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Abstract— Performance and robustness of dynamic schedul-
ing algorithms are evaluated in the presence of errors in
the tasks’ resource requirements. Previous work found that
incorporating task completion events from the actual dis-
tributed system into the algorithms’ model of the system was
crucial for achieving robustness. In the present paper, various
degrees of feedback, rather than simply all-or-none, are eval-
uated using the same simulated studies as in previous work
and a proposed strategy for biasing model tasks’ resource
requirement information is proposed in order to counteract
the most egregious effects of model error on performance.
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1. Introduction and Background
Scheduling computational tasks to machines so as to im-

prove specified metrics of performance has been the topic of a

plethora of good work produced over the past several decades

[1]. The underlying assumptions and objectives of this body

of work varies along several dimensions. First, some work

assumes all tasks are independent whereas other work, as in

this paper, allows for tasks to have dependency or precedence

relationships with other tasks (for which interrelated tasks are

typically represented in a directed acyclic graph, or DAG).

Additionally, there are static formulations to scheduling in

which a desired schedule is detemined offline based on

assumed knowledge related to the machines’ available re-

sources and, correspondingly, the resource requirements of

the computational tasks.

This paper addresses dynamic scheduling in which the

schedule for tasks is determined online in real-time with

the execution of those tasks performed on a distributed

system. Unlike static scheduling, dynamic scheduling does

not require upfront knowledge of the arrival of future tasks

into the system for scheduling. Algorithms for dynamic

scheduling make use of knowledge about the tasks which are

ready for scheduling and their resource requirements such as

CPU and memory load as well as the resource capacities of

the machines in the distributed system.

Another dimension in the taxonomy of scheduling al-

gorithms deals with whether tasks are executed ‘one at a

time’ on the machine to which they are assigned. In the

present work, multiple tasks may be executed concurrently

on a single machine. This adds complexity in modeling

the machines’ performance because the machines’ resources

must be shared across multiple tasks assigned to the machine.

Some algorithms for dynamic scheduling are based on

heuristics for selecting which tasks to prioritize and deter-

mining when to begin their execution and on which machine.

Other algorithms attempt to optimize scheduling decisions

with respect to a desired outcome based on a user-defined

objective. Both types of algorithms are generally measured

and compared to one another against such objectives as

minimizing makespan (time required for completed execution

of all tasks) [2], or, as in this paper, the degree to which all

tasks of a DAG are completed by a DAG-associated deadline.

Scheduling algorithms may orthogonally be evaluated

based on their robustness, for example, how well the same ob-

jective is achieved when information provided to the schedul-

ing algorithm contains errors such as inaccuracies in resource

requirements of the tasks. In previous work [3] four dynamic

scheduling algorithms’ robustness to error with respect to

performance against an objective of completing DAGs before

their deadline was presented, showing how some algorithms

were not robust to even the smallest amount of error. The use

of task completion event feedback from the actual distributed

system back into the modeled system used by the scheduling

algorithms was found to substantially improve robustness of

all four scheduling algorithms even with large amounts of

error. In the present paper we generalize this approach by

investigating the utility of using only partial feedback of task

completion events.

The remainder of the paper is organized in the following

manner. Section 2 describes the problem domain and the

simulation software’s modeling of a distributed system in

which errors in task requirements may be present. Section

3 presents a requirements biasing approach to counteracting

model error to prevent scheduling algorithms from over-

committing system resources, i.e., executing too many tasks

concurrently. Section 4 presents results of simulated case

studies. Finally, Section 5 summarizes the findings from these

simulations and presents the conclusions of our work.
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2. Problem Domain and
Simulation Environment

The present work is an extension to previous work [3]

in which a model-based approach to dynamically scheduling

tasks from DAGs (called workflows) was introduced. Four

scheduling algorithms were tested in a simulation envi-

ronment [4] given a 24-hour simulated period of arriving

workflows ranging in size from 5 tasks up to 800. Each

workflow has a known, predetermined deadline and schedul-

ing algorithms were evaluated in [3] based both on the

number of workflows completed before their deadline and

the distribution of workflow counts completed at various

normalized proportions past their deadline (e.g., workflows

up to 100% late relative to the amount of time between their

arrival and deadline).

Scheduling algorithms are used to determine — from a

given queue of tasks ready to begin executing (i.e., tasks

of arrived workflows that have no precedence constraints or

whose precedent tasks have all completed) — both when

the task should begin executing and on which machine of

the platform. Unlike some scheduling research, tasks are

permitted to executed concurrently with other tasks on the

same machine, which increases machines’ overall load on

resources such as CPU and memory and thereby slows the

rate of work on each executing task. Original work in [5]

details this non-linear degradation of rate of work (efficiency)

due to concurrent task execution.

