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Abstract

During the event of an earthquake, motion-sensitive equipment inside a building can be

protected from seismic disturbance using a floor isolation system (FIS). Its behaviour

is assumed linear when it displaces within the allowable capacity of its seismic gap

and nonlinear when it displaces beyond, resulting in an impact between the FIS and

the displacement limit, which can be augmented with a shock absorber. This induced

nonlinearity may create a non-negligible dynamic coupling between the primary struc-

ture (PS) and the FIS, which can possibly be tuned to reduce the PS responses during

strong earthquakes. This research aims to evaluate the performance of the FIS as a vi-

bration isolator when subjected to low-intensity earthquakes (i.e., before impact occurs)

and as a vibration absorber when subjected to high-intensity earthquakes (i.e., after im-

pact occurs). Such a FIS is termed dual-mode vibration isolator/absorber system whose

quantities of interest concern peak FIS acceleration and peak PS interstory drift when

evaluating the isolation performance and the absorption performance, respectively. Two

approaches are used to realize and evaluate the FIS’s dual behaviour. A probabilistic

approach is based on a numerical simulation that uses a nonlinear reduced order model

to investigate the FIS performance when subjected to a suite of synthetic ground mo-

tions at various hazard levels, as well as to optimize some controlling parameters via

two competing objective functions. An experimental approach is based on a lab-scale

experiment to study the FIS performance when attached to the second story of the PS

that is subjected to four historic ground motions. The data has shown promising result

that suggests the dual performance of the FIS.
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Chapter 1

Introduction

1.1 Background and Motivation

During a seismic event, the intensity of a ground motion (GM) plays an important role

in determining the damage state of a structure. For a high intensity disturbance, the GM

can cause irreparable damage to structural members, potentially resulting in collapse. In

such a scenario, the priority course of action would be to save lives of the building’s oc-

cupants. Mitigating structural responses during an earthquake can be achieved through

a base isolation system, which is detailed in later sections. During a small to moder-

ate disturbance, the ground motion of an earthquake may not cause the collapse of a

building but could potentially damage expensive and mission-critical equipment inside

the building, disrupting business operations. This may include the computers in data

centers, displays in a museum, and much more. Therefore, if a structure is predicted

to be subjected to this type of GM, it can be more economical to focus the engineering

design on mitigating the response of such sensitive contents rather than the entire build-

ing. Such mitigation can be achieved through a number of methods: (1) isolating the

base of an entire building (Konstantinidis and Nikfar, 2015; Shi et al., 2014; Chen et al.,

2016; Ryan et al., 2016), (2) isolating individual objects (Baggio et al., 2015; Tsai et al.,

2010; Harvey et al., 2014; Calhoun et al., 2019; Casey et al., 2018; Harvey and Gavin,

2013), or (3) isolating a raised floor of the structure that objects are placed on (Lambrou

and Constantinou, 1994; Hamidi and El Naggar, 2007; Ismail et al., 2009; Gidaris et al.,
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2016; Liu and Warn, 2012). The scope of this research is limited to the third method.

Seismic base isolation is a method of elongating the fundamental period of a struc-

ture by placing isolation devices at the base of a building to decouple it from the ground

(Warn and Ryan, 2012). This results in acceleration reduction of structural components

during an earthquake. Similar to base isolation system, a floor isolation system (FIS)

isolates the objects from the floor so that the transmission of the floor motion to the ob-

jects can be mitigated. Another technique of vibration control can be achieved through

vibration absorbers. These devices absorb the vibrational energy of the building and

dissipate it to a higher order mode of the structure. Vibration absorbers and FISs work

as secondary systems attached to the primary structure (PS) to absorb the vibrational

energy of the PS and isolate building contents from the motion of the building, respec-

tively.

Seeing the potential in seismic mitigation of both the vibration absorbers and iso-

lation systems, an idea has been recently proposed to combine the two systems into a

single dual-mode vibration isolator/absorber system (Harvey et al., 2018). This study

had only shown that such a device proves effective for mitigating the response of a

harmonic base excitation, but did not do so for seismic. Therefore, this research aims

to fill this gap by studying the combined system to mitigate seismic response due to

a moderate earthquake to protect building contents and passively adapt to protect the

PS under strong earthquakes. To do so, different intensity level earthquakes have been

considered (Tehrani and Harvey, 2019) — service level earthquake (SLE), design ba-

sis earthquake (DBE), and maximum considered earthquake (MCE). SLE is used in

relation to the vibration isolator, whereas DBE and MCE are used in the context of vi-

bration absorber due to their higher excitation intensities relative to the SLE. Therefore,

this research focuses on evaluating the performance of a nonlinear dual-mode vibration

isolator/absorber system subjected to seismic excitation.
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1.2 Literature Review

This section provides insights of the past and current research findings relevant to im-

portant vibration isolator and absorber concepts that are part of this research.

1.2.1 Raised Floor Isolation System (FIS)

The FIS has been a topic of research and discussion for many years now. It has proved to

be an effective technique in providing protection to motion-sensitive building contents.

Since the FIS decouples the contents from the floor, the transmission of the acceler-

ation from the floor to the contents can be mitigated. There are many types of FISs

that have been proposed and tested, including friction pendulum system (FPS), roll-n-

cage (RCN) isolation system, sliding concave foundation (SCF) system, and variable

frequency pendulum isolator (VFPI), among others. A few of these are described here.

In research conducted by Lambrou and Constantinou (1994), the FPS as shown in

Figure 1.1 has been studied. The bearing consists of a concave spherical surface faced

with stainless steel and an articulated slider. With a radius of curvature of 22 in., the

isolation system has a period of 1.5 sec and an allowable displacement of 3.5 in. Three

different isolation configurations using FPS bearings were installed on a raised floor,

and a cabinet functioning as the computer replica was placed on the raised floor to be

tested. In the first configuration, only high friction FPS bearings were used for testing.

Fluid viscous dampers were added to the system of lower friction FP bearings during

testing of the second and third isolation configurations to enhance the system’s ability

to dissipate energy. The bearing was tested by installing it between the raised floor and

a shake table, with the spherical FPS surface facing down. The results showed that

there was a substantial reduction in the response of a generic computer cabinet on top

of the isolated floor compared to a non-isolated system. The authors concluded that the

isolation bearings having a period of 3 sec, damping ratio of 50%, and coefficient of
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Figure 1.1: FPS bearing. Source: Lambrou and Constantinou (1994)

friction of 0.05 were the most effective in reducing the responses.

In Ismail et al. (2009), the study of an innovative isolation bearing for motion-

sensitive equipment using roll-n-cage (RNC) isolation system as shown in Figure 1.2

was discussed. The RNC was proposed and tested using the raised floor approach. The

RNC isolation bearing consists of a stiff rolling body placed between two stiff circu-

lar plates attached to the isolated object and the base floor (Ismail et al., 2009). Three

cases — (a) isolated floor on fixed base structure, (b) non-isolated equipment on RNC

isolated base structure, and (c) non-isolated equipment on fixed-base structure — were

tested under harmonic ground motions and actual earthquakes. The results showed a

substantial reduction in the acceleration of the equipment in the isolated case compared

to the non-isolated equipment.

Another floor isolation approach that has increasingly gained popularity is a sliding

isolator. Hamidi and El Naggar (2007) investigated the performance of sliding concave

foundation (SCF) system as shown in Figure 1.3 for a raised floor in the PS that was sub-

jected to harmonic and earthquake excitations. The SCF’s performance was analyzed

based on the system’s response to the structure’s excitation. There was a reduction in

the equipment acceleration even near the fundamental frequency of the PS. The results

showed that the increase in the radius of curvature of the SCF’s sliding surface decreases
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Figure 1.2: RNC isolator. Source: Ismail et al. (2009)

the acceleration response for harmonic excitation. However, the effect of the radius of

curvature was shown to be negligible for earthquake excitations. The overall result of

the study indicated that the SCF isolation system is an effective technique for a raised

floor system.

Pranesh and Sinha (2000) proposed and experimentally tested a sliding isolation

system called variable frequency pendulum isolator (VFPI). This system has proved

to behave more effectively than a conventional FPS in resisting earthquake of varying

intensities. The experimented result of the VFPI showed that the system is effective at

all intensities of excitations which, in this case, refer to El Centro GM scaled by a factor

of 0.5 (low intensity), 1.0 (medium intensity) and 2.0 (high intensity). Moreover, the

system has been observed to act as both a base isolator and an energy dissipator.

In this section, a few devices that have been used as FISs were discussed. In these

studies, good isolation performance was achieved through proper tuning of the system.

However, none of these studies considered the PS’s response in the design of the FIS.

Therefore, the next section will discuss methods of mitigating PS’s responses subjected
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Figure 1.3: SCF on a raised-floor system in a multi-story structure. Source: Hamidi and El Naggar
(2007)

to seismic GM.

1.2.2 Vibrational Energy Absorbing System

Structural responses of the PS caused by ground excitations can be mitigated using a

vibration energy absorber. As the name implies, this device absorbs (or redistributes)

the structure’s vibrational energy to help reduce the building responses.

One traditional method to achieve the structure’s energy absorption is via the use of

tune mass damper (TMD) (Den Hartog, 1985). In Housner et al. (1997), a number of

passive energy dissipation control techniques have been discussed. Among those is a

TMD which is a type of dynamic vibration absorber (DVA). TMD is a linear approach
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to passively dissipate energy of PS consisting of a secondary mass that is about 1 per-

cent of the structure’s total mass. It has been well established that TMD is effective in

reducing wind-induced structural vibration. In term of seismic control, recent research

findings have shown that TMD is most effective for a lightly damped structure and when

the structure’s frequency is close to the GM’s frequency (Murudi and Mane, 2004). Due

to the limitation on suppressing broader frequency range, non-linear DVAs are preferred

because they can overcome the limitation set by linear DVAs. One type of passive non-

linear DVA is the vibro-impact absorber (Nucera et al., 2007). This vibration absorbing

system pumps energy when the system experiences impact and dissipates it. This de-

vice can effectively dissipate energy from PS and redistribute it to higher-order modes

of the structure.

A very common type of DVA is nonlinear energy sink (NES) devices. They have

been numerically and experimentally proven to be effective systems in absorbing and

dissipating energy of the PS under seismic excitation (Wang et al., 2015a; Luo et al.,

2014b). Many types of NES devices have been proposed and studied.

In Wang et al. (2015b), a new type of NES called “track NES” was proposed, with

configuration and free body diagram as shown in Figure 1.4. The performance of the

track NES was compared to that of a locked system, linear TMD, and Type I NES

where it is defined as a single degree of freedom (DOF) NES with nonlinear stiffness

and linear damping attachment to the structure (Wierschem et al., 2012). The com-

parison is based on effective damping and story drift under impulse-like and seismic

excitations. As expected, the locked system exhibited the highest displacement and the

least energy absorption among the four. The results also showed that the track NES

had similar effects on response reduction as Type I NES and could transfer energy from

lower mode to the higher mode of the structure. Compared to in-tune TMD, the system

was not as effective against seismic excitation, but exhibited robustness against changes
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Figure 1.4: Track NES. Source: Wang et al. (2015b)

Figure 1.5: SSVI track NES. Source: Wang et al. (2016)

in structural stiffness. Investigated by the same authors, the single-sided vibro-impact

track nonlinear energy sink (SSVI track NES) was proposed and studied (Wang et al.,

2016). This system is designed by adding an impact stopper on one side of the NES

mass for the system, as shown in Figure 1.5, to provide nonlinearity by smooth nonlin-

ear force-distance relationship and discontinuity in restoring force. The experimental

results showed that the SSVI track NES is more effective than the track NES in reducing

responses and able to reduce peak PS displacement significantly.

In Nucera et al. (2007), the concept of a vibro-impact (VI) NES for mitigating seis-

mic response of a structure was introduced. They numerically simulated the response of

the system using four earthquakes — El Centro, Hachino, Kobe, and Northridge — in

the N-S direction. The results showed that VI NES generates a redistribution of energy

from lower to higher mode of the structure. Due to the requirement for large mass for

best performance, VI NES is more effective in transferring momentum when installed at

a lower floor. However, NES with smooth nonlinearity are more effective in absorbing
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Figure 1.6: Schematic design of the systems on the nine-story structure. Source: Luo et al. (2014b)

seismic energy when attached at a higher floor.

In a research conducted by Luo et al. (2014b), a large-scale experiment and nu-

merical simulation for seismic mitigation has been studied by combining a system of

different types of NES devices on a lab-scaled nine-story structure. Two Type I NESs

and one SSVI track NES were installed on the eighth and ninth floor as shown in Figure

1.6. The building was subjected to base excitation from the shake table that simulates

ground motion of three scaled historic earthquakes. The data exhibited the reduction

of both peak and root square mean values of the floor displacement, first-story column

strain and base shear. The test showed that the use of the two NES types combined is

more effective in suppressing floor acceleration and displacement compared to the case

of using SSVI NESs alone. This result indicated that the NES devices can be combined

to provide a very effective means of mitigating structural responses.

In this section, linear and nonlinear vibration absorbers were discussed. Nonlinear

systems exhibit greater robustness for broader frequency range of GMs compared to the

linear systems. By introducing impact, the devices work more effectively in reducing

the PS’s responses. Next, the concept discussed in Section 1.2.1 and this section will be
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Figure 1.7: Schematic of a dual-mode vibration isolator/absorber system

combined and discussed.

1.2.3 Combined System for Vibration Isolation/Absorption

According to the above sections, seismic isolation systems and vibration absorbers are

usually studied and considered separately until the idea of combining them into a single

system was proposed and experimentally investigated by Harvey et al. (2018). This

system is termed a “dual-mode vibration isolator/absorber system”. It was designed to

adapt the concept of isolation system during small to moderate disturbance to a vibration

absorber during larger disturbance amplitude. The latter was to be achieved via impact

at the surface of a metal stopper and the device when the system’s displacement capacity

exceeded the limitation. The proposed system was tested under harmonic excitation and

it showed a promising result in protecting sensitive equipment. However, the system had

not been tested and proved effective for seismic GMs.

Reggio and De Angelis (2014) have explored this concept as well but their studies

are limited to linear systems. Therefore, nonlinear behaviors of the combined primary-

secondary system under seismic excitation still requires further research.
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1.3 Summary

In this chapter, previously studied approaches to vibration mitigation of structures were

discussed. These included FISs to protect sensitive equipment and vibration absorbers

to reduce the response of the PS. Then, the concept of combining the two systems was

presented, yet have not been successfully proven to resist seismic excitation. There-

fore, this research aims to explore in greater depth the performance of the dual-mode

FIS, with a schematic representation shown in Figure 1.7, by using two approaches as

described in Chapter 2 and 3.
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Chapter 2

Probabilistic Design of a Dual-mode FIS*

2.1 Overview

Seismic isolation is a well-established strategy for suppressing and controlling the in-

ertial loads transferred to buildings and their contents (Naeim and Kelly, 1999; Warn

and Ryan, 2012). The basic premise behind seismic isolation is to elongate the natural

period, which results in larger displacements and smaller accelerations. This reduction

of acceleration results in uninterrupted operation of mission-critical equipment and less

downtime following an earthquake, which improves the resilience of the community

served (Anajafi and Medina, 2018a). To date, several approaches to protecting sensi-

tive yet vulnerable equipment or other valuable objects housed inside buildings have

been used: (1) base isolation of the entire building (Konstantinidis and Nikfar, 2015;

Shi et al., 2014; Chen et al., 2016; Ryan et al., 2016), (2) isolating an individual ob-

ject (Baggio et al., 2015; Tsai et al., 2010; Harvey et al., 2014; Calhoun et al., 2019),

and (3) isolating a group of objects (Casey et al., 2018) or a floor inside the building

(Lambrou and Constantinou, 1994; Hamidi and El Naggar, 2007; Ismail et al., 2009;

Gidaris et al., 2016; Liu and Warn, 2012). There has been a growing interest in the later

*This chapter is based upon work that is currently in press (Bin et al., nd). This was a collaborative
effort, with Ms. Bin taking the leading role in performing the numerical simulations, conducting the multi-
objective optimization, and writing the manuscript. The nonlinear reduced order modeling technique
was first proposed by Dr. Tehrani in his Ph.D. dissertation (Tehrani, 2019), and preliminary numerical
modeling of the PS-FIS system in MATLAB was performed by Ms. Nisa. Dr. Taflanidis provided input
on the Monte Carlo simulations and multi-objective optimization algorithms, as well as implementation
of the model in Simulink.
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two approaches—collectively termed secondary isolation systems hereinafter—due to

the relatively lower cost of implementation, as well as ease of application as a retrofit

strategy. Secondary isolation systems are intentionally detuned from the fundamental

frequency of the supporting building since decoupling of dynamic behavior is necessary

and essential for vibration isolation. Hence, a common assumption in the assessment

and design of secondary isolation systems is that the primary building structure and the

isolation system exhibit one-way interaction (Gidaris et al., 2016). Such an assump-

tion of negligible dynamic interaction is justified if the secondary isolation system is

detuned and its mass is sufficiently small (Igusa and Der Kiureghian, 1985; Chen and

Soong, 1988). The former condition is satisfied by design (see three sentences above),

but the latter condition may be invalidated for floor isolation systems (FISs) with large

mass ratios. Moreover, it should be noted that these conditions assume linear systems,

which is not true for most isolation system especially when impacts occur (see next

paragraph).

Isolation systems can perform extremely well when their displacement demands do

not exceed their displacement capacities. When an isolator’s displacement capacity is

insufficient to meet the demands of a disturbance, the performance of the isolator is

diminished because of impacts, giving rise to high acceleration responses in isolated

objects (Becker et al., 2017; Andreaus and De Angelis, 2020). Isolation systems can

be designed to reduce the likelihood of impacts by increasing displacement capacity

(Harvey and Gavin, 2014a; Calhoun et al., 2019) and/or by reducing displacement de-

mands (Harvey et al., 2014). The former may be cost prohibitive or infeasible due to

seismic gap limitations (Jia et al., 2014). The latter can be realized through supple-

mental damping (Kemeny, 1997; Harvey et al., 2014) or a displacement control region

at or near the displacement limit (Yang et al., 2020). Recently, a phased approach to

supplementing damping at large displacements had been proposed (Zargar et al., 2013;
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Rawlinson et al., 2015; Zargar et al., 2017), but displacement control regions are more

often associated with a stiffening effect (Soni et al., 2011; Lu et al., 2011). While sup-

pressing isolator displacements, this nonlinear stiffening effect will bring the secondary

isolation system’s period closer to that of the building, potentially coupling the primary

and secondary systems’ responses. Such stiffening effects are also activated during im-

pacts (Muthukumar and DesRoches, 2006). Non-smooth restoring forces caused by

impacts are accompanied by a scattering of the vibration energy into high-frequency

modes (Nucera et al., 2007), which is the basic premise behind nonlinear energy sinks

(NESs) (Luo et al., 2014a) discussed below.

