trends within the PBL (Feltz et al. 2003; Wagner et al. 2008; Blumberg et al.

2015, 2017) at temporal resolutions unmatched by radiosonde observations.

The temporal resolution of the AERI provides a unique opportunity to evaluate

land-atmosphere coupling, in particular, and allows us to address several questions left

unanswered by previous studies. The main questions addressed in this study are:

1. What are the uncertainties associated with computing CTP and HI from AERI pro-

files relative to collocated radiosonde profiles?

2. Do CTP and HI exhibit substantial temporal variability overnight, or are these values

consistent as long as they are obtained for a pre-convective PBL?

Analyses are focused at the Atmospheric Radiation Measurement (ARM) program’s

Southern Great Plains (SGP) site (Sisterson et al. 2016) in Lamont, Oklahoma during the

summers (June, July, August) of 2017 and 2019.

2.2 Data

2.2.1 Atmospheric Emitted Radiance Interferometer (AERI)

The AERI measures downwelling radiance emitted from the atmosphere at wavelengths

between 3.3 and 19.2 µm approximately twice per minute at 1 cm-1 spectral resolution

(Knuteson et al. 2004a). The instrument maintains calibration by regularly observing two

blackbodies, one at 60°C and one at ambient temperature, which results in the AERI main-

taining its radiometric accuracy to better than 1% of the ambient radiance in both clear and

cloudy conditions (Knuteson et al. 2004b). In the presence of precipitation, an automated

hatch is closed to protect the foreoptics of the instrument.
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2.2.2 AERIoe algorithm for thermodynamic profile retrieval

Retrieval algorithms are necessary to obtain thermodynamic profiles from the observed

infrared radiance spectra. These algorithms make use of CO2 and H2O absorption bands

that lie within the spectral range of the AERI to obtain temperature and water vapor profiles

respectively. The original retrieval algorithm AERIprof (Feltz et al. 1998; Smith et al. 1999)

had several limitations including the inability to retrieve thermodynamic profiles under

low and midlevel clouds, which motivated the development of the AERIoe algorithm to

addresses these shortcomings (Turner and Löhnert 2014; Turner and Blumberg 2018). The

AERIoe algorithm retrieves thermodynamic profiles and cloud properties (e.g., liquid water

path) from the AERI radiance observations using an optimal estimation (OE) framework

(Rodgers 2000). This framework allows for the uncertainties associated with each retrieved

variable to be quantified, and these uncertainties can be propagated to provide uncertainties

in the derived coupling metrics.

2.2.3 Site Selection

While multiple AERI instruments are located in the ARM SGP domain, only the central fa-

cility (denoted sgpC1) AERI was used for this particular study as radiosondes are launched

within 150 m of this AERI. This allows for coupling metrics to be derived from both AERI

and radiosonde profiles and for the relative accuracy in the AERI derived metrics to be

quantified. This study used sgpC1 and 1200 UTC radiosonde data from three periods: 16

May to 12 June 2017, 1 to 31 August 2017, and 17 April to 31 August 2019. These three

periods coincide with three different field campaigns at the ARM SGP site. The 16 May

to 12 June 2017 period was in support of the Vaisala DIAL IOP (Newsom et al. 2020), the

August 2017 period was in support of the Land-Atmosphere Feedback Experiment (LAFE;

Wulfmeyer et al. 2018), and the 2019 period was in support of the Micropulse DIAL IOP.

9



2.3 CTP-HI Analysis

2.3.1 Framework Description

The Convective Triggering Potential Low-Level Humidity Index (CTP- HIlow, hereafter

CTP-HI) was developed by Findell and Eltahir (2003a,b) to diagnose the preconditioning

of the atmosphere toward locally triggered convection based upon whether soils are wet

or dry. It was developed from the output of a one-dimensional model over Illinois and

further tested using observational data from upper air stations across the United States.

The framework uses the 1200 UTC sounding data, which is within a few hours of sunrise

in most locations within the continental U.S., in order to determine the moisture content

and instability within the portion of the atmosphere most likely to be incorporated into the

growing mixed layer.

HI is computed from the sum of the dewpoint depressions at 50 mb and 150 mb

above ground level (AGL) to provide an estimate of the pre-existing moisture in the atmo-

sphere (2.1) and its units are in degrees Celsius.

HI = (T −Td)150 mb AGL +(T −Td)50 mb AGL (2.1)

CTP is computed by locating the moist adiabat which intersects the temperature

profile at 100 mb above ground level, and integrating the area between this moist adiabat

and the temperature profile, upwards within a 200 mb layer from 100 mb above ground

level to 300 mb above ground level. Units of CTP are J kg-1. This process assumes a

saturated parcel at 100 mb AGL. Pseudoadiabats (moist adiabats) were computed using

the MetPy (May et al. 2020) software package which integrates the equation for moist

adiabatic lapse rate obtained from equation 5 in Bakhshaii and Stull (01 Jan. 2013). The

computation of CTP is similar to that of Convective Available Potential Energy (CAPE).

CTP estimates the instability within the layer of the atmosphere between 100 and 300 mb

AGL (approximately 1 to 3 km AGL). The combined CTP and HI pair can be used to
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diagnose whether convection is favored over wet or dry soils based upon thresholds set

forth in Findell and Eltahir (2003a,b).

Based on this information, the atmosphere is classified into several different cate-

gories:

1. Atmospherically controlled: This can either mean that if convection occurs, it is

not locally triggered, or it can mean that the atmosphere is too stable or too dry for

convective triggering. Therefore, this category has been divided into 3 subcategories

based on Findell and Eltahir (2003a,b).

(a) Atmospherically Controlled Stable (ACst), where the atmosphere is too stable

for precipitation (When CTP <0 J/kg)

(b) Atmospherically Controlled Wet (ACw), where the atmosphere is already moist

such that rainfall or shallow clouds can occur over any soil condition depending

on CTP value (HI <5°C)

(c) Atmospherically Controlled Dry (ACd), where the atmosphere is too arid for

convective precipitation to occur (HI >15 °C)

2. Wet Advantage (WA): Locally triggered convection most likely over wet soils

3. Dry Advantage (DA): Locally triggered convection most likely over dry soils.

4. Transition (T): Convection may occur over any soil type, but no convection is the

most likely outcome. If convection is triggered, it is most likely over dry soils.

The numerical thresholds for each category are depicted in Figure 15 of Findell and

Eltahir (2003a) and is reproduced here in Figure 2.1.

2.3.2 Uncertainties associated with AERI derived CTP and HI

The framework uses morning vertical profiles from radiosondes, and in the western hemi-

sphere, this corresponds to the 1200 UTC observation. While these are considered 1200
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UTC observations, they are typically recorded in the hour between 1100 and 1200 UTC.

Thus, the typical 1200 UTC radiosonde observation is often still within the boundary layer

during the 1100 to 1200 UTC time window. As such, AERI retrievals were chosen with

the requirements that they occurred within the 1100-1200 UTC window that had both (a)

small root mean square (RMS) error (i.e., the retrieved thermodynamic profile agrees well,

in a radiance sense, with the radiance observations) and (b) the retrieved liquid water path

(LWP) was less than 6 g m-2 to ensure little to no overhead clouds. Of the retrievals that

met the aforementioned criteria, the retrieval closest in time to radiosonde launch time was

selected for comparison.

CTP and HI were computed from the selected AERI profile. Each AERI-retrieved

profile has its associated uncertainties that can be used to approximate uncertainties in

the CTP and HI values obtained from the profile. Using the posterior error covariance

matrix produced by the AERIoe retrieval algorithm, uncertainties in the profile were then

estimated by using Monte Carlo resampling of the posterior error covariance matrix 500

times (similar to the approach used in Blumberg et al 2017). This produced a distribution of

500 possible water vapor and temperature profiles. CTP and HI were then computed from

each profile to obtain a distribution of possible CTP and HI observations at a given time.

First, CTP and HI observations obtained from the full vertical resolution of the radiosonde

profiles were compared to those obtained from the AERI thermodynamic profiles. Figures

2.2a and 2.3a show that AERI derived CTP and HI agreed well with HI and CTP values

obtained from the radiosonde observations, respectively. R2 values computed using the

Pearson correlation coefficient indicate that HI displayed slightly better agreement between

the two platforms with a slightly greater R2 value than that of CTP 2.1. When broken down

by year, both years performed similarly.

One primary source of error in the AERI-retrieved versus radiosonde profiles arises

due to differences in vertical resolution. Given the reduced vertical resolution in the AERI

(see Figure 7 in Turner and Löhnert 2014) as compared to radiosonde profiles, differences
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Table 2.1: R2 values computed from Pearson Correlation for AERI versus Radiosonde

CTP and HI observations, bias and standard deviation of the difference between AERI and

radiosonde observations.

R2

2017

(N=43)

R2

2019

(N=95)

R2

Both

(N=138)

Bias (Both) Standard

Deviation

(Both)

AERI vs. Radiosonde

HI

0.64 0.66 0.65 -0.45°C 4.32°C

AERI vs. Smoothed

Radiosonde HI

0.75 0.86 0.83 -0.29°C 3.66°C

AERI vs. Radiosonde

CTP

0.65 0.63 0.62 18.1 Jkg-1 98.7 Jkg-1

AERI vs. Smoothed

Radiosonde CTP

0.70 0.76 0.72 6.7 Jkg-1 71.7 Jkg-1

in CTP and HI observed from each platform may be attributed to differences in vertical

resolution. To test this theory, radiosonde profiles were smoothed to the same vertical

resolution as the corresponding AERI profiles for the given time. This was completed

using the averaging kernel produced by the AERIoe retrieval algorithm (Turner and Löhnert

2014). Reducing the vertical resolution of the radiosonde profiles produced CTP and HI

values that were more similar to those obtained from the AERI (Fig. 2.2c, Fig. 2.3c). The

improved agreement suggests that the unsmoothed radiosonde profiles and AERI profiles

differ, in part, due to differences in vertical resolution. Overall, CTP showed a lower degree

of covariability than HI in datasets for both years and for the smoothed and unsmoothed

comparison.
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2.3.3 Accuracy of Pre-Conditioning Classifications

A primary objective of this study is to determine whether the AERI can serve as a use-

ful tool for implementing the CTP-HI framework to diagnose atmospheric precondition-

ing accurately. Therefore additional comparisons to values obtained from the unsmoothed

radiosonde profiles were performed. This enabled evaluation of whether the AERI can

provide the same diagnosis of atmospheric preconditioning via the CTP-HI framework as

the radiosonde despite its lower vertical resolution. Hereafter any reference to radiosonde

profiles is referring to the unsmoothed radiosonde profiles.

The combination of CTP and HI observations for a given time were used to diag-

nose atmospheric preconditioning based upon discrete thresholds for each preconditioning

category. Because of the discrete thresholds used in this coupling framework, small dif-

ferences in CTP and HI between the AERI and radiosonde could result in a different clas-

sification of the atmospheric preconditioning. These potential differences in classificaiton

prompted additional comparison of the atmospheric preconditioning diagnosed by each in-

strument using the CTP-HI framework following the thresholds set forth in Findell and

Eltahir (2003a,b). A 6x6 verification contingency table was created using the classification

categories listed above, with Atmospherically Controlled (AC) conditions further separated

into stable (ACst), wet (ACw), and dry (ACd) categories within the table (Fig. 4). AERI

and radiosonde observations that produced the same classification reside along the diago-

nal, while off-diagonal elements represent differences in classification. The Heidke Skill

Score (HSS; Equation 2.2) was computed to diagnose the AERI’s skill using the approach

in Wilks (2011),

HSS =
∑

I
i=1 p(yi,oi)−∑

I
i=1 p(yi)p(oi)

1−∑
I
i=1 p(yi)p(oi)

(2.2)

where I represents the number of elements in the row or column, i is the i-th el-

ement, p(yi,oi) represents the joint distribution of AERI and radiosonde classifications,

or diagonal elements of the table, while the individual AERI p(yi) and radiosonde p(oi)
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marginal distributions of observations represent the off-diagonal elements. In terms of

forecast verification, a HSS of 1 represents a perfect forecast; i.e., that the AERI classifi-

cations perfectly matched the radiosonde classifications, while a score of 0 indicates that

the same agreement between radiosonde and AERI classifications could be achieved by

chance.

In addition, all possible classifications were considered within the retrieval’s win-

dow of uncertainty. The window of uncertainty was defined as greater than or less than

one-half standard deviation of the observed value based upon the distribution of poten-

tial profiles. CTP and HI were computed from each of the profiles within this window of

uncertainty to diagnose atmospheric preconditioning. When the range of uncertainties of

CTP and HI values produced only 2 possible classifications, these classifications were still

considered. This captured those cases when CTP and HI observations between the two

platforms may have been nearly identical, but on opposite sides of a classification thresh-

old. For example, if CTP observed by both platforms lied between 150 and 200 J/kg, but

the observed HI for one platform was 9.5 degrees Celsius while the other was 10.2 degrees

Celsius, then the former would be considered “wet advantage” while the latter would be

considered “transition.” Thus, for the uncertainty analysis, if the AERI classification dif-

fered from that of the radiosonde initially, but the “correct” (radiosonde) classification was

within the AERI’s window of uncertainty, and that window of uncertainty only included

two possible classifications, then that day would be counted as a “hit.” A summary of these

methods can be found in Figure 2.5.

AERI and radiosonde observations produced the same classification of atmospheric

preconditioning approximately 71% of the time with a HSS of 0.62 (Fig. 2.4a). The ma-

jority of days were atmospherically controlled. For wet advantage and dry advantage days,

the two platforms agreed just over half of the time, while transition days displayed more

off-diagonal counts than counts along the diagonal. When a limited range of uncertainty

(Fig. 2.4b), was introduced, this resulted in agreement on 81% of days, while agreement on
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both wet and dry advantage days improved from just over half of days to over 75% of days.

Transition days also displayed a tremendous improvement in agreement when considering

uncertainty, increasing from 29% to 57% of days, and the HSS improved from 0.62 to

0.75. The movement of off-diagonal elements to the diagonal suggests that the reason for

differences in the initial classification are likely driven by borderline CTP and HI values

that were near the thresholds for a given pair of categories.

2.3.4 Temporal Variability of CTP and HI

A second analysis examined the temporal variability in CTP and HI using only AERI obser-

vations. The motivation behind inspecting the temporal variability in these two quantities is

driven by the potential differences across time zones in accumulated net radiation at upper

air stations during the morning upper air observation. For example, during the summer, an

upper air station on the east coast of the United States will have had two additional hours

of downwelling shortwave radiation at 1200 UTC than an upper air station at the same lati-

tude within the mountain time zone. Therefore, it is important to ensure that the 1200 UTC

radiosonde observation can still be employed in the computation of this coupling metric

across time zones.

The high temporal resolution of the AERI enables this type of analysis. While

the AERI is at a fixed location, evaluating CTP and HI computed during time windows

preceding and following the 1200 UTC radiosonde observation can be used to represent

the accumulated net radiation in other time zones. The 1100 to 1200 UTC time window

was used as “truth” as it corresponds to the 1200 UTC radiosonde observations. Hereafter,

this period is denoted as T12. Because the ARM central facility is located within the central

time zone, accumulated net radiation in the mountain time zone at 1200 UTC would be one

hour behind the central time zone, or more similar to what is observed in the central time

zone during the 1000-1100 UTC time window (hereafter T11). Similarly, the eastern time
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zone would be an hour ahead, or more similar to the accumulated net radiation at the central

facility during the 1200-1300 UTC time window (T13).

Past applications of the framework (Ferguson and Wood 2011; Roundy et al. 2013;

Roundy et al. 2017) have used vertical profiles obtained at times other than 1200 UTC

such as those obtained from the Atmospheric Infrared Sounder (AIRS) which are acquired

at approximately 0130 Local Time for a given location. As such, CTP and HI were also

computed for the time window from 0700 UTC to 0800 UTC (T08), which corresponds to

the AIRS overpass time at 0130 CST (local time).

It is hypothesized that, in the absence of significant advective processes or the pas-

sage of synoptic scale features, that these two quantities should remain relatively constant

in time. Further, even in those locations where the sun rises earlier, the PBL should not

be fully developed to the levels where CTP and HI are measured. The difference between

CTP and HI at T12 (time window considered as truth) and the three other intervals were

computed by subtracting the values at other times from the CTP and HI values at T12.

All differences were statistically significant at p<0.05 except for the CTP differences for

T11-T12 and T11-T10. The difference distributions (Fig.2.6) provide several key results:

1. HI at T11 and T13 displayed similar agreement with T12, while the HI values at T08

exhibited a much greater range of differences with T12 (Fig. 2.6a,c).

2. HI at T12 was slightly less than at T11 and slightly greater than at T13, and as such,

the atmosphere slightly moistened over time (Fig. 2.6a,c). (Recall that higher values

of HI correspond to greater dewpoint depressions.)

3. Similarly, T08 displayed the greatest differences from T12 and a negative median

difference indicates that HI at T08 was greater than at T12 (Fig. 2.6c). This remains

consistent with T11 and T13 results which indicate the atmosphere moistens with

time.
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4. HI at T11 and T13 had the lowest interquartile range (IQR) (Fig. 2.6c) with a major-

ity of observations falling within 2 degrees Celsius of HI at T12, while the IQR for

T08 was greater and a majority of T08 HI observations were within 6 degrees Celsius

of those at T12.

5. CTP observations were relatively consistent for all three periods, and displayed the

same sign as biases to those observed in HI, with CTP observations at T13 being less

than those at T12, while CTP observations at T11 and T08 were greater than those at

T12 (Fig. 2.6b,d).

6. The greatest differences in CTP were observed between T08 and T12 (Fig. 6d).

7. Most CTP observations at T08, T11 and T13 were within 100 J/kg of T12, with

differences in T08 versus T12 having a greater IQR, or greater variability (Fig. 2.6d).

2.3.5 Composite Vertical Profiles

Composite mean profiles were computed to better understand where differences in CTP

and HI were arising; CTP at each time period of interest was subtracted from CTP at T12.

From this difference distribution, composite mean temperature profiles on the three days

with the greatest differences in CTP above the 95th percentile (Fig. 2.7a-c) and below

the 5th percentile (Fig. 2.7d-f) were computed. Evaluating both tails of the distribution

allowed us to evaluate whether there were truly large differences between conditions in

which T12 was over or underestimated, or whether the differences were related to small

changes in the vertical profile at certain levels, such as the height of an inversion rising or

falling. When CTP at T12 is greater than CTP at other times, these differences are primarily

associated with differences in lapse rates within the layer. Temperature profiles displayed

similar temperatures at 100 mb AGL, resulting in CTP parcel profiles being obtained for

approximately the same moist adiabat. The profiles diverged above this level with steeper

lapse rates observed for T12 contributing to more positive CTP than the comparison times.
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Conversely, when CTP at T12 was less than CTP at other times, steeper lapse rates were

often observed for the comparison times.

Composite mean profiles were also computed for HI difference distributions (Fig.

2.8). The greatest differences in HI were primarily driven by differences between dewpoint

profiles while temperature profiles were markedly similar in time. An exception is those

cases when HI at T12 was less than HI at T08 (Fig. 2.8d) where both temperature and dew-

point profiles differed among the two times. This confirms our hypothesis that the greater

length of time between observations at T08 and T12 would allow for greater changes in

temperature and moisture within the lower portions of the atmosphere. Even within the

tails of the difference distributions, the differences in thermodynamic profiles are most

pronounced at both levels in which HI is measured for T12-T08. The greatest contribution

to differences in HI can be further narrowed down to differences in the dewpoint depression

observations at 150 mb AGL. Most profiles show relatively better agreement in dewpoint

depression observations at 50 mb AGL. The reasons for this are two-fold. First, given the

AERI’s ability to represent CTP and HI well, it is likely that temperature and moisture pro-

files changed between the two times being compared. Second, while the AERI provides a

good representation of reality, all observations include some degree of uncertainty. In this

case, vertical resolution decreases with height, and it is likely that coarser vertical resolu-

tion is playing a role in the greater differences in dewpoint depression observed at 150 mb

AGL.