Figure 1 illustrates the various components and general

flow of information within the model-based approach to

executing and evaluating scheduling algorithms. The modeled

tasks’ requirements (CPU load, required number of CPU

cycles, and memory load) may contain errors relative to the

true values; these errors then cause the model platform to

diverge from the actual platform in terms of which tasks are

completed and which are still executing.

Four scheduling algorithms were studied in this and pre-

vious work. The first is First-Come, First-Served (FCFS)

which prioritizes scheduling tasks from workflows that ar-

rived earlier over tasks from workflows that arrived later.

The second is Proportional-Least Laxity First which projects

a finish time of a task’s overarching workflow based on the

rate of completion of its tasks in the past and then prioritizes

tasks from workflows projected to be completed most tardy

proportional to the overall size of the workflow. The final two

algorithms are variants of the Cost-Minimization Scheduling

Algorithm (CMSA) [6], which projects a finish time of a

task’s workflow (as with PLLF) and uses a cost function to

assign a cost to the projected tardiness. CMSA is used with

two cost functions: a quadratic cost function and sigmoid

cost function.

All four studied scheduling algorithms were previously

shown to be sensitive to even small amounts of error in

modeled tasks [3]. Each scheduling algorithm exhibited a
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Fig. 1: Block diagram illustrating model-based framework

from [3].

decreased percent of workflow completed ahead of their

deadline with the smallest amount of error studied. For three

of the scheduling algorithms the decrease was substantial,

but relatively equal, regardless of the amount of error. For

the fourth scheduling algorithm, the decrease was less severe

overall and was propotionate to the amount of error. The

fourth algorithm was thus declared to be somewhat robust to

small amounts of error (less than 0.5%) but ultimately, like

all three others, was not robust for errors of 1% or greater.

The main result of [3] showed that incorporating feedback

of task completions from the actual platform to the model

platform (thereby preventing the model platform from mod-

eling a task completing before the actual task completed) dra-

matically increased robustness of all scheduling algorithms,

even for errors up to 90% (the highest amount studied) in the

modeled tasks’ requirement for amount of work, measured

in CPU cycles. Figure 2 illustrates why the model platform’s

underestimation of the requirements of a task (and thereby

modeling it as completed ahead of the actual task) can be so

detrimental.

In Figure 2 two tasks, t1 and t2, both have the same

amount of CPU cycles, C, required for their completion.

The upper chart illustrates the modeled platform’s view of

time in which task t1 begins executing first and when it

completed, t2 is scheduled to immediately begin executing.

However, assuming the modeled requirements of t1 were

an underestimate of the actual t1’s requirements, when the

model of t1 finishes and t2 is scheduled to begin, the actual

platform is not yet finished with t1 and thus must work

concurrently on t1 and t2 for some time until the actual t1
task does complete. This causes both t1 and t2 to have actual

completion times later than the modeled completion times
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Fig. 2: Illustrating the disconnect due to error, assuming

model task requirements underestimate actual task require-

ments and the model task finishes ahead of the actual task.

because of the unintentional over allocation of resources of

the machine executing the tasks. By extension, if another

task, say t3, were to be scheduled to begin after t2 finishes

this problem could compound because t2’s actual comple-

tion would be further delayed by the additional concurrent

execution with t3.

The previous example illustrates why allowing the model

platform to inform scheduling algorithms when tasks are

complete and machines are idle (or less loaded) in the pre-

sense of error (which may underestimate tasks’ true require-

ments) can be so detrimental. With feedback of every task’s

completion from the actual platform, the modeled completion

times of tasks may be safely ignored, in favor of relying

on task completion notifications from the actual platform.

However, complete feedback of all tasks’ completion may

be impractical in a live system, or may simply be cost-

prohibitive. This paper thus seeks to address the question

of whether partial feedback of tasks’ completion events may

be sufficient to achieve some level of robustness to model

error. In addition, based specifically on the knowledge of the

underestimating problem illustrated prior, Section 3 proposes

a specific approach to counteracting that problem by biasing

model task requirements. Results of both partial feedback and

biasing are presented in Section 4.

3. Biasing Model Requirements
As illustrated in Figure 2, if the model task requirements

are an underestimate of the actual task’s requirements then

scheduling algorithms may schedule future tasks to begin

executing unintentionally-concurrent with other tasks, de-

laying their completions. However, if the model is known

to have error which may underestimate task requirements,

then the model task requirements could simply be biased by

increasing its assumed (provided) value in order to reduce

(or ideally, eliminate) the probability that it underestimates

the actual task requirements. In this section three proposed

strategies for biasing task requirements are proposed.

