
A Model-Based Scheduling Framework for Enhancing Robustness
Nicolas Grounds and John K. Antonio

School of Computer Science, University of Oklahoma, Norman, Oklahoma, United States of America

Abstract— Scheduling algorithms used for dynamic schedul-
ing of tasks in a distributed system are generally evalu-
ated on their performance, i.e., their degree of achieving
a desired outcome or metric. They may also be evaluated
on the basis of their robustness, which is the degree to
which the scheduling algorithm is able to achieve similar
performance in the present of error in the task requirements
or system resource availability. In this paper, a model-
based framework for evaluating and improving scheduling
algorithms’ performance and robustness is proposed. We also
demonstrate through simulated results how system feedback
can be incorporated to increase robustness of four evaluated
scheduling algorithms.

Keywords: distributed system, scheduling, performance, robust-

ness

1. Introduction and Background
Scheduling computational tasks to machines so as to im-

prove specified metrics of performance has been the topic of a

plethora of good work produced over the past several decades

[1]. The underlying assumptions and objectives of this body

of work varies along several deminsions. For example, there

are static formulations to scheduling in which a desired

schedule is detemined offline based on assumed knowledge

related to the machines’ available resources and, correspond-

ingly, the resource requirements of the computational tasks.

In addition to static scheduling, the topic of dynamic

scheduling is also well-studied. Dynamic formulations de-

termine the schedule for the tasks online; meaning in real-

time or near real-time. Dynamic scheduling is useful for

scenarios in which knowledge about requirements of the

tasks (and/or the number of tasks) are inherently dynamic

and less certain than what is typically assumed for static

scheduling formulations. Likewise, the resource capacities of

the machines in the computational platform, as well as the

number of machines (virtual or physical), is often unknown

and/or less predictable than in static formulations.

In some formulations of scheduling, it is assumed that the

tasks are completely independent from one another. A classic

scheduling objective for such a formualtion is to schedule

the execution of tasks so as to minimize the overall time

required to execute all of the tasks [2]. A variant of this

problem is a formulation in which a deadline is associated

with each task, defined as a future point in time at which the

exection of each task should be completed (else, the value

of executing the task is of little or no value) [2], [3]. Still in

other variants, the existence of precedence constriaints among

the tasks is assumed, thereby impacting and constraining the

order in which tasks may be scheduled for execution [4].

Important recent research has focused on the concept of

robust scheduling, which addresses effectiveness of schedul-

ing when uncertainties are included in certain aspects of the

underlying formulation. For example, instead of assuming

the computational requirements of tasks are known, robust

scheduling addresses how might a schedule perform if the

task requirements are known only within certain bounds. Or,

perhaps the requirments are stochastic, and are drawn from

a probability distribution. Examples of work in the area of

robust scheduing include [2], [4], [5].

In [6], a number of different metrics of robustness are

evaluated in the context of scheduling DAGs (directed acyclic

graphs), where the underying computational tasks and com-

munication requirements amoung the tasks are stochastic.

Based on a robustness metric identified as most advanta-

geous, the paper goes on to fomulate scheduling algorithms

that simultaneously optimize execution time performance and

a desired measure of robustness. Although the concept of

robust schedules is very important, in reality, even the most

robust schedule (or scheduler) may not provide sufficient

system performance in practice. Our paper addresses this

practical concern.

The remainder of the paper is organized in the following

manner. Section 2 describes the problem domain and our

proposed approach to modeling the platform within which

the scheduling of tasks from workflows to resources of a

distributed system occurs. Section 3 details the simulation

software used to implement the proposed framework. Section

4 presents results of simulated case studies within that soft-

ware simulator. Finally, Section 5 summarizes the findings

from these simulations and presents the conclusions of our

work.

2. Motivation and Overview of Proposed
Approach

The present work is a meta-approach that is motivated by

the desire to apply existing scheduling approaches within

a framework that is realistic and operationally practical.