An alternative solution for vibration mitigation is the vibration absorber or tuned

mass damper (TMD) (Gutierrez Soto and Adeli, 2013). A TMD consists of a secondary

mass that is connected to the primary structure through a spring and/or a damper. As

the name implies, the TMD is tuned to the natural frequency of the structure. The

application of a linear TMD is usually limited by its constant natural frequency. That

is, only one targeted mode (per TMD) can be considered for suppression. On the other

hand, nonlinear TMDs are able to be tuned for a broader frequency range in the vicinity

of the targeted frequency. Recently, nonlinear TMDs with stiffening behavior have

gained attention as energy pumping devices or NESs (Gourdon et al., 2007; Luo et al.,

2014b; Wang et al., 2020). Another disadvantage of (linear) TMDs is that they require a

relatively large mass. Some researchers have proposed using isolated floors (Xiang and

Nishitani, 2014; Engle et al., 2015; Anajafi and Medina, 2018b), stories (Ziyaeifar and

Noguchi, 1998; Reggio and De Angelis, 2015), or other massive components (Matta and

De Stefano, 2009) as TMDs, leveraging the mass that is already present in the structure

and requiring no additional weight (dead load). Whereas TMDs are more established

for reducing wind induced vibrations, TMDs with large mass (De Angelis et al., 2012)

and/or engineered nonlinearities (Wang et al., 2020) hold promise for seismic mitigation
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as well.

Both secondary isolation systems and vibration absorbers involve a secondary sys-

tem supported by the primary structure (PS), but these two approaches differ in their

function. Isolation systems protect the isolated objects, whereas vibration absorbers

protect the supporting PS. Other researchers have looked at using FISs for both vibra-

tion isolation and vibration absorption, but they have either not taken the PS response

into consideration in the design or assumed linear systems. For example, Reggio and

De Angelis (2013) modeled and tested a hysteretic FIS incorporating the coupling be-

tween the supporting structure and the FIS. The results of that study showed that the

FIS had an advantageous effect on the supporting structure’s response, even though

their dual-criteria focused only on the FIS response. In a follow-on study, Reggio and

De Angelis (2014) optimized the combined primary-secondary system performance,

this time including PS response criteria, but this analysis was performed on the lin-

earized system with a stochastic design process (i.e., assuming filtered Gaussian white

noise excitation and using response variance as a metric). Similarly, Anajafi and Medina

(2018b) designed partial mass isolation systems considering both PS and FIS responses,

but they likewise assumed a linear system, stochastic excitation, and root-mean-square

criteria. The problem with designing a FIS for both vibration isolation and absorption

in this way is that there is a trade-off between isolation performance and PS response

reduction, which is independent of the excitation intensity. Therefore, vibration iso-

lation performance will be sacrificed at service level earthquakes (SLEs) where it is

most essential for uninterrupted operation, and vibration absorption performance will

be sacrificed at design-basis earthquake (DBE) and up to maximum considered earth-

quake (MCE) where damage/collapse prevention of the PS is paramount. In this study,

these two concepts are merged in a nonlinear impact-based dual-mode vibration iso-

lator/absorber system. A single FIS acts as a vibration isolator when the PS motion
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Figure 2.1: Coupled PS-FIS system

is small and as a vibration absorber when the PS motion is large. The displacement-

dependent or phased transition is achieved by a stiffening nonlinearity or impact. Only

with a nonlinear system and a complementary multi-objective, risk-based design criteria

can such response-based adaptation be realized.

This chapter investigates the conceptual design of a nonlinear FIS that act as dual-

mode vibration isolator/absorber systems. In Section 2.2, a nonlinear reduced order

model (NLROM) is formulated for an elastic structure supporting a nonlinear FIS. This

NLROM is then used in a multi-objective design problem that is formulated in Section

2.3 to optimize the dual-mode FIS. An illustrative example is presented in Section 2.4,

including a parametric study to explore the effects of gap size and impact parameters

on the coupled PS-FIS response. Guidelines to the optimal tuning of the dual-mode

FIS based on a multi-objective, risk-based design utilizing a Latin hypercube sampling

and genetic algorithm are presented in Section 2.5 and 2.6 respectively, followed by

concluding remarks in Section 2.7.
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2.2 Mathematical Model of the Coupled PS-FIS System

2.2.1 Non-linear Reduced Order Model (NLROM) via Component

Mode Synthesis

Consider a building or primary structure (PS) supporting acceleration-sensitive equip-

ment on the jth level. To protect the equipment, a floor isolation system (FIS) is used

to isolate a portion of the jth level—either on a raised floor or isolated floor slab—as

shown in Figure 2.1. The isolated mass is given by m = µM j, where µ is the proportion

of the jth level’s total mass M j that is isolated. The PS is modeled by n degrees of

freedom (DOFs), represented by q(t) ∈ Rn, which may include lateral displacements,

vertical displacements, and rotations; the FIS is modeled by its lateral displacement d(t)

relative to the story level on which it is mounted. The dynamics of the coupled PS-FIS

system is given by the following n + 1 equations:

(M − mppT)q̈(t) + Cq̇(t) + Kq(t) = −(M − mppT)ιüg(t) + p fFIS (2.1a)

md̈(t) + fFIS = −mpT(q̈(t) + ιüg(t)) (2.1b)

where M, C, and K are the n × n mass, damping, and (linear-elastic) stiffness matrices,

respectively; ι is the n-dimensional influence vector that applies the horizontal ground-

motion acceleration, üg(t), to the lateral nodal displacements; p is the Boolean n-vector

identifying the FIS position in the PS; and fFIS ≡ fFIS(d(t), ḋ(t)) is the nonlinear isolator

force, coupling the PS and FIS, the form of which will be discussed in Section 2.2.2.

Note that the mass matrix M appearing in Equation (2.1a) represents the mass matrix

of the PS including the mass m to be isolated; it is written in this way to emphasize that

this formulation assumes that the total mass within the PS-FIS system is conserved.

Equation (2.1) represents the full coupled model of the PS-FIS system, including all

nonlinear interactions. To ease the computational burden of analyzing the full coupled

model [Equation (2.1)], the PS portion of the coupled model can be transformed into
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its modal coordinates while keeping the secondary system of equations in the nonlinear

reduced order model (NLROM). Transformation to the modal coordinates is performed

using r (� n) selected frequencies (ω1, . . . , ωr) and associated mode shapes (φ1, . . . ,φr)

of the PS, i.e., Kφi = ω2
i (M −mppT)φi. These r modes are selected based on the modal

participation factors Γi ≡ φ
T
i Mι to capture the modes with the highest contribution to

the lateral response (Tehrani et al., 2018). The selected mode shapes are assembled into

the reduced modal matrix Φr = [φ1, . . . ,φr] ∈ Rn×r. The responses of the PS is then

approximated by only these r modes:

q(t) ≈ Φrη(t) (2.2)

where η = [η1, . . . , ηr]T are the modal coordinates. Using the PS modes (or “component

modes”), Equation (2.1) can be approximated as follows:

M̂η̈(t) + Ĉη̇(t) + K̂η(t) = −Γ̂üg(t) + p̂ fFIS (2.3a)

md̈(t) + fFIS = −m(p̂Tη̈(t) + üg(t)) (2.3b)

where the condensed matrices and vectors are given by

M̂ = ΦT
r (M − mppT)Φr, Ĉ = ΦT

r CΦr, K̂ = ΦT
r KΦr, Γ̂ = ΦT

r (M − mppT)ι, p̂ = ΦT
r p

and the relation pTι = 1 (i.e., the FIS is attached at a horizontal DOF) has been applied.

Equation (2.3) represents the NLROM from component mode analysis, for which

the PS has been reduced to modal coordinates and the (nonlinear) coupling to the sec-

ondary FIS has been retained. Equation (2.3) is integrated to determine η(t) and d(t),

from which the PS response is reconstructed from Equation (2.2). The specific form of

of the nonlinear coupling force is described in the next section.
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Figure 2.2: Nonlinear force-displacement relationship assumed for the FIS force fFIS

2.2.2 Nonlinear FIS model

The phased FIS force is represented by fFIS. This force is comprised of a linear regime,

parameterized by stiffness k and damping coefficient c, up to a displacement of do.

Beyond do, the force-displacement relation changes. The specific form of the force

beyond do can be modeled considering different combinations of linear or nonlinear

spring and damping mechanisms (Zargar et al., 2013). In this study, a Kelvin impact

model (Muthukumar and DesRoches, 2006) is considered, and the FIS force takes the

following form:

fFIS ≡ fFIS(d(t), ḋ(t)) =

cḋ(t) + kd(t), |d(t)| 6 do

χcḋ(t) + kd(t) + (κ − 1)kd(t)[1 − do/|d(t)|], |d(t)| > do
(2.4)

where do, κ, and χ are the engagement displacement, stiffening parameter, and damping

parameter, respectively. Figure 2.2 presents the phased force-displacement relationship.

This model can represent either a harsh impact with a restraining wall (i.e., do = seismic

gap (Hughes and Mosqueda, 2020)) or a gap at which a supplemental device is activated

(e.g., dual-mode system (Tehrani and Harvey, 2019), such as a gap damper Zargar et al.

(2017)).

To better illustrate how the parameters κ and χ affect the phased force-displacement

relationship, the response of the FIS under harmonic displacement with increasing am-

plitude (Figure 2.3A) applied to the system is illustrated in Figures 2.3B and 2.3C for

damping parameter χ = 1 and 10, respectively, for various stiffening parameter κ. The
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Figure 2.3: Force-displacement relationships of the FIS under harmonic displacement with increas-
ing amplitude (A) for various stiffness parameter κ = 1, 50, and 100 and damping parameter χ = (B)
1 and (C) 10.

displacement is normalized by the engagement displacement do, and the force fFIS is

normalized by the linear restoring force at the engagement displacement (i.e., kdo). The

two values of the damping parameter considered correspond to no additional damping

at engagement (χ = 1) and 10 times more damping (χ = 10); these represent elastic and

inelastic “impacts,” respectively. By adjusting the stiffening parameter κ, the impact can

be more (κ = 100) or less (κ = 1) harsh. The effect of these parameters on the PS and

FIS responses will be explored later in greater detail.

2.3 Multi-Objective Design Problem Formulation

2.3.1 Response Quantities and Evaluation Criteria

In order to evaluate and optimize the PS-FIS performance, the evaluation criteria are

divided into two categories. The first category of the evaluation criteria is related to

the FIS response. For the FIS, the peak response quantities of interest are based on the

displacement d(t) across the isolation system and the total acceleration a(t) transmitted
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to the isolated equipment:

dmax = max
t
|d(t)| ≡ peak relative displacement of FIS (2.5a)

amax = max
t
|a(t)| ≡ peak total acceleration of FIS (2.5b)

Furthermore, let athresh denote a threshold acceleration limit state for the protected (iso-

lated) objects. Ideally, good vibration isolation performance (amax 6 athresh) with a low

occurrence of impacts (dmax < do) is observed for low-to-moderate intensity shaking

[i.e., service level earthquake (SLE)], at which uninterrupted operation of the equip-

ment is desirable. As such, the first evaluation criterion is given by

JFIS
accel = P[amax > athresh|SLE, x] ≡ FIS failure probability (2.6)

where P[·|SLE, x] is the probability conditional on the design variables x (discussed

later) under a SLE.

The second category of the evaluation criteria is related to the PS response. For the

PS, the peak response quantities of interest are based on the inter-story drift ratio δ j(t)

in the jth story and the roof drift ratio ∆(t):

δmax = max
j,t
|δ j(t)| ≡ largest peak inter-story drift ratio (2.7a)

∆max = max
t
|∆(t)| ≡ peak roof drift ratio (2.7b)

Ideally, good vibration absorption performance (i.e., reduced δmax) is realized at high

intensity shaking [i.e., maximum considered earthquake (MCE)], at which life safety

is of utmost concern, to achieve damage/collapse prevention of the PS. Therefore, the

second evaluation criterion is given by

JPS
drift = P[δmax > δthresh|MCE, x] ≡ PS failure probability (2.8)

where δthresh is a threshold inter-story drift ratio at which damage is expected. An addi-

tional response quantity is based on the total acceleration aPS(t) of the story level of the
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PS on which the FIS is installed:

aPS
max = max

t
|aPS(t)| ≡ peak total acceleration of story level of PS (2.9)

This quantity serves as a reference for determining the transmissibility reduction af-

forded by the FIS, i.e., TR = aPS
max/amax.

Note that, in this study, the response quantities and evaluation criteria are based

on peak responses, as opposed to norm-based metrics [i.e., root-mean squared (RMS)

responses]. While norm-based criteria are common in evaluating the performance of

TMDs and NESs (Fu and Johnson, 2011; Wang et al., 2015a; Anajafi and Medina,

2018b), the decision to use peak responses was made to avoid artificially exaggerating

the performance gains afforded by the dual-mode FIS, as peak responses are generally

of greater concern in seismic design.

2.3.2 Dual-mode FIS optimization

The response quantities and evaluation criteria defined in the previous section are used

to quantify the performance of a dual-mode FIS installed within a multi-story PS. To

reiterate from before, vibration isolation (amax 6 athresh) is desired at the SLE, and vi-

bration absorption (δmax 6 δthresh) is sought at the MCE. Ultimately, the mathematical

description for the multi-objective, risk-targeted design problem is as follows:

x∗ = arg min
x∈X

{
JFIS

accel, J
PS
drift

}
(2.10)

where the evaluation criteria JFIS
accel (Equation (2.6)) and JPS

drift (Equation (2.8)) depend on

the design variables x = [do, κ, χ]. This is to say that the PS properties (M, C, K) and

FIS linear parameters (m, c, k), as well as its location within the structure (p), are fixed

quantities. The admissible design space X is defined later for the illustrative example.

The solution of the multi-objective design problem involves evaluating the prob-

abilistic quantities of the evaluation criteria at two hazard levels, H ∈ {SLE,MCE}.
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These quantities can be estimated through Monte Carlo simulation using a suite of N

risk-targeted ground-motions ü(i)
g , i = 1, . . . ,N (see Section 2.4.2):

P[z > zthresh|H , x] ≈
1
N

N∑
i=1

Iz>zthresh(ü
(i)
g , x) (2.11)

where Iz>zthresh(ü
(i)
g , x) is the indicator function of failure, which equals to unity if the sys-

tem with parameters x subject to ground motion ü(i)
g fails [i.e., peak response quantity z

(here, amax or δmax) exceeds the defined threshold zthresh] and zero if it does not. To ad-

dress challenges in the optimization associated with the discontinuous characteristics of

the indicator function, and following recommendations of Taflanidis and Beck (2008),

this function is replaced with a lognormal distribution as follows:

Iz>zthresh(ü
(i)
g , x)→ Φ[ln(z/zthresh)/β] (2.12)

where Φ[·] is the standard Gaussian cumulative distribution function. The logarithmic

standard deviation β is taken to be sufficiently small (0.05 unless otherwise noted) to

not affect the optimal design but simply get better optimization behavior and/or per-

formance characterization (Taflanidis and Beck, 2008). The optimization is performed

in a random search pattern (see Section 2.5) in order to permit a better understand-

ing of the design variables and objective function characteristics on the desired passive

displacement-dependent transition from vibration isolation to vibration absorption. An

exhaustive parametric search, which is eased by the NLROM, is used to determine the

optimal Pareto front of the dominant designs that represent different compromises be-

tween the multi-objective criteria. A design is termed dominant, and belongs in the

Pareto front, if there is no other design that can simultaneously improve upon both

competing objectives. In the following sections, the results of the parametric study and

multi-objective design are illustrated for the 3-story benchmark building under earth-

quake loading.
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2.4 Illustrative Example

2.4.1 Description of the PS-FIS model considered

The 3-story seismically excited benchmark building (Ohtori et al., 2004) is adopted as

the PS for this study. This benchmark building, which is 11.89 m in elevation and

36.85 m by 84.87 m in plan, represents a typical design for Los Angeles, CA, and it

utilizes a steel perimeter moment-resisting frames (MRFs) as its lateral load-resisting

system. The structure is modeled using elastic Euler-Bernoulli beam elements with

a total of n = 45 DOFs. The masses of the structure are the same as those for the

benchmark structure (Ohtori et al., 2004), and the periods of the first three modes of

the PS model are 1.01, 0.33, and 0.17 sec. The FIS is taken to be located on either the

1st, 2nd, or 3rd story level of the PS, isolating µ = 1, 2, 5, 10 and 20% of the existing

floor mass (9.57 × 105, 9.57 × 105, or 10.4 × 105 kg, respectively). For each case, the

damping matrix C is determined based on an assumption of Rayleigh damping with 2%

damping in the first and second modes (ζ1 = ζ3 = 2%) (Ohtori et al., 2004) based on

the modal properties determined from Equation (2.1a), i.e., C = c1(M − mppT) + c2K.

The response of the PS-FIS system is shown in Figure 2.4 for a representative case

calculated using the full model (Equation (2.1)) and the NLROM (Equation (2.3)) with

varying number of retained modes. Going forward, three modes (r = 3) are retained

in the NLROM, which for this three-story building captures a majority of the response:

modal participating mass ratios of 82.8, 13.5, and 3.7% for the case of µ = 0 (i.e., no

FIS).

