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Abstract 

Flash floods, tornadoes, damaging winds, and large hail are costly and difficult to predict, 

even for state-of-the-art, high-resolution numerical weather prediction (NWP) systems. Current 

operational NWP ensembles have a variety of shortcomings: they are under-dispersive for 

precipitation, contain biases in precipitation magnitude and convection placement, have 

suboptimal forecast reliability, and use horizontal grid-spacing too coarse to explicitly depict 

some high-impact hazards (e.g., severe hail and tornadoes). Thus, post-processing techniques are 

required to obtain skillful probabilistic hazard forecasts from raw NWP ensemble guidance. 

Common post-processing methods include the use of proxies (e.g., climatologically large values 

of 2-5 km updraft helicity; UH2-5km) to represent simulated high-impact weather events and/or 

the use of spatially smoothed raw ensemble probabilities to improve forecast reliability. 

However, these methods use limited data and thus tend to be suboptimal. In this dissertation, I 

develop and analyze a random forest- (RF-) based procedure for obtaining more skillful 

precipitation and severe weather probabilistic forecasts for next-day lead times (i.e., 12-36 h 

forecasts valid from 1200 UTC – 1200 UTC). While past studies have used RFs to better predict 

high-impact weather, my RF procedure is unique because it uses temporally-aggregated, 

spatially-upscaled, point-based ensemble forecast predictors over the full contiguous United 

States (CONUS). This method of generating predictors is relatively simple but skillfully 

accounts for uncertainties in simulated convection timing and placement.  

For precipitation and severe weather hazard prediction, I show that my RF procedure 

improves forecast reliability and resolution relative to top-performing (human and non-human) 

baseline forecasts. I find that RF post-processing is most beneficial for convection-

parameterizing ensembles (which have more initial biases than convection-allowing ensembles) 
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and more-common events (e.g., lighter precipitation thresholds and severe wind and hail 

compared to tornadoes). For precipitation, I find that RF-based post-processing reduces spatial 

biases and note that a season of training data is sufficient to produce skillful probabilistic 

precipitation forecasts for thresholds up to 3-inches. For severe weather, I show that RF-based 

forecasts have verification metrics similar to or better than corresponding Storm Prediction 

Center (SPC) day-1 human forecasts for most hazards, seasons, and regions. By discretizing RF 

forecast probabilities and making SPC probabilities continuous, I show that this result is only 

partly due to the ability of RFs to generate continuous forecast probabilities.  

Through RF sensitivity tests, I find that ensemble mean (EM) predictors are more skillful 

than individual member (IM) predictors for severe weather forecasting, since EM predictors 

contain less noise. By conducting additional sensitivity tests and using the Tree Interpreter (TI) 

Python module, I find that storm predictors are most important for severe weather prediction, 

followed by index-based predictors, although I note that RFs using both storm and index-based 

predictors are most skillful. With TI analysis, I show that RFs emphasize different and 

physically-relevant predictors for each hazard. Further, I demonstrate that RFs learn to implicitly 

“weigh” multiple appropriate storm and index variables at and near the point of prediction, 

suggesting that RFs learn to account for model error. Importantly, my work shows that RFs are 

not constrained by the exceedance (or non-exceedance) of a simple UH2-5km threshold at one 

point and suggests that RFs can discern between similar ensemble forecast UH2-5km values as 

well as the same UH2-5km value in different environments.    
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Chapter 1: General Introduction 

 
1. Introduction 
 
 From 2010 to 2020, 81 severe weather- and 18 flood-related events caused over $1 

billion in damage each [consumer price index (CPI) adjusted; NCEI 2021]. Collectively, these 

events cost $251.2 billion and resulted in 1142 deaths (NCEI 2021), making them highly 

impactful to society. Yet, floods and severe weather (i.e., tornadoes, damaging wind, and large 

hail) are difficult to predict, even with high-resolution numerical weather prediction (NWP) 

models, due to uncertainties in initial conditions and model physics (e.g., Roebber et al. 2004; 

Palmer 2017).  

NWP ensembles—first implemented operationally in the early 1990s (Toth and Kalnay 

1993; Tracton and Kalnay 1993)—account for initial condition and model uncertainties and 

provide users with probabilistic forecast guidance (Roebber et al. 2004; Leutbecher and Palmer 

2008; Palmer 2017). However, even current convection-allowing ensembles (CAEs; i.e., 

ensembles whose members do not use convection parameterization) tend to be under-dispersive 

(e.g., Romine et al. 2014; Schwartz et al. 2014), making their forecast probabilities suboptimal. 

Moreover, CAEs and convection-allowing models (CAMs) have biases and spatial displacement 

errors for simulated storms and precipitation (e.g., Johnson and Wang 2012; Herman and 

Schumacher 2016). Additionally, current operational CAEs lack horizontal grid-spacing fine 

enough to explicitly simulate tornadoes, severe hail, or microscale severe wind events. Thus, 

post-processing techniques are required to obtain the most skillful and useful hazard probabilities 

from CAEs. These techniques can include spatially smoothing raw ensemble probabilities 

(Sobash et al. 2011; Loken et al. 2017, 2019; Roberts et al. 2019), bias correction through 
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probability matching (Ebert 2001; Clark et al. 2010a,b; Clark 2017; Loken et al. 2019b), and 

methods for obtaining neighborhood ensemble probabilities (e.g., Schwartz and Sobash 2017; 

Blake et al. 2018; Roberts et al. 2019).  

 In the past 5-10 years, machine learning (ML) has become increasingly viable as an 

alternative method for ensemble post-processing, due in part to growing computing and data 

storage capacity (e.g., Hamill et al. 2013; Roberts et al. 2019), high-resolution observational data 

(e.g., Du 2011) and the availability of sophisticated but easy-to-use open-source software (e.g., 

Scikit-Learn, Pedegrosa et al. 2011; and Keras, Chollet et al. 2015). Conceptually, ML 

nonlinearly relates predictors (e.g., CAE forecast variables) with predictands (e.g., observed 

precipitation or local storm reports) using one of a variety of possible algorithms [e.g., neural 

networks (e.g., Rajendra et al. 2019); support vector machines (Adrianto et al. 2009; Ortiz-

Garcia et al. 2014); genetic algorithms (Kishtawal et al. 2003; Wong et al. 2008); random forests 

(RFs; e.g., Gagne et al. 2014, 2017; Herman and Schumacher 2018c; Burke et al. 2020); etc.]. Of 

these algorithms, the RF algorithm has several nice properties that make it especially well-suited 

for CAE post-processing: it can handle biased predictors, its multiple trees make it resistant to 

over-fitting (e.g., Gagne et al. 2014), it tends to produce reliable output probabilities (Breiman 

2001), and it has relatively few hyper-parameters to tune, making it easy to use. Several recent 

studies have shown the promise of RFs for precipitation (Gagne et al. 2014; Herman and 

Schumacher 2018c) and severe weather (Gagne et al. 2017; Burke et al. 2020; Hill et al. 2020) 

prediction.  

Despite the promise of the RF technique, many important questions remain regarding its 

use: How do RF forecasts compare to top-performing non-ML baselines (including human 

forecasts)? Does RF-based post-processing benefit all ensembles equally? What is the best way 
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to design predictors for next-day precipitation and severe weather prediction? What relationships 

do RFs learn between CAE variables and observed severe weather? The purpose of this 

dissertation is to investigate how RFs can be used (in conjunction with NWP ensembles) to 

improve high-impact weather forecasts by developing, evaluating, and analyzing RFs for next-

day precipitation and severe weather prediction. 

 

2. Research background: A brief history of machine learning and its application to weather 
forecasting 
 
 According to Schmidhuber (2015), the roots of ML can be traced to at least the early 19th 

century, when Legendre (1805) and Gauss (1809, 1821) developed early linear regression 

techniques based on the method of least squares. More than a century later, McCulloch and Pitts 

(1943) published their conception for a neural network (NN) algorithm, which was inspired by 

the human nervous system. However, early NNs predated backpropagation and thus tended to be 

inefficient and unstable, making their practical use infrequent (Schmidhuber 2015).  

 In meteorology, early precursors to ML were linear regression- (LR-) based dynamical-

statistical techniques developed in the 1950s (e.g., Malone 1955; Klein et al. 1959) alongside 

emerging electronic NWP technology (e.g., Charney et al. 1950; Bolin 1955; Bergthorsson et al. 

1955). One of the earliest studies was Malone (1955), who used LR to predict 24-h sea-level 

pressure and surface temperature based on previous-day pressure and temperature. Though he 

mentioned his results were “not spectacular” (p. 812), he noted that his LR forecasts gave 

positive skill and seemed useful. Similarly, Klein et al. (1959) used multivariate LR to skillfully 

forecast 5-day mean surface temperatures from NWP-based 5-day mean 700hPa heights two 

days earlier and 5-day mean surface temperatures four days earlier.  
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 In the 1960s and 1970s, dynamical NWP models became more sophisticated1, and these 

more complex models, in turn, facilitated more skillful dynamical-statistical methods. Building 

on the work of Klein et al. (1959), Glahn and Lowry (1972) related NWP forecast output with 

observed variables of interest using multivariate LR. With this method, which they termed 

Model Output Statistics (MOS), they found they could skillfully predict variables such as 

probability of precipitation, surface wind, surface temperature, and cloudiness. In doing so, they 

laid the groundwork for future, ML-based dynamical post-processing methods.    

Automated methods for growing decision trees—which would eventually become the 

basis for the random forest (RF; Breiman 2001)—were developed in the 1970s and 1980s 

(Hssina et al. 2014). The Iterative Dichotomiser 3 (ID3; Quinlan 1979, 1983, 1986) was an early 

automated decision tree algorithm that used information theory to classify nominal data. While 

ID3 did not support missing or continuous data, it served as a basis for future decision tree 

algorithms. For example, Classification and Regression Trees (CART; Breiman 1984) enabled 

continuous predictors and supported regression-based prediction tasks in addition to 

classification. Unlike ID3, CART determined the splitting criteria at each node by maximizing 

the reduction in Gini Index after each split. Eventually, Quinlan (1993) developed C4.5, an 

updated version of ID3 that supported continuous data, missing and differently-weighted 

predictors, and tree pruning after creation (Hssina et al. 2014).  

                                                
1 For example, Bushby and Timpson (1968)’s 40-km grid-spacing model integrated the inviscid, 
frictionless, and hydrostatic equations of motion and considered moisture and latent heating—a 
substantial improvement from Charney et al. (1950)’s hindcasts, which were obtained from 
integrating the barotropic vorticity equations on a grid with 736-km horizontal spacing.   
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In weather forecasting, the use of manually-designed decision trees predated the 

development of the automated ID3, CART, and C4.5 algorithms. These manual decision trees 

were used as forecast aids at least as early as the mid-1970s, as Dvorak (1975) developed a 

decision tree for forecasting tropical cyclone intensity from satellite images. Similarly, 

Colquhoun (1987) conceived of a decision tree-type algorithm to aid with forecasting 

thunderstorms, severe thunderstorms, and tornadoes based on physical principles. Mills and 

Colquhoun (1998) extended the decision tree framework in Colquhoun (1987) to use NWP 

forecast variables for predicting areas of thunderstorms, severe thunderstorms, and tornadic 

thunderstorms as well as their hazards (e.g., flash floods, downbursts, strong winds, etc.). They 

found that, while their algorithm could not predict individual thunderstorms, it could help alert 

forecasters to areas of severe and tornadic thunderstorm potential based on NWP model output. 

While the “decision trees” in Dvorak (1975), Colquhoun (1987), and Mills and Colquhoun 

(1998) did not use the ML algorithms developed by Quinlan (1979, 1986, 1993) or Breiman 

(1984), they showed the promise of tree-based rule systems for NWP-based high-impact weather 

prediction. Thus, these studies helped pave the way for ML-related tree-based techniques to take 

hold in meteorology in the late 2000s and beyond.  

 Modern ML-based NN technology advanced substantially during the 1980s and 1990s, as 

backpropagation—first described by Linnainmaa 1970—was rediscovered and used for 

efficiently training NNs (e.g., Werbos 1981; Parker 1985; LeCun 1988). Naturally, this 

innovation led to a wide range of meteorological applications for NNs, including their use for the 

prediction of tornadoes (Marzban and Stumpf 1996), precipitation (e.g., Hall et al. 1999), and 

severe hail size (Marzban and Witt 2001). However, while NNs during this time showed 
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promise, their skill was constrained by limited computing resources and a lack of large labelled 

datasets for training (e.g., Schultz et al. 2021).  

 Indeed, the modern form of another ML algorithm, the support vector machine (SVM; 

Vapnik and Cortes 1995), was developed during the mid-1990s and tended to compare favorably 

with NNs through the mid-2000s (e.g., Chollet 2018). For example, Liong and Sivapragasam 

(2002) compared SVMs with NNs for flood forecasting and found that the SVMs had better 

performance while being simpler and more interpretable. Thus, SVMs were implemented for a 

variety of meteorological applications, including the prediction of tornadoes (e.g., Trafalis et al. 

2003, 2004, 2005; Adrianto et al. 2009), typhoon rainfall (Lin et al. 2009), and floods (e.g., Han 

et al. 2007).  

 In the mid-2000s, RFs began attracting the attention of the meteorological community, as 

Deloncle et al. (2007) used the technique to predict weather regime transitions. Shortly 

thereafter, Gagne et al. (2009) used k-means clustering with decision trees for storm type 

classification from simulated radar data.  

 In the 2010s, greater computing power, the advent of graphical processing units (GPUs), 

and wider availability of large historical datasets allowed for ML techniques to become more 

complex and skillful (Schultz et al. 2021). Indeed, these advances have recently enabled NNs to 

be run with many hidden layers in an approach known as deep learning (DL; e.g., Schultz et al. 

2021). In the past 5 years, DL has achieved superhuman performance in a variety of domains 

including chess, shogi, and go (Silver et al. 2018). In meteorology, DL has been used to obtain 

skillful results in a variety of tasks ranging from synoptic-scale front detection (Lagerquist et al. 

2019) to short-term tornado prediction (Lagerquist et al. 2020) to satellite-based prediction of 

intense convection (Cintineo et al. 2020).  
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 Classic ML methods, such as the RF, have also benefited from the greater computing and 

data storage capacity. Indeed, RFs have recently demonstrated substantial skill for a variety of 

prediction problems, including aviation turbulence (Williams 2014), initiation of mesoscale 

convective systems (MCSs; Ahijevych et al. 2016), subfreezing road temperatures (Handler et al. 

2020), precipitation (Gagne et al. 2014; Herman and Schumacher 2018c), and severe weather 

(Gagne et al. 2017; Hill et al. 2020; Burke et al. 2020; Flora et al. 2021). Most of these studies 

used predictors from NWP forecast data, although they used different NWP models (or 

ensembles) and generated predictors in different ways. For example, Gagne et al. (2014) trained 

their RFs using CAE forecast variables from a random subset of grid points, while Gagne et al. 

(2017), Burke et al. (2020), and Flora et al. (2021) generated predictors based on simulated CAE 

storm objects. Meanwhile, Herman and Schumacher (2018c) and Hill et al. (2020) used 

convection-parameterizing ensemble predictors at surrounding grid points, with Herman and 

Schumacher (2018c) utilizing principal component analysis (e.g., Wilks 2011) to limit the 

feature space and reduce the correlation between predictors. While these studies all achieved a 

fair degree of skill, the optimal design and specific performance characteristics of RF-based 

algorithms remain unknown. For example, it is unclear how RF-based post-processing benefits 

convection-parameterizing vs. convection-allowing ensembles, how much data is required to 

achieve sufficient forecast skill, how RF-based forecasts compare to top-performing human and 

automated baselines, and how best to generate RF predictors from ensemble data. Moreover, 

while Breiman (2001) and others (e.g., McGovern et al. 2019b) have suggested techniques for 

interpreting RF output, very few previous studies have specifically focused on dissecting the 

relationships learned by skillful RFs. This dissertation seeks to fill these knowledge gaps for 

next-day precipitation and severe weather prediction.  
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3. Research questions and hypotheses 
 

Three research components have been implemented to meet the goal of this dissertation, 

which is to explore the use of RFs for next-day precipitation and severe weather prediction. In 

the first component, RFs are designed to predict probability of precipitation at four thresholds 

from 0.1- to 3-inches. Two RFs are trained for each threshold: one using predictors from the 

convection-parameterizing Short-Range Ensemble Forecast System (SREF; Du et al. 2015) and 

one using predictors from the convection-allowing High-Resolution Ensemble Forecast System, 

Version 2 (HREFv2; Jirak et al. 2018; Roberts et al. 2019). RF forecasts are compared against 

each other as well as raw and spatially-smoothed ensemble probabilistic precipitation forecasts. 

The dataset consists of 496 days from April 2017 to November 2018. The primary research 

questions (Q1.1 – Q1.3) associated with the first component are:  

 

Q1.1: What (if any) benefits does RF-based post-processing provide relative to spatially 

smoothing raw ensemble probabilities (i.e., a top non-ML post-processing method) for 

different precipitation thresholds from 0.1- to 3-inches? 

 

Q1.2: Does RF post-processing benefit CAEs or convection-parameterizing ensembles 

more?   

 

Q1.3: How much training data is required to generate useful RF probabilistic 

precipitation forecasts at thresholds from 0.1- to 3-inches?   
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The hypotheses (H1.1 – H1.3) corresponding to the above research questions are as follows:  

 

H1.1: RF-based probabilistic precipitation forecasts will have reduced spatial biases as 

well as better discrimination ability, sharpness, and resolution compared to spatially-

smoothed ensemble probabilities. RF probabilities will provide the greatest benefits 

relative to spatially smoothed ensemble probabilities at the smallest thresholds, which 

are climatologically most common. 

 

H1.2: RF post-processing will benefit a convection-parameterizing ensemble more than a 

CAE due to the greater initial bias of the convection-parameterizing ensemble. Indeed, 

after RF post-processing, a convection-parameterizing ensemble will have better 

reliability and nearly comparable resolution compared to an un-post-processed (i.e., 

raw) CAE forecast. However, post-processed CAE forecasts (from either the RF or 

spatial smoothing method) will be the most skillful due to the enhancement of CAE 

reliability and resolution. In accordance with H1.1, RF CAE forecasts will be more 

skillful than spatially smoothed CAE forecasts. 

 

H1.3: Approximately one year of training data will be required to obtain skillful RF-

based precipitation forecasts for the 3-inch forecasts, with less data required as the 

threshold decreases.  

 
H1.1 and H1.2 are tested using standard verification metrics for probabilistic forecasts, 

including: area under the relative operating characteristics curve (AUC; e.g., Wilks 2011), Brier 
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Score (BS) components (Wilks 1995), Brier Skill Score (BSS; Wilks 1995), performance 

diagrams (Roebber 2009), and attributes diagrams (Hsu and Murphy 1986). Spatial biases are 

assessed using a method based on Clark et al. (2010a) and Marsh et al. (2012). H1.3 is tested by 

re-training RFs with varying subsets of the original training dataset.  

 In the second research component, RFs are designed to predict severe weather hazards 

based on data from the Storm-Scale Ensemble of Opportunity (SSEO; Jirak et al. 2012) over 629 

days from April 2015 to July 2017. The primary research questions (Q2.1 and Q2.2) associated 

with the second research component are as follows:  

 

Q2.1: How do next-day RF-based probabilistic severe weather hazard forecasts compare 

to corresponding Storm Prediction Center (SPC) human forecasts and calibrated, 

spatially-smoothed 2-5km updraft helicity (UH2-5km) forecasts?  

 

Q2.2: In what seasons and regions do the RF severe weather hazard forecasts perform 

best?  

 

The corresponding hypotheses (H2.1 and H2.2) are:  

 

H2.1: For all severe and significant severe weather hazards (including any-severe and 

any-significant-severe categories), RFs will have better discrimination ability, BSS, 

reliability, and resolution than corresponding calibrated UH2-5km-based forecasts. 

However, RFs will have worse discrimination ability, BSS, and resolution than 

corresponding (discrete and continuous) SPC human forecasts. Continuous RFs will 
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have better reliability and resolution than discrete (i.e., binary) SPC significant severe 

hazard forecasts, but discrete RF forecasts will not perform better than discrete 

significant severe SPC forecasts. 

 

H2.2: The RF forecasts will perform best in the seasons and locations for which severe 

weather climatological frequency is maximized. For tornadoes and severe hail, this is 

expected to be the central U.S. during the spring and summer. For severe wind, this is 

expected to be the eastern U.S. during the summer.  

 
 

H2.1 and H2.2 are tested using similar verification metrics as described in the first 

research component (i.e., AUC, BS components, BSS, performance and attributes diagrams). RF 

forecasts are compared to SSEO hazard-calibrated, spatially smoothed UH2-5km and (discrete 

and continuous) 0600 UTC SPC human forecasts. H2.2 is addressed by stratifying forecasts by 

region and season.   

 In the third research component, differently-configured tornado-, severe wind-, and 

severe hail-predicting RFs are created from High-Resolution Ensemble Forecast System, Version 

2.1 (HREFv2.1; Roberts et al. 2020) data. The dataset includes 653 days from April 2018 to May 

2020. The primary research questions (Q3.1 – Q3.3) associated with the third component are as 

follows:  

 

Q3.1: When using an RF to forecast next-day severe weather hazards, does greater 

forecast skill result from using individual member predictors at a single grid point or 

ensemble mean predictors at multiple spatial points?  
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Q3.2: What CAE predictors do RFs emphasize to make probabilistic next-day severe 

weather hazard forecasts? 

 

Q3.3: What multi- and single-variate relationships do RFs learn to make skillful severe 

weather hazard forecasts?    

 
The corresponding hypotheses (H3.1 – H3.3) associated with the third component are:  
 

 

H3.1: Greater forecast skill will result from providing an RF with individual member 

predictors at a single grid point. 

 

H3.2: RFs will emphasize storm variables, but index and environment variables will also 

be important since simulated storms (and their attributes) do not always correspond with 

observed storms.  

 

H3.3: RFs will learn to emphasize different variables for each hazard (e.g., significant 

hail parameter [SHIP; SPC2021b] and UH2-5km for severe hail; significant tornado 

parameter [STP; Thompson et al. 2012] and 0-3 km updraft helicity [UH0-3km] for 

tornadoes). For all hazards, RFs will learn positive—but nonlinear—relationships 

between many storm variables (e.g., UH2-5km, simulated reflectivity, maximum upward 

vertical velocity, etc.) and observed severe weather probability. Indeed, it is hypothesized 

that many of these variables will have an “S-shaped” relationship with severe weather 
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probability. However, RFs are also expected to learn (and use) important relationships 

between multiple variables/predictors and observed severe weather.  

 

H3.1 is tested using similar verification metrics used in the first two research components 

(e.g., AUC, BSS, attributes diagrams, and performance diagrams). H3.2 and H3.3 are tested 

using the Tree Interpreter Python module (Saabas 2016).  

 

4. Dissertation organization 
 
 The research questions outlined in the preceding section are addressed in three papers, 

with each paper assigned to a distinct dissertation chapter. Chapter 2 contains the paper 

associated with the first research component, Postprocessing next-day ensemble probabilistic 

precipitation forecasts using random forests, which has been accepted by Weather and 

Forecasting. Chapter 3 comprises the second paper, Generating probabilistic next-day severe 

weather forecasts from convection-allowing ensembles using random forests, which has also 

been accepted by Weather and Forecasting. Chapter 4 presents the third paper, Comparing and 

interpreting differently-designed random forests for next-day severe weather hazard prediction, 

which will be submitted to Weather and Forecasting. Finally, Chapter 5 provides a general 

discussion of all three research components with respect to the research questions and 

hypotheses posed above, summarizes the key lessons from this dissertation, and offers 

suggestions for future work. 
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Chapter 2: Post-Processing Next-Day Ensemble Probabilistic Precipitation Forecasts Using 
Random Forests 

 
 

A paper published in Weather and Forecasting 
 
 

Eric D. Loken1,2,3, Adam J. Clark2,3, Amy McGovern2, Montgomery Flora1,2,3, Kent Knopfmeier1,3 
 

1Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, 
Norman, Oklahoma 

2School of Meteorology, University of Oklahoma, Norman, Oklahoma 
3NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma 

 
 
Abstract 
 
 Most ensembles suffer from under-dispersion and systematic biases. One way to correct 

for these shortcomings is via machine learning (ML), which is advantageous due to its ability to 

identify and correct nonlinear biases. This study uses a single random forest (RF) to calibrate 

next-day (i.e., 12–36-h lead-time) probabilistic precipitation forecasts over the contiguous United 

States (CONUS) from the 16-km grid-spacing Short-Range Ensemble Forecast System (SREF) 

and the 3-km grid-spacing High-Resolution Ensemble Forecast Version 2 (HREFv2). Random 

forest forecast probabilities (RFFPs) from each ensemble are compared against raw ensemble 

probabilities over 496 days from April 2017 – November 2018 using 16-fold cross validation. 

RFFPs are also compared against spatially-smoothed ensemble probabilities since the raw SREF 

and HREFv2 probabilities are overconfident and under-sample the true forecast probability 

density function. Probabilistic precipitation forecasts are evaluated at four precipitation 

thresholds ranging from 0.1-in. to 3-in.  

 In general, RFFPs are found to have better forecast reliability and resolution, fewer 

spatial biases, and significantly greater Brier Skill Scores and areas under the relative operating 
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characteristic curve compared to corresponding raw and spatially-smoothed ensemble 

probabilities. The RFFPs perform best at the lower thresholds, which have a greater observed 

climatological frequency. Additionally, the RF-based post-processing technique benefits the 

SREF more than the HREFv2, likely because the raw SREF forecasts contain more systematic 

biases than those from the raw HREFv2. It is concluded that the RFFPs provide a convenient, 

skillful summary of calibrated ensemble output and are computationally feasible to implement in 

real-time. Advantages and disadvantages of ML-based post-processing techniques are discussed. 

 

1. Introduction 
 
 Over the past 20 years, increases in computing resources have reshaped the state of 

numerical weather prediction (NWP) in several key ways: by enabling skillful high-resolution 

ensemble forecasts (e.g., Xue et al. 2007; Jirak et al. 2012, 2016, 2018; Roberts et al. 2019; Clark 

et al. 2018; Schwartz et al. 2015, 2019); by increasing the capacity to run and store models for 

research and operations (e.g., Hamill and Whitaker 2006; Kain et al. 2010; Hamill et al. 2013; 

Clark et al. 2018; Roberts et al. 2019); and by reducing the time required to perform complex 

analyses, enabling more—and more frequent—high-resolution NWP products (e.g., Kain et al. 

2010; Gallo et al. 2017, 2019; Roberts et al. 2019). These changes have led to large 

improvements in NWP quality and value, particularly for fields related to convection. For 

example, the higher resolution associated with convection-allowing models (CAMs; i.e., those 

that explicitly simulate convection and run with horizontal grid-spacing ≤ ~4-km) has improved 

forecasts of storm initiation, evolution, and mode compared to convection-parameterizing 

models (e.g., Kain et al. 2006). Meanwhile, convection-allowing ensembles (CAEs) provide 

further benefits by accounting for uncertainties in initial conditions and/or model physics (e.g., 
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Roebber et al. 2004; Leutbecher and Palmer 2008; Clark et al. 2009) and conveying forecast 

uncertainty information to the user (e.g., Palmer 2017). Despite ensembles’ higher computational 

cost, their benefits have been well documented at both convection-parameterizing (e.g., Epstein 

1969; Leith 1974; Du et al. 1997; Stensrud et al. 1999; Wandishin et al. 2001; Bright and Mullen 

2002; Clark et al. 2009) and convection-allowing (e.g., Coniglio et al. 2010; Loken et al. 2017; 

Schwartz et al. 2017) resolutions.  

Nevertheless, CAMs and CAEs still have biases in the placement, timing, and magnitude 

of precipitation-producing weather systems (e.g., Davis et al. 2006; Kain et al. 2008; Weisman et 

al. 2008; Herman and Schumacher 2016, 2018c). Additionally, CAEs remain relatively 

expensive to run and thus typically have small ensemble membership (e.g., Schwartz et al. 2014; 

Clark et al. 2018). While small ensembles (e.g., consisting of 10-30 members) have been found 

to deliver nearly as much forecast skill as larger ensembles (e.g., up to 50 members; Clark et al. 

2011; Schwartz et al. 2014; Sobash et al. 2016b), they can under-sample the forecast probability 

density function (PDF; e.g., Schwartz et al. 2010, 2014; Roberts et al. 2019), potentially leading 

to degraded reliability and under-dispersion, especially in the absence of neighborhood 

evaluation or post-processing methods (Schwartz et al. 2014). Indeed, most CAMs and CAEs are 

currently under-dispersive (e.g., Romine et al. 2014). One method to increase CAE spread is to 

increase the diversity of the ensemble membership, which can be achieved by using members 

with multiple dynamic cores, analyses, boundary layer schemes, microphysics parameterizations, 

and initialization periods (e.g., the Storm-Scale Ensemble of Opportunity; Jirak et al. 2012, 2016; 

and the High-Resolution Ensemble Forecast System, Version 2; Jirak et al. 2018; Roberts et al. 

2019). While diverse, informally-designed ensembles can produce skillful forecasts (Jirak et al. 

2016; Jirak et al. 2018; Clark et al. 2018; Schwartz et al. 2019), their skill comes with several 
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notable drawbacks. One is that the ensemble members tend to cluster around multiple solutions 

based on their dynamic core (e.g., Schwartz et al. 2019). This member clustering can cause the 

ensemble mean forecast to fall outside of the clusters of member solutions (see Fig. 1 in 

Schwartz et al. 2019) and can adversely affect the quality of the ensemble probabilities, since 

each member’s solution is not equally likely to occur (Schwartz et al. 2019). Another potential 

consequence of multi-model, multiple-physics CAEs is an artificial inflation of ensemble spread 

due to the existence of systematic biases between ensemble members (Eckel and Mass 2005; 

Clark et al. 2010b; Loken et al. 2019b). These shortcomings are typically resolved using one or 

more post-processing techniques, including isotropic (e.g., Sobash et al. 2011, 2016b; Loken 

2017, 2019; Roberts et al. 2019) or anisotropic (e.g., Marsh et al. 2012) spatial smoothing of the 

raw forecast probability field, recalibration of forecast probabilities (e.g., Hamill et al. 2008), 

probability matching techniques (e.g., Ebert 2001; Clark et al. 2010a,b, 2017; Loken et al. 

2019b), and various neighborhood-based methods to construct ensemble probabilities (e.g., 

Schwartz et al. 2010; Blake et al. 2018; Roberts et al. 2019; Schwartz and Sobash et al. 2017).  

Another avenue for post-processing is machine learning (ML; e.g., McGovern et at. 

2017). Conceptually, ML algorithms identify patterns in historical data and use these patterns to 

correct for systematic ensemble biases. This idea is not new; dynamical-statistical methods have 

existed since at least the 1950s (e.g., Malone 1955; Klein et al. 1959). One example of a well-

performing traditional technique is Model Output Statistics (MOS; Glahn and Lowry 1972), 

which relates NWP output to observed variables of interest (e.g., observed precipitation). ML-

based post-processing methods work similarly; however, while MOS techniques tend to be based 

on linear regression (e.g., Glahn and Lowry 1972), ML techniques are not necessarily linear. A 

variety of ML approaches, other than regression, have been applied to weather prediction since 
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the 1980s and include: artificial neural networks (ANNs; e.g., Key et al. 1989; Marzban and 

Stumpf 1996; Kuligowski and Barros 1998; Hall et al. 1999; Manzato 2007; Rajendra et al. 