2.3.6 Temporal Variability in Pre-Conditioning Classifications

Even if median temporal differences in HI are close to 2 degrees Celsius and CTP median

differences are approximately 100 Jkg-1, they still may lead to the same category for clas-

sification of preconditioning based on the CTP-HI framework as long as these differences

do not straddle categorical thresholds. Figure 9 shows contingency matrices of precondi-

tioning classification categories at T12 versus T08 (Fig. 2.9a), T11 (Fig. 2.9b) and T13
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(Fig. 2.9c) respectively, along with HSS. As in Figure 2.4, the categories shown are a slight

extension of the original framework as the atmospherically controlled category was broken

into sub-categories to discern whether atmospherically controlled scenarios were a result

of enhanced stability (ACst), lack of moisture (ACd), or excess of moisture (ACw). At-

mospherically controlled was the most common classification for all times, with the ACd

sub-category occurring most frequently.

The greatest concentration of frequencies on the diagonal of each confusion matrix

was most desirable (Fig 2.9), as that suggests both times agree on classification even when

exact values of CTP and HI differ. Because T11 and T13 CTP and HI differed the least from

T12, it is not surprising that these two times also displayed the greatest agreement in clas-

sifications with little difference in HSS and both agreeing with T12 during approximately

78% of days. Where CTP and HI differed most for the T08 case, the greatest frequency

of off diagonal observations also occurred in the classification matrix (Fig. 2.9a). When

T12 was classified as WA, T08 could be classified as any of the three non-atmospherically

controlled classifications, though WA was still the most frequent classification. Overall, the

same classification as T12 was produced by T08, T11 and T13 for 64, 78 and 79 percent of

cases respectively.

When classification differences occurred, these were often for adjacent categories

with a clustering of off diagonal counts immediately adjacent to those along the diago-

nal. To further explore this, the same uncertainty analysis that was used to compare the

radiosonde and AERI observations was performed again, except that T12 (AERI) obser-

vations were considered “absolute truth” for this uncertainty analysis. Uncertainties were

then computed at T08, T11, and T13 individually using each time’s distribution of potential

profiles and applying the same uncertainty thresholds used in the radiosonde versus AERI

analysis. Addition of uncertainty improved the percentage of days with agreement in time

for all three times considered, and also improved HSS for all three times (Fig. 2.10). The

decrease in number of off-diagonal elements is especially apparent for T13 versus T12
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(Fig. 2.10c). When the frequency of each category by time was examined instead, during

the 2017 to 2019 period (Fig. 2.9d), and not at whether these were occurring on the same

day, each time displayed similar frequencies per classification. ACd was observed less fre-

quently at T13 than during the other periods, while ACw was observed most frequently for

T13, further supporting the idea of atmospheric moistening with time. WA was the most

common categorization for the non-atmospherically controlled days for all periods, while

T and DA were similar in frequency for all time periods.

2.4 Discussion

This study demonstrated the utility of the AERI for observation-based land-atmosphere

coupling analysis using the CTP-HI framework (Findell and Eltahir 2003a,b).

This study was motivated by two primary questions:

1. What are the uncertainties associated with computing CTP and HI from radiosonde

profiles versus from ground-based AERI-retrieved profiles?

2. Do CTP and HI exhibit substantial temporal variability overnight, or are these values

consistent as long as they are obtained for a pre-convective PBL?

It was demonstrated that the AERI provides a realistic representation of CTP and

HI and agreed well with radiosonde observations of the same metrics, even though small

uncertainties were still present. These uncertainties were most apparent for the comparison

of CTP values computed from radiosonde versus AERI thermodynamic profiles. These un-

certainties are not surprising given CTP is a vertically integrated metric and it incorporates

observations from higher levels in the atmosphere. Integrated metrics such as CTP, or in

the case of Blumberg et al. (2017), CAPE, have greater uncertainties than simpler metrics

like HI. CTP measurements are also obtained at greater heights in the atmosphere (i.e. ap-

proximately 1 to 3 km) where vertical resolution of the AERI is reduced in comparison to
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HI measurements which are made lower in the atmosphere (i.e. approximately 0.5 km and

1.5 km) where vertical resolution is greater.

The impact of vertical resolution on these uncertainties was further realized when

radiosonde profiles were smoothed to the same resolution as AERI profiles. Comparison

of profiles with the same vertical resolution produced greater agreement in observations of

CTP and HI between the two observational platforms. This further suggests that vertical

resolution is a significant driver of the difference between radiosonde and AERI derived

CTP and HI. While uncertainties exist, they not hinder the AERI’s ability to provide a

realistic estimation of CTP and HI.

AERI and unsmoothed radiosonde diagnoses of atmospheric preconditioning based

on the CTP-HI framework were identical for a majority of days, even if exact values of CTP

and HI did not match. Incorporating uncertainty estimates further demonstrated the AERI’s

utility in applying the CTP and HI framework, producing a greater number of days in which

both AERI and radiosonde profiles diagnosed the same atmospheric preconditioning. Such

analyses further confirm the hypothesis that a majority of the initial differences in precon-

ditioning classification were driven by instances when radiosonde CTP and HI values were

at the boundaries of a given category’s threshold. This was made apparent by the increase

in along diagonal elements within the uncertainty contingency matrix (Fig. 2.5), and a

corresponding decrease in off-diagonal elements, especially within adjacent categories.

The agreement between AERI and radiosonde observations of CTP and HI demon-

strated that the AERI can be useful for obtaining vertical profiles in time and space where

radiosonde observations are lacking. The temporal frequency of AERI observations also

provides a unique opportunity to explore the variability of this metric in time. Accumu-

lated net radiation varies in space such that soundings released at the same UTC time do

not coincide with the exact same PBL conditions around the world. Variability surrounding

the 1200 UTC observation was also assessed as this corresponds to the morning observa-

tion in much of the western hemisphere. It is important to note that the implications of
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these results may be interpreted for locations in a different hemisphere, where the morning

sounding may coincide with 0000 UTC. The primary concern is with variability in CTP and

HI in the hours immediately preceding and following the hour of the morning sounding but

an additional time period (0700-0800 UTC) was included in the analysis for comparison to

past studies using the CTP-HI framework.

The results of this study suggest that variability in CTP and HI in the hours immedi-

ately surrounding the morning sounding is minimal. Composite mean profiles for the cases

with the greatest temporal difference in CTP or HI indicate a greater variation in moisture

profiles than temperature profiles with time at the levels in which CTP and HI are measured.

This is important because it suggests that while CTP and HI are measured in portions of

the atmosphere decoupled from the surface, the atmosphere continues to evolve. However,

it is important to recognize that the variation in moisture may also be unique to the South-

ern Great Plains location and future work could address this by performing similar studies

using AERI observations outside of this region.

In general, as the difference in time from T12 increases, so do the differences in

CTP and HI, and this is particularly true for T08 versus T12 observations. Even the most

extreme differences, in the tails of the difference distributions, were more pronounced for

T08. The composite profiles were obtained for extreme values in the difference distribu-

tions and these extreme cases were often associated with frontal passages, low-level jets,

and other large-scale phenomena (not shown). The large differences that arose over time

as a result of these meteorological influences suggest that computations of CTP and HI

obtained from satellite remote sensing platforms near T08 may not always be a good ap-

proximation for atmospheric preconditioning. While median temporal differences in CTP

and HI were often small, even small differences in values can produce different classifica-

tions based on the original framework. Where T08 may diagnose the atmospheric precon-

ditioning to be most favorable for convection over dry soils, T12 on the same day might

diagnose the atmosphere as more favorable for convection over wet soils. Therefore, on a
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specific day, greater uncertainty in the diagnosis of atmospheric preconditioning may ex-

ist with vertical profiles obtained further in time from the 1200 UTC observation window.

T11 and T13 showed greater skill at producing the same preconditioning classification as

T12, while T08 performed noticeably worse. Uncertainty estimates enhanced skill for all 3

times considered, suggesting that a reasonable estimate of atmospheric preconditioning can

be obtained at times other than T12. Even so, when considering the categories that corre-

spond to non-atmospherically controlled days, T08 displayed more off-diagonal elements

for WA and T days despite incorporating a window of uncertainty. This likely reflects

an actual difference in the atmospheric preconditioning between the two times, especially

when T11 and T13 correctly identified such days at least half of the time when uncertainty

windows were considered.

Even if CTP and HI observations at T08, T11, T12 and T13 were consistent with

one another, synoptic scale processes could alter the environment at any time between

the morning sounding and afternoon period for which the CTP-HI framework diagnoses

convective pre-conditioning. For example, if wet soils were observed and application of

the framework diagnosed the morning atmosphere as being pre-conditioned for convection

over wet soils on a day with an afternoon frontal passage, it would be difficult to forecast the

relative contribution of the land surface from the contribution of large-scale drivers toward

triggering convective precipitation using this metric alone. Thus, a primary limitation of

our analysis is that data were not filtered for synoptically quiescent days only as this would

have adversely impacted sample size, but it is expected that doing so would result in even

greater temporal agreement in CTP and HI values and greater predictive utility from those

values. Finally, the thresholds provided by Findell and Eltahir (2003a,b) are meant to serve

as guidelines and may be flexible based upon regional climatology (Wakefield et al. 2019).
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2.5 Conclusions

The implications of this CTP-HI analysis are two-fold. First, by showing good agreement

between radiosonde and AERI observations of CTP and HI, it was possible to evaluate

the temporal variability in this coupling metric with confidence that the AERI retrievals

are representative of reality. Second, some temporal variability was demonstrated in this

metric within a given day, and applications of the framework are best suited to locations

where the morning sounding corresponds to a local time within 1-2 hours of the morning

sounding time in the central time zone.

Days in which HI and CTP differed greatly are not likely to be the most favorable

days for L-A interactions studies as large-scale meteorological influences contributed to

substantial temporal evolution in temperature and moisture profiles. As such, synoptic

influences on moisture and temperature would likely overpower the influence of the land

surface. However, it is possible that looking at the temporal evolution of CTP and HI

over a location could provide a means of identifying days which are favorable for L-A

coupling and those which are not. Days in which CTP and HI exceed a certain difference

threshold over time would be considered unfavorable for L-A interaction studies. This

could be automated for identification of such days within a large dataset. Such an approach

is beyond the scope of the current study, but future work could evaluate whether there is a

variability threshold for days which are considered optimal for land-atmosphere coupling

study versus days which are not.

Vertical profiles of temperature and moisture are often incorporated into land-atmosphere

coupling metrics which can limit their applicability from an observational perspective as

the temporal and spatial coverage of atmospheric profiles is sparse. The AERI can be used

in such locations to better observe land-atmosphere coupling, and these observations may

also be used to verify model representation of land-atmosphere coupling in locations where

such comparisons were not previously possible.
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Figure 2.1: Figure 15 from Findell and Eltahir (2003a) showing CTP-HI combinations for

each category of atmospheric preconditioning.
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Figure 2.2: (a) AERI HI versus radiosonde HI (b) AERI HI versus AERI-radiosonde HI

difference (c) AERI HI versus smoothed radiosonde HI and (d) AERI HI versus AERI-

smoothed radiosonde HI difference. Black points represent 2017 data and red points repre-

sent 2019.
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Figure 2.3: As in Figure 2.2, but for CTP.
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Figure 2.4: Contingency matrix comparing CTP-HI classifications obtained based ra-

diosonde versus AERI CTP-HI observations and Heidke Skill Scores (a) without window

of uncertainty and (b) including AERI window of uncertainty. The colorbar corresponds to

number of counts, while this number is also annotated directly within the matrix.
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Figure 2.5: Flowchart for computing contingency matrix with uncertainty. Green arrows

represent “yes” and red dashed arrows represent “no.”
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Figure 2.6: Histogram of temporal differences between (a) HI and (b) CTP, and boxplots

displaying median and interquartile range of temporal differences for (c) HI and (d) CTP

computed for T12-T08 (blue), T12-T11 (red) and T12-T13 (yellow).
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Figure 2.7: Composite temperature profiles for days with the greatest temporal difference

(CTP at T12- CTP at Tn) in CTP for differences (a-c) above the 95th percentile and for

differences (d-f) below the 5th percentile. Black horizontal lines represent the 100 mb

AGL and 300 mb AGL levels.
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Figure 2.8: As in Figure 2.7 but for HI difference distributions and with the inclusion of

dewpoint profiles. Horizontal black lines represent the 50 mb AGL and 150 mb AGL at

which dewpoint depressions for HI computations are measured.

33



Figure 2.9: (a-c) Contingency matrix of classifications based on CTP and HI combinations

for 1100-1200 UTC (+0) versus (a) 0600-0700 UTC (-5) (b) 1000-1100 UTC. (-1) and (c)

1200-1300 UTC (+1). Abbreviations for each classification are provided in section 3.1. (d)

percentage of days in each category for each time window.
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Figure 2.10: (a-c) As in Figure 2.9 a-c, but comparing classifications at T12 to those within

windows of uncertainty for (a) T08 (b) T11 and (c) T13.
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Chapter 3

Evaluation of a land-atmosphere coupling metric computed from a

ground-based infrared interferometer Part II: Boundary layer

moisture and energy budget analysis

3.1 Introduction

Chapter 2 introduced the CTP-HIlow framework, which provides an estimate of atmo-

spheric preconditioning toward convection over wet or dry soils. However, the metric is

limited to application at a single time, before the daytime PBL develops, rendering it less

useful for capturing the co-evolution of the land surface and PBL over the course of an

entire day. However, mixing diagrams are a useful tool that can provide such information.

Mixing diagrams (Betts 1992; Santanello et al. 2009; Santanello Jr et al. 2011)

combine information about surface fluxes and the atmospheric state of the PBL to quan-

tify the relative contributions of the land surface to the diurnal evolution of boundary layer

temperature and moisture. The strength of this framework lies in its applicability to both

observational and modeling based land-atmosphere coupling studies, and in its ability to

capture the co-evolution of surface and atmospheric processes. Conversely, the framework

relies on observations of 2-meter potential temperature and specific humidity to represent

the evolution of the entire PBL moisture and energy budget, and thus, operates on the as-

sumption that 2-meter observations are representative of the entire mixed layer. The use

of surface meteorological observations was motivated by the relative abundance of such

observations in both space and time (Santanello et al. 2009). Using a more representative

mixed-layer average temperature and humidity would severely limit this framework’s ap-

plicability to only those locations where vertical profiles of the atmosphere may be obtained

multiple times between the traditional 1200 UTC and 0000 UTC radiosonde launches. As
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shown in Chapter 2, the temporal resolution of the AERI and the ability to deploy AERI

instruments where radiosonde observations are absent, makes it possible to reconsider the

mixing framework’s original design. As such, a modified application of the mixing diagram

framework, uniquely enabled by AERI observations, is introduced in this chapter.

3.2 Framework Description

Mixing diagrams were first introduced by Betts (1992) and further modified by Santanello

et al. (2009) to describe the heat and moisture budgets within the boundary layer. These

diagrams attempt to separate the surface, entrainment, and advective contributions to the

overall moisture and temperature composition of the boundary layer during daytime hours

(i.e. 1200 to 2400 UTC in North America).

The co-evolution of temperature and moisture are represented by a curve in which

each point along the curve represents the temperature and moisture content of the PBL at

a given time. For example, given 3-hourly radiosondes, a curve from 1200 to 2400 UTC

would be found using observations at 1500, 1800 and 2100 UTC with 1200 and 2400 UTC

serving as the end points. The mixing diagram shows the 2-m specific humidity multiplied

by the latent heat of vaporization (Lv) as the abscissa and the 2-m temperature multiplied

by the specific heat (Cp) as the ordinate.

Each component of the moisture and energy budget is represented by a vector. The

total vector quantifies the total change in moisture and temperature from the beginning

to the end of the period, with the x-component representing changes in moisture and the

y-component representing changes in temperature. A conceptual diagram to demonstrate

these quantities is provided in Figure 3.1.

Surface vectors are a result of the mean surface fluxes during the period scaled by

the mean boundary layer depth. The x-component of this vector can be found by finding the

mean latent heat flux (LHFs f c) over the period of interest, multiplying this by length of the

period in seconds, and scaling by the mean boundary layer depth (PBLH) and mixed-layer
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density (ρm) as shown in (3.1) where Lv∆qs f c represents the surface flux component of the

PBL moisture budget and Lv is the latent heat of vaporization.

Lv∆qs f c =
LHFs f c×∆t

ρmPBLH
(3.1)

Similarly, the surface sensible heat flux component of the energy budget (Cp∆θs f c)

can be found from (3.2) where Hs f c is the mean sensible heat flux over the period and Cp

is the specific heat.

Cp∆θs f c =
Hs f c×∆t
ρmPBLH

(3.2)

Surface fluxes and PBLH are both averaged over the entire period. Santanello et al.

(2009) have shown that using a stepwise integration of these values by timestep does not

produce a drastically different result. Therefore, when observations of PBLH are limited in

temporal resolution, this approximation can be useful.

Finally, the height of the PBL is an essential piece of information in the analysis

as surface fluxes are scaled over the depth of the PBL. PBL heights were computed from

AERI profiles via the retrieved potential temperature at the surface and adding a factor of

1-σ in uncertainty, then an additional 0.5°, to account for noise in the retrieval temperature

estimates, was added to this surface measurement. A parcel was then lifted dry adiabati-

cally until it intersected the potential temperature profile, and this level was determined to

be the PBLH. Radiosonde-derived PBLH estimates were computed using the same process.

The mixing diagram framework can benefit from AERI observations in a couple of

ways. First, PBLH can be estimated with greater temporal frequency from thermodynamic

profiles, and second, it is possible to examine the moisture and energy budget evolution us-

ing mixed-layer averages of potential temperature and specific humidity instead of 2-meter

observations. Surface meteorological and flux observations as well as radiosonde profiles

from the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains

site (SGP) were used in conjunction with AERI observations to test multiple approaches to
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the mixing diagram framework and to introduce a refined methodology applied to model

simulation data in Chapter 5.

3.3 Data

3.3.1 Site selection

This study uses the same AERI and radiosonde observations from the same location and

period used in Chapter 2. A greater focus in this study was placed on observations from

2019 when 3-hourly radiosondes were available as a result of the Micropulse Dial IOP.

Higher temporal resolution radiosonde observations were desirable to more comprehen-

sively evaluate PBL budget evolution.

3.3.2 ECOR: Eddy Correlation Flux Measurement System

Surface latent and sensible heat flux observations were obtained from the Eddy Correlation

Flux Measurement System (ECOR; Cook and Sullivan 2020) at the E14 site that is col-

located with the ARM central facility. The system uses the eddy covariance technique to

provide observations of latent and sensible heat fluxes every 30 minutes.