The FIS, which is modeled as a nonlinear SDOF system attached initially to the 2nd

level, is taken to have a natural period of 3 sec and damping ratio of 40% in the linear

regime (|d| 6 do). These values were selected to give a low probability of failure (JFIS
accel 6

2%) for a threshold acceleration of athresh = 0.3g (Gidaris et al., 2016; Liu and Warn,

2012; IBM, 2014) in the linear range. As previously noted, the impact parameters (κ and
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Figure 2.4: Comparison of responses calculated using the full PS model and those using nonlinear
reduced order models (NLROMs) with r = 3, 2, or 1 mode retained: FIS (µ = 5%, do = 20.3 cm,
κ = 50, and χ = 10) installed on the second level of PS subject to a MCE-level GM.

χ) and the gap (do) serve as the design variables and are varied in order to investigate

their effects on the performance of the PS-FIS system.

Assuming the FIS responds in the linear range, transfer functions for the response

quantities can be determined (see Appendix A). These transfer functions are shown in

Figure 2.5. From these transfer functions a few observations can be made. First, the FIS

is effective at reducing accelerations at forcing frequencies above 0.5 Hz (Figure 2.5B),

as desired and expected. Second, these reduced accelerations are associated with large

FIS displacements near PS resonance (Figure 2.5A), e.g., 30 to 40 cm of displacement

for a 1-Hz excitation with amplitude 0.1g (2.5 cm). Third, isolating a portion of the

second level’s mass has a small effect on the fundamental resonant frequency of the PS,

e.g., 3% increase in frequency for the largest mass ratio (µ = 20%); this is expected

because the FIS is sufficiently detuned from the PS and the mass ratios are relatively

small (Igusa and Der Kiureghian, 1985; Chen and Soong, 1988). Fourth, isolating a

portion of the second level’s mass has an effect on the PS response—both maximum

inter-story drift (Figure 2.5C) and roof drift (Figure 2.5D)—when compared to the PS

without isolation (µ = 0). This effect on the fundamental PS mode is more or less pro-

nounced when mass is isolated from, respectively, the third or first level (not shown). In

summary, these linear harmonic results show that there is an inherent benefit to isolating
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Figure 2.5: Transfer functions from ground acceleration to (A) FIS displacement dmax, (B) FIS
acceleration amax and story level acceleration aPS

max, (C) maximum inter-story drift δmax, and (D) roof
drift ∆max for varying isolated mass ratios: µ = 0 (no isolation), 5%, and 20%.

a portion of the second level’s mass, and the benefit to the PS is greater for higher mass

ratios. These results are corroborated for the seismic excitations discussed later.

2.4.2 Seismic excitations

In order to evaluate and design the dual-mode FIS, the PS-FIS system [Equation (2.3)]

is excited by a suite of earthquake ground motions (GMs). Fifty uniform-hazard GMs

are synthesized representing a 10% probability of exceedance in 50 years (DBE) for

a site in Los Angeles, CA for a site class D (firm soil) (Gavin and Dickinson, 2011).

These synthetic GMs were generated using a statistical model and are characteristic of

the suites of GM records (Foutch, 2000) developed for the SAC Steel Project (1994).

The 5%-damped acceleration response spectra for the historic and synthetic GMs are

presented in Figure 2.6. The individual spectra are presented, as well as their mean

and mean plus/minus one standard deviation. The synthesized GM records and spectra

shown in Figure 2.6 represent a DBE-level event. These GM records are scaled by

factors of 0.5 and 1.5 to represent SLE and MCE hazards, respectively (ASCE, 2017).
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ical study, including mean and one standard deviation.

2.4.2(a) A note on scalability

Although Equation (2.3) constitutes a nonlinear PS-FIS system, an important scaling

law still holds because of the specific form of the FIS force assumed in Equation (2.4).

Namely, the response of a PS-FIS system having a gap of do subject to excitation üg(t)

will be proportional—with constant of proportionality 1/λ—to the response of a dif-

ferent PS-FIS system having a gap of λdo subject to the scaled excitation λüg(t). This

of course assumes all other parameters are held constant, and the PS is linear elastic.

This scaling law will prove valuable in the parametric study (Section 2.4.4) because the

responses under the suite of DBE-scaled GMs for a range of gaps, say do ∈ [2.54, 76.2]

cm, can simply be scaled by 0.5 and 1.5 to generate results under the SLE- and MCE-

scaled GMs, respectively, for gaps of do ∈ [1.27, 38.1] and [3.81, 114.3] cm, respec-

tively. Likewise, this would be beneficial for enumerative techniques to the optimal

design, whereby a large parametric design space is exhaustively explored. In the multi-

objective design, evaluation of the fitness function [Equation (2.10)] for an individual

nevertheless requires two simulations—once at SLE and once at MCE—for the same

gap value. It may be possible to incorporate this scaling law into the framework using a

similar rationale, but doing so is outside the scope of this work.
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2.4.3 Baseline (linear) performance

In order to evaluate the performance of an FIS system as an isolator and absorber, it

is important to look at the baseline performances of the system as shown in Figure

2.7. These include the peak FIS displacement, peak accelerations, peak inter-story drift

ratio, and peak roof drift ratio for the linear PS-FIS system. The structural responses

of different mass ratios (1, 2, 5, 10 and 20%) are generated under DBE-scaled GMs.

Additionally, the case of no FIS in which the sensitive equipment is rigidly attached to

the structure is considered for comparison.

Empirical cumulative probabilities for each of the peak response quantities are illus-

trated in Figure 2.7. From 2.7A, it is apparent that higher mass ratios exhibit marginally

lower peak FIS displacements. Figure 2.7B shows two groups of lines: one representing

the peak acceleration amax of the FIS and another representing the peak acceleration aPS
max

of the second level of the PS on which the FIS is installed. The figure shows that, with

an FIS attached to the second level, the median acceleration of the building contents

can be dramatically reduced from 1.2g to 0.3g. In terms of acceleration, an increase in

mass ratio does not necessarily correspond to smaller accelerations. Figures 2.7C and

2.7D show a reduction in peak inter-story drift ratio δmax and peak roof drift ratio ∆max,

respectively, with an increase in mass ratio.

According to Figures 2.7C and 2.7D, the attachment of an FIS system to the second

level of the PS has shown promising result in mitigating the response of the PS under

linear motion. The average reductions in peak inter-story drift ratios, peak roof drift ra-

tios, and base shear are shown in Table 2.1. In this table, the percent reduction increases

with higher mass ratios. With a large mass ratio of 20%, median peak inter-story drift

and peak roof drift are reduced by 12.5 and 10.8%, respectively, when compared to the

case of no FIS (“Rigid”).

The result of these baseline performances serves as a basic measure to which the
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Figure 2.7: Empirical cumulative probabilities of peak responses—(A) FIS displacement, (B) FIS
and story level accelerations, (C) inter-story drift ratio, and (D) roof drift ratio—for a linear FIS of
varying mass ratio µ installed on the second level subject to DBE-scaled GMs

nonlinear cases will be compared to in the subsequent parametric study.

2.4.4 Parametric study

To illustrate the effects of the multi-functional FIS, some representative results are pre-

sented here for the case of µ = 5%, κ = 50, and χ = 10 with varying do. The effective-

ness of the dual-mode vibration isolator/absorber system is characterized by statistics of

the response quantities defined in Section 2.3.1. Figures 2.8 and 2.9 show the empirical

cumulative probabilities of these peak response quantities for systems with various gaps

do subject to GMs scaled to SLE and MCE, respectively.

2.4.4(a) Discussion of two cases: linear and do = 20.3 cm

In Figures 2.8 and 2.9, two cases are highlighted: the linear FIS (i.e., do → ∞, or

equivalently κ = χ = 1) and a FIS with a gap of do = 20.3 cm. These two cases are

discussed in detail here.
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Figure 2.8: Empirical cumulative probabilities of peak responses of PS-FIS systems with various
gaps do subject to SLE-scaled GMs: µ = 5%, κ = 50, and χ = 10. The two highlighted cases are the
linear FIS (do → ∞; —) and a nonlinear FIS with do = 20.3 cm (– – –)

Under the SLE-scaled GMs (Figure 2.8), peak displacements (Figure 2.8A) of the

linear FIS range from about 8 to 36 cm. For excitations in which dmax 6 20.3 cm

(about 80% of earthquakes), the two FISs perform identically, but diverge when the

displacement demand exceeds 20.3 cm, resulting in a spike in the peak FIS acceleration

(Figure 2.8B) up to about 2.5g. As a point of comparison, the acceleration threshold

athresh = 0.3g is indicated in Figure 2.8B. The results show that, for the FIS with do =

20.3 cm, good isolation performance (amax 6 athresh, i.e., sustained accelerations less

than the threshold acceleration) is achieved for about 80% of the SLE-scaled GMs. The

linear case always decreases the accelerations because impacts are not encountered;

however, this would require a gap of at least 36 cm. There is very little difference in the

cumulative probabilities of inter-story drift (Figure 2.8C) and roof drift (Figure 2.8D)
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Figure 2.9: Empirical cumulative probabilities of peak responses of PS-FIS systems with various
gaps do subject to MCE-scaled GMs: µ = 5%, κ = 50, and χ = 10. The two highlighted cases are the
linear FIS (do → ∞; —) and a nonlinear FIS with do = 20.3 cm (– – –)

in these two cases.

Under the MCE-scaled GMs (Figure 2.9), impacts (dmax > do = 20.3 cm; Figure

2.9A) are induced in 100% of earthquakes, with accelerations reaching nearly 10g (Fig-

ure 2.9B). There is a slight difference between the cumulative probabilities of inter-story

drift (Figure 2.9C) and roof drift (Figure 2.9D), with the impacting system (do = 20.3

cm) giving smaller peak drifts. To better illustrate this effect, the cumulative probability

of maximum peak inter-story drift is recast using the ratio δmax/δ
linear
max where δlinear

max is the

peak inter-story drift ratio for the PS-FIS with a linear FIS (i.e., do → ∞). This ratio

gives a metric for the reduction (< 1) or amplification (> 1) produced by the dual-mode

nonlinear FIS. Figure 2.10 shows the cumulative probability of this ratio, again high-

lighting the case of a FIS with do = 20.3 cm. Improved PS performance (δmax/δ
linear
max < 1)
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is observed in over 75% of earthquakes, with average and maximum drift reductions of

2% and nearly 8%, respectively.

2.4.4(b) Effects of gap do and mass ratio µ

The effect of the gap do on the peak responses are illustrated for a range of gaps in

Figures 2.8 and 2.9 and on the ratio of PS inter-story drift ratio in Figure 2.10. In

terms of the FIS response, impacts are observed in more cases for smaller gaps, as is

expected. Under MCE-scaled GMs, the resulting increase in peak acceleration (Figure

2.9B) is greatest on average for systems with the intermediate gaps (do ' 20.3 cm); this

is because larger velocities are able to be developed in these cases, versus the smaller

do where impacts occur more frequently but are less severe. The greatest improvements

in PS performance (Figure 2.10) is nearly 10% reduction in peak inter-story drift; the

greatest decrease in PS performance is about 6% increase in peak inter-story drift for

the FIS with smallest gap (do = 3.81 cm).

To better illustrate the effects of gap do on the PS-FIS performance, Figure 2.11

shows how the evaluation criteria JFIS
accel (Equation (2.6)) and JPS

drift (Equation (2.8)) vary

with do for various isolated mass ratio µ. Figure 2.11A shows that the probability of
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(κ = 50 and χ = 10) installed on the second level.

equipment failure (amax > athresh = 0.3g) decreases with increasing do. This is expected

because larger gaps result in fewer impacts and spikes in acceleration. The greatest

sensitivity of JFIS
accel to do is observed for 10 6 do 6 25 cm, indicating that there is

a greater advantage in terms of isolation performance for increasing the gap. This is

because these do values roughly correspond to the steepest portion of the empirical

cumulative probability interquartile range of dmax (Figure 2.8A). FISs with gaps do > 7.5

cm outperform the case of “no FIS,” which represents the case in which the sensitive

equipment is rigidly attached to the structural floor; hence, in this case, the FIS failure

probability is determined using the story level peak acceleration aPS
max (Equation (2.9)) to

calculate JFIS
accel in Equation (2.6). FISs with gaps do > 36.5 cm behave as linear systems

(Table 2.2) because the peak displacement demand at SLE (Figure 2.8A) is insufficient

to cause an impact. The isolated mass ratio µ has little effect on the FIS evaluation

criterion.

Figure 2.11B shows JPS
drift, the probability of the maximum peak inter-story drift δmax

exceeding a threshold of δthresh = 3% at MCE, for various gaps do. With increasing

do, JPS
drift decreases at first, reaches a minimum, and then increases, trending toward

the values for the linear system (Table 2.2). The presence of a minimum corresponds

to an optimal design of the FIS for PS response reduction. The optimal gaps d∗o are
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between 17 and 22 cm for all the mass ratios. These correspond to modest reductions—

approximately 0.5% (µ = 1%) to 5% (µ = 20%)—reductions in the probability of

failure compared to a linear FIS with the same µ; that is, neglecting the inherent reduc-

tion from simply isolating the mass (e.g., 12.0% for the case of µ = 20%, see Table

2.2). It is worth pointing out that distinct local minima are observed, which correspond

to optimal gaps that vary by as much as 6 cm but give comparable values for JPS
drift.

Note that the optimal d∗o values discussed in the previous paragraph consider only

the PS evaluation criterion JPS
drift, but do not reflect the isolation performance under SLE

hazards. The proper design of a dual-mode impact isolator/absorber FIS needs to con-

sider the vibration isolation performance and whether the accelerations are within ac-

ceptable ranges for the sensitive equipment being isolated. For example, for an isolated

mass ratio µ of 5% and a gap do of 18 cm (i.e., approximately d∗o), excessive acceler-

ations (JFIS
accel) and equipment failures would be expected in about 25% of cases under

the SLE-scaled GMs (Figure 2.11A). Hence, this design does not strictly meet both ob-

jectives of a dual-mode vibration isolator/absorber FIS—mitigate accelerations under

SLE hazards and provide enhanced PS performance under MCE hazards—constituting

a multi-objective design optimization (Equation (2.10)). Such an optimization is pre-

sented in the following section.

2.5 Optimization Study

While the previous sections detail the effects of the seismic gap (do) on the performance

of the FIS and PS, this section studies the effect of other two parameters—stiffening

parameter (κ) and damping parameter (χ)—together with do to obtain the optimized

performance of the PS-FIS system. This optimization study focuses on the the objec-

tive functions given by Equations (2.6) and (2.8). Nominal values for the thresholds

are athresh = 0.3g at SLE and δthresh = 3% at MCE, which correspond respectively to

operational vibration limits of information technology equipment (IBM, 2014) and an
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“extensive” damage state of low-rise steel MRFs (FEMA, 2003). These values are as-

sumed unless otherwise noted.

To approach the optimal design, Latin hypercube sampling is used to generate

25,000 samples for do, χ, and κ. The appropriateness of this value for facilitation an

efficient exploration of the admissible design space will be examined later. This space

for each of these design variables is taken to be do ∈ [2.54, 60.96] cm, κ ∈ [1, 100], and

χ ∈ [1, 20]. The optimization is set to run for 50 GMs at SLE, DBE and MCE, with

mass ratios µ = 1, 2, 5, 10, and 20% and the FIS attached to the first, second, and third

levels; the nominal case is µ = 5% on the second level. Recall, a lognormal cumula-

tive distribution function is used in the generation of the Pareto front with the nominal

lognornal standard deviation value of β = 0.05 (Taflanidis and Beck, 2008), but other

values will be considered to assess its influence.

2.5.1 Nominal Case

For the nominal case (Table 2.3), the two objective functions are plotted in Figure 2.12

for all 25,000 sample points in the (do, χ, κ) design space. According to Figure 2.12A,

a gap do from 2.56 to about 12.7 cm exhibits a high probability of failure in the FIS

(JFIS
accel > 70%), independent of κ and χ. It is observed that as do increases, the FIS prob-

ability of failure decreases. This makes sense because larger values of do corresponds

to a reduced chance of impact resulting in a lower probability of FIS failure. The FIS

Table 2.3: Nominal parameters used in the multi-objective optimization study, about which para-
metric variations are considered.

Variable Value

Mass ratio, µ [%] 5
Lognornal standard deviation, β 0.05
Acceleration threshold, athresh [g] 0.3
Inter-story drift ratio threshold, δthresh [%] 3
Story level on which FIS is installed 2nd
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Figure 2.12: (A) Probability of peak FIS acceleration exceeding athresh = 0.3g under SLE-scaled
GMs, and (B) probability of peak inter-story drift ratio exceeding δthresh = 3% under MCE-scaled
GMs: FIS (µ = 5%) installed on the second level. Note that different color scales are used in (A) and
(B) to represent the probabilities.

exhibits the best performance (JFIS
accel 6 10%) at do > 36 cm where the probability is

constant (∼2%). Referring back to Figure 2.8A, the peak FIS displacement dmax is 36

cm. Therefore, it serves as a confirmation that any seismic gap greater than 36 cm

should have the same performance (i.e., that of the linear system). However, this value

of seismic gap is quite high for practical purposes. An alternative with an acceptable

FIS performance (10% 6 JFIS
accel 6 40%) can be found at the vicinity of do = 20 cm. Pa-

rameters χ and κ seem to have negligible effect in optimizing the FIS performance given

how JFIS
accel is currently defined. In Figure 2.12B, the best PS performance (JPS

drift 6 60%)

is achieved for gaps do between 12.7 to 25.4 cm, independent of χ values. However,

κ and do exhibit an exponential-like relationship, which will be discussed later in the

context of the Pareto optimal design parameters. Thus, the best PS performance occurs

at small κ values, which correspond to a failure probability of about 57%. From the

analysis of Figure 10, for the case of the FIS installed on the second level with µ = 5%,

the optimal design values that minimize the objective functions occur at do ≈ 20 cm and

κ 6 10, independent of χ, which is explored in greater detail below.