2019), support vector machines (e.g., Ortiz-Garcia et al. 2014; Adrianto et al. 2009), clustering 

algorithms (e.g., Baldwin et al. 2005), genetic algorithms (e.g., Szpiro 1997; Kishtawal et al. 

2003; Wong et al. 2008), and decision tree-based methods (Breiman 1984, 2001; Herman and 

Schumacher 2018c).  

 Although the ML algorithms mentioned above are not “new”—the random forest (RF) 

technique utilized herein was described nearly 20 years ago by Breiman (2001)—enhanced 

computing power and storage capacity have facilitated the successful application of ML to NWP 

in recent years (e.g., McGovern et al. 2017 and works cited therein). Indeed, as computing power 

and storage continue to increase, the role ML plays in NWP post-processing is likely to grow as 

well. Especially as forecasters confront an ever-increasing deluge of data (e.g., Carley et al. 

2011; McGovern et al. 2017; Karstens et al. 2018), ML or other post-processing techniques may 

be desired to quickly and effectively summarize information from NWP products. Therefore, this 

paper seeks to address important basic questions regarding the application of ML techniques in 

general—and the RF algorithm in particular—to NWP post-processing. Considerations include 

what, if anything, a ML approach provides relative to simpler forms of post-processing (e.g., 2-

dimensional spatial smoothing) and how feasible it would be to implement ML-based predictions 

operationally. Specifically, the costs and benefits of an RF-based approach are considered 

relative to 2-dimensional isotropic spatial smoothing for two multi-model, multi-analyses, multi-

physics ensembles: the convection-parameterizing Short-Range Ensemble Forecast System 

(SREF; Du et al. 2015) and the convection-allowing High-Resolution Ensemble Forecast 

System, Version 2 (HREFv2; Jirak et al. 2018; Roberts et al. 2019). A focus on precipitation is 
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adopted herein due to its importance as a sensible weather field related to convection and the 

high economic and human impacts of heavy-precipitation events (e.g., NCEI 2019). The next-

day (i.e., 1200 UTC – 1200 UTC) time frame is selected due to its relative simplicity and to 

match operational Day 1 products issued by the Weather Prediction Center (WPC).   

The remainder of this paper is organized as follows: section 2 details the methods and 

datasets used herein, section 3 describes the results and presents two case studies for analysis, 

section 4 summarizes and discusses important findings, and section 5 concludes the paper and 

outlines avenues for future work.   

 

2. Methods 
 
a. Datasets 
 

Forecast data from the SREF and HREFv2 are considered over 496 common days, 

spanning April 2017 – November 2018 (Table 2.1).  

Month 2017 2018 
January - 1-31 
February - 1-28 
March - 1-10, 14-17, 19-20, 22-26 
April 28 7-30 
May 1-2, 4-5, 7-10, 13-23, 26-31 1-31 
June 1, 6-7, 9, 11-13, 15, 17-25 1-7, 10-30 
July 3-6, 15-16, 18-19, 22-24, 30-31 1-31 

August 1-10, 12-15, 17-30 1-5, 8-31 
September 1-10, 13-15, 17-30 1-30 

October 1-24, 26-31 1-31 
November 1-30 1-4, 6, 9-13 
December 1-31 - 

Table 2.1 Forecast valid dates for each ensemble. 
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The analysis domain for both ensembles covers the contiguous United States (CONUS; 

Fig. 2.1), and the analysis period covers 24-h (1200 UTC – 1200 UTC the next day). Details on 

each ensemble’s configuration are given below.   

Figure 2.1 Analysis domain for each ensemble. 

 The SREF is a 26-member convection-parameterizing ensemble in which half of the 

members use the Advanced Research Weather Research and Forecasting (WRF-ARW; 

Skamarock et al. 2008) dynamic core and half use the dynamic core from the Nonhydrostatic 

Multiscale Model on the B grid (NMMB; Janjić and Gall 2012). The SREF uses 16-km 

horizontal grid-spacing and runs four cycles per day at 0300-, 0900-, 1500-, and 2100-UTC (Du 

et al. 2015), with forecast fields output every 3 hours. This study uses 15-39-h forecasts from the 

2100 UTC initialization. Due to storage and data availability constraints, the SREF analyses 

herein are output to a grid with 32-km horizontal grid-spacing (NCEP grid 221). SREF 

configuration details are summarized in Table 2.2.  
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Member ICs LBCs Conv. PBL Microphys. 
arw_ctl RAP GFS KF YSU WSM6 
arw_p1 RAP GEFS13 Grell MYNN Thompson 
arw_n1 RAP GEFS14 BMJ MYJ Ferrier 
arw_p2 RAP GEFS15 BMJ MYJ Thompson 
arw_n2 RAP GEFS16 KF YSU Ferrier 
arw_p3 GFS GEFS17 KF YSU Thompson 
arw_n3 GFS GEFS18 Grell MYNN WSM6 
arw_p4 GFS GEFS19 KF YSU Ferrier 
arw_n4 GFS GEFS20 BMJ MYJ WSM6 
arw_p5 NDAS GEFS1 KF YSU WSM6 
arw_n5 NDAS GEFS2 Grell MYNN Ferrier 
arw_p6 NDAS GEFS3 Grell MYNN Thompson 
arw_n6 NDAS GEFS4 BMJ MYJ Thompson 

nmmb_ctl NDAS GFS BMJ (old shal) MYJ Ferrier hi-res 
nmmb_p1 NDAS GEFS1 BMJ (new shal) MYJ Ferrier hi-res 
nmmb_n1 NDAS GEFS2 SAS GFS WSM6 
nmmb_p2 NDAS GEFS3 BMJ (old shal) MYJ WSM6 
nmmb_n2 NDAS GEFS4 SAS GFS Ferrier hi-res 
nmmb_p3 GFS GEFS5 BMJ (new shal) MYJ WSM6 
nmmb_n3 GFS GEFS6 SAS GFS Ferrier hi-res 
nmmb_p4 GFS GEFS7 BMJ (old shal) MYJ Ferrier hi-res 
nmmb_n4 GFS GEFS8 SAS GFS WSM6 
nmmb_p5 RAP GEFS9 BMJ (new shal) MYJ Ferrier hi-res 
nmmb_n5 RAP GEFS10 SAS GFS WSM6 
nmmb_p6 RAP GEFS11 BMJ (old shal) MYJ WSM6 
nmmb_n6 RAP GEFS12 SAS GFS Ferrier hi-res 

Table 2.2 SREF member specifications, adapted from Du et al. (2015). Initial conditions (ICs) 
are taken from the operational Rapid Refresh (RAP; Benjamin et al. 2016), the National 
Center for Environmental Prediction’s (NCEP’s) Global Forecast System (GFS), and the 
North American Mesoscale Model Data Assimilation System (NDAS). IC perturbations 
are derived using a blend of Global Ensemble Forecast System (GEFS) and SREF 
analyses. Lateral boundary conditions (LBCs) are from the GFS and GEFS members. 
Convective parameterizations include the Kain-Fritsch (KF; Kain 2004), Grell (1993), 
Betts-Miller-Janjic (BMJ; Betts 1986; Janjic 1994), and simplified Arakawa-Schubert 
(Han and Pan 2011) schemes. Planetary boundary layer (PBL) schemes include the 
Yonsei University (YSU; Hong et al. 2006), Mellor-Yamada-Nakanishi-Niino (MYNN; 
Nakanishi and Niino 2004, 2006), Mellor-Yamada-Janjić (MYJ; Janjić 2002) 
parameterizations as well as that used in the GFS. Microphysics schemes include the 
WRF single-moment 6-class (WSM6; Hong and Lim 2006), Thompson et al. (2004), and 
Ferrier et al. (2002) schemes.  
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 The HREFv2 originates from the Storm Prediction Center’s Storm-Scale Ensemble of 

Opportunity (SSEO; Jirak et al. 2012, 2016, 2018), which was developed as a collection of 

individual CAMs with different dynamic cores, analyses, initialization times, microphysics, and 

boundary layer parameterizations. Although the HREFv2 and SSEO use “ad-hoc,” informal 

designs, they have consistently outperformed other CAEs (Jirak et al. 2016, 2018; Schwartz et al. 

2019). Indeed, the strong performance of the HREFv2 led to its implementation as the National 

Weather Service’s first operational CAE on 1 November 2017 (Jirak et al. 2018; Roberts et al. 

2019). Despite the drawbacks arising from its informal design (e.g., unequal likelihood, member 

clustering, maintenance difficulties; Schwartz et al. 2019), it remains a “high-quality-baseline” 

(Schwartz et al. 2019) for CAE performance.  

The HREFv2 comprises 8 members, with half the membership composed of 12-h time 

lagged runs (Jirak et al. 2018; Roberts et al. 2019). The non-lagged (time-lagged) members are 

initialized daily at 0000 UTC (the previous day at 1200 UTC). All members use approximately 

3-km horizontal grid-spacing and collectively contain two dynamic cores, two microphysics 

schemes, and two boundary layer parameterizations. Forecast fields are output hourly from each 

member. 12-36-h HREFv2 forecasts are used herein. Full details of HREFv2 configuration are 

given in Table 2.3.  

 National Center for Atmospheric Research/Earth Observing Laboratory (NCAR/EOL) 

Stage IV precipitation data (Lin 2011) are used for observations. While the dataset has known 

deficiencies, especially in regions of complex terrain where radar coverage is sparse and/or 

inaccurate (e.g., Hitchens et al. 2013; Herman and Schumacher 2016; Herman and Schumacher 

2018b), the dataset has high-resolution (~4.8-km grid-spacing) coverage over the full CONUS, 

making it the preferred observational dataset.  
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Table 2.3 HREFv2 member specifications. HRW and NAM refer to High Resolution Window and 
North American Mesoscale Model runs, respectively. The “-12h” in the first column 
indicates a 12-h time lagged member (i.e., 1200 UTC initialization the previous day 
instead of 0000 UTC initialization). Initial conditions and lateral boundary conditions 
(IC/LBCs) are taken from the NAM, Rapid Refresh (RAP), and/or Global Forecast 
System (GFS), as indicated. A “-6h” indicates that the model from which the IC/LBCs 
are derived was initialized 6-h before the given HREFv2 member. Microphysics schemes 
include the WRF single-moment 6-class (WSM6; Hong and Lim 2006) and the Ferrier-
Aligo (Aligo et al. 2018) schemes, while boundary layer parameterizations include the 
Mellor-Yamada-Janjić (MYJ; Janjić 2002) and Yonsei University (YSU; Hong et al. 
2006) schemes.  

 

b. Obtaining raw and spatially smoothed ensemble forecasts  
 
 Raw SREF and HREFv2 forecast probabilities are computed by first remapping each 

member’s 24-h (1200 UTC – 1200 UTC) quantitative precipitation forecast to NCEP grid 215, 

Member Model Core IC/LBCs Microphysics PBL 

HRW NSSL WRF-ARW NAM/NAM -6h WSM6 MYJ 

HRW NSSL -12h WRF-ARW NAM/NAM -6h WSM6 MYJ 

HRW ARW WRF-ARW RAP/GFS -6h WSM6 YSU 

HRW ARW -12h WRF-ARW RAP/GFS -6h WSM6 YSU 

HRW NMMB NMMB RAP/GFS -6h Ferrier-Aligo MYJ 

HRW NMMB -12h NMMB RAP/GFS -6h Ferrier-Aligo MYJ 

NAM CONUS Nest NMMB NAM/NAM Ferrier-Aligo MYJ 

NAM CONUS Nest -
12h NMMB NAM/NAM Ferrier-Aligo MYJ 
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which has approximately 20-km horizontal grid-spacing. The remapping is done using a 

neighbor budget method (Accadia et al. 2003), a nearest-neighbor averaging method that 

approximately conserves total precipitation. Upscaling to 20-km saves significant computational 

expense and better matches scales at which predictability should exist at 12-36-h lead times. 

After upscaling, the fraction of ensemble members exceeding a given precipitation threshold is 

calculated at each point on the 20-km grid. Four 24-h precipitation thresholds are considered: 

0.1-, 0.5-, 1-, and 3-in (i.e., 2.54-, 12.7-, 25.4-, and 76.2-mm).  

 Given the under-dispersive properties of most CAEs, a 2-dimensional, isotropic Gaussian 

kernel density function (e.g., Sobash et al. 2011, 2016b; Loken et al. 2017, 2019; Roberts et al. 

2019) is often applied to a CAE’s raw forecast probability field as a simple but effective means 

of increasing forecast spread and reducing over-forecasting bias. Since most CAEs are 

overconfident and under-dispersive, spatial smoothing typically enhances reliability and 

resolution, but over-smoothing can degrade reliability and sharpness (Sobash et al. 2011, 2016b; 

Loken et al. 2017, 2019; Roberts et al. 2019). In this study, as in Loken et al. (2019), the 

following equation is applied to the (remapped) SREF and HREFv2 raw ensemble forecast 

probabilities to create isotropic spatially smoothed forecast probabilities:  

f = 	
1

2ps) exp −
1
2
d/
s

)0

/12

																			 2.1 , 

where f is the forecast probability at a given point, N is the number of points where at least one 

ensemble member exceeds the given precipitation threshold, dn is the distance from the current 

point to the nth point, and s is the standard deviation of the Gaussian kernel. Importantly, s 

controls the degree of spatial smoothing and must be tuned appropriately to produce skillful 

forecasts. Herein, s is chosen such that the resulting collection of daily, CONUS-wide forecast 
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probabilities minimizes the Brier Score (BS; e.g., Wilks 1995) over the training dataset. The BS 

can be expressed as:  

BS = 	
1
N f8 −	o8 )

0

812

																				 2.2 , 

where N is the total number of forecast-observation pairs (i.e., the number of grid points in the 

domain multiplied by the number of days in the dataset), fi is the forecast probability at the ith 

grid point, and oi is the binary observation at the ith grid point.  

 

c. Random forest-based forecasts  
 
 While the umbrella of machine learning includes many popular and powerful algorithms, 

the random forest (RF; Breiman 2001) algorithm has some important advantages that make it the 

preferred technique in this study. Namely, RFs do not require standardized inputs, they have 

relatively few hyper-parameters to tune, they are parallelizable and thus relatively fast to run, and 

previous studies (e.g., Gagne et al. 2014; Herman and Schumacher 2018a,c) have found that they 

perform well for precipitation prediction.  

 The building blocks of RFs are individual decision trees (Breiman 1984). Decision trees 

recursively split a dataset by selecting, at each node, the variable and threshold that maximizes a 

dissimilarity metric (e.g., information gain) until a stopping criterion is reached (e.g., the number 

of dataset samples falls below a specified amount, the tree reaches a certain depth, etc.). Once the 

splitting criteria are determined for each node using the training data, the tree can be used for 

prediction on a testing dataset by sorting testing samples through the tree. Testing probabilities 

are given by the fraction of training samples associated with an observed event of interest at the 

terminal node, or “leaf node,” into which a testing sample is classified. One drawback of 
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individual decision trees is that they tend to be overly sensitive to small variations in the training 

dataset (e.g., Gagne et al. 2014). RFs provide a solution to this so-called “brittleness” (Gagne et 

al. 2014) by growing multiple trees, which are unique due to the introduction of stochasticity into 

the training process. Specifically, each tree in the RF uses a subset of training samples 

determined by bootstrap resampling (i.e., resampling with replacement; e.g., Wilks 1995) the full 

set, and splits at each node are determined by considering a random subset of variables. In the 

RF framework, testing probabilities of event occurrence are simply the mean testing probabilities 

from each tree. Although the RF’s multiple trees may make it more difficult for humans to 

interpret RF output probabilities, the RF method is generally attractive since it is resistant to 

overfitting and tends to produce outputs with low bias (e.g., Breiman 2001). More details on the 

RF technique can be found in Herman and Schumacher (2018c), McGovern et al. (2017), and 

Gagne et al. (2014).  

Herein, 18 (20) fields are used as inputs into the RF algorithm to obtain SREF (HREFv2) 

RFFPs (Table 2.4).  

Predictor Variable Atmospheric Level 
Temperature 500-, 700-, 850-hPa, and 2-m AGL 

Dewpoint Temperature 500-, 700-, 850-hPa, and 2-m AGL 
Max. Hourly Simulated Reflectivity* 1 km AGL 

CAPE Surface-based 
CIN Surface-based 

PWAT Entire Column 
Max. Hourly Simulated UH* 2-5 km AGL 

Max. Hourly U, V Wind 10 m AGL 
Max. Hourly Upward Vertical Velocity 

(UVV), Downward Vertical Velocity (DVV) 
100-1000 hPa (400-1000 hPa for NAM 

members of HREFv2) 
Forecast 24-h Precipitation Surface 

Lat., Lon. N/A 
Table 2.4 Predictor variables from each ensemble. Asterisks denote variables used for the 

HREFv2 RFFPs only. Due to limited computing resources, all predictors except for 
latitude and longitude represent 24-h temporal mean ensemble mean quantities.  
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These fields include variables that represent a point’s meteorological environment, variables that 

have an obvious direct relationship with observed precipitation, and latitude and longitude, 

which are designed to account for spatially-varying precipitation climatology. Simulated 2-5 km 

updraft helicity (UH) is also included as a predictor given its relationship to sustained rotating 

updrafts and severe weather occurrence (e.g., Kain et al. 2008; Sobash et al. 2011; Loken et al. 

2017), since supercells or mesoscale convective systems that produce elevated values of 

simulated UH may also produce localized heavy rainfall (e.g., Nielsen and Schumacher 2018). 

The SREF uses two less fields compared to the HREFv2 since the SREF does not output 

forecasts of simulated reflectivity or UH.  

Predictors are derived from ensemble forecast grid-point values on the 20-km grid. 

Originally, predictors included forecasts from each ensemble member, since it was hypothesized 

that the RF algorithm could learn and correct for each member’s individual systematic biases. 

However, simply using the ensemble mean value of each variable produced RFFPs that were at 

least as skillful as those made using predictors from each member. Moreover, using only 

ensemble mean forecast values made it computationally feasible for the RF to consider 

predictors from multiple points in space, potentially allowing the RF to identify and correct 

nonlinear systematic spatial biases. Therefore, ensemble mean forecast values from points (on 

the 20-km grid) within an approximately 100-km box surrounding the forecast point (i.e., 

forecast values from the forecast point and the 24 closest points) are used as predictors. Notably, 

there is no spatial averaging of the values used beyond the neighbor budget interpolation to the 

20-km grid.   

 Further necessary reductions in dataset dimensionality are achieved through 

preprocessing the raw ensemble data. First, a temporal mean is taken over the 8 3-hourly (24 1-
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hourly) forecast fields each day at each native grid point for the SREF (HREFv2). While useful 

information is undoubtedly lost using this method, the temporal mean provides an overall 

summary of the simulated meteorological conditions during the relevant 24-h period, which is 

hypothesized to be sufficient for skillful RF probabilistic precipitation forecasts on next-day time 

scales. Each day’s temporal mean forecasts are then remapped to the 20-km verification grid. 

Finally, 10% (i.e., 2,130) of the (remapped) points in the analysis domain are randomly sampled 

without replacement and added to the dataset for training each day (note that the full domain is 

still used for testing).  

 Randomly sampling the domain in this manner, as in Gagne et al. (2014), accomplishes 

two main objectives: it reduces the computational expense of the algorithm by appreciably 

shrinking the size of the training dataset, and it decreases the likelihood of including multiple 

highly-correlated grid points in the training set, reducing the chance of RF over-fitting (i.e., 

fitting on noise rather than actual, systematic patterns in the data). A sampling rate of 10% is 

greater than that used by Gagne et al. (2014) but is chosen to balance the tradeoff between 

computational expense and RFFP skill, which increased only slightly at sampling rates beyond 

10% in sensitivity tests from 0.5-70% (not shown). All data preprocessing steps are summarized 

in Fig. 2.2.  

 After the data has undergone preprocessing, a random forest classifier from the Python 

module Scikit-Learn (Pedregosa et al. 2011) is used to train the ensemble RFs and create RFFPs. 

Based on hyper-parameter sensitivity tests (not shown), the random forest classifier requires: 200 

trees, a maximum tree depth of 15 levels, at least 20 samples per leaf node, the minimization of 

entropy for splits, and the consideration of n predictors (where n is the total number of 

predictors in the dataset) at each node. Separate RFs are trained for each precipitation threshold,  
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Figure 2.2 Schematic illustrating the data preprocessing steps for the 8-member HREFv2. Note 
that the SREF follows a similar procedure but has 26 members and starts on a coarser 
native grid. (a) The temporal mean is taken over 24-h at each native grid point for each 
ensemble member. (b) The temporally-averaged data is remapped to an approximately 
20-km grid. (c) An ensemble mean is taken at each 20-km grid point. (d) 10% of the 
domain is randomly sampled for training. (e) Training data consists of the predictor 
variables at each sampled point (yellow) and the 24 closest 20-km points.  



 30 

but all RFs use the same hyper-parameters. Importantly, since each threshold forecast is created 

independently, there is no guarantee of consistency between the probabilities of different 

threshold exceedance. However, the use of different RFs for different thresholds enables a more 

direct comparison of how the RF technique performs at each threshold individually and allows 

for different types of precipitation events to be predicted from trees/forests with different, 

potentially more appropriate structures.  

Unlike many previous studies (e.g., Gagne et al. 2014; Herman and Schumacher 2018c), 

separate RFs are not trained for each season and/or geographic region. Using a single RF to 

represent the entire CONUS year-round likely sacrifices forecast skill, since locations have 

different time- and space-varying climatologies (e.g., Schumacher and Johnson 2006). However, 

using a single RF considerably simplifies the prediction and maintenance processes of RF-based 

post-processing. For example, with multiple regional RFs, RFFPs may be un-physically 

discontinuous near the border of two regions, requiring additional post-processing. Moreover, 

multiple RFs require more computing power to train (or retrain) and run when making daily 

predictions. Additionally, it is hypothesized that the inclusion of latitude and longitude 

coordinates as well as seasonally-varying environmental variables (e.g., temperature) may help a 

single RF implicitly account for time- and space-varying precipitation climatologies. This single-

RF approach, while perhaps less efficient than a multi-RF approach with explicit dataset 

filtering, may be advantageous for precipitation prediction since spatially- and seasonally-distant 

training data (e.g., forecast precipitation) may have at least some relevance for all forecast points. 

However, the single-RF approach may be less appropriate to use in problem domains where 

distant training data is less relevant to a given forecast point.  
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d. Verification 
 
 16-fold cross validation with 31 days per fold is used to verify the forecasts. Verification 

metrics are computed on the full set of 496 forecasts derived from each fold’s testing set. To 

facilitate a fair comparison between the RFFPs and spatially smoothed forecasts, the σ that 

minimizes the BS over each fold’s training set is used to create the spatially smoothed forecasts; 

hence, σ varies by fold (Fig. 2.3).  

Verification metrics are computed over the full domain (Fig. 2.1) as well as over five distinct 

regions (Fig. 2.4), which are based on combinations of the regions defined by Bukovsky (2011). 

These regions have distinct temperature and precipitation climatologies.  

An important strategy for evaluating probabilistic forecasts is the creation of 2 x 2 

contingency tables (e.g., Wilks 1995), which are derived from binarizing the forecast at various 

probability thresholds. Verification metrics such as probability of detection (POD), probability of  

Figure 2.3 Relationship between the standard deviation of the Gaussian kernel (i.e., 𝜎) and 
testing fold for (a) the SREF and (b) the HREFv2. In each plot, 0.1-, 0.5-, 1-, and 3-inch 
forecasts are depicted in purple, blue, gold, and red, respectively. The range of dates 
included in each fold are listed on the x-axis. Note the different y-axis scales.   
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false detection (POFD), success ratio (SR), bias, and critical success index (CSI) can then be 

obtained (e.g., see equations 3-7 in Loken et al. 2017). These metrics form the basis of other 

forecast evaluation tools used herein, such as the ROC curve (Mason 1982) and performance 

diagram (Roebber 2009). ROC curves plot POD against POFD at multiple forecast probability 

thresholds (here, 1, 2, and 5-95% in intervals of 5%). Area under the ROC curve (AUC) provides 

a measure of forecast discrimination ability, with values of 1 (0.5) indicating a perfect (random) 

forecast. Since AUC is not sensitive to forecast reliability (Wilks 2001), attributes diagrams (Hsu 

and Murphy 1986; Wiilks 1995) measure reliability by grouping forecasts into k bins based on 

forecast probability and plot the mean observed relative frequency of each bin against the bin’s 

probability. Herein, 11 bins are used [0, 5%), [5-15%), …, [85-95%), and [95-100%]. Perfectly 

reliable forecasts fall along a diagonal line with a slope of 1 passing through the origin. Over- 

(under-) forecasts fall below (above) the perfect reliability line. Horizontal and vertical lines are 

Figure 2.4 The five regional analysis regions, which include the West (gold), Great Plains (light 
blue), Upper Midwest (salmon), South (royal blue), and East (purple).  
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plotted at the sample climatological relative frequency, while a “no-skill” line is plotted halfway 

between the horizontal climatology line and the line of perfect reliability. Points above (below) 

the no-skill line contribute positively (negatively) to the Brier Skill Score when a reference 

forecast of climatology is used (Wilks 1995).  

 Performance diagrams (Roebber 2009) plot POD against SR and include lines of constant 

bias and CSI. Herein, forecasts are plotted on performance diagrams at each of the 21 probability 

levels used to create the ROC curves. The most skillful forecasts fall closest to the upper right-

hand corner of the plot, where POD, SR, bias, and CSI are all optimized.  

 The BS (e.g., Wilks 1995) measures the magnitude of the forecast probability errors and 

can be decomposed into reliability, resolution, and uncertainty components (Murphy 1973; 

Wilks 1995). The BS is a negatively-oriented score, so a score of 0 (1) indicates perfect (no) 

skill. One disadvantage of the BS is that it is sensitive to the observed climatological frequency 

of the event being verified. The Brier Skill Score (BSS) helps account for this effect by 

comparing the BS to that of a reference forecast, which is often a forecast of climatology. The 

BSS is defined as: 

BSS	 = 	
BS − BS<=>
0 − BS<=>

	= 	1 −
BS
BS<=>

					 2.3 , 

where, herein, BS<=> is the BS obtained by always forecasting the underlying climatological 

frequency associated with the entire dataset. The BSS is a positively-oriented score, with 

possible values from -∞ to 1. A BSS of 0 (1) indicates no (perfect) skill relative to the reference 

forecast. 

 A one-sided paired permutation test (e.g., Good 2006) is used herein to test whether the 

AUC and BSS of a given set of forecasts (e.g., the RFFPs) is significantly greater than a second 
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set of forecasts (e.g., the spatially smoothed probabilities). The general procedure is the same for 

both AUC and BSS. Individual-day forecasts are randomly permuted between the two forecast 

systems 10,000 times to create a null distribution of metric differences. The actual difference 

between the two forecast systems’ skill metrics is then compared to the null distribution to obtain 

a p-value. In the AUC paired permutation test, contingency table elements are randomly 

permuted rather than the AUC values themselves since individual-day AUC values can be very 

sensitive to small changes in contingency table elements (Hamill 1999). The final AUC values 

(and AUC differences) for each iteration are computed based on the permuted contingency table 

elements. In the same manner, individual-day BSs rather than BSSs are permuted, and BSSs (and 

BSS differences) for each iteration are computed based on the collective permuted BSs.  

 Spatial biases are assessed using an approach outlined by Clark et al. (2010a) and Marsh 

et al. (2012). Conceptually, whenever a yes forecast is issued within the domain, the spatial 

distribution of yes observations within a 500 x 500 km box is tabulated relative to the yes 

forecast point and the results are composited over the entire dataset. However, these yes 

observations are only added to the composite if they fall within the analysis domain. While this 

method can yield artificially anisotropic contributions to the composite near the domain 

boundaries, tests (not shown) have indicated that, overall, this method does not appreciably bias 

the center of the distribution. Thus, in the absence of systematic spatial biases, the center of the 

distribution should be located at the yes forecast point.  

 In this study, a yes observation is defined as the Stage IV data exceeding a quantitative 

precipitation threshold (e.g., 0.1-, 0.5-, 1-, or 3-in) on the verification grid, while a yes forecast is 

defined as the forecast exceeding a probability threshold that, to the nearest 1%, optimizes 
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frequency bias. Defining yes forecasts in this way allows for a clean comparison between 

forecasts by removing bias magnitude but still allowing for spatial biases. Table 2.5 shows the  

forecast probability thresholds and their corresponding frequency biases.  

Table 2.5 Forecast probability thresholds used to (approximately) optimize frequency bias for 
each forecasting system at each precipitation threshold. Actual values of frequency bias 
are reported in the fourth column.   

 

 One drawback of ML-based post-processing techniques is that they assume the 

underlying dynamical models do not change with time and must be retrained whenever 

developers implement changes. An important question, therefore, is: how long of a dataset is 

Precipitation 
Threshold Ensemble/Forecast Forecast Probability 

Threshold (%) Frequency Bias 

0.1 in. 

SREF, Raw 62 1.029 
HREF, Raw 38 1.040 

SREF, Smooth 55 1.011 
HREF, Smooth 43 0.996 

SREF, RF 44 0.991 
HREF, RF 43 1.007 

0.5 in. 

SREF, Raw 47 0.957 
HREF, Raw 38 0.896 

SREF, Smooth 38 0.990 
HREF, Smooth 35 0.989 

SREF, RF 33 0.992 
HREF, RF 35 0.987 

1 in. 

SREF, Raw 35 1.049 
HREF, Raw 26 1.139 

SREF, Smooth 29 1.007 
HREF, Smooth 29 1.005 

SREF, RF 26 1.011 
HREF, RF 28 0.998 

3 in. 

SREF, Raw 20 1.045 
HREF, Raw 26 0.812 

SREF, Smooth 18 0.990 
HREF, Smooth 20 1.022 

SREF, RF 17 0.970 
HREF, RF 20 1.030 



 36 

required for ML to perform adequately? To address this question, RFs are re-trained and re-

evaluated using a dataset comprising the first 62, 124, 248, and 372 days (i.e., the first 1/8, 1/4, 

1/2, and 3/4) of the full dataset, respectively. These RFs use the same hyper-parameters as 

described previously. Although this approach is suboptimal, sensitivity tests suggest that the BSS 

varies only slightly with different hyper-parameters; moreover, the set of hyper-parameters used 

previously was deemed close enough to optimal to make using a constant set of hyper-

parameters worth the reduced computational expense. As with the full dataset, k-fold cross 

validation is used to evaluate the forecasts, with 31 forecasts per fold.  

This method of assessing the relationship between forecast skill and dataset length is not 

perfect due to the temporal-varying precipitation climatology. For example, one potential issue is 

that the smallest datasets, which have fewer folds, get verified only against testing data from the 

same season as the training data. As more data is added, the size of the training set increases, but 

the training set starts to include data from other times of the year relative to the test set. 

Therefore, it is possible that this “new” training data adds only limited value to each testing fold. 

