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Abstract 

Deep learning has become an integral part of image classification and segmentation, especially 

with the use of convolutional neural networks (CNN) and their variants. Although 

computationally expensive and time-consuming, there are several promising applications to 

classify or segment SEM images, images of core and thin sections. But we have not really 

questioned the need for really deep networks in these applications? Can shallower networks be 

competitive in relation to deeper networks? Can a shallower network with a wider diversity of 

convolutional filters (breadth) do better than a deeper network? What image resolution and 

filter complexity do we need to achieve a high degree of accurate classification?  

In this thesis, I assess image classification using over 8000 SEM images acquired from 

22 different unconventional plays to answer the questions posed above and provide guidelines 

to select an optimal depth and breadth for image classification. I evaluate several different CNN 

architectures systematically by changing the breadth (the number of filters within each layer) 

or the depth of the network (the number of layers) to relate classification accuracy and the 

complexity of the CNN. I also test the performance of the different CNN’s against different 

image resolutions to determine if there is a specific field-of-view that is necessary to obtain 

satisfactory play classification.  

For all image resolutions considered, surprisingly, the simplest and shallowest one-

layer model performs remarkably well with even 22 different classes (plays) to identify. 

Despite the simplicity of the network, I achieve over 80% accuracy in play identification (with 

correspondingly high recall and precision). A moderate increase in depth to 2 layers advances 

the accuracy to beyond 90%, even with a modest number of filters. Deeper networks that lack 

filter width perform poorly, indicating the significance of filter diversity in each of the 

convolutional layers of a CNN.  The results from this study show that deeper networks are 

probably not necessary for image classification of SEM images/core or thin-section images. 
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The microstructural features within the samples probably necessitate a wider diversity of filters. 

Finally, although several studies have relied on transfer learning of ‘published’ or open-source 

CNNs for play identification and image segmentation, this study shows that the level of 

complexity required is far less, making training more efficient and reducing the likelihood of 

overfitting.  
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Chapter 1: Introduction and Literature Review 

1.1 Motivation and Problem Statement 

US-based shale plays are shown in Fig. 1.1, with the Haynesville, Barnett, Marcellus, 

Fayetteville, and Eagle Ford being a few of the most productive shale formations (Stephenson, 

2015). As of 2019, 75% of the natural gas produced in the US was sourced from shales, and it 

is estimated that by 2050, the vast majority of natural gas will be produced from shales (EIA, 

2021). Additionally, as of 2019, 63% of the crude oil produced in the US came from tight oil 

resources, including shale, sandstone, and carbonate rock formations (EIA, 2020). 

 

Fig. 1.1 - Shale plays in lower 48 states (EIA, 2016). 

In organic-rich shales, hydrocarbons are located in the organic pores, which are thought 

to be hydrophobic (Curtis et al., 2010). The amount, distribution, and thermal maturity of the 
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organic matter significantly impact rock properties such as shale geomechanical properties and 

porosity (Bocangel et al., 2013; Curtis et al., 2014).  

There consequently is a need to better understand the microstructure of shales including 

lithology, pore space, the interconnectivity of pores, grain size, and cementation (Prasad, 2001). 

Properties such as mineralogy, porosity, and pore size distribution are measured using 

laboratory-based experiments, including mercury injection capillary pressure (MICP) and 

nuclear magnetic resonance (NMR) (Prasad, 2001; Bocangel et al., 2013; Curtis et al., 2019; 

Dang et al., 2019), which can be time-consuming and destructive in the case of MICP 

(Misbahuddin, 2020).  

Computational approaches to determine rock properties have steadily been gaining 

popularity and are typically referred to as digital rock physics (DRP) (Andrä, 2012). DRP 

involves several steps beginning with image acquisition using X-Ray CT (Computed 

tomography), Micro-CT, Focused Ion Beam, and Scanning Electron Microscopy (FIB-SEM) 

(Curtis et al., 2010; Misbahuddin, 2020). SEM and FIB-SEM are popular for visualizing the 

nanoscale features in shales (Curtis et al., 2010; Misbahuddin, 2020). In the case of FIB-SEM, 

as shown in Fig. 1.2, focused ion beam milling provides for better sample imaging compared 

to other sample preparation methods such as hand polishing, broad ion beam (BIB) or broad 

Ar+ ion beam (Curtis et al., 2010). In the SEM, the electron gun accelerates electrons through 

a high voltage of several hundred to 40 kV, which are then collated into electron beams using 

electromagnetic lenses and scanning coils that are rasterized to probe the sample. The resulting 

signals, which are secondary electrons (SE), backscattered electrons (BSE), or X-rays can be 

used to image the sample (Curtis et al., 2010). 
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Fig. 1.2 - Imaging the shale microstructure using a dual-beam FIB/SEM system. (a) The ion beam (I-beam) is arranged 
52 degrees to the electron beam (e-beam). I-beam can gently mill the surface to form a cross-section that can be used 

to image microstructure, (b) the BSE image of a cross-sectioned shale taken by the e-beam, which is arranged at a 38° 

angle to the normal of the l face (Curtis et al. 2010). 

Both backscattered electron and secondary electron images are produced by assigning 

grayscale values to represent signal intensity measurements (Camp et al., 2013). Secondary 

electrons (SE) are low voltage electrons arising from the inelastic interactions between the 

primary electron beam and the sample (Nanakoudis, 2019). Secondary electron images are 

useful to study the topography of the sample surface, including rock fabric, texture, and mineral, 

pore, and microfossil morphology (Camp et al., 2013, Nanakoudis, 2019). These images also 

make it possible to evaluate near-surface negative aberrations such as pores and cracks from 

polished or ion-milled surfaces (Camp et al., 2013). The negative aberrations are represented 

as low intensity (dark) regions on the image (Camp et al., 2013).  

Backscattered electrons (BSE) are electrons returned following scattering from the 

sample surface (Nanakoudis, 2019) and are sensitive to differences in atomic numbers. This 

sensitivity to atomic numbers is exploited for imaging. Generally, the higher the atomic number 

of a specific material, the lighter the color on the image (Curtis et al. 2010, Nanakoudis, 2019) 

and vice-versa.  
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X-ray signals are also generated from the interaction of the electron beam and the 

sample. These can be detected and measured using an energy-dispersive X-ray analyzer (EDX) 

system (Clelland and Fens, 1991). By detecting the X-ray spectrum, comparing it with a library 

of phases, and combining it with the BSE and SE signals, we can create false-colored digital 

phase and texture maps to characterize the mineralogy and lithology of the sample (Curtis et 

al. 2010, Lemmens et al., 2011, Camp et al., 2013). 

It is also possible to construct 3D images of the rock by using an ion beam to gently 

mill away a 10-nm thick slice of the cross-sectional face. Then, an electron beam can be used 

to take a new SEM image. By repeating this procedure 300-600 times, the set of contiguous 

images are used to reconstruct a 3D model, as shown in Fig. 1.3.  

 

Fig. 1.3 - A set of continuous 2D SEM images showing the microstructure of the shale cross-section can be used to 
create a 3D model. The left figure is a set of continuous 2D SEM images, the right figure is an example of a 3D model 

reconstructed from 2D SEM images (Curtis et al., 2010). 

The second step of DRP is image processing, including noise reduction, smoothing, 

and segmentation (Andrä, 2012). Segmentation allows images to be divided into continuous, 

disjoint, and uniform regions (Wu and Misra, 2019) to describe and locate the various 

microstructural constituents, as well as kerogen, organic matter, and pores in shale samples 

(Wu and Misra, 2019). In addition, images can also be used to calculate the porosity of the 

samples (Misbahuddin, 2020). Traditional manual segmentation by trained personnel has often 
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been the limiting factor for widespread adoption of DRP given that it is inordinately time-

consuming, tedious, error-prone, and subjective, especially when segmenting a wide field-of-

view and/or several independent images (Wu and Misra, 2019).  

The resulting models can then be used for flow modeling (Deglint et al., 2019) or 

estimating geomechanical properties (Saad et al., 2018). While digital rock physics has been 

growing in significance, it remains computationally prohibitive and limited by the physical 

assumptions of the flow modeling. Nevertheless, huge strides in computational power and its 

democratization have enabled machine learning to significantly accelerate this process (Xu et 

al., 2019; Misbahuddin, 2020).  

Image classification is another task that has also benefited tremendously from advances 

in machine learning, specifically in the area of deep learning using convolutional neural 

networks (CNN) (Le Cun et al., 1999). Image classification, when done in the context of SEM 

images or core images or thin sections, allows a trained algorithm to recognize the source of a 

specific image. Successful identification of the source formation indicates microstructural 

uniqueness. On the other hand, misclassification of one play for another indicates 

microstructural similarities, which probably also imply petrophysical similarities. These 

similarities can then be exploited in completion and well design by adopting successful 

practices from a previous play. My thesis focuses on image classification, but specifically, I 

address the need for appropriate levels of CNN complexity rather than assuming a one-size-

fits-all approach that simply relies on a highly complex, deep network for the classification. 

Before I discuss my workflow, I provide the reader an introduction to some basic concepts in 

machine learning so that the results of my work in Chapters 2 and 3 are interpretable.  
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1.2 Machine Learning 

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers to learn 

without explicit programming and specifically to analyze patterns in large amounts of data with 

less human intervention. The data can be very complex, derived from a diverse set of sources, 

and can take many forms, including but not limited to images, video frames, numbers, and 

words (Advani, 2020).  

Machine learning can be divided into several categories based on the learning method. 

These are supervised learning, unsupervised learning, and reinforcement learning. I provide a 

brief overview of each of the methods in the next few sections. 

 

1.3 Supervised Learning 

Supervised learning methods are used to derive relationships between a given set of inputs and 

output and can be divided into two types: classification and regression. Regression deals with 

continuous output variables, while classification deals with discrete output labels (Nasteski, 

2017) as shown in Fig. 1.4. 

 

Fig. 1.4 - The difference between regression task and classification task in supervised learning. On the left, the 
classification version of supervised learning separates the inputs into given categories. On the right, the regression 

version of supervised learning assigns inputs to continuous numbers (Soni, 2018). 
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For regression tasks, commonly used algorithms include linear regression, non-

parametric regression, support vector machines (SVM), nearest neighbors, Gaussian process 

regression, decision trees, random forests, and neural networks. For classification tasks, 

commonly used algorithms include K-nearest neighbor classification, support vector machines 

(SVM), nearest neighbors, Gaussian process classification, decision trees, random forest, 

neural network, and convolutional neural network (Scikit-Learn, n.d). 

 

1.4 Unsupervised Learning 

Unsupervised learning is another major category of machine learning that attempts to find some 

natural structure in a dataset (Soni, 2018) as shown in Fig. 1.5. 

 

Fig. 1.5 - The difference between supervised learning and unsupervised learning. The figure above is a supervised 
learning process; it requires input data and output labels to train the model. The following figure is an unsupervised 

learning process, no output label is required to train the model (Ma, 2018). 

The common tasks for unsupervised learning including clustering, representation 

learning, and density estimation (Soni, 2018). Clustering is often considered the most 
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significant task and is used for discovering the similarities between data points and grouping 

data points based on their similarities (Fig. 1.6). There is no prescribed grouping standard for 

clustering. Users can decide the number of clusters required and the degree of similarity 

between each data point to be grouped. 

 

Fig. 1.6 - Clustering tasks group the data points to several group based on the similarities of the data shown in the 
right figure (Priy, 2020). 

Popular cluster algorithms for unsupervised learning are DBScan, K-Means, 

hierarchical clustering, Gaussian mixture models, and others (Scikit-Learn, n.d). One of the 

more common uses of clustering is in reservoir characterization to identify rocktypes from core 

data (Gupta et al., 2018) or electrofacies from well log data (Torghabeh et al., 2014). Because 

the methods used in this thesis rely on convolutional neural networks, I begin with a brief 

introduction to neural nets. It is important to note that neural networks can be used in both 

unsupervised as well as in supervised mode, but for the rest of this thesis, I focus on supervised 

learning for image classification.  

 

1.5 Neural Network 

Neural networks are designed to imitate networks of neurons in the human brain. In general, 

the level of complexity does not approach that of the human brain with an excess of 100 billion 

neurons (Gurney et al., 1997). 
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Neurons in the brain communicate with each other using electrical signals. Every 

neuron has three parts: dendrites, cell body, and axon as shown in Fig. 1.7. Dendrites have a 

tree-like structure and transport multiple electric signals to the cell body. The cell body 

processes these signals by using a weighted sum and some form of thresholding, following 

which the result is transferred to the axon and subsequently passed on to dendrites belong to 

other cells. The process repeats for the downstream neurons, and the whole collection of 

neurons is termed a neural network (Hagan et al., 2014). 

. 

Fig. 1.7 - Structure of two connected neurons. Each neuron has three parts: dendrites, cell body, and axon. Electric 
signals are input from dendrites, processed in the cell body, output from axons, and send from synapse to the next 

neuron (Hagan et al., 2014). 

The first artificial neuron was introduced in 1943 (McCulloch and Pitts, 1943) that 

computes the weighted sum of all input signals and compares the weighted sum to a given 

threshold. If the weighted sum is larger or equal to the given threshold, the output is 1, 

otherwise, the output is 0. Rosenblatt et al. (1958) introduce a computational version of the 

artificial neuron with four parts: the input layer, the weight terms for each of the inputs and 

bias, the summation function, and the activation function as shown in Fig. 1.8. During model 

training, the weights associated with each input are initialized randomly, and after each 
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iteration, the error between the network prediction and true measurement is computed. This 

provides a means to adjust the weights to minimize the error in predictions (Salhi, 2020). The 

perceptron can be considered as the basis of all neural networks.  

 

Fig. 1.8 - The architecture of the Perceptron Classifier. 1, X1 to Xm represent values from the input layer. W0 to Wm 
represent the weight carried by each input value. The weighted sum will be computed and passed to an activation 

function. An error will then be calculated, and the weight carried by each input will be improved to minimize the error. 
(Salhi, 2020). 

With access to more computational power, artificial neural networks (ANNs) have 

grown to accommodate multiple layers with several hidden layers, each of which is composed 

of multiple neuron groups. Each neuron in this layer is connected to the neuron in the next 

layer to form a network as shown in Fig. 1.9. While the network is being trained on some data, 

the weights associated with each connection are tuned.  

 

Fig. 1.9 - Modern artificial neural network (ANN) structure. Neurons are divided into several layers. Neurons in each 
layer are connected to neurons in the next layer (Sorokina, 2017). 
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1.6 Convolutional Neural Network for Image Classifications 

Given that ANN architecture consists of several hidden layers potentially, the number of 

tunable parameters can be large, requiring access to vast amounts of computational power for 

model training. This is especially so for image classification, where each pixel serves as an 

input to the network. The high-resolution color images that are common these days can be 

associated with millions of input neurons. For example: a 2048 x 4096 image in RGB color 

will be associated with 2048 x 4096 x 3 channels = 25165824 input neurons. A classical neural 

network with over 25 million inputs would be computationally prohibitive and unwieldy.   