Figure 2.13A shows the Pareto front for a FIS installed on the second level with

a mass ratio of 5%. The horizontal/vertical lines are plotted for the cases of no FIS

and linear FIS so that their performances for each objective function can be compared.
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When compared to the case of no FIS, the incorporation of the linear FIS results in a

substantial drop in the probability of FIS failure (ordinate) from 95% to about 2%. On

the other hand, a small reduction (≈4%) in PS failure probability (abscissa) is observed,

indicating that the probability of the PS failure can also be reduced if the linear FIS is

installed. The left-most Pareto point gives the best FIS performance (≈ 2% probability

of failure) while it has the worst PS performance (≈ 60% probability of failure). The

inverse can be said for the right-most point of the Pareto front. These two anchor

points (the left-most and the right-most points) of a given Pareto front correspond to the

single-objective optimums. Moving from left to right along the Pareto front (indicating

worse FIS performance), better PS performance is achieved. Therefore, there has to be

a trade-off between the two objective functions, and the sacrifice has to be made based

on the relative importance of the FIS or PS upon the particular design application. In

this case (Figure 2.13), marginal improvements (< 4%) in PS performance are gained

only with a substantial reduction (up to 80%) in FIS performance. It should be noted

that the sacrifices/gains in PS performance are distorted in Figure 2.13 (and some later

figures) because of the different axes scales used to represent the failure probabilities

(abscissa and ordinate).

Figure 2.13B shows Pareto optimal design parameters corresponding to the Pareto

front in Figure 2.13A. The same coloring scheme is used in both Figures 2.13A and

2.13B so that the Pareto points can be matched up accordingly. It is apparent that χ has

little effect on the optimal design of the PS-FIS system, while κ and do are influential

and clearly exhibit a relationship. Points with good FIS performance (yellow) cluster

around do ≈ 30 cm, with variability in κ values. In term of seismic gap, this makes

sense because there is a low chance of impact occurring and the system would function

primarily as an isolator. However, the variation in κ (about do ≈ 30 cm) does not exhibit

an obvious trend of how the stiffening effect affects the FIS and PS performance. Points
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Figure 2.13: (A) Pareto front for a FIS (µ = 5%) installed on the second level, and (B) Pareto
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FIS (− · −), and the gray points are the 25,000 individual samples in the random search. Note that
unequal axes scales are used to represent the failure probabilities (A).

with decreasing PS performance spread out in an exponential-like fashion with the best

PS performance (blue) occurring at low values of do, κ, and χ. It is observed that the

optimal gap d∗o tends towards its lower bound (2.54 cm) with a stiffening parameter κ∗

of 10. For such a small gap, the FIS is essentially in a constant state of impact, and the

effective stiffness is therefore κk, which in this case corresponds to a FIS period of about

1 sec. This is approximately equal to the fundamental period of the PS. Therefore, the

FIS acts like a TMD that is tuned to the PS period. However, at this value (right-most

blue points on Figure 2.13A), the equipment has an 80% probability of failure. Thus,

to achieve a TMD-functioning FIS, there has to be a considerable sacrifice in isolation

performance. Conversely, by sacrificing a small (and questionable) improvement in the

PS performance at MCE, there is a significant gain in the FIS performance at SLE, as

seen in Figure 2.13A.
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2.5.2 Effect of Lognormal Standard Deviation on Optimal Design

Recalling 0.05 was selected as the nominal lognormal standard deviation, the effect of

other β values is shown in Figure 2.14. In Figure 2.14A, the smallest β demonstrates

a diminished Pareto front comprised of only two points, and for the next smallest β a

step-function characteristic is observed. As β increases, the edges of the Pareto front

become smoother and wider and more points are included in the Pareto front. Figure

2.14B shows the scatter in the optimal design space due to different β values. It is

observed that these points coincide with nearly identical optimal design parameters.

Therefore, it is concluded that β has negligible effect on the optimal design values, and

the use of any β value should provide similar results for the optimization.
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2.5.3 Effect of Threshold Values on Optimal Design

Figure 2.15 shows the effect of different acceleration thresholds (athresh) on the Pareto

front and the optimal design parameters. The acceleration thresholds considered are

related to the sensitivity of the equipment, from 0.1g being the most sensitive to 3g

being the most robust. As shown in Figure 2.15A, there will be a failure in the equip-

ment with athresh = 0.1g after a steep drop in JPS
drift at a FIS failure probability of about

80%; this serves as a lower bound on the achievable FIS performance for very sensitive

equipment. As athresh increases, the lines move to the left indicating lower FIS failure

probability. At athresh = 3g, there is no failure in the equipment and JPS
drift can be reduced

by almost 4%. Figure 2.15B indicates the that different acceleration thresholds do not

result in different optimal trends of the design parameters.

Figure 2.16A shows the effect of different drift thresholds (δthresh) on the Pareto
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Figure 2.16: Effect of drift threshold δthresh on (A) Pareto front for a FIS (µ = 5%) installed on the
second level and (B) Pareto optimal design parameters. Note that unequal axes scales are used to
represent the failure probabilities (A).

front for a FIS installed on the second level with a mass ratio of 5%. As the drift

threshold increases, the PS failure probability decreases from 100% (δthresh = 1%) to

about 20% (δthresh = 5%). For each drift threshold, it is worth noting that the greatest

reduction in PS failure probability between the anchor points is about 5.5%, occurring

at δthresh = 3.5%. Therefore, in this case, a PS with a drift threshold of 3.5% would

receive the greatest benefit from the dual-mode FIS. However, at 1% drift threshold, the

PS has a 100% failure probability with almost no reduction between the anchor points.

In such a case, it would be more beneficial to focus the design attention on saving the

equipment than trying to have a better PS performance.

Figure 2.16B shows the Pareto optimal design parameters corresponding to the

Pareto fronts in Figure 2.16A. It is observed that there is a big cluster of points cor-

responding to δthresh = 1% and 100% PS failure probability occurring at do > 34 cm,
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independent of κ and χ. For this case (δthresh = 1%), FISs exhibit no capability in pro-

tecting the PS, so it is best to avoid impacts via a large seismic gap. Optimal designs

for small drift thresholds (1.5% and 2.0%) seem sparsely distributed at random with no

notable relationship. However, optimal designs corresponding to greater drift threshold

values (> 2%) seem to exhibit an exponential-like relationship in κ and do as previously

discussed.

2.5.4 Effect of Mass Ratio and Installation Location on Optimal

Design

Lastly, the effect of mass ratio µ and installation location on the optimal design is ana-

lyzed. Figure 2.17 shows the Pareto fronts of FISs with varying mass ratio installed at

different story levels. The case with no FIS shows the worst PS and FIS performances.

On all the story levels, it is observed that the greater the mass ratio, the smaller the PS

failure probability for the linear FIS. When attached to the first level (Figure 2.17A), the

FIS works best as an isolator with the highest FIS failure probability of only 20%. This

is because the first level has the smallest accelerations and therefore the lowest displace-

ment demand on the FIS. In this case, however, the FIS has little effect in protecting the

PS. For the case of a FIS installed on the third level (Figure 2.17C), the device has the

greatest effect in improving the PS performance. By installing the FIS on the roof (Fig-

ure 2.17C), the FIS helps reduce the inter-story drift and thus provides great reduction

in JPS
drift. Typical vibration absorbers such as TMD are also commonly found at the top

of the building (Gutierrez Soto and Adeli, 2013). With a high mass ratio of 20%, the

PS failure probability can be reduced down to about 33% if the FIS performance can

be sacrificed to have 75% failure probability. Moreover, when the FIS is installed at the

roof, the demands on the FIS are highest, so the lower bound (best) on FIS performance

is no longer 0%, but instead around 10%. Figure 2.17B shows Pareto fronts for the

case of a FIS installed on the second level, which provides a middle ground between
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Figure 2.17: Pareto fronts for FISs with varying mass ratio µ installed on the (A) first level, (B)
second level, and (C) third level. The horizontal/vertical lines are for the cases of no FIS (– – –) and
linear FIS (− · −).

having the FIS function as an isolator (1st level) and an absorber (3rd level). Small

mass ratios (1% and 2%) provide little improvement in terms of the PS performance

even though the FIS performance is sacrificed. Larger mass ratios (10% and 20%) show

greater reduction in the PS failure probability as the FIS is being sacrificed. Overall,

the installation of the linear FIS with increasing mass ratio provides better protection

to both the PS and the FIS than the case without the FIS. Depending on the intended

application of the FIS, it works best as an isolator when installed on the lower level and

as an absorber at the higher level.

2.6 Optimization with Genetic Algorithm

The preceding optimization study employed a random search to permit a thorough para-

metric study. This exhaustive search used 25,000 samples, each of which required

two simulations—one at SLE and one at MCE. Alternatively, the optimization problem
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Figure 2.18: Comparison of Pareto fronts determined from a random search (25,000 samples) and
a genetic algorithm (GA) with 50 or 100 individuals per generation: FIS (µ = 5%) installed on the
second level. Note that unequal axes scales are used to represent the failure probabilities.

could have been approached using a variety of multi-objective optimization routines. As

an example, here a controlled, elitist genetic algorithm (GA) (Deb, 2001) is considered.

Such a GA helps to ensure convergence to the optimal Pareto front of the dominant

designs that represent different compromises between the performance criteria. The

GA was implemented in MATLAB using the gamultiobj algorithm considering 50

(default) and 100 individuals per generation. Figure 2.18 illustrates the Pareto fronts

for the nominal case (Table 2.3) resulting from the random search and the GA. Good

correspondence is seen between the various methods, but the GA with 50 individuals

finds lower performing elite members compared to the other two methods. Neither of

the GA optimizations are able to find the Pareto points with PS failure probabilities

(ordinate) less than 57%. This is due to the relatively narrow range of design variables

producing such performance (i.e., highly sensitive), illustrated by the sparsity of points

in this region in Figure 2.13A. It is worth noting that the GA with 50 and 100 individuals

per generation required 105 and 142 generations, respectively, to converge—5,250 and

14,200 total samples, respectively. These correspond to 79% and 43.2% reductions in

function evaluations compared to the the random search (25,000). However, the results

are specific to the case considered, and the GA would need to be rerun for a different

scenario (e.g., different athresh, δthresh, β, etc.).
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2.7 Summary

The performance of a dual-mode FIS installed in a multi-story PS has been studied. A

nonlinear reduced order modeling procedure is proposed to ease the computational bur-

den. The dual-mode behavior is realized through a Kelvin-type impact model, which

is activated at a specified displacement (do). The performance of the PS-FIS system

has been evaluated in terms of the vibration isolation (peak acceleration of FIS) and the

vibration absorption (peak interstory drift of PS) to a suite of synthetic GMs representa-

tive of various hazards (SLE, DBE, and MCE). A parametric study has been performed

to examine the importance of different controlling factors—seismic gap (do), impact pa-

rameters (κ and χ), isolated mass ratio (µ), FIS location within the PS, and performance

metric parameters (athresh, δthresh, β)—on the FIS and PS performance. Two objective

functions—(1) probability of the peak acceleration of the FIS exceeding a threshold ac-

celeration under SLE-scaled GMs, and (2) probability of the maximum peak inter-story

drift of the PS exceeding a threshold drift under MCE-scaled GMs—are used to mea-

sure the FIS and PS performance accordingly in the optimization study. These constitute

competing objectives within the multi-objective stochastic design framework.

From the optimization and analysis, the following observations can be made: (1)

in general, employing a bilinear FIS is an effective way to protect sensitive equipment

under SLE hazards, so long as the displacement demand does not exceed the seismic

gap do; (2) an increase in do yields better isolation performance (i.e., fewer impacts),

but only insofar as the displacement demands on the FIS are large enough to produce

impacts; (3) stiffening of the FIS under large displacements (greater than do) effectively

couples the FIS and PS, decreasing the PS response in some cases; (4) there is a distinct

optimal gap do resulting in reduced PS response, corresponding to modest reductions

(0.5% to 5%) reductions in PS failure probabilities; (5) lower values of the stiffening

parameter (κ 6 10) provide better PS performance, tending toward TMD-like behavior
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at MCE, but at a significant penalty of poor isolation performance of the FIS at SLE; (6)

the damping parameter χ of the restrainer/bumper has negligible effect on the PS-FIS

performance; (7) the mass ratio µ has a greater effect on the PS failure probability than

that of the FIS, with larger mass ratios providing better performance for the linear and

nonlinear (impact-based) PS-FIS systems; and (8) the PS-FIS system functions best as

an isolator when installed at the first story level and best as an absorber when installed

at the roof. Overall, the results have shown that the bilinear FIS can effectively protect

sensitive equipment under SLE and also help to protect (albeit to a lesser degree) the PS

under MCE, which constitutes a dual-mode vibration isolator/absorber FIS.

An experimental study to validate this concept is described in the next chapter.

48



Chapter 3

Experimental evaluation of the performance of

a nonlinear dual-mode vibration

isolator/absorber system

3.1 Overview

An experimental approach that aims to study the dual behaviour of the dual-mode FIS

is described in this chapter. In Section 3.2, the equation of motion for FIS, PS and the

coupled PS-FIS system are formulated, and the performance matrices for evaluating

the isolation and absorption performance are defined. The experimental system that

details the PS, FIS, and shock absorber are described in Section 3.3. The experimental

protocol that describes the PS-FIS setup, GMs, and testing procedure can be referred to

in Section 3.4. The experimental and numerical results are discussed in Section 3.5 and

3.6 respectively, followed by a summary of the chapter in Section 3.7.

3.2 Problem Formulation

This section addresses the equations of motion (EOM) of the FIS and the PS, as well as

outline the metrics to evaluate the performance of the PS-FIS system.

3.2.1 Floor Isolation System

Lagrange’s equation is used in this study to derive the equation of motion of the FIS

utilizing pendulum bearings like the one shown in Figure 3.1. The kinetic energy T of
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Articulated Slider xu

v

y

Figure 3.1: Schematic of friction pendulum (FP) bearing.

the FIS comes from the ground motion and the horizontal as well as vertical motion of

the FIS itself (Wiebe and Harvey, 2019). The kinetic energy is given by

T (u̇, v̇) =
1
2

m(u̇ + ẋt)2 +
1
2

m(v̇ + ẏt)2 (3.1)

where u and v denote the horizontal and vertical displacements, respectively, of the FIS

relative to the structural floor’s total horizontal and vertical displacements, xt and yt,

respectively. The overdot represents the derivative with respect to time and m denotes

the total isolated mass of the FIS.

As the articulated slider of the FIS moves horizontally, the motion also results in a

vertical displacement. The potential energyV of this system is given by

V(v) = mgv + mgyt (3.2)

where g is the gravitational acceleration. The vertical displacement v is kinematically

constrained by the rolling of the bearings across the concave surface having profile h(u).

Hence, the kinematic constraint is written as follows:

v = h(u) (3.3)

Thus, the vertical velocity v̇ can be found from the differentiation of Equation (3.3) to

be

v̇ = h′(u)u̇ (3.4)

Likewise, the vertical acceleration can be obtained by taking the derivative of the veloc-

ity to be
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v̈ = h′′(u)u̇2 + h′(u)ü (3.5)

To formulate the equations of motion, the kinematic constraint [Equation (3.3)] is

handled by the use of a Lagrange multiplier λ as follows:

d
dt
∂L

∂u̇
−
∂L

∂u
= Qu + λ

∂φ

∂u
(3.6a)

d
dt
∂L

∂v̇
−
∂L

∂v
= Qv + λ

∂φ

∂v
(3.6b)

where the Lagrangian L = T − V, Qu is the sum of forces coming from virtual work

due to non-conservative forces (e.g., friction) and the contact force fc, and the constraint

is given by

φ(u, v) = v − h(u) ≡ 0 (3.7)

Applying this form of Lagrange’s equation gives

m(ü + ẍt) = Qu − λh′(u) (3.8a)
m(v̈ + ÿt) + mg = Qv + λ (3.8b)

From Equation (3.8), the force of constraint, which is normal to the constraint surface,

is given by

N = λ

{
−h′(u)

1

}
(3.9)

which has magnitude

N = λ
√

1 + [h′(u)]2 (3.10)

Therefore, the normal (constraint) force can be re-written as follows:

N = N
1√

1 + [h′(u)]2

{
−h′(u)

1

}
(3.11)
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The forces Qu and Qv are due to friction f f and the contact force fc of impact. The

friction force is perpendicular to N, opposing the motion, and is modeled using a Bouc-

Wen hysteresis model (Harvey and Gavin, 2014b):

f f = −µN
1√

1 + [h′(u)]2

{
1

h′(u)

}
Z(t) (3.12)

where A, β, γ, and n are the Bouc-Wen parameters, and sy is arc-length displacement

over which the full friction force is developed. The hysteretic displacement Z(t) satisfies

Ż(t) = ṡ(t){A − [β sgn(Z(t)u̇(t)) + γ] |Z(t)|n}/sy (3.13)

Using the arc-length relationship:

ds2 = du2 + dv2 ⇒ ṡ = u̇
√

1 + [h′(u)]2 (3.14)

By substituting Equation (3.14) into Equation (3.13),

Ż(t) = u̇(t)
√

1 + [h′(u)]2{A − [β sgn(Z(t)u̇(t)) + γ] |Z(t)|n}/sy (3.15)

The contact force fc from the impact is assumed to be purely in the u direction:

fc(u, u̇) =

{
fc(u, u̇)

0

}
(3.16)

The specific form of the contact force fc is shown in Equation 3.38 that is discussed

later in Section 3.3.3.

From Equations (3.12) and (3.16), the generalized forces Qu and Qv are, therefore,

given by

Qu = −µN
1√

1 + [h′(u)]2
Z(t) − fc(u, u̇) (3.17a)

Qv = −µN
h′(u)√

1 + [h′(u)]2
Z(t) (3.17b)

Substituting these expressions, as well as Equation (3.10), into Equation (3.8) gives
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m(ü + ẍt) = −µN
1√

1 + [h′(u)]2
Z(t) − fc(u, u̇) − N

h′(u)√
1 + [h′(u)]2

(3.18a)

m(v̈ + ÿt) + mg = −µN
h′(u)√

1 + [h′(u)]2
Z(t) + N

1√
1 + [h′(u)]2

(3.18b)

By substituting Equation (3.5) as well as rearranging terms, Equation (3.18) becomes

mü + µλZ(t) + λh′(u) = −mẍt − fc(u, u̇) (3.19a)

mh′(u)ü + µλh′(u)Z(t) − λ = −mÿt − mg − mh′′(u)u̇2 (3.19b)

Equation (3.19) represents a system of differential-algebraic equations (DAEs)

(Shampine and Reichelt, 1997) in terms of two unknowns—ü (differential) and λ

(algebraic). These equations are linear in the two unknowns, so they can be written as

follows: [
1 µZ(t) + h′(u)

h′(u) µh′(u)Z(t) − 1

] {
mü
λ

}
=

{
−mẍt

−m[ÿt + h′′(u)u̇2 + g]

}
(3.20)

This equation is coupled to the PS in Section 3.2.4, but first the nonlinear FIS force is

discussed in the next section.