3.3.3 Surface meteorological station

Surface meteorological variables were obtained from the ARM Sothern Great Plains Sur-

face Meteorology Systems (SGPMET; Ritsche 2011) station located at the E13 site, which

is also collocated with the ARM central facility. Temperature and relative humidity at 2

meters were measured by the Vaisala HMP45C temperature and relative humidity probe

with relative humidity accuracy of 2-3% and temperature accuracy of 0.2at 20and 0.3at

40(https://www.campbellsci.com/hmp45c-l).
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3.4 Methods

3.4.1 Observational analysis

The mixing diagram framework uses 2-meter temperature and humidity to compute the

overall mixing diagram curve as well as the total vector and assumes that these values are

representative of a well-mixed PBL. This is, in part, due to the widespread availability

of 2-meter temperature and humidity observations. It is hypothesized that using mixed-

layer averages of these quantities makes closure of PBL moisture and energy budgets more

attainable. Even so, mixed layer averages with the same temporal resolution afforded by 2-

meter observations are difficult to obtain. AERI offers the unique ability to compute these

mixed layer average temperature and humidity profiles.

The mixed layer over which temperature and specific humidity were averaged was

defined as the layer between 0.1 zi and 0.75 zi, where zi is the PBL height (PBLH). The

lower limit of this layer was selected to avoid the surface layer which is typically within

the lowest 10% of the PBL while the 0.75 zi upper bound should reduce influences from

entrainment fluxes (Stull 1988). Mixed layer mean values were computed for both the

radiosonde and AERI profiles.

Surface flux inputs remain the same for each observational platform, and differ-

ences in PBLH derived from the AERI versus radiosonde data are the primary driver of

differences in surface vectors. This is because residual vectors as fluxes are scaled to the

depth of the PBL. PBL depth also influences the layer in which mixed layer averages of

temperature and humidity are obtained as the mixed layer bounds are a direct function of

PBLH. Therefore, the analyses presented hereafter will focus primarily on the uncertain-

ties associated with AERI versus radiosonde boundary layer heights as well as mixed-layer

profiles.

The traditional mixing diagram framework averages daily latent and sensible heat

fluxes and scales these to the average depth of the boundary layer for the period of interest

in order to compute the surface flux vector. As such, hour to hour differences in radiosonde
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versus AERI PBLH observations may be smoothed by this averaging. The difference be-

tween using an hourly stepwise integration of the PBLH scaled fluxes versus using an

average over the entire period should not result in a significant difference between the two

approaches for the same instrument (Santanello et al. 2009). Even so, both approaches to

the mixing diagram framework were tested in addition to comparison of results for both

radiosonde and AERI based mixing diagrams. While AERI and surface flux observations

were available hourly, the greatest temporal resolution afforded by radiosonde observa-

tions was 3-hourly during the 2019 IOP. As such, daily averaged values of surface fluxes

and PBLH were compared with values obtained from the highest temporal resolution step-

wise integration afforded by the specific observational platform. It is anticipated that the

greatest differences in PBL budget representation will be related to uncertainties and dif-

ferences between the profiling platforms themselves regardless of approach as differences

in PBLH estimate will drive differences in the scaling of fluxes over the depth of the PBL.

Although there are numerous potential days for analysis during the 2017 and 2019

periods, only two cases were selected for this proof-of-concept study. Case selection was

intended to capture two different PBL regimes to ensure that the final methodology could

sufficiently capture a wide range of evolution in PBL moisture and energy budgets. The

first date selected was 12 June 2019, which was characterized by equal partitioning between

surface latent and sensible heat fluxes and an overall warming and drying of the PBL. The

second date, 20 June 2019, was primarily influenced by high surface latent heat fluxes and

a late afternoon/early evening moistening of the PBL.

3.5 Results

3.5.1 12 June 2019

Mixing diagrams computed from AERI observations and from radiosonde observations

(Fig. 3.2) both portray the overall drying and warming of the PBL that was observed during

the daytime hours as represented by the Lvq versus Cpθ curves. Surface Bowen ratios
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were nearly identical for both radiosonde and AERI based mixing diagrams and indicate a

greater partitioning of energy into evaporation. Given surface fluxes alone, warming and

moistening of the PBL would be expected rather than the observed warming and drying.

As such, the residual vector (red) indicates that entrainment and advective fluxes of dry air

played a critical role in the observed drying of the PBL.

Using the daytime average (Fig. 3.2a) versus temporally integrated (Fig. 3.2b) ap-

proach did not result in significant differences between mixing diagrams, and Bowen ratio

values were nearly identical between cases. Vector magnitudes (Fig. 3.3) for radiosonde

based mixing diagrams were consistently less than those of AERI mixing diagrams with the

exception of the surface vector magnitudes for the time integrated case. As such, reduced

magnitudes did not result in great differences in the overall representation of the moisture

budget between platforms since the radiosonde vector magnitudes were consistently lesser

than those of the AERI. This is further evidenced by little difference in Bowen ratios for

each vector shown in figure 3.3.

Upper and lower bounds for the mixed layer are dependent upon zi or PBL depth.

Even if radiosonde and AERI thermodynamic profiles were nearly identical, differences

in PBL depth could contribute to differences in mixed layer averages. Additionally, while

the exact same surface flux measurements were used for AERI and radiosonde mixing di-

agrams, these fluxes are scaled to the depth of the PBL. On this particular day, both AERI

and radiosonde PBLH were very similar (Fig. 3.4), contributing to the good agreement be-

tween mixing diagrams. As such, any differences in the mixing diagrams was likely related

to differences in the thermodynamic profiles. Agreement in PBLH is slightly reduced at

the end of the period, though this may be related to the evening transition of the boundary

layer. As such, limiting the period of interest to when surface fluxes are above a certain

threshold could mitigate this issue. Using a flux-threshold based approach further supports

the case for AERI thermodynamic profiles as the 0000 UTC radiosonde may fall outside
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the bounds of the new time period, and there would be insufficient information to compute

a mixing diagram.

3.5.2 20 June 2019

Analysis of 20 June 2019 provided contrasting PBL evolution in comparison to 12 June

2019 and was characterized instead by warming and moistening of the PBL in addition to

greater initial moisture content (Fig. 3.5). Much of the PBL moistening was concentrated

later in the day and was successfully portrayed by both radiosonde and AERI mixing dia-

grams. AERI mixing diagrams showed initially drier conditions than those obtained from

radiosondes, but the overall shape was similar between the two. Furthermore, the final

temperature and moisture was nearly identical between the two platforms at the end of the

period. Surface flux partitioning was overwhelmingly dominated by evaporation, and once

again, the choice of daytime averaged, versus time integrated approaches resulted in little

difference in surface vector Bowen ratios and magnitudes (Fig. 3.6).

The differences between radiosonde and AERI mixing diagrams was further ex-

plored by examining 3-hourly vertical profiles obtained from each instrument (Fig. 3.7).

From 1200 to 1800 UTC, AERI showed lower mixed layer moisture content, but by 2100

UTC both AERI and radiosonde moisture profiles were in good agreement. It is also ev-

ident that vertical resolution played a role in some of these differences, especially earlier

in the day. Once the PBL was well-mixed, the AERI performed well, as some of the finer

scale variations observed in the radiosonde vertical moisture profile during earlier times

became more uniform due to mixing.

The AERI’s ability to estimate PBLH accurately (Fig. 3.8) played a key role in

creating nearly identical representation of surface flux partitioning in mixing diagrams.

Consequently, differences in PBLH were insufficient to create major discrepancies between

mixing diagrams. Mixed layer averages would be obtained over nearly the same layer for

radiosonde and AERI profiles. This further supports the assertion that the differences in
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mixing diagram curves observed early in the period are directly related to differences in

thermodynamic profiles shown in Figure 3.7.

The initial difference between radiosonde and AERI representation of the mixing

diagram curve had an impact on the computation of the residual vector. Total vectors

represent the change in moisture and energy budget of the PBL from beginning to end of

the daytime cycle, and therefore, differences at the start of the period resulted in smaller

total vector magnitudes for the radiosonde mixing diagrams. Computation of the residual

vector is sensitive to the magnitudes of the surface and total vectors, and therefore residual

vectors also differed between the AERI and radiosonde mixing diagrams.

Radiosonde total vectors displayed higher Bowen ratios than AERI total vectors,

indicating a greater change to the PBL energy budget than to its moisture budget. At the

start of the period, radiosonde moisture was already greater than that observed by the AERI,

while at the end both platforms were nearly identical. As such, a greater overall change in

the AERI moisture budget was necessary to achieve a similar final moisture content to the

radiosonde observations. Conversely, radiosonde PBL temperatures were cooler than that

of AERI temperatures, such that greater input into the PBL energy budget was necessary

for final radiosonde temperature to match that of the AERI.

Given a moister starting point in the radiosonde mixing diagram, and a surface vec-

tor with nearly identical magnitude to that obtained from the AERI, more drying had to

occur as a result of entrainment and advection to achieve the same final moisture and tem-

perature content as the AERI. Conversely, surface fluxes of moisture appeared to dominate

the evolution of the AERI PBL moisture budget, and little contribution of advection or

entrainment was necessary. This is reflected in the different Bowen ratios for the AERI

and radiosonde residual vectors. Residual vectors in the radiosonde and AERI mixing di-

agrams suggest that advection and entrainment fluxes primarily contributed to warming

of the PBL. These vectors also provide contrasting depictions of the role advection and

entrainment fluxes played in the PBL moisture budget.
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3.6 Discussion

Mixing diagrams are a useful tool that can provide detailed information about daytime PBL

evolution and can benefit from AERI observations in a couple of ways. First, PBLH can be

estimated with greater temporal frequency from thermodynamic profiles, and second, it is

possible to examine the moisture and energy budget evolution using mixed-layer averages

of potential temperature and specific humidity instead of 2-meter observations. Past ap-

plications of the mixing diagram framework use 2-meter observations as they are far more

prevalent in time and space than vertical profiles of the same meteorological variables (San-

tanello et al. 2009).

Using a mixed-layer approach means that twice daily soundings are insufficient

for application of the mixing diagram framework to observations, and even the 6-hourly

soundings at the ARM SGP site would provide a limited picture of the PBL evolution

between 1200 and 0000 UTC. Therefore, the temporal resolution of the AERI is optimal

for application of this framework. Two case studies were selected during 2019 to showcase

the utility of the AERI in this particular application. These cases were selected because

sounding data was available at 3-hourly instead of 6-hourly intervals during the period to

better compare radiosonde and AERI based mixing diagrams, and both days showed well-

developed mixed layers. Furthermore, the two days were selected to contrast one another

as the PBL evolution on the 12th was characterized by warming and drying throughout the

day. Conversely, the PBL moistened and warmed on the 20th. Both days also displayed

differing starting temperature and moisture conditions, such that the AERI and radiosonde

portrayal of PBL evolution could be compared for two different extremes.

Overall the AERI and radiosonde mixing diagrams matched well and support the

idea that the AERI can provide a representative picture of diurnal PBL evolution in loca-

tions where radiosonde data is not available and can provide a valuable tool for studying

land-atmosphere coupling. From the two cases presented, a few key points can be made:
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1. The AERI performs well at matching the overall shape of the radiosonde mixing

diagram curve for days that are characterized by moistening and by drying.

2. Both radiosonde and AERI PBL heights show strong agreement overall, which cre-

ates greater consistency in the surface flux vectors as they are a result of normalizing

the surface fluxes over the depth of the boundary layer.

3. Using stepwise integration of surface fluxes versus daily means does not lead to

significant differences in surface flux vectors, consistent with Santanello et al. (2009).

4. Weakened rapidly following landfall and did not undergo extratropical transition.

5. Residual vectors are sensitive to both the magnitude, and direction of the total vectors

and surface vectors, but because the surface flux vectors show little variability, it is

the magnitude and direction of the total vectors that created the greatest differences

both between observing platforms and within mixing diagrams obtained from the

same platform. Because the residual vector captures both entrainment and advection

contributions to the overall evolution of the PBL, this may lead to misattribution of

the relative role that surface fluxes play in the moisture and energy budget of the

PBL.

3.7 Conclusions

In regions where upper air observations are performed only twice per day, the AERI can be

used to provide a wealth of information about the PBL evolution in between those two times

and can be used to better quantify land-atmosphere interactions in such locations. When co-

located with surface flux observations, the relative contributions of sensible and latent heat

fluxes to the moisture and energy budget of the boundary layer can be evaluated, even when

there are no nearby upper air observing stations. Moreover, the higher temporal resolution

of the AERI facilitates comparison with high temporal resolution model simulation output,
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and will be used in the future to verify operational forecast model representation of PBL

moisture and energy budget components.

Some limitations of the mixing diagram analyses are driven by a lack of information

about advection. Chapter 5 will incorporate estimates of advection from numerical model

output and reanalysis data to better quantify the role of entrainment in the overall PBL

evolution. Ongoing work by collaborators suggests that a network of several AERIs at

the ARM SGP site can be leveraged to derive advection, which would allow for advective

fluxes to be separated from the residual vector, enabling refinement of entrainment flux

estimations. However, the observational aspect of the advection work is beyond the scope

of this study. Application of advection obtained from model simulation output will be

introduced into the framework in Chapter 5.

The high temporal resolution of the AERI also enables application of the mixing

diagram coupling metric. Mixing diagram quantities display some sensitivity to both the

morning and nocturnal transitions but the AERI’s high temporal resolution would allow for

the starting and ending times of the mixing diagram observations to be altered to omit these

transition periods. Future analyses may also divide mixing diagrams into smaller temporal

ranges to quantify the evolution of the PBL while it is actively developing and while it

is steady state. Vertical profiles of temperature and moisture are often incorporated into

land-atmosphere coupling metrics which can limit their applicability from an observational

perspective as the temporal and spatial coverage of atmospheric profiles is sparse. The

AERI can be used in such locations to better observe land-atmosphere coupling, and these

observations may also be used to verify model representation of land-atmosphere coupling

in locations where such comparisons were not previously possible.
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Figure 3.1: Conceptual diagram describing the Mixing Diagram Framework (Santanello et

al. 2009.
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Figure 3.2: Mixing diagrams for 12 June 2019 derived from AERI vertical profiles consist-

ing of (a) mixing diagram computed using mixed layer temperature and humidity, where

surface flux vector was computed by normalizing daily average latent and sensible heat

fluxes over the daily averaged PBL depth. (b) as in (a) except surface flux vector was com-

puted from stepwise integration of surface fluxes over time. Residual vectors were obtained

by subtracting surface vectors from total vectors. Total vectors are the same in both plots,

but because the surface vectors change, so do the residual vectors. Dashed lines represent

mixing diagrams obtained from radiosonde profiles instead of AERI profiles.
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Figure 3.3: Vector magnitudes for mixing diagram vectors on 12 June 2019. Magnitudes

for both the daily averaged vectors and time integrated vectors are both shown. Solid bars

represent AERI vectors while hatched represent radiosonde vectors.
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Figure 3.4: AERI versus radiosonde estimates of boundary layer height (PBLH) on 12 June

2019. Gray represents 1 standard deviation in uncertainty for the AERI PBLH. Dashed

horizontal lines represent the mean over the entire period. Subjective PBLH and mean

were PBLH which were identified manually.

Figure 3.5: As in Figure 3.2, but for 20 June 2019.
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Figure 3.6: As in Figure 3.3 but for 20 June 2019.
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Figure 3.7: Vertical profiles of temperature and moisture at 3-hourly intervals on 20 June

2019. Black (red) represents radiosonde temperature observations and gray (green) rep-

resents radiosonde dewpoint observations. Wind speed and direction were also obtained

from radiosonde observations.
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Figure 3.8: As in Figure 3.4, but for 20 June 2019.
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Chapter 4

The Inland Maintenance and Reintensification of Tropical Storm Bill

(2015) Part 1: Contributions of the Brown Ocean Effect

4.1 Introduction

Soil moisture can play a role in the development of weather and climate extremes, particu-

larly within continental regions comprised of a transition zone from humid to drier climates

such as the Southern Great Plains (Guo et al. 2006; Koster et al. 2004, 2006; Dirmeyer

2006). In these regions a greater sensitivity of the overlying atmosphere to surface fluxes is

observed, reinforcing precipitation anomalies. Changes to land use and land cover can also

impact precipitation extremes. This is evident even in arid regions where afforestation can

provide localized rainfall enhancement (Yosef et al. 2018; Branch and Wulfmeyer 2019).

Elsewhere, anthropogenic land use changes have been linked to reductions in precipitation

a result of increased irrigation and agricultural use in the Indian Monsoon region (Niyogi

et al. 2010). Thus, the land surface can even impact larger scale atmospheric circulations.

Antecedent rainfall has been associated with further inland penetration of landfalling mon-

soon depressions (Kishtawal et al. 2013) and has also been shown to increase their intensity

(Chang et al. 2009). Dastoor and Krishnamurti (1991) showed that more accurate param-

eterization of soil wetness produced more accurate simulations of rainfall associated with

these circulations. Landfalling tropical cyclones may be similarly impacted by soil wetness

and other land surface characteristics. Tropical cyclones (TC) are fueled by fluxes of heat

and moisture from the surface, in particular, warm sea surface temperatures (e.g., Emanuel

et al. 2004). Reduction in evaporation upon landfall contributes to tropical cyclone decay

over land (Tuleya and Kurihara 1978; Tuleya 1994) though landfalling TCs may be sus-

tained by fluxes of heat and moisture from the land surface even as they move away from
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oceanic sources of energy. This phenomenon is referred to as the Brown Ocean Effect

(Andersen et al. 2013).

Post-landfall intensification of TCs is typically a result of the storm interacting

with a midlatitude baroclinic zone and transitioning to an extratropical cyclone (Hart and

Evans 2001; Jones et al. 2003; Evans et al. 2011). Occasionally landfalling TCs maintain

their warm-core structure and may re-intensify over land despite limited access to oceanic

sources of moisture, and in particular, oceanic surface fluxes. In such cases, a moist land

surface may provide sufficient fluxes of moisture and energy to re-intensify or sustain a TC.

Numerical simulations of landfalling TCs are sensitive to parameterizations of the land sur-

face (Bozeman et al. 2012; Kishtawal et al. 2012). Simulated landfalling TCs still weaken

when moving over a water-covered land surface, but they do so more slowly than those over

dry land. Moreover, these TCs display a much greater diurnal cycle in convection than TCs

over the ocean due to lower heat capacity of shallower water surfaces (Shen et al. 2002).

Emanuel et al. (2008) suggested that daytime heating and moistening of sandy soils

from outer rain bands ahead of the path of landfalling TCs in Australia provide sufficient

latent heat flux to fuel maintenance or intensification of the TC as it moves further inland.

This theory was proposed to explain the inland reintensification of TS Erin over Oklahoma

on 19 August 2007 (Emanuel et al. 2008; Kellner et al. 2012). Antecedent rainfall in the

region was well above normal; however, in the weeks preceding Erin’s landfall, top level

soil had dried and warmed markedly along the path such that outer rain bands ahead of

Erin could remoisten soils and encourage enhanced latent heat fluxes (Arndt et al. 2009;

Monteverdi and Edwards 2010; Evans et al. 2011; Andersen and Shepherd 2014).

This Brown Ocean Effect may play a role in the reintensification of TCs in North

America, Asia, and Australia (Andersen et al. 2013). Through a global climatology of

inland TC maintenance and/or intensification (TCMI), Andersen et al. (2013) found that

latent heat fluxes were much greater in the vicinity of the location of a TCMI during the

3 weeks prior to, as well as during, the TCMI occurrence when compared to TCs that
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weakened over land. In other words, antecedent and concurrent surface moisture both

play a role in TCMI, via increased latent heat fluxes making it necessary to examine land

surface conditions related to TCMI cases at multiple timescales. Furthermore, daytime

maximum latent heat fluxes over land during the period preceding TCMI occurrences are

often similar in magnitude to latent heat fluxes over the ocean (Andersen and Shepherd

2014). More recently, Nair et al. (2019) found that an unnamed depression responsible for

intense flooding in Louisiana may have been enhanced by the Brown Ocean Effect.