Additionally, if the input were provided to an ANN pixel-by-pixel, the network will be 

sensitive to the location of a specific object within the image, rather than the larger scale 

attributes of the object (LeCun et al., 1999).  

LeNet-5 is considered to be the first version of a Convolutional Neural Networks 

(CNN) specifically designed to overcome the problems with image classification using ANNs 

(LeCun et al., 1999). LeNet-5 can be seen as the beginning of the idea of LeNet-5 comes from 

the visual system of cats (Hubel and Weisel, 1962). Their study shows that the visual cortex is 

composed of a series of complex arrangements of cells that are sensitive to small sub-regions 

of the visual field, called the receptive field. These receptive fields are arranged to cover the 

entire visual field. The cells are of two types: general cells that respond to specific edge patterns 

in the receptive field, and complex cells that have larger receptive fields for identifying larger 

patterns. (Hubel and Weisel, 1962). 

LeNet-5 divides an input image into several parts called receptive fields. Filters extract 

low-level features such as edges or curves in the receptive fields, and then transfer the captured 

low-level features to the next few layers to capture higher-level features (LeCun et al., 1999). 

I will discuss filter architecture in a later section.  
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Fig. 1.10 - The architecture of the LeNet-5 proposed by LeCun. It has various types of layers, including convolution 
layer, subsampling (pooling layer), fully connected layer (LeCun et al., 1999). 

Fig. 1.10 shows the architecture of LeNet-5 with an input layer, convolution layer, 

pooling layer, fully connected layer, and output layer. Each layer has a different purpose 

discussed in the following sections. 

 

1.6.1 Convolution 

An image is composed of a matrix of pixels associated with numbers as shown in Fig 1.11.  

 

Fig 1.11 - An image composed of colors and objects is nothing but a matrix of pixels (Sorokina, 2017). 

In order to recognize objects rather than individual pixels, CNNs use filters. The matrix 

shown in Fig. 1.12 is an example of a filter designed to extract right-hand curves in a specific 

input image. 
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Fig 1.12 - The filter on the right is a matrix designed to extract right hand curves. (Stureborg, 2019). 

 

Fig. 1.13 - The input image example contains right-handed curves (Stureborg, 2019) 

Let us consider the outline of a lion in Fig. 1.13. If the filter shown in Fig. 1.12 is 

convolved with the image of the lion, the resulting set of numbers in a matrix form contains 

information about the location and existence of right-handed curves in the image.  

 

Fig. 1.14 – Digit matrix of the filter area (receptive field) (Stureborg, 2019). 
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Consider the receptive field in Fig. 1.14 which is the portion of the image being 

‘viewed’ by the filter. If we chose the filter shown in Fig. 1.12 and perform an element-by-

element multiplication of the filter and the receptive field followed by a summation of the result 

as shown in Fig. 1.15, we obtain a large number indicating the presence of a feature that the 

filter is designed to detect which in this case, is a right-hand curve. A low value, on the other 

hand, indicates the absence of a specific feature (Stureborg, 2019). In other words, the higher 

the resulting value, the filter more closely matches the receptive field. 

 

Fig. 1.15 - Element-by-element multiplication of the filter and receptive field results in a large sum, indicating the 
presence of a right-handed curve in the receptive field (Stureborg, 2019). 

The filter is moved to a new location by a pre-specified number of pixels, and the 

process is repeated. The end result is a new matrix called a feature map, as shown in Fig. 1.16. 

It is referred to as a ‘map’ because it contains information locating specific features in the 

image (Stureborg, 2019). This process is more effective than artificial neural networks (LeCun, 

1999) and provides an output feature map that is of smaller dimensions than the input image. 

 

Fig. 1.16 - The left-side matrix represents the input image. The blue 3x3 matrix represents the filter. The right-side 
matrix represents the feature map (Stureborg, 2019). 
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The processing of the image through a filter is called convolution. Generally, in one 

convolution step, several randomly initialized filters are applied to the image to create multiple 

feature maps. The resulting feature maps provide information on the existence and location of 

specific features in the image.  

 

Fig. 1.17 - Visualization of a convolution step with four filters applied to the input image resulting in four feature maps. 
The unique features captured by each filter are displayed on each feature map (Jordan, 2017). 

Another example of convolution is shown in Fig. 1.17. Four filters are applied to the 

original input image. Each filter has a different digit matrix seeking different features (Jordan, 

2017), such as horizontal or vertical features of the original image, which is a yellow square. 

The convolution of each filter with the yellow square shows the location for each of the edges. 

Processing this information in a subsequent step will allow the CNN to detect the object as a 

square.  
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1.6.2 Pooling 

The next step is pooling and essentially summarizes the patterns in each feature map (Choulwar, 

2019). There are several types of pooling methods, of which the two most common ones are 

maximum and average pooling. Fig. 1.18 is an example of maximum and average pooling.  

 

Fig. 1.18 - Max pooling and average pooling of an input feature map (Choulwar, 2019). 

The max pooling method extracts the maximum value within a specified region, 

generally a square, of the feature map (Choulwar, 2019). Using max pooling, a 2x2 window 

applied to the matrix in Fig. 1.18 results in a smaller matrix containing the numbers 9, 5, 6, 

and 8. Average pooling works on a similar principle but instead extracts the average value 

within a chosen n-by-n window (Choulwar, 2019). The matrix created by pooling methods are 

also treated like pixels and can have non-integer values. In the right panel of Fig. 2.18, the 

purple square corresponds to a 2x2 matrix of a feature map with an average value of 

(4+9+5+6)/4 = 6.0. The new feature map then only stores the value of 6.0.  

Pooling reduces the dimensions of the feature maps while also retaining significant 

features and reducing noise (Choulwar, 2019). This has the advantage of reducing 

computational power requirements with fewer learning parameters. In modern CNN 

architecture, it is very common to have a pooling layer after each convolution layer. Among 

various pooling methods, the maximum pooling method is the most commonly used 

(Brownlee, 2019). The purpose is to amplify the most important features. 
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1.6.3 Depth 

Depth refers to the number of layers of the CNN (Simonyan and Zisserman, 2014). The types 

of layers include convolutional layers, pooling layers, and fully connected layers. A deeper 

CNN is associated with many more layers. Table. 1.1 is a summary of the well-known 

convolutional neural network architectures over the years showing rapid increases in the depth 

of CNNs used for image classification. (Chollet et al., 2017).  

Architecture 
Name 

Year Total Number of 
Layers 

Number of 
Convolutional Layers 

Top-5 error on 
ImageNet 

LeNet 1998 5 2 NA 

AlexNet 2012 8 5 17.0 (Krizhevsky et 
al., 2012) 

VGG-16 2014 16 13 9.3 (Simonyan and 
Zisserman, 2014; Fu 

and Rui, 2017) 
GoogLeNet 2014 22 21 9.0 (Szegedy et al., 

2014; Fu and Rui, 
2017) 

ResNet-50 2015 50 49 6.7 (He et al., 2015; 
Fu and Rui, 2017) 

ResNet-152 2015 152 151 3.6 (He et al., 2015; 
Fu and Rui, 2017) 

Xception 2017 126 32 5.5 (Chollet et al., 
2017) 

 
Table. 1.1 - Convolutional neural networks are getting deeper and deeper, stabilizing above 100 layers. The top-5 error 
is calculated by the proportion of the test images for which the correct label ranks top 5 of all labels (Fu and Rui, 2017) 

As shown in Table. 1.1, LeNet-5 has 5 layers in total, 2 of which are convolutional 

layers, and the rest are pooling layers and fully connected layers (LeCun, 1999). In 2012, 

AlexNet (Krizhevsky et al., 2012) won the ImageNet image classification competition far 

surpassing second place and was the first implementation of a CNN architecture to a large-
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scale image dataset. It has 8 layers in total, 5 of which are convolutional layers, and the rest are 

pooling layers, fully connected layers, and dropout layers. It uses multiple GPUs for model 

training, which greatly improves computational power. 

The emergence of AlexNet underscored the effectiveness of CNNs for image 

classification. VGG-16 was launched in 2014, with a total of 16 layers, 13 of which are 

convolutional layers (Simonyan and Zisserman, 2014; Fu and Rui, 2017). Simultaneously, 

GoogLeNet was introduced with 22 layers, 21 of which are convolutional layers (Szegedy et 

al., 2014; Fu and Rui, 2017). It is clear to see that VGG-16 and GoogLeNet are deeper CNNs 

compared to AlexNet. Subsequently, we have seen two iterations of ResNet (He et al., 2015; 

Fu and Rui, 2017), one with 50 layers and the second version with 152 layers. Since then, the 

structure of the convolutional neural network now routinely exceeds 100 layers. 

While it may be possible to achieve higher accuracies with deeper CNNs, this is not 

always the case. He et al. (2015) report that simply increasing the number of layers in ResNet 

can actually compromise test error because the network becomes more difficult to train, as 

shown in Fig. 1.19. 

 

Fig. 1.19 - This figure shows the performance of two convolutional neural networks that have similar structures. The 
first network (green line) has 20 layers. The second network (red line) has 56 layers. Compared with the 56-layer 
convolutional neural network, the 20-layer network has lower training and testing errors, which shows that the 

accuracy will not necessarily improve as the model gets deeper (He et al., 2015) 
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As the depth of the CNN increases, training and the associated computational cost 

become more expensive. These requirements are also exacerbated by the need to provide more 

training data, and in general, the depth of the network should be dictated by the availability of 

training data (Brownlee, 2018). 

 

1.6.4 Breadth 

The number of filters in each convolutional layer within a CNN is called the breadth of the 

network, sometimes also referred to as the width (Krizhevsky et al., 2012; Garg et al., 2019). 

A diversity of filters enables the network to extract more features embedded in the image, 

hopefully aiding classification. AlexNet (Krizhevsky et al., 2012) is an example of exploiting 

filter breadth using several filters. Krizhevsky et al. (2012) implemented a total of 96 filters in 

the first convolutional layer. Cross-GPU parallelization speed up the training process by 

training half of the filters on the first GPU and training the other half on the second GPU 

(Khandelwal, 2020). Fig. 1.20 shows 96 filters in the first convolutional layer of the AlexNet 

model trained on ImageNet. The various shadings associated with each of the filters correspond 

to some specific shape/feature to be identified by each of the filters. 

Fig. 1.20 shows a few grayscale filters while a few are associated with colored patterns. 

However, there are a few filters with similar shapes and textures, potentially indicating their 

similarity in terms of feature extraction (Garg et al., 2019).  
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Fig. 1.20 - 96 filters learned by the first convolutional layer of AlexNet trained on the ImageNet dataset. Cross-GPUs 
parallelization was used for model training. The top 48 filters are learned by the first GPU, the bottom 48 filters are 
learned by the second GPU (Krizhevsky et al., 2012). The yellow and green boxes show filters that are extracting 
specific patterns. However, the boxes also show the occurrence of duplicate filters, indicating that the number of 

filters in the first convolutional layer can be reduced 

Repetitive use of the same filter within a layer may increase the number of training 

parameters but may not contribute to increases in accuracy, necessitating optimization of the 

network width (Garg et al., 2019). As shown in Table. 1.2, although the depth of subsequent 

versions of CNNs continually increases, the first layer is associated with fewer filters.  

Architecture 

Name 

Year Total Number of 

Layers 

Number of Filters in the 

First Convolutional Layer 

LeNet-5 1998 5 6 

AlexNet 2012 8 96 

VGG-16 2014 16 64 

GoogLeNet 2014 22 64 

ResNet-50 2015 50 64 

ResNet-152 2015 152 64 

Xception 2017 126 32 

Table. 1.2 - Comparison of the recent architecture of convolutional neural networks (Fu and Rui, 2017) 
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In 2014, the VGG-16 network trained on the same dataset as AlexNet reduced the 

number of filters in the first convolutional layer from 96 to 64. GoogLeNet in 2014 also used 

64 filters instead of 96 filters (Fu and Rui, 2017). A year later, ResNet-50 and ResNet-152 also 

only employed 64 filters on the first convolutional layer (He et al., 2015; Fu and Rui, 2017). 

Xception in 2017 further reduced the number of filters in the first convolutional layer to 32 

(Chollet, 2017). There clearly is a relationship between depth and breadth of the network, and 

this thesis focuses on gaining some insights into this relationship when applied to SEM image 

classification.  

 

1.6.5 Activation Functions 

As mentioned in Fig 1.8, before the results are fed to an activation function, the artificial neuron 

calculates the weighted sum of the inputs and the bias. The simplified equation (Moawad, 2019) 

of the artificial neuron without the activation function is:  

Output = ∑(weight ∗ input) + bias …………… (1) 

By using a linear function, the model will be capable of demarcating linearly separable 

classes or labels as seen in Fig. 1.21. However, linearly separable classes are the exception and 

not the norm, with examples such as in Fig. 1.22 being more prevalent. 
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Fig. 1.21 - A dataset successfully separated by using a linear function y = ax+b. (Kanani, 2019) 

 
Fig. 1.22 - A non-linear function is required to separate the Non-linearly separable classes (Kanani, 2019) 

A curvilinear decision boundary such as in Fig. 1.22 can be approximated by successive 

linear boundaries, which would increase model complexity substantially. A more practical 

option is to use nonlinear functions (Kanani, 2019). Activation functions convert a linear 

function into a nonlinear function, and there are several variants of activation functions as 

shown in Fig. 1.23.  
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Fig. 1.23 - Popular activation functions and associated graphs that can convert a linear function to non-linear 
(Moawad, 2019). 

Popular activation functions include the sigmoid and ReLU (Rectified Linear Units) 

functions. While the sigmoid function is commonly used in regression tasks (Yang, 2020), the 

ReLU is more common for classification using CNNs (Kanani, 2019) and has been shown to 

be better than the sigmoid for classification tasks (Bhumbra, 2018). The equation of the ReLU 

function shown in Fig 1.23 is: 

f(z) = 	max	(0, z) …………… (2) 
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The ReLU function is much simpler and minimizes the effect of vanishing gradients 

while tuning weights in a network during training where vanishing gradients are a problem 

(Bhumbra, 2018).  

 

1.6.6 Batch Size, Iteration, and Epoch 

Batch size selection is an important aspect of CNN training (Radiuk, 2017). If the dataset is 

relatively small, the entire dataset can be used in one batch to train the CNN. However, in most 

cases, with large datasets, memory limitations constrain the number of images that the CNN 

can process at once. The dataset is therefore split into batches that are fed sequentially, with 

model parameters updated after each batch, otherwise known as an iteration. Each batch is 

created randomly from the entire dataset. 