3.2.2 Nonlinear FIS force

From Equation (3.19a), the force of the FIS can be derived as

fFIS = µN
1√

1 + [h′(u)]2
Z(t) + fc(u) + N

h′(u)√
1 + [h′(u)]2

(3.21)

The first term in Equation (3.21) is the frictional component of the FIS where µ is

the friction coefficient between the bearing and the curved track. The normal force,

N, changes depending on the displacement of the FIS. The dimensionless hysteretic pa-

rameter Z(t) is described by the nonlinear differential equation shown in Equation (3.15)

where A, β, γ, and n are Bouc-Wen parameters (Fenz and Constantinou, 2008) taken to

be 1, 1/2, 1/2, and 2, respectively, in this study, and sy denotes the yield displacement
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of the FIS which is taken to be 1 mm. These values were selected to give a reasonable

representation of the rolling resistance in the system. The second term represents the

contact force and the last term corresponds to the restoring force of the FIS.

For the case of a circular elevation profile with radius R,

h(u) = R −
√

R2 − u2 (3.22)

The slope is then given by

h′(u) =
u

√
R2 − u2

=
u
R

+
1
2

( u
R

)3
+ · · · ≈

u
R

(3.23)

Therefore, the curvature is given by

h′′(u) =
R2

(R2 − u2)3/2 =
1
R

+
3
2

1
R

( u
R

)2
+ · · · ≈

1
R

(3.24)

3.2.3 Primary Structure

The PS used in this study is a three-story shear building, which can be modeled as a 3

degrees of freedom (DOF) system. The EOM of the PS is given by

Mẍ(t) + Cẋ(t) + Kx(t) = −M1üg(t) (3.25)

where x(t) is the story’s horizontal displacement and M, C, and K are 3 × 3 mass,

damping, and stiffness matrices, respectively. The mass and stiffness matrices are given

by

M =


m1 0 0

0 m2 0

0 0 m3

 , K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3


where mi and ki are the mass and stiffness of the ith story. The damping matrix is defined

based on modal damping:
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ΦTCΦ =

2ζ1ω1 0 0
0 2ζ2ω2 0
0 0 2ζ3ω3

 (3.26)

where ζi and ωi are the damping ratio and the frequency in the ith mode, and Φ is the

mass normalized mode shape matrix. The quantities of these properties are detailed

in Section 3.3.1. Vector 1 distributes the force coming from the horizontal ground

acceleration üg(t) to each of the floors.

3.2.4 The Coupled PS-FIS System

The total acceleration of the floor at the isolation system’s location is given by

ẍt(t) = pT(ẍ(t) + 1üg(t)) (3.27)

where p is a vector identifying the position of the FIS on the structure. By substituting

this equation into Equation (3.19a), the equation of motion of the FIS can be rewritten

as

mü(t) +
N√

1 + [h′(u)]2
[µZ(t) + h′(u)] + fc(u, u̇) = −mpT(ẍ(t) + 1üg(t)) (3.28)

With the force of the FIS shown in Equation (3.21), the dynamics of the coupled

PS-FIS system is given by

Mẍ(t) + Cẋ(t) + Kx(t) = −M1üg(t) + p fFIS(u, u̇, ü) (3.29a)

mü(t) + fFIS(u, u̇, ü) = −mpT(ẍ(t) + 1üg(t)) (3.29b)

From Equation (3.29b), fFIS can be expressed as

fFIS(u, u̇, ü)x = −m[ü(t) + pT(ẍ(t) + 1üg(t))] (3.30)

Substituting this relationship to Equation (3.29a), it can be re-expressed as

(M + mppT)ẍ(t) + Cẋ(t) + Kx(t) = −mpü(t) − (M + mppT)1üg(t) (3.31)
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Therefore, variable ẍ(t) and ü(t) can be simultaneously solved from Equations (3.31)

and (3.20) which can be expressed in a matrix form as follow

(M + mppT) mp 03×1

mpT m µZ(t) + h′(u)
01×3 mh′(u) µh′(u)Z(t) − 1




ẍ(t)
ü(t)

N√
1+[h′(u)]2


=


−Cẋ(t) −Kx(t) − (M + mppT)1üg(t)

−müg(t) − fc(u, u̇)
−m[h′′(u)u̇2 + g]

 (3.32)

In this study, vertical displacement in the PS and FIS is assumed to be negligible.

Therefore, the system consists of 9 states comprised of 6 states for the displacement

x(t) and velocity ẋ(t) of each floor in the PS, 2 states for FIS displacement u(t) and

velocity u̇(t), and 1 state for the hysteretic displacement Z(t). Notice that the hysteretic

parameter Ż(t) [Equation (3.15)] is also being solved at the same time as variable ẍ(t)

and ü(t) in Equation (3.32). However, the quantities of interest concern only ẍ(t) and

ü(t).

Using MATLAB (R2019A, Mathworks, Natick, MA), Equations (3.32) and (3.15)

can be solved by utilizing the ODE built-in function ode45 (Dorman and Prince, 1980;

Shampine and Reichelt, 1997). This solver was selected because it utilizes an adaptive

time stepping algorithm, which can help ensure that the nonlinear, piecewise dynamics

are properly captured. The interval of integration (tspan) is set from zero to the final

GM time with an increment of 0.001 sec, i.e., tspan = 0:0.001:tf where tf is the

earthquake duration. The initial conditions are set as a vector of zero. The relative

tolerance (RelTol) and absolute tolerance (AbsTol) are taken to be 10−4 and 10−7, re-

spectively. These values are obtained by first starting with the default tolerances (10−3

and 10−6) and progressively tightening them until no noticeable changes are observed.

In this case, since the tolerances of 10−4 and 10−7 provide very similar result as 10−5

and 10−8, the former set is used for the simulation. All other values in this numerical
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integration are taken to be default. Greater computational efficiency could be achieved

through the use of event location (Shampine et al., 1991), for example state event loca-

tion algorithm (Wright and Pei, 2012), but this is a topic of future research.

3.2.5 Performance Metrics

The performance evaluation of the dual-mode FIS is divided into two categories based

on the intensity of the GM. For low-intensity GMs (those with intensity scale factors

below impact), the evaluation concerns the isolation performance of the FIS. This is

considered when the system displaces within its allowable capacities and behaves as a

linear system. For high-intensity GMs (those with intensity scale factors above impact),

the evaluation concerns the absorption performance of the PS. This is considered when

the system displaces more than its allowable capacities, thus creates an impact that

results in a nonlinear system. The dual-mode FIS performance is evaluated for three

different seismic gaps with details described in Section 3.4.3.

In the case of the FIS, the response quantity of greatest interest is the absolute ac-

celeration of the FIS:

amax
FIS = max

t
|a(t)| (3.33)

where a(t) is the absolute acceleration of the FIS and amax
FIS is the maximum acceleration

of the FIS. Of secondary interest is the displacement of the FIS relative to the structure

level:

umax = max
t
|u(t)| (3.34)

where u(t) is the absolute FIS displacement and umax is the maximum displacement of

the FIS. To evaluate the isolation performance, amax
FIS is then compared to the second

story’s acceleration (a2) for the case of no FIS (ano FIS
2 ) and locked FIS (alocked

2 ). The

isolation performance is also indicated by the normalized isolation performance index
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(Ja) which is defined as

Ja =
amax

FIS

alocked
2

(3.35)

Note that later figures showing Ja will also includes the case of ano FIS
2 being normalized

by alocked
2 .

In the case of the PS, the response quantity of interest is the peak inter-story drift

ratio:

δmax
i = max

t
|di(t)/hi| (3.36)

where di(t) and hi are the inter-story drift and height of the ith story respectively, and

δmax
i is the maximum inter-story drift ratio of the associated story. To evaluate the ab-

sorption performance, δmax
i is then compared to each story’s inter-story drift ratio for

the case of no FIS (δno FIS
i ) and locked FIS (δlocked

i ). The absorption performance is also

indicated by the normalized absorption performance index (Jδ) which is defined as

Jδ =
δmax

1

δlocked
1

(3.37)

since the inter-story drift of the first floor is the largest. Note that later figures showing

Jδ also includes the case of δno FIS
1 being normalized by δlocked

1 .

3.3 Experimental System

To evaluate the performance of the proposed dual-mode FIS, the system was experi-

mentally tested at Donald G. Fears Structural Engineering Laboratory at the University

of Oklahoma. The PS and dual-mode FIS are described in the next sections.

3.3.1 Primary Structure

The PS used in this experimental approach is a lab-scale three-story shear structure

made of steel as shown in Figure 3.2.
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Figure 3.2: Primary structure at Fears Lab

The PS is a linear 3DOF system where mass, stiffness and damping of the structure

were obtained using a method of system identification, which is detailed in Appendix C.

Mass and stiffness of each floor are identified as shown in Table 3.1. Modal frequency

and damping in each mode are identified as shown in Table 3.2. The columns of the

structure are made of high yield strength spring steel and its base is attached to a shake

Table 3.1: Mass and stiffness of each floor of the experimental structure

PS Floor
property 1 2 3

Mass [kg] 56.06 56.29 56.20
Stiffness [N/mm] 112.83 135.64 158.35

Table 3.2: Modal properties of the experimental structure

Modal Mode
property 1 2 3

Frequency [Hz] 3.3 9.8 14.4
Damping [%] 0.10 0.10 0.20
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Figure 3.3: Experimental floor isolation system

table in fixed connection allowing displacement in only one direction. Details of the

structural components of the PS can be referred to in Table C.3 of Appendix C.

3.3.2 Floor Isolation System

The FIS used in this experiment is shown in Figure 3.3. The system consists of 4

ball bearings that roll on the 3D-printed curved tracks (Calhoun and Harvey, 2018)

each having a radius of curvature of 26 cm, which corresponds to a system with 1 Hz

frequency. The isolated equipment is represented by two steel blocks that constitute a

total mass of 9 kg, which is equivalent to about 16% of the 2nd floor’s mass and 5.3%

of the PS’s total mass. To create nonlinearity in the system, the FIS is designed to

gradually impact with two bumpers (characterize in Section 3.3.3), each is installed on

either side of the FIS as shown in Figure 3.3. Miniature shock absorbers (MC25, Ace

Controls Inc., Farmington Hills, MI, USA) were selected based on their energy capacity

for this application. These bumpers have a stroke of 6.6 mm [0.26 in.] that allows for

an additional compression during impact. Therefore, for clarification, seismic gap is
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measured from the FIS’s equilibrium position to the first touch when the steel engages

with the bumper.

The FIS is characterized using a sine sweep test that was conducted at Fears Lab.

Details of the characterization test can be found in Appendix D. The result has shown

that the FIS is indeed a nonlinear system, exhibiting a hardening behavior and hysteretic

behavior.

3.3.3 Bumper

The bumper was characterized using a static load-deflection test at multiple rates of

12.5, 25, 50, 100, 250, 500, and 1000 mm/min. From these tests, the contact force fc

model was identified to be:

fc(u, u̇) = {k1[u − uo sgn(u)] + fo sgn(u) + f f sgn(u̇)] × I|u|>uo

+ cu̇ × Iuu̇>0 × I|u|>uo+u1 + k2[u − (uo + u2) sgn(u)] × I|u|>uo+u2 (3.38)

where k1 = 0.8205 N/mm, fo = 2.154 N, f f = 0.9776 N, c = 0.935 N·s/mm, u1 = 0.88

mm, k2 = 50 N/mm, u2 = 6.3 mm, sgn(·) is the signum function, and I(·) is the indicator

function.

Figures 3.4(a) and 3.4(b) show load-deflection curves based on the experimental

data and the estimated contact force in Equation (3.38) respectively, both exhibit hys-

teric behaviour that include friction and damping. Since these two plots share similar

features overall, the estimated equation is acceptable for use in obtaining the numerical

results for evaluating the dual-mode FIS performance.

3.4 Experimental Protocol

This section describes a detailed procedure of the experimental testing as well as the

scaling of the GMs.
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Figure 3.4: Load-deflection curves based on (a) experimental data and (b) estimated contact force
fc model

Figure 3.5: Experimental PS-FIS system

3.4.1 PS-FIS Setup

Setup of the PS-FIS system is shown in Figure 3.5. The FIS is installed on the second

floor to provide a middle ground between expected good isolator (reduced FIS acceler-

ation) and good absorber (reduced PS drift/displacement) behaviors. This is because a

vibration absorber such as TMD generally works best at the top of the building while an

isolator is most effective when installed on lower floors because of lower displacement
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Figure 3.6: A camera shot from the second story camera capturing the second inter-story drift

demands.

As shown in this setup, 5 accelerometers (352C33, PCB Piezotronics, Inc., Depew,

NY) are installed to measure the acceleration of the ground, first floor, second floor,

third floor, and the FIS. To measure the inter-story drift of each floor, 3 cameras (HERO

Session, GoPro, Inc., San Mateo, CA) are installed (Harvey and Elisha, 2018; Zare Hos-

seinzadeh et al., 2021). Each is rigidly attached to the underside of the deck of the first

floor, second floor and third floor as shown. A laser (optoNCDT 1302, Micro-Epsilon,

Ortenburg, Germany) is also attached to measure the displacement of the FIS. The ac-

celerometers, cameras, and laser used sample rates of 2000 Hz, 100 fps, and 750 Hz,

respectively.

Figure 3.6 shows a picture from the camera that is attached underside of second

floor’s deck that is used to capture the motion of the calibration/tracking grid. This 50.8

× 50.8 mm grid of high-contrast dots is taped on the deck of all floors of the PS directly

under each camera. Inter-story drift of each floor can be determined from the movement

of the black dots during testing.
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Figure 3.7: Time histories of (a) El Centro, (b) Hachinohe, (c) Kobe and (d) Northridge
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Figure 3.8: Response spectrum with 5% damping for (a) unscaled and (b) scaled GMs

3.4.2 Ground Motions and Testing

Four historic GMs—El Centro, Hachinohe, Kobe and Northridge—are used in this ex-

periment. These GMs are selected based on the recommendation of Ohtori et al. (2004).
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Time history of each GM is shown in Figure 3.7, and their details are tabulated in Table

3.3. Peak ground acceleration (PGA) and some important intensity measures are listed

in Table 3.4, including the Arias intensity Ia (Arias, 1970) and the strong motion dura-

tion tstrong accounting for 90% of the total Ia (Trifunac and Brady, 1975). The response

spectra with 5% damping for both unscaled and scaled GMs are shown in Figure 3.8.

Detail on the scaling of the GMs is discussed in the next section.

3.4.2(a) Scale Factors

Three types of scale factors (SFs) have been applied to the real GM data in order to

generate the lab-scale GMs. These include the scale factor for similitude, spectral ac-

celeration and GM intensity.

Similitude Scale Factor. In order to generate a suitable GM in the lab, the earthquake’s

amplitude and time are scaled using the benchmark building (Ohtori et al., 2004)

as a reference structure. The SF is then calculated based on the similitude analy-

sis.

The SF for time is given by

S t =
1/ fre f

1/ fp
(3.39)

where fre f and fp denote the fundamental frequency of the reference structure and

the experimental prototype respectively. The reference structure has a fundamen-

tal frequency of 0.99 Hz while that of the lab prototype is 3.3 Hz. Substituting

these values into Equation (3.39), the time SF is S t = 3.4.

The length SF is given by

S L =
Hre f

Hp
(3.40)
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where Hre f and Hp denote the height of the reference structure and the prototype

respectively. The benchmark building has a story height of 396.24 cm and that of

the prototype is 79.375 cm. Substituting these numbers into Equation (3.40), the

length SF is S L = 4.99 ≈ 5.

Spectral Acceleration Scale Factor. The GMs have been scaled to have a spectral ac-

celeration of 0.2g at 1 sec period and 5% damping. This number takes into con-

sideration the actuator’s maximum allowable displacement in the lab.

GM Intensity Scale Factor. Since the performance of the dual-mode FIS is evaluated

based on GM intensity, an additional scale factor has been applied such that the

FIS can be tested from low-intensity GMs to high-intensity GMs. The range of

the intensity SF is different for each GM depending on how harsh the GM affects

the PS, which can be estimated visually from the PS responses in the lab. The

intensity SFs for each GM can be referred to in Table 3.5.

The above-mentioned SFs have been applied to generate lab-scale GMs. Note that

the similitude SF is the same for all GMs. However, the spectral acceleration SF and

intensity SF vary according to the earthquakes.

3.4.3 Testing procedure

As mentioned in Section 3.2.5, performance evaluation of the dual-mode FIS with three

seimic gaps are compared to the case of no FIS and locked FIS. The former refers to the

case where the FIS is removed from the second floor of the PS. The latter refers to the

case where the FIS is not allowed to move, i.e., the seismic gap is equivalent to zero.

To see how displacement capacity affects the performance of the dual-mode FIS, the

three seismic gaps used for the FIS is tabulated in Table 3.6. The naming convention of

the gap can be disregarded since it is merely due to the testing sequence conducted in

the lab. Gap B serves as the nominal case in which gaps C and F are picked based on.
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Gap C is smaller than gap B by half whereas gap F is larger than gap B by 50%.

The configuration of the testing as well as the intensity SFs for each GM are shown

in Table 3.5. These intensity SFs are selected to cover a reasonable range of data points

prior to and after impacts for each GM. Note that a SF of 1 is equivalent to the case in

which the intensity SF has not been included.

3.5 Experimental Results

This section discusses the experimental results and evaluates the dual functionality of

the FIS. To recall, the isolation performance is determined by evaluating the maximum

acceleration of the FIS (amax
FIS ) and the second floor (alocked

2 ). On the other hand, the

absorption performance is determined by evaluating the inter-story drifts of the first,

second and third floor denoted by δ1, δ2 and δ3 respectively. The case of locked FIS

serves as a baseline performance for evaluating the cases with seismic gaps, although

the case of no FIS has also been included in the results.