Additionally, the uncertainty of the forecast itself changes with time due to seasonal variations in 

climatology, such that, as more dates are added to the dataset, the overall forecast difficulty (and 

thus, objective skill) changes depending on what dates are added. Despite these deficiencies, the 

results give useful preliminary insight into the feasibility of adopting ML-based techniques 

operationally.  

 

3. Results 
 
a. Traditional verification metrics over the full domain 
 



 37 

1) ROC METRICS 
 

All forecasts have good discrimination ability, as indicated by ROC diagrams (Fig. 

2.5a,d,g,j,m,p,s,v) and AUC (Fig. 2.6a-d). Even the worst-performing forecast system (i.e., the 

raw SREF ensemble for the 3-in. threshold; Fig. 2.4d) has an AUC of 0.80. Nevertheless, for all 

thresholds (all but the 3-in. threshold), the SREF (HREFv2) RFFPs have significantly greater 

AUC than the corresponding raw and smoothed ensemble probabilities (p < 0.0001; Fig. 

2.7a,c,e,g). The SREF RFFPs also have significantly greater AUC than the raw HREFv2 

probabilities (p < 0.0001; Fig. 2.7a,c,e,g).  

Interestingly, the raw SREF forecast probabilities often have greater AUC compared to 

the raw HREFv2 forecast probabilities, even though the HREFv2 is a CAE that performs 

subjectively better than the SREF. This behavior likely reflects the insensitivity of the AUC to 

bias (thus negating the SREF’s poor reliability; e.g., Fig. 2.5b,e,h,k,n,q; Fig. 2.6i-k) as well as 

the larger membership of the SREF, which enables the raw SREF to issue more unique forecast 

probabilities and thus have more unique “points” on its ROC curve, possibly increasing AUC. 

 
 
2) RELIABILITY 
 

The raw SREF and HREFv2 probabilities suffer from substantial over-forecasting bias at 

all precipitation thresholds, with the raw SREF forecasts generally having the worst reliability 

(Fig. 2.5b,e,h,k,n,q,t,w; Fig. 2.6i-l). The 0.1-in. raw SREF forecasts (Fig. 2.5b) have particularly 

poor reliability, as the reliability curve falls below the no skill line for multiple forecast 

probability bins. Meanwhile, the raw HREFv2 reliability curves contain “gaps” (Fig. 2.5e,k,q,w) 

since, with only 8 members, the HREFv2 is unable to issue probabilities in all bins. Spatially 

smoothing the raw ensemble forecasts improves reliability and removes the gaps from the raw  



 38  

Figure 2.5 (a) ROC curve for the SREF at the 0.1-in. threshold for raw (purple), smooth (blue), 
and RF (red) forecasts. The black dashed line indicates a random forecast. (b) Attributes 
diagram for the SREF at the 0.1-in. threshold for the same forecasts as in (a). Black 
dashed lines indicate the relative frequency of the sample climatology, the solid black 
line is the “no skill” line, and the dashed gray line represents perfect reliability. The 
number of forecasts in each probability bin are indicated by the colored dashed lines 
with filled circles. (c) Performance diagrams for the SREF at the 0.1-in. threshold for the 
same forecasts as in (a). Lines of constant bias are dashed, while lines of constant CSI 
are solid. Each of 21 forecast probability levels are indicated by filled circles. (d)-(f) As 
in (a)-(c) but for the HREFv2. (g)-(l) As in (a)-(f) but for the 0.5 in. threshold. (m)-(r) As 
in (a)-(f) but for the 1-in. threshold. (s)-(x) As in (a)-(f) but for the 3-in. threshold.  
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Figure 2.6 (a) AUC for SREF and HREFv2 raw (purple), smooth (blue), and RF forecasts (red) 
for the 0.1-in. threshold. (b)-(d) As in (a) but for the 0.5-, 1-, and 3-in. thresholds, 
respectively. (e)-(h) As in (a)-(d) but for BSS. (i)-(l) As in (a)-(d) but for the reliability 
component of the BS. (m)-(p) As in (a)-(d) but for the resolution component of the BS. 
Note the different y-axes for (m)-(p), and note that lower values of BS reliability are 
better.   
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Figure 2.7 (a) P-values from one-sided paired permutation significance tests for AUC for the 
0.1-in. threshold. (b) As in (a) but for BSS. (c)-(d) As in (a)-(b) but for the 0.5-in. 
threshold. (e)-(f) As in (a)-(b) but for the 1-in. threshold. (g)-(h) As in (a)-(b) but for the 
3-in. threshold. Each square reports the p-value associated with testing whether the 
forecast displayed across the top row has a significantly greater metric than that from 
the forecast displayed along the left-hand column.  
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HREFv2 reliability curves (Fig. 2.5b,e,h,k,n,q,t,w). The RF technique tends to produce even 

better (i.e., near-perfect) forecast reliability for both ensembles at most thresholds (Fig. 2.6i-l). 

 

3) PERFORMANCE DIAGRAMS 

Performance diagrams suggest that the skill of the RFFPs matches or exceeds that of the 

other sets of forecasts at all four precipitation thresholds (Fig. 2.5c,f,i,l,o,r,u,x). The SREF 

RFFPs clearly outperform corresponding raw and smoothed SREF forecasts (Fig. 2.5c,i,o,u), 

while the HREFv2 RFFPs have the greatest relative performance at the 0.1-in. threshold (Fig. 

2.5f). At the other thresholds (Fig. 2.5l,r,x), the HREFv2 RFFPs and smoothed probabilities 

demonstrate similar skill, which noticeably exceeds that of the raw HREFv2 probabilities. 

 One interesting characteristic of the SREF performance diagrams (Fig. 2.5c,i,o,u) is that 

the second-best performing probabilities (in terms of CSI) tend to be from the raw SREF (e.g., 

Fig. 2.5c,i,o). This is because the smoothed SREF probabilities require a relatively large amount 

of spatial smoothing to optimize the BS (Fig. 2.3a), and this degrades resolution (Fig. 2.6m-p). 

Hence, for the SREF forecasts, a main advantage of the RF technique is that it calibrates the raw 

ensemble probabilities while improving—rather than sacrificing—resolution.  

 
4) BSS AND BS COMPONENTS 
 
 With only one exception (i.e., the smoothed 3-in. HREFv2 probabilities), the RFFPs have 

significantly greater BSSs (p < 0.0001) than the corresponding raw and smoothed ensemble 

probabilities (Fig. 2.7b,d,f,h). At the 0.1-in. threshold, the SREF RFFPs even have a significantly 

greater BSS than the raw HREFv2 probabilities (p < 0.0001; Fig. 2.7b), which is remarkable 
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given the much coarser horizontal grid-spacing of the SREF. The RF-based approach improves 

the BSS by simultaneously enhancing forecast reliability and resolution (Fig. 2.6e,i,m).  

The RFFPs provide the greatest increase in BSS relative to the corresponding raw and 

smoothed ensemble forecasts at the smallest precipitation thresholds (Fig. 2.6e-h), likely because 

the smallest thresholds have the greatest climatological frequency (Fig. 2.8). More occurrences 

of yes observations in the training dataset make it easier for the RF to identify the systematic 

relationships between the predictors and observations.  

 

 

 

 

 

 

 

 

 

RFFPs always have better resolution than the corresponding raw and smoothed ensemble 

forecast probabilities (Fig. 2.6m-p) and nearly always have better reliability (Fig. 2.6i-l). It is 

also noteworthy that the RFFPs increase resolution relative to the spatially smoothed ensemble 

Figure 2.8 Number of “yes” observations (i.e., instances when the observed 24-h precipitation 
exceeds the given threshold) at the 0.1-, 0.5-, 1-, and 3-in. thresholds. The corresponding 
relative frequency, abbreviated as “Climo. Freq.,” is displayed above each bar. Note the 
logarithmic y-axis.  
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forecasts, both in cases where the 2-dimensional spatial smoothing technique degrades (e.g., the 

SREF forecasts) and enhances (e.g., the HREFv2 forecasts) reliability.  

 

b. Regional results 
 
 Similar results are obtained when forecasts are verified regionally. For the SREF, the RF-

based approach improves the BSS in every region at every threshold compared to the raw and 

smoothed ensemble forecasts (Fig. 2.9a-d). These greater BSSs can be attributed to both better 

reliability and resolution (Fig. 2.9a-d). Importantly, the RF approach appears to improve the BSS 

and BS components approximately equally for each region at each threshold (with a few 

exceptions; e.g., the West region benefits disproportionately at the 1-in. threshold). This finding 

suggests that a single, CONUS-wide RF can learn enough spatial information such that the 

benefits to RF-based post-processing are not confined to a single region.  

 The same general findings also apply to the HREFv2: at each threshold, each region 

benefits from the RF-based post-processing approximately equally (Fig. 2.10a-d). Of course, 

these benefits are most pronounced for the lower thresholds, consistent with the full-domain 

findings presented above. Regardless, the results suggest that, for a given threshold, a single, 

CONUS-wide RF can provide reliability and resolution benefits to forecasts in all regions, 

despite each region having different climatological frequencies of threshold exceedance (e.g., 

Fig. 2.9-2.10).  
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Figure 2.9 Regional BSS, BS reliability, and BS resolution for the raw (purple), spatially 
smoothed (blue), and RF-based (red) SREF forecasts at the (a) 0.1-, (b) 0.5-, (c) 1-, and 
(d) 3-inch thresholds. In each case, the black dashed line indicates the climatological 
relative frequency of threshold exceedance in the given region. Full domain metrics are 
also given under the “Total” label.   
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c. Full-domain spatial biases 
 
 Full-domain spatial bias magnitudes are small for both ensembles, as the center of the 

observed conditional distribution seldom falls more than 20-40 km from the yes forecast point 

(Fig. 2.11a-x).  

Figure 2.10 As in Fig. 2.9 but for the HREFv2 forecasts. Axes are the same as in Fig. 2.9.  
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Figure 2.11 (a) Spatial distribution of observed yes events given a yes forecast (see text) at point (0,0) 
(black dot) for the raw SREF ensemble forecast at the 0.1-in. threshold. The red dot denotes the 
center of the distribution. (b)-(c) As in (a) but for the SREF-derived smoothed and RF-based 
forecasts. (d)-(f) As in (a)-(c) but for the HREFv2. (g)-(l) As in (a)-(f) but for the 0.5-in. 
threshold. (m)-(r) As in (a)-(f) but for the 1-in. threshold. (s)-(x) As in (a)-(f) but for the 3-in. 
threshold. Note the different color scale used for each threshold.  
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The spatial biases are greatest for the raw and smoothed SREF forecasts (Fig. 2.11a,b,g,h,m,n,s,t) 

and for the higher (i.e., 1- and 3-in.; Fig. 2.11m-x) precipitation thresholds. These findings make 

sense given that the higher thresholds are more likely to be associated with deep convection, 

which is more difficult to predict—especially for a convection-parameterizing ensemble (e.g., 

Kain et al. 2006)—due to uncertainties in initiation and evolution. The anisotropy of the 

conditional distribution of observed yes events seen in Fig. 2.11a-x is consistent with Marsh et 

al. (2012), who obtained a similar preferred southwest-northeast orientation and explained that it 

reflects the mean shape and orientation of individual precipitation objects over the full dataset.  

 One important finding in the present study is that the RF technique helps alleviate spatial 

biases in the raw and smoothed ensemble probabilities. This result can be seen in two distinct 

ways. First, the center of the distribution (i.e., the red dot in Fig. 2.11a-x) is closest to the yes 

forecast point (i.e., the black dot in Fig. 2.11a-x) in the RF plots (i.e., Fig. 2.11c,f,i,l,o,r,u,x). 

Additionally, difference plots (Fig. 2.12a-p) show that the RF technique tends to add conditional 

observations in locations that oppose the direction of the spatial bias and/or subtract conditional 

observations from locations in the same direction of the spatial bias. For example, in the 1-in. 

raw and smoothed SREF forecasts, the center of the observed distribution falls too far to the 

southeast of the yes forecast point (Fig. 2.11m,n). In both cases, the RF technique adds 

conditional observations to the northwest and subtracts conditional observations to the southeast 

(Fig. 2.12i,j) so that the center of the RF-based conditional distribution of observed yes events is 

closer to the yes forecast point (Fig. 2.11o).  
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Figure 2.12 (a) Difference between the conditional distribution of yes observed events given a 
yes SREF-based RF forecast at (0, 0) (black dot) and the conditional distribution of yes 
observed events given a yes raw SREF forecast at (0, 0) at the 0.1-in. threshold (i.e., Fig. 
2.11c minus Fig. 2.11a). (b) As in (a) but subtracting the smoothed SREF distribution 
from the SREF RF distribution (i.e., Fig. 2.11c minus Fig. 2.11b). (c)-(d) As in (a)-(b) but 
for the HREFv2. (e)-(h) As in (a)-(d) but for the 0.5-in. threshold. (i)-(l) As in (a)-(d) but 
for the 1-in. threshold. (m)-(p) As in (a)-(d) but for the 3-in. threshold.    
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Similar behavior is seen for both ensembles at all thresholds, although the effect is stronger for 

the SREF since the HREFv2 forecasts have fewer spatial biases. In many cases, the RF approach 

also adds conditional yes observations to the yes forecast point and surrounding points (e.g., Fig. 

2.12g,n,o), which improves the forecast by increasing the conditional probability of a yes 

observation given a yes forecast. 

 

d. Sensitivity of results to dataset length 
 
 The best AUC and BSS values are generally obtained using a dataset of 248 days (Fig. 

2.13a,b,d,e). Interestingly, increasing the dataset beyond 248 days results in slightly lower AUCs 

and BSSs. This finding can potentially be explained by temporal variations in the observed 

precipitation climatology. For example, since AUC is sensitive to the number of correct 

Figure 2.13 (a) AUC as a function of dataset length for the SREF. (b)-(c) As in (a) but for the 
BSS and uncertainty component of the BS, respectively. (d)-(f) As in (a)-(c) but for the 
HREFv2.  
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negatives, AUC may be artificially inflated (deflated) during times of the year with lower 

(higher) forecast uncertainty. Indeed, this is exactly the pattern that is seen (Fig. 2.13a,c,d,f). The 

temporal variation in climatology may also help explain the behavior of the 3-in. SREF and 

HREFv2 BSS curves, which reach a local minimum at 372 days. Although difficult to discern 

from Fig. 2.13c,f, the 3-in. uncertainty reaches a minimum (maximum) at 372 (124) days. A 

relatively low (high) forecast uncertainty makes a reference forecast of climatology more (less) 

skillful and more (less) harshly penalizes small forecast errors. Thus, the BSS decreasing after 

124 (248) days for the SREF (HREFv2) may be at least partly explained by the variations in the 

already-low observed precipitation climatology.   

 Because these variations in climatology have the potential to “artificially” influence the 

verification metrics, the results should be interpreted cautiously. Nevertheless, it is likely that the 

results presented herein aren’t due entirely to temporal variations in the dataset climatology, 

especially since the BSS follows a similar pattern as AUC. For both AUC and BSS, there are 

obvious gains from increasing the length of the dataset from 62- to 124-days and, in general, 

additional gains from further increasing the dataset to 248 days. Since each fold’s testing set 

contains 31 days, these findings suggest that a minimum training set length of 93-217 days (i.e., 

approximately 1-2 seasons) is desirable for adequate performance.  

 

e. Select cases 
 
 Two cases are subjectively selected to illustrate the RFFPs’ relative performance on 

individual days.    

 

1) 1200 UTC 2 OCTOBER – 1200 UTC 3 OCTOBER 2017 
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 The heaviest precipitation during this period occurred in a corridor extending from 

northeastern Minnesota into west-central Kansas ahead of a cold front. Relatively heavy 

precipitation also occurred in northern Montana downstream of a mid-level shortwave trough, 

while southern Louisiana and southern Florida experienced weakly-forced tropical showers. 

 The raw SREF and HREFv2 probabilities performed relatively well at all four thresholds 

(Fig. 2.14a,d,g,j,m,p,s,v). In general, these probabilities had good sharpness and resolution. 

However, these raw ensemble forecasts also placed 90-100% probabilities in locations where the 

observed precipitation did not exceed the threshold (e.g., southern Utah in Fig. 2.14a,d). The 

spatially smoothed forecasts (Fig. 2.14b,e,h,k,n,q,t,w) helped calibrate the raw forecast 

probabilities but had reduced sharpness. Meanwhile, the RFFPs (Fig. 2.14c,f,i,l,o,r,u,x) generally 

had good calibration, sharpness, and resolution. For example, like the 0.5-in. raw SREF 

probabilities (Fig. 2.14g), the 0.5-in. SREF RFFPs (Fig. 2.14i) exceeded 80% over east-central 

Minnesota and northern Montana, while the spatially smoothed SREF probabilities (Fig. 2.14h) 

were less in both areas. Moreover, the 0.5- and 1-in. SREF RFFPs (Fig. 2.14i,o) had less false 

alarm area over the High Plains compared to the spatially smoothed SREF forecasts (Fig. 

2.14h,n). Differences between the HREFv2 smoothed probabilities and corresponding RFFPs 

were subtler since less spatial smoothing was required to calibrate the raw HREFv2 probabilities. 

For example, compared to the corresponding smoothed forecasts (Fig. 2.14k,q), the 0.5- and 1-in. 

HREFv2 RFFPs (Fig. 2.14l,r)  had a larger spatial extent of >90% probabilities in the Upper 

Midwest where observed precipitation exceeded the threshold. The 0.5-in. RFFPs (Fig. 2.14l) 

also gave slightly lower probabilities in east-central South Dakota but slightly enhanced the 

probabilities in central Iowa compared to the spatially smoothed probabilities (Fig. 2.14k).  
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Figure 2.14 (a) 0.1-in. PQPFs from the raw SREF ensemble, valid for the 24-h ending at 1200 
UTC on 3 October 2017. The black contours indicate where the observed precipitation 
exceeded the given threshold. (b)-(c) As in (a) but for the spatially smoothed and RF-
based SREF PQPFs. (d)-(f) As in (a)-(c) but for the HREFv2. (g)-(l) As in (a)-(f) but for 
the 0.5-in. threshold. (m)-(r) As in (a)-(f) but for the 1-in. threshold. (s)-(x) As in (a)-(f) 
but for the 3-in. threshold.  
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2) 1200 UTC 22 JUNE – 23 JUNE 2017 
 

Early in this period, elevated storms were ongoing over South Dakota, Minnesota, 

Wisconsin, and Michigan. Later, surface-based storms formed ahead of a cold front extending 

from eastern Ontario into central Kansas and eastern Colorado, bringing heavy rainfall to 

southern Wisconsin, central Michigan, and northern New York. Eastern Colorado and western 

Kansas also experienced 0.1–0.5-in rainfall associated with post-frontal upslope flow. 

Meanwhile, Tropical Storm Cindy brought heavy rainfall to the southeastern U.S.  

Raw ensemble probabilities from the SREF and HREFv2 (Fig. 2.15a,d,g,j,m,p,s,v) 

predicted the day’s precipitation relatively well, despite several instances of overconfidence 

(e.g., central Colorado, northeastern Mississippi, and eastern California in Fig. 2.15a; extreme 

southwestern Kentucky in Fig. 2.15j) and misses (e.g., northwestern Nebraska in Fig. 2.15d; 

southern Iowa in Fig. 2.15m). Spatially smoothing the raw ensemble probabilities (Fig. 

2.15b,e,h,k,n,q,t,w) generally helped improve calibration and POD, but forecasts remained 

imperfect. For example, 0.1-in. SREF exceedance probabilities (Fig. 2.15b) remained near 1 in 

southwestern Kentucky and northeastern Mississippi, while the 0.1-in. HREFv2 smoothed 

probabilities over northwestern Nebraska remained less than 2%. The RFFPs (Fig. 

2.15c,f,i.l,o,r,u,x) tended to fix these problems. The 0.1-in. SREF-based RFFPs gave smaller 

probabilities in northeastern Mississippi (Fig. 2.15c), while the 0.1-in. HREFv2-based RFFPs 

gave higher (i.e., 2-10%) probabilities in northwestern Nebraska. In general, the RFFPs (Fig. 

2.15c,f,I,l,o,r,u,x) had good calibration, sharpness, and resolution. They tended to increase POD 

and sharpness compared to the spatially smoothed forecasts while only modestly increasing 

POFD. For example, the HREFv2 1-in. RFFPs (Fig. 2.15r) gave higher probabilities in northern 

Alabama compared to the raw (Fig. 2.15p) and smoothed (Fig. 2.15q) HREFv2 forecasts while  
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Figure 2.15 As in Fig. 2.14 but for the 24-h period ending at 1200 UTC 

on 23 June 2017.  
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the false alarm area increased only slightly. Similarly, the SREF-based 3-in. RFFPs had better 

POD in central Alabama (Fig. 2.15u) with a false alarm area only slightly greater than the 

corresponding raw and smoothed ensemble forecasts (Fig. 2.15s-t). While the RFFPs didn’t 

always improve on the raw and smoothed ensemble probabilities (e.g., central Michigan in Fig. 

2.15v-x), the general performance of the RFFPs was strong.  

 

4. Summary and Discussion 
 
 This paper describes a technique to post-process ensemble probabilistic precipitation 

forecasts year-round over the contiguous United States (CONUS) using a single random forest 

(RF). Specifically, the RF-based post-processing is applied to 24-h (1200 UTC – 1200 UTC) 

probabilistic precipitation forecasts from the Short-Range Ensemble Forecast System (SREF; Du 

et al. 2015) and the High-Resolution Ensemble Forecast System, Version 2 (HREFv2; Jirak et al. 

2018; Roberts et al. 2019) at four precipitation thresholds: 0.1-in. (2.54-mm.), 0.5-in. (12.7-

mm.), 1-in. (25.4-mm.), and 3-in. (76.2-mm.). Random forest forecast probabilities (RFFPs) are 

compared against each ensemble’s raw probabilities (i.e., the fraction of members exceeding a 

threshold) and spatially-smoothed probabilities (i.e., raw ensemble probabilities smoothed in 

space using an isotropic 2-dimensional Gaussian kernel density function to optimize the Brier 

Score).  

 Relative to these baseline forecasts, the RFFPs provide better reliability and resolution, 

fewer spatial biases, and statistically greater Brier Skill Scores (BSSs) and areas under the 

relative operating characteristics curve (AUCs). The RFFPs perform best at lower thresholds, 

which have greater climatological frequencies and thus provide more examples of “yes 

observations” for the algorithm to use to discern data patterns associated with threshold 
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exceedance. The RF-based post-processing also benefits the SREF more than the HREFv2, a 

result that makes sense given that the raw SREF contains more systematic biases than the raw 

HREFv2. The result may also indicate that different ensembles require different sets of predictor 

variables to achieve the best post-processing benefits. For example, it is possible that, for the 

HREFv2, the ensemble mean is not as meaningful as an ensemble summary characteristic as it is 

for the SREF. Similarly, it is possible that the HREFv2 forecast variables contain more small-

scale noise than those from the SREF because of the HREFv2’s finer horizontal grid-spacing.  

 The biggest advantage of the RFFPs is that they provide a convenient “summary” product 

that is calibrated with respect to forecast probability magnitudes and spatial coverage. While 

near-perfect reliability can also be achieved using 2-dimensional spatial smoothing with the 

proper value of σ, spatially smoothing ensemble probabilities reduces sharpness (e.g., Sobash et 

al. 2011, 2016b; Loken et al. 2017, 2019) and potentially sacrifices resolution if too much 

smoothing is required. Moreover, the “best” value of σ may vary based on geographic location 

and time of year (e.g., Fig. 2.3), as precipitation uncertainty is reduced where stronger and/or 

more predictable forcing is present, such as near high terrain (e.g., Blake et al. 2018) or during 

the cold season (e.g., Schwartz et al. 2019). Thus, while a time- and space-varying σ may be 

required to properly calibrate forecasts using spatial smoothing, the RF-based approach 

implicitly accounts for spatial and temporal variations in precipitation uncertainty.  

In practice, RFFPs could provide value to forecasters as an ensemble summary product 

that would eliminate the need for internal forecaster calibration of ensemble biases. Indeed, the 

RFFPs would fill an important operational need by quickly conveying reliable uncertainty 

information to the forecaster (Evans et al. 2014). The RFFPs could also be used as an automated 

“first guess” probabilistic precipitation forecast field, which could increase forecaster efficiency 
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(e.g., Karstens et al. 2018). Importantly, the implementation of RFFPs into operations would be 

computationally feasible. While training RFs can be expensive, particularly when many predictor 

variables and training examples are used, using a trained RF to make real-time predictions is 

cheap. For example, real-time RFFPs are currently being generated from 0000 UTC HREFv2 

data. Including the preprocessing step, the RFFPs can be made in 30 minutes or less on a single 

processor.  

Nevertheless, ML-based post-processing has several important drawbacks. Most notably, 

since ML-based techniques “learn” based on past results, they require quality historical datasets 

of sufficient length for both the forecast and observations. When modifications are made to the 

ensemble forecast system, it is often advisable to retrain the RF with forecast data from the new 

system, since, while the underlying statistical relationships between the forecast and observed 

variables may generally hold, the optimal splitting thresholds in the RF may change as biases 

enter or exit the ensemble system. It is an open question (and probably situation-dependent) 

whether the RF can be retrained simply by adding the new forecast data to the training set (along 

with the old data) or if the RF should be retrained entirely “from scratch” using only the new 

data. Fortunately, even if the RF requires retraining from scratch, preliminary results herein 

suggest that a training set of “only” 93 – 217 days is required to create skillful RFFPs; 

nevertheless, even 93 days represents a substantial gap between the implementation of the new 

system and the ability to create skillful RFFPs. Moreover, due to the reduced observed 

climatological frequency of the higher threshold exceedances, it may be necessary to have more 

data for the RFFPs to outperform spatially-smoothed ensemble probabilities at the highest 

thresholds (e.g., 3-in. and greater), which tend to be most impactful in terms of their threat to life 

and property. Another drawback of the RF-based approach is that the RFFPs are not always 
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superior to raw or spatially smoothed ensemble probabilities at every location during every day, 

and it can be difficult to determine where and why the ML algorithm struggles, particularly in 

the absence of interpretability information (e.g., partial dependence plots and individual 

conditional expectation plots, Goldstein et al. 2015; variable importance, McGovern et al. 2017). 

Therefore, developing and applying useful ML interpretability metrics is an important topic of 

ongoing research (e.g., Gagne et al. 2019; Herman and Schumacher 2018a). Another important 

limitation of ML compared to other post-processing techniques is that it can require a substantial 

degree of hyper-parameter tuning to produce a skillful forecast. Moreover, there are no formal 

guidelines for constructing the ML model itself, and it can be impossible to know if the model 

being used is designed optimally. Finally, as with other post-processing techniques, the skill of 

the RFFPs will ultimately be related to and limited by the skill of the underlying dynamical 

model (e.g., Gagne et al. 2014). Therefore, while ML-based post-processing techniques can serve 

as useful tools, they do not eliminate the need for human forecasters and model developers.  

 

 5. Conclusion and Future Work 
 
 As computing storage and resources continue to increase, opportunities to effectively 

apply ML to meteorological datasets will undoubtedly become more numerous as well. This 

paper provides a first attempt at addressing some basic considerations regarding the utilization of 

machine learning for NWP post-processing. Despite the drawbacks associated with ML-based 

post-processing, it is found that RFFPs can provide calibrated probabilistic precipitation 

forecasts whose quality matches or exceeds that of spatially-smoothed ensemble probabilities. 

Indeed, it is promising that a single RF can attain such forecast quality, especially given the 

relatively simplistic RF design and short (i.e., < 1.5-year) dataset.  
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Future work should explore using more complex ML-based techniques for post-

processing and/or other RF constructions. For example, in the present study, individual-member 

forecasts were initially used as predictors, but this implementation consumed too much memory 

to be feasible. However, if variable importance and/or feature selection (e.g., McGovern et al. 

2017; Herman and Schumacher 2018c) were used to strategically reduce the number of predictor 

variables, predictors from more sources could potentially be incorporated into the algorithm. 

Including interpretability metrics (e.g., partial dependence plots or individual conditional 

expectation plots; Goldstein et al. 2015) may also provide value to forecasters using the product 

in real-time. Given that the precipitation climatology over the CONUS varies in space and time 

(Schumacher and Johnson 2006), using separate RFs for individual regions and seasons may add 

further interpretability and skill to the RFFPs. Other ML methods, such as deep learning, may 

produce better RFFPs and enhance interpretability as well. Because this study examined the 

impacts of ML-based post-processing on “ad-hoc,” multi-model, multi-physics ensembles, future 

work should investigate how ML-based post-processing affects other, more formally designed 

ensembles (e.g., the NCAR Ensemble; Schwartz et al. 2015, 2019). Finally, future work may 

wish to apply the general methods of this study to other prediction problems, such as severe 

weather, forecasting for longer or shorter time periods, and summarizing ensemble output from 

multiple NWP sources. It is also recommended that current and future products be evaluated in 

an operational setting, such as the Flash Flood and Intense Rainfall Experiment (Albright and 

Perfater 2018) or the NOAA Hazardous Weather Testbed Spring Forecasting Experiment (e.g., 

Gallo et al. 2017) to more directly assess value to forecasters.    
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Abstract 
 
 Extracting explicit severe weather forecast guidance from convection-allowing ensembles 

(CAEs) is challenging since CAEs cannot directly simulate individual severe weather hazards. 

Currently, CAE-based severe weather probabilities must be inferred from one or more storm-

related variables, which may require extensive calibration and/or contain limited information. 

Machine learning (ML) offers a way to obtain severe weather forecast probabilities from CAEs 

by relating CAE forecast variables to observed severe weather reports. This paper develops and 

verifies a random forest- (RF-) based ML method for creating day 1 (1200 UTC – 1200 UTC) 

severe weather hazard probabilities and categorical outlooks based on 0000 UTC Storm-Scale 

Ensemble of Opportunity (SSEO) forecast data and observed Storm Prediction Center (SPC) 

storm reports.  

RF forecast probabilities are compared against severe weather forecasts from calibrated 

SSEO 2-5km updraft helicity (UH) forecasts and SPC convective outlooks issued at 0600 UTC. 

Continuous RF probabilities routinely have the highest Brier Skill Scores (BSSs), regardless of 

whether the forecasts are evaluated over the full domain or regional/seasonal subsets. Even when 
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RF probabilities are truncated at the probability levels issued by the SPC, the RF forecasts often 

have BSSs better than or comparable to corresponding UH and SPC forecasts. Relative to the 

UH and SPC forecasts, the RF approach performs best for severe wind and hail prediction during 

the spring and summer (i.e., March – August). Overall, it is concluded that the RF method 

presented here provides skillful, reliable CAE-derived severe weather probabilities that may be 

useful to severe weather forecasters and decision-makers. 

 

1. Introduction 
 

With horizontal grid-spacing less than approximately 4-km, convection-allowing models 

(CAMs) are important tools for severe weather forecasters, since they adequately resolve the 

dominant circulations of individual convective storms without convective parameterization (e.g., 

Weisman et al. 1997; Done et al. 2004). As a result, CAMs more accurately predict storm 

initiation, evolution, intensity, and mode compared to convection-parameterizing models (e.g., 

Kain et al. 2006, 2008). Depiction of storm mode is especially useful to severe weather 

forecasters (e.g., Kain et al. 2006; Clark et al. 2012a) since a storm’s morphology is related to its 

attendant hazards (e.g., Gallus et al. 2008; Duda and Gallus 2010; Schoen and Ashley 2011; 

Smith et al. 2012). However, CAMs currently lack horizontal grid-spacing fine enough to 

explicitly simulate individual tornadoes, hailstones, or microscale severe wind events. Therefore, 

forecasters using CAM guidance must infer simulated severe weather occurrence from modeled 

storm attributes that are correlated with observed severe weather (e.g., Sobash et al. 2011).  