In terms of scheduling taxonomy, we assume a dynamic

scheduling formulation in which the computational jobs (we

10 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

Scheduler

Model Platform

Actual PlatformActual
Work ows

Model Work ow
[Requirements]

Actual Task
Assigner

Model Task
Assigner

Feedback

Resource Availability

Work ow
Modeling

Fig. 1: Block diagram illustrating proposed framework.

call them workflows) are modeled as directed acyclic graphs,

i.e., the tasks of a workflow have precedence constraints. Fur-

thermore, each workflow (not individual tasks) is endowed

with a deadline.

Our framework, illustrated in Figure 1, consists of one

centralized scheduler and two instances of the computational

platform. The first instance, denoted as the actual platform,

represents the actual machines (virtual or physical) upon

which the actual workflows’ tasks are to be executed. The

second instance of the platform, denoted as the model plat-

form, is a mathematical and/or simulated model representa-

tion of the actual platform. The scheduler component makes

decisions about what machine each task is to be executed on

and when (at or after all the tasks precedence constraints are

satisfied) that execution should begin. The scheduler makes

use of a scheduling algorithm, which requires some model

of the workflows’ tasks’ requirements. Scheduling decisions

are implemented by a task assigner particular to the platform,

model or actual.

Much past research has focused on the scheduler compo-

nent of Figure 1; building schedulers to achieve enhanced

performance and/or robustness. This is often achieved by

focusing on the modeled workflow’s rquirements information

provided to the scheduler. In addition to modeling require-

ments, our framework also emphasizes modeling of the

platform resources through the model platform component,

providing additional opportunities for research and improve-

ment. Such improvements can be realized by building more

accurate models or by making use of feedback from the

actual platform to correct the model platform, indicated by

the dashed line of Figure 1.

Development and evaluation of static schedules, and sched-

ulers, make use of the components below the dotted line to

build a schedule (set of scheduling decisions for where and

when each task should be executed). That static schedule is

then used by the actual task assigner component, e.g., via

a lookup table, in a running system like that represented

above the dotted line. Also, for scheduling algorithms that

require training, or offline optimization of parameters, the

same components below the dotted line would be used prior

to deployment of the algorithm in the scheduler of a live

system, represented by the components above the dashed-

dotted line.

In the ideal case that the model components match the

behavior of the corresponding actual components, feed-

back from the actual platform is unnecessary. Realistically,

however, the model components will have deviations (or

errors) in comparison to the actual components with how

they model the tasks’ requirements and the availability of

platform resources. This leads to erroneous information being

presented to the scheduler that can be summarized as two

interrelated types. First, task requirement error results in inac-

curate information about resource load in the model platform,

which is utilized by the scheduler. Because all scheduling

algorithms must fundamentally determine when to schedule

additional tasks on already-loaded resources versus when to

delay starting new tasks until some already-running tasks

complete and the load of the resources lightens (increasing

its efficiency), an algorithm given wrong information about

resource load will generally make poor decisions.

The second type of error the model may exhibit is in

the representation of how much work a task requires to

be completed before the task is considered finished. When

a model’s error causes a task’s work requirement to be

underestimated, it can lead the scheduling algorithm to assign

additional work to the resource modeled as now having a

lightened load. In this scenario the error compounds if the

algorithm assigns new tasks to the resource because the

additional load causes the atual system’s resource to become

even less efficient, further diverging the model from the actual

system and causing the task erroneously modeled as finished

to take even longer to finish in the actual system. It is also

possible that the model for a task overestimates the task’s

work requirement in which case the model of the resource

remains loaded while the actual system’s resource may be

idle.

To counteract the effect of the model diverging from

the actual system in terms of knowledge of which tasks

are running, the model may be improved using feedback

from the actual system regarding task completion. A simple

implementation of this feedback in practice is to instrument

the actual system to provide periodic information about the

running tasks on each system resource. However, this can

cause the model to ‘lag’ behind the actual system if modeled

tasks are not considered completed until a periodic check

reveals its actual system counterpart is no longer executing.