Since the dual-mode FIS performs differently when subjected to different earth-

quakes, each GM is evaluated individually containing the discussion of their baseline

performance, isolation performance and absorption performance. Note that “scale fac-

tors (SF)” in this section refers to the intensity scale factor.

3.5.1 El Centro

3.5.1(a) Baseline (linear) performance

Figure 3.9 shows the response of the PS with no FIS and the locked FIS when sub-

ject to El Centro at varying GM SFs. The 2nd floor’s peak total acceleration (Figure

Table 3.6: Seismic gaps used for experimental FIS

Gap
B C F

Displacement Capacity [mm] 21.95 11.95 32.79
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Figure 3.9: Peak responses with no FIS and locked FIS for El Centro: (a) 2nd floor total acceleration
a2, (b) 1st story drift δ1, (c) 2nd story drift δ2, and (d) 3rd story drift δ3.

3.9(a)) and the peak inter-story drift ratios (Figures 3.9(b–d)) exhibit approximately lin-

ear responses over the range of GM SFs considered. In nearly all cases, larger peak

accelerations and inter-story drifts are seen for the case of no FIS. These PS responses

serves as the baseline to which the isolation and absorption performance of the FIS are

compared in the following sections.

3.5.1(b) Isolation performance

Figure 3.10 shows peak responses of the FIS with different gaps at varying GM SFs

when subjected to El Centro. Total acceleration and displacement of the FIS are shown

in Figures 3.10(a) and 3.10(b) respectively.

For the acceleration response (Figure 3.10(a)), there is always a decrease in acceler-

ation prior to impact for all three gaps. At a SF of 0.5, gap B and gap F have a decrease

in acceleration with respect to locked FIS of about 82% and 72% respectively. Gap
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Figure 3.10: Peak FIS responses with different seismic gaps for El Centro: (a) total accelerations
a2 and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The filled markers indicates cases in which impacts occurred in the FIS.

C also indicates a reduction in acceleration before it impacts. Therefore, prior to im-

pact, the FIS performs well as an isolator when subjected to El Centro. However, when

impacts occur, the data tells a different story. A dramatic rise in acceleration can be ob-

served for all cases. Gap B experiences an increase in FIS acceleration about twice as

much the baseline case at a SF of 1. Similar observation can be made during impact of

gap C and gap F. After the first impact occurs, the system continues to gain acceleration

as the GM SF increases. Therefore, during and after impact, the performance of the FIS

as an isolator degrades, during which time the experimental evaluation shifts to look at

the PS responses instead as discussed in Section 3.5.1(c).

For the FIS displacement response (Figure 3.10(b)), notice that the three horizontal

lines are below each gap’s impact SF, which means gaps B, C and F indeed impact at a

SF of 1, 0.5 and 1.25 respectively. As shown in Figure 3.10(b), the displacement of the

FIS continues to increase even though it has already reached its allowable displacement

capacity. This is due to the aforementioned additional compression of 6.6 mm in the

bumpers. However, the ultimate displacement goes beyond the addition of 6.6 mm,

which means there has to be an additional deflection in the system. This could be due

to the way the bumpers are installed during testing. As seen in Figure 3.3, the bumpers

are located at the end of a cantilever (from the aluminum support), and thus deflects
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Figure 3.11: Peak PS responses with different seismic gaps for El Centro: (a) 1st story drift δ1,
(b) 2nd story drift δ2, and (c) 3rd story drift δ3. The filled markers indicates cases in which impacts
occurred in the FIS.

when strongly hit by the top steel plate. This phenomenon can also be seen in other GM

cases.

3.5.1(c) Absorption performance

Figure 3.11 shows peak responses of the PS with different gaps at varying SFs when

subjected to El Centro. Prior to impact, it is apparent that the drift responses for the

case with FIS are almost the same as the case of no FIS. Therefore, the FIS has no effect

on the responses of the PS when it displaces within the allowable capacity.

However, after impact, a divergence from the linear response can be observed for

all three stories. The greatest observable divergence belongs to gap C where the reduc-

tion seems greatest at a SF of 1.5. This gap, though has a smaller capacity, seems to

outperform gap B and gap F for the absorption performance. While gap B and gap F

also exhibit inter-story drift reduction, notice that their divergence occur at higher SFs
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compared to gap C because they have larger gaps and need higher intensity SFs to see

impacts. Among the three stories, gap B shows the best reduction in the first story while

its performance in the second and third stories is variable. Even though gap F has seis-

mic displacement capacity 50% larger than gap B, it seems to perform worse than gap

B and C overall. After impact, gap F continues to show increase in drift until a SF of 2,

but eventually exhibits a reduction at a SF of 2.25.

For all gaps, a reduction in inter-story drift does not occur immediately after impact.

Noticeable divergence seems to happen at a higher GM SF where the impact is stronger.

Recall that gap B and C have the greatest gain in FIS acceleration from a SF of 1.5 to

1.75 (see Figure 3.10(a)). At this intensity, gap B also exhibits its first reduction in

drift as shown in Figure 3.11, which mean harsh impact is good for the absorption

performance of gap B. However, gap F continues to show increase in inter-story drift

despite experiencing similar acceleration gain at a SF of 1.5. For gap C, a similar

observation to gap B can be observed where it shows great absorption performance

within the intensity range in which it has high acceleration content.

In conclusion, when subjected to El Centro, the FIS indeed shows absorption per-

formance after impact. However, this performance varies for different seismic gaps.

3.5.2 Hachinohe

3.5.2(a) Baseline performance

Figure 3.12 shows the linear response of the PS with no FIS and locked FIS when

subjected to Hachinohe at varying SFs. Figure 3.12(a) shows peak acceleration of the

second floor where the response is approximately linear. Figures 3.12(b), 3.12(c) and

3.12(d) show peak inter-story drift of the first, second and third stories respectively.

The responses for the case of locked FIS look more linear than those for the case of no

FIS. For both acceleration and inter-story drifts, higher responses are observed for the

case of no FIS. These PS responses serve as the baseline performance for discussing the
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Figure 3.12: Peak responses with no FIS and locked FIS for Hachinohe: (a) 2nd floor total accel-
eration a2, (b) 1st story drift δ1, (c) 2nd story drift δ2, and (d) 3rd story drift δ3.

isolation and absorption performances for Hachinohe.

3.5.2(b) Isolation performance

Figure 3.13 shows peak responses of the FIS with different gaps at varying GM SFs.

Total acceleration and displacement of the FIS are shown in Figures 3.13(a) and 3.13(b)

respectively. For Hachinohe, impacts occur at a relatively smaller SF compared to El

Centro. Thus, not a lot of data points can be seen prior to impact. However, it is

still apparent from Figure 3.13(a) that all cases with FIS gaps have peak acceleration

below that of the locked FIS case when the system is linear (i.e., prior to impact), which

indicates that the FIS exhibit isolation performance. However, during and after impact,

a gain in acceleration can be observed in all cases. While gap C shows a more gradual

increase in acceleration, gap B and F exhibit a drastic gain between a SF of 0.75 and 1.

Thus, when subjected to Hachinohe, the FIS also performs poorly as an isolator in the

74



nonlinear region. The absorption performance is discussed in the Section 3.5.2(c).

Figure 3.13(b) shows that the FIS impacts at a SF of 0.25 for gap C, and 0.5 for both

gap B and F. It is observed that the FIS displacement from this GM also results in the

6.6 mm compression of the bumper as well as an additional deflection in the cantilever.

Notice that a gain in acceleration of the FIS can also be reflected from its increase in

displacement since Figures 3.13(a) and 3.13(b) share similar pattern.

3.5.2(c) Absorption performance

Figure 3.14 shows peak inter-story drift of the PS with different seismic gaps at varying

GM SFs. For all cases, a reduction in the PS responses can be observed after impact.

The reduction is clearly the greatest in the first story, while noticeable divergence and

similar response pattern can also be seen in the second and third story. At a SF of

1.5, gaps B and F experience a decrease in the first inter-story drift of about 50% and

22% respectively. Meanwhile, gap C’s best performance corresponds to a reduction

of about 41% at a SF of 1.25. At this SF, a small reduction can also be observed in

the third story for gap C and B. Overall, gap C seems to show the greatest divergence

in all stories while gap F continue to have the least effect on the reduction of the PS

responses. From the figure, the FIS exhibits great absorption performance after impact

when it is subjected to Hachinohe. Unlike El Centro, the intensity that corresponds to

the greatest gain in FIS acceleration (between a SF of 0.75 and 1 in Figure 3.13(a)) does

not necessarily show a reduction in the inter-story drift. As seen in Figure 3.14 between

a SF of 0.75 to 1, the opposite has occurred where a slight increase in the PS responses

is observed.
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Figure 3.13: Peak FIS responses with different seismic gaps for Hachinohe: (a) total accelerations
a2 and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The filled markers indicates cases in which impacts occurred in the FIS.
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Figure 3.14: Peak PS responses with different seismic gaps for for Hachinohe: (a) 1st story drift
δ1, (b) 2nd story drift δ2, and (c) 3rd story drift δ3. The filled markers indicates cases in which impacts
occurred in the FIS.
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Figure 3.15: Peak responses with no FIS and locked FIS for Kobe: (a) 2nd floor total acceleration
a2, (b) 1st story drift δ1, (c) 2nd story drift δ2, and (d) 3rd story drift δ3.

3.5.3 Kobe

3.5.3(a) Baseline performance

Figure 3.15 shows peak PS responses for the case of no FIS and locked FIS when

subjected to Kobe at varying SFs. Overall, the responses are approximately linear for

both acceleration and inter-story drifts, which serve as the baseline cases for discussing

the isolation and absorption performance respectively for Kobe. Like El Centro and

Hachinohe, PS with no FIS exhibits larger responses than the case with locked FIS.

3.5.3(b) Isolation performance

Figure 3.16 shows peak responses of the FIS with different seismic gaps when subjected

to Kobe at varying SFs. The FIS acceleration and displacement are shown in Figures

3.16(a) and 3.16(b), respectively. In all cases, a decrease in FIS acceleration can be

observed prior to impact. Gap B and F show a reduction of about 87% and 85% re-
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spectively at a SF of 1 while gap C also exhibits a decrease in acceleration in its linear

response. Notice that gap F continues to show great acceleration reduction even until

reaching a GM SF of 1.5. This means, when subjected to Kobe, an FIS with a large

seismic gap can exhibit great isolation performance even at high intensity. Therefore,

Kobe can be more advantageous for the FIS’s isolation performance than the cases of

El Centro or Hachinohe as discussed earlier.

However, as expected, Kobe also exhibits an increase in acceleration during and

after impact. While gap F shows great isolation performance, it also experiences a

drastic gain in acceleration during impact at a SF of 1.75. Gap B and C also show

increase in acceleration in the nonlinear range. Therefore, like other GMs, Kobe also

exhibits poor isolation performance during and after impact.

In Figure 3.16(b), the FIS displacement increases as the GM SF goes up. From this

figure, it is apparent that the FIS indeed experiences impact at a SF of 1.25, 0.5 and

1.75 for gaps B, C and F respectively. Compression in the bumpers as well as additional

deflection are also present in this case. For both the acceleration and displacement, there

are higher responses as the SF increases.

3.5.3(c) Absorption performance

Figure 3.17 shows peak inter-story drift of the PS with different seismic gaps at varying

GM SFs. For all stories, the linear responses of the three gaps resemble the baseline

cases (no FIS and locked FIS) quite well in exception of gap F in the first story where it

has higher inter-story drift at a SF of 1.5. Overall, impacts seem to have very little effect

on the PS responses especially in the second story where the data of all the three gaps

lie almost perfectly on the locked FIS line. In the first and third story, there is a small

divergence from the linear response at a SF of 3 that is observed for gap B only. This

indicates that when the system is subjected to Kobe, it does not exhibit any noticeable

absorption performance. Notice that there seems to be no clear correlation between
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Figure 3.16: Peak FIS responses with different seismic gaps for Kobe: (a) total accelerations a2
and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The filled markers indicates cases in which impacts occurred in the FIS.
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Figure 3.17: Peak PS responses with different seismic gaps for Kobe: (a) 1st interstory drift δ1,
(b) 2nd interstory drift δ2, and (c) 3rd interstory drift δ3. The filled markers indicates cases in which
impacts occurred in the FIS.
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Figure 3.18: Peak responses with no FIS and locked FIS for Northridge: (a) 2nd floor total accel-
eration a2, (b) 1st story drift δ1, (c) 2nd story drift δ2, and (d) 3rd story drift δ3.

the gain in FIS acceleration as shown in Figure 3.16 to how it affects the absorption

performance in Figure 3.17. Therefore, unlike El Centro and Hachinohe, Kobe overall

has negligible effect on the absorption performance of the FIS both during and after

impact.

3.5.4 Northridge

3.5.4(a) Baseline performance

Figure 3.18 shows the PS responses for the case of no FIS and locked FIS when sub-

jected to Northridge at varying SFs. As shown in Figure 3.18(a), the response of locked

FIS and no FIS are almost identical. In Figure 3.18(b), unlike other GMs, the inter-story

drift responses for the case of no FIS are overall smaller than those of the locked FIS

case. These responses serve as baseline cases for evaluating the isolation and absorption

performance of the FIS as discussed in the next sections.
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Figure 3.19: Peak FIS responses with different seismic gaps for Northridge: (a) total accelerations
a2 and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The filled markers indicates cases in which impacts occurred in the FIS.

3.5.4(b) Isolation performance

Figure 3.19 shows peak responses of the FIS with different gaps at varying GM SFs.

The acceleration and displacement responses are shown in Figures 3.19(a) and 3.19(b)

respectively. Prior to impact, the FIS acceleration of all three gaps is observed to be

smaller than the baseline cases. Thus, like other GMs, Northridge also exhibit isolation

performance when the system is linear. However, as expected, an increase in accelera-

tion is observed during and after impact, which results in a poor isolation performance

of the FIS when the system is subjected to Northridge.

Peak displacement of the FIS is shown in Figure 3.19(b). With the displacement

shown, it can be confirmed that Northridge results in an impact occurring at a SF of

0.625, 0.375 and 1 for gaps B, C and F respectively. Compression in the bumpers and

additional deflection are also present for this GM.

3.5.4(c) Absorption performance

Figure 3.20 shows peak inter-story drifts of the PS with different gaps when subjected to

Northridge at varying SFs. The linear responses of all cases fit very well to the baseline

performance. However, after impact, a small reduction in drift can be observed in all

cases. In the first story (Figure 3.20(a)), all three gaps have almost the exact same effect
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Figure 3.20: Peak PS responses with different seismic gaps for Northridge: (a) 1st interstory drift
δ1, (b) 2nd interstory drift δ2, and (c) 3rd interstory drift δ3. The filled markers indicates cases in
which impacts occurred in the FIS.

on the PS response where a small reduction in drift is observed. In the second and third

stories, gap F exhibits higher reduction in inter-story drift than for the case of gaps B and

C after impact. Note that this response is different from other GMs where gap F usually

shows the least effect on the absorption performance. Overall, Northridge results in an

impact that has very little effect on the absorption performance of the FIS. Similar to

Kobe, an increase in FIS acceleration response after impact as shown in Figure 3.19(a)

seems to have negligible effect on the PS responses when subjected to Northridge.

3.5.5 Normalized Performance Indices

The isolation and absorption performance of the FIS can also be evaluated by the nor-

malized isolation performance index (Ja) and normalized absorption performance index

(Jδ) respectively as defined in Section 3.2.5.

Figure 3.21 shows the normalized isolation performance index for the case with
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Figure 3.21: Peak total acceleration performance index Ja for (a) El Centro, (b) Hachinohe, (c)
Kobe, and (d) Northridge. The filled markers indicates cases in which impacts occurred in the FIS.

no FIS and and with FIS gaps when subjected to different GMs at varying SFs. Note

that since these values are normalized by alocked
2 , points below 1 indicate good isolation

performance whereas points above 1 indicate poor isolation performance relative to

the locked FIS case. Prior to impacts, all GMs indicate great isolation performance.

However, during and after impact, the FIS performs poorly as an isolator due to a drastic

gain in acceleration as shown in Figure 3.21. Notice that while gap F can generally

isolate at higher intensity, it also exhibits the greatest gain in acceleration after impact.

This is because the larger gap allows for greater velocities to develop before impact,

resulting in harsher impacts with higher accelerations. For El Centro, Hachinohe and

Kobe, the case of no FIS lies above 1 indicating that the addition of mass to the second

floor helps reduce the second’s floor acceleration. However, this seems to be not true

for Northridge GM since the case of no FIS stays perfectly at a value of 1.

Figure 3.22 shows the normalized absorption performance index for the case with
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Figure 3.22: Peak interstory drift performance index Jδ for (a) El Centro, (b) Hachinohe, (c) Kobe,
and (d) Northridge. The filled markers indicates cases in which impacts occurred in the FIS.

no FIS and with FIS gaps when subjected to different GMs at varying SFs. Since these

values are normalized by δlocked
1 , points below 1 indicate good absorption performance

whereas points above 1 indicate poor absorption performance relative to the locked FIS

case. Prior to impact, PS responses for El Centro, Hachinohe and Kobe indicate an in-

crease in inter-story drift while Northridge’s response stays constant throughout where

a small reduction in drift can be observed both before and after impact. During impact,

El Centro and Kobe continue to show an increase in drift until a certain SF where drift

reduction can be noticed. After impact, El Centro and Hachinohe show the highest re-

duction in drift (20–50%) while Kobe and Northridge have negligible effect overall on

the absorption performance. For the first three GMs, gap C seems most influential on

the drift reduction. Overall, gap B outperforms gap F for the absorption performance.

Notice that among these four GMs, Hachinohe indicates the best absorption perfor-

mance, and the reasons accountable for such great performance is discussed in the next
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section.