An example of a commonly-used simulated severe storm “surrogate” (Sobash et al. 2011, 

2016b, 2019), or proxy, is hourly maximum 2-5 km above ground level updraft helicity 

(hereafter, UH; e.g., Kain et al. 2008, 2010; Guyer and Jirak 2014; Loken et al. 2017; Sobash et 
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al. 2011, 2016b, 2019). Large values of UH identify not only rotating updrafts associated with 

supercells, but also the sheared updrafts associated with severe mesoscale convective systems 

(MCSs; Sobash et al. 2011). As a result, UH has been found to be a skillful predictor of all-

hazards severe weather (Kain et al. 2008; Sobash et al. 2011, 2016b, 2019). UH has also been 

used—generally in conjunction with simulated environmental variables—to forecast tornadoes 

(Clark et al. 2013; Guyer and Jirak 2014; Gallo et al. 2016; Sobash et al. 2019) and severe wind 

and hail (Jirak et al. 2014). Other common simulated severe weather proxies include large values 

of hourly maximum upward vertical velocity (e.g., Roberts et al. 2019), low-level vertical 

vorticity (e.g., Skinner et al. 2016; Sobash et al. 2019) and UH integrated from 0-1 km above the 

surface (Sobash et al. 2019).  

 One major drawback of these proxies is that they require extensive calibration to perform 

optimally. For example, Sobash and Kain (2017) demonstrated that the best UH threshold to use 

for all-hazards severe weather prediction varies by location and time of year. Moreover, if binary 

proxies are smoothed spatially to obtain probabilistic forecasts (e.g., Sobash et al. 2011, 2016b, 

2019; Loken et al. 2017), the degree of spatial smoothing must be properly calibrated as well. 

Too little smoothing results in over-forecasting bias, while too much can yield under-forecasting 

and degrade sharpness and resolution (e.g., Sobash et al. 2011, 2016b; Loken et al. 2017, 

2019a,b). Additionally, these calibrations are CAM- and hazard-dependent. For example, Clark 

et al. (2012b, 2013) used a larger UH threshold and smaller degree of spatial smoothing to 

forecast tornado path lengths compared to that used by Sobash et al. (2011) to forecast all-

hazards severe weather, while Gagne et al. (2017) used different UH thresholds to predict 25- 

and 50-mm diameter hail. 
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 Another important drawback of simulated severe weather proxies is that they use limited 

information to determine the severe weather threat. For example, Clark et al. (2012b) and Gallo 

et al. (2016) noted that large values of UH may exist in environments that are not conducive to 

severe weather. However, even when proxies are filtered based on the simulated environment 

(e.g., Clark et al. 2012b; Jirak et al. 2014; Gallo et al. 2016), the resulting predictions may still be 

suboptimal since severe weather can still occur in locations with unfavorable simulated 

environments if the CAM has biases or is not representing the observed environment well. 

Moreover, the use of environment-based filtering does not mean the resulting prediction has 

considered all relevant forecast variables.  

Another way to extract explicit severe weather guidance from CAMs is to statistically 

relate multivariate CAM output with the observed occurrence of severe weather. Indeed, this is 

the general approach of Model Output Statistics (MOS; Glahn and Lowry 1972; Klein and Glahn 

1974), which has shown promise for a variety of forecast fields, including: probability of 

precipitation, maximum and minimum temperatures, cloud coverage, near-surface wind, 

conditional probability of precipitation, and thunderstorms (e.g., Glahn and Lowry 1972; Klein 

and Glahn 1974; Carter 1975; Bermowitz 1975; Schmeits et al. 2005; Kang et al. 2011). 

However, MOS relationships tend to be linear and based on regression while relationships 

between CAM forecast variables and observed severe weather are likely to be flow-dependent 

and nonlinear (e.g., Legg and Mylne 2004; Melhauser and Zhang 2012; Torn and Romine 2015; 

Trier et al. 2015). Thus, machine learning (ML) techniques, which can model nonlinear 

relationships, may be more appropriate for diagnosing the severe weather threat conveyed by 

CAM or convection-allowing ensemble (CAE) guidance.  
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Indeed, recent studies have successfully used ML techniques to create probabilistic 

precipitation (e.g., Gagne et al. 2014; Herman and Schumacher 2018c; Loken et al. 2019a) and 

severe weather (e.g., Gagne et al. 2017; Lagerquist et al. 2017; Burke et al. 2020) forecasts based 

partly or entirely on numerical weather prediction (NWP) predictors. For severe weather 

prediction, a common approach has been to use predictors associated with storm “objects,” 

which are identified by thresholding a certain simulated storm attribute (e.g., maximum hourly 

column total graupel mass in Gagne et al. 2017; maximum hourly upward vertical velocity in 

Burke et al. 2020). Thus, the object identification process “filters out” areas of weaker or non-

existent simulated storms. Such an approach is efficient for ML training since it eliminates the 

need to consider predictors from all grid points but can underperform if there is poor 

correspondence between simulated and observed storms (Gagne et al. 2017). Conversely, when 

grid-point-based predictors are used, training takes longer, but higher performance may be 

achieved when the CAE is imperfect, since the grid-point predictors offer the ML algorithm 

more (and more relevant) information. Moreover, when grid-point-based predictors and 

predictands are used, output probabilities are directly given in 2-dimensional (rather than object) 

space, facilitating user interpretation of ML output.  

While grid-point-based methods have been used to obtain skillful probabilistic 

precipitation forecasts (Herman and Schumacher 2018c; Loken et al. 2019a), they are untested 

for severe weather prediction. Therefore, this study seeks to develop and evaluate an RF-based 

method for creating individual-hazard Day 1 (i.e., 1200 UTC – 1200 UTC) severe weather 

probabilities from grid-point-based CAE forecast output. Due to its skill (Jirak et al. 2016, 2018) 

and long data archive, the SPC’s 7-member Storm Scale Ensemble of Opportunity (SSEO; Jirak 

et al. 2012, 2016, 2018) is used as the underlying dynamical forecast system. For evaluation 
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against operationally-relevant baselines, the RF-based severe weather forecasts are compared to 

SSEO UH-based probabilistic forecasts and SPC Day 1 Convective Outlooks (COs) issued at 

0600 UTC2. While multiple previous studies have applied ML to severe weather prediction, the 

RF method described herein is unique in that it uses grid-point-based CAE forecast fields as 

predictors, produces probabilistic forecasts for multiple severe weather hazards over the full 

contiguous United States (CONUS), and is directly evaluated against top-performing human and 

NWP baselines.  

The remainder of the paper is organized as follows: section 2 describes the methods, 

section 3 presents the results, section 4 analyzes two representative case studies, section 5 

discusses key aspects of the results, and section 6 summarizes and concludes the paper.  

 

2. Methods 
 
a. Datasets 

The forecast and observational datasets used herein span 629 days from late April 2015 

through early July 2017 (Table 3.1). RF- and UH-based severe weather forecasts are derived 

from the SSEO (Jirak et al. 2012, 2016), a 7-member CAE with members that use different 

initial and lateral boundary conditions, initialization times, and microphysics and turbulence 

parameterizations. Since SPC forecasters began using the SSEO in 2011 (Jirak et al. 2016), its 

convection-related forecasts have compared favorably with those from other experimental CAEs 

(Jirak et al. 2016). As a result, the SSEO was ultimately formalized as the High-Resolution 

Ensemble Forecast System Version 2 (HREFv2), which became the first operational CAE run by  

                                                
2 0600 UTC SPC COs are used because SPC forecasters, like the RFs, have access to 0000 UTC 
SSEO guidance during that forecast period.  
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Table 3.1 SSEO initialization dates. 
 

the National Oceanic and Atmospheric Administration’s (NOAA’s) Environmental Modeling 

Center in November 2017 (Jirak et al. 2018; Roberts et al. 2019; Loken et al. 2019b). All SSEO 

member forecasts are provided on a 4-km contiguous United States (CONUS) domain with 1199 

× 799 points. Full SSEO specifications are summarized in Table 3.2.   

 SSEO forecasts are compared against SPC Day 1 COs, which are issued daily by 0600 

UTC and are valid from 1200 UTC to 1200 UTC the following day. These COs include 

probabilistic forecasts of tornadoes, severe wind [i.e., wind speeds of at least 50 kts (58 mph)],  

Month 2015 2016 2017 Total 

January - 1-9, 11-13, 15-
31 3-27, 29-31 57 

February - 1-29 2-21, 23, 25-26, 
28 53 

March - 1-7, 9-11, 13-19, 
21-22, 25-31 

1-7, 9-11, 13-20, 
28-31 48 

April 21-26, 28-30 1-10, 12-30 2-4, 6-27, 29-30 65 

May 1-10, 12-19, 23-
31 1, 3-10, 13-31 1-9, 12, 14-31 83 

June 1-9, 11, 13-19, 
21-30 

1-8, 10-20, 22-
23, 25-30 

1-6, 8-11, 13-14, 
16, 18-22, 24 73 

July 1-6, 8-10, 12-16, 
20-29 

2, 8-14, 16-20, 
23-26, 28, 30-31 1-4 48 

August 1-3, 5-9, 11-14, 
18-31 1-4, 6-10, 12-31 - 55 

September 1-9, 11, 14, 19-
21, 23-30 

1, 3, 5-6, 9-13, 
17-22, 24-26, 28 - 41 

October 1-6, 9-31 1-2, 4-12, 14-18, 
21-24, 27-31 - 54 

November 1-3, 5-14, 16-18, 
20-23, 25, 27-30 - - 25 

December 1, 4-8, 10, 12-31 - - 27 

Total 216 261 152 629 
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Member Dynamic 
Core ICs/LBCs Microphysics PBL Initialization 

Time 
NSSL-WRF WRF-ARW NAM/NAM WSM6 MYJ 0000 UTC 
HRW ARW WRF-ARW RAP/GFS WSM6 YSU 0000 UTC 
HRW ARW 
(Time-Lagged) WRF-ARW RAP/GFS WSM6 YSU 1200 UTC 

(12-h time lag) 
HRW NMMB NMMB RAP/GFS Ferrier MYJ 0000 UTC 
HRW NMMB 
(Time-Lagged) NMMB RAP/GFS Ferrier MYJ 1200 UTC 

(12-h time lag) 
WRF-NMM WRF-NMM NAM/NAM Ferrier MYJ 0000 UTC 
NAM NEST NMMB NAM/NAM Ferrier-Aligo MYJ 0000 UTC 

Table 3.2 SSEO member specifications. Dynamic cores include those from the Advanced 
Research Weather Research and Forecasting model (WRF-ARW; Skamarock et al. 2008), 
the Weather Research and Forecasting Nonhydrostatic Mesoscale Model (WRF-NMM; 
Janjić et al. 2001; Janjić 2003), and the Nonhydrostatic Multiscale Model on the B grid 
(NMMB; Janjić and Gall 2012). Initial and lateral boundary conditions (ICs/LBCs) are 
taken from the North American Mesoscale Model (NAM; Janjić 2003), operational Rapid 
Refresh (RAP; Benjamin et al. 2016), and the National Centers for Environmental 
Prediction’s Global Forecast System (GFS; Environmental Modeling Center 2003) as 
indicated. Microphysics parameterizations include the WRF single-moment 6-class 
(WSM6; Hong and Lim 2006), Ferrier et al. (2002), and Ferrier-Aligo (Aligo et al. 2018) 
schemes. Planetary boundary layer (PBL) parameterizations include the Mellor-Yamada-
Janjić (MYJ; Janjić 2002) and Yonsei University (YSU; Hong et al. 2006) schemes. HRW 
refers to the High Resolution Window model run. 

 

and severe hail (i.e., a maximum hailstone diameter of 1 inch or greater), with probabilities valid 

for within 25 miles of a point (about a 40-km radius). The COs also denote locations with a 10% 

or greater probability of observing significant tornadoes [i.e., those with an Enhanced Fujita (EF) 

rating of 2 or higher], significant severe wind [i.e., wind speeds at least 65 kts (75 mph)], and 

significant severe hail (i.e., a maximum hailstone diameter of 2 inches or greater) within 25 

miles. Individual-hazard probabilities are then used to determine a categorical outlook forecast 

based on the criteria in Table 3.3.  

 One limitation of the SPC Day 1 COs is that only certain probability levels (i.e., 2, 5, 10, 

15, 30, 45, and 60% for tornadoes; 5, 15, 30, 45, and 60% for severe wind and hail; and 10% for 

significant severe weather) are contoured. As a result, it is difficult to equitably compare SPC  
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Individual Hazard 
Probability Tornado Wind Hail 

≥ 2% Marginal N/A N/A 
≥ 5% Slight Marginal Marginal 
≥ 10% Enhanced N/A N/A 
≥ 10% and ≥ 10% Sig. Enhanced N/A N/A 
≥ 15% Enhanced Slight Slight 
≥ 15% and ≥ 10% Sig. Moderate Slight Slight 
≥ 30% Moderate Enhanced Enhanced 
≥ 30% and ≥ 10% Sig. High Enhanced Enhanced 
≥ 45% High Enhanced Enhanced 
≥ 45% and ≥ 10% Sig. High Moderate Moderate 
≥ 60% High Moderate Moderate 
≥ 60% and ≥ 10% Sig. High High Moderate 

Table 3.3 SPC conversion table relating individual hazard probabilities to categorical Day 1 
COs. Adapted from https://www.spc.noaa.gov/misc/SPC_probotlk_info.html.  

 

forecasts with the continuous RF- and UH-based forecasts from the SSEO. There are two 

potential remedies to this problem. The first is to truncate the SSEO-derived forecasts at the 

same probability levels as used by the SPC. The second is to spatially interpolate the SPC 

probabilities between contour levels (e.g., Herman et al. 2018). Both methods are used herein. 

However, in this study, continuous SPC probabilities are created using a method developed at the 

SPC (Karstens et al. 2019). Herein, raw SPC contours are filled/gridded using a top-hat 

distribution, such that all grid points enclosed by a contour are assigned that contour value. The 

gridding procedure is done using the General Meteorological Package (GEMPAK; desJardins et 

al. 1991) within a 1-degree expanded CONUS domain to negate chronic dampening of 

probabilities near the edges of the forecast domain. Next, unique probability areas are identified 

using watershed segmentation (e.g., Lakshmanan et al. 2009), and adjacent probability areas are 

bilinearly interpolated using a Euclidean distance transformation. Finally, the maximum 

probability level is assumed to be 25% greater than the maximum non-zero contoured probability 

level present in the forecast. Continuous SPC probabilities created using this method are 
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henceforth referred to as “full” SPC probabilities, while the raw, discrete SPC probabilities are 

referred to as “original” SPC probabilities. Importantly, full SPC probabilities do not exist for 

significant severe weather forecasts, since the SPC only issues a 10% or greater probability 

contour for significant severe events. Additionally, the SPC does not issue Day 1 outlook 

probabilities for all-hazards severe or significant severe weather.  

 Severe weather observations used for verification and RF training are taken from the SPC 

website (SPC, 2019b) for wind and hail and the SPC Storm Events Database (SSED; SPC, 

2019a) for tornadoes. The SSED was required for tornadoes since it displayed information about 

each tornado’s Enhanced Fujita (EF) rating, necessary for the prediction/verification of 

significant tornadoes. Unfiltered reports are used to account for all reported instances of severe 

weather.  

 

b. UH-based forecasts  

UH-based probability forecasts for each severe weather hazard are derived from the 

SSEO. These forecasts are created in the same manner described by Loken et al. (2017). Namely, 

the fraction of ensemble members exceeding a given UH threshold is noted at each grid point, 

and that fraction is smoothed using a 2-dimensional isotropic Gaussian kernel density function. 

Therefore, the UH-based probability, p, at a given grid point can be expressed as:   

p = 	f ∗
1

2ps) exp −
1
2
d/
s

)0

/12

																			 3.1 , 

where f is the fraction of ensemble members exceeding some UH threshold, N is the number of 

points with at least one member exceeding the threshold, d/ is the distance between the current 

grid point and the nth point, and s is the standard deviation of the Gaussian kernel. To determine 
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the combination of UH threshold and s to use for each hazard, the UH threshold is varied from 

10 to 200 m2s-2 in increments of 10 m2s-2 while s is varied from 30 to 210 km in increments of 

30 km. The combination that optimizes the Brier Skill Score (BSS; e.g., Wilks 2011) for a given 

hazard over the entire dataset is used (right column of Fig. 3.1), with BSS measured relative to a 

constant forecast of observed hazard climatology during the 629-day dataset. The calibration is 

done on the 80-km verification grid (see below) rather than the native 4-km grid.  

 

c. Random forest forecasts 

1) RF METHOD OVERVIEW 

A RF is an ensemble of decision trees (Breiman 2001). Individual decision trees 

(Breiman 1984) work by recursively splitting a dataset until a stopping criterion is reached (e.g., 

the tree reaches a specified maximum number of levels, the number of samples at a node falls 

below a specified threshold, etc.). Splitting criteria are determined by the algorithm during 

training. Specifically, at each node, the algorithm chooses the threshold and predictor variable 

that splits the data in a way that maximizes a dissimilarity metric (e.g., information gain, Gini 

impurity). Class predictions can then be made on unseen data by running a testing example 

through the tree and analyzing the training samples in the appropriate leaf node (i.e., terminal 

node). For example, class probabilities are expressed as the fraction of training examples 

associated with the given class in the leaf node containing the testing example.  

 Although individual decision trees are human-readable and relatively easy to interpret, 

they are prone to overfitting, such that small changes to a testing example’s predictor variables 

can produce very different class predictions (e.g., Gagne et al. 2014). The RF algorithm helps 

remedy this overfitting tendency by growing multiple trees, which are made unique by: 1) 
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growing each tree based on a random subset of training examples, and 2) determining the best 

split at each node by considering a random subset of predictor variables (Breiman 2001). During 

testing, RF class probabilities are simply the mean probability from each tree in the RF. In this 

study, RFs and corresponding RF probabilities are created using random forest classifiers from 

the Python module Scikit-Learn (Pedregosa et al. 2011). More information on RFs can be found 

in Loken et al. (2019a) and works cited therein. 

 

2) PREDICTOR VARIABLES  

The first step of creating RF-based probabilities is to determine which predictors (or 

input variables) the RF will consider. Here, predictor variables are based on SSEO forecast 

fields. However, only a small number of variables relevant to severe weather forecasting are 

originally stored within the SSEO data archive (i.e., the variables without asterisks in Table 3.4). 

To enhance RF skill, several predictor variables (i.e., those with asterisks in Table 3.4) are added 

to these original variables.  

Storm Attribute Fields Environment-related Fields Other 
Max. Hourly 
Simulated Reflectivity 2-m Temperature Latitude* 

Accumulated 1-h 
Precipitation 

2-m Dewpoint 
Temperature Longitude* 

Max. Hourly Updraft 
Speed 2-m Relative Humidity Smoothed UH probabilities* 

 (created by maximizing AUC) 
Max. Hourly UH MUCAPE  
 CIN  
 0-6 km Shear  
 CAPE ´ Shear*  

Table 3.4 Predictor variables. Asterisks denote variables that were added during pre-processing.  
 

For example, the product of most unstable convective available potential energy (MUCAPE) and 

0-6km wind shear is computed at each native 4-km grid point and stored as a predictor variable. 
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Latitude, longitude, and smoothed UH probabilities are also added as predictors during 

preprocessing. 

 

3) DATA PREPROCESSING 

 While the SSEO contains a limited number of archived forecast fields, there is originally 

an overwhelming amount of data potentially available to the RF, since each SSEO member 

forecasts each variable at 3-km grid-spacing over the CONUS every hour. To make training the 

RF computationally feasible, the dimensionality of the SSEO dataset must be reduced through 

several steps of data preprocessing. 

 The first preprocessing step is to reduce the temporal dimension of the dataset. This is 

accomplished by taking a 24-h (1200 UTC – 1200 UTC) temporal maximum (for the storm 

attribute variables; Table 3.4) or mean (for the environment-related variables) at each 4-km grid 

point. Next, these temporally-aggregated forecast variables—as well as the observed storm 

reports—are remapped to an approximately 80-km grid (i.e., NCEP grid 211) to further reduce 

dataset dimensionality and to match the verification scales used by the SPC. For the storm 

attribute fields, remapping is done by selecting the maximum forecast value on the 4-km grid 

within each 80-km grid box. For the environment-related fields, remapping to the 80-km grid is 

done using a neighbor budget method (Accadia et al. 2003), which approximately conserves the 

remapped quantity. After remapping, the ensemble mean, maximum, minimum, and standard 

deviation values are computed for each forecast variable at every 80-km grid point. Additionally, 

smoothed UH probabilities (to be used as predictors) are derived based on the method in section 

2b. However, the UH threshold and standard deviation of the Gaussian kernel combination used 

is that which maximizes area under the relative operating characteristic curve (AUC; e.g., Wilks 
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2011; left column of Fig. 3.1) rather than BSS, since AUC is a measure of potential skill after 

bias calibration (Wilks 2011) and RF outputs typically have low bias (e.g., Breiman 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Heat maps showing how area under the relative operating characteristics curve (AUC; left 
column) and Brier Skill Score (BSS; right column) vary with the standard deviation of the 
Gaussian kernel and UH threshold for UH-based forecasts. Heat maps are for any severe 
weather hazard (row 1), any significant severe weather hazard (row 2), any tornado (row 3), 
significant tornadoes (row 4), any severe wind (row 5), significant severe wind (row 6), any 
severe hail (row 7), and significant severe hail (row 8). In each case, the combination with the 
highest AUC or BSS is indicated by a white circle and noted below the plot. AUC is used for 
calibrating smoothed UH RF inputs, while BSS is used for calibrating the smoothed UH forecasts 
themselves.  
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 After preprocessing, a final set of predictors is obtained for input into the RF. Here, these 

predictors include the ensemble mean, maximum, minimum, and standard deviation of SSEO 

forecast fields as well as latitude, longitude, and UH-based probabilities (Table 3.4). For a given 

grid point prediction, the RF considers these quantities at the 25 closest 80-km grid points.  

 

4) RF PREDICTIONS 

The RF gives probabilistic predictions of whether a given 80-km grid box will experience 

the occurrence of at least one observed severe weather report (all-hazards or individual-hazard) 

over the 24-h Day 1 CO period (i.e., 1200 UTC – 1200 UTC). Separate RFs are used to predict 

the occurrence of: all-hazards severe weather, all-hazards significant severe weather, any 

tornadoes, significant tornadoes, any severe wind, significant severe wind, any severe hail, and 

significant severe hail. Finally, the predictions from these separate RFs are used to construct an 

RF-based Day 1 categorical outlook using the same guidelines employed by the SPC (i.e., those 

in Table 3.3).  

 

5) DISCRETE/TRUNCATED RF PROBABILITIES 

To facilitate a fair comparison with the SPC Day 1 outlooks, discrete RF probabilities are 

created for individual-hazards severe and significant severe weather forecasts using the same 

probability levels as the SPC (Table 3.3). Discrete RF probabilities (henceforth referred to as 

truncated RF forecasts) are created by simply converting all continuous RF probabilities between 

discrete SPC probability levels to the lower probability. For example, continuous severe hail 

probabilities between 5% (inclusive) and 15% (exclusive) are converted to 5% probabilities, 

since they would all be contained within a 5% SPC contour. Similarly, for individual-hazard 
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significant severe forecasts, truncated RF probabilities are 10% if the continuous RF 

probabilities meet or exceed 10% and 0% otherwise.  

 

c. Verification 

Probabilistic severe weather forecasts are evaluated over the entire CONUS (Fig. 3.2a) as 

well over the West, Midwest, and East (Fig. 3.2b), which are defined based on temperature and 

precipitation climatology and represent an aggregation of regions described in Bukovsky (2011). 

Forecasts are also analyzed seasonally, with Winter, Spring, Summer, and Fall defined as 

December–February, March–May, June–August, and September–November, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (a) Overall analysis domain (gray shading). (b) West 
(yellow), Midwest (blue), and East (purple) region 
analysis domains.  
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Forecasts are verified on the ~80-km NCEP grid 211 to approximately match the 

verification definitions used by the SPC, which evaluates the occurrence of severe weather 

within 40-km of a point, and to save computational expense during verification. Continuous RF, 

truncated RF, original SPC, full/continuous SPC, and (continuous) UH-based probabilities are 

evaluated and compared against each other whenever possible. Unfortunately, due to the 

limitations of the SPC forecasts, full SPC probabilities are not created for significant severe 

weather forecasts, and neither original nor full SPC probabilities exist for all-hazard severe or 

significant severe forecasts. Additionally, no quantitative verification is performed on the RF- 

and SPC-based categorical outlooks, since these are not true probabilistic forecasts, but rather 

summary products that merge probability and intensity information. Forecast evaluation is done 

using 17-fold cross validation with 37 days per fold. 17 folds are used here to balance the 

tradeoff between computational expense and training set size and to provide an equal number of 

days (37) in each fold. As in Loken et al. (2019a), verification statistics are computed over the 

full set of 629 forecasts derived from each fold’s testing set.  

Metrics used for verification include: BSS, BS components (e.g., Wilks 1995), attributes 

diagrams (e.g., Hsu and Murphy 1986), and performance diagrams (Roebber 2009). While AUC 

is used to set the UH threshold and Gaussian kernel standard deviation for smoothed UH-based 

predictors, it is not used for forecast evaluation since it is not sensitive to bias and it tends to 

increase nonlinearly with increasing forecast skill such that two well-performing but differently-

skilled forecast systems may have similar AUC values near 1 (Marzban 2004). 

The BS (e.g., Wilks 1995), which measures the magnitude of forecast probability errors, 

can be decomposed into reliability, resolution, and uncertainty components (Murphy 1973; 

Wilks 1995), and is defined as:  
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BS	 = 	
1
N (p8 −	o8)) 	= 	

1
N nE pE −	oE

)
F

E12

−
1
N nE oE − o

)
F

E12

+	o 1 −	o 						 3.2 ,
0

812

 

where N is the total number of forecast/observation pairs, K is the number of forecast probability 

bins, p8 is the forecast probability at point i, o8 is the binary observation (i.e., 0 or 1) at point i, nE 

is the number of forecasts in bin k, oE is the mean observed relative frequency in bin k, and o is 

the overall sample climatological frequency. The three terms on the right of equation (3.2) 

represent the reliability, resolution, and uncertainty components of the BS, respectively. 

Meanwhile, the BSS compares the BS to that of a reference forecast, thus enabling a fair 

comparison for events with different climatological relative frequencies (Wilks 1995). 

Specifically, the BSS is defined as: 

BSS	 = 	
BS − BS<=>
0 − BS<=>

	= 	1 −
BS
BS<=>

					 3.3 , 

where, herein, BS<=> is the BS resulting from always forecasting the observed climatology of the 

relevant dataset. A BSS of 1 (0) indicates perfect (no) skill relative to the reference forecast. 

Ninety-five percent confidence intervals (95CIs) for each forecast’s BSS values are determined 

using resampling with replacement (i.e., bootstrapping; e.g., Wilks 2011). Specifically, 629 

random samples (with replacement) are drawn from a given forecast’s 629 individual-day BS 

values. The aggregate BS and BSS over the random sample are then computed and stored. After 

10,000 iterations of this process, the 95% BSS confidence interval is noted by observing the 2.5- 

and 97.5-percentile values of the stored BSS distribution.  

 While the reliability component of the BS provides a single-number summary of how 

well forecast probabilities correspond with observations, attributes diagrams allow users to 

assess reliability separately for each of k probability bins. Herein, bins are defined by the 
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following probability level ranges: [0-1%), [1-2%), [2-5%), [5-15%), [15-25%), …, [85-95%), 

and [95-100%]. Perfectly-reliable forecasts fall along a line of slope 1 passing through the origin; 

over- (under-) forecasts fall below (above) this line. Attributes diagrams also contain horizontal 

and vertical lines plotted at the sample climatological relative frequency as well as a no-skill line 

located halfway between the horizontal climatology line and the perfect reliability line. Points 

above (below) the no-skill line contribute positively (negatively) to the BSS when a reference 

forecast of climatology is used (Wilks 1995).  

 Performance diagrams (Roebber 2009) binarize probabilistic forecasts at specific 

probability levels (herein, 0, 1, 2, 5-95% in increments of 10%, and 100%) and display 

probability of detection (POD), success ratio (SR), bias, and critical success index (CSI) on a 

single plot (e.g., see Roebber 2009 equations 1-4). Points falling closer to the upper right-hand 

corner of the diagram exhibit greater skill, since POD, SR, CSI, and bias are all optimized at a 

value of 1. Moreover, POD, SR, CSI, and bias are all independent of the number of correct 

negatives, making the performance diagram a good tool for evaluating forecasts with many 

trivial correct negatives.   

 

3. Results 
 
a. Full-domain, full-period results 

The continuous RF forecasts have the greatest overall BSS values for each of the hazards 

examined (Fig. 3.3a). Compared to the UH-based forecasts, the continuous RF forecasts give 

substantially better predictions for all hazards except significant tornadoes (Fig. 3.3a). This is an 

important result given that UH is a skillful predictor of severe weather (e.g., Kain et al. 2008; 

Sobash et al. 2011, 2016b, 2019) and is widely used in testbed settings (e.g., Kain et al. 2008;  
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Figure 3.3 (a) CONUS-wide BSS for the full/continuous RF-based probabilities (dark red), 

truncated RF-based probabilities (yellow), original SPC probabilities (light blue), 
full/continuous SPC probabilities (dark blue), and UH-based probabilities determined 
using the optimal standard deviation and UH threshold combination for each hazard 
(gray). (b)-(c) As in (a) but for the resolution and reliability components of the BS, 
respectively. Black bars denote 95% confidence intervals in (a). In (b) and (c), axes are 
scaled differently on either side of the breaks, allowing for easier interpretation of all 
data. Note that the SPC does not issue forecasts for all-hazards severe or significant 
severe weather and that full/continuous SPC probabilities are not available for the 
individual significant severe hazards. 
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Clark et al. 2012a; Guyer and Jirak 2014; Gallo et al. 2017; Roberts et al. 2019). The continuous 

RF forecasts always have better resolution (Fig. 3.3b) and frequently—though not always—have 

better reliability (Fig. 3.3c) than the UH forecasts. Of course, it is likely that the UH-based 

forecasts would obtain a higher BSS if a time- and space-varying UH threshold were used 

instead of a constant one (Sobash and Kain 2017). However, calibrating the UH threshold in 

space and time requires substantially more computational resources compared to a constant 

threshold calibration. While training a RF is also computationally intensive, the RF considers 

multiple variables, and its multivariate “calibration” occurs implicitly as the algorithm is run. 

The continuous RF forecasts also perform substantially better than the full SPC forecasts 

for hail and wind but not tornado prediction (Fig. 3.3a), an unsurprising result given this study’s 

lack of tornado-specific predictors [e.g., significant tornado parameter (STP; Thompson et al. 