Because scheduling algorithms make decisions once the state

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 11

ISBN: 1-60132-487-1, CSREA Press ©

Parameter Small Medium Large
Total tasks [5,16] [10,72] [45,800]
Potential Task Parallelism [1,2] [2,3] [5,20]
Task CPU cycles (work) [1,2.5] [10,50] [50,175]
Task CPU utilization [0.5,1] [0.5,1] [0.5,1]
Task memory footprint [0.05,0.15] [0.05,0.1] [0.05,0.1]

Table 1: Table of basic workflow (DAG) sizes and tasks’

requirements by workflow type.

of the system changes in response to tasks finishing, the

aforementioned ‘lag’ may be avoided by having the actual

system provide event-based feedback upon completion of

each task. This latter ‘event-driven’ approach is adopted in

our framework.

3. Simulation Environment
This section presents simulated results of the outcomes of

scheduling algorithms whose decisions are made based on

a model platform of the (simulated) actual system in which

error is introduced in one aspect of the workflows’ tasks’

requirements. It is shown that by using actual task comple-

tion events (fed back from the actual platform) to correct

inaccuracies present in the model platform, all scheduling

algorithms analyzed become very robust to errors in the

tasks’ requirements considered.

All simulations were performed using simulator software

developed for previous research [3] and made publically

available as open source [7]. As in [3] workflows are defined

as a directed acyclic graph where graph nodes represent the

computational tasks which are individually schedulable to

execute on one of the platform’s available machines. Graph

edges represent precedence constraint where one task must

complete execution before the connected task is able to

be scheduled and begin execution. In every simulation a

scheduling algorithm is used to schedule tasks from arriving

workflows of one of three types, as also defined in [3]:

small workflows representative of simple interactive applica-

tion jobs, medium workflows representative of web services

jobs, and large workflows representative of large-scale batch-

oriented jobs. Various workflow and task characteristics are

summarized in Table 1.

As part of the simulation studies the model workflows are

given task requirements where the tasks’ amount of CPU

cycles (CM) to be completed has an error term applied to

it with respect to the actual value (CA). This error term

parameter X is varied between experiments from 0.001 to

0.9.

CM ← (1 + x)CA

x ∈ [−X,X]
(1)

The values for x drawn from [−X,X] assume a uniform

distribution.

As with [3] all simulations used a simulated platform of 16

machines with the same resource capacities: 4 CPUs and a

normalized memory capacity of 1.0. From Table 1, then, each

task would consume between half and all of a single CPU

and between 5% and 15% (for small workflows, or 10% for

medium and large) of total memory. For all numeric results

for 10% for medium and large) of total memory. Platform

machine efficiency was simulated the same as in [3] where

cumulative CPU load of all executing tasks on a machine, �c,

resulted in an effiency, ec given in Eq. 2. Memory effiency,

em, based on cumulative memory load of all executing

tasks, �m, is given in Eq. 3. The combined efficiency, e =
ecem, represents the amount of work accomplished on each

executing task per unit of time.

ec =

{
1, �c < 4

(4/�c), �c ≥ 4
(2)

em =
10

10 + 1
(1/�m)−1

(3)

For all numeric results for performance the value presented

is an averaged value across ten simulations where the work-

flows and tasks were the same but a unique random error

term, x, was used for each model task’s required CPU cycles.

4. Results
Figure 2 shows the performance of scheduling algorithms

and the significant performance impact that even a small

amount of error has. In this figure as with prior research, per-

formance is depicted visually as a histogram of the number of

workflows completed in intervals based on their normalized

tardiness (the time difference between the completion and the

target deadline normalized by on-time completion time of the

workflow). In this representation a normalized tardiness of 0

represents a workflow that completed exactly at its deadline,

negative values represent workflows completed before their

deadline, and positive values those completed late.
The histogram bars of Figure 2 represent the performance

of scheduling algorithms under the ideal circumstance of

no error in the model (i.e., the model platform perfectly

predicts and represents the resources required by a task and

its execution completion time). These histogram bar results

demonstrate how CMSA with either of the two cost functions

(Sigmoid or Quadratic) completes the largest majorities of

workflows ahead of their deadline. The PLLF (proportional

least laxity first) algorithm completes workflows up to 4

times later (as a proportion of the ideal finish time) than

the deadline. The FCFS (first-come, first-serve) algorithm

performs relatively poorly with workflows completing far

later than their deadline because it is oblivious to deadlines

and therefore often will put off scheduling tasks of a recently-

arrived workflow with a ‘tight’ deadline by prioritizing a less-

recently arrived workflow despite its deadline being further

into the future and possibly more relaxed.