The simplest form of biasing is to add a constant value to

each task requirement. If the maximum magnitude of error

for which a model task requirement may underestimate the

actual task requirement is known, then that value would be

the ideal bias constant value because it would eliminate the

model from ever underestimating task requirements while

minimizing the amount of overestimation. Practically, the

maximum error magnitude is unlikely to be known. However,

because it is the most ideal circumstance for biasing it is

included here and in simulated results of Section 4. The

equation for a simple constant bias value, C, addition to

each model task requirement, X̂ , to yield a biased model

task requirement, X̂b, is given in Eq. 1.

X̂b c←− X̂ + C (1)

A more realistic approach to biasing model task require-

ments is to assume a bound, not on the magnitude of error,

but on the fraction (or percentage) of error. It may be

possible, for example, through analysis of past executions of

tasks and workflows, to estimate the maximum percentage

of error for each model task requirement, X̂ , relative to the

actual task requirement, X . In other words it may be practical

to estimate that each model task requirement is within a factor

of P of the actual task requirement. Although that implies

X̂ may under- or over-estimate X by as much as P , in order

to prevent underestimating we can adjust X̂ as in Eq. 2,

hereafter referred to as the proportionate bias strategy.

X̂b p←− X̂/(1− P ) (2)

Although the proportionate bias strategy can effectively

eliminate underestimated model task requirements with a ju-

diciously chosen P which may require less knowledge about

the nature of the error than choosing a proper magnitude for

the constant bias strategy value, C, this relaxed requirement

comes at a price. Specifically, where the constant bias strat-

egy shifts the actual task requirement by C, the proportionate

bias strategy ‘stretches’ the distribution of X̂b and yields

a much larger range of overestimates. This is illustrated in

Figure 3 where the distribution of an example model value

is adjusted according to the constant and proportionate bias

strategies. For both adjustments, an ideal value of C and

P are shown, though practically an ideal value wouldn’t be

known and have to be estimated itself.

In order to achieve a less ‘stretched’ distribution for the

biased model task requirement than the proportionate bias

strategy while still maintaining the need only for an estimated

maximum percentage, not magnitude, of error, the third
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Fig. 3: Illustration of probabilities for a model task require-

ment with bound error as a fraction, P , of the actual task

requirement, X , and the effect of constant and proportionate

bias strategies transforming the distribution into one that

never underestimates the actual term, X , given an ideal value

for C and using the exact value of P (the bounded error)

in the proportionate bias strategy’s Eq. 2. Distribution is

assumed to be zero-mean and triangular.

proposed strategy, known as the simple bias strategy, is given

in Eq. 3. This third strategy fails to eliminate the possibil-

ity of underestimating though it can reduce its propability

substantially, but also prevents wildly overestimating task

requirements by decreasing the amount of ‘stretch’ in the

biased term’s distribution. Figure 4 illustrates the effect of the

simple bias strategy on the distribution of the biased term.

X̂b s←− X̂(1 + P ) (3)

4. Results
All results were collected using simulations performed

using simulator software developed for previous research [3]

and [6] and made publically available as open source [4].

Workflows and task requirements are the same as those in

[3] as are simulated error amounts which ranged from 0.1%
up to 50% taken from a uniform distribution. For all numeric
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Fig. 4: Illustration of probabilities for a model task require-

ment with bound error as a fraction, P , of the actual task

requirement, X , and the effect of the simple bias strategy

transforming the distribution, given an ideal value for P .

Distribution is assumed to be zero-mean and triangular.

results for performance the value presented is an averaged

value across ten simulations where the workflows and tasks

were identical but an error term applied to model tasks’

requirements were unique.

Figure 5 shows the performance of the four scheduling

algorithms and the significant performance impact that the

smallest amount of error tested has even when complete

feedback is available from the actual platform but the model

platform is still allowed to model tasks as completing early

due to underestimates of task requirements. (In other words,

the model platform only utilizes actual completion events

when they occur before modeled completion events.) In this

figure as with prior research, performance is depicted visually

as a histogram of the number of workflows completed

in intervals based on their normalized tardiness (the time

difference between the completion and the target deadline

normalized by amount of time available to execute the work-

flow, i.e., the difference of deadline and arrival time of the

workflow). In this representation a normalized tardiness of 0

represents a workflow that completed exactly at its deadline,

negative values represent workflows completed before their

deadline, and positive values those completed late.

The histogram bars of Figure 5 represent the performance

of scheduling algorithms under the ideal circumstance of

no error in the model (i.e., the model platform perfectly

predicts and represents the resources required by a task and

its execution completion time). These histogram bar results

demonstrate how CMSA with either of the two cost functions

(Sigmoid or Quadratic) completes the largest majorities of

workflows ahead of their deadline. The PLLF (proportional

least laxity first) algorithm completes workflows up to 4

times later (as a proportion of the ideal finish time) than

the deadline. The FCFS (first-come, first-serve) algorithm
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Fig. 5: Histogram of workflows by normalized tardiness comparing relative performance of scheduling algorithms with no

error (vertical bars) and with 0.1% error applied to the model of the workflow requirements (line graphs). Complete feedback

of task completion from the actual platform was used, but model platform was, due to underestimated task requirements,

allowed to model tasks as completing and, as a result, scheduling algorithms were allowed to schedule additional tasks to

the machine.

performs relatively poorly with workflows completing far

later than their deadline because the algorithm doesn’t use

deadline information in making its scheduling decisions.