Although the input images in each batch are randomly selected to minimize bias, the 

size of the batch can still influence model performance. If the batch size is too small, each batch 

may not have a good representation of the entire dataset, which may lead to over-fitting. An 

example is shown in Fig. 1.24, where the training curve with a batch size of 16 fluctuates 

greatly with poor model performance while a batch size of 1024 results in higher accuracy 

(Radiuk, 2017). On the other hand, if the batch size is too large, training consumes substantial 

memory resources, and with a larger number of images to process, model training becomes 

slower. Table. 1.3 shows the time taken to train a model with a batch size of 1024 compared 

to a smaller batch size (Radiuk, 2017). Overall, the batch size greatly affects training efficiency 

and accuracy and needs to be optimally selected. 
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Fig. 1.24 - The x-axis is the number of iterations, and the y-axis is the accuracy. The red line represents the accuracy 
of model training with a batch size of 16. The plum red line represents the accuracy of model training with a batch size 

of 1024. The red line with a batch size of 16 shows that the training curve fluctuates, and the overall model 
performance is poor (Radiuk, 2017). 

 

Table. 1.3 – Training time of models with different batch sizes. |B| represents the batch size, the MNIST, and the 
CIFAR-10 are two image data sets for model training. Training with a batch size of 1024 takes 14.23 hours and 27.47 

hours, respectively on two datasets. In comparison with smaller batch sizes, this is a much longer training time 
(Radiuk, 2017). 

One epoch is complete when the CNN views the entire dataset (Sharma, 2017). In the 

training process, the entire dataset is fed several times to the network over several epochs. The 

batches are re-selected randomly for each epoch. A rule of thumb is to terminate the training 

process after test accuracy plateaus. 
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1.6.7 Accuracy and Loss 

Accuracy and loss function are two methods for evaluating the performance of convolutional 

neural networks. For image classification tasks, accuracy refers to the percentage of images 

correctly classified. The loss function is more complex and is of several types, such as binary 

cross-entropy, categorical cross-entropy, and sparse categorical cross-entropy (Keras, n.d). 

Binary cross-entropy is only used when classifying two categories. If the dataset has multiple 

categories, categorical cross-entropy is typically used, assuming that the labels are in a one-hot 

format. This work uses categorical cross-entropy for labeling multiple formations. The 

equation of categorical cross-entropy is: 

CCE = 	− !
"
∑ log	(p#[y#])"
#$! …………… (3) (Zurück, 2020) 

In the equation, CCE represents categorical cross-entropy. N represents the number of 

categories. y represents a binary indicator, p represents the predicted probability of observation 

in a category (Zurück, 2020).  

By using this equation, the confidence level of the prediction made by the network can 

be calculated. A low loss means that the prediction is correct, and the network is confident in 

the prediction. High loss may mean that even if the prediction is correct, the network has low 

confidence in the prediction. The CNN calculates the loss after each epoch and adjusts its 

parameters to reduce the loss in the next epoch. 

 

1.6.8 Confusion Matrix 

Confusion matrices provide another metric to evaluate model performance for several 

categorical labels. Fig. 1.25 is an example of a confusion matrix for a two-category dataset. 

The 'actual value' at the left of the matrix represents the true labels ("negative" and "positive"). 

The 'predicted value' on the top of the matrix represents the label predicted by the model. If the 
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model predicts a "positive" label as "positive", the prediction is correct and a true positive. If 

the model predicts that a "negative" label is "negative", the result is a true negative (Radecic, 

2019).  

On the contrary, if the "positive" label is predicted as "negative" by the model, we 

obtain a false negative. If the "negative" label is predicted as "positive" by the model, it is 

denoted as a false positive (Radecic, 2019).  

 

Fig. 1.25 - Confusion matrix of a model that has two outcomes 'negative' and ’positive’. True negative (TN) means the 
"negative" label is predicted as "negative". True positive (TP) means the "positive" label is predicted as "positive." 
False-positive (FP) means the "negative" label is predicted as "positive." False-negative (FN) means the "positive" 

label is predicted as "negative." (Radecic, 2019) 

The accuracy can also be calculated by using the information on the confusion matrix. 

The formula is as follows: 

Accuracy = 	 !"#!$
!"#%"#%$#!$

…………… (4) 

The formula shows that the accuracy is equal to the sum of true positive and true 

negative divided by the number of all predicted labels (the sum of true positive, true negative, 

false positive, and false negative) (Radecic, 2019). 

Recall = 	 !"
!"#%$

………………………… (5) 
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Recall refers to the percentage of successfully detected cases, which can be calculated 

using the number of the true positive cases divided by the sum of true positive and false 

negative cases shown in the above formula (Radecic, 2019). 

The confusion matrix can also be used to evaluate the performance of models with 

multiple categories as shown in Fig. 1.26.  

 

Fig. 1.26 - Confusion matrix with multiple classes (Krüger, 2016). 

The x-axis corresponds to the predicted labels, and the y-axis corresponds to the true 

labels. If the model predicts category Ck as Ck, it is a true positive, and the off-diagonal 

elements refer to incorrectly predicted class labels.  

 

1.7 Convolutional Neural Network Visualization 

This section provides insights into the inner workings of a CNN in terms of visualization of 

convolution filters, feature maps, and heatmaps. 
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1.7.1 Convolutional Filter 

I discussed convolution earlier, but in this section, I will be showing convolutional filters used 

for object detection. Filters can be visualized as shown in Fig 1.27, for each of the 

convolutional layers. (Yosinski et al., 2015). 

 

 

Fig. 1.27 - Example of convolutional filters in each convolutional layer of a trained 8-layer convolutional neural 
network. Shallow layers can capture small-scale features such as edges, while deeper layers can capture large-scale 

features (Yosinski, 2015). 
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It is quite apparent that in Layer 8, we can begin to see the outlines of the original image 

which will aid in image classification. In preceding filters in Layers 6 and 7, we can observe a 

few large-scale features, but these are not necessarily interpretable by humans. In even earlier 

layers, the filters are simply comprised of curves or edges, which are considered to be low-

level features.  

 

1.7.2 Feature Map 

A feature map is an output obtained after convolution with a filter. Example feature maps 

extracted from different layers of a training network are shown in Fig. 1.29, Fig. 1.30, and Fig. 

1.31 when processed on the image in Fig. 1.28. 

 

Fig. 1.28 - The image input into a trained 16-layer convolutional neural network (Brownlee, 2019). 



  31 

 

Fig. 1.29 - Example feature maps output from the first convolutional layer of a trained 16-layer convolutional neural 
network (Brownlee, 2019). 

 

Fig. 1.30 - Example feature maps output from the third convolutional layer of a trained 16-layer convolutional neural 
network (Brownlee, 2019). 
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Fig. 1.31 - Example feature maps output from the fifth convolutional layer of a trained 16-layer convolutional neural 
network (Brownlee, 2019). 

In shallower layers, such as in the first (Fig 1.29) and third (Fig. 1.30) layer, low-level 

features such as shades and edges are being extracted by filters in the corresponding layers. 

The feature maps extracted from Layer 5 as shown in Fig. 1.31, on the other hand, are more 

abstract and non-intuitive to interpret but have been shown to contain higher-level information 

such as the location of actual objects (Brownlee, 2019). 

 

1.7.3 Heatmap 

Heatmaps are generated during the processing of an image and are a composite 

rendering of the critical features chosen by the network to aid in classification. The method I 

use to generate heatmaps from my trained network is the Gradient-weighted Class Activation 

Mapping (Grad-CAM), which does not necessitate rebuilding the network architecture or re-

training the network (Selvaraju et al., 2019). To output Grad-CAM heatmaps for classification 
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tasks, the gradient of a category is taken relative to the last convolutional layer to produce a 

rough weighted location map with essential features highlighted (Selvaraju et al., 2019). The 

workflow of output a Grad-CAM heatmap is shown in Fig.1.32 

 

Fig. 1.32 - Workflow to output a Grad-CAM heatmap (Selvaraju et al, 2016). 

As shown in Fig. 1.32, an image consisting of a cat and a dog input to a trained CNN 

gives a prediction as a tiger cat. The prediction and the original image will then be forward 

propagated through the trained network to get the raw prediction score before the softmax 

function. After that, all the signals will be backpropagated to get the feature maps in the target 

convolutional layer with the gradient of all classes set to 0 except the ‘tiger cat’ class set to 1 

(Selvaraju et al., 2016). Each feature map will then be weighted and combined into a single 

location map with essential features highlighted, referred to as a ‘heatmap’ (Selvaraju et al., 

2016). Two examples of the heatmap are shown in Fig. 1.33. 
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Fig. 1.33 - (a, c) The original image with a dog and a cat input to the pre-trained ResNet . (b, d) Grad-CAM heatmaps of 
the input image. (b) The pre-trained ResNet recognizes the cat, and the corresponding heat map highlights the cat. (d) 

The pre-trained ResNet recognizes the dog, and the corresponding heat map highlights the dog (Selvaraju, 2019). 

As shown in Fig. 1.33, the heatmaps are colored from blue to red, corresponding to the 

importance of each feature. The hotter colors (red and yellow) reveal the most critical features 

of a given category, while the colder colors (blue) indicate less essential features (Selvaraju, 

2019). An image shown in Fig. 1.33(a) and Fig. 1.33(c) is input to the trained network, and the 

network recognizes the cat and the important features necessary for the identification are shown 

in Fig. 1.33(b), while the dog in the image is regarded as the less crucial feature and covered 

in blue. In contrast, while identifying the dog in Fig. 1.33(d), features related to the dog are 

found to be more important. 

This thesis focuses on image classification, so although CNNs are well-suited for image 

segmentation (Ronnenberger, 2015; Badrinarayanan, 2016), that specific application is outside 
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the scope of this work, and there is a limited discussion of image segmentation beyond the 

literature review in the next section. 

 

1.8 Application of Convolutional Neural Network in Petrographic Data  

Deep learning, especially convolutional neural networks (CNN) and its variants, have shown 

great promise for image classification, segmentation, identification, and evaluation tasks 

(Krizhevsky et al., 2012; Ronneberger et al., 2015). Their applicability has been extended to 

the study of scanning electron microscopy (SEM) images, core images, and thin sections over 

the past few years (Wang et al., 2014; Xu et al., 2019). 

Knaup (2019) used CNNs to classify SEM images that belong to 18 unconventional 

formations using transfer learning (Pan and Yang, 2009) of an Alexnet CNN (Krizhevsky et 

al., 2012). Her dataset consists of over 28000 SEM images. A deeper 22-layer model, 

Inception-3 (Szegedy et al., 2015), was also tested but was seen to be susceptible to severe 

overfitting (Knaup, 2019). Fig. 1.34 is an example of prediction using one of the SEM images 

in the dataset showing that the trained network correctly predicts the image source as the Eagle 

Ford oil window with high confidence. The figure also shows that there is a moderate 

likelihood of it belonging to the gas window of the Eagle Ford.  

 

Fig. 1.34 - The model correctly predicts an Eagle Ford (Oil) SEM image as an Eagle Ford (Oil) sample with ~60% 
confidence (Knaup, 2019). 
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Knaup (2019) also segmented SEM images to identify pores, organic material, calcite, 

and K-feldspar. She tested 5 different CNN architectures shown in Fig. 1.35. Model 1, Model 

2, and Model 3 are fully convolutional neural networks as shown in Fig. 1.35(a), 1.35(b), and 

1.35(c), Model 4 and Model 5 have a U-Net architecture (Ronneberger et al., 2015) with local 

connections shown in Fig. 1.35(d), and Fig. 1.35(e). 

 

Fig. 1.35 - 5 different architectures tested for image segmentation. (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, (e) 
Model 5. Models 1, 2, and 3 are fully convolutional neural networks, Models 4 and 5 have modified U-Net architectures 

(Knaup, 2019). 
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Knaup (2019) uses 208 multi-layered SEM images with a resolution of 10nm, each with 

Energy-Dispersive X-ray Spectroscopy (EDS) elemental data and hand labels. These images 

are augmented to over 5000 images and fed to the network. An example of the segmentation 

is shown in Fig. 1.36. The 5-layer improved U-Net CNN was seen to be superior to other CNN 

architectures, and the performance of the 5-layer U-Net CNN was shown to be significantly 

high as well, with a pixel classification accuracy of 87%. 

 

Fig. 1.36 - (a) Inputted SEM image, (b) hand-labeled image, (c) predicted image by using the 3-layer Model1 (d) 
predicted image by using the 5-layer Model2, (e) predicted image by using the 7-layer Model3, (f) predicted image by 

using the 7-layer U-Net Model4. (g) predicted image by using a 5-layer U-Net Model5 (Knaup, 2019). 

Karimpouli and Tahmasebi (2019) also use gray-scale high-resolution micro-computed 

tomography (μCT) images of rock samples for segmentation. Because of the need for large 
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amounts of training data, they use a cross-correlation-based simulation for data augmentation 

(Karimpouli and Tahmasebi, 2019). They generate over 20000 images using the specified data 

augmentation method from just 20 original Berea sandstone images (Karimpouli and 

Tahmasebi, 2019). An 18-layer SegNet (Badrinarayanan et al., 2016) and a modified 38-layer 

SegNet is used for model training as shown in Fig. 1.37. The 38-layer SegNet was shown to 

be capable of better segmentation accuracy when identifying pore spaces, quartz, other 

minerals, K-feldspar, and zirconium, respectively (Karimpouli and Tahmasebi, 2019). Kazak 

et al. (2020) also propose a similar study for tight gas reservoirs in the Berezov formation using 

a U-Net architecture (Ronneberger et al., 2015). 

 

Fig. 1.37 - Workflow of digital rock image segmentation uses the general architecture of SegNet. The original SEM 
image is input into the improved SegNet architecture, composed of 4 encoders consist of several convolutional layers 

and maximum pooling layers. And 4 decoders consist of convolutional layers and up-sampling layers. The output 
result will be a segmented image composed of 5 phases (Karimpouli et al., 2019). 

Rushood et al. (2020) use an automatic segmentation method for pores and the matrix 

from micro-computed tomography (CT) sandstone images. They test three datasets: the first 

dataset is limited to 600 images; the second data set is a complete dataset with 2200 images; 

and the third dataset is applied with data augmentation methods for a total of 17600 images. 
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They use a model with U-Net (Ronneberger et al., 2015) architecture to train the dataset, as 

shown in Fig. 1.38.  

 

Fig. 1.38 - The original micro-CT image is input into a model with U-Net architecture. It has dual convolution layers 
followed by ReLU function in each encoder, and up-sampling layers followed by convolution layers in each decoder. 

The output result will be a segmented image. (Rushood et al., 2020). 

Thin section analysis continues to be a time-consuming, laborious process that requires 

trained experts. Machine learning has enabled a speed-up of thin-section image interpretation. 