2003), low-level storm relative helicity (e.g., Coffer et al. 2019), etc.]. Thus, it is possible that 

adding predictors with a stronger correlation to observed tornado and/or low-level mesocyclone 

occurrence could improve the RF tornado and significant tornado forecasts. However, even 

without tornado-specific predictors, the continuous RF forecasts have better resolution (Fig. 

3.3b) and better (i.e., smaller) reliability values (Fig. 3.3c) than the continuous SPC forecasts for 

all hazards.  

When the continuous RF forecasts are truncated at the probabilities used by the SPC, 

BSS values are, unsurprisingly, reduced (Fig. 3.3a). Much of this reduction comes from degraded 

reliability (Fig. 3.3c) rather than decreased resolution (Fig. 3.3b). However, the truncated RF 

probabilities still have substantially greater BSSs than the original SPC probabilities for severe 

wind (Fig. 3.3a). Truncated RFs also have higher BSSs relative to the original SPC forecasts for 

severe hail, with the 95CIs of the two forecasts just barely overlapping. For the significant severe 
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hazards, the truncated RFs do not substantially outperform the original SPC forecasts. However, 

the continuous RF forecasts do have notably greater BSSs than the original SPC forecasts for 

significant severe wind and significant severe hail. This outperformance is due to the improved 

resolution (Fig. 3.3b) and reliability (Fig. 3.3c) that is possible with access to continuous rather 

than binary (i.e., ≥ 10%) forecast probabilities.  

While the RF-based forecasts have the best resolution for all hazards (Fig. 3.3b), they 

don’t necessarily have the best reliability (Fig. 3.3c); however, reliability among all forecasts for 

all hazards is generally very good (Figs. 3.4-3.5). Large deviations from perfect reliability are 

typically associated with small sample size in the relevant forecast probability bin(s) [e.g., the 

UH significant severe weather forecasts (Fig. 3.5a,c,e,g) at higher forecast probabilities and the 

RF and UH tornado probabilities greater than 30% (Fig. 3.4c)]. Interestingly, both the original 

and SPC probabilities under-forecast tornadoes (Fig. 3.4c) and severe wind (Fig. 3.4e). For the 

original SPC forecasts, this under-forecasting is at least partially due to their use of discrete 

probabilities (i.e., probabilities between two discrete levels are mapped to the lower level). 

However, the under-forecasting may also reflect a general philosophy of the SPC to emphasize 

higher-end tornado and wind events, given that SPC categorical outlooks are directly dependent 

on forecast hazard probability (Table 3.3). For example, it is possible that forecasters may wish 

to convey a message other than “moderate” or “high risk” to emergency managers or other users 

when they anticipate higher probabilities of marginally-severe wind (e.g., ~50 kts.) or low-end 

(e.g., EF0) tornado reports. Similarly, the SPC may wish to have high POD—even at the expense 

of false alarm—for significant tornadoes and significant severe wind events, which could explain 

the SPC over-forecasting for these hazards (Fig. 3.5c,e). The SPC does not have the same over-

forecasting bias for severe (Fig. 3.4g) and significant severe (Fig. 3.5g) hail, perhaps since these  
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Figure 3.4 (a) Attributes diagrams for the full RF (dark red) and calibrated UH (gray) any-
severe weather forecasts. The black long-dashed line indicates perfect reliability, the 
solid black line indicates the “no skill” line, and the black short-dashed lines represent 
climatological relative frequency. (b) Number of forecasts in each probability bin for the 
forecasts in (a). (c)-(d) As in (a)-(b) but for any tornado forecasts. Truncated RF 
(yellow), original SPC (light blue), and full SPC (dark blue) forecasts are shown in 
addition to the continuous RF (dark red) and calibrated UH (gray) forecasts. (e)-(f) As in 
(c)-(d) but for any severe wind forecasts. (g)-(h) As in (c)-(d) but for any severe hail 
forecasts.   
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Figure 3.5 As in Fig. 3.4 but for (a)-(b) any significant severe, (c)-(d) significant tornado, (e)-(f) 
significant severe wind, (g)-(h) and significant severe hail forecasts. Note that, unlike in 
Fig. 3.4, the x- and y-axes stop at 0.5 and full SPC forecasts are not plotted.  
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events have less potential for truly devastating impacts. Importantly, the UH and RF forecasts 

give equal weight to all observed storm reports and do not consider the potential societal impacts 

of observed severe weather.  

As statistical methods, the UH and RF forecasts tend to struggle most for the rarest 

events, which have the least amount of data. For example, the UH forecasts have good reliability 

for most hazards but some over-forecasting at higher probabilities for tornadoes (Fig. 3.4c) and 

significant severe weather hazards (Fig. 3.5a,c,e,g). Meanwhile, the continuous RF forecasts tend 

to have either near-perfect reliability (e.g., Fig. 3.4g; Fig. 3.5a,e,g) or slight under-forecasting 

(e.g., Fig. 3.4a,e) at most probability levels for most hazards. Unsurprisingly, the truncated RF 

forecasts tend to under-forecast relative to the continuous RF forecasts, since—like the original 

SPC forecasts—all continuous forecast probabilities less than a given discrete level are assigned 

to the next lowest level. Nevertheless, both the continuous and truncated RF forecasts have 

excellent reliability for the prediction of all hazards at probabilities with a sufficiently large 

sample size.  

Performance diagrams (Fig. 3.6a-h) generally corroborate the BSS-based results (Fig. 

3.3a-c), showing a clear outperformance of the RF-based method for most hazards. For example, 

the continuous RF forecasts substantially outperform the UH forecasts for all-hazard severe (Fig. 

3.6a) and significant severe (Fig. 3.6b) weather at all probability levels. The continuous and 

truncated RF forecasts also clearly outperform both the SPC and UH forecasts for severe wind 

(Fig. 3.6e), significant severe wind (Fig. 3.6f), severe hail (Fig. 3.6g), and significant severe hail 

(Fig. 3.6h). Interestingly, for tornadoes, the RF-based forecasts perform as well as (for the lower 

forecast probabilities) or slightly worse than (for the higher forecast probabilities) those from the  
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Figure 3.6 Performance diagrams for (a) any severe weather, (b) any significant severe weather, 

(c) any tornado, (d) significant tornado, (e) any severe wind, (f) significant severe wind, 
(g) any severe hail, and (h) significant severe hail forecasts. Note that only the full RF 
(dark red) and calibrated UH (gray) forecasts are shown in (a) and (b). All other panels 
additionally show original SPC (light blue) and truncated RF (yellow) forecasts. Full 
SPC (dark blue) forecasts are only shown in (c), (e), and (g).  
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SPC, with the UH-based forecasts noticeably inferior (Fig. 3.6c). Again, the RF-based forecasts’ 

worse performance for tornado prediction potentially reflects the lack of tornado-specific 

predictors in this study. For significant severe hazards (Fig. 3.6d,f,h), skill is relatively low for 

all forecasts, but the RF forecasts have CSI values at least as high as those from SPC and UH 

forecasts.  

In general, the continuous and truncated RF forecasts have similar CSI scores. There is 

one interesting exception, however: for the significant tornado forecasts, the truncated RF 

method is associated with a noticeably higher CSI (Fig. 3.6d). The likely cause is the poor 

reliability of the continuous RF forecasts at greater than 10% probabilities due to small sample 

size (Fig. 3.5c-d). Because the continuous RF probabilities dramatically over-forecast significant 

tornadoes above 10% probability, the truncation procedure dramatically improves reliability 

(Fig. 3.5c) and CSI (Fig. 3.6d) at the 10% level.  

 

b. Seasonal and regional results 

 Consistent with Sobash and Kain (2017), it is found herein that the “best” UH threshold 

to use (i.e., the one that maximizes BSS) for all-hazards severe (Fig. 3.7a-b) and significant 

severe (Fig. 3.7c-d) weather prediction depends on season and region. The best-performing UH 

threshold is particularly sensitive to region: values of 60, 40, and 30 m2s-2 (140, 110, and 130 

m2s-2) are best for the West, Midwest, and East regions, respectively, for all-hazards severe 

(significant severe) weather (Fig 3.7b,d). While the best UH threshold does not change much 

seasonally for the all-hazard severe weather forecasts (Fig. 3.7a), seasonal variations are more 

apparent for all-hazard significant severe weather forecasts (Fig. 3.7c). Importantly, the 
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continuous RF always outperforms the best UH forecast over a given region or season (Fig. 3.7a-

d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 (a) BSS of full RF (dark red) and UH-based forecasts for any severe weather. UH 
forecasts use a Gaussian kernel standard deviation of 120 km and a UH threshold of 5 
(dark purple), 10 (light purple), 20 (light blue), 30 (royal blue), 40 (dark blue), 50 (dark 
green), 60 (yellow), and 70 m2s-2 (orange), respectively. BSSs are computed over the 
winter (DJF), spring (MAM), summer (JJA), and fall (SON) seasons as well as over the 
entire year (All). (b) As in (a), but BSSs are computed over the West (W), Midwest (MW), 
and East (E) regions as well as over the full CONUS (All). (c) As in (a), but forecasts are 
for any significant severe weather and the UH-based forecasts use thresholds of 80 (light 
red), 90 (brown), 100 (yellow), 110 (tan), 120 (dark blue), 130 (blue), 140 (purple), and 
150 m2s-2 (light purple). (d) As in (c) but BSSs are computed over the regions in (b).  
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 When all forecasts are verified seasonally, a similar pattern emerges: with just one 

exception (i.e., fall tornado forecasts; Fig. 3.8a), the continuous RF forecasts have the highest 

BSSs for all hazards during all seasons (Fig. 3.8a-f). Both the continuous and truncated RF 

forecasts have substantially greater BSSs for summer severe wind prediction compared to either 

the UH or SPC forecasts (Fig. 3.8c). The continuous RF forecasts also dramatically outperform 

the best-performing SPC forecast for the prediction of spring and summer severe hail (Fig. 3.8e) 

and spring significant severe hail (Fig. 3.8f). Additionally, the continuous RF forecasts 

substantially outperform the UH-based forecasts—but not the continuous SPC forecasts—for 

spring severe wind (Fig. 3.8c) and winter tornadoes (Fig. 3.8a). However, it should be noted that 

using a spatiotemporally varying UH threshold would likely improve the BSSs of the UH 

forecasts (e.g., Sobash and Kain 2017), especially for the winter tornado forecasts. While the 

continuous RF forecasts generally exhibit noticeably larger BSSs than the other forecasts for 

significant severe hazards (e.g., Fig. 3.8b,d,f), the seasonal 95CIs are typically quite large for 

these hazards. Truncated RF forecast BSSs are generally higher—but not dramatically higher—

than those from the original SPC forecasts for sub-significant severe weather prediction (i.e., Fig. 

3.8a,c,e), although the truncated RF forecasts do have substantially better summer severe wind 

forecasts. For the significant severe hazards, the truncated RF probabilities have BSSs similar to 

the original SPC probabilities during each season.  

 When BSS is tabulated regionally, it is apparent that the RF method struggles at 

predicting tornadoes (Fig. 3.9a), significant tornadoes (Fig. 3.9b), and significant severe wind 

(Fig. 3.8d) in the West region. However, for all other hazards and regions (Fig. 3.9a-f), the 

continuous RF forecasts have the greatest BSSs. Regionally, the RF approach gives the greatest 

relative benefit for East severe wind prediction (Fig. 3.9c); both the continuous and truncated RF  
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Figure 3.8 (a) BSS for any tornado probabilistic forecasts from the full RF (dark red), truncated RF (yellow), 
original SPC (light blue), full SPC (dark blue), and spatially-smoothed UH (gray). BSSs are computed over 
the winter (DFJ), spring (MAM), summer (JJA), and fall (SON) seasons as well as over the entire year 
(All). Note that the UH-based forecasts use the combination of standard deviation and UH threshold that 
produces the best BSS over the CONUS over the entire year. Black bars indicate 95% confidence intervals. 
(b) As in (a) but for significant tornadoes. (c) As in (a) but for any severe wind. (d) As in (a) but for 
significant severe wind. (e) As in (a) but for any severe hail. (f) As in (a) but for significant severe hail. 
Note that full SPC probabilities are not shown in the significant severe panels [i.e., (b), (d), and (f)]. 
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 Figure 3.9 As in Fig. 3.8, but BSSs are computed over the West (W), Midwest 
(MW), and East (E) regions, as well as over the full CONUS (All).  
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forecasts have substantially greater BSSs than the UH- or SPC-based forecasts. The continuous 

RF also noticeably outperforms the UH and SPC forecasts for the prediction of West and East 

severe wind (Fig. 3.9c) and Midwest severe hail (Fig. 3.9e) and significant severe hail (Fig. 3.9f). 

As with the seasonal verification results, truncated RF significant severe probabilities (Fig. 

3.9b,d,f) tend to have similar BSSs to original SPC probabilities for each region.  

 

4. Case Studies  
 
a. 26-27 May 2015 

 At 1200 UTC on 26 May, a mid-level trough and associated mesoscale convective 

complex (MCC) was centered over central Iowa. A line of thunderstorms extended along a 

surface front from the MCC southeast into eastern Mississippi. As the period progressed, the 

mid-level trough moved northeastward over the Great Lakes region and helped deepen an 

associated surface cyclone, ultimately leading to several tornado and severe wind reports in 

Illinois and Wisconsin before 1900 UTC. The cyclone’s cold front also advanced eastward and 

helped force the development of severe-wind-producing thunderstorms over eastern Alabama, 

western Georgia, and the Ohio Valley. Farther west, storms initiated along a dryline extending 

from west-central Oklahoma southward into central Texas by 2300 UTC. These storms produced 

numerous reports of severe wind and hail, with multiple significant severe hail reports and one 

significant severe wind report.   

 The RF and SPC outlooks (Fig. 3.10a,b) had some notable differences on this day, 

including the RF outlook’s use of the enhanced risk over two locations as well as the RF 

outlook’s greater areal coverage of slight risk areas. In the Upper Midwest, the RF shifted the 2% 

and greater tornado probabilities westward compared to the SPC (Fig. 3.11a,b). As a result, the  
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RF had better POD for tornadoes in eastern Iowa, southern Wisconsin, and northern Illinois. 

Along the Oklahoma-Texas border, the RF issued 10% tornado probabilities with 6% significant 

tornado probabilities. Ultimately, no significant tornadoes were observed in this region, although 

multiple tornado reports occurred near the RF’s 10% tornado area. Unlike the SPC forecast, the 

RF forecast issued 30% severe wind probabilities in a region extending from the Ohio Valley to 

the western Florida Panhandle (Fig. 3.11c,d). Numerous severe wind reports were observed near 

these locations, giving the RF a better POD. The RF also moved the 15% severe wind area 

slightly southeastward into southern Oklahoma and northern Texas, which better captured some 

severe wind reports—including a significant severe wind report—in that region. Notably, the one 

significant severe wind report fell near the RF’s 2% contour for significant severe wind. Indeed,  

Figure 3.10 Day 1 categorical convective outlook from the (a) RF approach and (b) SPC 0600 
UTC forecast, valid for the 24-h period ending at 1200 UTC on 27 May 2015. Small red, 
blue, and green circles outlined in black represent observed tornado, severe wind, and 
severe hail reports, respectively. Observed significant tornado, significant severe wind, 
and significant severe hail reports are represented by white-outlined large red circles, 
black squares, and black triangles, respectively.  
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Figure 3.11 (a) RF-based tornado probabilities (shaded) and significant tornado probabilities (contoured every 2% 

with ≥ 10% probabilities hatched), valid for the 24-h period ending at 1200 UTC on 27 May 2015. (b) As 
in (a) but for SPC forecasts issued at 0600 UTC. (c)-(d) As in (a)-(b) but for severe wind forecasts. (e)-(f) 
As in (a)-(b) but for severe hail forecasts. For each hazard, corresponding observed severe weather reports 
are plotted as described in Fig. 3.9. Note that SPC forecasts do not have significant severe contours less 
than 10%. Individual-day AUC and BS values are given for each forecast, with overall hazard (significant 
hazard) metrics given in the lower right corner (at the bottom) of each panel. 
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one advantage of the RF forecast is its ability to communicate nonzero (but still less than 10%) 

probabilities for significant severe weather. For severe hail, the RF forecasts gave a much larger 

5% area than the SPC (Fig. 3.11e,f) but focused on a similar area for its 15% probabilities. 

However, unlike the SPC, the RF forecasts produced a large area of 30% severe hail probabilities 

and indicated a greater than 10% chance of significant severe hail in western Oklahoma and 

northern Texas. Ultimately, numerous severe and significant severe hail reports occurred in this 

region. Two significant severe hail reports in central Texas also fell outside of the RF’s 10% 

“hatched area” for significant severe hail but within the RF’s 2% significant severe hail contour. 

However, the RF forecast did have greater false alarm than the SPC in eastern Louisiana (where 

the RF issued 15% probabilities) and over a large area extending from central Wisconsin to the 

Gulf Coast (where the RF generally issued 5% probabilities). Nevertheless, the RF generally 

made improvements over the SPC forecast. A human forecaster with access to the RF 

probabilities on this day might have had more confidence in a Texas-Oklahoma significant 

severe hail event and a widespread severe wind event in the Ohio Valley and Southeast.  

 UH-based probabilities might have only communicated part of this story. For example, 

compared to RF all-hazard probabilities (Fig. 3.12a), UH-based probabilities (Fig. 3.12b) were 

much lower over the Ohio Valley and Southeast United States. However, UH all-hazards severe 

and significant severe probabilities (Fig. 3.11b,d) were generally similar to those from the RF 

(Fig. 3.12a,c) over the Southern Plains.  

 

 

 

 



 95 

 

 

 

Figure 3.12 (a) RF- and (b) UH-based probabilities of all-hazards severe weather, valid for the 
24-h period ending at 1200 UTC on 27 May 2015. Observed severe weather reports are 
plotted as described in Fig. 3.9. (c)-(d) As in (a)-(b) but all-hazards significant severe 
weather probabilities are plotted, and only significant severe observed reports are 
overlaid. Individual-day AUC and BS values are reported in the lower right corner of 
each plot.  
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b. 18-19 May 2017 

 The SPC identified 18 May 2017 as a high-risk day in the Southern Plains (e.g., Fig. 

3.13b), with their 0600 UTC outlook highlighting the potential for widespread long-track 

tornadoes in parts of Oklahoma and Kansas. At the surface, a cyclone was developing in the 

western Oklahoma Panhandle by 1200 UTC. Strong southerly winds throughout central Texas 

and Oklahoma advected rich low-level moisture into the Southern Plains, where strong deep-

layer vertical wind shear was in place. Storms began forming in the warm sector along the 

dryline in western Oklahoma and northern Texas by 1830 UTC and quickly became severe. 

Severe storms also formed along the warm front in central Kansas by 2130 UTC. Meanwhile, in 

the Northeast, severe hail- and wind-producing storms initiated ahead of a cold front in an 

unstable, sheared environment.  

 

Figure 3.13 As in Fig. 3.10, but valid for the 24-h period ending at 1200 UTC on 19 May 2017.   
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 While the RF and SPC forecasts identified similar threat areas in their outlooks (Fig. 

3.13a,b), they issued different maximum outlook categories, with the RF (SPC) issuing a 

moderate (high) risk in the Southern Plains and an enhanced (slight) risk in the Northeast. 

Interestingly, although the RF produced smaller tornado probability magnitudes in the Southern 

Plains (Fig. 3.14a), it gave larger areas of higher-end (i.e., >10%) tornado probabilities there. 

Indeed, most of the observed tornadoes occurred within these areas of higher-end RF 

probabilities. The RF tornado forecast also expanded its 2% tornado probabilities farther east 

compared to the SPC, enabling it to better capture the QLCS tornado reports in Missouri (Fig. 

3.14a,b). While the RF and SPC agreed on the area with the largest significant tornado 

probability (i.e., southern Kansas and northern Oklahoma; Fig. 3.14a,b), most of the observed 

significant tornadoes fell outside of this region but within/near the RF’s 2% significant tornado 

probability contour. The RF and SPC forecasts had very similar tornado forecasts in the 

Northeast, with the RF forecasts having slightly less false alarm area.  

 RF and SPC severe wind probability magnitudes were quite different on this day, with 

the RF having higher probabilities in both the eastern U.S. and Southern Plains (Fig. 3.14c,d). 

These higher probabilities led to better POD for the RF in New York, northern Pennsylvania, and 

southern Oklahoma but greater false alarm in most of West Virginia and northern Texas. The RF 

also expanded the 15% probability area farther eastward compared to the SPC, giving it greater 

POD in Arkansas and Missouri.  

 RF and SPC hail forecasts were similar, although the RF extended the 30% probability 

area and 10% significant severe hail area farther south into central Texas, where severe and 

significant severe hail occurred (Fig. 3.14e,f). Additionally, the RF indicated 2% significant 

severe hail probabilities in New York and Kansas where significant severe hail was observed but  
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Figure 3.14 As in Fig. 3.11, but valid for the 24-h period ending at 1200 UTC on 19 May 2017.   
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fell outside of the RF or SPC 10% significant severe hail probabilities. Finally, the RF 

demonstrated better severe hail POD in Maryland (Fig. 3.14e,f). Overall, the RF-based outlook 

(Fig. 3.13a) and individual-hazard probabilities (Fig. 3.14a,c,e) compared favorably against the 

corresponding SPC forecasts on this day.  

 

Figure 3.15 As in Fig. 3.12, but valid for the 24-h period ending at 1200 UTC on 19 May 2017.   
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RF all-hazards severe and significant severe weather probabilities (Fig. 3.15a,c) also 

compared favorably with UH-based probabilities (Fig. 3.15b,d), especially in the Northeast, 

where the RF had better POD for severe and significant severe weather. In the Southern Plains, 

RF and UH forecasts were generally similar. However, it is noteworthy that the RF significant 

severe forecasts (Fig. 3.15c) shift the maximum probabilities southwest into western Oklahoma, 

close to a cluster of significant severe reports, while the UH probability maximum is in central 

Kansas, away from any such cluster (Fig. 3.15d).   

 

5. Discussion 
 

Compared to the SPC forecasts, the RF probabilities frequently highlighted similar areas 

for severe weather but gave different probability magnitudes. However, the RF forecasts herein 

occasionally assigned higher probabilities (e.g., greater than 15% or even 30%) to areas outside 

of the SPC’s marginal risk. When this happened, many times the areas with the higher RF 

probabilities did experience observed severe weather. This occurred most often for severe wind 

events in the East region. In these instances, it is possible that the differences between the SPC 

and RF forecasts could be partially explained by biases and non-meteorological artifacts in the 

severe wind report observations, given the high ratio of estimated to measured severe wind 

reports in the eastern and southeastern U.S. (Edwards et al. 2018). While the RF algorithm views 

all observed storm reports equally (i.e., as unbiased, perfect observations) and does not consider 

storm coverage, density, intensity, or potential societal impacts when constructing its 

probabilities, SPC forecasters may be mindful of how their forecast probabilities equate to 

outlook categories (Table 3.3) and may emphasize higher-impact events that pose a greater threat 

to life and property.  
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 The biggest advantage of the RF method described herein is its ability to create skillful 

CAE-derived severe weather guidance products analogous to those issued by the SPC. However, 

it must be emphasized that the goal in creating these RF-based products is not to replace human 

forecasters but to augment them. Indeed, this augmentation could potentially take a variety of 

(non-mutually exclusive) forms. First, RF-based forecasts could provide a skillful, reliable first 

guess (e.g., Karstens et al. 2018) product, which forecasters could modify based on other data 

sources (e.g., satellite and radar trends, surface analyses, etc.) and their expertise. Such a product 

could increase forecaster efficiency and facilitate proper forecast calibration (Karstens et al. 

2018). Used as a first guess or “last check” product, the RF guidance may also identify a threat 

area that a forecaster might have overlooked for a given hazard (e.g., significant severe hail in 

the southern Plains; Fig. 3.11e-f). The RF forecasts may also help simply by providing useful 

uncertainty information in challenging forecasting situations. Such uncertainty information may 

be especially valuable for more precisely quantifying the threat of significant severe weather, 

which is rare but extremely threatening to life and property. Finally, it is conceivable that the RF-

based forecasts—when properly interrogated using ML interpretability metrics (e.g., McGovern 

et al. 2019b)—may give forecasters and researchers insight into ensemble biases or complex 

relationships between CAE forecast output and observed severe weather. Human forecasters 

learning from ML would not be unprecedented, as artificial intelligence techniques have recently 

provided new knowledge to human experts in other complex domains, such as the game of Go 

(Silver et al. 2016, 2017) and multi-player no-limit Texas Hold’em poker (Brown and Sandholm 

2019). A future study is planned to determine how and why RF-based severe weather 

probabilities differ from human and UH-based forecasts.  

 



 102 

6. Summary and Conclusion 
 

This paper used a random forest (RF) to produce CONUS-wide 1200 UTC – 1200 UTC 

Day 1 Convective Outlooks (COs) and individual-hazard severe weather probabilities from 

Storm Scale Ensemble of Opportunity (SSEO) forecast output. Temporally-aggregated grid-

point-based forecast variables were used as predictors. The grid-point-based approach is 

advantageous because it allows users to interpret RF output directly in 2-dimensional space and 

does not require the assumption of perfect correspondence between simulated and observed 

storms. 

 Continuous and discrete (i.e., truncated) RF forecasts created herein were compared 

against calibrated, spatially smoothed 2-5 km updraft helicity (UH) forecasts as well as original 

and continuous (i.e., full) SPC Day 1 COs issued at 0600 UTC. The continuous RF forecasts 

almost always produced the highest BSSs, both when the forecasts were verified over the entire 

dataset and when verification was performed regionally or seasonally. The truncated RF 

forecasts frequently had the second-highest BSSs and were often better—but never substantially 

worse—than the corresponding original SPC forecasts. In general, the RF method performed best 

relative to the SPC and UH forecasts for severe wind and hail prediction in the Midwest and East 

regions during the spring and summer. All forecasts—including the RF-based ones—generally 

had very good reliability, while the RF forecasts tended to have the best resolution.  

 Given the promising results of the RF technique described herein, it is important to 

evaluate its skill and value to forecasters in an operational environment. To this end, efforts are 

under way to apply the technique described herein to the operational HREFv2 with the goal of 

evaluating real-time RF forecasts in future Hazardous Weather Testbed Spring Forecasting 

Experiments (e.g., Clark et al. 2012a; Gallo et al. 2017). While such formal evaluation is 
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necessary to draw more robust conclusions, it is speculated that real-time RF-based guidance will 

aid human Day 1 severe weather forecasts by providing forecasters with calibrated CAE-based 

severe hazard probabilities and outlooks.  
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Abstract 
 

Recent research has shown that random forests (RFs) can create skillful probabilistic 

severe weather hazard forecasts from numerical weather prediction (NWP) ensemble data. 

However, it remains unclear how RFs use NWP data and how predictors should be generated 

from NWP ensembles. This paper compares two methods for creating RFs for next-day severe 

weather prediction using forecast data from the convection-allowing High-Resolution Ensemble 

Forecast System, Version 2.1 (HREFv2.1). The first method uses predictors from individual 

ensemble members (IM) at the point of prediction, while the second uses ensemble mean (EM) 

predictors at multiple spatial points. IM and EM RFs are trained with all predictors as well as 

predictor subsets, and the Python module tree interpreter (TI) is used to assess RF variable 

importance and the relationships learned by the RFs.  

Results show that EM RFs have better objective skill compared to similarly-configured 

IM RFs for all hazards, presumably because EM predictors contain less noise. In both IM and 

EM RFs, storm variables are found to be most important, followed by index and environment 

variables. Interestingly, RFs created from storm and index variables tend to produce forecasts 
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with greater or equal skill than those from the all-predictor RFs. TI analysis shows that the RFs 

emphasize different predictors for different hazards in a way that makes physical sense. Further, 

TI shows that RFs create calibrated hazard probabilities based on complex, multi-variate 

relationships that go well beyond thresholding 2-5km updraft helicity.  

 

1. Introduction  
 
 Interest in using machine learning (ML) to assist with high-impact weather prediction has 

markedly increased during the past 3-5 years. Indeed, as of this writing, 71 of the 107 Weather 

and Forecasting articles that include the phrase “machine learning” in the title, abstract, main 

body text, or as a keyword have been published in 2018 or later (AMS 2021). This strong recent 

interest is likely driven by a combination of factors, including enhanced computing power; 

greater data storage capacity; and the availability of free, easy-to-use ML software (e.g., Scikit-

Learn, Pedegrosa et al. 2011; Keras, Chollet et al. 2015).  

 Promising results have also helped fuel the recent enthusiasm for ML research. In the 

past few years, studies have demonstrated that ML can be used to skillfully predict severe wind 

(Lagerquist et al. 2017), severe hail (Gagne et al. 2017; Burke et al. 2020), next-hour tornadoes 

(Lagerquist et al. 2020), convective duration (McGovern et al. 2019a), convective mode 

(Jergensen et al. 2020), precipitation (Herman and Schumacher 2018c; Loken et al. 2019a), 

intense convection (Cintineo et al. 2020), and next-day (e.g., Loken et al. 2020; Sobash et al. 

2020) and beyond (i.e., day 1-3; Hill et al. 2020) severe weather based on numerical weather 

prediction (NWP) data and/or radar- and satellite-based predictors. Many of these methods not 

only attain high objective performance metrics, but also demonstrate an ability to add skill and/or 

value to human forecasts, particularly in the domain of severe weather prediction. For example, 
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Hill et al. (2020), who used a random forest (RF) with NOAA’s Second-Generation Global 

Ensemble Forecast System Reforecast (GEFS/R; Hamill et al. 2013) predictors to forecast day 1-

3 severe weather, found the combination of RF and Storm Prediction Center (SPC) probabilistic 

forecasts outperformed individual RF or SPC probabilities. Hill et al. (2020) also noted that their 

day 2-3 forecasts had higher Brier Skill Scores (BSSs) than corresponding SPC forecasts. 

Meanwhile, Loken et al. (2020) found that next-day RF-based severe and significant severe 

hazard forecasts—which used convection-allowing predictors from the Storm-Scale Ensemble of 

Opportunity (SSEO; Jirak et al. 2012)—had higher Brier Skill Scores (BSSs) than corresponding 

day 1 SPC human forecasts. This pattern held for most hazards in most seasons and regions, even 

when RF forecast probabilities were discretized to match those used by the SPC. During the 

2020 Hazardous Weather Testbed Spring Forecasting Experiment (HWT SFE; Clark et al., 

2021), participants evaluated a similar RF method—only applied to the High-Resolution 

Ensemble Forecast System, Version 2.1 (HREFv2.1; Roberts et al. 2020)—for real-time next-

day tornado, severe hail, and severe wind prediction. The participants generally found the 

method skillful and useful, particularly for severe hail and wind.  