Recently, in the United States, both TS Erin (2007) and TS Bill (2015) maintained

warm-core characteristics for an extended period of time post-landfall. In both cases,

above-normal antecedent precipitation had occurred along the paths of each storm. Pre-

vious studies have explored the potential drivers of Erin’s reintensification over Oklahoma

(Arndt et al. 2009; Monteverdi and Edwards 2010), but there is a dearth of literature regard-

ing the post-landfall evolution of TS Bill. A series of Weather Prediction Center Tropical

Advisory Discussions from 2100 UTC on 19 June 2015 to 1500 UTC on 20 June 2015

acknowledged the potential role that antecedent rainfall may have played in Bill’s reinten-

sification. However, Zhang et al. (2019) refute this claim, instead suggesting that increased

soil moisture would contribute to the weakening of TS Bill post-landfall, through increased

vertical mixing, and boundary-layer stabilization. Within the storm environment, beyond

the main circulation, diabatic heating effects enhanced vertical vorticity and convective

instability supporting a more symmetric structure over land, and thus, maintenance of in-

tensity in a simulated TS Bill Zhang and Wang (2021). Thus, it is important to consider the

role of latent heat fluxes within the environment adjacent to the storm itself.

This study uses a combination of existing and novel methods to evaluate the pre-

cursor environment along the path of TS Bill to determine whether the Brown Ocean ef-

fect aided the inland maintenance and/or intensification of TS Bill. It is hypothesized that

anomalously moist soils supported the overland maintenance of TS Bill for more than four

days following landfall through anomalous latent heat fluxes, both near the storm’s center
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and along the trajectories of inflow parcels. The current study implements a multi-step

process for assessing whether TS Bill was maintained or reintensified over land as a result

of anomalous moisture fluxes from the land surface. Sections 2 and 3 present an overview

of TS Bill, the data analyzed and our TCMI classification criteria. Finally, the event was

analyzed using three different approaches, and each analysis is grouped with its results in

sections 4, 5 and 6. First, the evolution of surface moisture fluxes and atmospheric moisture

during the 2-week period leading up to a potential TCMI event was examined, building on

metrics from Andersen et al. (2013). Landfalling storms with a similar path that did not

undergo TCMI were identified and these results were compared to TCMI cases. Then, the

focus shifted toward a shorter timescale and the relative contributions of evapotranspiration

to the atmospheric water vapor budget during the 72-hour period preceding TCMI and non-

TCMI storms. The third and final part of the analysis evaluated evapotranspiration along

the path of inflow parcels for each storm in the study. Discussion and conclusions of results

follow.

4.2 Overview and Data

4.2.1 TS Bill (2015)

4.1 summarizes the track of TS Bill. The storm formed on 16 June at 0000 UTC over the

Gulf of Mexico and tracked northwestward before making landfall on Matagorda Island,

Texas at 1645 UTC. TS Bill’s maximum intensity was observed shortly before and follow-

ing landfall from 1200 to 1800 UTC on the 16th, with a central pressure of 997 hPa and

maximum sustained winds at 50 kt (26 m-1). As Bill progressed northward through Texas,

it weakened and was re-classified by the National Hurricane Center as a tropical depression

at 0600 UTC on 17 June. Despite moving further inland, Bill maintained a central pres-

sure of 999 hPa from 0600 to 1800 UTC on 17 June, though maximum sustained winds

decreased from 30 to 25 knots during the same period. Following this period of relatively

constant intensity, Bill began to weaken and curved northeastward before being classified
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as a remnant low by 1800 UTC on 18 June in eastern Oklahoma. Bill produced rainfall

>30 cm in some places (Berg 2015; Stewart 2016) along with 19 tornadoes recorded in

the Storm Prediction Center TC tornado data (TCTOR; Edwards 2010) as it tracked over

land from 16–21 June. Between 1200 UTC 19 June and 1200 UTC 20 June, Bill’s cen-

tral pressure dropped from 1006 hPa to 1001 hPa as it moved from southern Missouri to

northwestern Kentucky. Radar imagery of Bill during this time (not shown) indicated en-

hanced convective activity to the southeast and a defined cyclonic circulation. According to

the Weather Prediction Center (WPC) public advisory archive (Rubin-Oster 2015), satellite

imagery also displayed prominent upper-level outflow to the north.

Similar to 2007 when TS Erin reintensified over Oklahoma, 2015 was characterized

by anomalously heavy rainfall preceding the arrival of TS Bill. Bill’s period of reintensi-

fication on the 19th and 20th may have been supported by anomalously wet land surface

conditions as upper-level forcing was minimal. Further, TS Bill also displayed a period of

near-constant central pressure over northern Texas despite its inland location. As such, this

study will also assess the relative contribution of the “Brown Ocean” effect to the mainte-

nance and intensification of TS Bill over land. The objective of this study is not to reassess

the existence of the Brown Ocean Effect, but rather to determine whether TS Bill exhibited

similar characteristics to other landfalling tropical cyclones which maintained intensity or

reintensified over land.

4.2.2 HURDAT2

National Hurricane Center Best Track data, for TS Bill and the other three storms analyzed,

was obtained from the publicly available HURDAT2 database (Landsea and Franklin 2013).

Latitude, longitude, central sea-level pressure and 1-minute maximum sustained surface

wind speed (10 m AGL) are provided at 6-hourly intervals, as well as information about

the cyclone’s classification, landfall and maximum intensity.
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Table 4.1: Summary of NHC Best Track Data for Tropical Storm Bill (2015). TCMI Events

are highlighted in bold.

Date/Time [UTC] Pressure [hPa] Wind Speed [kts] Category

16/0000 1005 45 TS

16/0600 1001 45 TS

16/1200 997 50 TS

16/1645 997 50 TS

16/1800 997 50 TS

17/0000 998 40 TS

17/0600 999 30 TD

17/1200 999 30 TD
17/1800 999 25 TD
18/0000 1000 25 TD

18/0600 1002 20 TD

18/1200 1003 15 TD

18/1800 1004 15 Low

19/0000 1005 15 Low

19/0600 1006 15 Low

19/1200 1006 15 Low
19/1800 1005 20 Low
20/0000 1004 20 Low
20/0600 1002 15 Low
20/1200 1001 15 Low
20/1800 1003 15 Low

21/0000 1006 15 Low

4.2.3 North American Regional Reanalysis

Meteorological surface and pressure level variables (4.1) were obtained from the 3-hourly

North American Regional Reanalysis (NARR) dataset (Mesinger et al. 2006). The NARR

assimilates observations into the National Centers for Environmental Prediction (NCEP)

60



Eta Model to produce a 3-hourly gridded dataset with 32 km resolution and 29 vertical

pressure levels distributed non-uniformly from 1000 hPa to 10 hPa on a Northern Hemi-

sphere Lambert Conformal Conic Grid. Further, the ability of the NARR to represent land-

atmosphere coupling processes (Santanello Jr et al. 2015) and its past applications toward

similar studies (Kellner et al. 2012) make it an appropriate choice to properly assess the im-

pact of land surface fluxes on inland TCs. Latent heat flux, precipitable water (PWAT) and

total-column water vapor convergence (WVC) 3-hourly data were obtained for the 2-week

periods preceding each TC. Because best track data are provided at 6-hourly intervals, that

data can be matched with appropriate corresponding NARR time. The only exception is

for the time of landfall, which often occurs between the 3-hourly NARR intervals. This

discrepancy does not impact the analysis, as the focus of this study is on inland TCs.

4.3 TCMI Classification

Classification of TCMI events was designed to be consistent with previous studies. Ander-

sen et al. (2013) established that a minimum distance of 350 km from a tropical cyclone

(TC) center to the nearest oceanic moisture source is necessary to properly assess the rela-

tive influence of the land surface. This minimum distance ensures that the majority of the

TC circulation, which typically occurs within a 4°to 6°radius (Frank 1977), was over land

at the time of analysis. Therefore, in this study, TCMI was evaluated along the TC path

only when the TC was >350 km from the nearest ocean basin (Fig.4.1).

Next, the TC must still display tropical characteristics at the time of inland inten-

sification. These characteristics include temperature maxima near the core of the cyclone,

vertical stacking of lows at successive height levels, and wind speed that decreases with

height, consistent with the thermal wind relation (Monteverdi and Edwards 2010). Equiv-

alent potential temperature (θe) was examined at 700 and 500 hPa to determine whether

the core of TS Bill was warmer than the environment within a 6° radius. The companion

analysis to this paper uses polarimetric radar variables to show that TS Bill continued to
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Table 4.2: Summary of variables obtained from the North American Regional Reanalysis

Variable Description Vertical Level

Accumulated Total

Precipitation [kgm−2 ]

3-hourly

accumula-

tion

Surface

Precipitable Water for entire

atmosphere [kgm−2 ]

3-hourly

mean

Total atmospheric column

Latent Heat Flux [Wm−2 ] 3-hourly

mean

Surface

Specific Humidity [kgkg−1 ] 3-hourly

mean

Surface and Pressure Level

Air Temperature [K ] 3-hourly

mean

Pressure Level

Zonal Wind [ms−1 ] 3-hourly

mean

Pressure Level

Meridional Wind [ms−1 ] 3-hourly

mean

Pressure Level

Pressure Level [hPa ] constant

levels

1000, 975, 950, 925, 900,

875, 850, 825, 800, 775, 750,

725, 700, 650, 600, 550, 500,

450, 400, 350, 300, 275, 250,

225, 200, 175, 150, 125, 100.

display warm rain signatures consistent with tropical cyclone precipitation characteristics

(Brauer et al. 2021) during its track over land.

A period of relatively consistent intensity occurred over much of Central Texas,

during which time TS Bill produced excessive rainfall across portions of Texas, Louisiana

and Oklahoma (Stewart 2016). TS Bill maintained a central pressure of 999 hPa over land
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from 17 June 0600 UTC through 17 June 1800 UTC, though only the period from 1200 to

1800 UTC met the >350-km oceanic-distance constraint of Andersen and Shepherd (2013).

By 1200 UTC TS Bill was far enough from the Gulf of Mexico to be considered a TCMI

event (Fig. 4.2); however, maximum sustained winds decreased from 30 to 25 kt (15 to 13

ms-1), despite constant minimum central pressure. Pressure level temperature and specific

humidity obtained from the NARR were used to compute equivalent potential temperature

(θe) at 500 and 700 hPa. Area-averaged θe was computed for all points within 0.5°of the

storm center at 500 and 700 hPa at 1800 UTC 17 June (TCMI1, Fig. 4.3) and 0600 UTC 20

June (TCMI2, Fig. 4.4). The difference between equivalent potential temperature all points

outside of the 0.5-degree radius (environment) was then computed and the average within

the 0.5-degree radius (center) was used to identify the presence of a warm core. Generally,

θe was maximized near the center of TS Bill, consistent with the storm retaining tropical

characteristics.

Further details regarding the tropical precipitation characteristics of TS Bill over

land can be found in Brauer et al. (2021). The remainder of this study will focus on the

contribution of land-atmosphere interactions to overland maintenance and reintensification

of TS Bill.

4.4 Two-week antecedent environment

To better understand atmospheric pre-conditioning as a reflection of soil moisture memory,

surface fluxes and precipitation during the antecedent 2-week period were analyzed prior

to each storm. The 2-week time window was chosen to facilitate comparison between

our observed fluxes and those of TCMI events considered in past studies. The main goal

was to compare how TCMI events during Bill compared with TS Erin (2007) analyzed in

Andersen and Shepherd (2014).
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Analysis of the 2-week antecedent period was also motivated by soil moisture mem-

ory. In other words, changes in land surface moisture are slower than changes in atmo-

spheric moisture. Consequently, excessive precipitation is “remembered” by the land sur-

face and reflected in higher latent heat fluxes. A continuous supply of moisture via precip-

itation maintains a moist land surface that can then provide a continuous flux of moisture

back into the atmosphere via evapotranspiration (ET). This constant supply ensures that

the rate of evaporation is constrained only by the atmospheric demand. As soil moisture

depletes at slower time scales, the 2-week antecedent period provided an important under-

standing of how excessive precipitation during 2015 could be linked to Bill’s evolution by

ensuring that the supply of moisture from the land surface was maximized.

Two additional tropical cyclones which weakened rapidly after landfall were also

selected for analysis to identify the primary differences between TCMI and non-TCMI

environments. The selected storms met the following criteria:

1. Must be within the temporal range of the NARR dataset (1979–2019)

2. Landfall occurred along the Texas coast and storm path was through northern Texas

3. Classified as a tropical storm or tropical depression at landfall

4. Weakened rapidly following landfall and did not undergo extratropical transition.

5. 5) Overall synoptic forcing was weak.

The two storms which met these criteria and were chosen for analysis were TS

Frances (1998) and TS Edouard (2008). The paths of these storms are shown in Fig. 4.

While the time of year for our comparison storms is later in the warm season, an already

limited sample of storms made it unfeasible to obtain comparison cases which meet the

above criteria and also occur as early in the season as TS Bill.

Domain averages of surface fluxes and precipitation were computed for the 2 weeks

preceding the time of interest. These domains were defined by all points within a 3°radius
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centered upon a select point along a tropical cyclone’s path. Domains for Erin and Bill

were centered upon the locations along the HURDAT best track locations in which TCMI

occurred, while domains during Edouard and Frances were centered upon points that were

within a similar inland geographic region to that of Bill during TCMI1. Pressure decreases

were observed from 1200 UTC 19 June to 1200 UTC 20 June for TCMI2 during TS Bill

with the greatest decrease observed from 1800 UTC 19 June to 0600 UTC 20 June. Even

though the location of the storm changed during this time, results showed little difference

if the domain was centered at the earlier or later location. As such, the latter location was

chosen as this location corresponded to approximately the same time of day as the TCMI

event during Erin.

4.4.1 TCMI antecedent environments

Maximum latent heat fluxes over land for both of Bill’s TCMI domains were consistently

greater than maximum latent heat fluxes over the oceanic domain for the 2-week antecedent

period. During the 4 days prior to Bill’s formation over the ocean, maximum latent heat

fluxes became more similar in magnitude to those over land and were 200−300 Wm−2. A

main difference between oceanic and overland domains is that a clear diurnal cycle exists

in these fluxes over the land surface that is not observed over the ocean. Consequently, the

daily average latent heat fluxes over the land surface during the antecedent 2-week period

for each TCMI domain were approximately 150 Wm−2, which was comparable to the daily

average latent heat fluxes over the ocean (approximately 125 Wm−2) for the same length

of time.

Both TCMI domains during Bill also displayed multiple days with precipitation

during the antecedent period, allowing for maintenance of land surface moisture which

then supported ample latent heat fluxes. Sensible heat fluxes over both oceanic and TCMI

domains were considerably smaller than latent heat fluxes.
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Pre-TCMI environments during Bill were compared to that of TS Erin, given (1) nu-

merous studies (Arndt et al. 2009; Kellner et al. 2012; Andersen et al. 2013; Andersen and

Shepherd 2014) have already shown that TS Erin’s reintensification over land was likely

tied to anomalous latent heat fluxes, and (2) it was expected that pre-TCMI environments

during TS Erin and TS Bill would share similar characteristics. In fact, daily maximum

latent heat fluxes prior to TS Bill were greater than before Erin, while sensible heat fluxes

were comparatively lower than before Erin. Andersen and Shepherd (2014) showed that

sensible heat fluxes prior to Erin were greater than sensible heat flux magnitudes observed

for three other TCMI events which did not occur in North America. Latent and sensible

heat flux magnitudes prior to TS Bill were similar to the other three pre-TCMI environ-

ments they analyzed.

4.4.2 Non-TCMI antecedent environments

Analysis of non-TCMI antecedent environments preceding TS Edouard and TS Frances

showed that pre-TCMI environments differed substantially from non-TCMI environments.

The magnitudes of sensible heat fluxes over the land surface prior to Edouard were nearly

identical to the magnitudes of latent heat fluxes during Bill. Daily averaged latent heat

fluxes during the two weeks preceding TS Edouard and TS Frances were less than 40

Wm−2 while daily averaged sensible heat fluxes were 132 and 90 Wm−2 respectively.

Rainfall in the 48 hours preceding Frances was associated with a reduction in sen-

sible heat fluxes such that they became similar in magnitude to latent heat fluxes. This

precipitation was likely associated with cloud cover from the approaching TC which re-

duced net radiation, and therefore reduced the magnitude of sensible and latent heat fluxes.

This will be discussed further in the next two sections.
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4.5 Antecedent environment water vapor budgets

Soil moisture memory can reflect antecedent precipitation anomalies which occurred sev-

eral weeks to several months prior, and this memory manifests itself in the partitioning of

surface fluxes (Entin et al. 2000; Basara and Crawford 2002; Wu and Dickinson 2004).

However, the impact of these fluxes on atmospheric moisture content is still constrained by

the typical residence time of moisture in the atmosphere. The average residence time of

moisture in the atmosphere over the Great Plains can vary seasonally but is usually on the

order of 3−5 days (Läderach and Sodemann 2016). Therefore, the atmospheric moisture

budget over a 3-day antecedent time window was investigated for each domain.

The primary focus was on domain averages of the 3 components of the atmospheric

moisture budget—precipitation, ET and WVC—and their impacts on the total column

PWAT. Domain averages were computed over the same domains used in part 4. ET was

defined as a 3-hour accumulation at each 3-hour timestep and can be obtained from:

ET =
LHF×∆t

Lv
(4.1)

where ∆t is given in seconds, LHF is the 3-hourly latent heat flux obtained from the

NARR and Lv is the latent heat of vaporization. These three variables are by no means com-

prehensive, but they provide an approximation of the contributions of large-scale moisture

transport, evaporation and precipitation to the overall PWAT tendency during the period

immediately preceding TCMI. A comprehensive analysis of every component in the atmo-

spheric moisture is beyond the scope of the current study and the three variables chosen are

intended to highlight the greatest contributors to the moisture budget.

Precipitation contributes negatively to PWAT tendency, while WVC can have posi-

tive or negative contributions and ET generally has a positive contribution except at night

over land. Therefore, ET can provide a compensating source of moisture when WVC is

negative and may serve as an additional source when it is positive. Figures 4.7 and 4.8

show that precipitation and water vapor flux convergence increased prior to each TCMI
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event during Bill, while ET displayed a diurnal cycle. To better understand the relative

positive contribution of ET to the water vapor budget, the ratio of ET to the sum of ET

and WVC only was computed when WVC was positive (Figs. 4.7b and 4.8b). During

daytime hours, this ratio was often >0.2. In other words, ET had about 20% of all positive

contributions to the atmospheric moisture budget.

Next, the PWAT tendency obtained from summing WVC and ET and subtracting

precipitation was compared to the actual PWAT tendency which was obtained by subtract-

ing PWAT between timesteps. Then the WVC+ET−precipitation PWAT estimate was

compared to the hypothetical PWAT tendency that would be obtained from the sum of WVC

and precipitation only. Neglecting ET resulted in an underestimation of PWAT tendency

during daytime hours, whereas including ET contributions to PWAT tendency produced a

better approximation of PWAT tendency (Figs. 7b and 8b). This contrast between includ-

ing versus excluding ET contributions to PWAT tendencies was particularly evident during

the daytime hours on 15 and 16 June prior to TCMI1, and on 19 June prior to TCMI2.