For example, Wei (2019) classifies 8 different types of thin section images obtained using 

single-polarization light and three different CNN architectures: a pre-trained 16-layer VGG16 

model, an untrained 16-layer VGG16 model, and an untrained 42-layer Inception-v3 model. 

Later, Su et al. (2020) use a concatenated convolutional neural network (Con-CNN) to 

successfully classify thin section images. Their dataset includes 13 classes of 92 rock samples 

and 196 petrographic thin sections for a total of 63504 image patches for training and validation 

of the 5-layer Con-CNN (Su et al., 2020).  A deep network architecture named ResNet-50 (He 

et al., 2015) was also tested without a significant increase in accuracy. 

Jiang et al. (2021) successively trained CNNs to identify vuggy facies using borehole-

resistivity images from a well in the Arbuckle Group in Kansas. For model training, two 

datasets were used: a complete dataset with 4285 images; and a cleaned dataset with 4129 

images. They test several models: the shallowest and simplest model has two convolutional 

layers with 32 and 64 filters, respectively, while the most complex model has four 
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convolutional layers with 64, 100, 128, 150 filters. The deeper network outperformed the 

simpler network on both the complete and cleaned datasets.  

CNNs can also aid in core image classification. Alzubaidi et al. (2020) use a CNN to 

automatically classify the lithology of core images into several classes such as sandstone, 

limestone, shale, and non-core sections, with 93.12% accuracy.  

 

Fig. 1.39 - Workflow for automatically classifying the lithology of core images. For pre-processing, the depth and scale 
of the tray images are first detected, then the core rows were separated. After that, the images feed into the CNN for 

classification, and the results are then processed to create the final log with a 1cm step. (Alzubaidi et al., 2020). 

The Alzubaidi et al. (2020) workflow is shown in Fig. 1.39. The raw data includes 406 

sandstone trays, 291 shale trays, and 161 limestone trays from 28 boreholes in South Australia. 

54000 images were used to train the network, 13500 were used for validation and 9000 images 

used for test (Alzubaidi et al., 2020). They test several pre-trained networks such as ResNet 

(He et al., 2015), Inception-v3 (Szegedy et al., 2015), and ResNeXt-50 (Xie et al., 2016) with 

the corresponding confusion matrices shown in Fig. 1.40.  
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Fig. 1.40 - Confusion matrix for model performance on test images. ResNeXt-50 shows the best performance 
(Alzubaidi et al., 2020). 

In each of the above applications, there are several CNN architectures used for both 

classification and segmentation. Knaup (2019) indicates that, in her experience, deeper models 

suffer from overfitting problems and demonstrates that a 5-layer model outperforms the 7-layer 

model. For thin section classification tasks, Su et al. (2020) also report that increasing model 

depth from 5 to 50 layers does not result in higher accuracies.  

Given the access to abundant computational power, we have not yet matched the 

problem to be solved to an appropriate level of CNN complexity; rather, in the case of 

petrographic data, the trend has been to seek deeper and more complex networks. In this thesis, 
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I attempt to answer whether we really need deeper networks, and whether shallower networks 

can instead be more competitive? I answer these questions in the context of image classification 

specifically. I also address whether a shallower network with a wider diversity of convolutional 

filters (breadth) can outperform a deeper network? What image resolution and filter complexity 

do we need to achieve a high degree of accurate classification? In the end, I provide guidelines 

to select the appropriate level of depth and breadth for formation identification using SEM 

images. 

 

1.9 Thesis Organization 

This thesis is organized into four chapters and is structured as follows: 

• Chapter 1: This chapter reviews the literature on machine learning, convolutional neural 

networks (CNN), CNN visualization, and its use in the oil and gas field. This chapter 

provides background for shallow versus deep network analysis on play identification. 

• Chapter 2: This chapter addresses filter depth and breadth for play identification from 

SEM images belong to 8 formations at 25nm/pixel and 10nm/pixel resolution.   

• Chapter 3: I follow Chapter 2 by extending the dataset to 22 different plays and consider 

two other resolutions at 50nm/ pixel and 25nm/pixel. This chapter also analyzes the 

sensitivity of filter complexity to the number of classes to be labeled.  

• Chapter 4: In this chapter, I provide a summary of my findings and draw conclusions 

that will aid practitioners of machine learning in attempting to extend their work to 

image classification.   
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Chapter 2: SEM Image Classification for a Dataset Comprising 8 

Formations 

In this chapter, I investigate the effect of varying filter depth and breadth when classifying 

images acquired from eight formations at two different resolutions. I hypothesize that filter 

depth and breadth are likely to be a function of the number of classes/labels to be identified, 

and in this chapter, a modest number of classes allows me to provide a more in-depth look at 

filter performance. By modifying the resolutions of the images, I can also assess whether the 

classification accuracy is sensitive to image field-of-view.  

In a subsequent chapter, I expand the number of classes to 22 and assess the sensitivity 

of network complexity to the number of classes to be identified.  

 

2.1 Description of the Systematic Approach 

I create a systematic workflow to test the depth and breadth sensitivity on the image database 

with eight formations, as shown in Fig. 2.1. 

 

Fig. 2.1 - Systematic approach of testing depth and breadth sensitivity using datasets with 8 plays. 

In this chapter, I use a dataset of grayscale SEM images from 8 formations: Green River, 

La Luna, Horn River Evie, Point Pleasant, Alum, Wolfcamp, Osage, Duverna. The details of 

the dataset are shown in Table. 2.1.  
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Table. 2.1 - SEM image information including resolution, bit depth, and the number of images in each play. The bit-
depth is the number of bits used to symbolize the color of a single-pixel. 

The grayscale SEM images are standardized to 8-bit depth (8-bits are used to represent 

the grayscale levels). I construct two datasets with varying resolutions: 25nm/pixel and 

10nm/pixel. Then the images are sliced to 127 x 127 pixels without overlap. At 25nm/pixel, 

the field-of-view for a 127x127 pixel image is 3x3 µm, and at 10nm/pixel, the field-of-view is 

1x1 µm. Henceforth, when referring to image resolution, I will use the units of nm/px and not 

nm/pixel. A 25nm/px and a 10nm/px image from the exact same location are shown in Fig. 2.2. 

My hypothesis is that at the 10nm/px resolution, we may miss some of the larger-scale features 

that might aid identification.  

 

Fig. 2.2 - (a) An example of the 25nm/px resolution 127x127 pixel size (3x3 µm field-of-view) image, (b) an example of 
the 10nm/px resolution 127x127 pixel size (1x1 µm field-of-view) image. 

Play Resolution (nm) Bit Depth # of images
Wolfcamp 10 8 799

Alum 10 16 900
Duvernay 10 16 900

Osage 10 16 900
La Luna 10 16 275

Point Pleasant 10 16 900
Green River 10 16 400

Horn River Evie 10 16 400

(a) (b) 



  45 

My dataset includes 840 images per formation with a total of 6720 images for training, 

180 images per formation and a total of 1440 images for validation, and 180 images per 

formation and a total of 1440 images for testing. 

 

2.2 Models Considered in this Chapter 

I use Google Colaboratory (Colab) (Bisong, 2019) that provides two Tesla V100-SXM2-16GB 

GPUs for parallel computing. I use the open-source TensorFlow library version 2.2 (Abadi et 

al., 2015) as a machine learning platform. Keras (Chollet, F. 2015) is subsequently used as an 

interface to the TensorFlow library to provide a python interface for the construction of CNNs. 

For all the models I test, the number of layers refers to the number of convolutional 

layers. The pooling layer and the flattening layer do not contain trainable parameters (Jiang, 

2021). I follow the 5-convolutional layer AlexNet (Krizhevsky et al., 2012) architecture to 

build the network inspired by a similar play identification task by Knaup (2019). Nonetheless, 

I remove one of the three fully connected layers for simplicity. This thesis will mainly focus 

on the convolutional layers of each network. Each model has been trained and tested over three 

times, and the best test accuracy is recorded.  

 

Table. 2.2 - CNN architecture tested using SEM images from the 8 formations at 25nm/px and 10nm/px resolutions. 

To test the sensitivity of convolutional neural networks to depth and width, I start with 

the simplest 1-layer, 1-filter CNN architecture shown in Fig. 2.3 and evaluate the trained model 
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performance on the test datasets. I then increase the breadth of the network by increasing the 

number of filters in the 1-layer model, as shown in Table. 2.2. Successively, I then increase 

the depth (add a layer to the CNN) and increase breadth (add filters to each new layer) and 

assess the sensitivity of the network accuracy to both depth and breadth. The number of filters 

in each layer of the deep networks successively increases, following VGG-16 architecture 

(Simonyan et al., 2014). For each CNN architecture listed in Table. 2.2, I run multiple tests 

and chose the highest accuracy for each model considered.   

 

Fig. 2.3 - The simplest 1- layer 1-filter network architecture. 
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2.3 25nm/px Resolution SEM Images 

In this section, I use a dataset of gray-scale SEM images with 25nm/px resolution from 8 

formations: Green River, La Luna, Horn River Evie, Point Pleasant, Alum, Wolfcamp, Osage, 

Duvernay. The images are reshaped to 127x127 pixels without overlap, equivalent to a 3x3 µm 

field-of-view as shown in Fig. 2.4.  

 

Fig. 2.4 - Example of a raw SEM image from Green River at 10nm/px resolution. It is rescaled to 25nm/px resolution 
and sliced to 127x127 pixels size (3x3 µm field-of-view) to fit into the model. The left figure is the raw image; the right 

figure is an example of the rescaled and sliced images for CNN model training. 

Table. 2.3 shows the detailed information of the input images from each play for the 

25nm/px resolution dataset. The input images from 8 plays are split into a training set (840 

images per formation and a total of 6720 images), a validation set (180 images per formation 

and a total of 1440 images), and a test set (180 images per formation and a total of 1440 images) 

Twenty example images from the 25nm/px resolution dataset are shown in Fig. 2.5. 

3x3 µm field-of-view 
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Table. 2.3 - 25nm/px resolution (3x3 µm field-of-view) SEM image information of 8 plays. 

 

Fig. 2.5 - Twenty grayscale SEM images from 8 plays for play identification at 25nm/px resolution 127x127 pixel size 
(3x3 µm field-of-view). 

Play Resolution (nm) Bit Depth
# of images
for training

# of images for
validation

# of images
for testing

Wolfcamp 25 8 840 180 180
Alum 25 8 840 180 180

Duvernay 25 8 840 180 180
Osage 25 8 840 180 180

La Luna 25 8 840 180 180
Point Pleasant 25 8 840 180 180
Green River 25 8 840 180 180

Horn River Evie 25 8 840 180 180
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2.4 25nm/px Resolution: Shallow Network Results 

The simple 1-layer 1-filter CNN only achieves 65% accuracy on the 25 nm/px resolution (3x3 

µm field-of-view) dataset. Increasing the breadth in the 1-layer network from 1 filter to 4 filters, 

the network accuracy goes up to 80%. The model architecture and the corresponding test results 

are shown in Table. 2.4. A subsequent increase to 8, 16, and 32 filters in the 1-layer model 

does not substantially enhance the accuracy showing that increases in filter width/diversity do 

not provide any measurable benefit beyond a certain limit. Moreover, with extremely limited 

depth (1-layer), even the 1-layer 32-filters model is limited in terms of accuracy, underscoring 

the need for an increased depth of the network. However, I do want to point out that even the 

simple 1-layer, 4-filter does provide ~80% accuracy, which is a substantial increase over the 

potential accuracy of 100/8 = 12.5% obtainable just by pure chance.  

 

Table. 2.4 - Accuracy of the 1-layer networks test on the SEM images at 25nm/px resolution. 

The corresponding confusion matrices of the 1-layer 1-filter networks are shown in Fig. 

2.6. The extremely simple 1-layer 1-filter network achieves a total accuracy of 65%, including 

higher recall obtained from Wolfcamp and Osage samples. The recall is calculated by the true 

positives of a given category divided by the true positives and false negatives. On the other 

hand, the network misclassified a few of the Point Pleasant samples as Duvernay and a few of 

the Duvernay samples as Point Pleasant samples, indicating that the trained 1-layer 1-filter 

network detects some similarities between these formation pairs. There is also an appreciable 

number of false positives for the Horn River Evie when the input image is actually from the 

Green River.  



  50 

 

Fig. 2.6 - Confusion matrix of the 1-layer 1-filter network trained on 25nm/px resolution dataset achieves a total 
accuracy of 65%.  



  51 

 

 

 

Fig. 2.7 - (a) The Point Pleasant image input to the 1-layer 1-filter network is misclassified as a Duvernay sample, (b) 
the model predicts the image with over a 60% probability being a Duvernay sample, (c) heatmap output from the 

convolutional layer. 

(a) 

(b) 

(c) 



  52 

I show an incorrectly predicted image sample from the formation pair with the highest 

misclassification rate obtained from the 1-layer 1-filter trained CNN. In this case, a sample 

from the Point Pleasant is fed to the network shown in Fig. 2.7(a). The network predicts this 

Point Pleasant image as a Duvernay sample with ~60% probability, with under 30% probability 

of it being a Point Pleasant sample as shown in Fig. 2.7(b). I also show the heatmap obtained 

using the same image, which highlights important features that led to the CNN classification 

decisions. The hotter color (red and yellow) reveals the most important features for identifying 

the play, and the colder color (blue) indicates less critical features. As shown in Fig. 2.7(c), in 

the only convolutional layer, the trained CNN considers the lighter chlorite clay platelets 

feature to be important. It is important to mention that the image classification could be 

enhanced if, for instance, mineralogical information was available.   
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Fig. 2.8 - Confusion matrix of the 1-layer 4-filters network trained on 25nm/px resolution dataset achieves a total 
accuracy of 79%. 

Conversely, as shown in Fig. 2.8, if the number of filters in the 1-layer network 

increases from 1 to 4 filters, there are fewer off-diagonal elements. On the other hand, the 

network appears to continue to misclassify an appreciable number of Point Pleasant images as 

Duvernay samples, and Green River samples as Horn River Evie samples, indicating that a few 

of the SEM images from these pairs probably display similar microstructural features, 

confounding the shallow 1-layer network. 
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Fig. 2.9 - (a) The Point Pleasant image input to the 1-layer 4-filters networks is misclassified as a Duvernay sample, (b) 
the model predicts the image with over about an 80% probability being a Duvernay sample, (c) heatmap output from 

the convolutional layer. 

(b) 

(c) 

(a) 
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As demonstrated in the previous example, I show a false-negative image sample from 

the formation that has the lowest recall when tested on the 1-layer 4-filters trained CNN. Again, 

it is a sample from the Point Pleasant shown in Fig. 2.9(a). The network predicts this Point 

Pleasant image as a Duvernay sample with over 80% probability as shown in Fig. 2.9(b). The 

heatmaps obtained from the 1-layer 4-filters trained CNN is shown in Fig. 2.9. It is quite clear 

that the more important features picked by this network are different from a simple grayscale 

contrast picked by the simpler 1-layer, 1-filter model as shown in Fig. 2.9(c). 