The skill achieved by the RF forecasts in Hill et al. (2020), Loken et al. (2020), and Clark 

et al. (2021) raises several natural and important questions: How do RFs use ensemble data to 

create skillful forecasts? What relationships does the RF learn between ensemble forecast 

variables and observed severe weather? Are the current preprocessing techniques optimal? This 

study seeks to address these questions by comparing multiple differently-configured RFs and 

interpreting their output using the Python-based tree interpreter module (TI; Saabas 2016), 

which—to the authors’ knowledge—has not yet been formally applied in the domain of 

meteorology.  
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 Interpreting ML output is often challenging due to the complexity of many ML 

algorithms, but it can be extremely important. Uncovering the relationships learned by a ML 

algorithm can confirm the algorithm is working as intended, build trust with product users, and 

potentially provide new insights into underlying weather prediction tools (e.g., ensembles, 

satellites, etc.). Herman and Schumacher (2018a) conducted one of the first meteorology-related 

studies that focused on interpreting ML output. Using Gini importance and logistic regression 

coefficients, they showed that their RF-based precipitation forecasts learned physical 

spatiotemporal relationships between GEFS/R variables and observed precipitation. To help 

researchers and forecasters better understand ML predictions, McGovern et al. (2019b) 

summarized a variety of ML and deep learning (DL) interpretability techniques, including:  

impurity importance (Breiman 2001), single- (Breiman 2001) and multi-pass (Lakshmanan et al. 

2015) permutation importance, forward and backward feature selection, partial-dependence plots 

(Friedman 2001), individual conditional expectation plots (Goldstein 2015), saliency maps 

(Simonyen et al. 2014), gradient-weighted class activation maps (Selvaraju et al. 2017), 

backward optimization (Olah et al. 2017), and novelty detection (Wagstaff and Lee 2018). A 

growing number of studies are using these techniques to visualize the relationships learned by 

skillful ML models. For example, Jergensen et al. (2020) used multi-pass permutation 

importance, sequential forward selection, and partial dependence plots to determine which 

variables were most important for ML-based storm classification. They found, based on the 

permutation importance and partial dependence plots, that storm shape predictors (e.g., storm 

age, area, eccentricity, and compactness) were among the most important for most of the ML 

methods examined. Meanwhile, Cintineo et al. (2020)—who developed a convolutional neural 

network (CNN) to distinguish between intense and ordinary convection in observed satellite 
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images—used saliency maps, layer-wise relevance propagation, and permutation importance to 

analyze the features learned by their CNN. They found the CNN learned both well-established 

(e.g., overshooting tops, cold-U thermal patterns, cold rings, etc.) and previously-unrecognized 

(i.e., strong brightness temperature gradients) satellite features associated with intense 

convection. 

In this paper, TI is used to identify the most important predictors for RF severe weather 

hazard forecasting as well as the relationships between those predictors and observed severe 

weather. Two ways of obtaining predictors from CAE variables are compared: using individual-

member CAE variables at the point of prediction (to potentially learn relationships from 

individual ensemble members) and using ensemble-mean variables at multiple spatial points (to 

potentially learn spatial relationships). Through this analysis, this paper seeks to determine the 

best way to condense ensemble data during preprocessing and understand how RFs leverage 

CAE data to create skillful severe weather forecasts.  

The remainder of the paper is organized as follows: section 2 describes the methods and 

datasets, section 3 presents the results, section 4 analyzes a representative case study forecast, 

section 5 summarizes and discusses the results, and section 6 concludes the paper and offers 

suggestions for future work.  

 

2. Methods 
 
a. Datasets 

The forecast and observational datasets contain 653 days from April 2018 to May 2020 

(Table 4.1). Notably, these dates are not evenly spread throughout the year, with May over-

represented and January-March under-represented. As in Loken et al. (2020), the analysis  
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Table 4.1 HREFv2.1 initialization dates.  
 

domain covers the contiguous United States (CONUS), and verification is performed on a grid 

with approximately 80-km horizontal spacing (Fig. 4.1a) to match the verification scales used by 

the SPC. Next-day forecasts (lead times of 12-36 hours, valid from 1200 UTC to 1200 UTC) are 

analyzed herein.  

As in Loken et al. (2020), observed local storm reports (LSRs) are used for training and 

verifying RF forecasts. Unfiltered LSRs from the SPC website (SPC 2021a) are used for wind, 

hail, and 2019-2020 tornadoes, while 2018 tornado LSRs were obtained from the SPC Storm  

Month 2018 2019 2020 Total 

January - 2-23, 25-31 - 29 

February - 1-28 - 28 

March - 1-31 - 31 

April 5-30 1-15, 17-30 27, 29-30 58 

May 1-16, 18-31 1-31 1-29 90 

June 1-6, 9-30 1-30 - 58 

July 1-10, 13-31 1-31 - 60 

August 1-4, 7-31 1-31 - 60 

September 1-15, 17-30 1-26, 28-30 - 58 

October 1-31 1-31 - 62 

November 1-5, 8-20, 22-30 1-30 - 57 

December 1-31 1-31 - 62 

Total 260 361 32 653 
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Figure 4.1 (a) Verification domain (gray shading) and 80-km grid points 
(blue dots). (b) Distribution of severe hail reports in the 
observational dataset. (c)-(d) As in (b) but for severe wind and 
tornado reports, respectively. 
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Events Database (SSED; SPC 2021e). The SSED was used for tornadoes when possible because 

it provides a more accurate and complete summary of tornado events than that shown on the SPC 

website. The spatial distribution of hail, wind, and tornado LSRs over the full dataset is depicted 

in Fig. 4.1b-d.  

 RF forecasts are trained based on predictors from the HREFv2.1, an operationalized 

version of the SSEO. Like the SSEO, HREFv2.1 is an assemblage of diverse, individually-tuned 

convection-allowing models (CAMs). The SSEO (Jirak et al. 2016) and HREFv2.1 (Jirak et al. 

2018; Roberts et al. 2020) have demonstrated high degrees of skill for the prediction of severe 

convection, owing to their relatively large member diversity compared to other ensemble designs 

(Roberts et al. 2020). Indeed, the diversity, skill, and operational status of HREFv2.1 make it 

ideal for this study, which seeks to shed light on the optimal use of diverse convection-allowing 

ensembles for severe weather prediction. HREFv2.1 contains 10 members, which all use 

approximately 3-km horizontal grid-spacing. Collectively, the members use two dynamic cores, 

four microphysics schemes, and three boundary layer parameterizations. Five of the members are 

initialized at 0000 UTC, while the other five members are initialized at 1200 UTC the previous 

day. Full ensemble specifications are given Table 4.2.  

 

b. RF method overview  

RFs are ensembles of decision trees (Breiman 2001), which work by recursively splitting 

a dataset based on the predictor and value that maximizes a dissimilarity metric (e.g., 

information gain) during training. Because individual decision trees are prone to overfitting (e.g., 

Gagne et al. 2014), RFs include multiple unique decision trees grown independently based on a 

random subset of the training data, with each node’s “optimal split” determined from a random  
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Table 4.2 HREFv2.1 specifications. Dynamic cores are from the Advanced Research Weather 
Research and Forecasting Model (WRF-ARW; Skamarock et al. 2008) and the 
Nonhydrostatic Multiscale Model on the B grid (NMMB; Janjić and Gall 2012). Initial 
and lateral boundary conditions (ICs/LBCs) are from the North American Mesoscale 
Model (NAM; Janjić 2003), operational Rapid Refresh (RAP; Benjamin et al. 2016), and 
the National Centers for Environmental Prediction’s Global Forecast System (GFS; 
Environmental Modeling Center 2003). Microphysics parameterizations include the 
Thompson (Thompson et al. 2008), WRF single-moment 6-class (WSM6; Hong and Lim 
2006), Ferrier et al. (2002), and Ferrier-Aligo (Aligo et al. 2018) schemes. Planetary 
boundary layer (PBL) parameterizations include the Mellor-Yamada-Nakanishi-Niino 
(MYNN; Nakanishi and Niino 2004), Mellor-Yamada-Janjić (MYJ; Janjić 2002), and 
Yonsei University (YSU; Hong et al. 2006) schemes. HRW refers to the High-Resolution 
Window model run. Note that the HREFv2.1 used herein differs slightly from that 
described in Roberts et al. (2020) in that the time-lagged HRRR member is initialized at 
1200 instead of 1800 UTC (i.e., a 12- instead of 6-h time lag).  
 

subset of predictors. After training, RFs can predict the probability of an unseen testing sample 

belonging to a certain class (e.g., being associated with an LSR) by running the sample through 

each tree in the forest and computing the fraction of training samples associated with the given 

class at the relevant leaf node for each tree in the forest. Overall RF probabilities are then simply 

Member Dynamic Core ICs/LBCs Microphysics PBL Initialization 
Time 

HRRR WRF-ARW RAP/RAP Thompson MYNN 0000 UTC 

HRRR -12 WRF-ARW RAP/RAP Thompson MYNN 1200 UTC 

HRW ARW WRF-ARW RAP/GFS WSM6 YSU 0000 UTC 

HRW ARW -12 WRF-ARW RAP/GFS WSM6 YSU 1200 UTC 

HRW NMMB NMMB RAP/GFS Ferrier MYJ 0000 UTC 

HRW NMMB -12 NMMB RAP/GFS Ferrier MYJ 1200 UTC 

HRW NSSL WRF-ARW NAM/NAM WSM6 MYJ 0000 UTC 

HRW NSSL -12 WRF-ARW NAM/NAM WSM6 MYJ 1200 UTC 

NAM NEST NMMB NAM/NAM Ferrier-Aligo MYJ 0000 UTC 

NAM NEST -12 NMMB NAM/NAM Ferrier-Aligo MYJ 1200 UTC 
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the mean probabilities from each tree. As in Loken et al. (2019, 2020), RFs are created using 

random forest classifiers from the Python module Scikit-Learn (Pedegrosa et al. 2011). More 

details on the RF algorithm can be found in Loken et al. (2019) and works cited therein.  

 

c. RF interpretability and the tree interpreter module 

RFs are appealing for real-time weather prediction since they tend to produce reliable 

probabilistic predictions (Breiman 2001), can handle raw (as opposed to standardized) input data, 

are computationally efficient, and require little tuning compared to other ML methods. However, 

it can be difficult to deduce how a RF arrives at its prediction given that RFs routinely use 

hundreds of trees. This study uses a Python package called tree interpreter (TI; Saabas 2016) to 

examine how various sets of predictors impact RF probabilities in different situations. TI 

analyzes the path of a testing sample through each tree in a RF and records how each predictor 

impacts the training data purity (i.e., the proportion of training samples associated with an LSR) 

at each node in the testing sample’s path. Ultimately, TI sums each predictor’s contribution over 

all nodes in each tree and reports the mean impact of each predictor on the training data purity 

over all trees in the RF.  

TI operates similarly to impurity importance (e.g., Breiman 2001; Louppe et al. 2013; 

McGovern et al. 2019b) in that it measures how effectively splitting criteria sort the training data 

at each node. However, instead of using information gain or Gini index to classify the impact of 

each split, TI measures how the underlying training data climatology (i.e., the fraction of training 

data associated with a “yes” observed event) changes with each split and ascribes the change to 

the predictor responsible for the split. Additionally, unlike other methods of impurity 

importance, TI is a local method and so only considers the splits made along the path (of each 
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tree) taken by a testing sample. In contrast, Gini importance does not require a testing sample but 

instead considers the mean impact of all predictors over all potential splits in each tree in the RF. 

Because TI tracks the training data climatology associated with only the relevant testing path of 

each tree, TI enables the final RF output probability to be decomposed into the sum of a bias 

term (i.e., the overall climatology of the training set) and the contribution from each predictor.    

Here, TI is used to examine each predictor’s mean contribution to each forecast 

probability, domain- and dataset-wide. Predictors are analyzed singly as well as in groups of 

similar variables (e.g., all storm-related variables). TI shows how much, on average, each 

predictor (set) influences RF probabilities positively, negatively, and overall (i.e., either 

positively or negatively). Greater overall impact on RF probabilities implies greater 

“importance” of the given predictor to the RF. TI probability contributions are also stratified 

based on the observed class (i.e., whether the given prediction is associated with an LSR) to 

determine whether (and how much) predictors tend to appropriately increase or decrease 

probabilities. Additionally, to investigate the relationships learned by the RFs, TI contributions 

are plotted against the value of a given predictor for every testing sample in the dataset. This type 

of analysis shows how a given predictor influences RF probabilities at different values and is in 

the same spirit as individual conditional expectation (ICE) plots (Goldstein et al. 2015).  

TI is also used to assess how multiple predictors interact to influence RF probabilities. 

This is done by setting the joint_contribution keyword to True in the call to the TI predict 

method. Conceptually, when joint_contribution is True, TI ascribes the change in data purity at a 

given node to the combination of predictors at and above the given node in the testing path. 

Thus, setting joint_contribution to True gives more accurate predictor contribution values, 

since—strictly speaking—the combination of predictors at and above a given node is responsible 



 115 

for the resultant training data purity at any given point in the tree. However, because the trees 

used herein are complex and the joint_contribution option must evaluate the contributions from 

all combinations of predictors found at and above each node in the testing path for all trees in the 

RF (for each prediction), the process of assessing multivariate contributions is very 

computationally expensive. Therefore, instead of running the joint_contribution TI on all testing 

data, it is only run on the testing data associated with an LSR. Thus, the variable interactions 

highlighted in this analysis should be interpreted accordingly. For each severe weather hazard, 

the three most influential two-variable interactions are analyzed. A scatterplot shows the 

probability contribution from the relevant two-variable combination for each sample in the 

testing dataset.    

 

d. Creating RF forecasts 

1) PREDICTOR FIELDS 

HREFv2.1 has a large archive of forecast variables that may be useful for severe weather 

prediction. In all, 32 input fields are used as well as latitude and longitude (to enable the RF to 

learn spatial patterns). The 34 total fields are categorized as storm, environment, index, or 

latitude/longitude variables, as summarized in Table 4.3.  

Twelve of the 34 fields represent derived quantities (denoted by an asterisk in Table 4.3). 

Many of these derived quantities are straightforward; for example, maximum 10-m wind 

magnitude and direction are derived from the 10m u- and v- wind components, and wind shear 

magnitude is computed by taking the vector difference of simulated wind at the two levels (e.g., 

10m and either 925hPa or 500hPa). Other fields, including most index variables, are more 

complicated and deserve greater elaboration, which is provided below. 
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Table 4.3 Predictor fields. The temporal aggregation strategy for each variable is noted in 
parentheses. * denotes a derived quantity. 

 

Simulated 
Storm Simulated Environment Simulated 

Index Lat/Lon 

1 km 
Reflectivity 
(24h max.) 

0-3 km Storm 
Relative 
Helicity 

(24h max.) 

MUCAPE 
(24h mean) 

Supercell 
Composite 
Parameter* 
(24h max.) 

Latitude 

Echo Top 
(24h max.) 

0-1 km Storm 
Relative 
Helicity 

(24h max.) 

MUCIN 
(24h mean) 

Significant 
Tornado 

Parameter* 
(24h max.) 

Longitude 

Upward Vertical 
Velocity 

(24h max.) 

2m 
Temperature 
(24h mean) 

SB/MUCAPE 
ratio* 

(24h mean) 

Significant 
Hail 

Parameter* 
(24h max.) 

- 

Downward 
Vertical Velocity 

(24h min.) 

2m Dewpoint 
Temperature 
(24h mean) 

700 – 500 hPa 
Lapse Rate* 
(24h mean) 

0-1 km Energy 
Helicity Index*  

(24h max.) 
- 

2-5 km Updraft 
Helicity 

(24h max.) 

2m, 925 hPa, 
850 hPa, 700 
hPa, 500 hPa 

Dewpoint 
Depression* 
(24h mean) 

Critical Angle 
Proxy* 

(At time of 
max. STP) 

0-3 km Energy 
Helicity Index* 

(24h max.) 
- 

0-3 km Updraft 
Helicity 

(24h max.) 

10m – 500 hPa 
wind shear 
magnitude* 
(24h mean) 

Max 10m 
Wind Speed 
(24h max.) 

Product of 
(MUCAPE) x 
(10m – 500 

hPa wind shear 
magnitude) * 
(24h max.) 

- 

Number of Grid 
Points With At 
Least 30 dBZ 

Simulated 
Reflectivity 

(At time of max. 
2-5 km Updraft 
Helicity [if non-
zero] or Upward 

Vertical 
Velocity) 

10m – 925 hPa 
wind shear 
magnitude* 
(24h mean) 

10m Wind 
Direction 

(At time of 
maximum 10 

m wind speed) 

Lifted Index 
(24h min.) - 
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Thompson et al. (2003) developed the supercell composite parameter (SCP) to identify 

environments supportive of right-moving supercells. Here, SCP is defined as:  

SCP = 	
MUCAPE
1000	J/kg×

SRH03
50m)/s) 	×

SHR2WXYWW
20	m/s 	×

−40	J/kg
MUCIN 		 4.1 , 

where MUCAPE is most-unstable convective available potential energy (CAPE) in J/kg, SRH03 

is the 0-3km storm relative helicity in m2/s2, SHR10-500 is the magnitude of the vector difference 

between the 10m and 500 hPa winds (in m/s), and MUCIN is the most-unstable convective 

inhibition (CIN) in J/kg. Before SCP is calculated, the SHR10-500 term is set to 1 if SHR10-500 is 

greater than or equal to 20 m/s or 0 if SHR10-500 is less than 10 m/s, and the MUCIN term is set to 

1 if MUCIN is greater than -40 J/kg.  

 Thompson et al. (2003) also designed the significant tornado parameter (STP) to 

distinguish between significant and non-significant tornadic supercell environments. The STP 

used here is a fixed-layer version of the updated formulation described in Thompson et al. 

(2012), namely:  

STP = 	
SBCAPE
1500	J/kg×

2000m − LCL
1000m ×

SRH01
150m)/s) 	×

SHR2WXYWW
20	m/s 	×

200 + SBCIN
150	J/kg 		 4.2 , 

where SBCAPE is surface-based CAPE in J/kg, LCL is the lifted condensation level in m (which 

is computed here using the approximation 125× 2-m dewpoint depression [in Kelvin]), SRH01 is 

0-1km storm-relative helicity in m2/s2, SHR10-500 is the magnitude of the vector difference 

between the 10m and 500 hPa winds (in m/s), and SBCIN is surface-based CIN in J/kg. Before 

the final value of STP is calculated, the following adjustments are made: the LCL term is set to 1 

if the LCL is less than 1000 m or 0 if the LCL is greater 2000 m, the deep-layer shear term is set 

to 1.5 if SHR10-500 is greater than or equal to 30 m/s or 0 if SHR10-500 is less than 12.5 m/s, and the 

SBCIN term is set to 1 if SBCIN is greater than -50 J/kg or 0 if SBCIN is less than -200 J/kg.   
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The Significant Hail Parameter (SHIP; SPC 2021b) is similar to STP in that it was 

developed to distinguish between significant and non-significant hail-producing environments. 

Here, SHIP is defined as:  

SHIP = 	
MUCAPE	×	MR	×	LR^WWXYWW×	−TYWW	 °C 	×	SHR2WXYWW

42,000,000 		 4.3 , 

where MUCAPE is the most-unstable CAPE, MR is the mixing ratio in g/kg, LR750-500 is the 

700-500 hPa lapse rate in K/km, T500 is the 500 hPa temperature (in degrees Celsius), and SHR10-

500 is the magnitude of the vector difference between the 10m and 500 hPa winds (in m/s). This 

initial value of SHIP is then modified according to the following rules (executed sequentially):  

1) if MUCAPE is less than 1300 J/kg, SHIPfinal = SHIP 	×	 MUCAPE
1300	J/kg

, and 2) if LR^WWXYWW is less 

than 5.8 K/km but greater than 0 K/km, SHIPfinal = SHIP 	×	`abccdecc
5.8	K/km

, or if LR^WWXYWW is greater 

than 0 K/km, SHIPfinal = 0. Ordinarily, a third condition adjusts the SHIP based on the height of 

the freezing level (SPC 2021b); however, this is not done here since freezing level height data 

was not available.  

 Other derived variables include CAPESHEAR, the product of MUCAPE (in J/kg) and 

SHR2WXYWW (in m/s), and 0-1 and 0-3 km energy helicity index (EHI1 and EHI3), defined as the 

product of SBCAPE and SRH over the relevant vertical layer. Critical angle, which Esterheld 

and Giuliano (2008) defines as the angle between the 0-500m shear vector and 10 m above-

ground-level storm-relative inflow, is approximated here as the angle (in degrees) between the 

10m – 925 hPa shear vector and the storm-relative 10 m wind. Finally, “n30dbz” represents the 

number of native 3-km HREFv2.1 grid points in an approximately 80-km × 80-km box that 
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contain simulated reflectivity of 30 dBZ or greater at the time of maximum MAXUVV. This 

variable was added as a potential proxy for storm mode.  

 

2) DATA PREPROCESSING 

 Data preprocessing is required to reduce the dimensionality of the dataset to make ML 

computationally feasible. The general method of preprocessing is similar to that described in 

Loken et al. (2020). First, HREFv2.1 data is aggregated in time by computing, for each field, 

either a 24-h maximum, minimum, or mean, depending on the variable. Storm and index 

variables use a temporal maximum or minimum as appropriate (e.g., in the case of MAXDVV), 

while most—but not all—environment fields use a temporal mean. The temporal aggregation 

strategy for each variable is included in Table 4.3. Next, all forecast variables are remapped to 

the approximately 80-km verification grid using the method described in Loken et al. (2020). 

Namely, for the variables using temporal maximum (minimum) aggregation, remapping is done 

by assigning each 80-km grid box the maximum (minimum) value from all the 3-km points 

falling inside of it. For the variables using temporal mean aggregation, remapping is done using a 

neighbor budget method (Accadia et al. 2003).  

Two different methods are used to obtain RF predictors in the final step of preprocessing. 

Because HREFv2.1 is a highly diverse CAE with members designed to be skillful on their own, 

the first method involves using individual member fields at the point of prediction as predictors. 

The RFs trained in this way will be subsequently referred to as individual member (IM) RFs. The 

second method uses predictors from each field’s ensemble mean. Predictors are taken from the 

point of prediction and the 8 nearest grid points. Therefore, the RFs trained in this way will be 

subsequently referred to as (3x3) ensemble mean (EM) RFs.  
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 To help account for the spatial uncertainty in the placement of simulated storms in the IM 

RFs (which only consider data at a single grid point), all storm fields except for n30dbz are 

spatially smoothed using a 2-dimensional isotropic Gaussian kernel density function:  

v = 	
v/
2ps) exp −

1
2
d/
s

)0

/12

										 4.5 , 

where v is the spatially-smoothed value at a given point, N is the number of points in the analysis 

domain, vn is the raw value at point n, dn is the distance between the nth point and the given 

point, and σ is the standard deviation of the Gaussian kernel. Here, σ is always taken to be 120 

km for simplicity. Unlike in Loken et al. (2020), this value is not optimally tuned for each field 

and hazard. Rather, 120-km is chosen based on past experience with UH2-5km; it is thought to 

be large enough to enhance probability of detection (POD; i.e., correctly forecasting observed 

LSRs; e.g., Wilks 2011) but small enough to preserve some sharpness and resolution. 

Importantly, the smoothing is only done for the storm variables in the IM RF—the EM RF uses 

unsmoothed storm variables because it considers predictors at multiple spatial points.   

Missing ensemble data is also handled during preprocessing. Because the time-lagged 

HRRR member only extends to forecast hour 24 (as opposed to 36), it is excluded from the 

ensemble mean. For the IM RFs, the member is included but uses 12- rather than 24-h temporal 

aggregation (excluding the HRRR member from the IM RFs does not appreciably change the 

results presented herein). Additionally, the two NAM members do not forecast radar echo top 

(RETOP), 0-3km UH (UH0-3km), critical angle, or STP. Therefore, the IM RFs do not include 

NAM versions of these variables as predictors, and the EM RFs use an 8-member ensemble 

mean for these variables.  
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 To help determine how storm, environment, and index variables influence RF skill, IM 

and EM RFs are created using all available predictors as well as subsets of predictors. The 

reduced-predictor RFs use, respectively, only storm, only environment, only index, no storm 

(i.e., index and environment), no environment (i.e., storm and index), and no index (i.e., storm 

and environment) predictors.   

 

3) RF TRAINING  

All RFs are trained using Scikit-Learn and use the same set of hyper-parameters: 200 

trees, a maximum depth of 15, and 20 minimum samples per leaf node. These hyper-parameters 

are selected based on previous experience with forecasting precipitation and severe weather. A 

constant set of hyper-parameters is used here for simplicity, since previous sensitivity tests (not 

shown) have suggested that the RF forecasts are relatively insensitive to variations in these 

hyper-parameters.  

As in Loken et al. (2019, 2020), k-fold cross-validation is used to train and verify the RF 

forecasts. Here, 16 folds are used: the first 13 folds contain 41 days each, and the final 3 folds 

each contain 40 days. Forecasts are verified on the pooled testing data from each of the 16 folds, 

which enables verification to be done on the full 653-day dataset. Importantly, TI analysis for a 

given day is done using the RF from the appropriate fold. Thus, the TI data are aggregated from 

multiple (but appropriate) RFs.  

 

e. Verification 
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 RF forecasts are evaluated using area under the relative operating characteristics curve 

(AUC; e.g., Wilks 2011), Brier Skill Score (BSS; e.g., Wilks 2011), performance diagrams 

(Roebber 2009), and attributes diagrams (Hsu and Murphy 1986).  

AUC measures the ability of a forecast system to discriminate between yes events (e.g., 

the occurrence of severe hail) and no events (e.g., no occurrence of severe hail). Buizza et al. 

(1999) suggests 0.7 is the lower AUC threshold for a useful probabilistic forecast, while 0.8 is 

the lower threshold for a “good” forecast. However, since AUC depends on probability of false 

detection, it is sensitive to the number of correct nulls. Thus, for rare events with many trivial 

correct nulls (e.g., severe weather), AUC may routinely be higher than the “good” benchmark 

threshold listed in Buizza et al. (1999). Indeed, Loken et al. (2020) showed that AUCs well 

above 0.9 are not uncommon, even for UH2-5km-based severe weather hazard forecasts, with 

higher AUCs for the (rarer) significant severe hazards. Here, AUC is computed using the 

roc_auc_score function in Scikit-Learn, which uses the trapezoidal approximation.  

Another metric that assesses forecast quality is the Brier Score (BS; e.g., Wilks 2011), 

which measures the magnitude of forecast probability errors. BS is negatively-oriented, so 0 (1) 

is the best (worst) possible score. Like AUC, BS is sensitive to event climatological frequency; 

trivial correct nulls can artificially reduce (i.e., improve) the BS. To account for this effect, the 

Brier Skill Score (BSS; e.g., Wilks 2011) is used herein. Essentially, the BSS compares the BS 

of a given forecast to that of a reference forecast. As in Loken et al. (2020), the reference here is 

a constant forecast of (domain-wide) observed climatological frequency for the given severe 

weather hazard during the 653-day dataset. Unlike the BS, the BSS is positively-oriented; BSSs 

of 1 (below 0) indicate perfect (negative) skill. This paper plots BSS against AUC to efficiently 
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show both metrics on a single graphic. Since both metrics are positively-oriented and optimized 

at 1, points in the upper right-hand corner of this plot indicate more skillful forecasts.  

 Performance diagrams (Roebber 2009) plot probability of detection (POD) against 

success ratio (SR) and additionally display lines of constant bias and critical success index (CSI). 

These four metrics are all optimized at a value of 1; therefore, more skillful forecasts appear 

closer to the upper right-hand corner of the diagram. Here, performance diagrams are created by 

binarizing each set of forecasts at the following probability levels: 0, 1, 2, 5-15, …, 85-95, 95-

100%.  

Finally, attributes diagrams are used to measure reliability—or how well a forecast 

system’s probabilities correspond with observed event relative frequencies. Perfectly reliable 

forecasts fall along the 1:1 diagonal line on the attributes diagram. Forecasts that contribute 

positively (negatively) to the BSS fall above (below) the no-skill line, and forecasts that have no 

resolution are along the horizontal climatology line. Here, attributes diagrams are created by 

binning the forecasts using the same forecast probability levels used to create the performance 

diagrams. More details on AUC, BSS, performance diagrams, and attributes diagrams can be 

found in Loken et al. (2020) and works cited therein.  

 

3. Results 
 
a. RF Verification 

Performance diagrams (Fig. 4.2a-c) show that the EM RFs have the same or greater CSI 

compared to the IM RFs at all probability levels tested for all three hazards. The IM and EM RFs 

tend to have similar CSIs for the smallest probability levels (i.e., up to 5%); differences are more 

noticeable at the probability values above 15% for all three hazards. Interestingly, the CSI  



 124 

 

Figure 4.2 (a) Performance diagram for all-predictor IM (filled circles) and EM (filled 
triangles) RFs for severe hail. (b)-(c) As in (a) but for severe wind and tornadoes, 
respectively. Note that the x-axis spans from 0 to 0.75. (d)-(f) As in (a)-(c) but for all-
predictor (black triangles), storm-only (red triangles), environment-only (dark blue 
triangles), index-only (purple triangles), and no-environment (yellow triangles) EM 
RFs. (g) Attributes diagram for the EM RF forecasts listed in (d) for severe hail. The 
number of forecasts in each forecast probability bin are displayed with a dashed line 
of the appropriate color. Perfect reliability (dashed gray), no-skill (solid black), and 
horizontal and vertical climatology lines (dashed black) are also shown. Note that the 
x-axis is truncated at 0.75. (h)-(i) As in (g) but for severe wind and tornadoes, 
respectively. (j) BSS vs. AUC plot for severe hail. IM RFs (filled circles) and EM RFs 
(filled triangles) are displayed. All-predictor (black), storm-only (red), environment-
only (dark blue), index-only (purple), no-environment (yellow), no-storm (green), and 
no-index (light blue) RFs are shown.  
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difference is most pronounced for severe wind (Fig. 4.2b) compared to severe hail (Fig. 4.1a) 

and tornadoes (Fig. 4.2c). Because the EM RFs are found to be more skillful (and to preserve 

figure readability), we only show performance and attributes diagrams for the reduced-predictor 

EM RFs.  

 EM RFs trained with different predictor subsets achieve different levels of skill. For all 

three hazards, the RFs trained with only environmental predictors perform quite poorly relative 

to the other RFs (Fig. 4.2d-f). Relative to the environment-only RFs, the RFs using only index-

related predictors achieve notably higher CSIs at most probability levels for severe hail (Fig. 

4.2d) and tornado (Fig. 4.2f) prediction. For severe wind prediction, the environment-only and 

index-only RFs have nearly overlapping performance diagram curves (Fig. 4.2e), which is 

unsurprising since no wind-specific index is included in the index predictors. Interestingly, for 

severe wind, the index-only RF performs slightly better at the smaller forecast probabilities, 

while the environment-only RF performs slightly better at the higher forecast probabilities. For 

all three hazards, the RFs using only storm-related predictors perform nearly as well as the 

corresponding all-predictor RFs, suggesting that substantial skill is derived from the storm-

related variables. RFs that use index- and storm-related predictors (i.e., the “No Environment” 

RFs) have greater CSI than the storm-only RFs for tornadoes at most probability levels (Fig. 

4.2f). For severe hail and wind, the no-environment, storm-only, and all-predictor RFs have 

similar performance diagram curves.  

 All forecasts have good to very good reliability for all three hazards (Fig. 4.2g-i). The 

large deviations from perfect reliability seen at the higher forecast probabilities are likely due to 

small sample size. Notably, these deviations happen at comparatively smaller probability levels 
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for the environment-only RFs, owing to those RFs’ reduced sharpness. The storm-only RFs tend 

to produce the sharpest forecasts for all three hazards.  