Ignoring ET during these periods underestimated PWAT tendency. Note that the summed

and actual tendencies display a slight time lag, because the summed tendency shows how

current values of budget terms would alter PWAT at the next time step, whereas PWAT

tendency shows the change in PWAT from the period preceding the current time step.

Finally, analyses were performed to better estimate whether much of the moisture

budget terms considered were driven by the tropical cyclone circulation itself, rather than

the precursor environment. A moving domain of the same size as the stationary domains

was computed along the path of the tropical cyclone to determine when the TCMI do-

main began to overlap significantly with the stationary tropical cyclone domain. Figures

4.7c–4.11c show the temporal evolution of PWAT along the path of the tropical cyclone as

well as the temporal evolution of PWAT within the stationary domain. Comparing these

two values enabled determination of the magnitude of the difference between PWAT within

the circulation and the environment that it was moving toward. A larger difference would
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support weakening of the cyclone, while smaller differences would aid in maintenance.

From 15–17 June, <30% of the domain overlapped with the tropical cyclone, while both

WVC and ET provided positive contributions to the atmospheric water vapor budget, and

PWAT slightly increased (Fig. 4.7). Furthermore, it was shown that WVC and precipitation

alone were not sufficient to estimate the actual PWAT tendency during this time; however,

without considering ET, the actual tendency of PWAT was underestimated suggesting that

ET played a non-negligible role in the atmospheric moisture budget prior to TCMI1.

During the daytime hours of 18 June, prior to TCMI2, PWAT increased over the

domain to about the same as the along-TC domain, though the two domains did not overlap

(Fig. 4.8c). WVC contributed most to PWAT tendency during this time; however, without

considering ET, the actual tendency of PWAT was underestimated (Fig. 4.8b).

Similar results were observed prior to TCMI during Erin (Fig. 4.9), where ET was

often at least half of the magnitude of WVC, and ignoring ET once again underestimated

PWAT tendency. Conversely, during Edouard and Frances, including ET provided little im-

pact to the estimation of PWAT tendency, while WVC and precipitation played a dominant

role in the tendency of PWAT within each domain.

While both Frances (Fig. 4.10) and Edouard (Fig. 4.11) had smaller magnitudes of

ET than Erin and Bill, they also had smaller magnitudes of WVC as the tropical cyclone ap-

proached each domain, despite close proximity to the Gulf of Mexico. The TCMI1 domain

during Bill was also within a similar location to Frances and Edouard but was character-

ized by greater WVC. Even TCMI2 during Bill and TCMI during Erin, with domains much

further from oceanic moisture sources, still displayed larger WVC than that observed prior

to Edouard and Frances. It is hypothesized that latent heat fluxes from a moist land surface

along TC inflow may have influenced the maintenance of TS Bill over land, especially dur-

ing TCMI2. Such upstream influences have, in fact, been shown to occur over the ocean,

where inflow parcels can gain moisture from the underlying sea surface and support tropical

cyclone development (Fujiwara et al. 2017). In other words, positive WVC during TCMI
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events during TS Bill and TS Erin may not be independent of influences from upstream

latent heat fluxes.

4.6 Trajectory analysis

Backward trajectories were to determine the relative path of inflow parcels for each do-

main considered, and the nature of latent heat fluxes along these paths. The origin of air

parcels within the inflow and the lower troposphere surrounding the TC was identified us-

ing the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein

et al. 2015). HYSPLIT-generated backward trajectories were computed using 3-D temper-

ature, moisture and wind fields from NARR. Past applications of the HYSPLIT model are

extensive and include the identification of moisture sources during extreme precipitation

events (Gustafsson et al. 2010; Bracken et al. 2015; Jana et al. 2018), and identification

of TC parcel moisture source regions (Fritz and Wang 2013; Wang et al. 2018), including

for TS Erin (Monteverdi and Edwards 2010). Therefore, the application of the HYSPLIT

model to current analyses is well-justified. The objective of this analysis is to understand

the potential influence of boundary layers along the path of each parcel.

Parcel backward trajectories were released from 8 horizontal planes at heights of 0,

100, 250, 500, 750, 1000, 1500, and 2000 m AGL. Each horizontal plane contained 169

release points (Figure 12) distributed within a 3°× 3°grid at 0.5°intervals, and these planes

were centered upon the domains analyzed in the previous sections. Parcels were released

and traced backward in time for the preceding 24-hour period. For example, one trajectory

release plane was centered upon the HURDAT latitude and longitude of TS Bill’s center at

0600 UTC 20 June, and trajectories from this location were traced backward from this time

to 0600 19 June. In most cases, low-level TC inflow is maximized below 1000 m (Zhang

et al. 2013), thus the choice of vertical levels was primarily focused on representing the

inflow layer.
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Parcels within the planetary boundary layer (PBL) were binned to the nearest NARR

grid box to determine the relative spatial distribution of all instances along every trajectory

in which a parcel was within the PBL. One major assumption of this method is that parcels

within a well-mixed PBL can be influenced by surface fluxes of moisture and can represent

surface influence on parcel moisture uptake or loss (Erlingis et al. 2019a,b). This assump-

tion may be especially limited in the vicinity of a TC. However, it does provide a first guess

as to where land/oceanic surface fluxes may be influential along TC inflow. Backward

trajectories also provide a slightly different definition of precursor environment, with infor-

mation about the origin of parcels entering the TC inflow region. Finally, the accumulated

evapotranspiration was computed at every grid-box during the 24-hour periods in which

backward trajectories were analyzed.

4.6.1 ET along TCMI inflow trajectories

Accumulated ET in the 24-hour period preceding TCMI1, not surprisingly, was maximized

over the Gulf of Mexico with values >10 mm day-1 (Fig. 4.13a). Some of the storm’s circu-

lation was still over the Gulf of Mexico at the start of the antecedent 24-hour period, such

that wind speeds at tropical storm intensity would have encouraged elevated latent heat

fluxes over water. Over land, accumulated evapotranspiration was considerably smaller

than over the ocean, but still considerable, especially when compared to non-TCMI cases

(Figure 4.14). During Bill’s TCMI1, both accumulated ET (Fig. 4.13a) and parcel fre-

quency (Fig. 4.13b) were locally maximized to the right of the TC track and in particular

along the Texas and Louisiana border where ET was approximately 5 mm day-1.

Similarly, maximum ET values of 5–7 mm day-1 were observed along the path of

inflow parcels during the 24-hour period preceding TCMI2 (Figs. 4.13c,d). The greatest

number of boundary layer inflow parcels were concentrated over Alabama, central Ten-

nessee and Kentucky where ET was also maximized during this time. More importantly,

boundary layer parcels during this 24-hour period had origins that were almost exclusively
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over land. As such, not only had the TC itself resided over land for over 36 hours, but most

parcels within its inflow were also subjected to influence of the land surface for at least 24

hours.

During TS Erin (Fig. 4.13e,f), ET values exceeding 5 mm day-1 were not as

widespread over land as they were during TS Bill, however ET again was maximized

locally where parcel frequencies were also maximized from eastern Oklahoma through

eastern Texas. Accumulated ET over land along parcel paths for both TS Bill and TS Erin

was maximized between 5–7 mm day-1.

4.6.2 ET along non-TCMI inflow trajectories

Accumulated ET magnitudes over land during TS Edouard (Figs. 14a,b) and during TS

Frances (Figs. 14c,d) were drastically smaller than those observed during TS Bill and TS

Erin. Trajectory frequency plots indicate that some inflow parcels during Edouard and

Frances still had oceanic origins, though the greatest concentration of parcels in both cases

was still over land. The greatest concentration of PBL parcels during TS Frances occurred

in northeastern Texas where accumulated ET was minimized.

The mechanisms limiting ET during Frances were different from those during Edouard,

as Frances was stationary over the domain during the antecedent 24-hour period. ET in this

region is sensitive to changes in soil moisture and/or atmospheric demand (Guo et al. 2006;

Koster et al. 2011; Wei et al. 2016). Even if outer rainbands moistened the land surface in

the region adjacent to the storm, persistent cloud cover over the same region limited surface

fluxes of heat and moisture. In this case, latent heat fluxes along trajectories were limited

by available energy or atmospheric demand. Latent heat fluxes over land are subjected to a

diurnal cycle and thus sensitive to the amount of incoming solar radiation. Over open water

latent heat fluxes are more consistent during the day and at night and are sensitive to other

factors such as wind speed. Over land, cloud cover associated with the TC reduces down-

ward net radiation during the day and subsequently reduces ET (Tuleya 1994). Thus, when
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TS Frances became stationary over land, and most inflow parcels were also concentrated

over land, the storm effectively cut itself off from land-surface sources of moisture both

locally and upstream via reduced net radiation. Conversely, the continued movement of TS

Bill and TS Erin may have also been beneficial to sustaining intensity over land by ensur-

ing cloud cover was not as persistent along parcel paths. Even though Edouard, like Erin

and Bill, was not stationary, latent heat fluxes in the pre-storm environment and along par-

cel inflow were driven more by a lack of surface-based moisture. Latent heat fluxes were

limited over Edouard’s domain during the antecedent 2-week period, suggesting limited

soil moisture that was not recharged by the minimal precipitation accumulation observed

during the same period.

Finally, it was determined whether the observed differences in accumulated ET

prior to TCMI versus non-TCMI storms were statistically significant through comparison

of composite ET distributions. The cumulative relative frequency of parcels within defined

accumulated ET bins for non-TCMI storms and TCMI storms were computed separately

to create relative cumulative distribution functions based upon accumulated ET. These dis-

tributions are shown in Fig. 15. More than half of TCMI inflow parcels were within the

boundary layer over regions where accumulated ET exceeded 4 mm/day, while less than

10% of non-TCMI parcels encountered the same environment. The two distributions are

significantly different from each other (p <0.05) per a two-sample Kolomogorov-Smirnov

test following Wilks (2011). A major limitation of this analysis is that the sample size

was limited by geography and by TCMI occurrence; therefore, it was that these particu-

lar TCMI and non-TCMI events are different. Future work could benefit from including

TCMI and non-TCMI cases that are not subject to the geographic limitations outlined in

the current study’s data and methods.
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4.7 Summary and Conclusions

Notable differences in the antecedent environment were observed for non-TCMI and TCMI

storms analyzed in this study. The 2-week antecedent periods for TCMI storms were char-

acterized by larger latent heat flux magnitudes than sensible heat flux magnitudes with

daily maxima in latent heat fluxes exceeding 200 Wm–2 which is consistent with previous

analyses of TCMI storms. Antecedent environments 2 weeks prior to non-TCMI storms

were characterized by much greater sensible than latent heat flux magnitudes.

Analysis of the water vapor budget 3 days prior to each storm indicated that ap-

proximations of PWAT tendency prior to TCMI storms were underestimated when only

WVC and precipitation were considered. Positive contributions from ET during daytime

hours were of sufficient magnitude that inclusion of ET in the approximated PWAT ten-

dency provided an estimation that was more similar to reality. The opposite was true for

the water vapor budget prior to non-TCMI storms. PWAT tendency approximations were

not sensitive to inclusion of ET as ET magnitudes were much smaller than those observed

preceding TCMI storms. In both TCMI and non-TCMI cases WVC appeared to have the

greatest positive contributions to the water vapor budget.

While WVC played a primary role in the water vapor budget, Fujiwara et al. (2017)

showed that latent heat fluxes from the ocean can moisten inflow parcels along a moist

conveyor belt and contribute to further strengthening of a tropical cyclone. As such, it

was hypothesized that large-scale moisture transport into each storm in the current analysis

may have been impacted by latent heat fluxes along parcel paths. Using 24-hour backward

trajectories, it was shown that daily accumulated ET along the path of inflow parcels was

greater for TCMI storms than for non-TCMI storms. This was particularly true when only

parcels over land were considered as the difference in distributions of accumulated ET

along inflow parcels over land for non-TCMI and TCMI storms was statistically significant

(p <0.05).
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This study demonstrates that TCMI and non-TCMI storms displayed distinct differ-

ences in latent heat flux (or ET) within the antecedent environment and along storm inflow.

Interestingly, the mechanisms by which latent heat flux is reduced along parcel inflow and

in the antecedent environment seem to be less important. For example, both Edouard and

Frances displayed much smaller latent heat fluxes in the 2-week antecedent environment

than were observed prior to Bill and Erin. Both non-TCMI environments were dominated

by sensible heat fluxes 2 weeks prior to the storm. Small flux magnitudes during the 72-

hour period preceding Frances were likely driven by limited net radiation as the storm was

nearly stationary over the domain from the 12th through the 13th. Conversely, minimal

latent heat fluxes preceding Edouard were accompanied by large sensible heat fluxes im-

plying sufficient net radiation and a drier land surface that limited evapotranspiration rather

than limited evapotranspiration driven by cloud cover from the storm itself. Nevertheless,

both storms were characterized by limited ET from the land surface and decayed rapidly

following landfall.

The results presented offer a new approach for characterizing the pre-storm envi-

ronment in the analysis of overland tropical cyclones. While the study followed traditional

approaches of characterizing fluxes over the domain the storm would eventually occupy, it

also considered whether storm inflow could be impacted by the underlying land surface.

The study sample size was limited, and the primary objective was to determine whether TS

Bill exhibited characteristics of TCMI during its multi-day trek over land. To accomplish

this task, observations during TS Bill’s TCMI events were compared to a known TCMI

event in the region, TS Erin as it made landfall in a similar location and shared some early

path overlap with TS Bill. A applied novel trajectory-based approach was also applied to

TS Erin to determine whether the two storms shared similarities in this definition of pre-

storm environment and similar comparisons were to non-TCMI storms, TS Edouard (2008)

and TS Frances (1998) which made landfall in similar locations and followed similar post-

landfall paths to TS Bill.
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This study shows that TS Bill exhibited multiple characteristics of a TCMI storm,

including its maintenance of tropical characteristics over land (Brauer et al. 2021). Fur-

thermore, the pre-storm environment was characterized by substantial contributions to the

water vapor budget from evapotranspiration and was similar to other pre-TCMI environ-

ments in the literature (Andersen et al. 2013). TCMI and non-TCMI storms displayed

statistically significant differences in accumulated evapotranspiration along parcel inflow

suggesting that for inland tropical cyclones, evapotranspiration along inflow parcels may

also play a role in their maintenance and/or reintensification. The objective of this study is

not to question the existence of the Brown Ocean Effect, but rather to determine whether

TS Bill exhibited similar characteristics to other landfalling tropical cyclones which main-

tained intensity or underwent reintensification over land. This study presents evidence

that TS Bill’s pre-storm environment supported its maintenance over land and provides a

new approach for characterizing and defining the pre-storm environment via inflow parcel

trajectories. Using this new approach, a statistically significant (p <0.05) difference in

ET along parcel inflow trajectories was demonstrated for TCMI versus non-TCMI storms.

The geographic restrictions of the study limited sample size and future observational and

reanalysis-based work should include analysis of potential TCMI and non-TCMI storms

which made landfall at points beyond the Texas and Louisiana Gulf coasts. Zhang et al.

(2018) showed that excessive precipitation during Hurricane Harvey may have been related

not to latent heat fluxes, but rather, to enhanced surface roughness over the urban region.

The methods employed in this study attempted to account for differences in land surface

characteristics by selecting storms with similar paths, such that they would be subjected

to similar surface roughness, and soil texture. Even so, these variables can still vary over

small distances. Other land surface characteristics not analyzed in this study, like vegeta-

tion and albedo, can vary from year to year. As such, future work should include model

simulations of TS Bill to determine the storm’s sensitivity to not only latent heat fluxes, but
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to surface roughness, albedo, soil texture, and other land surface characteristics, however

that is beyond the scope of the current analysis.

Figure 4.1: Distance from nearest ocean basin (shaded up to 350 km) and Tropical Storm

Bill (2015) track. White filled circles represent 0000 UTC location while plus signs repre-

sent location at 0600, 1200 and 1800 UTC.

77



Figure 4.2: Difference from 0.5-degree area-averaged equivalent potential at 1800 UTC on

17 June 2015 at (a) 700 hPa and (b) 500 hPa. Area-averaged equivalent potential tempera-

ture was obtained by averaging equivalent potential temperature within a 0.5°radius of the

storm center on 1800 UTC 17 June, while the environment is defined as all points outside

of this region. Blue means that the environment is cooler than the 0.5-degree average.

Figure 4.3: As in Fig. 4.2 but at 0600 UTC on 20 June 2015
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Figure 4.4: NHC Best Track estimates for (a) Tropical Storm Bil (2015), (b) Tropical

Storm Erin (2007), (c) Tropical Storm Edouard (2008) and (d) Tropical Storm Frances

(1998). 0000 UTC location is given for each date, while colors correspond to intensity.
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Figure 4.5: Domain averaged 3-hourly latent and sensible heat fluxes and 3-hourly accu-

mulated precipitation for the two-week period preceding (a) formation of Tropical Storm

Bill (b) TCMI1 during Tropical Storm Bill and (c) TCMI2 during Tropical Storm Bill.
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Figure 4.6: As in Figure 4.5 but for (a) TCMI during Tropical Storm Erin (b) non-TCMI

during Edouard (c) non-TCMI during Frances.
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Figure 4.7: Water vapor budget during the 72-hour period preceding TCMI1 with (a) Do-

main averaged, 3-hourly accumulated precipitation (mm; blue line), total column water va-

por flux convergence (WVC; mm; magenta line), evapotranspiration (ET; mm; green line),

and ratio of ET to sum of ET and WVC (dimensionless; crosses). Ratio was only com-

puted when WVC is positive. (b) Estimated precipitable water (PWAT) tendency (mm per

3 hours) from summing WVC, ET and precipitation (dashed green line), estimated PWAT

tendency from summing WVC and precipitation only (dashed magenta line), and actual

PWAT tendency (black dashed line). Teal and brown shading denote positive and negative

PWAT tendency. Respectively. (c) Temporal variation in PWAT (mm) within domain of

interest (solid black line), temporal variation along path of TS Bill (dashed teal line), and

percent overlap between domain centered along storm’s path and the current domain (solid

red line).
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Figure 4.8: As in Figure 4.7 but for the 72-hour period preceding TCMI2.
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Figure 4.9: As in Figure 4.7 but for the 72-hour period preceding TCMI during Erin.
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Figure 4.10: As in Figure 4.7 but for the 72-hour period preceding 1200 UTC on 06 August

2008 during Tropical Storm Edouard.
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Figure 4.11: As in Figure 4.7 but for the 72-hour period preceding 1200 UTC on 13

September 1998 during Tropical Storm Frances.
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Figure 4.12: Example horizontal trajectory release grid for 1800 UTC 17 June 2015 for a

single level. Red crosses represent trajectory release points and the black marker represents

the location of TS Bill at the time of interest while gray markers represent the path of TS

Bill.
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Figure 4.13: 24-hour accumulated ET (a,c,e) and frequency of parcels along inflow tra-

jectories that were within the boundary layer (b,d,f) for the 24-hour period preceding (a,b)

TCMI1 during Tropical Storm Bill (c,d) TCMI2 during Tropical Storm Bill and (e,f) TCMI

during Tropical Storm Erin.
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Figure 4.14: As in Figure 12 but for (a,b) 24-hour period preceding 1200 UTC 06 August

2008 during Edouard and (c,d) 24-hour period preceding 1200 UTC 13 September 1998

during Frances.
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Figure 4.15: Cumulative distribution function for all boundary layer parcels binned by 24-

hour accumulated ET [mm] for TCMI and non-TCMI storms.
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Chapter 5

Sensitivity of daytime planetary boundary layer evolution to soil

moisture conditions during the 2012 flash drought

5.1 Introduction

Seasonal forecasts failed to predict the 2012 drought in the central United States and though

retrospective climate simulations indicated that internal climate variability may have played

a role in its development (Hoerling et al. 2014), land-atmosphere feedbacks may have

aided in the propagation and intensity of the event (Basara et al. 2019). For example,

severity and extent of the 2012 drought was reduced in regional climate model simulations

when late spring/early summer soil moisture was greater (Saini et al. 2016). More recently,

DeAngelis et al. (2020) showed that improved initialization of soil moisture in global fore-

cast models improved predictability of the 2012 drought once dry soils were established,

demonstrating some sensitivity of drought evolution to the land surface state.