The 1-layer 1-filter and 1-layer 4-filters CNN feature map (filter output) are shown 

in Fig. 2.10, showing the important features captured by each filter that led to the CNN 

classification decisions. An SEM image from the Alum formation as shown in Fig. 2.10(a), is 

fed to the 1-layer 1-filter trained CNN, following which I obtain the filter as shown in Fig. 

2.10(b). The feature map appears to be capturing grayscale contrasts in the original image but 

ignores other microstructural features, such as pores and organics.  

 

Fig. 2.10 - Feature maps output from the two shallow networks. (a) An SEM image fed into the two networks, (b) a 
feature map output from the 1-layer 1-filter network, (c) four feature maps output from the 1-layer 4-filters network. 
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In contrast, the feature maps from the 1-layer 4-filters CNN from the analysis of the 

same image are different as shown in Fig. 2.10(c). In the first and third panels, the filters appear 

to be sensitive to grayscale contrasts, while the second panel is picking out darker organic/pores. 

The fourth panel appears to be detecting edges. Although, in this example, the feature selection 

is apparent, there are several cases where the feature maps make non-intuitive choices.   

 

Fig. 2.11 - (a) An SEM image fed into the two shallow networks, (b) heatmap output from the 1-layer 1-filter network. (c) 
heatmap output from the 1-layer 4-filters network. 

The heatmap from the 1-layer 1-filter network (Fig. 2.11(b)) shows the organic matter 

on the original grayscale image to be important. Increasing the breadth to 4 filters, the heatmap 

(Fig. 2.11(c)) shows that the 1-layer 4-filters network no longer picks the darker organic 

matters as the critical feature, but instead focuses on a few select microstructural elements. 

Analysis of the picks in Fig. 2.11(c) are non-intuitive choices. Unfortunately, this is a recurring 

theme in this thesis. Important features extracted from an SEM image by a trained CNN often 

do not correspond to features a trained operator would use to aid identification.  
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Fig. 2.12 - (a) An SEM image fed into the two shallow networks, (b) heatmap output from the 1-layer 1-filter network 
which misclassified this Green River image as a Horn River Evie sample, (c) heatmap output from the 1-layer 4-filters 

network which correctly classified the image as a Green River sample. 

There are several examples of misclassification by the 1-layer 1-filter network when 

focusing on the grayscale contrast. Fig. 2.12 is one such example where the 1-layer 1-filter 

network misclassifies a Green River image as a Horn River Evie sample by considering solely 

the grayscale contrast and picking the darkest pore feature to make the prediction. The 1-layer 

4-filter network however extracts a few other additional features with a resulting correct 

classification. As mentioned earlier, these picks are difficult to interpret. So, while we are able 

to visualize important elements for classification, it is essential to note that the significant 

features that aid manual classification may not be the same as those picked by CNN. 
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Fig. 2.13 - (a) Green River sample input to the 1-layer 1-filter network (b) filter in the 1-layer 1-filter network (c) feature 
map output from the 1-layer 1-filter network (d) La Luna sample input to the 1-layer 16-filters network (e) filter in the 1-

layer 16-filters network (f) feature map output from the 1-layer 16-filters network 

I also show the pixel value of each filter and corresponding filter output (feature maps) 

of a specific image in the 1-layer 1-filter network and 1-layer 16-filters network. A Green River 
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sample is input to the network, as shown in Fig. 2.13(a). The pixel value of the filter in the 1-

layer 1-filter network is shown in Fig. 2.13(b). This filter is shown to extract some grayscale 

information and edges as shown in Fig. 2.13(c). The 1-layer 16-filters network can potentially 

extract several more features with the filters shown in Fig. 2.13(e). The feature maps processed 

by each filter are shown in Fig. 2.13(f). The 2nd and 11th filters capture the grayscale of the 

input sample. The 4th, 5th, and 8th filters extract darker diagonal features, including pores, and 

the 10th, 12th, and 13th filters capture the edges of the darker features of the input sample.  

As mentioned earlier, a subsequent increase to 8, 16, and 32 filters in the 1-layer model 

does not substantially enhance the accuracy, underscoring the need for an increased depth of 

the network, which I will discuss in the next section. 

 

2.5 25nm/px Resolution: Modest and Deep Network Results 

While 1-layer networks can achieve over 80% accuracy with an increase in filter breadth, I also 

test the sensitivity of the classification to changes in filter depth. In this section, I consider 

CNNs with 2, 3, and 5 convolutional layers. Table. 2.5 shows the performance of the shallow 

(1-layer), modest (2-, 3- layer), and deep (5-layer) networks, and more detailed results are 

shown in Appendix Fig. A1.  

As shown in Table. 2.5(a), I increase the number of layers but retain 2 filters in Layer1.  

The shallow 1-layer 2-filters model shows similar accuracy of slightly over 70% as the 2-layer 

2, 2-filters model. In contrast, the 3-layer and 5-layer networks outperform the shallow 

networks with over 80% accuracy.  

I then double the number of filters (breadth) in each layer for all the models as shown 

in Table. 2.5(b). The 1-layer 4-filters network still shows about 80% accuracy. However, the 

2-layer, the 3-layer, and the 5-layer networks achieve a comparable accuracy of ~ 90%. A 
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comparison with Table. 2.5(a) shows over a 5% increase in accuracy with a doubling of the 

number of filters in each layer.  

If I double the number of filters (breadth) to 8 and 16 filters in the first layer, as shown 

in Table. 2.5(c) and Table. 2.5(d), the accuracy of the shallow 1-layer network remains below 

90%, while the 2-, 3-, and 5- layers networks achieved comparable accuracy of over 90%. A 

further increase to 32 filters in Layer 1 does not lead to an increase in accuracy as shown in 

Table. 2.5(e). Again, the 2-, 3-, and 5- layer networks are capable of exceed 90% accuracy.  

The results in Table. 2.5 show that beyond a certain depth or beyond a certain layer 

width, there are no appreciable improvements in performance. However, below these 

thresholds, filter performance is compromised as with the 2-layer 2, 2-filters model.  

 

 

Table. 2.5 - Shallow vs. deep network performance on 25nm/px resolution dataset. 
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The confusion matrix corresponding to the modest 2-layer 8, 8-filters model with a 

classification accuracy of 91% is shown in Fig. 2.14. Fewer off-diagonal elements can be 

observed compared with the 1-layer networks with higher recall for the La Luna, Horn River 

Evie, Alum, Wolfcamp, and Osage formations. The network however continues to misclassify 

a few Point Pleasant samples as Duvernay samples, a few Duvernay samples as Point Pleasant 

samples, and a few Green River samples as Horn River Evie samples, which was observed in 

the shallower networks as well.  

 
Fig. 2.14 - Confusion matrix of the 2-layer 8, 8-filters network trained on 25nm/px resolution dataset achieves a total 

accuracy of 91% 
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Fig. 2.15 - (a) The Point Pleasant image input to the 2-layer 8, 8-filters networks is misclassified as a Duvernay sample, 
(b) the model predicts the image with ~80% probability being a Duvernay sample, (c) heatmap output from the 1st 

convolutional layer, (d) heatmap output from the 2nd convolutional layer. 

I show a misclassified Point Pleasant sample and the corresponding heatmaps obtained 

from the 2-layer 8, 8-filters trained CNN in Fig. 2.15. The network predicts this Point Pleasant 

(a) 

(b) 

(c) (d) 
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image as a Duvernay sample with over 80% probability as shown in Fig. 2.15(b). The heatmaps 

obtained using the same Point Pleasant image are shown in Fig. 2.15(c). The heatmap from the 

1st convolutional layer shows grayscale contrast being picked as features which are then fed to 

the 2nd convolutional layer. The choices are less intuitive now as shown in Fig. 2.15(d). 

Nevertheless, a few Point Pleasant samples being misclassified as Duvernay samples indicates 

some similarity in the microstructure. 

 

Fig. 2.16 - Confusion matrix of the 5-layer 32, 64, 64, 96, 96-filters network trained on 25nm/px resolution dataset 
achieves a total accuracy of 95%. 

In contrast, the deepest and broadest 5-layer 32, 64, 64, 96, 96-filters model achieves 

95% total accuracy, with in excess of 90% recall for each formation except for a small 
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percentage of the Point Pleasant images, which again are misclassified as Duvernay samples, 

resulting in 80% recall as shown in Fig. 2.16. The modest and deep networks both misclassify 

several Point Pleasant samples as Duvernay, indicating these two formations may have similar 

microstructure. 

As discussed previously, I show a misclassified Point Pleasant sample and its heatmaps 

obtained from the 5-layer 32, 64, 64, 96, 96-filters trained CNN in Fig. 2.17. The network 

predicts this Point Pleasant sample as Duvernay with 80% probability as shown in Fig. 2.17(b). 

I also show the heatmaps obtained using the same Duvernay image. In the shallow 1st 

convolutional layer, the trained CNN picks the lightest shaded features in the original grayscale 

image as shown in Fig. 2.17(c). These features from the 1st layer combine into the next few 

convolutional layers to capture larger-scale features. In the 3rd layer, the organic matter appears 

to be an important feature aiding classification as shown in Fig. 2.17(d). All the features then 

combine into the last convolutional layer (the 5th layer) to pick large-scale features including 

organic matters to make the prediction as shown in Fig. 2.17(e).   
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Fig. 2.17 - (a) The Point Pleasant image input to the 5-layer 32, 64, 64, 96, 96-filters network is misclassified as a 
Duvernay sample, (b) the model predicts the image with over 95% probability being a Duvernay sample, (c) heatmaps 
output from the 1st convolutional layer, (d) heatmap output from the 3rd convolutional layer, (e) heatmap output from 

the 5th convolutional layer. 

 

(a) 

(b) 

(c) (d) (e) 
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2.6 25nm/px Resolution: Shallow vs. Deep Network Performance 

 
Fig. 2.18 - 3D bar chart showing the accuracy of the CNNs in varying depth and breadth. The 2-layer 8, 8-filters CNN in 

the white circle is sufficient for the dataset at 25nm/px resolution, which provides over 90% accuracy. 

The corresponding 3D bar chart of the testing results for 25nm/px resolution (3x3µm field-of-

view) is shown in Fig. 2.18. The x-axis refers to the number of filters (breadth), the y-axis 

refers to the number of layers (depth), and the z-axis refers to the accuracy of each network. 

We can observe that a 2-layer 8, 8-filters CNN provides a very satisfactory accuracy of over 

90%for the dataset at 25nm/px resolution when classifying eight formations.  

Besides, we can observe that a simple 1-layer 4-filter is capable of achieving ~80% 

accuracy; however, subsequent increases to 8, 16, and 32 filters in the 1-layer model do not 

substantially enhance the accuracy. It indicates that increases in filter width/diversity do not 

provide measurable benefits beyond a specific limit. In contrast, an increase in depth from 3 

layers to 5 layers does not enhance the accuracy either also demonstrating that there are limits 

to filter performance when going to deeper networks. I did not observe any symptoms of 

overfitting in this exercise, likely because the dataset I have available is large and diverse.  
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Moreover, when the number of filters is limited, a deeper network such as the 5-layer 

2-filter network fails to achieve (an arbitrary but reasonable benchmark) of 90% accuracy. In 

the next chapter, I expand the number of classes to 22 to test whether increasing the number of 

classes requires additional breadth (number of filters) and depth (number of layers). 

 

Fig. 2.19 - Heatmaps output from the 1-layer, 2-layer, and 5-layer CNNs. 

 There are a few cases where the shallower networks misclassify an image while the 

deeper networks correctly identify the source of the image.  Fig. 2.19 is such an example where 

the 1-layer 4-filters networks incorrectly misclassify a Point Pleasant sample as a Duvernay 

sample. The 2-layer 8, 8 filters network and the 5-layer 32, 64, 64, 96, 96 filters network, on 

the other hand, both provide the correct answer.   

 

2.7 Comparison between the 25nm/px and the 10nm/px with 8 Formations 

In this section, I test another dataset of grayscale SEM image at 10nm/px resolution from the 

same 8 formations: Green River, La Luna, Horn River Evie, Point Pleasant, Alum, Wolfcamp, 

Osage, Duvernay. The images are reshaped to 127x127 pixels without overlap, equivalent to a 

1x1 µm field-of-view as shown in Fig. 2.20. My rationale for this experiment is to test the 

sensitivity of CNN complexity to the field-of-view. With higher resolution, the field-of-view 

is restricted when using the same number of pixels. It is possible that larger-scale features may 

be missing, thereby compromising classification. 
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Fig. 2.20 - Example of a raw SEM image from Alum with 10nm/px resolution. It is sliced to 127x127 pixels size (1x1 µm 
field-of-view) to fit into the model. The left figure is the raw image; the right figure is an example of the rescaled and 

sliced images for CNN model training. 

Table. 2.6 shows the detailed information of the input images from each play with 

10nm/px resolution. I use the same number of images as with the previous study at 22nm/px 

for training, validation, and testing: 840 images per formation and a total of 6720 images for 

training; 180 images per formation and a total of 1440 images for validation; and 180 images 

per formation and a total of 1440 images for testing. Twenty example images from the dataset 

are shown in Fig. 2.21. 

 

Table. 2.6 - 10nm/px resolution (1x1 µm field-of-view) SEM image information of 8 plays. 

Play Resolution (nm) Bit Depth
# of images
for training

# of images for
validation

# of images
for testing

Wolfcamp 10 8 840 180 180
Alum 10 8 840 180 180

Duvernay 10 8 840 180 180
Osage 10 8 840 180 180

La Luna 10 8 840 180 180
Point Pleasant 10 8 840 180 180
Green River 10 8 840 180 180

Horn River Evie 10 8 840 180 180

1x1 µm field-of-view 
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Fig. 2.21 - Twenty grayscale SEM images from 8 plays for play identification at 10nm/px resolution 127x127 pixel size 
(1x1 µm field-of-view). 

In the interests of brevity, I focus on a few interesting results. I compare the confusion 

matrices of two models that achieve high accuracy on both 25nm/px and 10nm/px resolution 

datasets. Fig. 2.22 shows the corresponding confusion matrices of the modest 2-layer 8, 8-
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filters models trained on 25nm/px and 10nm/px resolution dataset separately for total accuracy 

of 91% and 95%, respectively. Unexpectedly, the rate of misclassification of Point Pleasant 

samples as Duvernay samples, which was quite common at 25nm/px resolution, is significantly 

reduced at 10nm/px resolution. The only possible explanation for this is that the significant 

features in these formations are close to 10nm resolution that get blurred or merge with the 

background at a lower resolution of 25nm/px.   