3.5.6 Discussion of the Experimental Results

This section discusses the results of the experiments to investigate the FIS responses to

different earthquakes. From earlier sections, it is apparent that El Centro and Hachinohe

provide good absorption performance whereas Kobe and Northridge have very little

effect on the absorption performance of the FIS. Referring back to the characteristics

of the GMs in Section 3.4.2, both El Centro and Hachinohe have relatively higher tstrong

than Kobe and Northridge even though the latter two have higher PGA values. For

this reason, there is time for the absorbers to begin functioning which results in a good

absorption performance. Therefore, the longer strong motion duration can be the main

reason why El Centro and Hachinohe exhibit greater absorption performance.

To further evaluate the GM characteristics in relation to the FIS performance, spec-

trograms for gap B of the four GMs based on the accelerations measured at the roof

of the PS are shown in Figure 3.23. Notice the horizontal red streaks, representing the

amount of energy, presented in each GM. They appear at the frequencies of about 3.5

Hz, 10 Hz and 15 Hz which correspond to the PS’s three natural frequencies. In all

these cases, a redistribution of energy from the first mode to higher modes can be seen.

Due to the nature of higher mode’s mode shape, it contributes less to the drift response

of the PS. Therefore, a greater energy redistribution to higher modes would correspond

to a smaller PS responses. Notice that Hachinohe overall has a relatively higher redis-

tribution of energy to the third mode than as seen with other GMs, which can be another

reason why it has the greatest absorption performance.

3.6 Numerical Results

Using the form of the contact force fc found in the characterization test detailed in

Section 3.3.3, the PS-FIS experiment can be numerically modelled using the same GMs
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(a) (b)

(c) (d)

Figure 3.23: Spectrograms of the roof acceleration for gap B subject to (a) El Centro, (b) Hachi-
nohe, (c) Kobe, and (d) Northridge.
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Figure 3.24: Peak FIS responses with different seismic gaps for El Centro: (a) total accelerations
a2 and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The grey portion indicates cases in which there are no impact whereas
the black portion indicates cases in which impacts occurred in the FIS.

and system properties. With ease of numerical simulation, isolation and absorption

performance of the FIS can be evaluated at finer increment of intensity SFs under a

reasonable time frame.

Using this simulation, the numerical results are obtained and discussed in this sec-

tion. The peak acceleration and interstory drift responses are plotted in the same format

shown in the experimental results. Responses of El Centro are shown in Figures 3.24

and 3.25. Responses of Hachinohe are shown in Figures 3.26 and 3.27. Responses of

Kobe are shown in Figures 3.28 and 3.29. Responses of Northridge are shown in Fig-

ures 3.30 and 3.31. These results contain overall features that resemble the experimental

results except for the baseline cases of El Centro and Hachinohe. From the experiment,

the case of locked FIS of these two GMs exhibit lower responses than the case of no

FIS. However, the reverse is seen in the numerical results. Baseline cases of Kobe and

Northridge are accurately reflected in the numerical results. For the cases with seismic

gaps, the responses contain the overall features exhibited in the experiment, with finer

details and up to a SF of 4.

The isolation and absorption performance indices are shown in Figures 3.32 and

3.33, respectively. Recall that these data are normalized by the case of locked FIS.
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Figure 3.25: Peak PS responses with different seismic gaps for El Centro: (a) 1st interstory drift
δ1, (b) 2nd interstory drift δ2, and (c) 3rd interstory drift δ3. The grey portion indicates cases in which
there are no impact whereas the black portion indicates cases in which impacts occurred in the FIS.
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Figure 3.26: Peak FIS responses with different seismic gaps for Hachinohe: (a) total accelerations
a2 and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The grey portion indicates cases in which there are no impact whereas
the black portion indicates cases in which impacts occurred in the FIS.

Therefore, values below 1 for Ja and Jδ exhibit enhanced performance in isolation and

absorption respectively. From Figure 3.32, the FIS always exhibits isolation behaviour

before impact. However, a huge increase in acceleration can be seen when the FIS ex-

periences impact. After this initial increase, the normalized acceleration fluctuates with
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Figure 3.27: Peak PS responses with different seismic gaps for Hachinohe: (a) 1st interstory drift
δ1, (b) 2nd interstory drift δ2, and (c) 3rd interstory drift δ3. The grey portion indicates cases in which
there are no impact whereas the black portion indicates cases in which impacts occurred in the FIS.
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Figure 3.28: Peak FIS responses with different seismic gaps for Kobe: (a) total accelerations a2
and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The grey portion indicates cases in which there are no impact whereas
the black portion indicates cases in which impacts occurred in the FIS.

an overall decreasing trend as the GM scale factor increases. From Figure 3.33, absorp-

tion performance can be observed for El Centro, Hachinohe and Northridge whereas

Kobe exhibits poor absorption performance both before and after impact. With respect

to the locked FIS, El Centro and Hachinohe exhibit interstory drift reduction both be-
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Figure 3.29: Peak PS responses with different seismic gaps for Kobe: (a) 1st interstory drift δ1, (b)
2nd interstory drift δ2, and (c) 3rd interstory drift δ3. The grey portion indicates cases in which there
are no impact whereas the black portion indicates cases in which impacts occurred in the FIS.
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Figure 3.30: Peak FIS responses with different seismic gaps for Northridge: (a) total accelerations
a2 and aFIS, and (b) FIS displacement dFIS. The horizontal lines represent the seismic gap for each
case (based on line style). The grey portion indicates cases in which there are no impact whereas
the black portion indicates cases in which impacts occurred in the FIS.

fore and after impact. However, great divergence in drift reduction starts to occur after

impact. For El Centro (Figure 3.33(a)), the reduction becomes plateaus starting at a SF

of 3 for all seismic gaps. For Hachinohe (Figure 3.33(b)), the drift responses continue

to decrease until a SF of about 2.5 after which a small increase is observed. For Kobe
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Figure 3.31: Peak PS responses with different seismic gaps for Northridge: (a) 1st interstory drift
δ1, (b) 2nd interstory drift δ2, and (c) 3rd interstory drift δ3. The grey portion indicates cases in which
there are no impact whereas the black portion indicates cases in which impacts occurred in the FIS.

(Figure 3.33(c)), impact reduces the interstory drift but are not effective enough to re-

duce the PS’s responses compared to the case of locked FIS. For Northridge (Figure

3.33(d)), impacts improve the FIS’s absorption performance only at small intensities.

As seen in Figure 3.33(d), from a SF of 1 to 4, impacts have no effect on the absorption

performance index.

3.7 Summary

Chapter 3 describes the experimental process for conducting lab-scale dual-mode FIS

tests as well as evaluates the FIS’s isolation and absorption performance by analyzing

both the experimental and numerical results.

In summary, a rolling FIS with 250-mm radius of curvature track was mounted

onto the second floor of a three-story lab-scale steel structure subjected to four historic

ground motions—El Centro, Hachinohe, Kobe, and Northridge. Three seismic gaps—
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Figure 3.32: Peak total acceleration performance index Ja for (a) El Centro, (b) Hachinohe, (c)
Kobe, and (d) Northridge. The grey portion indicates cases in which there are no impact whereas
the black portion indicates cases in which impacts occurred in the FIS.

21.95, 11.95, and 32.79 mm—were investigated at varying GM intensity scale factor,

which were then compared to baseline cases (i.e., locked FIS and no FIS) in order to

evaluate the effectiveness of the FIS as both an isolator and an absorber. The evaluation

was conducted using a performance index where the FIS responses are normalized with

the responses of locked FIS.

From the experimental and numerical results, the following conclusions can be

made: (1) the impact-induced nonlinearity creates a dynamic couple between the FIS

and the PS as indicated by the divergence from linear responses, (2) installing a FIS to

the PS floor can effectively mitigate seismic response in the isolated content as long as

the FIS displacement stays within a linear range, (3) impacts can be harnessed to protect

the PS for Hachinohe and El Centro but general ineffective for Kobe and Northridge,

(4) while larger seismic gap can isolate more effectively (i.e., at higher intensity SFs),
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Figure 3.33: Peak interstory drift performance index Jδ for (a) El Centro, (b) Hachinohe, (c) Kobe,
and (d) Northridge. The grey portion indicates cases in which there are no impact whereas the black
portion indicates cases in which impacts occurred in the FIS.

it does not necessarily provide better absorption performance, (5) smaller seismic gap

generally exhibits earlier divergence from the linear response in the absorption perfor-

mance, (6) higher strong motion duration results in greater absorption performance, and

(7) energy redistribution to higher mode in the PS is advantageous to reducing the PS

responses.
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Chapter 4

Summary, Conclusions, and Future Work

4.1 Summary and Conclusions

The performance evaluation of a dual-mode FIS has been studied using two approaches

(probabilistic and experimental) to analyze its behaviour as a vibration isolator in the

linear range (i.e., FIS having no impact) and as a vibration absorber in the nonlinear

range (i.e., FIS experiencing impacts). Both approaches measure the FIS acceleration

response to evaluate isolation performance and the PS interstory drift response to eval-

uate absorption performance.

The probabilistic approach relies solely on numerical simulation that utilizes a non-

linear reduced order model to ease the computational burden allowing for a more effi-

cient way to collect numerical data within a constraint time frame. This permits critical

consideration of many different controlling factors including seismic gap, impact pa-

rameters, isolation mass ratio, FIS location, and performance metric parameters via the

optimization study that utilizes a 25000-sample Latin hyper cube method and a genetic

algorithm. A suite of 50 synthetic ground motions is applied at various hazard levels:

service level (SLE), design basis (DBE), and maximum considered earthquake (MCE).

The experimental approach is based on a lab-scale experiment and a numerical sim-

ulation that was developed using the same parameters as the experiment. With time con-

straint, this approach uses four historic ground motions (El Centro, Hachinohe, Kobe

and Northridge) at varying intensity scale factors, and considers only seismic gaps as
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the controlling factor.

Based on the results from these two approaches, it can be concluded that the FIS

is capable of protecting sensitive equipment when it displaces within its allowable ca-

pacity. Beyond this limit, a reduction in the primary structure’s interstory drift can

also be observed in some cases, which results in an FIS that is a dual-mode vibration

isolator/absorber system.

4.2 Future Work

The results obtained from this research have paved the way for a promising dual-mode

seismic isolation system. For the probabilistic approach, future studies should consider

the following extensions and their effects on the PS-FIS performance: (1) uncertainty

in the properties of the PS, (2) inelasticity within the PS, (3) less flexible MRFs, (4)

lateral force resisting systems other than MRFs, (5) nonlinear models for the isolator

prior to impact, and (6) other contact models of impact. For the experimental approach,

future works should take the following extensions into consideration: (1) FIS responses

at other stories (i.e., first floor and roof), (2) different curving track profiles, (3) various

isolation mass ratios, (4) different impact parameters (i.e., different shock absorber),

(5) using multiple shock absorbers, and (6) numerical optimization study that leads to

validation testings.

95



Bibliography

Anajafi, H. and Medina, R. A. (2018a). “Evaluation of ASCE 7 equations for de-
signing acceleration-sensitive nonstructural components using data from instrumented
buildings.” Earthquake Engineering and Structural Dynamics, 47(4), 1075–1094. doi:
10.1002/eqe.3006.

Anajafi, H. and Medina, R. A. (2018b). “Partial mass isolation system for seismic vi-
bration control of buildings.” Structural Control and Health Monitoring, 25(2), e2088.
doi:10.1002/stc.2088.

Andreaus, U. and De Angelis, M. (2020). “Influence of the characteristics of isolation
and mitigation devices on the response of single-degree-of-freedom vibro-impact sys-
tems with two-sided bumpers and gaps via shaking table tests.” Structural Control and
Health Monitoring, 27(5), e2517. doi:10.1002/stc.2517.

Arias, A. (1970). “Measure of earthquake intensity.” Report no., Massachusetts Inst.
of Tech., Cambridge. Univ. of Chile, Santiago de Chile.

ASCE (2017). Minimum Design Loads and Associated Criteria for Buildings
and Other Structures. American Society of Civil Engineers (ASCE), Reston, VA,
ASCE/SEI 7-16 edition.

Baggio, S., Berto, L., Favaretto, T., Saetta, A., and Vitaliani, R. (2015). “Seismic
isolation technique of marble sculptures at the Accademia Gallery in Florence: nu-
merical calibration and simulation modelling.” Bulletin of Earthquake Engineering,
13(9), 2719–2744. doi:10.1007/s10518-015-9741-2.

Becker, T. C., Bao, Y., and Mahin, S. A. (2017). “Extreme behavior in a triple friction
pendulum isolated frame.” Earthquake Engineering and Structural Dynamics, 46(15),
2683–2698. doi:10.1002/eqe.2924.

Bin, P., Tehrani, M. H., Nisa, M., Harvey, Jr, P. S., and Taflanidis, A. A. (n.d.). “Anal-
ysis and optimization of a nonlinear dual-mode floor isolation system subjected to
earthquake excitations.” Earthquake Engineering& Structural Dynamics in press, doi:
10.1002/eqe.3449.

Brincker, R., Zhang, L., and Andersen, P. (2001). “Modal identification of output-only
systems using frequency domain decomposition.” Smart Materials and Structures, 10,
441–445. doi:10.1088/0964-1726/10/3/303.

96

http://dx.doi.org/10.1002/eqe.3006
http://dx.doi.org/10.1002/eqe.3006
http://dx.doi.org/10.1002/stc.2088
http://dx.doi.org/10.1002/stc.2517
http://dx.doi.org/10.1007/s10518-015-9741-2
http://dx.doi.org/10.1002/eqe.2924
http://dx.doi.org/10.1002/eqe.3449
http://dx.doi.org/10.1002/eqe.3449
http://dx.doi.org/10.1088/0964-1726/10/3/303


Calhoun, S. J. and Harvey, Jr., P. S. (2018). “Enhancing the teaching of seismic
isolation using additive manufacturing.” Engineering Structures, 167, 494–503. doi:
10.1016/j.engstruct.2018.03.084.

Calhoun, S. J., Tehrani, M. H., and Harvey, Jr, P. S. (2019). “On the performance
of double rolling isolation systems.” Journal of Sound and Vibration, 449, 330–348.
doi:10.1016/j.jsv.2019.02.030.

Casey, C. D., Harvey, Jr, P. S., and Song, W. (2018). “Multi-unit rolling isolation sys-
tem arrays: Analytical model and sensitivity analysis.” Engineering Structures, 173,
656–668. doi:10.1016/j.engstruct.2018.06.118.

Chen, M. C., Pantoli, E., Wang, X., Astroza, R., Ebrahimian, H., Hutchinson, T. C.,
Conte, J. P., Restrepo, J. I., Marin, C., Walsh, K. D., Bachman, R. E., Hoehler,
M. S., Englekirk, R., and Faghihi, M. (2016). “Full-scale structural and nonstruc-
tural building system performance during earthquakes: Part I–specimen description,
test protocol, and structural response.” Earthquake Spectra, 32(2), 737–770. doi:
10.1193/012414EQS016M.

Chen, Y. and Soong, T. T. (1988). “Seismic response of secondary systems.” Engi-
neering Structures, 10, 218–228. doi:10.1016/0141-0296(88)90043-0.

De Angelis, M., Perno, S., and Reggio, A. (2012). “Dynamic response and optimal de-
sign of structures with large mass ratio TMD.” Earthquake Engineering and Structural
Dynamics, 41(1), 41–60. doi:10.1002/eqe.1117.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Ltd, Chichester, England.

Den Hartog, J. P. (1985). Mechanical Vibration. Dover.

Dorman, J. and Prince, P. (1980). “A family of embedded runge-kutta formulae.”
Journal of Computational and Applied Mathematics, 6, 19–26. doi:10.1016/0771-
050X(80)90013-3.

Engle, T., Mahmoud, H., and Chulahwat, A. (2015). “Hybrid tuned mass damper and
isolation floor slab system optimized for vibration control.” Journal of Earthquake
Engineering, 19, 1197–1221. doi:10.1080/13632469.2015.1037406.

FEMA (2003). Multi-hazard loss estimation method: Earthquake model: HAZUS
MR4 technical manual. Federal Emergency Management Agency, Washington, D.C.

Fenz, D. M. and Constantinou, M. C. (2008). “Spherical sliding isolation bearings with
adaptive behavior: Experimental verification.” Earthquake Engineering and Structural
Dynamics, 37, 185–205. doi:10.1002/eqe.750.

97

http://dx.doi.org/10.1016/j.engstruct.2018.03.084
http://dx.doi.org/10.1016/j.engstruct.2018.03.084
http://dx.doi.org/10.1016/j.jsv.2019.02.030
http://dx.doi.org/10.1016/j.engstruct.2018.06.118
http://dx.doi.org/10.1193/012414EQS016M
http://dx.doi.org/10.1193/012414EQS016M
http://dx.doi.org/10.1016/0141-0296(88)90043-0
http://dx.doi.org/10.1002/eqe.1117
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1080/13632469.2015.1037406
http://dx.doi.org/10.1002/eqe.750


Foutch, D. A. (2000). “State of the art report on performance prediction and evalua-
tion of steel moment-frame buildings.” Report No. FEMA-355F, Federal Emergency
Management Agency (FEMA) (September).

Fu, T. S. and Johnson, E. A. (2011). “Distributed mass damper system for integrating
structural and environmental controls in buildings.” Journal of Engineering Mechan-
ics, 137(3), 205–213. doi:10.1061/(ASCE)EM.1943-7889.0000211.

Gavin, H. P. and Dickinson, B. W. (2011). “Generation of uniform-hazard earth-
quake ground motions.” Journal of Structural Engineering, 137, 423–432. doi:
10.1061/(ASCE)ST.1943-541X.0000331.

Gidaris, I., Taflanidis, A. A., Lopez-Garcia, D., and Mavroeidis, G. P. (2016). “Multi-
objective risk-informed design of floor isolation systems.” Earthquake Engineering
and Structural Dynamics, 45(8), 1293–1313. doi:10.1002/eqe.2708.

Gourdon, E., Alexander, N. A., Taylor, C. A., Lamarque, C.-H., and Pernot, S. (2007).
“Nonlinear energy pumping under transient forcing with strongly nonlinear coupling:
Theoretical and experimental results.” Journal of Sound and Vibration, 300(3-5), 522–
551. doi:10.1016/j.jsv.2006.06.074.

Gutierrez Soto, M. and Adeli, H. (2013). “Tuned mass dampers.” Archives of Compu-
tational Methods in Engineering, 20(4), 419–431. doi:10.1007/s11831-013-9091-7.