12 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 100

Hi
st

og
ra

m
 C

ou
nt

Normalized Tardiness Bins

CMSA Sig
CMSA Quad

PLLF
FCFS

CMSA Sig
CMSA Quad

PLLF
FCFS

Fig. 2: Histogram of workflows by normalized tardiness comparing relative performance of scheduling algorithms with no

error (vertical bars) and with 0.1% error applied to the model of the workflow requirements (line graphs). In this scenario,

task completion event feedback was not employed to correct the model platform.

Error, X CMSA CMSA FCFS PLLF
(Quad) (Sig)

0.0 16.54 1.77 38.49 38.72
0.001 30.52 1.92 61.39 50.96
0.005 34.75 1.84 59.48 52.39
0.01 30.86 2.99 60.35 49.39
0.05 28.87 8.99 63.60 49.54
0.1 32.11 15.60 60.77 52.65
0.5 34.34 24.96 52.85 55.68
0.9 32.93 26.12 54.36 58.64

Table 2: Percent of workflows late for four scheduling

algorithms across various amounts of error in the model

platform. Completion events were not employed to correct

the model platform.

The lines graphed in Figure 2 represent the same algo-

rithms’ histogram of workflow completion in the presence of

0.1% error in the model platform. As depicted, one algorithm

(CMSA algorithm optimizing the cost based on a Sigmoid

cost function) maintains roughly the same performance in the

presence of this small model error, as without it. All three

other algorithms exhibit a dramatic loss in performance, i.e.,

a shift of many workflows completing ahead of or shortly

after their deadline to completing many times over later than

their deadline. In this scenario, completion events were not
employed to correct the model platform.

Table 2 lists the value of percent of all workflows com-

pleted late (after their deadline) as a single performance

metric for the scheduling algorithms across various amounts

of the error term, X . This metric (percent late workflows)

is useful in comparing the impact of increasing error on the

performance of each scheduling algorithm. Like Figure 2, it

illustrates how CMSA (with sigmoid cost function) is robust

to small error, whereas the other algorithms are not. It also

shows that while the performance of CMSA (Sig) degrades

as error increases, the other three algorithms maintain nearly

a constant level of even poorer performance with any amount

of error. These results show how some algorithms (CMSA

with Sigmoid cost function) can be relatively robust (at least

with respect to this performance metric) for small amounts of

error but how all algorithms eventually perform poorly when

using a model platform that fails to reasonably represent the

actual system.

The model task requirement with respect to the amount

of CPU cycles each task requires has a compounding effect

when the model system declares, erroneously, that a task

has completed (ahead of the actual system) and thus the

scheduler determine to begin execution of an additional task

that increases the system resource load in the actual system

and slows the progression toward completion even further.

Intuitively, this compounding error is most likely the reason

for such a dramatic decrease in overall scheduler performance

for the three affected algorithms of Figure 2.

The strategy proposed in this paper is to incorporate

feedback from the actual platform for task completions as

an event-based trigger for updating the model platform and

allowing the scheduler to schedule new tasks. Figure 3

depicts results of the performance of scheduling algorithms

comparable with Figure 2 except that the error introduced in

the model is much higher (90%, instead of 0.1%) and the

model platform uses task completion events from the actual

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 13

ISBN: 1-60132-487-1, CSREA Press ©

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 100

Hi
st

og
ra

m
 C

ou
nt

Normalized Tardiness Bins

CMSA Sig
CMSA Quad

PLLF
FCFS

CMSA Sig
CMSA Quad

PLLF
FCFS

Fig. 3: Histogram of workflows by normalized tardiness comparing relative performance of scheduling algorithms with no

error (vertical bars) and with 90% error applied to the model of the workflow requirements (line graphs). In this scenario,

task completion event feedback was employed to correct the model platform.

platform (instead of relying on the model platform estimates

of task completions). Given that the line graphs match much

more closely to the vertical bars than in Figure 2, this

illustrates how even for large model error the incorporation

of actual platform task completion feedback increases the

robustness of all four scheduling algorithms. The CMSA

(Sig) algorithm which was robust for small amounts of error,

as well as the other three algorithms which were not robust

even for the smallest amount of error studied (0.1%) all

achieve nearly the same level of performance (i.e. shape of

histogram) as with having a perfect, no-error model.