In contrast, the network trained on the 10nm/px resolution dataset shows a higher 

misclassification rate between Osage samples and Point Pleasant samples. However, the 

network trained on the 25nm/px resolution dataset does not misclassify these formations, 

perhaps indicating that there are larger features in the two formations that are not captured with 

a 1x1 µm field-of-view. The network, however, misclassifies a few of the Green River samples 

as Horn River Evie samples at both 25nm/px and 10nm/px resolutions, indicating the potential 

similarity of the microstructures in this formation pair. 
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 (a) 25nm/px resolution 
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Fig. 2.22 - Comparison of confusion matrix corresponding to the 2-layer 8, 8-filters CNN trained on (a) 25nm/px 
resolution dataset achieves a total accuracy of 91%, (b) 10nm/px dataset achieves a total accuracy of 95%. 

I also compare the corresponding confusion matrices of the deep 5-layer 32, 64, 64, 

969, 96-filters models trained on 25nm/px and 10nm/px resolution datasets separately as shown 

in Fig. 2.23 with a total accuracy of 95% and 97%, respectively. Both networks achieve high 

recall on La Luna, Alum, and Wolfcamp samples underscoring their unique microstructure at 

the higher and lower resolutions. In contrast, both networks misclassify a few Green River 

samples as Horn River Evie samples, and at the 10nm/px resolution, the network also 

(b) 10nm/px resolution 



  73 

misclassifies a few Horn River Evie samples as Green River samples, indicating that the 

important features that aid classification are larger than the 1x1 µm field-of-view. On the other 

hand, as observed in modest network, the 25nm/px network misclassifies several Point Pleasant 

samples as Duvernay, while the 10nm/px does not suffer from the same rate of 

misclassification. 

 

 (a) 25nm/px resolution 
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Fig. 2.23 - Comparison of confusion matrix corresponding to the 5-layer 32, 64, 64, 96, 96-filters CNN trained on (a) 
25nm/px resolution dataset achieves a total accuracy of 95%, (b) 10nm/px resolution dataset achieves a total accuracy 

of 97%. 

The examples above show a high rate of misclassification between the Green River and 

Horn River Evie samples. I show how a 5-layer 32, 64, 64, 96, 96-filter network performs on 

a few select images from these plays.  Fig. 2.24(a) is a Green River sample correctly predicted 

by the network. Fig. 2.24(b) is another Green River sample incorrectly predicted with high 

confidence as a Horn River Evie sample. Fig. 2.24(c) is a Horn River sample misclassified by 

the network as a Green River sample, with lower confidence. It is important to note that all 

three of these images are characterized by white noise, which could be a feature that the CNN 

is capturing as a significant feature of the image which results in misclassification. There are 

(b) 10nm/px resolution 
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potentially two methods to address this: One is to add white noise to all images to allow the 

CNN to focus on unique microstructural features to add classification or alternatively, de-noise 

the images. De-noising however can remove some important features if they are at the scale at 

which the noise is present. I however did not test these effects in this work. 

 

 

 
 

Fig. 2.24 - Green River and Horn River Evie samples test on 5-layer 32, 64, 64, 96, 96-filters. (a) Green River sample 
correctly classified by the network. (b) Green River sample misclassified by the network. (c) Horn River Evie sample 

misclassified by the network. 

(a) 

(c) 

(b) 
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Fig. 2.25 - Comparison of the accuracy for each model trained on 25nm/px resolution dataset and 10nm/px dataset. 

  More detailed test results for each model at 10nm/px resolution dataset with 8 

formations are shown in Appendix Fig. A2 and Fig. A3. 

I compare the test results for the 25nm/px resolution (3x3 µm field-of-view) dataset 

and the 10nm/px resolution (1x1 µm field-of-view) dataset for all models as shown in Fig. 2.25. 

As mentioned earlier, the x-axis refers to the number of filters (breadth), the y-axis refers to 

the number of layers (depth), and the z-axis refers to the accuracy of each network. As shown 

in Fig. 2.25, the models trained on 10nm/px resolution (1x1 µm field-of-view) dataset appear 

to be superior to the model trained on 25nm/px resolution (3x3 µm field-of-view) dataset, 

indicating that the significant features may get blurry/merged at the 25nm/px resolution, but 

are resolvable at a smaller field-of-view (10nm/px resolution). For both datasets with eight 

plays, a 2-layer 8,8 filters network is sufficient, which provides a very satisfactory accuracy of 

over 90%. 
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Fig. 2.26 - Comparison of the training time in seconds for each model trained on 25nm/px dataset and 10nm/px 
resolution dataset. 

I also show the training time for the 25nm/px resolution (3x3 µm field-of-view) dataset 

and the 10nm/px resolution (1x1 µm field-of-view) dataset for all models as shown in Fig. 2.26. 

The x-axis refers to the number of filters (breadth), the y-axis refers to the number of layers 

(depth), and the z-axis refers to the training time of each network in seconds. For both 

resolutions, the deepest and broadest network takes the longest time to train, even for the 

modestly sized dataset used in this study. These differences will grow rapidly as the size of the 

image dataset increases. For example, for the ImageNet database with ~14 million images 

(Yang et al., 2019), a deeper network will require greater training time with the need for several 

more batches to be fed to the network at each epoch during training. 

From the results on 25nm/px resolution (3x3µm field-of-view) and 10nm/px resolution 

(1x1µm field-of-view), I can conclude that: 

• For both datasets, a network with 2-layers and 8 filters on each of the two layers 

provides acceptable accuracies as shown in Fig. 2.27. 

• This experiment shows that both depth and breadth are essential. Increases in one 

without increasing the other do not lead to improved accuracy of classification. 

• At both 10nm/px and 25nm/ px resolution, a diversity of filters is essential. The 

additional filters are shown to extract additional features to make a prediction. 
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• For the images tested, the 10nm/px resolution images outperform the 25nm/px 

resolution images, which means important features can still be captured at 10nm/px 

resolution. 

• Significant features of Green River samples and Horn River Evie samples are 

unresolvable at both 10nm/px resolution and 25nm/px resolution, confounding both 

the modest and deep CNNs. 

With this background, in the next chapter, I perform the same tasks but with images from 22 

plays. 
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Fig. 2.27 - 2-layer 8, 8-filters network architecture. 
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Chapter 3: SEM Image Classification for a Dataset Comprising 22 

Formations 

In this chapter, I adopt a similar approach as described in Chapter 2 and investigate the 

sensitivity of filter depth and breadth in labeling SEM images. In order to see if model 

complexity depends on the number of labels, this chapter focuses on image classification for 

22 plays.  

 

3.1 Description of the Systematic Approach 

 

Fig. 3.1 - Systematic approach of testing depth and breadth sensitivity using datasets with 22 plays. 

I create a systematic workflow to test the depth and breadth sensitivity on the complete image 

database, as shown in Fig. 3.1. The image database includes over 8000 grayscale SEM images 

from 22 different unconventional plays worldwide, as shown in Table 3.1. 
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Table. 3.1 - SEM image information including resolution, bit depth, and the number of images in each play for entire 
database. As mentioned earlier, the bit-depth is the number of bits used to symbolize the color of a single-pixel. 

The images are normalized to 8-bit depth and are rescaled to two datasets with varying 

resolutions: 25nm/px and 50nm/px. In the previous chapter, I considered a 10nm/px resolution. 

However, at that resolution, I had a sufficient number of images for only 8 plays. The images 

are then sliced to 127 x 127 pixels without overlap to ensure that the image can be rescaled to 

various resolutions. At 25nm/px, the field-of-view for an image with 127x127 pixels is 3x3 

µm, and at 50nm/px, the field-of-view is 6x6 µm, so I will be investigating the effect of field-

of-view as well. A 25nm/px and a 50nm/px image from the exact location are shown in Fig. 

3.2.  

Play Resolution (nm) Bit Depth # of images
Haynesville 25 8 144
Wolfcamp 10 8 799

Alum 10 16 900
Montney 25 8 144

Eagle Ford Oil 25 8 144
Eagle Ford Gas 25 8 144
Avalon/Leonard 25 8 144
Vaca Muerta Oil 25 8 144
Vaca Muerta Gas 25 8 144

Duvernay 10 16 900
Osage 10 16 900

La Luna 10 16 275
Kimmeridge 25 8 144

Point Pleasant 10 16 900
Green River 10 16 400

Horn River Evie 10 16 400
Collingwood 25 8 57

Marcellus 20 8 1480
Woodford 20 8 100

Utica 25 8 144
Niobrara 25 8 144
Barnett 25 8 144
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Fig. 3.2 - (a) An example of the 50nm/px resolution 127x127 pixel size (6x6 µm field-of-view) image, (b) an example of 
the 25nm/px resolution 127x127 pixel size (3x3 µm field-of-view) image. 

I use the same number of images per formation as in the previous chapter for training 

and validation: 840 images per play and a total of 18480 images for training; 180 images per 

play and a total of 3960 images for validation. The remaining images for each play were used 

for testing. 

 

3.2 Models Considered in this Chapter 

 
Table. 3.2 - CNN architecture tested using SEM images from the 22 formations at 50nm/px and 25nm/px resolutions. 

I use the same machine learning environment as in the previous chapter with TensorFlow 

(Abadi et al., 2015) as the machine learning platform running on Google Colaboratory 

(a) (b) 
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environment (Bisong, 2019). I follow a modified AlexNet architecture but use fewer layers 

and filters as well as smaller sizes of filters (3x3). Additionally, I remove one of the three fully 

connected identification layers for simplicity, which results in 4096 neurons in the first dense 

layer with 10% of the neurons dropped, and 1024 neurons in the second dense layer with 10% 

of the neurons dropped. 

To test the sensitivity of convolutional neural networks to depth and width, I use the 

same model architectures as described in the previous chapter. The list of models considered 

in this chapter are shown in Table. 3.2.  

I start with the simplest 1-layer, 1-filter CNN architecture and evaluate the trained 

model performance on the test datasets. It is important to note that the number of layers refers 

to the number of convolutional layers. I then increase the breadth of the network by increasing 

the number of filters in the 1-layer model, as shown in Table. 3.2. I then progressively increase 

the depth (add a layer to the CNN) and increase breadth (add filters to each new layer) and 

assess the sensitivity of the network accuracy to both depth and breadth. In addition, I relate 

image resolution to the CNN architecture. For each CNN architecture listed in Table. 3.2, I run 

multiple tests and chose the best performing accuracy for each model considered.   

 

3.3 50nm/px Resolution SEM Images 

In this section, the raw cross-sectioned grayscale SEM images from 22 plays in various pixel 

sizes were rescaled to 50nm/px resolution and then sliced to 127x127 pixels without overlap, 

which is equivalent to a 6x6 µm field-of-view as shown in Fig. 3.3.  
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Fig. 3.3 - Example of a raw SEM image from Alum with 10nm/px resolution. It is rescaled to 50nm/px resolution and 
sliced to 127x127 pixels size (6x6 µm field-of-view) to fit into the model. The left figure is the raw image; the right 

figure is an example of the rescaled and sliced images for CNN model training. 

Table. 3.3 describes the dataset used in this study. As mentioned earlier, I used 840 

images per formation for testing and 180 images per formation and a total of 3960 images for 

validation. Over 100000 images were used for testing. The unprecedented size and diversity of 

this dataset allows me to investigate CNN model complexity in great detail. Twenty example 

images from the dataset are shown in Fig. 3.4. 

6x6 µm field-of-view 
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Table. 3.3 - 50nm/px resolution (6x6 µm field-of-view) SEM image information of 22 plays. 

 

Play Resolution (nm) Bit Depth
# of images for

training
# of images for

validation
# of images for

testing
Haynesville 50 8 840 180 5892
Wolfcamp 50 8 840 180 8568

Alum 50 8 840 180 4380
Montney 50 8 840 180 5892

Eagle Ford Oil 50 8 840 180 5892
Eagle Ford Gas 50 8 840 180 5892
Avalon/Leonard 50 8 840 180 5892
Vaca Muerta Oil 50 8 840 180 5892

Vaca Muerta Gas 50 8 840 180 5892
Duvernay 50 8 840 180 4380

Osage 50 8 840 180 4380
La Luna 50 8 840 180 630

Kimmeridge 50 8 840 180 5892
Point Pleasant 50 8 840 180 4380

Green River 50 8 840 180 3780
Horn River Evie 50 8 840 180 3780

Collingwood 50 8 840 180 1716
Marcellus 50 8 840 180 16740
Woodford 50 8 840 180 180

Utica 50 8 840 180 5892
Niobrara 50 8 840 180 5892
Barnett 50 8 840 180 5892
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Fig. 3.4 - Twenty grayscale SEM images from 22 plays for play identification at 50nm/px resolution (6x6 µm field-of-
view). 

 

3.4 50nm/px Resolution: Shallow Network Results 

The model architecture and corresponding test results are shown in Table. 3.4. The simple 1-

layer 1-filter CNN only achieves 54% accuracy on the 50nm/px resolution dataset. Increasing 

the breadth in the 1-layer network from 1 filter to 4 filters, the network accuracy goes up to 

80%. However, as shown in the previous chapter (Table. 2.4), a subsequent increase of breadth 
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to 8, 16, and 32 filters in the 1-layer model does not substantially enhance the accuracy. It 

indicates that increases in filter width/diversity does not provide any measurable benefit 

beyond a certain limit. Moreover, with extremely limited depth (1-layer), even the 1-layer 32-

filters model is limited in terms of accuracy, underscoring the need for an increased depth of 

the network. However, I do want to point out that even the simple 1-layer, 4-filters trained on 

the 50nm/px resolution with even 22 formations does provide an accuracy of ~80%. This is 

remarkable because, by pure chance alone, we can obtain a 100/22 = 4.5% chance of being 

correct. A simple model providing over 80% accuracy demonstrates that deep networks are 

perhaps not necessary. However, reaching 90% accuracy levels (an arbitrarily chosen 

benchmark) will necessitate some depth to capture a few higher-level features.  

 

Table. 3.4 - Accuracy of the 1-layer networks test on the SEM images at 50nm/px resolution. 

The confusion matrix corresponding to the 1-layer 1-filter model with total accuracy of 

54% is shown in Fig. 3.5. The images from the Haynesville and Osage formations are classified 

with over 90% recall, indicating these two formations have unique small-scale microstructures 

that can be resolved even with a simple 1-layer 1-filter network. However, in this case, there 

are also several off-diagonal elements that are more dominant than the diagonal entries. For 

example, the network has a greater propensity of misclassifying the Horn River Evie samples 

as Collingwood samples rather than Horn River Evie. 
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Fig. 3.5 - Confusion matrix of the 1-layer 1-filter network trained on 50nm/px resolution dataset, achieves a total 
accuracy of 54%. 
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Fig. 3.6 - (a) The Horn River Evie image input to the 1-layer 1-filter network is misclassified as a Collingwood sample, 
(b) shows the top-5 probability, the model predicts the image with 30% probability being a Collingwood sample (c) 

heatmap output from the convolutional layer. 