Drought in the Great Plains is often associated with a persistent mid to upper-level

anticyclone, which suppresses precipitation and cloud development through large scale

subsidence (Namias 1983; Trenberth et al. 1988; Schubert et al. 2004a; Dong et al. 2011;

Basara et al. 2013). The origin of these atmospheric circulation patterns is frequently at-

tributed to forcing from remote sea surface temperature (SST) anomalies (Trenberth and

Guillemot 1996; Seager et al. 2005; Schubert et al. 2008, 2009; Seager and Hoerling 2014;

Seager et al. 2019). Even so, once drought has been established, land-atmosphere feed-

backs can reinforce drought conditions (Hong and Kalnay 2000).

Evolution of the daytime PBL is modulated by local turbulent fluxes (Basara and

Crawford 2002) as well as the stability and moisture content of the layer immediately over-

lying the PBL (Ek and Mahrt 1994; Ek and Holtslag 2004). In addition to turbulent fluxes,
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advection can play a similarly important role (Stull 1988). Similarly, when land surface het-

erogeneities are present, air masses may be modified along their trajectories by the under-

lying land surface (Stull 1988; Erlingis and Barros 2014; Erlingis et al. 2019a,b; Herrera-

Estrada et al. 2019; Molina and Allen 2019, 2020). For example, Schumacher et al. (2019)

showed that drought-enhanced sensible heat fluxes were advected into central Russia and

contributed to heat wave development over Moscow in 2010. Miralles et al. (2019) showed

a connection between heatwaves and upwind sensible heat fluxes, while Herrera-Estrada

et al. (2019) similarly suggested that drought propagation into one region may be tied to

decreases in upstream evapotranspiration over a region already in drought. While land-

atmosphere interactions are constrained to the background atmospheric state, even during

extreme events, (Su and Dickinson 2017), it is hypothesized that land-atmosphere feed-

backs played an important role in the evolution of the 2012 flash drought (Basara et al.

2019). Saini et al. (2016) showed that severity and extent of the 2012 drought was reduced

in regional climate model simulations when late spring/early summer soil moisture was

greater.

This research seeks to build upon this hypothesis by investigating land-atmosphere

feedbacks both locally and upstream during the 2012 flash drought. These Lagrangian

land-atmosphere feedbacks are proposed as a critical mechanism for fueling flash drought

development in the current research. Therefore, it is important to consider relative con-

tributions of advection as well as surface fluxes and entrainment process to the daytime

evolution of the PBL during flash drought and as flash drought evolves into long-term,

persistent drought. Additionally, the origins of airmasses contributing to moisture and tem-

perature advection within the PBL must also be considered. The primary question is how

land-atmosphere feedbacks contribute to flash drought evolution and whether they amplify

and perpetuate long-term drought following flash drought.

The primary hypotheses include:

94



1. 1) Local-land atmosphere feedbacks over a region that was already experiencing in-

tense drought contributed to the development of a deeper, warmer and drier PBL over

dry soils, increasing the overall evaporative demand or potential evapotranspiration

(PET) within the PBL. This is considered the “drought influenced” PBL.

2. he drought influenced PBL was subsequently transported downstream over a region

in which soils were not as dry and vegetation was still relatively healthy. The higher

PET would enhance the rate of evapotranspiration (ET), increasing the rate of soil

drying in the region where drought was not existent or less intense.

3. 3) Initially, the greater rate of ET would modulate the high PET air mass such that

further downstream, drying was not as pronounced, until the second location also

cascaded into drought.

4. 4) Similarly, if saturated soils are introduced throughout the domain, it is expected

that PET would decrease locally and upstream due to soil moisture no longer limiting

ET, allowing surface fluxes to moisten the PBL.

5.1.1 Event background

Drought was absent across much of the study domain at the beginning of the period with

the exception of western Texas, western Kansas and the Oklahoma panhandle (Fig. 1a).

Drought quickly intensified during the next 11 weeks resulting in most of the domain being

classified by the United States Drought Monitor (USDM; Svoboda et al. 2002) as experi-

encing extreme drought (Fig 5.1b). Two phases of drying were observed across the domain

(Fig. 5.2) during the 2012 flash drought. The first occurred during the beginning of the

warm season from early to late May. A brief reprieve was observed from late May into

the first week of June before rapid drying continued throughout June and July, eventually

leading into long term drought (Fig. 5.2). The term flash drought describes the period

of rapid drying when atmospheric demand largely exceeds evapotranspiration. This tends
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to precede the impacts of the flash drought which become apparent when soils become

desiccated and vegetation begins to wilt. Flash drought may end with a perpetuation of

precipitation deficits and hostile atmospheric conditions that result in long term drought or

it may end in ecosystem recovery due to atmospheric pattern changes that bring significant

precipitation including features such as atmospheric rivers or tropical cyclones (Wu and

Dirmeyer 2020). In 2012, flash drought during May-July led to prolonged drought over

much of the central US including the southern Great Plains.

The first phase of the event was characterized by a steady decrease in soil moisture

during May that resulted in nearly 90% of the domain being classified as abnormally dry or

worse by the the USDM at the beginning of June. The end of this first phase was marked

by temporary recharge of soil moisture in early June (Fig. 5.3) before rapid intensification

of drought resumed. The rapid drying associated with flash drought ended in late June as

long-term drought became established. Impacts of the flash drought were reflected in a

3-category increase during the first 3 weeks of July from moderate to extreme drought in

northern Oklahoma.

5.2 Experimental design

5.2.1 Case selection

While flash drought was observed at many locations in the southern Great Plains region

during 2012, the primary focus of this study is on the evolution of flash drought near the

Atmospheric Radiation Measurement Program’s Southern Great Plains (ARM SGP) site

in Lamont, Oklahoma, where radiosonde observations are available at 6-hourly intervals

for comparison to simulation output. Simulated case studies were selected to represent

the various phases of the 2012 flash drought and subsequent long-term drought to better

understand the role that land-atmosphere coupling may have played in the evolution of this

event. Each case was selected when synoptically quiescent conditions were present for

the duration of the simulation period. This was critical for attempting to disentangle the
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relative contribution of the land surface toward boundary layer temperature and moisture

evolution while avoiding atmospheric properties related to frontal boundaries and other

synoptic features that could overpower any influence from the land surface. The selected

cases are presented in Table 1.

5.2.2 NU-WRF and LIS

Case study simulations were utilized to test the sensitivity of the PBL to changes in soil

moisture during the 2012 flash drought using the NASA Unified Weather Research and

Forecasting (NU-WRF; Peters-Lidard et al. 2015) model coupled to NASA Land Informa-

tion Systems (LIS; Kumar et al. 2006; Peters-Lidard et al. 2007). NU-WRF is NASA’s

version of the WRF-ARW model that provides additional model physics options unique to

NASA, including ability to couple the land surface to the atmosphere through the imple-

mentation of LIS. LIS is a land surface modeling and data assimilation software framework

that was developed to integrate both satellite and surface observations to obtain better ap-

proximations of land surface states, such as surface fluxes, soil moisture, etc. NU-WRF

and LIS coupled simulations have been used in numerous applications to better understand

the sensitivity of the atmosphere to land surface characteristics including soil moisture, ir-

rigation, and vegetation (Santanello Jr et al. 2011). Thus, the coupled NU-WRF and LIS

system (LIS-WRF) also provides an optimal choice for examining the sensitivity of PBL

evolution to soil moisture during flash drought and drought.

All cases were simulated over the same 1100 km x 900 km domain (Fig. 5.4a) cen-

tered upon the ARM SGP site with a 1 km spatial resolution. The choice of one domain for

all cases eliminated uncertainties associated with differences in initial and lateral bound-

ary conditions that may arise from shifting the domain between simulations. Model physics

combinations were based upon those used in Santanello Jr et al. (2019) and were chosen for

their ability to best isolate the impacts of land-atmosphere coupling on simulation behavior.
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Global Forecast System (GFS; Center 2003) 6-hourly analysis data were used as the

atmospheric lateral boundary conditions (BC). Land surface initial conditions (ICs) were

obtained through offline (uncoupled) simulations using LIS. Version 3.3 of the NOAH LSM

(Ek et al. 2003) was used with meteorological forcing from the North American Land Data

Assimilation System version 2 (NLDAS-2) dataset. The offline spinup was performed over

a 5-year period from June 2007 to June 2012. From June 2007 to June 2010, the National

Centers for Environmental Prediction (NCEP) monthly climatological greenness vegeta-

tion dataset was used for greenness vegetation fraction (GVF; Gutman and Ignatov 1998).

Greenness vegetation fraction represents the density of green vegetation within a model

grid cell and is related to vegetation type and phenology (Ek et al. 2003). As such, the

distribution of vegetation in a grid cell influences how the LSM represents surface fluxes of

moisture. NASA’s short-term prediction research and transition (SPORT) center began pro-

ducing a real-time GVF dataset based on NDVI observations from the Moderate Resolution

Imaging Spectrometer (MODIS) during the summer of 2010, and SPoRT-MODIS real-time

GVF was used instead for the remainder of the offline LIS spinup. The SPoRT-MODIS

real-time GVF dataset allows for real-time observations of photosynthetically active vege-

tation and is, therefore, a more optimal choice for capturing vegetation health during flash

drought, allowing evapotranspiration to be better represented by the LSM. Land surface

ICs from the offline spinups were then used to initialize the coupled LIS and NU-WRF

simulations of the selected days. Real-time GVF was used for coupled simulations, and

NU-WRF provided atmospheric forcing to LIS.

Three simulations were performed for each date, a control (CTRL) simulation, a

wet soil (WET) simulation and a dry soil simulation (DRY). CTRL simulations were ini-

tialized using land surface ICs from the offline LIS spinup. Both WET and DRY simula-

tions used all land surface ICs from the LIS spinup except for soil moisture, which was

prescribed instead. Soil moisture was prescribed at field capacity for all soil depths (0-

10 cm, 10-40 cm, 40-100 cm, 100-200 cm) based upon the soil texture in each grid box

98



for WET simulations while soil moisture was prescribed at wilting point for DRY simula-

tions. While vegetation health also serves as an important control for transpiration rate in

the LSM, simply prescribing different soil moisture allowed for the simulation of how the

observed state of vegetation may produce a different outcome if only soil moisture were

changed. This approach produced sufficient variability between WET, DRY and CTRL

simulations without introducing additional confounding factors that may arise from use of

a more complex LSM.

Each simulation was initialized at 1800 UTC during the preceding day and run for

30 hours. For example, the 18 June simulation was initialized at 1800 UTC on 17 June and

ended at 0000 UTC on 19 June. This allowed for the model to simulate PBL development

and airmass response to surface fluxes upstream of the location of interest as well as locally.

While simulations were occasionally performed for consecutive days, the simulations were

not continuous. For example, the simulation for 18 June was performed separate from the

simulation for 19 June. The thermodynamic characteristics of the residual layer exerts an

important control on PBL growth (Findell and Eltahir 2003a), where a deep,dry-adiabatic,

residual layer can encourage rapid PBL growth (Santanello Jr et al. 2005) such as those re-

sulting from a PBL which developed over dry soils during the previous day (Santanello Jr

et al. 2007). Milovac et al. (2016) showed that both local and non-local PBL parameteri-

zation schemes, including the scheme used in the current study (MYNN), produced a PBL

that was too deep when compared to observations, thus resulting in a residual layer that

was also too deep. This residual layer would likely bias PBL growth the following day, and

without external influences, this bias would grow with time. Thus, to avoid such runaway

effects, simulations were limited to 30 hours.

5.3 Observations versus Simulations

Atmospheric profiles were evaluated at multiple locations to gauge the CTRL simulation’s

ability to reproduce observed conditions. Composite mean profiles were computed from
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CTRL, WET and DRY simulation output over a 30 km x 30 km domain centered upon

each of 4 upper air stations (Fig. 5.4b). The size of domain surrounding each point was

selected to ensure that vertical profiles were not influenced by grid scale variations in cloud

cover that may impact temperature and humidity. Multiple sizes were tested with little dif-

ference observed between 10 km2 domains and 50 km2 domains. The 30 km2 domain also

corresponds to roughly the same size as a single grid box in the North American Regional

Reanalysis (NARR; Mesinger et al. 2006). The NARR was used to identify flash drought

locations (Christian et al. 2019) and to perform a cursory analysis of land-atmosphere cou-

pling during the 2012 flash drought in Basara et al. (2019), and thus, compositing over sim-

ilarly sized grid spacing for this analysis enables greater intercomparison between studies.

Finally, for the purposes of computing advection, this “composite” grid box size satisfies

the Courant-Friedrichs-Lewy condition (Courant et al. 1928; Bakhvalov 2001), by balanc-

ing the size of the time step and the spatial resolution. This produced the best estimate of

advection within the PBL using a finite differencing approach.

Flash drought evolution over north central Oklahoma was of primary interest in

this study, however, because advection and upstream influences were also being consid-

ered, it was necessary to quantify how well the CTRL simulation reproduces observations

throughout the domain. Spatially averaged potential temperature and mixing ratio pro-

files were computed over a 30 km × 30 km sub-domain centered upon the 4 upper air

stations within the larger model domain, including the upper air station located at ARM

SGP (LMN). Winds were primarily from the south or from the east for the selected cases,

so stations analyzed were chosen to represent nearby and upwind regions. Additionally,

DDC was selected to quantify biases when drought was ongoing, as it experienced intense

drought during much of the study period and moisture gradients associated with the dryline

were often positioned between DDC and LMN. Large differences near the surface were

observed within the surface layer, however, the evaluation metrics employed in this study

specifically exclude surface layer influences in an effort to quantify characteristics of the
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mixed layer. Therefore, profiles are shown starting at approximately 20 mb above the mean

surface pressure at each station.

Observed and simulated vertical profiles of moisture and temperature were nearly

identical at 1200 UTC (Fig. 5.5). Differences between the 3 simulated profiles increased

throughout the daytime hours (from 1200 to 2400 UTC) as PBL development varied be-

tween the simulations. Furthermore, CTRL simulations also showed greater deviation from

observed profiles at the end of the daytime period (Fig. 5.6). Agreement between ob-

served boundary layer temperature and moisture profiles and those simulated in CTRL

were greatest when lower tropospheric winds were calm or when they had an easterly com-

ponent. When lower tropospheric winds were southerly, profiles from the WET simulation

displayed better agreement with observations.

A southerly wind direction was also consistent with higher wind speeds in general,

and thus more advection. The model domain is slightly wider in the zonal direction, such

that lateral boundary conditions from the south may have influenced the temperature and

moisture profiles. The GFS has a tendency to underestimate relative humidity (Chaouch

et al. 2017) such that propagation of this underestimation to observation location would

have resulted in a dry and warm bias. In the case of the WET simulations, latent heat fluxes

along the flow may have added sufficient moisture to counteract the warm and dry bias

caused by the lateral boundary conditions while surface fluxes in the CTRL and DRY runs

would not. In this case, the simulation would be correct for the wrong reasons because the

WET simulation corrected pre-existing biases in the profile. Further exploration of these

biases was performed via meridional and zonal cross sections that were aligned parallel

to the mean wind through the LMN upper air site. Differences between CTRL and DRY

simulations remained minor and therefore, results comparing only the CTRL and WET

simulations are presented here.
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Meridional cross sections of moisture and temperature centered upon the LMN up-

per air station show that mean mixing ratio differences between CTRL and WET simu-

lations were minimized at 1200 and 1500 UTC on 18 June (Fig. 5.7a-d). The greatest

differences between simulations were observed to the north, where drought intensity was

greatest and furthest downstream from the southern boundary. Potential temperature and

mixing ratio differences between the WET and CTRL simulations quickly increased as

the PBL deepened, and they were maximized by 2100 and 2400 UTC(Fig. 5.7e-h). Once

again, the maximum differences between simulations were observed in the northern portion

of the cross-section. PBL heights also displayed the greatest differences further north.

At the southern boundary of the domain, differences in temperature and moisture

profiles were smallest, as were differences in PBL depth. Such results suggest that the in-

fluence of the land surface on PBL evolution increased further from the lateral boundary

that coincided with the prevailing wind direction, which, in this case was southerly. In

other words, as the air mass entered the domain from the south and spent more time over

the domain, it was modified by fluxes of heat and moisture from the land surface. Given

the differences in soil moisture between WET and CTRL simulations, this resulted in a dif-

ference in surface fluxes, and thus differences in the level of air mass modification between

simulations.

A similar result was observed on 22 July 2012 when winds were primarily from

the east (Fig. 5.8). (Note: the 2100 and 2400 UTC cross- sections display a mixing ratio

discontinuity at approximately -93°W. This was likely attributed to convection develop-

ing along the boundaries of the domain). Differences between simulations grew to their

maximum values by late afternoon/early evening as the PBL deepened and was influenced

by land surface fluxes. Once again differences between simulations were minimized at the

eastern boundary and they were maximized further downstream, toward the western bound-

ary. Yet, days with easterly flow did not produce large differences between observations

and the CTRL simulations. One possible explanation is the proximity of the LMN upper
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air station to the lateral boundaries. LMN is approximately 7°longitude from the eastern

boundary of the domain, whereas it is only 5°from the southern boundary. Additionally,

winds were generally stronger in the southerly flow cases resulting in less time for the land

surface and atmosphere to interact within the coupled simulations.

With the above limitations in mind, the simulations all demonstrate a response of the

PBL to the land surface and are thus, suitable for better understanding how soil moisture

may impact drought development, especially for days with easterly flow. While there is

greater confidence in simulations during days with easterly flow, all days were evaluated.

5.4 Evaluation metrics

A modified application of the mixing diagram approach (Santanello et al. 2009; 2011) was

used to evaluate the evolution of daytime PBL heat and moisture budgets over the ARM

SGP site within each of the simulations. A more detailed description of this framework

was introduced in Chapter 3. Contributions from advection to PBL energy and moisture

budgets may also be factored into the mixing diagram framework (Santanello et al. 2009;

Santanello Jr et al. 2011), though these contributions are not often considered. When con-

sidering flash drought propagation via advective processes, advection must be considered

in the analysis of PBL moisture and energy budgets. As such, a methodology for including

advection will be introduced into this novel application of the mixing diagram framework.

Advection was computed using a centered finite differencing approach over aggre-

gate domains that consisted of computing composite means of meteorological variables

(zonal wind, meridional wind, specific humidity, potential temperature) over 30 km × 30

km sub-domains. The use of larger domains for the advection computations was motivated

by the need to eliminate grid scale variability due to variations in cloud fraction, net radi-

ation, temperature and moisture, and by the Courant-Friedrichs-Lewy Condition (Courant

et al. 1928; Bakhvalov 2001) which states that the spatial interval (x) over which the finite

differencing approach is being implemented must be less than the mean wind speed (U)
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multiplied by the time step (∆t). This is represented by the Courant number (C), which

ideally should be less than or equal to 1. A 30 km domain corresponds to an approxi-

mately 8ms−1 average wind speed in the lower troposphere, which was realistic for the

cases selected.