5. Summary and Future Work
In this paper we introduced a framework for understand-

ing and evaluating scheduling algorthms’ performance and

robustness with respect to error in tasks’ resource require-

ments. This framework incorporates a model of the actual

system in which errors and uncertainties can be represented.

Through simulation studies we examined the performance

of four scheduling algorithms and the impact of error in

the model system upon their performance. While the CMSA

algorithm (using a sigmoid cost function) had some degree of

robustness, i.e. it was able to achieve similar performance in

the presence of very small error, all algorithms exhibited poor

performance with even moderate amounts of error present in

one dimension of the model workflows requirements (CPU

cycles required for the tasks).
We also introduced and simulated the notion of incor-

porating feedback from the actual system back into the

model system. Through simulation studies we showed how

all algorithms can benefit from feedback of task completion

events and thus become relatively robust to even substantial

error in the model system.

In the present paper, we assumed that tasks’ completion

events are detected and fed back in order to ‘correct’ the

model platform. Under this assumption, the model com-

pletely relies on actual completion events being fed back.

Future work will consider the possibility in which partial

feedback (of some) completion events are available and fed

back to the model. This ‘partial feedback’ assumption may

be more practical than the complete feedback used in this

paper in situations where there would be significant overhead

instrumenting the actual system so as to feed back each and

every completion event. In such cases, taking small samplings

of completion events from the actual system would be more

practical. Finally, future work will also investigate the effect

of non-uniform error and/or error distributions without an

expected value of 0.

References
[1] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling

in general-purpose distributed computing systems. IEEE Trans. Softw.
Eng., 14(2):141–154, February 1988.

[2] Mohsen Salehi, Jay Smith, Anthony Maciejewski, Howard Jay Siegel,
Edwin Chong, Jonathan Apodaca, Luis D. BriceÃśo, Timothy Ren-
ner, Vladimir Shestak, Joshua Ladd, Andrew Sutton, David Janovy,
Sudha Govindasamy, Amin Alqudah, Rinku Dewri, and Puneet Prakash.
Stochastic-based robust dynamic resource allocation for independent
tasks in heterogeneous computing system. 97, 06 2016.

[3] Nicolas G. Grounds, John K. Antonio, and Jeff Muehring. Cost-
minimizing scheduling of workflows on a cloud of memory managed
multicore machines. In MartinGilje Jaatun, Gansen Zhao, and Chunming

14 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

Rong, editors, Cloud Computing, volume 5931 of Lecture Notes in
Computer Science, pages 435–450. Springer Berlin Heidelberg, 2009.

[4] Luis Diego Briceño, Jay Smith, Howard Jay Siegel, Anthony A.
Maciejewski, Paul Maxwell, Russ Wakefield, Abdulla Al-Qawasmeh,
Ron C. Chiang, and Jiayin Li. Robust static resource allocation of
dags in a heterogeneous multicore system. J. Parallel Distrib. Comput.,
73(12):1705–1717, December 2013.

[5] Kyle Tarplee, Anthony Maciejewski, and Howard Jay Siegel. Robust

performance-based resource provisioning using a steady-state model for
multi-objective stochastic programming. PP:1–1, 09 2016.

[6] Louis-Claude Canon and Emmanuel Jeannot. Evaluation and optimiza-
tion of the robustness of dag schedules in heterogeneous environments.
IEEE Transactions on Parallel & Distributed Systems, 21:532–546, 05
2009.

[7] Nicolas Grounds. SOASim: Simulator for distributed system scheduling.
http://soasim.sourceforge.net/, 2010–2018.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 15

ISBN: 1-60132-487-1, CSREA Press ©