(a) 

(b) 

(c) 
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I show an incorrectly predicted image sample from the formation pair with the highest 

misclassification rate with the 1-layer 1-filter trained CNN. This is a sample from the Horn 

River Evie formation, as shown in Fig. 3.6(a). I show the top-5 probability for the predicted 

classes on this image. The network predicts this Horn River Evie image as being more likely a 

Collingwood sample, with a lower probability of it being a Horn River Evie or La Luna sample 

as shown in Fig. 3.6(b). Unfortunately, the probability of it being a Collingwood sample is 

predicted to be marginally higher and the image is misclassified.  

I also show the heatmap obtained using the same Horn River Evie image fed to the 1-

layer 1-filter trained CNN showing important features that led to the CNN classification 

decisions. As mentioned in the last chapter, the hotter color (red and yellow) reveals the most 

important features for identifying the play, and the colder color (blue) indicates less critical 

features. As shown in Fig. 3.6(c), in the only convolutional layer, the trained CNN picks 

around the edges of the organic matter and considers these non-intuitive choices as important 

features for classification.  

The confusion matrix corresponding to the 1-layer 4-filters model is shown in Fig. 3.7. 

The resulting confusion matrix is more diagonally dominant than the 1-layer 1-filter model, 

indicating that prediction recall for each formation has improved with an increase in breadth. 

There is a preponderance of Eagle Ford oil window samples being misclassified as Vaca 

Muerta oil window samples, and a few Point Pleasant samples being misclassified as Alum or 

Duvernay samples. Again, this is an astonishing result indicating that a very simple, easy to 

interpret network such as a 1-layer, 4-filters CNN is capable of identifying these SEM images 

at 50nm/px resolution.  
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Fig. 3.7 - Confusion matrix of the 1-layer 4-filters network trained on 50nm/px resolution dataset achieves a total 
accuracy of 77%. 
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Fig. 3.8 - (a) The Eagle Ford oil image input to the 1-layer 4-filters network is misclassified as a Vaca Muerta oil window 
sample (b) shows the top-5 probability, the model predicts the image with over 70% probability being Vaca Muerta oil 

window sample, (c) heatmap output from the convolutional layer. 

(a) 

(b) 

(c) 
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As I did previously, I show a misclassified image sample from the formation pair with 

the highest misclassification rate when tested on the 1-layer 4-filters trained CNN. The Eagle 

Ford oil window sample is shown in Fig. 3.8(a). The network predicts this image with over a 

60% probability of being a Vaca Muerta oil window sample with a relatively lower probability 

of it being an Eagle Ford oil window sample as shown in Fig. 3.8(b). This is important because 

for this specific case of misclassification, the Eagle Ford oil window samples are very similar 

to the Vaca Muerta samples in terms of mineralogy, porosity, and the distribution and amount 

of organics (EIA, 2017).  

The heatmap obtained using the same Eagle Ford oil window image from the 1-layer 

4-filters trained CNN is shown in Fig. 3.8(c). With increasing breadth, the network captures 

additional significant features, which are again non-intuitive choices.  

The feature map or filter output obtained from an image fed to a 1-layer 1-filter trained 

CNN is shown in Fig. 3.9(b). The feature map for the simplest 1-layer 1-filter network appears 

to extract some grayscale information and edges. However, increasing the width to four filters 

captures several other features as shown in Fig. 3.9(c). Specifically, in the third panel, all of 

the inorganic material is considered important, which showcases the organic material very well. 
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Fig. 3.9 - Feature maps output from the two shallow networks. (a) An SEM image fed into the two shallow networks, (b) 
a feature map output from the 1-layer 1-filter network, (c) four feature maps output from the 1-layer 4-filters network. 

The 1-layer 1-filter and 1-layer 4-filters CNN heatmaps corresponding to the image in 

Fig 3.9(a) are shown in Fig. 3.10, showing important features that led to the CNN classification 

decisions. The heatmap, as mentioned earlier, is a composite of the feature maps. The heatmap 

from the 1-layer 1-filter network (Fig. 3.10(b)) shows the network focusing on the edges of the 

organic material as well as the interface between the clay and the carbonate. There appear to 

be a few similarities in the heatmap when increasing the breadth to 4 filters (Fig. 3.10(c)). 
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Fig. 3.10 - (a) A SEM image fed into the two shallow networks, (b) heatmap output from the 1-layer 1-filter network, (c) 
heatmap output from the 1-layer 4-filters network. 

There are several cases where the 1-layer 1-filter network makes an incorrect prediction 

while the 1-layer 4-filters network is accurate. Fig. 3.11 is such an example where the 1-layer 

1-filter network misclassifies the Woodford images as Niobrara. On the other hand, the 1-layer 

4-filters network picks a few additional features to aid classification. In both cases, the 

significant features are non-intuitive picks. Appendix Fig. A4 to Fig. A9 shows 

more examples of heatmaps from different plays. 

 

Fig. 3.11 - (a) An SEM image from Woodford fed into the two shallow networks, (b) heatmap output from the 1-layer 1-
filter network which misclassified the Woodford image as a Niobrara sample, (c) heatmap output from the 1-layer 4-

filters network which correctly classified the image as a Woodford sample. 

1-layer 1-filter 1-layer 4-filter 
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Fig. 3.12 - (a) Horn River Evie sample input to the 1-layer 1-filter network (b) filter in the 1-layer 1-filter network (c) 
feature map output from the 1-layer 1-filter network (d) Vaca Muerta oil window sample input to the 1-layer 16-filters 

network (e) filters in the 1-layer 16-filters network (f) feature maps output from the 1-layer 16-filters network 

I show the pixel value of each filter and filter output (feature maps) of a specific image 

in the 1-layer 1-filter network and 1-layer 16-filters network. A Horn River Evie sample is 

input to the network, as shown in Fig. 3.12(a). The pixel value of the only filter in the 1-layer 

1-filter network is shown in Fig. 3.12(b). This filter is shown to captures the grayscale of the 
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input image as shown in Fig. 3.12(c). The filters in the 1-layer 16-filters network can 

potentially extract several more features with the filters shown in Fig. 3.12(e). A Vaca Muerta 

oil window sample as shown in Fig. 3.12(d), is input to the network. The feature maps 

processed by each filter are shown in Fig. 3.12(f). The 3rd and 11th filters capture the darker 

feature, including pores and organic materials of the input sample. The 4th and 7th filters capture 

grayscale. The 8th filter captures the edges of the lighter features. The 9th and 14th filters capture 

the horizontal features, and the 13th filter captures the diagonal features.  

As mentioned earlier, the 1-layer models achieve ~80% accuracy for the 50nm/px 

dataset with 22 plays, indicating the need for an increase in depth of the network, which I will 

discuss in the next section. 

 

3.5 50nm/px Resolution: Modest and Deep Network Results 

In this section, I investigate the effect of increasing network depth (number of layers) by 

changing the number of layers to 2, 3, and 5 layers with various filter configurations. The model 

architecture and the corresponding results are shown in Table. 3.5, and more detailed results 

are shown in Appendix Fig. A10.   



  98 

 

 

 

Table. 3.5 - Shallow vs. deep network performance on 50nm/px resolution 22 plays dataset. 

As shown in Table. 3.5(a), the extremely shallow 1-layer 2-filters model has a 

comparable accuracy of ~70% with the 2-layer 2, 2-filters model. In contrast, the 3-layer and 

5-layer networks outperform the shallow networks with over 80% accuracy.  

When the number of filters (breadth) I doubled in each layer for all the models as shown 

in Table. 3.5(b), the 1-layer 4-filters network and the 2-layer 4, 4 filters networks continue to 

have 80% accuracy. However, the 3-layer and the 5-layer networks achieve a comparable 
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accuracy of over 90%. A comparison with Table 3.5(a) shows a 10% increase in accuracy 

when doubling the number of filters in each layer.  

If I further increase the number of filters (breadth) to 8 and 16 filters in the first layer, 

as shown in Table. 3.5(c) and Table. 3.5(d), the accuracy of the shallow 1-layer network 

remains around 80%, while the 2-, 3-, and 5- layers networks achieve comparable accuracies 

of greater than 90%. A further increase to 32 filters in Layer 1 does not lead to any appreciable 

increase in accuracy, as shown in Table. 3.5(e).  

The results in Table. 3.5 show that beyond a certain depth or beyond a certain layer 

width, there are no appreciable improvements in performance. However, below these 

thresholds, filter performance is compromised as with the 2-layer 2, 2-filters model.  

 

Fig. 3.13 - Confusion matrix of the 2-layer 16, 16 filters CNN trained on 50nm/px resolution dataset achieves a total 
accuracy of 91%. 

Predicted Formation 
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The confusion matrix corresponding to the modest 2-layer 16, 16-filters model is shown 

in Fig. 3.13. It achieves a total accuracy of 91%, with higher prediction recall for the 

Haynesville, Green River, Alum, Collingwood, Wolfcamp, Osage, and Woodford formations. 

The network however incorrectly classifies a great percentage of the Eagle Ford oil window 

sample as a Vaca Muerta oil window sample, the Vaca Muerta oil window sample as an Eagle 

Ford oil window sample, the Point Pleasant sample as a Duvernay sample, and the Duvernay 

sample as a Point Pleasant sample, indicating that the trained 2-layer 16, 16-filters network 

detects some similarities between these formation pairs. 

I show a misclassified Vaca Muerta oil window sample and its heatmaps obtained from 

the 2-layer 16, 16-filters trained CNN shown in Fig. 3.14. As shown in Fig. 3.14(b), the 

network predicts this Vaca Muerta oil window image with over 50% probability of being an 

Eagle Ford oil window sample, and a slightly lower probability of it being a Vaca Muerta oil 

window sample. I also show the heatmaps obtained using the same Vaca Muerta oil window 

image, as shown in Fig. 3.14(c). Within the 1st convolutional layer of the 2-layer network, the 

trained CNN picks feature along the boundaries of the organic and inorganic material. The 

heatmap from the 2nd convolutional layer shows the organic matter to be a significant feature 

for the network as shown in Fig. 3.14(d).  



  101 

 

 

 

Fig. 3.14 - (a) The Vaca Muerta oil window image input to the 2-layer 16, 16-filters network is misclassified as an Eagle 
Ford oil window sample, (b) the model predicts the image with over a 50% probability being an Eagle Ford oil window 

sample, (c) heatmap output from the 1st convolutional layer, (d) heatmap output from the 2nd convolutional layer. 

(a) 

(b) 

(c) (d) 
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Fig. 3.15 - Confusion matrix of the 5-layer 32, 64, 64, 96, 96-filters CNN trained on 50nm/px resolution dataset achieves 
a total accuracy of 96%. 

In contrast, the deepest and broadest 5-layer 32, 64, 64, 96, 96-filters model achieves 

96% total accuracy, and fewer off-diagonal elements can be observed as shown in Fig. 3.15 

compared to a shallower 2-layer 16, 16 filters network. It achieves in excess of 90% recall for 

each formation except a few Eagle Ford oil window and Point Pleasant samples which are 

misclassified as the Vaca Muerta oil window and Duvernay samples, respectively. The 

misclassified pairs are common to all the shallow, modest, and deep networks, indicating 

similar microstructures. As Knaup (2019) points out, this is important information because 
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microstructural similarities can potentially be exploited to apply learnings from one 

formation/play to the other.  

 
 

 

 

 

 

Fig. 3.16 - (a) The Vaca Muerta oil window image input to the 5-layer 32, 64, 64, 96, 96-filters network is misclassified 
as an Eagle Ford oil window sample, (b) the model predicts the image with a 100% probability being an Eagle Ford oil 

window sample, (c) heatmap output from the 1st convolutional layer, (d) heatmap output from the 3rd convolutional 
layer, (e) heatmap output from the 5th convolutional layer. 

(a) 

(b) 

(c) (d) (e) 
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I show a misclassified image sample from the formation (Vaca Muerta oil window) 

with the highest misclassification rate when tested on the 5-layer 32, 64, 64, 96, 96-filters in Fig. 

3.16(a). The trained network is 100% confident this is an Eagle Ford oil window sample as 

shown in Fig. 3.16(b). I show the corresponding heatmaps obtained with the same Vaca Muerta 

oil window image fed into the 5-layer 32, 64, 64, 96, 96-filters trained CNN. As shown in Fig. 

3.16(c), in the shallow 1st convolutional layer, the trained CNN picks a few of the boundaries 

of the inorganic matrix. The organic matter is then seen to become important in the 3rd layer as 

shown in Fig. 3.16(d). All the features then combine into the last convolutional layer (the 5th 

layer) as shown in Fig. 3.16(e), where non-intuitive large-scale features are considered 

significant. Again, this misclassification underscores the petrophysical similarities between the 

Vaca Muerta oil window and the Eagle Ford oil window. 

 

3.6 50nm/px Resolution: Shallow vs. Deep Network Performance 

 

Fig. 3.17 - 3D bar chart showing the accuracy of the CNNs in varying depth and breadth. The 2-layer 16, 16-filters CNN 
in the white circle is sufficient for the dataset at 50nm/px resolution, which provides over 90% accuracy. 

The composite test results are shown in a 3D bar chart in Fig. 3.17. The x-axis refers to the 

number of filters (breadth), the y-axis refers to the number of layers (depth), and the z-axis 
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refers to the accuracy of each network. We can observe that a 2-layer 16, 16-filters CNN at 

50nm/px provides a very satisfactory accuracy of over 90%.  

Looking at the 1-layer network models, it is clear that simply increasing the model breadth 

does not lead to high prediction accuracies, although they are acceptable. On the other hand, 

simply increasing the depth also limits filter performance.  

A judicious choice of filter width and depth is necessary, and Fig. 3.17 shows that a 

moderate depth of 2 layers with a wide filter diversity provides over 90% accuracy.  

 

Fig. 3.18 - (a) An SEM image from Vaca Muerta oil window, (b) heatmap output from the 2-layer 32, 64-filters network, 
(c) heatmap output from the 3-layer 32, 64, 96-filters network. 

There are a few cases where the shallow and modest networks both correctly identify 

the source of the image. Fig. 3.18 is such an example, but the significant features selected by 

the network are quite different. The 2-layer 32, 64-filters network picks a few small-scale 

features including micro-fractures and organic matters, meanwhile, the 3-layer 32, 64, 96 filters 

network non-intuitively selects a large areal proportion of the image.  

(a) (b) (c) 
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Fig. 3.19 - (a) An SEM image from La Luna, (b) heatmap output from the 1-layer 1-filter network, (c) heatmap output 
from the 2-layer 32, 64-filters network, (d) heatmap output from the 5-layer 32, 64, 64, 96, 96-filters network. 