C =
U∆t
∆x

(5.1)

Advection was computed between 0.1 zi and 0.75 zi, where zi is the PBL height

(PBLH) to remain consistent with the mixed layer mixing diagram approach. Advective

fluxes were then transformed into energy per unit mass to be consistent with other variables

in the mixing diagram moisture and energy budgets. This can be shown in (5.2):

Lvqadv = Lv(~V ·∇q)∆t (5.2)

where Lv is the latent heat of vaporization, (~V ·∇q) is the average advection within

the mixed layer and t is 3600 seconds. Potential temperature advective fluxes were com-

puted similarly, replacing Lv with specific heat (Cp) and ∇q with ∇θ where θ is potential

temperature to obtain Cpθadv

5.5 Mixing diagrams results

5.5.1 Initial dry-down cases, 15 May, 16 May, 23 May, 4 June

Soils were steadily drying during the middle and end of May as the initial phase of the flash

drought was established. Nearby soil moisture observations from Oklahoma Mesonet sites

indicated relatively moist soils at 25 and 60 cm depths (Figure 3) with the exception of the

Marena (MARE) site, which was drier than the other five stations at 25 cm. Slightly more

than 30% of the model domain was classified as abnormally dry or worse by the USDM

during the week of 15 May, but nearly 75% of the domain was considered abnormally dry

by 22 May, the following week. As such, the 15, 16, and 23 of May simulations capture
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an important period of transition within the region as the impacts of the dry-down began to

materialize in drought monitor observations.

Easterly winds characterized both daytime periods during 15 and 16 May, and ob-

served profiles of moisture and temperature were well represented by CTRL simulations for

each date. Mixing diagrams for each day and simulation are shown in Figure 5.9. PBL evo-

lution on both 15 May and 16 May was characterized by an initial moistening and warming

in all three simulations (CTRL, WET, and DRY) followed by a period of relatively rapid

drying and warming in the early afternoon before becoming more consistent in the early

afternoon when the PBL reached a steady depth (Fig. 5.10). Such results are character-

istic of PBL evolution over intermediate soil moisture conditions (Santanello et al. 2009)

as initial and final PBL moisture were similar. Indeed, soils were neither wet nor dry at

nearby Mesonet sites during this time. Surface flux vectors displayed a similar Bowen ratio

across all simulations, with the lowest occurring in the WET soil simulations. As soils were

drying down, sufficient water was still available for evapotranspiration, and partitioning be-

tween latent and sensible heat fluxes was relatively equal. Interestingly, this is also true for

the dry simulation despite being prescribed wilting point soil moisture. This is likely due

to the land surface model evapotranspiration being a product of canopy transpiration as

well as bare soil evaporation, and thus, sensitive to vegetation greenness in addition to soil

moisture (Ek et al. 2003).

Advection was present during all four cases but contributed minimally toward PBL

evolution in most cases and was considerably smaller in magnitude compared to entrain-

ment and surface flux contributions toward the PBL moisture and energy budget. Slightly

larger latent heat fluxes in the WET simulation, greater initial moisture and lower initial

temperatures led to a cooler and more moist PBL at 2400 UTC than the other two simu-

lations. The DRY simulation showed the greatest overall change in temperature, but little

change in overall moisture content. Both DRY and CTRL produced similar temperature

and moisture conditions at 2400 UTC.
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Advection was slightly greater in magnitude for the 16 May DRY and CTRL sim-

ulations, with a moistening and cooling influence, but the overall magnitude of advective

contributions remained relatively small compared to entrainment and surface fluxes. De-

spite advection contributing to cooling and moistening of the PBL in both simulations,

CTRL and DRY once again produced the driest, warmest and deepest PBL at 2400 UTC.

The overall contribution of advection within the WET simulation was negligible.

Mixing diagram curves on 23 May (Fig. 5.9c) were also relatively consistent with

PBL evolution over intermediate soil moisture for the majority of the day, with the excep-

tion of the late afternoon/early evening hours. During this period a slight moistening of

the PBL was shown by all 3 simulations. Such behavior is typically associated with PBL

evolution over wet soils (Santanello et al. 2009). Unlike 15 and 16 May, surface Bowen

ratios were noticeably greater for the CTRL and DRY simulations. While the DRY and

CTRL simulations produced minimal cold and moist advection, the opposite was observed

for the WET simulation, and the magnitude of advection in WET was also greater. All

3 simulations produced a similar level of drying due to entrainment. Though all 3 sim-

ulations began with the same initial moisture, and displayed similar levels of drying due

to entrainment, the DRY and CTRL simulations still produced a much drier final PBL. In

this case, the much greater magnitude of latent heat fluxes within the WET simulation ap-

peared to offset drying due to both entrainment and advection to maintain a moister PBL.

Surface fluxes are scaled to the depth of the PBL, which varied little between simulations

(Fig. 5.10). Therefore, it appears that differences in surface flux partitioning rather than

flux magnitudes produced differences in daytime PBL evolution. The overall vector magni-

tudes suggest that the combined PBL moisture and energy budget evolved similarly across

all simulations. However, the major difference was how the evolution was partitioned into

changes within moisture versus energy budgets. In the WET soil simulations this produced

a slight moistening overall, while DRY and CTRL simulations dried slightly.
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The beginning of June marked a temporary pause in the magnitude of drought inten-

sification (Fig. 5.2), but was still characterized by steadily drying soils. Not surprisingly,

PBL evolution was similar to the 3 dates analyzed in May, where intermediate soil moisture

led to a PBL characterized primarily by warming and minimal change in moisture. As with

23 May, surface Bowen ratio was much greater for the WET simulation (Fig. 5.9d), and

the overall magnitude of warming and drying was comparatively lower. All 3 simulations

displayed slightly different magnitudes of advection, with the largest in the dry simulation,

though these magnitudes were still relatively small compared to entrainment and surface

fluxes. The CTRL and DRY simulations also began to display a slight tendency toward

greater magnitudes of afternoon drying consistent with PBL evolution over dry soils (San-

tanello et al. 2009). DRY and CTRL simulations produced the greatest daytime drying

even when all 3 simulations began with similar moisture content in the PBL. The larger

contribution from surface fluxes to the PBL moisture/energy budget in the WET simulation

(greater vector magnitude) was also partitioned toward latent heating, with a Bowen ratio

less than 0.5. This enabled surface fluxes to moisten the PBL and counteract drying asso-

ciated with entrainment. Finally, PBL depth also varied greatly between DRY, CTRL and

WET simulations, such that surface fluxes were distributed over a much shallower depth in

the WET simulations, and hence, the comparatively larger surface flux vector magnitude.

5.5.2 Mid to late June Dry-down: 18, 19, 28, 29 June

Mesoscale rainfall mid-June provided some recharge to dry soils (Fig. 5.3) near the ARM

SGP site, but this localized relief was overshadowed by the continuously intensifying

drought throughout the rest of the domain (Fig. 5.2). Soil moisture decreases in the latter

half of June were much more rapid than those observed during the May dry-down mini-

mizing any localized recharge.

Surface Bowen ratios continued to show greater differences between CTRL, DRY

and WET simulations for 18, 19, 28 and 29 June. Advection contributions toward PBL
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energy and moisture budgets were relatively greater than those observed in May and early

June(Fig. 5.12). Similarly, late June was characterized by southerly flow that once again

resulted in a warm, dry bias within CTRL PBL profiles. Even with a cooling and moist-

ening contribution from advection, the CTRL and DRY PBL evolution was characterized

by greater overall warming and drying compared to the WET simulation on 18 June. Dry-

ing of the PBL was also isolated to the late afternoon/evening hours for all 3 simulations,

similar to PBL evolution observed during the 15 and 16 of May.

Mixing diagram curves on 19, 28 and 29 June were all consistent with PBL evo-

lution over dry soils presented in Santanello et al. (2009). Early morning moistening and

warming was countered by rapid drying in the afternoon. As the PBL deepened, a rapid

transition from moistening to drying was accompanied by the most rapid deepening of the

PBL (Fig. 5.13). Additionally, the slower growth rate of the WET simulation PBL resulted

in this period of rapid deepening occurring later in time, typically an hour later, than in

DRY and CTRL simulations. The slower PBL growth in WET simulations resulted in an

overall shallower, moister PBL with higher ratio of ET to PET (Fig. 5.14).

5.5.3 Amplification/Perpetuation of Drought: 11 July, 22 July, 27 July

While the period of rapid drought intensification was largely over, the transition into long

term drought began. It is hypothesized that land-atmosphere interactions played a role

in amplifying the already hostile atmospheric conditions that were driven by larger scale

atmospheric features. Such feedbacks arise when soil moisture is sufficiently depleted

to a tipping point in which the atmosphere becomes hypersensitive to land-atmosphere

interactions, and elevated sensible heat fluxes contribute to development or amplification

of heat waves (Benson and Dirmeyer 2021). While the focus of this study is on drought,

increased temperatures associated with land-atmosphere coupling fueled heatwaves can

exacerbate existing drought.
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Mixing diagrams during July indicated rapid drying of the daytime PBL (Fig. 5.15),

even when initial atmospheric moisture was greater than some of the earlier cases. Dry-

ing was characteristic of all July cases, but most pronounced at the end of July. Mixing

diagrams from 11 July(Fig. 5.15a) displayed some moist advection which counteracted

drying due to entrainment and surface fluxes in CTRL and DRY simulations to provide

some moderation to PBL drying. Even with significant amounts of drying during the day,

WET simulations still produced an overall cooler and moister PBL in all cases. However,

the combination of atmospheric and surface conditions produced some of the greatest PBL

depths during July and the frequently observed period of rapid PBL growth also occurred

earlier than during previous cases (Fig. 5.16). Even so, WET simulations continued to

display shallower PBL depths and a later period of rapid deepening than CTRL and DRY

simulations. PET and ET timeseries also show that daytime ET continued to decrease over

time for DRY and CTRL simulations, even when PET was large, while WET simulations

maintained a relatively constant rate of ET and PET throughout the 11 cases analyzed in

this study (Figs. 5.11, 5.14, 5.17).

5.6 Discussion and Conclusions

The four days selected for analysis during the first phase of flash drought in May and early

June, presented evidence of a slow shift toward a drying PBL regime when compared to

the results of SSantanello et al. (2009). The first two days analyzed, 15 May and 16 May,

displayed moistening in the early morning as sufficient fluxes of moisture from the land

surface were distributed over a relatively shallow PBL in all three simulations. However,

all three simulations displayed a period of rapid PBL growth between 1600 and 1800 UTC

on 15 May, consistent with entrainment of a well-mixed residual layer (Lothon et al. 2014).

Larger surface Bowen ratios in CTRL and DRY resulted in greater PBL warming and ear-

lier rapid growth/entrainment of the residual layer. A similar result was also observed on

16 May, but less pronounced than during the preceding day. Early morning moistening on
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23 May and 4 June was nearly non-existent and PBL evolution was primarily characterized

by warming, suggesting a PBL growth regime over soils that were still moist enough to

produce a relatively equal portioning between surface latent and sensible heat fluxes. The

mid to late June cases signaled a steady progression toward PBL evolution more consistent

with that expected over dry soils as mixing diagrams indicated greater warming and drying

throughout the day (Santanello et al. 2009). A dry soil-type PBL evolution was character-

istic of all cases by July. Even WET soil simulations produced a drying PBL during June

and July, but the magnitude of drying and warming was suppressed in comparison to the

CTRL and DRY simulations.

The tendency for the PBL to dry and warm even over wet soils during June and July

cases suggests that surface fluxes played some role in PBL evolution, but were also behav-

ing against a larger scale background state favorable for drought. This is further supported

by the fact that vertical profiles of moisture at 1200 UTC were similar among WET, DRY

and CTRL simulations and only began to deviate from one another as the PBL evolved. As

such, this study presents an interesting interplay between a hostile background atmospheric

state and the potential influence of the land surface on the atmosphere during an extreme

event. Erfanian and Fu (2019) showed that advection of low relative humidity air above

the PBL enhanced PBL drying due to entrainment during the 2012 (and 2011) drought.

Entrainment of dry air into the PBL is sensitive to surface flux partitioning (Milovac et al.

2016) so based on the current results, wet soils could have, at least temporarily, produced a

shallower, moister and cooler PBL given the same background atmospheric state that was

driving drought during 2012, and offset some of the drying due to entrainment of dry air

that had been advected above the PBL. While this conclusion is largely based on model

simulation output, similar results have been observed in situ over wet soils in Oklahoma

(Basara and Crawford 2002). Thus, it is possible that land-atmosphere feedbacks over wet

soils could limit atmospheric demand by moistening the PBL.
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The potential feedback between ET and PET was explored further in timeseries of

daytime ET and PET evolution (Figs. 11, 14, 17). All cases show a consistent peak in PET

and ET from 1800 to 2200 UTC, with WET simulations producing the smallest difference

between PET and ET at all times. Even though atmospheric demand (PET) was smaller

for the WET simulations, ET was greater while for the same magnitudes of PET, ET was

smaller in CTRL and DRY simulations. These results indicate a moisture limited state

rather than energy limited, in which soil moisture regulates the magnitude of ET (Budyko

1961). If this were an energy limited environment, it is expected that smaller magnitudes

of PET in WET simulations would produce smaller magnitudes of ET. Interestingly, the

initial profiles of moisture and temperature were similar across all simulations. PET and

ET were also relatively similar between simulations during the first couple of hours of

the day, with differences becoming maximized as the daytime PBL evolved differently

between simulations. This suggests that greater ET in WET simulations also produced a

slight moderating effect that reduced PET (i.e., evaporative demand) in the PBL.

Daytime (1200 to 2400 UTC) cumulative ET and PET were computed at all grid

points within a 2°by 2°domain centered upon LMN. The ratio of cumulative ET to cumu-

lative PET, otherwise known as the Evaporative Stress Ratio (ESR), was then computed

to obtain distributions of ESR over the sub-domain for each case and simulation. The ob-

jective of this final analysis was to compare changes in ESR over the May through July

2012 study period, and to compare these changes to a well-tested index used to identify

flash drought; the standardized evaporative stress ratio (SESR; Christian et al. 2019).The

choice of domain size was intended to facilitate comparison with the results of Christian

et al. (2019), in which flash droughts were identified on a grid with lower spatial reso-

lution. Selecting the 2°by 2°size allowed for several grid boxes from the Christian et al.

(2019) analysis to be included in the composite. SESR also standardizes ESR based upon

climatology, and thus, this is not a perfect 1:1 comparison within this study for magnitudes.

Even so, mean ESR and SESR are highly correlated (p>0.05) for the 3 simulations with
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CTRL (R2 = 0.90) and DRY (R2 = 0.86) displaying the best agreement with SESR and

WET displaying the least (R2 = 0.73). This is not surprising as the WET simulations pro-

duce the greatest change to PET and ET. Further details of the computation of SESR can

be found in Christian et al. (2019).

WET soil simulations consistently produced a higher ESR (Fig. 5.18), indicating

that ET was better able to meet atmospheric demand, and/or that atmospheric demand was

reduced. In fact, both cases were true. PET was reduced in WET simulations while ET

was enhanced. Furthermore, though all simulations displayed an overall decrease in ESR,

consistent with atmospheric demand overpowering ET, this decrease was not as obvious for

WET simulations. The ESR patterns also closely followed patterns in SESR throughout the

period of study. All the simulations produced relatively constant ESR values in late June

and early July, consistent with steadier state SESR values during the same time. Given

the same tendency toward a steady state ratio of ET to PET, the remaining question is

whether ESR produced by WET simulations would be sufficiently large in comparison to

climatology to produce less negative SESR values and less extreme drought.

Additionally, this study noted that the response of the PBL to initially-biased air

masses over WET soil simulations. Fluxes of moisture from the surface moistened and

cooled the PBL across the domain, while the lack of moisture fluxes in CTRL and DRY

simulations allowed those biases to remain and propagate throughout the domain. This

has implications for forecasting, as biases due to lateral boundary conditions may be more

evident only over certain soil moisture conditions.

While the cases analyzed are only a small subset of the entire 2012 flash drought

event and overall drought period, they provide insight into the relative influence soil mois-

ture may have had in amplifying drought through local and upstream fluxes. In this analysis

it was proposed that dry soils played a role in amplifying the 2012 flash drought and drought

in the Southern Great Plains. The proposed mechanisms through which dry soils amplified

this event are both local and upstream. Locally, dry soils drive greater PBL depths, along
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with higher surface sensible heat fluxes, and entrainment of dry free tropospheric air all of

which increase evaporative demand within the PBL.

Advection of warm, dry air above the influenced the evolution of the 2011 and

2012 droughts over the Great Plains (Erfanian and Fu 2019) as entrainment of the low

relative humidity air likely increased evaporative demand within the PBL (Milovac et al.

2016). Dry soils were unable to balance this demand through increased moisture fluxes

resulting in a net drying and warming. The results of the current study suggest that dry soils

enhanced the effects of above PBL advection through deeper PBL development that (a)

entrained more dry air and (b) diluting any surface moisture fluxes by distributing them over

a deeper mixed layer. Despite similar initial profiles of moisture and temperature, WET

simulations consistently produced shallower PBL depths, and the disparity between ET and

PET was much smaller in WET simulations than in CTRL and DRY simulations. Advection

within the PBL played a much smaller role in the overall evolution of PBL moisture and

temperature for the cases analyzed in this study, with surface fluxes and entrainment fluxes

dominating the moisture and energy budgets.

The results of this study suggest that local land-atmosphere feedbacks played an

important role in regulating PBL moisture and energy budgets, with wet soils producing

greater surface fluxes of moisture and lower evaporative demand. It is still somewhat un-

clear whether the response of the PBL over the sub-domain analyzed in this study was

related to wet soils being prescribed across the entire model domain or whether it was a

response of the PBL to local soil moisture conditions. One approach to answering this ques-

tion could prescribe wet soils locally, however this would present unique challenges related

to land-atmosphere coupling. Soil moisture gradients, such as those that would arise from

only perturbing soil moisture in a sub-domain, can be associated with convective initiation

(Frye and Mote 2010; Taylor et al. 2011).

The 2012 drought and flash drought was likely influenced by internal climate vari-

ability (Hoerling et al. 2014). Further, drought in the Great Plains region is often driven
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by changes in the large-scale atmospheric circulation driven by remote sea surface tem-

perature anomalies (Trenberth et al. 1988; Seager et al. 2005; Schubert et al. 2008, 2009;

Seager and Hoerling 2014) producing widespread subsidence and precipitation suppression

over the region, which favors drought (Basara et al. 2013). Indeed, this would explain the

relatively consistent background atmospheric state across model simulations in the early

morning despite large differences in soil moisture conditions. Even so, Basara et al. (2019)

provided evidence that land-atmosphere interactions still played a role in the evolution of

the 2012 flash drought and drought. The results presented in this analysis indicate sensitiv-

ity of the PBL itself to differences in soil moisture, such that wetter soils would increase

ET and reduce PET locally. Thus, this study demonstrates that the 2012 drought and flash

drought was influenced by a combination of favorable large-scale atmospheric conditions

and land-atmosphere feedbacks that amplified already extreme conditions.