 AUC and BSS values from the differently-configured RFs reiterate the findings described 

above. For all hazards, the EM RFs tend to have greater AUC and BSS values compared to their 

IM RF counterparts (Fig. 4.2j-l). Additionally, IM and EM RFs trained using only environment 

predictors have substantially lower AUC and BSS values relative to the other RFs (Fig. 4.2j-l). 

Meanwhile, the no-environment, all-predictor, and storm-only RFs tend to be amongst the top-

performing configurations for all hazards. Interestingly, for severe wind and tornadoes, the EM 

RF using storm and index predictors (i.e., the no-environment RF) gives the highest BSS and 

either a better (Fig. 4.2j) or similar (Fig. 4.2l) AUC compared to the all-predictor RF. This 

suggests that at least modest benefits can be obtained by using both storm and index predictors. 

Pairing storm and environment predictors is typically less skillful, at least for severe hail (Fig. 

4.2j) and tornado (Fig. 4.2l) prediction. Moreover, using only index predictors tends to produce 

greater AUC and BSS values than using only environmental predictors (Fig. 4.2j-l). This result is 

important because it suggests that merely supplying a RF with the most basic, constituent 

predictors is inferior to providing a RF with more complex predictors that have already been 

appropriately “pre-related” with other predictors (during preprocessing). Intuitively, this makes 

sense; a single “multivariate” predictor that has a direct association with observed severe weather 

should be easier to learn (from the same amount of training data) than multiple predictors that 

have weaker individual associations with observed LSRs.   

 

b. Influence of Predictors on RF Probabilities   

1) HAIL 
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 For severe hail prediction, storm-related variables exert the most absolute impact on RF 

probabilities; this is true of both IM and EM RFs (Fig. 4.3a-d).  

Figure 4.3 (a) Mean TI negative (blue), positive (red), and summed (i.e., negative plus positive; 
black dot) RF probability contributions (per grid point) from storm, index, environment, 
and latitude/longitude variables in the all-predictor IM severe hail RF. Variable subsets 
are displayed in order of descending overall importance (i.e., the mean absolute value of 
contributions). Results are shown for cases not associated with an observed hail storm 
report. (b) As in (a) but for the all-predictor EM RF. (c)-(d) As in (a)-(b) but for cases 
associated with an observed hail storm report. Note the different x-axis scale in (a)-(b) 
compared to (c)-(d).   
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Overall, the storm variables tend to appropriately decrease RF probabilities when no LSR is 

present (Fig. 4.3a-b) and increase probabilities when an LSR is present (Fig. 4.3c-d). Index 

variables exert comparatively less impact on RF probabilities but also tend to move probabilities 

in an appropriate direction based on the presence or absence of an LSR. Environment variables 

impact RF probabilities slightly less (more) than index variables when no (an) LSR is present. 

However, environmental fields, on average, tend to increase the probabilities when no LSR is 

present (Fig. 4.3a-b) and increase probabilities much substantially less than the storm and index 

variables when an LSR is present (Fig. 4.3c-d). These results align with the verification results 

from the reduced-predictor RFs that show environment-only RFs are much less skill than RFs 

that use storm and/or index predictors for severe hail prediction. It is interesting that the 

environment variables move the RF probabilities more than the index variables when an LSR is 

present (Fig. 4.3c-d) but are responsible for increasing the probabilities less than the index 

variables in these cases. Why a notably “inferior” variable would be more “important” is unclear. 

One possible explanation is that more environmental variables than index variables exist and so 

get used more often due to the RF algorithm being forced to choose amongst a subset of 

predictors at each node. For both the IM and EM RFs, the latitude and longitude variables exert 

the least impact on RF probabilities; however, these variables move the forecast probabilities 

more in the EM RF (Fig. 4.3b,d) compared to the IM RF (Fig. 4.3a,c). Again, a likely 

explanation is the number of latitude and longitude variables in each configuration. In the IM 

RFs, latitude and longitude are each only represented once, while in the EM RFs, latitude and 

longitude are each represented nine times (once for each spatial grid point examined), making it 

more likely that those variables are used to split the training dataset at a given RF node. In both 

the IM and EM RFs, the latitude and longitude, on average, move the probabilities slightly 
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higher in cases with an LSR (Fig. 4.3c-d) but don’t tend to move the probabilities much higher or 

lower in cases without an LSR (Fig. 4.3a-b).   

 Performing this same analysis for individual fields shows that 2-5 km updraft helicity 

(UH2-5km) and SHIP (not necessarily in that order) are the top two “most important” predictors 

for both the IM and EM RFs in all instances (Fig. 4.4a-d). Both variables tend to move the RF 

probabilities appropriately depending on the presence or absence of an LSR. This is a nice result, 

since UH2-5km has been used to predict severe hail by many previous studies (e.g., Jirak et al. 

2014; Gagne et al. 2017; Burke et al. 2020; Loken et al. 2020), and SHIP is designed to indicate 

environments supportive of significant severe hail; thus, the RFs are emphasizing variables that 

make physical sense.  

MAXDVV and MAXUVV are also amongst the top-performing predictors for both RFs. 

One interesting result is that MAXUVV tends to, on average, exert a positive impact on RF 

probabilities even in the absence of an LSR (Fig. 4.4a-b). However, it also tends to increase RF 

probabilities strongly (compared to similarly-important variables) when an LSR is reported (Fig. 

4.4c-d). This finding suggests that MAXUVV may be more useful for enhancing POD and less 

useful for reducing false alarms. Similarly, while UH2-5km was effective at reducing 

probabilities for instances without an LSR, 0-3km UH is less useful for that purpose (Fig. 4.4a-b) 

but is useful for appropriately increasing RF probabilities (Fig. 4.4c-d).  

Variable rankings are generally similar between the EM and IM methods; however, there 

are some appreciable differences. The most notable, consistent with Fig. 4.3, is that both latitude 

and longitude appear much more important in the EM RF. Another noticeable difference is that 

smoothed 1-km above-ground simulated reflectivity (MXREF1km) is more important in the IM 

than EM RF, although it is not clear why.  
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Figure 4.4 As in Fig. 4.3 but for contributions aggregated over the 

individual predictor fields.  
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Most of the environment variables rank low in terms of their relative importance (i.e., 

how much they influence the RF probabilities). This is somewhat surprising, given the expected 

relationship between observed hail and MUCAPE or 700-500 hPa lapse rate (LR75). It is 

speculated that these predictors are relatively unimportant to the RFs because the information 

they provide is already contained (more efficiently) in the SHIP.  

 

2) WIND 

 As with severe hail, storm-related variables exert the most influence on the severe wind 

probabilities (Fig. 4.5a-d). Indeed, the storm variables are substantially more important than 

either the environment or index variables for both types of RFs. In cases with (without) an LSR, 

the storm variables exert a greater mean increasing (decreasing) influence on the RF probabilities 

compared to the environment and index variables (Fig. 4.5a-b), indicating substantial skill.  

 In cases without an LSR, the environment and index variables exert a similar influence 

(Fig. 4.5a-b); this is relatively unsurprising given that no “wind-specific” index is used as a 

predictor in either RF. However, it is interesting that in cases with an LSR, the environment 

variables are more “important” but increase the RF probabilities less (on average) than the index 

variables (Fig. 4.5c-d). Again, it is possible that this effect is due to the presence of more 

environment variables (leading to greater TI “importance”) and more direct relationships 

contained in index variables [e.g., SCP, EHI (both 0-1 km and 0-3 km), and CAPESHEAR (i.e., 

the product of MUCAPE and 10m-500hPa wind shear magnitude)].  

IM and EM RFs tend to use storm, environment, and index variables similarly. However, 

as seen in Fig. 4.3 for severe hail, the EM RFs place much more importance on latitude and 

longitude predictors compared to the IM RFs. Indeed, the average probability contribution from  
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latitude and longitude in the EM RF is substantial, nearly equaling that from the index variables 

in cases with an observed storm report (Fig. 4.5d).  

In terms of specific fields, UH2-5km, MAXDVV, and UH0-3km are amongst the top 

wind predictors for both RF configurations (Fig. 4.6a-d). These variables all tend to move the 

probabilities in the correct direction in instances without (Fig. 4.6a-b) and with (Fig. 4.6c-d) an 

LSR. MAXUVV is another top predictor for severe wind, and—as seen with severe hail—it  

Figure 4.5 As in Fig. 4.3 but for severe wind.  
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Figure 4.6 As in Fig. 4.4 but for severe wind. 
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seems well-suited for enhancing POD. While it only modestly decreases probabilities in 

instances without an LSR (Fig. 4.6a-b), it almost always increases probabilities when an LSR is 

observed (Fig. 4.6c-d).  

The biggest difference between IM and EM RF configurations is the relative influence of 

the latitude and longitude variables. Indeed, longitude is the 5th (3rd) most important EM RF 

variable in cases without (with) an LSR (Fig. 4.6b,d)! In contrast, longitude is the 15th (9th) most 

important predictor to the IM RF without (with) and LSR (Fig. 4.6a,c). However, even for the 

IM RF, longitude and latitude are still notably more important for severe wind (Fig. 4.6a,c) than 

severe hail (Fig. 4.4a,c). The relatively high importance of these location variables for severe 

wind suggests that the RFs are learning systematic relationships between location and observed 

severe wind. It is likely that these relationships are at least partially due to the biases present in 

the severe wind report observation database (Edwards et al. 2018).   

 

3) TORNADO 

 For tornadoes, storm, environment, and index variables have similar overall levels of 

importance, in both the IM and EM RFs (Fig. 4.7a-d). Interestingly, storm variables move the 

probabilities most in cases with no observed LSR (Fig. 4.7a-b), but environmental variables 

move the probabilities most in cases with an LSR (Fig. 4.7c-d). However, both storm and index 

variables tend to correctly increase the probabilities more than the environment variables when 

an LSR is present (Fig. 4.7c-d), indicating that these variables may be more useful than the 

environment variables.  

The relative importance of storm, environment, and index variables is similar for IM and 

EM RFs. As with severe hail and wind, latitude and longitude predictors exert more influence on  



 135 

 

the EM RF probabilities, but even for the EM RF, latitude and longitude predictors have little 

influence on the RF probabilities compared to the storm, environment, and index variables.  

 UH0-3km is the most important variable for tornado prediction in both the IM and EM, 

regardless of whether there is an observed LSR (Fig. 4.8a-d). This is consistent with Sobash et al. 

(2019), who found UH0-3km performed better than UH2-5km (but worse than 0-1km updraft  

Figure 4.7 As in Fig. 4.3 but for tornadoes.  
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Figure 4.8 As in Fig. 4.4 but for tornadoes.  
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helicity) for predicting tornadoes. Other important predictors include STP, UH2-5km, 

MXREF1km, and 0-1km SRH. These fields make physical sense; large values of STP (e.g., 

Thompson et al. 2002, 2003; Parker 2014) and low-level SRH (e.g., Davies-Jones et al. 1990; 

Johns and Doswell 1992; Rasmussen and Blanchard 1998; Parker 2014; Coffer and Parker 2018) 

have been associated with environments favorable for tornadoes, large UH2-5km suggests deep 

rotating updrafts, and high MXREF1km indicates intense storms.   

 One interesting finding is the relatively high importance of 2-m temperature (TMP2m), 

especially for the EM RF when an observed LSR is present (Fig. 4.8d). While TMP2m is the 3rd 

most important predictor in this case, it increases the probabilities less than other “less 

important” variables (e.g., 0-1km SRH and UH2-5km; Fig. 4.8d). However, TMP2m also tends 

to correctly decrease RF probabilities more than similarly-important variables when no LSR is 

present (Fig. 4.8b). These results suggest that the RF uses TMP2m more to help reduce false 

alarms than to increase POD.  

 Given that high boundary layer relative humidity—and therefore small low-level 

dewpoint depressions—have been associated with tornadoes (Markowski et al. 2002), it is 

surprising that 2-m and 925 hPa dewpoint depression (TdDEP2m and TdDEP925, respectively) 

are relatively unimportant. One potential explanation is that the RF merely considers the 24-h 

temporal mean dewpoint depression, which may have a weaker association with tornadoes than 

TdDEP2m or TdDEP925 in the hours directly preceding (potential) tornadogenesis. It should be 

noted that STP (indirectly) contains information about the TdDEP2m, since the LCLs used in the 

STP computation are approximated from TdDEP2m. STP is likely a more important tornado 

predictor than TdDEP2m or TdDEP925 because it efficiently combines information from 

multiple fields at a common time.   
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4) MEMBER AND SPATIAL CONTRIBUTIONS 

 The IM method allows TI to determine the relative importance of different sets of 

members. Unsurprisingly, for all hazards, the set of non-time-lagged members influences the RF 

probabilities more than the time-lagged members (Fig. 4.9a-f). The non-lagged members tend to 

decrease RF probabilities more when no LSR is present (Fig. 4.9a-c) and increase RF 

probabilities more when an LSR is present (Fig. 4.9d-f).  

Interestingly, for wind and hail, the different members are not viewed as equally 

important. For both hazards, the NSSL variables are noticeably more important than variables 

from other members (Fig. 4.9a,b,d,e). It is also interesting that the NMMB member variables are 

second most-important (behind the NSSL variables) for severe hail (Fig. 4.9a,d) but least 

important (of the member variables) for severe wind prediction (Fig. 4.9b,e). Meanwhile, for 

tornado prediction, the HRRR, ARW, NMMB, and NSSL variables, respectively, have similar 

levels of importance, while the NAM variables are notably less important (Fig. 4.9c,f). The 

smaller importance of the NAM variables for tornadoes is likely attributable to the NAM’s lack 

of UH0-3km and STP, two of the most important fields for tornado prediction (Fig. 4.8).  

Because it uses predictors from different spatial points, the EM method allows for the 

analysis of spatial predictors. Over all variables, it is clear the most important predictors are the 

ones taken from the point of prediction for all hazards (Fig. 4.10a-c). However, the distribution 

of importance values over the 3x3 grid is not isotropic. For severe hail, the RF places more 

importance on predictors to the east of the point of prediction (Fig. 4.10a); for severe wind, more 

importance is placed on predictors to the west and south of the point of prediction; and for  
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tornadoes more importance is placed on variables to the northwest and southeast compared to the 

southwest and northeast.  

For severe hail and wind prediction, storm variables at the point of prediction are 

substantially more important than storm variables at surrounding points (Fig. 4.10d-e). This same 

pattern is not found to the same extent for the non-storm (i.e., environment and index) variables;  

Figure 4.9 As in Fig. 4.3, but for contributions from the non-time-lagged, time-lagged, NSSL, 
NMMB, HRRR, ARW, NAM, and latitude/longitude predictors from the all-predictor IM 
RF. Cases not associated with an observed storm report are shown in (a)-(c), while cases 
with an observed storm report are shown in (d)-(f). Columns 1, 2, and 3 show results 
from the severe hail, severe wind, and tornado RFs, respectively. Note the different x-axis 
scales in each panel.  
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predictors from the surrounding points are comparatively much more important (Fig. 4.10g-h). 

One potential interpretation of these results is that the RFs use environment and index variables 

Figure 4.10 (a) Mean absolute EM RF probability contributions from all predictors at the point 
of prediction [(0,0)] and the 8 closest 80-km grid points for severe hail. (b)-(c) As in (a) 
but for severe wind and tornadoes. (d)-(f) As in (a)-(c) but for only the storm variables. 
(g)-(i) As in (a)-(c) but for only the non-storm variables. Note the different color bar 
scales between columns. Within each column, panels in rows two and three have the 
same scales.  
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to assess the conduciveness of the environment to severe weather around the point of protection, 

while they use the storm variables to “pinpoint” where storms are most likely to occur. 

Interestingly, this relationship does not apply as much for tornadoes (Fig. 4.10f,i).  

 

c. Single-field relationships 

 The hail-, wind-, and tornado-predicting IM RFs learn different relationships between 

UH2-5km and the likelihood of observed severe weather depending on the ensemble member 

and forecast hazard (Fig. 4.11a-r). For example, for the non-lagged HRRR and NSSL members, 

larger values of UH2-5km tend to result in greater contributions to RF severe hail probability 

(Fig. 4.11a,j), while larger values of UH2-5km from the non-lagged NMMB and NAM members 

did not always result in greater RF hail probability contributions (Fig. 4.11g,m). For severe wind, 

increasing UH2-5km tends to increase RF probability contribution only up to a point for most of 

the non-lagged members (Fig. 4.11b,e,h,k,n). Beyond approximately 50 m2/s2, for example, 

higher values of UH2-5km in the non-lagged ARW member do not further increase the RF 

severe wind probability contribution (Fig. 4.11e). For tornado prediction, the UH2-5km and RF 

probability contribution is more muted, consistent with the earlier finding that UH0-3km is a 

more important tornado predictor (Fig. 4.8). UH2-5km above 100 m2/s2 from the non-lagged 

HRRR and NSSL members appears to have the greatest increasing impact on RF tornado 

probabilities (Fig. 4.11c,l). 

Interestingly, for all hazards, the relationship between the ensemble mean UH2-5km and 

the total ensemble UH2-5km contribution to the RF probabilities (Fig. 4.11p-r) tends to be 

clearer than the corresponding relationship for an individual ensemble member (e.g., Fig. 4.11a-

o). This result supports the earlier finding that EM RFs are more skillful than IM RFs and  
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Figure 4.11 (a) IM RF probability contributions from the non-time-lagged HRRR member’s 
UH2-5km for severe hail for each sample in the dataset. Samples associated with an (no) 
observed LSR are colored red (blue). Each point is semi-transparent, so darker colors 
indicate greater sample density. A 0.00 contribution is indicated by a black horizontal 
line. (b)-(c) As in (a) but for severe wind and tornadoes. (d)-(f), (g)-(i), (j)-(l), (m)-(o) As 
in (a)-(c) but for the non-time-lagged ARW, NMMB, NSSL, and NAM members, 
respectively. (p)-(r) As in (a)-(c) but for the contributions from all members’ UH2-5km 
graphed against the (10-member) ensemble mean (smoothed) UH2-5km.  
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suggests the reason is because ensemble mean fields more efficiently and effectively summarize 

the ensemble information.  

Fig. 4.11 also illustrates two other important points. First, while a definite relationship 

exists between each member’s UH2-5km and the contribution to the RF probabilities, the sign of 

the contribution does not necessarily discriminate well between events (i.e., severe LSRs) and 

non-events (i.e., no LSRs). Intuitively, this makes sense; sometimes CAEs have errors in storm 

location, so a large value of UH2-5km (and a large UH2-5km contribution to RF probabilities) is 

not associated with an observed LSR. Conversely, sometimes, a severe storm is present in the 

observations but not in any members. ML cannot “fix” these types of errors but can learn what a 

certain UH2-5km value from a given member (or ensemble mean) means for the probability of 

observed severe weather (Fig. 4.11). The second important point in Fig. 4.11 is that the same 

UH2-5km value (for a given member or the ensemble mean) can contribute differently to the 

overall RF probabilities depending on the case. Indeed, when UH2-5km is small (e.g., near 25-50 

m2/s2 for many members for many hazards), UH2-5km can contribute either positively or 

negatively to the RF probabilities. This variability is a consequence of other variables interacting 

with UH2-5km. For example, a small-to-moderate value of UH2-5km may be favorable or 

unfavorable for severe hail depending on the environment.   

Expectedly, different fields have different relationships with the probability of observed 

severe weather, and these relationships vary based on the hazard. Fig. 4.12a-r shows some of 

these relationships learned by the EM RFs. Ensemble mean UH2-5km has an “S-shaped” 

relationship with severe probability for severe hail (Fig. 4.12a), while the relationship is more 

“sickle-shaped” for wind (Fig. 4.12b) and “heavily-flattened-S-shaped” for tornadoes (Fig. 

4.12c). Meanwhile, UH03-km has the clearest direct relationship with tornadoes (Fig. 4.12f)  
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Figure 4.12 (a) EM RF contributions from (0,0) (unsmoothed) mean UH2-5km for each sample 
in the dataset for severe hail. Samples associated with an (no) observed LSR are colored 
red (blue). Each point is semi-transparent, so darker colors indicate greater sample 
density. A 0.00 contribution is indicated by a black horizontal line. (b)-(c) As in (a) but 
for severe wind and tornadoes. Note that, unlike Fig. 4.11p-r, the x-axis in (a)-(c) refers 
to the unsmoothed, 9-member ensemble mean UH2-5km. (d)-(f), (g)-(i), (j)-(l), (m)-(o), 
(p)-(r) As in (a)-(c) but for mean UH0-3km, SHIP, STP, MAXUVV, and spatially-
smoothed maximum 1-km above-ground simulated reflectivity, respectively.  
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compared to severe hail (Fig. 4.12d) or wind (Fig. 4.12e), consistent with the earlier finding that 

UH0-3km is the most important tornado predictor. All three hazards have a weak relationship 

between SHIP and RF probability contribution (Fig. 4.12g-i), though the relationship is strongest 

for severe hail (Fig. 4.12g), as expected. Similarly, STP is related most to tornado probability 

contributions (Fig. 4.12l) and exerts little impact on hail probability contributions (Fig. 4.12j). 

MAXXUVV is related most to severe hail probability contribution (Fig. 4.12m), which makes 

sense as strong updrafts are required to support large hailstones. Interestingly, MXREF1km has 

the clearest relationship for severe wind (Fig. 4.12q), showing negative contributions until 

approximately 50-55dBZ and then mostly positive contributions. The relationship in Fig. 4.12q 

makes sense, since the strongest storms should be associated with all hazards of severe weather; 

however, it is surprising that MXREF1km does not have a similar effect on severe hail (Fig. 

4.12p) or tornado (Fig. 4.12r) probabilities, especially since large reflectivity values are 

physically associated with a greater likelihood of severe hail.     

 

d. Multi-field relationships 

Running TI with joint_contribution set to True shows that the greatest contributions to 

the RF probabilities are due from single predictor variables (not shown). With that said, 

multivariable interactions are not negligible, as illustrated in Figs. 4.11-4.12. Fig. 4.13a-i shows 

the RF probability contributions from the three most important two-variable relationships in the 

IM RFs for each hazard. Interestingly, all these relationships involve either two storm predictors 

or one storm and one index predictor.  

For severe hail, the interaction between NSSL UH2-5km and NSSL SHIP is the most 

important (Fig. 4.13a). Intuitively, it makes sense that the RF probability contribution should be  
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Figure 4.13 (a) IM RF probability contribution (shaded dots) resulting from the most important 
two-variable combination for all samples in the dataset for severe hail prediction. (b)-(c) 
As in (a) but for severe wind and tornado prediction, respectively. (d)-(f) As in (a)-(c) but 
for the second-most-important two-variable combination for each hazard. (g)-(i) As in 
(a)-(c) but for the third-most-important two-variable combination for each hazard. Note 
the different color scales for each hazard.  
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maximized when SHIP and UH2-5km are both largest. However, according to Fig. 4.13a, the 

same value of NSSL UH2-5km (e.g., 25 m2/s2) can result in negative hail probability 

contributions if the SHIP is close to 0 or weak-to-moderate hail probability contributions if the 

SHIP is near 2. Similarly, a SHIP near 0 can result in negative probabilities if UH2-5km is also 

small but can result in weak-to-moderate probabilities if UH2-5km is relatively large (e.g., near 

100 m2/s2). Thus, simulated storms with strongly (weakly) rotating updrafts in marginal 

(favorable) simulated environments can still result in non-negligible probabilities of observed 

severe weather. A similar effect is seen in the interaction between NSSL UH0-3km and NMMB 

STP for tornado prediction (Fig. 4.13f). To a lesser extent, the effect is also present between 

NMMB UH2-5km and HRRR SHIP for severe hail (Fig. 4.13g) and between HRRR UH0-3km 

and STP for tornadoes (Fig. 4.13c).  

 Some important two-variable interactions involve two storm-related variables; for 

example, NAM UH2-5km and NSSL MAXDVV are an important combination for severe hail 

prediction (Fig. 4.13d). Very large values of NAM UH2-5km (i.e., 200 m2/s2 and above) are 

nearly always associated with associated with relatively high RF probability contributions. 

However, when NAM UH2-5km is less (e.g., near 80 m2/s2), NSSL MAXDVV plays a large role 

in modulating the RF probability contributions (Fig. 4.13d). These results suggest that the 

common practice of using a UH2-5km threshold to forecast severe weather (e.g., Sobash et al. 

2011, 2016b, 2019; Loken et al. 2017, 2020) does not always give the most complete 

representation of the severe weather threat.  

Indeed, even when a single field is considered from multiple members (e.g., UH2-5km in 

Fig. 4.13e; UH0-3km in Fig. 4.13i), a constant threshold would likely still provide incomplete 

information. First, (imaginary) isolines of constant probability contribution in Fig. 4.13e,i do not 
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have a slope of exactly -1, which is unsurprising given that different members have different 

climatologies of UH2-5km and UH0-3km (e.g., Roberts et al. 2020). Additionally, in general, 

there is still a non-zero gradient in probability contribution at relatively large values of UH2-5km 

and UH0-3km for both members. For example, Fig. 4.13e shows that the probability contribution 

is larger when both members have UH2-5km near 200 m2/s2 compared to when both members 

have UH2-5km near 100 m2/s2, even though both values are relatively large. A similar effect is 

seen in Fig. 4.13i with UH0-3km.  

The most important multivariate relationships from the EM RFs reflect a similar general 

pattern: the combinations involve either multiple storm fields or one storm field and one index 

field (Fig. 4.14a-i). Unsurprisingly, the most important combinations also involve variables at or 

close to the point of prediction. However, most of the combinations involve variables at different 

spatial points (e.g., Fig. 4.14a,b,c,e,f,h,i). This is interesting because it suggests an attempt by the 

RF to account for displacement errors in the simulated storm and/or environment. Intuitively, it 

makes sense what the EM RFs are learning. For example, the probability of severe hail will be 

maximized when UH2-5km is large at and near the point of prediction (Fig. 4.14a). Especially 

when the UH2-5km at the point of prediction is low or marginal (e.g., 25 m2/s2), the UH2-5km at 

a neighboring grid point can make a big difference in determining the severe hail probability 

contribution (Fig. 4.14a).  

In general, Figs. 4.13-4.14 suggest that RFs consider the specific values of multiple storm 

and index variables to construct their probabilities. While UH2-5km is an important predictor for 

most hazards (Figs. 4.4, 4.6, 4.8), when UH2-5km is marginal (e.g., near or below 50 m2/s2 in 

Fig. 4.13a,g or Fig. 4.14g), other fields (e.g., SHIP) can play an especially important role in 

quantifying the severe weather threat.  
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Figure 4.14 As in Fig. 4.13 but for the most important two-variable combinations in the EM RFs.  
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4. Case Study: 1200 UTC 23 May – 1200 UTC 24 May 
 

To illustrate how TI can be used to dissect an RF forecast on an individual day, a case 

study is presented for analysis. 23 May 2020 is selected because it is a representative example 

that involves all severe weather hazards over multiple areas.  

 

Four main features helped drive the severe weather on this day: a longwave trough in the 

western CONUS, a mid-level low and associated surface cyclone in the Upper Midwest, a 

shortwave trough in the South, and a dryline in the Southern High Plains. Fig. 4.15a-l shows 

Figure 4.15 Preprocessed (9-member) ensemble mean fields for (a) 2-m temperature, (b) 2-m 
dewpoint temperature, (c) maximum 10-m wind speed, (d) 0-1km storm relative helicity, 
(e) 2-5km updraft helicity, (f) 0-3km updraft helicity, (g) maximum vertical velocity, (h) 
spatially-smoothed daily maximum 1-km simulated reflectivity, (i) SCP, (j) SHIP, (k) 
STP, and (l) the product of MUCAPE and 10m-500hPa vertical wind shear magnitude, 
valid 1200 UTC 23 May to 1200 UTC 24 May 2020.  
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some (preprocessed, 9-member) ensemble mean fields from HREFv2.1. The temporal mean 2-m 

temperature (Fig. 4.15a) and dewpoint temperature (Fig. 4.15b) fields suggest a (temporal mean) 

thermal and moisture ridge over the central Plains, downstream of a longwave trough. Daily 

maximum simulated 10-m wind speeds are highest in western Texas—reaching over 25 m/s 

(55.9 miles per hour) there—and in southwestern South Dakota (Fig. 4.15c). Maximum 0-1km 

SRH is at least 200 m2/s2 over a large swath of the Great Plains and the Upper Midwest (Fig. 

4.15d). Regions of greater than 80 m2/s2 UH2-5km are found in the Dakotas, Nebraska, western 

Oklahoma and western Texas, northern Illinois, and central Kentucky (Fig. 4.15e). Relatively 

large values of UH0-3km (Fig. 4.15e) and MAXUVV (Fig. 4.15f) are found in these same 

regions, and spatially smoothed simulated reflectivity indicates (simulated) storms over a large 

portion of the eastern two-thirds of the CONUS (Fig. 4.15h). Important index variables—

including SCP (Fig. 4.15i), SHIP (Fig. 4.15j), STP (Fig. 4.15k), and the product of MUCAPE 

and 10m-500hPa wind shear (Fig. 4.15l)—are also elevated throughout much of the Central 

Plains. STP is maximized on the border of Nebraska and Kansas, but elevated values of STP are 

also seen in northern Illinois and the Texas Panhandle (Fig. 4.15k).   

IM and EM RF probabilities generally highlight three regions for all three hazards: the 

Upper Great Plains (i.e., North Dakota to Nebraska), the Lower Great Plains (i.e., west Texas 

and western Oklahoma), and parts of the Midwest near northern Illinois (Fig. 4.16a-f). 

Additionally, both RFs highlight a severe wind threat farther south, including 30% or 45% 

probabilities in central Kentucky and a broad 5% probability for most of the Southeast (Fig. 

4.16c-d).  

The EM and IM forecasts for each hazard are quite similar, highlighting the same general 

areas. The biggest differences tend to be the probability magnitudes from each RF, with the EM  
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Figure 4.16 (a) Severe hail forecast probability from the IM RF (shaded) and observed sub-
significant (green dots) and significant (black triangles) hail reports, valid from 1200 
UTC 23 May 2020 to 1200 UTC 24 May 2020. Individual-day AUC and BS are shown at 
the bottom of the panel. (b) As in (a) but for the EM RF. (c)-(d) As in (a)-(b) but for 
severe wind forecasts. Observed sub-significant (blue dots) and significant (black 
squares) are shown. (e)-(f) As in (a)-(b) but for tornado forecasts. Observed tornado 
reports (red dots) are shown.  
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usually providing larger probabilities. For example, the EM RF has 15% hail probabilities in 

northern Illinois and central Kentucky (Fig. 4.16b) compared to 5% probabilities from the IM RF 

(Fig. 4.16a). Since observed severe hail occurred in northern Illinois, the EM RF has better POD 

there and is rewarded with a slightly better hail AUC and BS. For severe wind, the EM has 

higher probabilities in northern Illinois—where a cluster of wind reports was observed—and in 

central Kentucky and northern North Carolina, where no severe wind LSRs were observed (Fig. 

4.16d). As a result, the EM RF has greater POD in northern Illinois but also more false alarm in 

regions farther southeast, giving it just slightly worse AUC and BS metrics compared to the IM 

RF (Fig. 4.16c-d). The EM tornado RF also has larger probabilities in northern Illinois—giving it 

better POD there compared to the IM RF—and in southwestern Nebraska—giving it more false 

alarm there (Fig. 4.16e-f). Overall, the EM RF has slightly better tornado AUC and BS values.  