There are a few cases where the shallow and modest networks misclassify an image 

while a deeper network makes the right decision. Fig. 3.19 is such an example where the 1-

layer 1-filter network misclassifies a La Luna image as a Leonard Avalon sample by picking 

small-scale features including micro-fractures as shown in Fig. 3.19(b). In addition, the 2-layer 

32, 64-filters network misclassify the same La Luna image as an Eagle Ford gas window 

sample as shown in Fig. 3.19(c). The deeper 5-layer network, on the other hand, makes the 

right decision as shown in Fig. 3.19(c).  

 

3.7 Comparison between the 50nm/px and the 25nm/px with 22 Formations 

In the second part of this chapter, I test the same model architectures on a 25nm/px resolution 

(3x3µm field-of-view) dataset sourced from the same twenty-two formations mentioned earlier. 

In the previous chapter, although my hypothesis was that a smaller field-of-view would 

confound SEM image classification, I report that the models trained on the 10nm/px images 

marginally outperformed those trained on the 25nm/px images. The study was restricted to 8 

plays and needs more exploratory analyses; however, these preliminary results appear to 

indicate that the key features for identification are more commonly in the range of 10nm/px 

resolution compared to 25 nm/px resolution.  

(a) (b) (c) (d) 
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Because the dataset is restricted at 10nm/px resolution, the highest resolution I can 

adopt is 25 nm/px. The raw grayscale SEM images from 22 plays in various pixel sizes shown 

in Table 3.1 are rescaled to 25nm/px resolution and then sliced to 127x127 pixels without 

overlap, equivalent to a 3x3 µm field-of-view as shown in Fig. 3.20. 

   

Fig. 3.20 - Example of a raw SEM image from Alum with 10nm/px resolution. It is rescaled to 25nm/px resolution and 
sliced to 127x127 pixels size to fit into the model. The left figure is the raw image; the right figure is one of the 

rescaled and sliced images for CNN model training. 

Table 3.6 shows the detailed information of input images from each play. The input 

images from 22 plays are split into a training set, a validation set, and a testing set. As 

mentioned earlier, there are 840 images per formation and a total of 18480 images to create a 

balanced training set for training; 180 images per formation and a total of 3960 images for 

validation; and a total of over 400000 images for testing to assess model performance. Twenty 

example images in the 25nm/px resolution dataset are shown in Fig. 3.21. 

3x3 µm field-of-view 
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Table. 3.6 - 25nm/px resolution (3x3 µm field-of-view) SEM image information of 22 plays. 

Play Resolution (nm) Bit Depth
# of images
for training

# of images for
validation

# of images
for testing

Haynesville 25 8 840 180 24732
Wolfcamp 25 8 840 180 14279

Alum 25 8 840 180 21780
Montney 25 8 840 180 24732

Eagle Ford Oil 25 8 840 180 24732
Eagle Ford Gas 25 8 840 180 24732
Avalon/Leonard 25 8 840 180 24732
Vaca Muerta Oil 25 8 840 180 24732
Vaca Muerta Gas 25 8 840 180 24732

Duvernay 25 8 840 180 21780
Osage 25 8 840 180 21780

La Luna 25 8 840 180 3030
Kimmeridge 25 8 840 180 24732

Point Pleasant 25 8 840 180 21780
Green River 25 8 840 180 16380

Horn River Evie 25 8 840 180 16380
Collingwood 25 8 840 180 6636

Marcellus 25 8 840 180 74700
Woodford 25 8 840 180 180

Utica 25 8 840 180 24732
Niobrara 25 8 840 180 24732
Barnett 25 8 840 180 24732
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Fig. 3.21 - Twenty grayscale SEM images from 22 plays for play identification with 25nm/px resolution (3x3 µm field-of-
view). 

I present the confusion matrices corresponding to two high-accuracy models (2-layer 

16, 16-filters) trained separately on 50nm/px and 25nm/px resolution datasets in Fig. 3.22. The 

models achieve ~ 91% accuracy when tested with comparable recall values achieved for each 

formation. As expected, both networks incorrectly classify a few of the Eagle Ford oil window 

samples as the Vaca Muerta oil window samples, the Vaca Muerta gas window samples as the 

Eagle Ford oil window samples, the Duvernay samples as the Point Pleasant samples, and the 

Point Pleasant samples as the Duvernay samples. Interestingly, the network trained on the 
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25nm/px resolution dataset incorrectly classified few Montney samples as Vaca Muerta gas 

window samples and a few of the Green River samples as Horn River Evie samples. The 

50nm/px made the right decision with these plays indicating that a smaller field-of-view 

(increasing resolution) may limits the availability of larger-scale features for identification of 

the play.  

 

(a) 50nm/px resolution 
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Fig. 3.22 - Comparison of confusion matrix corresponding to the 2-layer 16,16 filters CNN trained on (a) 50nm/px 
resolution dataset with a total accuracy of 91%, (b) 25nm/px resolution dataset with a total accuracy of 91%. 

The deepest and broadest 5-layer 32, 64, 64, 96, 96-filters model achieves a comparable 

96% and 95% total accuracy on 50nm/px resolution and 25nm/px resolution dataset 

respectively. Both networks still misclassify a few of the Eagle Ford oil window samples as 

the Vaca Muerta oil window samples, a few of the Vaca Muerta gas window samples as the 

Eagle Ford oil window samples, a few of the Duvernay samples as the Point Pleasant samples, 

and a few of the Point Pleasant samples as the Duvernay samples as shown in Fig. 3.23. It 

indicates these formation pairs may have similar microstructures that cannot be resolved by 

(a) 25nm/px resolution 
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both modest and deep CNNs. Moreover, even with 5-layers, the network trained on 25nm/px 

dataset still misclassified few Montney samples as Vaca Muerta gas window samples, and few 

Green River samples as Horn River Evie samples, indicating a smaller field-of-view 

(increasing resolution) impairs the classification of these formation pairs. 

 

(b) 50/nm resolution 
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Fig. 3.23 - Comparison of confusion matrix corresponding to the 5-layer 32, 64, 64, 96, 96-filters CNN trained on (a) 
50nm/px resolution dataset with a total accuracy of 96%, (b) 25nm/px resolution dataset with a total accuracy of 95%. 

(b) 25/nm resolution 
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Fig. 3.24 - Comparison of the accuracy for each model trained on 25nm/px resolution dataset and 50nm/px resolution 
dataset with 22 formations. 

I then compare the performance of each model trained on 50nm/px resolution (6x6 µm 

field-of-view) dataset and 25nm/px resolution (3x3 µm field-of-view) dataset using the 3D bar 

chart as shown in Fig. 3.24. More detailed test results for the 25nm/px resolution dataset with 

22 formations are shown in Appendix Fig. A11 and Fig. A12. The bar charts show comparable 

performances overall. 

 

Fig. 3.25 - Comparison of the training time in seconds for each model in trained on 25nm/px resolution dataset and 
50nm/px resolution dataset with 22 formations. 

I then show the training time of each model trained on 50nm/px resolution (6x6 µm 

field-of-view) dataset and 25nm/px resolution (3x3 µm field-of-view) dataset using the bar 

chart as shown in Fig. 3.25. As mentioned previously, the x-axis refers to the number of filters 
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(breadth), the y-axis refers to the number of layers (depth), and the z-axis refers to the training 

time of each network in seconds. The deepest and broadest network still takes the longest time 

to train at both resolutions with a similar accuracy as a simpler model, which indicates that 

deeper networks are likely not necessary for the classification task outlined here.  

From the CNN results trained on 25nm/px resolution (3x3µm field-of-view) and 

50nm/px resolution (6x6µm field-of-view) dataset, I can conclude that: 

• At both 25nm/px and 50nm/px resolution, a diversity of filters is essential because deep 

networks with limited breadth show poor performance. 

• 1-layer networks with wide breadth show poor performance. 

• For both datasets, a far simpler 2-layer 16, 16-filters network is sufficient for formation 

identification. The architecture of the network is shown in Fig. 3.26. 

• For the images tested, we obtain similar accuracies for 25nm/px and 50nm/px 

resolution images. Overall, 25nm/px resolution captures several of the important 

features except for a few formation pairs as mentioned earlier. 

• Point Pleasant and Duverney samples, Eagle Ford oil window and Vaca Muerta oil 

window samples confound all CNNs irrespective of network complexity at both 

25nm/px resolution and 50nm/px resolution. 

• At 25nm/px resolution, the microstructure of Montney and Vaca Muerta gas window 

samples, and the Green River and Horn River Evie samples may be similar. 
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Fig. 3.26 - 2-layer 16, 16 filters network architecture. 
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3.8 Comparison between the 25nm/px 8 Formations and the 22 Formations  

 

Fig. 3.27 - Comparison of the accuracy for each model trained on 25nm/px resolution dataset with 22 formations, and 
with 8 formations. 

In this section, I investigate the sensitivity of classification accuracy to the number of classes. 

In the previous chapter, I investigated the performance of various CNNs trained on a 25 nm/px 

dataset from 8 plays. In this chapter, the dataset is extended to 22 plays. The accuracy of the 

various models corresponding to both datasets is shown in a 3D bar chart in Fig. 3.27.  

1-layer models tend to do just marginally better with fewer classes to identify. However, 

moving to 2 layers and beyond, the accuracies are quite comparable. In other words, the 

necessary filter complexity is largely independent of the number of classes/labels to be 

identified. 
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Fig. 3.28 - Comparison of the training time in seconds for each model trained on 8 formations dataset and 22 

formations dataset at 25nm/px resolution. 

I then compare the training time of each model trained on 8 formations and 22 

formations at 25nm/px resolution (3x3 µm field-of-view) using the 3D bar chart as shown in 

Fig. 3.28. The dataset with images from 8 plays has a total number of 6720 training images, 

and the dataset with images from 22 formations has a total number of 18480 training images. 

Fig. 3.28 clearly shows that as the number of images increases, the training time significantly 

increases. As mentioned previously, I expect a linear increase in training time with increases 

in training data. 

In terms of the confusion matrices, I compare the 5-layer 32, 64, 64, 96, 96-filters 

networks trained on 25nm/px resolution images from eight formations and from twenty-two 

formations in Fig. 3.29. Both networks misclassify a few of the Point Pleasant samples as 

Duvernay samples and a few of the Green river samples as Horn River Evie samples, regardless 

of the number of classes to be identified.  
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 (a)  25nm/px resolution with 8 formations 
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Fig. 3.29 - Confusion matrix of the 5-layer 32, 64, 64, 96, 96-filters CNN trained on (a) 25nm/px resolution 8 formations 
dataset with a total accuracy of 96%, (b) 25nm/px resolution 22 formations dataset with a total accuracy of 95%. 

  

(b)  25nm/px resolution with 22 formations 
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Chapter 4: Conclusions 

In this study, I conclude that: 

• For the 10nm/px, 25nm/px, and 50nm/px resolution datasets, both the diversity of 

filters and depth are essential irrespective of the number of categories presented.  

• For 10nm/px, 25nm/px, and 50nm/px resolution datasets, either increases in filter 

width/diversity or increases in depth do not provide measurable benefits beyond a 

specified limit. For all datasets considered, no more than a 2-layer network is 

essential.  

• The accuracy of classification is largely independent of the number of classes. I 

obtained comparable accuracies from models trained on the 25nm/px 8 plays dataset 

and the 25nm/px 22 plays dataset.  

• The optimal resolution is 50nm for each play, except Point Pleasant and Duvernay 

samples with an optimal resolution of 10nm.  

• In most models considered, the CNN confounded Point Pleasant and Duverney 

samples and Eagle Ford oil window and Vaca Muerta oil window samples indicating 

that at 25nm/px and 50nm/px resolution, there are similarities in these plays. EDX 

images, which include mineralogy-related information, can potentially aid in 

reducing the rate of misclassification. Point Pleasant samples are known to have 

chlorite, while the Duvernay is largely chlorite free.  

• Significant features between Green River samples and Horn River Evie samples are 

resolvable at 50nm/px resolution, however, they are unresolvable at 25nm/px 

resolution and 10nm/px resolution. Several images from this formation pair at 

10nm/px resolution are characterized by white noise and it appears that the CNN is 

recognizing this white noise as common to both plays, which exacerbates the 

misclassification problem. There are potentially two methods to address this: Adding 
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white noise to all images to allow the CNN to focus on unique microstructural 

features to add classification, or de-noise the images. De-noising can remove some 

important features if they are at the scale at which the noise is present. I did not test 

these effects in this work. 

• The training time significantly increases as the number of images increases and as 

the complexity of the CNN increases. I obtain a longer training time for the 25nm/px 

22 plays dataset with a total number of 18480 training images, compare with the 

25nm/px 8 plays dataset with a total number of 6720 training images.   
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Appendix 

 

 

 

Fig. A1 - Shallow vs. deep network performance on 25nm/px resolution (3x3 µm field-of-view) dataset with 8 plays. 



  131 

 

Fig. A2 - Shallow 1-layerp network performance on 10nm/px resolution (1x1 µm field-of-view) dataset with 8 plays. 

 

 

 

 

Fig. A3 - Shallow vs. deep network performance on 10nm/px resolution (1x1 µm field-of-view) dataset with 8 plays. 
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Fig. A4 - Left figures are original 50nm/px resolution (6x6 µm field-of-view) SEM images, right figures are heatmaps 
output from the 1 layer, 4 filter model with 22 plays. 

 

Fig. A5 - Left figures are original 50nm/px resolution (6x6 µm field-of-view) SEM images, right figures are heatmaps 
output from the 1 layer, 4 filter model with 22 plays. 
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Fig. A6 - Left figures are original 50nm/px resolution (6x6 µm field-of-view) SEM images, right figures are heatmaps 
output from the 1 layer, 4 filter model with 22 plays. 

 

Fig. A7 - Left figures are original 50nm/px resolution (6x6 µm field-of-view) SEM images, right figures are heatmaps 
output from the 1 layer, 4 filter model with 22 plays. 
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Fig. A8 - Left figures are original 50nm/px resolution (6x6 µm field-of-view) SEM images, right figures are heatmaps 
output from the 1 layer, 4 filter model with 22 plays. 

 

Fig. A9 - Left figures are original 50nm/px resolution (6x6 µm field-of-view) SEM images, right figures are heatmaps 
output from the 1 layer, 4 filter model with 22 plays. 
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Fig. A10 - Shallow vs. deep network performance on 50nm/px resolution (6x6 µm field-of-view) dataset with 22 plays. 

 
Fig.  A11 - Shallow network performance on 25nm/px resolution (3x3 µm field-of-view) dataset with 22 plays. 
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Fig. A12 - Shallow vs deep network performance on 25nm/px resolution (3x3 µm field-of-view) dataset with 22 plays. 

  