Future studies should apply these methods toward evaluation of additional flash

drought events in the same region, as well as in other geographic regions. It is likely that the

sensitivity of extreme events to land-atmosphere feedbacks will vary based upon geography

as the Great Plains is considered especially favorable for land-atmosphere coupling (Koster

et al. 2004; Guo et al. 2006; Koster et al. 2006). Additionally, null cases with rapid dry-

down periods that did not end in drought should also be evaluated, to better understand the

role of the land surface as well as the role of the large-scale atmospheric conditions that

were favorable for rapid drying of the land surface but did not result in a true flash drought.
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Figure 5.1: United States Drought Monitor for beginning (15 May 2012) and end (31 July

2012) of the analysis period.
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Figure 5.2: United States Drought Monitor classification timeseries during 2012 displaying

the percentage of the model domain greater than or equal to a given intensity category.
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Figure 5.3: The (a) 25 cm and (b) 60 cm fractional water index (FWI; Schneider et al.

2003) for selected Mesonet stations during analysis period, where a value of 1 corresponds

to saturated soils and a value of 0 corresponds to soils which are completely dry.
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Figure 5.4: (a) Study domain shaded in light blue with a red “X” indicating each upper

air station used for comparison to simulation output shown and (b) zoomed in to portion

of domain near LMN upper air station with Mesonet stations from which soil moisture

was data was obtained indicated by a green circle. Dotted lines from south to north, and

from west to east represnt location of cross-sections taken in Figure 5.7 and Figure 5.8

respectively
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Figure 5.5: (a-d) Simulation composite mean potential temperature profiles at 1200 UTC

subtracted from observed composite mean potential profiles at 1200 UTC for the 4 upper

air sites. Composite means were computed over the 11 days simulated. (e-h) as in (a-d) but

for mixing ratio. Horizontal bars represent ±1 standard deviation.
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Figure 5.6: As in figure 5.5, but for profiles at 2400 UTC.
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Figure 5.7: Meridional cross sections of mixing ratio and potential temperature differences

between CTRL and WET simulation cross sections on 18 June 2012 at (a-b) 1200 UTC (c-

d) 1500 UTC (e-f) 2100 UTC and (g-h) 0000 UTC on 19 June. Solid black lines indicate

PBL depth in CTRL simulation and dashed lines indicate PBL depth in WET simulation.

Cross sections were computed from mean values within a 10 km distance from the line

connecting latitudes 32°N to 39°N
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Figure 5.8: Zonal difference cross sections as in figure 7 but for 22 July 2012 at (a-b)

1200 UTC, (c-d) 1500 UTC (e-f) 2100 UTC and (g-h) 0000 UTC on 23 July 2012. Cross

sections were computed from mean values within a 10 km distance from the line connecting

longitudes -103°W to -90°W.

122



123



Figure 5.9: Mixing diagrams for (a) 15 May 2012, (b) 16 May 2012, (c) 23 May 2012, (d) 4

June 2012. The moisture budget of the PBL is represented by values along the x-axis while

the energy budget is represented by values along the y-axis. CTRL simulation curves are

shown by black curve and markers, WET simulations by blue curve and markers and DRY

simulations by red curve and markers. Markers represent each hour of the daytime PBL

evolution from 1200 to 2400 UTC. Surface flux contributions are shown using the vectors

with the dash-dot line for each curve, dashed vectors show contributions from entrainment

and solid vectors show contributions from advection. Bowen ratios for each vector are

shown in tables below each plot and the magnitude of each vector is indicated in parenthe-

ses next to the Bowen ratio. Vectors representing the total evolution of PBL moisture and

energy budgets are not shown, however, Bowen ratio and magnitude data are included for

comparison. Surface vectors point away from 1200 UTC values of each mixing diagram

curve.
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Figure 5.10: PBL depth for each date shown in Figure 5.9
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Figure 5.11: Potential evapotranspiration (PET, dashed line) and evapotranspiration (ET,

solid line) curves in mm/hr for each date in Figure 5.9. CTRL simulations are shown in

black with “x” marker, WET simulations are shown by blue lines with circular markers,

and DRY simulations are shown by red lines with diamond markers.
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Figure 5.12: As in Figure 5.9 but for (a) 18 June 2012, (b) 19 June 2012, (c) 28 June 2012,

(d) 29 June 2012.
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Figure 5.13: As in Figure 5.10 but for dates shown in Figure 5.12.
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Figure 5.14: As in Figure 5.11 but for dates shown in Figure 5.12.
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Figure 5.15: As in Figure 5.9 but for (a) 11 July 2012, (b) 22 July 2012, (c) 27 July 2012
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Figure 5.16: As in Figure 5.10 but for dates shown in Figure 5.15.
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Figure 5.17: As in Figure 5.11 but for dates shown in Figure 5.15.
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Figure 5.18: (a) Distributions of ET to PET ratio (ESR) for each date simulated. ESR values

were obtained from cumulative daily ET and PET over a 2°by 2°domain centered upon

LMN. (b) Composite mean standardized evaporative stress ratio (SESR) for simulation

dates averaged over the same domain used in (a).
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Chapter 6

Conclusions

The Great Plains is characterized by hydroclimate extremes. For example, landfalling trop-

ical cyclones may maintain intensity far inland over the same region impacted by devastat-

ing drought in prior years. Such extreme events are often driven by anomalous large-scale

atmospheric forcing; however, land-atmosphere feedbacks may also amplify these extreme

events. As such, the broader, primary objective of this work was to more definitively quan-

tify the relative role of land-atmosphere feedbacks against background atmospheric states

that were already favorable for a dearth or an excess of precipitation. More specifically,

this study hypothesized that anomalously wet soils provide sufficient fluxes to support the

overland maintenance and reintensification of a landfalling Tropical Cyclone while on the

opposite end of the precipitation distribution, excessive sensible heat fluxes from anoma-

lously dry soils intensified and exacerbated drought.

Soil moisture extremes are communicated to the atmosphere through fluxes of heat

and moisture which influence the development of the planetary boundary layer (Basara and

Crawford 2002) and its moisture and energy budgets. Various land-atmosphere coupling

metrics have been developed to quantify the potential atmospheric response to such soil

moisture extremes, and several rely on vertical profiles of moisture and temperature in the

lower troposphere to do so. Thus, a logical first step in this dissertation was to determine

land-atmosphere coupling metrics that could be used to address the above hypotheses and

extreme events. This was completed by leveraging observational platforms within the ARM

Southern Great Plains site to test and improve two existing coupling metrics: the Convec-

tive Triggering Potential and Low-Level Humidity Index (CTP-HIlow Findell and Eltahir

2003a,b) and the mixing diagram framework (Santanello et al. 2009).
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6.1 Identifying an Optimal Land-Atmosphere Coupling Framework

Analyses implementing the CTP-HIlow framework are frequently used to diagnose whether

the atmosphere is pre-conditioned for convection initiation over wet or dry soils, and di-

agnosis is performed using 1200 UTC radiosonde observations only. This metric can be

compared to climatology to determine whether atmospheric preconditioning over a region

is more consistent with drier than normal conditions (Wakefield et al. 2019)). Application

of this metric comes with several limitations however, the first being its dependence on ver-

tical profiles of moisture and temperature which are limited to a sparse distribution of upper

air stations. In Chapter 2 this study showcased the utility of ground-based remote sensing

platforms, particularly the Atmospheric Emitted Radiance Interferometer (AERI) for pro-

viding profiles of moisture and temperature, and thus enabling computations of CTP and

HI in locations where radiosondes are absent. Even so, this study highlighted limitations

related to the time dependence of the framework. The framework diagnoses the early morn-

ing atmosphere (defined in this study between approximately 0500 and 0800 local time),

which for most of the continental United States, corresponds to the 1200 UTC sounding.

CTP and HI computed further in time from 1200 UTC at the ARM SGP site produced

different diagnoses of atmospheric pre-conditioning than those computed at 1200 UTC.

Thus, the requirement that the metric diagnoses the early morning atmosphere, precludes

its application in regions where neither the 1200 UTC or 0000 UTC soundings correspond

to early morning. Finally, while the framework provides information about layers of the at-

mosphere likely to be incorporated into the daytime boundary layer, it does not characterize

the daytime PBL as it evolves.

Given the results of Chapter 2, a second metric, the mixing diagram framework was

evaluated using the AERI. The mixing diagram framework traditionally uses the evolution

of surface temperature and moisture to characterize the evolution of the daytime PBL mois-

ture and energy budgets and assumes these values are representative of the well-mixed PBL

as a whole. This is motivated by the greater availability of surface observations and lack of
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PBL profiles of moisture and temperature. The high temporal resolution of the AERI en-

abled computation of mixed layer moisture and temperature to characterize the evolution of

the daytime PBL and these results were compared to those using surface observations only.

The mixed layer observations eliminated influences from the surface layer and entrainment

zone, better characterized the daytime PBL, and was more likely to lead to closure of the

moisture and energy budgets. This modification of the mixing diagram framework was

later implemented to quantify the role of land-atmosphere feedbacks during the 2012 flash

drought and drought (Chapter 5).

6.2 Surface flux contributions toward the fate of a landfalling tropical

cyclone

The analysis of Tropical Storm (TS) Bill (2015) did not implement a specific land-

atmosphere coupling framework, as these frameworks are often best suited for conditions in

which synoptic drivers of precipitation are absent. Instead, the water vapor budget within

the storm’s antecedent environment and along its inflow was compared to that of storms

which decayed rapidly following landfall and that of Tropical Storm Erin (2007) which

also maintained/reintensified over land.

The results of this analysis showed that for tropical cyclones that maintained in-

tensity or reintensified over land, accumulated evapotranspiration (ET) along the path of

inflow parcels was greater (p¿0.05) than accumulated ET along the inflow of storms that

decayed rapidly after landfall. Moreover, much of the accumulated ET along inflow parcels

during TS Bill originated over land suggesting that fluxes of moisture from wet soils were

sufficient to sustain a tropical cyclone over land. The large magnitudes of ET upstream of

TS Bill over land were also likely enabled by the storm’s direction of propagation. Over

land, ET exhibits a diurnal cycle and is sensitive to downwelling shortwave radiation, at-

mospheric relative humidity, and wind speed as well as vegetation type and soil moisture.

Storms which decayed rapidly over land either lacked sufficient downwelling shortwave
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radiation or soil moisture upstream of the tropical cyclone. The propagation of TS Bill

meant that cloud cover associated with its circulation did not remain too long over a given

region upstream. Because soils in upstream regions were (a) already moistened by above

normal rainfall prior to the landfall of TS Bill or (b) were moistened by the storm itself, ET

was neither limited by soil moisture nor available energy from solar radiation.

The circulation associated with TS Bill and its path over land were both driven by

large-scale atmospheric forcing. Maintenance of the storm over land was aided by above

normal latent heat fluxes both near the storm’s primary circulation and upstream. The

upstream enhancement was driven by abundant soil moisture and solar radiation, both of

which were maximized by the storm’s movement. As such, the storm’s movement, driven

by the large-scale atmospheric circulation, produced a favorable environment upstream for

large values of ET along the storm’s inflow. In other words, the large-scale environment

also produced favorable conditions for enhanced fluxes of moisture from the land surface

into the storm’s inflow. This combination of large-scale forcing and land-atmosphere in-

teractions aided in the maintenance of TS Bill for several days over land. Further, the

above analysis also demonstrated the importance of surface fluxes upstream during an ex-

treme event and suggested that even advected quantities may be connected to soil moisture

upstream.

6.3 Sensitivity of the PBL to surface fluxes during flash drought

The final analysis used knowledge gained from the preceding analyses to devise an ex-

periment that would best determine the role of the land surface on the evolution of the

2012 flash drought and drought over the Southern Great Plains. A modified application of

the CTP-HIlow framework previously demonstrated a pre-conditioning of the atmosphere

for drought during 2012 (Basara et al. 2019), but a more detailed framework was neces-

sary to capture the daytime evolution of the PBL during this period. Thus, the modified

mixing diagram framework was used. Further, the impact of advected quantities via the
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TS Bill analysis illustrated that advection was critical and implemented in the mixing dia-

gram framework analysis for the 2012 case. Coupled simulations using the NASA Unified

Weather Research and Forecasting (NU-WRF) model and Land Information Systems (LIS)

were utilized for simulations spanning 11 days with minimal synoptic influence during

May, June and July of 2012.

The prescription of wet soils across the study domain resulted in reduced PBL

warming, drying, and reduced evaporative demand even during the height of drought de-

velopment. Moreover, the control simulations, simulations over dry soils and simulations

over wet soils all displayed similar moisture and temperature profiles above the PBL indi-

cating the same large-scale atmospheric forcing for drought, but a sensitivity of evaporative

demand to surface fluxes manifesting through differences in daytime PBL temperature and

moisture evolution. Thus, if wet soils were present, the conditions would have likely modu-

lated the magnitude and intensity of drought in the region. Further, if the event were driven

by atmospheric aridity alone, increased ET would have been observed over wet soils but

the concurrent reduction in PET would not.

6.4 Overlap between tropical cyclone and drought analyses

(Wu and Dirmeyer 2020) showed that drought demise is often associated with atmospheric

rivers and in the southeastern United States and via precipitation from landfalling tropical

cyclones. Had a tropical cyclone (TC) such as TS Bill made landfall three years earlier

in 2012 and traveled sufficiently inland, it may have produced widespread moistening of

soils in the Southern Great Plains. If the same background same background atmospheric

conditions favorable for drought immediately returned after the hypothetical TC landfall,

land-atmosphere feedbacks over moistened soils would have reduced evaporative demand

within the PBL via moistening through increased ET. Eventually soils would once again

dry out, due to sustained ET, but this would occur less rapidly than if evaporative demand

were insensitive to soil moisture.
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At the same time, the results from Chapter 4 demonstrate the if a tropical cyclone

were to make landfall during 2012, dry soils would have contributed to its demise well be-

fore it could travel far enough inland to produce substantial rainfall over Oklahoma. Thus,

even if a tropical cyclone identical to Tropical Storm Bill made landfall in 2012, the an-

tecedent dry soils along its path would have interacted with larger scale forcing (the TC) to

perpetuate drought by suppressing the TC’s overland maintenance and/or reintensification.

6.5 Summary of Key Findings

Chapters 2 and 3 did not directly address the contribution of land-atmosphere feedbacks to-

ward extreme precipitation event evolution, however they provided critical knowledge that

optimized the methods for analyzing covariance and coupling during an extreme event. The

ability to obtain vertical profiles of moisture and temperature at high temporal resolution

allows for improved quantification of PBL moisture and energy budgets by considering

the qualities of the mixed layer itself rather than simply using 2 m observations within the

surface layer. This not only supports future studies that will improve the understanding of

land-atmosphere coupling itself, but such observations can be used to improve operational

and research-based models and model parameterizations of the land surface and the PBL.

These improvements could also result in better simulations of the PBL during extreme

events such as those analyzed in Chapters 4 and 5.

In summary, Chapters 4 and 5 directly addressed the stated hypothesis and provided

these key results:

1. Chapter 4 showed that land surface fluxes upstream can impact advected quantities,

and thus moisture and energy budgets within a location of interest that impact ex-

treme events.

2. The background atmospheric state during TS Bill propagating along a path which

allowed for greater fluxes of moisture along its inflow by neither limiting incoming
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solar radiation or soil moisture along inflow parcel paths. These analyses presented

a methodology for distinguishing between large-scale and land surface contributions

toward an extreme event. The relative importance of each factor was demonstrated

through comparison with other landfalling tropical cyclones which decayed rapidly.

3. Soil moisture influenced the relative humidity of the PBL over the Southern Great

Plains during the 2012 flash drought and drought maintenance. Wet soil simulations

show that moister soils would have contributed to lower PBL heights, an overall

moister and cooler PBL, and lower evaporative demand that would have had a mod-

erating effect on drought intensification.

4. Atmospheric profiles were similar across DRY, CTRL and WET simulations for the

same day and displayed the greatest differences within the PBL during the daytime

indicating that moisture and energy budgets of the PBL were largely sensitive to the

partitioning of surface fluxes.

5. The more moist PBL generated by WET simulations was related to enhanced ET

which also reduced PET. Had PET been insensitive to surface fluxes, PET would

have been the same across DRY, CTRL and WET, simulations and only ET would

have differed among them.

Future work should also consider idealized simulations during TS Bill to better

quantify the sensitivity of the storm to surface fluxes. Further, sample size was a common

limitation for each of the case studies. Even so, the novelty of this research lies in the

methods of each analysis and the applicability of those methods toward future work which

can include greater sample size. Further, these analyses build upon work by Schumacher

et al. (2019) to consider a more Lagrangian approach to land-atmosphere interactions in

which local and non-local land surface fluxes are considered as a potential influence on the

nature of the PBL. This was completed by analyzing surface fluxes along inflow trajectories

for TS Bill and by incorporating advective contributions into analysis of PBL moisture and
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energy budgets in Chapter 5. The atmosphere does not operate within an isolated column,

and as such future land-atmosphere coupling research will benefit from considering a more

Lagrangian approach.

While this research primarily focused on land-atmosphere interactions and their

contributions to extreme hydrometeorological events in the United States Great Plains, the

novel methods introduced in these studies are applicable to studies in other regions of the

world. This includes semi-arid regions, such as the African Sahel, and the Indian monsoon

region, which display a greater sensitivity of evapotranspiration to changes in soil moisture

(Guo et al. 2006; Koster et al. 2006; Wei et al. 2016; Basara and Christian 2018). In the case

of the latter, changes in land use and land cover may influence the timing and quantity of

rainfall associated with the monsoon circulation (Niyogi et al. 2010; Kishtawal et al. 2013;

Niyogi et al. 2020).Moreover, the region’s agriculture relies on monsoon rainfall, but an

increase in number of dry and wet extremes has led to greater socioeconomic vulnerability

(Singh et al. 2014; Swami et al. 2018). The modified mixing diagram framework introduced

in Chapter 3 and applied in Chapter 5, could serve as a valuable tool for subseasonal to sea-

sonal predictability of the timing of monsoon rainfall onset. Even though the framework

was applied toward understanding drought/flash drought, it revealed the relative sensitivity

of the PBL, PET and ET to terrestrial moisture even when the larger scale atmospheric

state was constant. As land-sea temperature differences play a role in the monsoon circula-

tion, this framework could be used to better quantify the relative role of the land surface on

PBL development in relation to a given background atmospheric state prior to and during

monsoon onset. The framework’s flexibility to observational and gridded datasets enable

retrospective analyses and real time monitoring that could further enhance subseasonal to

seasonal predictability. Methods used to analyze Tropical Storm Bill’s overland reintensi-

fication may also have predictive utility once monsoon rainfall has commenced. Much like

landfalling tropical cyclones, the intensity of rainfall associated with landfalling monsoon
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depressions is sensitive to antecedent land surface conditions. Therefore, monsoon rain-

fall intensity predictions at the subseasonal to seasonal scale could be aided by methods

introduced in the analysis of Tropical Storm Bill’s overland reintensification. Moisture ad-

vection feedbacks are thought to play a role in the monsoon circulation (Levermann et al.

2009; Pathak and Ghosh 2019), thus along trajectory analysis of surface fluxes may pro-

vide further insight into the role of upstream terrestrial and/or oceanic moisture fluxes in

maintaining these moisture advection feedbacks. This is just one example of how the meth-

ods introduced in this work can have global impacts by increasing subseasonal to seasonal

predictability of precipitation extremes in regions where precipitation variability is synony-

mous with socioeconomic variability. As such, the novel contributions of this research to

the science extend well beyond the results presented, and have enabled numerous oppor-

tunities for ongoing and future research utilizing the tools and methods presented in this

dissertation.
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