The lines graphed in Figure 5 represent the same algo-

rithms’ histogram of workflow completion in the presence

of 0.1% error in the model platform. Due even to this

small amount of error, the problem of underestimating task

requirements and overallocating resources, and the nature of

this issue compounding results in all four scheduling algo-

rithms exhibiting substantially worse performance. This is

illustrated by the reduction to less than half as many workflow

completed before their deadlines (normalized tardinesses less

than 0) compared to the no-error case. It is also demonstrated

by the large increase of number of workflows completed with

a normalized tardiness of 10 or higher compared to the no-

error case.

Therefore, with any level of partial feedback available

none of these scheduling algorithms would perform better

than the case of complete feedback being available but still

allowing modeling of early task completions due to under-

estimated task requirements. However, the use of model task

requirement biasing showed promising results at restoring

performance of the algorithms by eliminating or reducing

the likelihood of the underestimating problem.

Figure 6 depicts the effect of the constant bias strategy

in the present of the highest (50%) error tested with no

feedback (the lines of the graph) against the no-error ideal

case (the bars of the graph). Key results are that for constant

bias strategy is of no help to the FCFS algorithm which

completes the majority of workflows with a normalized

tardiness of 10 or above. For the PLLF algorithm, nearly

as many workflows are no longer completed on time as for

FCFS but the maximum normalized tardiness of workflows

remains bounded at about 4. Both variants of CMSA seem to

similarly complete fewer overall workflows on time through

for the Quadratic cost function variant those workflows seem

to be completed mostly at 0.5 normalized tardiness and below

while for the Sigmoid cost function variant they are spread

from normalized tardinesses under 0.25 up to 10+. Although

not depicted, for smaller bounded errors, the constant bias

strategy does expectedly better, achieving results nearly as

good as the no-error ideal case for errors up to about 5%.

Neither the proportionate nor simple bias strategies achieve

acceptible results with errors as high as 50%. In Figures 7 and

8 the effect of proportionate and simple bias strategies are

shown, respectively, in the case of 5% error with no feedback

and ideal bias value P = 5%. For the proportionate bias

strategy, all four scheduling algorithms complete about one

third fewer workflows at a normalized tardiness of −0.25
and below although most of those workflows are completed

at normalized tardiness up to zero, which is still before

their deadline. CMSA with both cost functions completes a

few more workflows mildly late (normalized tardiness 0.25
and below), PLLF completes more workflows at normalized

tardinesses up to 1, and FCFS a few more at 4+. Overall,

the proportionate bias strategy fairly effectively makes all
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case with no error (vertical bars) and with 50% error applied to the model of the workflow requirements (line graphs) given

no feedback of task completion times and using the constant bias strategy with ideal constant to prevent underestimating

task requirements in even the worst instance of error.
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feedback of task completion times and using the simple bias strategy with ideal P = 5% to nearly prevent underestimating

task requirements in even the worst instance of error.

scheduling algorithms robust to errors up to 5% even without

any actual platform feedback available.
The simple bias strategy achieves an even better result than

the proportionate bias strategy for the 5% bounded error case,

showing fewer workflows shifting from being completed

early to completed late. In fact, the CMSA with Sigmoid cost

function appears to achieve nearly identical results despite

no feedback and up to 5% error when using the simple bias

strategy. It therefore appears that the small chance for simple

bias strategy to still underestimate task requirements is a

better tradeoff than the exagerrated overestimates produced

by the proportionate bias strategy.

5. Summary and Future Work
The case for why complete and reliable feedback of

scheduled task completions from an actual platform to the

model used for scheduling decision-making was found to

be necessary to achieve robust performance of scheduling

algorithms, as first described in previous work [3]. Further-

more we have demonstrated the use of partial feedback to be

insufficient at achieving similar robustness, but have proposed

the use of biasing the model parameters to prevent or reduce

the likelihood of the model underestimating task require-

ments thereby modeling tasks as completing earlier than their

actual completion. Three biasing strategies were proposed

with unique trade-offs of assumed knowledge about error

bounds and degree to which they decrease underestimation

and increase overestimation of task requirements. Through

simulated case studies we demonstrated that each biasing

strategy is useful for achieving robustness of scheduling

algorithm performance at different amounts of model error.

Future work may include combination of partial feedback

with biasing strategies. Additionally, other biasing strategies

or alternatives to biasing will be explored to increase robust-

ness or address cases where the amount of error in the model

is unknown.
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