Hamidi, M. and El Naggar, M. H. (2007). “On the performance of SCF in seismic iso-
lation of the interior equipment of buildings.” Earthquake Engineering and Structural
Dynamics, 36, 1581–1604. doi:10.1002/eqe.708.

Harvey, Jr., P. S. and Elisha, G. (2018). “Vision-based vibration monitoring using ex-
isting cameras installed within a building.” Structural Control and Health Monitoring,
25, e2235. doi:10.1002/stc.2235.

Harvey, Jr., P. S., Elisha, G., and Casey, C. D. (2018). “Experimental investigation of
an impact-based, dual-mode vibration isolator/absorber system.” International Journal
of Non-Linear Mechanics, 104, 59–66. doi:10.1016/j.ijnonlinmec.2018.02.013.

Harvey, Jr., P. S. and Gavin, H. P. (2013). “The nonholonomic and chaotic nature of
a rolling isolation system.” Journal of Sound and Vibration, 332, 3535–3551. doi:
10.1016/j.jsv.2013.01.036.

Harvey, Jr., P. S. and Gavin, H. P. (2014a). “Double rolling isolation systems: A mathe-
matical model and experimental validation.” International Journal of Non-Linear Me-
chanics, 61, 80–92. doi:10.1016/j.ijnonlinmec.2014.01.011.

Harvey, Jr., P. S. and Gavin, H. P. (2014b). “Truly isotropic biaxial hysteresis with ar-
bitrary knee sharpness.” Earthquake Engineering and Structural Dynamics, 43, 2051–
2057. doi:10.1002/eqe.2436.

98

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000211
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000331
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000331
http://dx.doi.org/10.1002/eqe.2708
http://dx.doi.org/10.1016/j.jsv.2006.06.074
http://dx.doi.org/10.1007/s11831-013-9091-7
http://dx.doi.org/10.1002/eqe.708
http://dx.doi.org/10.1002/stc.2235
http://dx.doi.org/10.1016/j.ijnonlinmec.2018.02.013
http://dx.doi.org/10.1016/j.jsv.2013.01.036
http://dx.doi.org/10.1016/j.jsv.2013.01.036
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.011
http://dx.doi.org/10.1002/eqe.2436
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Appendix A

State Space Formulation

Assuming the FIS response is in the linear range (|d| 6 do), Equation (2.3) can be written

in matrix form as follows:[
M̂ + mp̂p̂T mp̂

mp̂T m

] {
η̈(t)
d̈(t)

}
+

[
Ĉ 0r×1

01×r c

] {
η̇(t)
ḋ(t)

}
+

[
K̂ 0r×1

01×r k

] {
η(t)
d(t)

}
= −

{
Γ̂ + mp̂

m

}
üg(t)

(A.1)

The state-space representation of the linear PS-FIS system in Equation (A.1) is given

by

ẋ(t) = Ax(t) + Büg(t) (A.2)

where x(t) = [ηT(t) d(t) η̇T(t) ḋ(t)]T ∈ R2r+2 is the state vector. The matrices in

Equation (A.2) are defined as

A =

[
0(r+1)×(r+1) I(r+1)

−M−1
PS-FISKPS-FIS −M−1

PS-FISCPS-FIS

]
,B =

{
0(r+1)×1

−M−1
PS-FISΓPS-FIS

}
(A.3)

In these expressions, Ia is the identity matrix of dimension a, 0a×b is the zero matrix of

dimension a × b, and the PS-FIS matrices are given by

MPS-FIS =

[
M̂ + mp̂p̂T mp̂

mp̂T m

]
,CPS-FIS =

[
Ĉ 0r×1

01×r c

]
,

KPS-FIS =

[
K̂ 0r×1

01×r k

]
,ΓPS-FIS =

{
Γ̂ + mp̂

m

}
(A.4)

The response quantities defined in Section 2.3.1 can be written in state-space form,
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y(t) = Cx(t) + Düg(t) (A.5)

where the output vector C and feed-through coefficient D are given by

relative displacement of FIS: C = {01×r 1 01×r 0},
D = 0 (A.6a)

total acceleration of FIS: C = {01×r 0 p̂T 1}A,

D = 1 + {01×r 0 p̂T 1}B (A.6b)

total acceleration of jth story level: C = {01×r 0 pT
j Φr 0}A,

D = 1 + {01×r 0 pT
i Φr 0}B (A.6c)

jth inter-story drift: C = {(p j − p j−1)Φr 0 01×r 0},
D = 0 (A.6d)

roof drift: C = {pT
roofΦr 0 01×r 0},

D = 0 (A.6e)

where p j and proof are Boolean n-vectors identifying the DOF in the PS model [Equation

(2.1a)] associated with the jth-story level and roof displacements relative to the ground,

respectively; i.e., u j(t) = pT
j q(t) and uroof(t) = pT

roofq(t). The complex transfer function

H(ω) is then given by

H(ω) = C(jωI − A)−1B + D (A.7)

where j =
√
−1.

105



Appendix B

Equilibrium Formulation

Consider the FP bearing shown in Fig. 3.1. The free body diagram (FBD) of the FP

bearing in a displaced configuration is shown in Fig. B.1. The normal force N is per-

pendicular to the slider, and friction acts along the the sliding surface. The direction

of these forces is described by the angle θ of the sliding surface at the point of contact,

which is related to the sliding surface’s shape h(x) as follows:

cos θ =
dx

√
dh2 + dx2

≡
1√

1 + [h′(x)]2
(B.1a)

sin θ =
dh

√
dh2 + dx2

≡
h′(x)√

1 + [h′(x)]2
(B.1b)

tan θ =
dh
dx
≡ h′(x) (B.1c)

Note that these derivatives are evaluated at x = u.

Now, applying dynamic equilibrium:

→+ ΣFx = max : − N sin θ − µN sgn(u̇) cos θ = m(ẍt + ü) (B.2a)

↑+ ΣFy = may : N cos θ − µN sgn(u̇) sin θ − mg = m[ÿt + h′(u)ü + h′′(u)u̇2] (B.2b)

xuN
mNsgn(u)

mg

y

dh
dx

u

Figure B.1: Free body diagram of a FP bearing.
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where the total acceleration ay in the y-direction has been expressed in terms of u us-

ing the kinematic constraint (3.3). These two coupled equations have two unknowns:

normal force N and motion u (and its derivatives). We seek to eliminate N, and write

a single equation of motion in terms of only u. To do this, let’s define a normalized

normal force

λ ≡
1√

1 + [h′(u)]2
N

Doing so, and substituting the expressions (B.1) for the sine and cosine of θ into Eq.

(B.2), the following equations are recovered:

−λh′(u) − µλ sgn(u̇) = m(ẍt + ü) (B.3a)

λ − µλh′(u) sgn(u̇) − mg = m[ÿt + h′(u)ü + h′′(u)u̇2] (B.3b)

These equations are linear in the two unknowns (λ and ü), so we can write them as

follows: [
1 µ sgn(u̇) + h′(u)

h′(u) µh′(u) sgn(u̇) − 1

] {
mü
λ

}
=

{
−mẍt

−m[ÿt + h′′(u)u̇2 + g]

}
(B.4)

Inverting the matrix and solving for the unknowns gives{
mü
λ

}
= −

1
1 + [h′(u)]2

[
µh′(u) sgn(u̇) − 1 −µ sgn(u̇) − h′(u)

−h′(u) 1

] {
−mẍt

−m[ÿt + h′′(u)u̇2 + g]

}
(B.5)

Expanding and simplifying the first equation gives

m{1 + [h′(u)]2}ü + mh′(u)h′′(u)u̇2 + mµ{g + ÿt + h′′(u)u̇2 − h′(u)ẍt} sgn(u̇)
+ mgh′(u) = −mẍt − mh′(u)ÿt (B.6)
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Appendix C

System Identification of Experimental

Structure

Knowing the structural properties of each floor of the PS is an important step prior to

building the mass, stiffness and damping matrices for the experimental system used in

this study. To obtain such values can be a challenge since it is practically inconvenient

to directly measure the mass of each floor and difficult, if not impossible, to measure

their exact stiffness and damping. Therefore, a method of system identification is used

to obtain such properties, which is done through a series of tests and analysis described

in this appendix.

C.1 Mathematical Formulation

Consider a 3-degree-of-freedom mathematical model describing the 3-story shear-type

experimental structure subject to base excitation üg(t):

Mü(t) + Cu̇(t) + Ku(t) = −M1üg(t) (C.1)

where

u(t) =


u1(t)
u2(t)
u3(t)

 ,M =

m1 0 0
0 m2 0
0 0 m3

 ,K =

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

 , 1 =


1
1
1

 (C.2)

in which ui(t) is the displacement of the ith story level relative to the base, and mi and

ki are the ith floor mass and story stiffness, respectively, which are to be determined.
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Likewise, the damping matrix C will be determined experimentally.

Now, consider masses ∆mi that are added to each of the floors (i = 1, 2, 3). The

equation of motion for the modified structure is given by

(M + ∆M)ü(t) + Cu̇(t) + Ku(t) = −(M + ∆M)1üg(t) (C.3)

where

∆M =

∆m1 0 0
0 ∆m2 0
0 0 ∆m3

 (C.4)

The modified equation of motion can be written in state-space form as follows:

ẋ(t) = Ax(t) + Büg(t) (C.5)

where x(t) = [uT(t) u̇T(t)]T ∈ R6 is the state vector. The matrices in Equation (C.5) are

defined as

A =

[
03×3 I3×3

−(M + ∆M)−1K −(M + ∆M)−1C

]
,B =

{
03×1

−1

}
(C.6)

The response quantities of interest are the total accelerations of each story level, i.e.,

üi(t) + üg(t), which can be written in state-space form,

y(t) = ü(t) + 1üg(t) ≡ Cx(t) + Düg(t) (C.7)

where

C =
[
−(M + ∆M)−1K −(M + ∆M)−1C

]
, and D = 03×1 (C.8)

The complex transfer function H( f ) at frequency f [Hz] is then given by

H( f ) = C(2π f j I − A)−1B + D (C.9)

where j =
√
−1. Note that H( f ) is a 3-vector, where the ith entry, Hi( f ), is the transfer
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function for the ith story.

Experimentally, the structure was subjected to band-limited (1–20 Hz) white noise,

and the shake table and floor accelerations were recorded. Let these measured accelera-

tion time histories be denoted ag(t) and ai(t) (i = 1, 2, 3), respectively, and their Fourier

transforms calculated using the fast Fourier transform (FFT) at discrete frequencies f j

be denoted Ag( f j) and Ai( f j), respectively. The frequency response (gain) is defined by

Gi( f j) =
|Ai( f j)|
|Ag( f j)|

, i = 1, 2, 3 (C.10)

The frequency response Gi( f j) is simply the absolute value of the transfer function

Hi( f ), which will be used to fit the structure parameters

x = (m1,m2,m3, c1, c2, c3, k1, k2, k3)

However, there is inherent redundancy in these parameters (i.e., the structure is defined

by only six parameters, e.g., ω1, ω2, ω3, ζ1, ζ2, and ζ3), so one would typically measure

as accurately as possible three of the parameters. Instead, in this study, additional known

masses ∆mi are attached to the structure. A few different configurations (l = 1, 2, 3, 4;

see Table C.1) are considered, where Hl
i( f j) and Gl

i( f j) denote respectively the transfer

function and frequency response for the lth configuration.

Table C.1: Configurations for system identification

Additional masses [kg (lb-s2/ft)]
Configuration No. ∆m1 ∆m2 ∆m3

1 0 0 0
2 9.190 (0.6292) 0 0
3 9.190 (0.6292) 9.203 (0.6301) 0
4 18.34 (1.256) 0 0
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Figure C.1: First singular values of the power spectral density matrix for each configuration, with
the identified frequencies indicated (∗).

C.2 System Identification

The system identification was carried out using a two-step approach. The first step

was to identify the masses and stiffnesses of the structure based on the identified modal

frequencies. The second step was to estimate the modal damping ratios by fitting the

transfer function to the frequency response data.

C.2.1 Mass and Stiffness Identification

To identify the modal frequencies of each configuration, frequency domain decomposi-

tion (FDD) (Brincker et al., 2001) was used. In this method, the power spectral density

matrix is decomposed using the singular value decomposition, and the modal frequen-

cies are found as the peaks in the spectrum of the first singular value. Figure C.1 shows

the singular value spectra for each configuration, and the identified frequencies are tab-

ulated in Table C.2.

Table C.2: Identified modal frequencies using frequency domain decomposition (FDD).

Modal Configuration no.
frequency 1 2 3 4

f1 [Hz] 3.3222 3.2932 3.1952 3.2512
f2 [Hz] 9.8425 9.3525 9.3485 8.9484
f3 [Hz] 14.4547 14.232 13.563 14.037
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A set of values for mass and stiffness of each floor were obtained via genetic algo-

rithm (GA) to fit the modal frequencies of the PS. In this process, mass and stiffness

of each floor were given a certain bound to be optimized. The mass of each floor was

estimated based on the actual measurement of the experimental structure. Components

of the structure that constitute the weight for each floor are shown in Table C.3. The

first floor consists of a deck, 2 longitudinal ribs, a transverse rib, 2 longitudinal angles,

2 transverse angles, a large block below deck, a large block above deck, 2 small blocks,

4 columns, and 2 braces, which result in a total weight of 129.507 lb. The second floor

has the same components as the first floor without the 2 small blocks, which constitute

a total weight of 128.898 lb. The roof consists of the same components as the second

floor but with only 2 columns and 1 brace, which result in a total weight of 117.875 lb.

Since the mass is known fairly accurately, the range given for the optimization of

the mass is within ±5% of m1 = 4.01 lb-s2/ft, m2 = 4.01 lb-s2/ft, and m3 = 3.66 lb-s2/ft.

On the other hand, stiffness is harder to estimate from the structure physically. Thus,

the range given to optimize stiffness is more lenient, with a lower bound of 500 lb/in.

and upper bound of 1500 lb/in.* The objective function for this optimization is based on

the following equation, in which estimated modal frequencies f̂ l
i from the mathematical

model were fitted to the identified modal frequencies f l
i of the experimental structure,

using their relative error:

(m1,m2,m3, k1, k2, k3)∗ = arg min
m1,m2,m3,k1,k2,k3

4∑
l=1

3∑
i=1

 f l
i − f̂ l

i

f l
i

2

(C.11)

The optimization was run for multiple times to obtain values that provide the best es-

timate. After each run of the optimization, a set of values for m1, m2, m3, k1, k2 and

k3 were obtained. These values are associated with certain errors from the compari-

son. However, the set that provides the smallest error was chosen. Thus, the identified

*These values are loosely based on four 0.75-in.-diameter columns of length 31.25 in., which gives a
story stiffness of 708 lb/in., assuming fix-fixed boundary conditions.
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masses and stiffness are m∗1 = 56.06 kg, m∗2 = 56.29 kg, and m∗3 = 56.20 kg (3.8385,

3.8540, and 3.8478 lb-s2/ft, respectively) and k∗1 = 112.83 N/mm, k∗2 = 135.64 N/mm,

and k∗3 = 158.35 N/mm (644.3, 774.5, and 904.2 lb/in., respectively). The estimated

modal frequencies based on these values are given in Table C.4. On average, the rela-

tive error between the measured and estimated frequencies is 0.09%.

C.2.2 Modal Damping Estimation

To estimate modal damping of each mode, latin hypercube sampling was used for the

optimization. In this method, 1000 sample points of damping ratio were used in an

exhaustive search to optimize the fitness function. Even though nine parameters (m1,

m2, m3, k1, k2, k3, ζ1, ζ2, and ζ3) were being optimized, masses and stiffnesses were

given a very narrow bound (within ±0.1% of their fitted values) since they were already

identified in the previous section. For modal damping, each mode was fit independently

starting from third to second to first mode. The fitness function for this optimization is

posed as follows:

ζ∗n = arg min
ζn

4∑
l=1

3∑
i=1

∑
j

[
ln Hl

i( f j) − ln Gl
i( f j)

]2
(C.12)

As shown, transfer function is being fit to the frequency response data on the natural log

scale to avoid the over-fitting of a large value. First, the values in the vicinity (±10%)

of the third modal frequency of the structure were used to fit ζ3, while damping ratio ζ1

and ζ2 were fixed to nearly zero. Then, the optimization is run to find the best fitted ζ3.

Table C.4: Best estimates of modal frequencies based on GA-optimized masses and stiffnesses.

Modal Configuration no.
frequency 1 2 3 4

f1 [Hz] 3.3242 3.2882 3.1965 3.2525
f2 [Hz] 9.8292 9.3589 9.3462 8.9552
f3 [Hz] 14.440 14.211 13.571 14.061
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Figure C.2: Frequency response data (·) from the (a) first, (b) second, and (c) third floors, indicating
selected data (◦) used to fit modal damping ratios, with the fitted transfer functions (—).

Similar process was applied to obtain the second modal damping ratio. Values around

the second modal frequency (also ±10%) were used to fit ζ2, while ζ1 and ζ3 were held

constant to zero and to the obtained value respectively. After ζ2 was obtained from the

optimization, ζ1 was being fit last. Similarly, values in the vicinity of the first modal

frequency were used to fit the first modal damping ratio, while ζ2 and ζ3 were held

constant. Then, the optimization is run to obtain ζ1.

From this optimization, the identified modal damping ratios are ζ∗1 = 0.1%, ζ∗2 =

0.1%, and ζ∗3 = 0.2%. The frequency response spectra of the structure from the experi-

ment and the estimated modal damping are shown in Figure C.2.
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Appendix D

Characterization Test

Figure D.1 shows the setup for sine sweep test to characterize the FIS. A laser is at-

tached to measure the displacement of the isolated steel blocks. Accelerometer 1 and

accelerometer 2 are installed to record the acceleration of the shake table and the iso-

lated content respectively. Two bumpers are attached on both sides of the FIS as shown.

They serve as shock absorbers to provide a gradual impact. The setup is mounted on a

shake table ready for testing.

After the data is processed, it can be determined that the system is nonlinear as

shown in Figure D.2.

Figure D.1: FIS setup for sine sweep test
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