The IM and EM forecasts use similar fields to construct their forecasts (Fig. 4.17a-f). The 

biggest difference is that the EM RFs rely on latitude and longitude more than the IM RFs for 

severe hail and wind prediction, consistent with Figs. 4.3-4.6. Otherwise, similar fields tend to be 

emphasized, and they tend to impact RF probabilities similarly.  

Figs. 4.18-4.19 show the storm, environment, index, and latitude/longitude probability 

contributions for the IM and EM ensembles, respectively. In both cases, the storm fields tend to 

exert the greatest influence on the probabilities (Fig. 4.18a-c, 4.19a-c), although the storm 

contribution fields from the EM RFs tend to be less “smoothed,” which makes sense given that—

unlike the IM RFs—the EM RFs consider unsmoothed storm predictors from different spatial 

points. The most obvious difference between the IM and EM RFs is the latitude/longitude 

contributions for the severe hail and wind forecasts. While the IM RFs have relatively low 

contributions from latitude/longitude (Fig. 4.18j-k), the EM RFs have large positive  
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Figure 4.17 (a) Mean TI negative (blue), positive (red), and summed (i.e., negative plus positive; 
black dot) RF probability contributions (per grid point) from the 10 most important fields 
(aggregated over individual members) for the all-predictor severe hail IM RF, valid from 
1200 UTC 23 May to 1200 UTC 24 May 2020. Analysis is done for the entire domain and 
fields are displayed in descending order of overall importance (i.e., mean absolute value 
of contributions). (b) As in (a) but for the all-predictor EM RF. (c)-(d) As in (a)-(b) but 
for the severe wind RFs. (e)-(f) As in (a)-(b) but for the tornado RFs.  
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Figure 4.18 (a) Aggregated IM RF probability contributions (shaded) from storm-related 
variables for severe hail prediction, with observed sub-significant (green dots) and 
significant (black triangles) hail reports overlaid. (b) As in (a) but for severe wind 
prediction with observed sub-significant (blue dots) and significant (black squares) 
overlaid. (c) As in (a) but for tornado prediction with observed sub-significant tornado 
reports (red dots) overlaid. (d)-(f) As in (a)-(c) but for environment variables. (g)-(i) As 
in (a)-(c) but for index variables. (j)-(l) As in (a)-(c) but for latitude and longitude 
variables.  
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contributions for severe hail in most of the Great Plains (Fig. 4.19j) and large negative (positive) 

severe wind contributions in the Great Plains (eastern U.S.) (Fig. 4.19k). These are the spatial 

patterns seen in the observational dataset (Fig. 4.2b-d).  

Figure 4.19 As in Fig. 4.18 but for EM RFs.  
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The largest differences between the EM and IM probabilistic forecasts appear to be 

driven primarily by the latitude/longitude, environment, and index variables. For example, the 

EM RF’s larger severe wind probabilities in eastern Kentucky is due to greater latitude/longitude 

and index contributions (Fig. 4.18h,k; Fig. 4.19h,k). Meanwhile, the EM RF’s greater severe 

wind probability in northern South Carolina is due to greater environment and latitude/longitude 

contributions (Fig. 4.18e,k; Fig. 4.19e,k). The IM and EM RFs have relative similar tornado 

probability contributions (Fig. 4.18cfil; Fig. 4.19cfil).  

 

5. Summary and Discussion 
 
 In this paper, the Python module tree interpreter (TI) was used to assess how differently-

configured random forests (RFs) use convection-allowing ensemble (CAE) variables to create 

skillful severe weather forecasts. Two main configurations of RFs were examined: RFs trained 

on individual-member predictors using variables at the point of prediction (IM RFs) and RFs 

trained on ensemble mean predictors using variables at the point of prediction and the 8 closest 

grid points (EM RFs). For each hazard (severe hail, wind, and tornadoes), IM and EM RFs were 

trained with the full set of 32 predictor fields as well as various predictor subsets to determine 

which types of variables contributed most to the RFs’ skill.  

 For all hazards, the EM RFs objectively outperformed the IM RFs when the same fields 

were used as predictors. Although the skill of ensemble mean fields has long been demonstrated 

(e.g., Epstein 1969; Leith 1974; Clark et al. 2009; Coniglio et al. 2010), this finding was 

somewhat unexpected. Rather, it was hypothesized that RFs would be able to identify and exploit 

unique relationships between individual HREFv2.1 and observed severe weather. However, 

ensemble mean fields generally had clearer relationships with RF probability contribution (e.g., 
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Fig. 4.11p-r; the pattern also exists for other fields not shown), suggesting that the EM RFs had 

higher signal-to-noise ratios, which enabled RFs to more easily learn associations between the 

CAE variables and observed severe weather. Of course, the higher signal-to-noise ratios are 

likely attributable to the greater skill of ensemble mean fields compared to individual member 

fields. The EM RFs are also advantageous because they do not require their storm predictors to 

be spatially smoothed. Thus, the EM RFs require less preprocessing and do not force simulated 

storms to have an isotropic spatial uncertainty distribution. 

With that said, IM RFs were still able to attain a high degree of skill and highlighted 

similar areas for severe weather on most days compared to the EM RFs (e.g., Fig. 4.16). Because 

IM RFs learn relationships from individual member fields, they may provide more insight into 

optimal ensemble use and design compared to EM RFs. For example, Fig. 4.9 suggests that not 

all members were utilized equally, especially for severe hail and wind prediction, and that 

different members had different levels of importance for predicting different hazards. It is 

currently unclear why, exactly, this is the case and how systematic this result is; however, it is a 

result that merits further attention as it may have implications for model development or 

ensemble design. 

TI importance metrics and verification of the RFs trained on predictor subsets showed 

that the storm-related variables were the most important. Indeed, RFs trained on only storm 

predictors were nearly as skillful as RFs trained on the entire set of predictors; this finding held 

for IM and EM RFs for all three hazards. Interestingly, RFs trained with storm and index 

variables were slightly more skillful than using all predictors for severe hail and tornado 

prediction. Meanwhile, RFs using only environment-related predictors always produced the 

worst verification metrics for all three hazards. Index-only RFs were notably better than 
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environment-only RFs for forecasting severe hail and tornadoes (i.e., when a hazard-specific 

index variable was available).  

Collectively, these results suggest that while non-storm variables can provide relatively 

skillful next-day severe weather forecasts (e.g., as in Hill et al. 2020), the storm fields from 

convection-allowing ensembles (CAEs) provide crucial information that bolsters the forecasting 

skill at next-day lead times. Thus, it makes sense why the next-day RFs in Loken et al. (2020) 

performed objectively better relative to Storm Prediction Center (SPC) human forecasts than the 

day 1 RFs in Hill et al. (2020).  

At the same time, when storm-related fields are not available, results in this study suggest 

that index variables (e.g., STP, SHIP, the product of MUCAPE and deep-layer shear, etc.) can 

still be used to create skillful severe weather forecasts. This result is consistent with recent 

climate studies (e.g., Gensini and Brooks 2018; Gensini and de Guenni 2019; Tang et al. 2019) 

that have associated index variables (e.g., STP, SHIP, etc.) from the North American Regional 

Reanalysis (NARR; Mesinger et al. 2006) with observed severe weather reports to investigate 

past and/or predicted future U.S. severe weather climatologies. An advantage of index variables 

is that they require multiple “ingredients” for severe weather to “line up” in space and time, 

which is a physical requirement for severe weather. This approach may therefore be more useful 

for predicting severe weather than merely taking a temporal mean of the constituent index fields 

over the period of interest. Indeed, as ML technology progresses, finding better and more 

efficient ways to summarize ensemble data during preprocessing will be crucial to obtaining the 

most skillful RFs.  

 Importantly, both IM and EM RFs emphasized predictors and learned relationships that 

made physical sense. For example, SHIP was a top predictor for hail, while STP and 0-3km 
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updraft helicity (UH0-3km) were top tornado predictors. Additionally, TI analysis found that the 

2-5km updraft helicity (UH2-5km) from most individual members—as well as the ensemble 

mean—had an S-shaped relationship with severe weather likelihood, which supports the 

commonly-used method as treating a climatologically large value of UH2-5km as a simulated 

surrogate severe weather report (e.g., Sobash et al. 2011, 2016b, 2019; Loken et al. 2017, 2020; 

Roberts et al. 2020).  

At the same time, results from this paper suggested several reasons why this threshold 

method may be incomplete. Most importantly, the relationship between UH2-5km and, for 

example, severe hail is not a perfect step-function. With all else equal, larger values of UH2-5km 

usually suggest larger severe hail probabilities, and there is no threshold below which the 

probability of severe hail is suddenly 0. Indeed, this study showed that the exact value of UH2-

5km, its value at surrounding grid points, and the value of relevant index variables at nearby 

points are all important for determining severe weather probabilities at a given point. This makes 

sense intuitively but is hard to encode in an algorithm. Some previous research has attempted to 

combine UH2-5km and environmental information to improve UH2-5km-based severe weather 

forecasts, with modest success. For example, Gallo et al. (2016) reduced false alarm from UH2-

5km-based tornado forecasts by additionally requiring simulated STP and other environment 

variables (e.g., lifting condensation level and the ratio of surface-based to most-unstable CAPE) 

to meet certain thresholds. However, the current study suggests that this approach is suboptimal. 

For example, results herein show that relatively large hail probability contributions can result 

from small UH2-5km values if SHIP is relatively large (e.g., near 2)—which makes sense due to 

the possibility of simulated storm initiation or displacement errors. Conversely, severe hail 

probability contributions can still be positive when SHIP is near 0 if UH2-5km is very large. 
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This type of “thinking” makes sense; essentially the RFs are learning to properly calibrate severe 

weather probabilities in the face of imperfect, “noisy” predictors.  

 

6. Conclusions and Future Work 
 
 This paper analyzed RF-based severe weather forecast probabilities using TI. Such 

analysis helped shed light on how differently-configured RFs make their forecasts. Having the 

ability to dissect the “thinking” of a skillful RF can benefit both forecasters and model 

developers. For example, a forecaster might confidently discount RF guidance when the 

algorithm emphasizes irrelevant predictors (e.g., in the face of contradictory observations, etc.), 

while unusual learned RF relationships could alert model developers to deficiencies in model 

parameterizations and/or help researchers design better ensemble prediction systems.  

 The work presented here provides a foundation for a wide range of future research. One 

simple but important avenue for future work is to stratify the results by region and season to 

determine what spatiotemporal relationships are learned and how these relate to the full-domain 

relationships. It will also be important for future work to investigate why predictors are important 

in certain circumstances, since the current study merely sheds light on how RFs produce skillful 

forecasts. For example, future work should investigate why the NSSL members are more 

important than the other members for predicting severe hail and wind and why the different 

members’ UH2-5km forecasts have different relationships with severe hail and wind 

probabilities. As RF and ML tools are applied to more prediction tasks, investigating how the 

importance of different predictors varies at different lead times and spatial scales will also be 

important, since this type of analysis should enhance our understanding of severe weather 

predictability. Indeed, the results presented here (i.e., the strong importance of the storm fields) 
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raise the question of whether the storm fields (and CAEs themselves) might still provide 

substantial value at longer than 36-h lead times. Certainly, such a question merits further 

consideration as computing resources continue to increase. Finally, future work should determine 

how much value RF interpretability products provide to RF product users in real-time 

operational or HWT SFE (e.g., Gallo et al. 2017; Clark et al. 2021) settings.  
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Chapter 5: General Conclusion 

 
1. General discussion of research hypotheses 
 
 Since the state of the atmosphere can never be perfectly described or modeled, high-

impact weather events—including floods, tornadoes, severe wind, and severe hail—are 

inherently uncertain (e.g., Palmer 2017). Accurately quantifying that uncertainty is important for 

facilitating optimal decision making and more effective weather warnings (e.g., Palmer 2017; 

Rothfusz et al. 2018; NOAA 2020). Traditionally, ensembles have been used to quantify 

uncertainty (e.g., Palmer 2017). However, ensembles frequently suffer from under-dispersion 

and suboptimal reliability (e.g., Romine et al. 2014; Schwartz et al. 2014; Loken et al. 2019b), 

biases in the magnitude and placement of precipitation and convective systems (Herman and 

Schumacher 2016), and coarse grid-spacing relative to the hazards predicted (e.g., for severe 

weather). Thus, ensembles are useful but imperfect prediction tools that require additional 

methods to quantify high-impact weather uncertainty most effectively.  

 Recently, machine learning (ML) techniques have emerged as a promising means to 

quantify ensemble uncertainty. While ML technology itself is not new, better computing 

resources have recently made the application of ML to meteorological problems much more 

effective (e.g., Schultz et al. 2021). RFs, in particular, have shown great promise in improving 

ensemble forecasts for both precipitation (e.g., Gagne et al. 2014; Herman and Schumacher 

2018c) and severe weather (e.g., Gagne et al. 2017; Hill et al. 2020). However, much remains 

unknown regarding the use of ML to improve numerical weather prediction (NWP) models and 

ensembles. For example, previous research has done little to investigate how RFs benefit 

different types of ensembles (e.g., convection-parameterizing vs. convection-allowing), how RF 
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forecasts compare to corresponding human (and top-performing non-human) forecasts, what 

preprocessing methods work best for generating ensemble-based predictors, and how RF 

forecasts use ensemble data to create skillful forecasts. This dissertation designed three research 

components to fill these knowledge gaps by: 1) developing probabilistic precipitation and severe 

weather hazard RFs, 2) comparing those RFs to top-performing human and other non-ML 

baselines, 3) investigating different strategies for generating predictors from CAE data, and 4) 

interpreting the relationships learned by RFs. 

The first research component developed and evaluated precipitation-predicting RFs based 

on SREF and HREFv2 forecast variables. The hypotheses associated with the first research 

component were as follows:  

 

H1.1: RF-based probabilistic precipitation forecasts will have reduced spatial biases as 

well as better discrimination ability, sharpness, and resolution compared to spatially-

smoothed ensemble probabilities. RF probabilities will provide the greatest benefits 

relative to spatially smoothed ensemble probabilities at the smallest thresholds, which 

are climatologically most common.  

 

H1.2: RF post-processing will benefit a convection-parameterizing ensemble more than a 

CAE due to the greater initial bias of the convection-parameterizing ensemble. Indeed, 

after RF post-processing, a convection-parameterizing ensemble will have better 

reliability and nearly comparable resolution compared to an un-post-processed (i.e., 

raw) CAE forecast. However, post-processed CAE forecasts (from either the RF or 

spatial smoothing method) will be the most skillful due to the enhancement of CAE 
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reliability and resolution. In accordance with H1.1, RF CAE forecasts will be more 

skillful than spatially smoothed CAE forecasts. 

 

H1.3: Approximately one year of training data will be required to obtain skillful RF-

based precipitation forecasts for the 3-inch forecasts, with less data required as the 

threshold decreases.  

 

The work done in Chapter 2 was among the first to systematically compare RF-based 

post-processing to a skillful non-ML post-processing technique (i.e., spatially smoothing raw 

ensemble probabilities), as most previous work (e.g., Gagne et al. 2014; Herman and 

Schumacher 2018c) only compared ML techniques to raw ensemble probabilities. Spatially 

smoothing raw ensemble probabilities is an effective and commonly-used method for improving 

reliability and discrimination ability, provided the proper degree of smoothing is used (e.g., 

Loken et al. 2019b; Roberts et al. 2019). However, one negative attribute of spatial smoothing—

particularly isotropic smoothing—is that it maintains the general shape of the raw ensemble 

probabilities and thus has a limited ability to correct for spatial biases. RFs, on the other hand, 

compute new forecast probabilities at each point based on each point’s unique set of predictors. 

Therefore, I hypothesized, correctly, that RFs would be able to reduce ensemble spatial biases 

better than post-processing by spatial smoothing (H1.1). Specifically, I found that the RF 

forecasts moved the center of conditional distribution of observed “yes” events (i.e., observed 

precipitation exceeding a threshold) closer to the “yes” forecast point, using a method outlined 

by Clark et al. (2010a) and Marsh et al. (2012). I also found, as hypothesized in H1.1, that RFs 

had greater AUC, BSS, critical success index (CSI), and better BS resolution and reliability 
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values compared to spatially-smoothed forecasts. This result made sense because, while spatially 

smoothed forecasts can be calibrated to have near-perfect reliability, smoothing necessarily 

sacrifices sharpness and assumes a specific (e.g., isotropic) distribution of forecast uncertainty. 

An advantage of RFs is that they tend to maintain excellent reliability (e.g., Breiman 2001) but 

can also retain higher forecast sharpness and resolution compared to the spatial smoothing post-

processing method, as I found in Chapter 2.  

As hypothesized in H1.1, I found that RF forecasts had the greatest increase in BSS 

relative to the spatially smoothed forecasts at the smallest precipitation thresholds. This finding 

made sense because lighter precipitation events are much more common (and therefore better 

represented in the training data). Additionally, heavier precipitation events may simply be more 

difficult to predict since they have a greater dependence on mesoscale (or smaller) features, 

which have less predictability than synoptic features (since errors saturate at the small scales 

first; e.g., Zhang et al. 2007; Greybush et al. 2017). Overall, the result suggests that, while RFs 

are useful post-processing tools, they are most helpful—at least relative to other post-processing 

methods—for more common or routine forecasting situations. Such a result gives support to the 

current practice of the Weather Prediction Center to rely most on RF-based guidance for 

common, low-impact events (Novak 2021).  

 While previous studies have shown that RFs can be used to obtain skillful precipitation 

forecasts from CAEs (e.g., Gagne et al. 2014) and global ensembles (Herman and Schumacher 

2018c), Chapter 2 was among the first to systematically compare how the same RF-based post-

processing procedure benefits a CAE and similar convection-parameterizing ensemble. This was 

an important study because it was unknown, for example, if a convection-parameterizing 
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ensemble could achieve CAE-caliber skill with RF-post-processing (or by how much a CAE 

would retain its skill advantage after RF-post-processing). 

 Due to the extensive biases in the convection-parameterizing SREF (e.g., Eckel and Mass 

2005), I hypothesized that RF post-processing would benefit the SREF more than the HREFv2 

(H1.2). I also expected RF-based SREF forecasts to have better reliability and similar resolution 

compared to the raw HREFv2 forecasts (H1.2). My work largely supported H1.2. I found that RF 

post-processing almost always increased the BSS more (relative to raw [i.e., un-post-processed] 

and spatially smoothed ensemble probabilities) in the SREF compared to the HREFv2. I also 

found that SREF RF forecasts had similar BSSs and BS resolution and better AUC and reliability 

compared to raw HREFv2 forecasts, owing to the RF’s ability to forecast continuous 

probabilities. One implication of these findings is that RFs may be particularly valuable when 

global ensemble data is the only NWP tool available, such as for long lead time forecasts. With 

that said, I also found that post-processed (i.e., spatially smoothed and RF) HREFv2 forecasts 

had better AUC, BSS, and resolution than the SREF RF forecasts (but similar near-perfect 

reliability). This made sense, given that the skill of an RF is indelibly linked to the skill of the 

underlying dynamical ensemble (e.g., Gagne et al. 2014) and CAEs are more skillful than 

convection-parameterizing ensembles for precipitation (e.g., Clark et al. 2009). Thus, CAE data 

should be used, if available, to achieve the greatest forecast skill.  

Because frequent updates to NWP models often precludes the existence of long (i.e., 

multi-year), stationary ensemble data archives, it is important to know how much data is 

sufficient for the creation of RF-based forecasts. For precipitation forecasting, I expected that 

approximately one season (or about 3 months) of data would be needed to provide the RFs with 

sufficient examples of heavy precipitation events (H1.3). Since lighter precipitation events occur 
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more frequently, I hypothesized that less training data would be required to skillfully predict 

those events (H1.3), especially since Gagne et al. (2014) obtained skillful 0.1-, 0.25-, and 0.5-

inch (i.e., 2.54-, 6.35-, and 12.7-mm) forecasts using only 34 days of data. My work largely 

supported H1.3. While all RF forecasts had positive BSSs with only 31 days of training data, I 

found that AUC and BSS improved dramatically when the training set was extended to 93 days 

(about one season). AUC and BSS increased more gradually with more training data up to a 

training length of 217 days (about 7 months). Interestingly, I found that all precipitation 

thresholds required about 93-217 days of training data to perform optimally, although the larger 

thresholds experienced greater benefits from increasing the training dataset length from 31 to 93 

days. Overall, these results suggest that the generally limited data archives are not likely to pose 

a problem for operational RF implementation.  

 In the second research component, RFs were implemented for severe weather prediction. 

The primary hypotheses associated with the second component were:  

 

H2.1: For all severe and significant severe weather hazards (including any-severe and 

any-significant-severe categories), RFs will have better discrimination ability, BSS, 

reliability, and resolution than corresponding calibrated UH2-5km-based forecasts. 

However, RFs will have worse discrimination ability, BSS, and resolution than 

corresponding (discrete and continuous) SPC human forecasts. Continuous RFs will 

have better reliability and resolution than discrete (i.e., binary) SPC significant severe 

hazard forecasts, but discrete RF forecasts will not perform better than discrete 

significant severe SPC forecasts.  
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H2.2: The RF forecasts will perform best in the seasons and locations for which severe 

weather climatological frequency is maximized. For tornadoes and severe hail, this is 

expected to be the central U.S. during the spring and summer. For severe wind, this is 

expected to be the eastern U.S. during the summer.  

 

 The work done in Chapter 3 was among the first to systematically compare RF-based 

forecasts to corresponding calibrated UH2-5km and SPC human forecasts. I hypothesized that 

severe-weather-predicting RFs would outperform hazard-calibrated, spatially-smoothed UH2-

5km forecasts (H2.1) due to RFs’ ability to consider multiple relevant variables and their 

expected ability to implicitly account for spatiotemporally-varying UH2-5km climatology 

(Sobash and Kain 2017). I hypothesized that RFs would not outperform human forecasts for 

most hazards—at least in terms of discrimination ability, BSS, and resolution—since human 

forecasters had access to additional information not considered by the RFs, including radar, 

satellite, and sounding observational data. Since the SPC only forecasts significant severe 

hazards at a single probability level (10%), I expected continuous RF forecasts to have better 

reliability and resolution than discrete SPC significant severe forecasts. However, I expected any 

RF forecast benefits to disappear when RF probabilities were discretized in accordance with the 

SPC probabilities (H2.1).  

 My work mostly supported the first part of H2.1: I found that RF severe weather forecasts 

had substantially greater BSSs than spatially-smoothed UH2-5km forecasts for all hazards except 

for significant tornado and significant severe wind. I also found that, compared to calibrated 

UH2-5km forecasts, RF forecasts had better resolution for every hazard, and they had better 

reliability for every hazard except for severe wind. These results are likely at least partially due 
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to the UH2-5km forecasts being calibrated over the full year and full domain rather than by 

region and season, as Sobash and Kain (2017) suggest is optimal. However, current operational 

post-processing techniques tend to use a static UH2-5km threshold for a given model or 

ensemble member (e.g., Roberts et al. 2019). Thus, the above findings suggest that the RF 

method developed in this dissertation substantially outperforms one of the current operational 

standards for automated severe hazard guidance.  

 Very surprisingly, the second part of H2.1 was refuted. I found that RF hazard forecasts 

had greater—and sometimes substantially greater—BSSs than human SPC forecasts for most 

hazards and most locations and seasons, even when RF probabilities were discretized or SPC 

probabilities were made continuous. The third part of H2.1 was supported, however: I found that 

continuous—but not discrete—RF significant severe forecasts had substantially greater BSSs and 

better BS components compared to corresponding SPC forecasts.  

Collectively, these results suggest that the RFs introduced in Chapter 3 could 

substantially improve existing SPC day-1 human forecasts. Indeed, the results from Chapter 3 

nicely complement another study, Hill et al. (2020; published around the same time), who found 

that RF probabilistic severe weather forecasts based on convection-parameterizing predictors 

outperformed SPC human forecasts at 2- and 3-day but not 1-day lead times. While artificial 

intelligence (AI) techniques have achieved super-human performance in other domains [e.g., 

chess (Silver et al. 2018); go (Silver et al. 2016, 2017, 2018); and no-limit Texas Hold’em poker 

(Brown and Sandholm 2019)], the study in Chapter 3 and Hill et al. (2020) are among the first to 

suggest current RF-based techniques are capable of matching or outperforming human severe 

weather forecasters at day 1-3 lead times.  
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 Based on the results from Chapter 2, the severe-weather-predicting RFs were not 

expected to perform uniformly for all hazards in all regions and seasons. Rather, I expected the 

RFs to perform best for the most frequent severe weather events (H2.2). Thus, skill was expected 

to be largest for tornadoes (SPC 2021d) and severe hail (SPC 2021c) in the Midwest (Fig. 3.2) in 

the spring and summer and for severe wind in the East (Fig. 3.2) in the summer (SPC 2021f). 

These expectations were consistent with Hitchens et al. (2016), who noted that SPC outlooks 

produced from UH2-5km were most skillful in the spring and summer. Chapter 3 partially 

supported H2.2:  I found that severe and significant severe RF hail skill was maximized in the 

Midwest during the spring but that RF tornado and severe wind BSS values were maximized in 

the eastern U.S. during the winter. With that said, I found that, relative to SPC and UH2-5km 

forecasts, the RF severe wind forecasts performed best during the summertime in the eastern 

U.S. Thus, RF severe hail and wind forecasts may be most helpful to forecasters in the spring 

and summer in the Midwest (for hail) or East (for wind), as expected.  

 In the third research component, differently-configured severe-weather-predicting RFs 

were compared and analyzed to determine how RFs use CAE data to produce skillful forecasts. 

The hypotheses associated with the third component are:    

  

H3.1: Greater forecast skill will result from providing an RF with individual member 

predictors at a single grid point. 

 

H3.2: RFs will emphasize storm variables, but index and environment variables will also 

be important since simulated storms (and their attributes) do not always correspond with 

observed storms.  
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H3.3: RFs will learn to emphasize different variables for each hazard (e.g., significant 

hail parameter [SHIP; SPC2021b] and UH2-5km for severe hail; significant tornado 

parameter [STP; Thompson et al. 2012] and 0-3 km updraft helicity [UH0-3km] for 

tornadoes). For all hazards, RFs will learn positive—but nonlinear—relationships 

between many storm variables (e.g., UH2-5km, simulated reflectivity, maximum upward 

vertical velocity, etc.) and observed severe weather probability. Indeed, it is hypothesized 

that many of these variables will have an “S-shaped” relationship with severe weather 

probability. However, RFs are also expected to learn (and use) important relationships 

between multiple variables/predictors and observed severe weather.  

 

 One important question addressed by Chapter 4 is how RF systems based on CAE data 

should be designed. Especially for an “ensemble of opportunity” (e.g., Roberts et al. 2020), it 

was unclear whether single-point individual member predictors or multi-point ensemble mean 

predictors should be used. Given the high diversity of the HREFv2.1 (Roberts et al. 2020), it was 

hypothesized that the RFs would produce better forecasts by learning and exploiting the 

systematic biases of each member individually (H3.1). I expected that spatially smoothing the 

storm fields would sufficiently account for the spatial uncertainty of simulated convection, 

making the consideration of HREFv2.1 data at multiple spatial points unnecessary. However, 

H3.1 was refuted; I found that the ensemble mean RFs achieved greater forecast skill for all 

hazards, since ensemble mean predictors had stronger relationships with observed severe weather 

compared to those from any individual member. This result is important because it suggests that, 

even for RFs, one of the best ways to utilize ensemble information is with a simple ensemble 
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mean. It also implies that, while ML techniques can generate probabilistic forecast guidance with 

just a single member, dynamical NWP ensembles are still important to run, since ensemble mean 

fields make better ML predictors than individual member fields. With that said, individual 

member RFs were only marginally worse than ensemble mean RFs, and I noted that the RFs 

using individual member predictors can still be beneficial by potentially learning and 

communicating (through interpretability techniques) deficiencies in individual ensemble 

members, which can aid model developers.  

An important feature of CAMs and CAEs is their ability to explicitly simulate storms and 

associated storm-related variables. Indeed, past studies have shown the usefulness of hourly-

maximum storm fields [e.g., UH2-5km (Kain et al. 2008, 2010; Sobash et al. 2011, 2016b, 2019) 

and simulated vertical velocity and reflectivity (Kain et al. 2010; Roberts et al. 2019)] for severe 

weather forecasting. Thus, I expected RFs to learn to emphasize storm fields. However, I also 

expected index and environment variables to be important, since simulated storms don’t always 

correspond with observed storms (H3.2). H3.2 was mostly supported. I found that RFs run with 

only storm predictors achieved the greatest skill compared to RFs run with only index and only 

environment predictors, respectively. Further, using Tree Interpreter (TI), I found that the storm 

variables were among the most important predictors for all three hazards. However, with TI, I 

also showed that relevant index predictors (e.g., STP for tornado prediction) were also important 

and helped modulate the severe probability, particularly when top storm variables (e.g., UH2-

5km) were marginal. Meanwhile, I found that environment variables were least important and 

least skillful, likely since they were obtained from temporal averaging and—individually—had a 

weaker association with observed severe weather compared to index variables. These findings 

showed the power of using complex predictors with a pre-determined association with severe 
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weather, when available, to facilitate easier RF learning. From a severe weather forecasting 

perspective, these results suggested that forecasters should emphasize simulated storm fields but 

also consider the favorability of the simulated environment when constructing forecast hazard 

probabilities.  

Given the high degree of skill achieved by the severe-weather-predicting RFs in Chapter 

3, a main question driving the research in Chapter 4 was how, exactly, RFs learn to forecast 

severe weather. Given the different physical mechanisms required to produce the different 

hazards, I hypothesized that RFs would emphasize different, but physically-relevant, variables 

for each hazard (H3.3). (This hypothesis is not as trivial as it may first appear, given that UH2-

5km has been effectively used to forecast all three hazards [e.g., Jirak et al. 2014; Gallo et al. 

2016].) I expected RFs to learn positive relationships with many simulated storm variables that 

have been associated with observed severe weather [e.g., UH2-5km and UH0-3km (Sobash et al. 

2016a, 2019); and maximum upward vertical velocity and simulated reflectivity (Kain et al. 

2010; Roberts et al. 2019)]. Given the thresholding approach commonly used to infer simulated 

severe weather reports (e.g., Sobash et al. 2011, 2016b, 2019; Gallo et al. 2016; Loken et al. 

2017, 2020; etc.), I expected RFs to learn an “S-shaped” relationship between many storm 

variables and observed severe weather probability (H3.3). I also expected RFs to learn complex 

relationships between observed severe weather and combinations of multiple predictors (H3.3), 

since RFs significantly outperformed UH2-5km-only forecasts in Chapter 3 and since Gallo et al. 

(2016) improved UH2-5km-based tornado forecasts by accounting for the simulated 

environment.  

My work mostly supported H3.3. First, I found that the RFs indeed emphasized different 

variables for different hazards. For example, top predictors were UH0-3km and STP for 
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tornadoes; UH2-5km and SHIP for severe hail; and UH2-5km, UH0-3km, and maximum upward 

velocity for severe wind. I also found, as hypothesized, that RFs learned positive relationships 

between observed severe weather and most storm and index variables (e.g., UH2-5km, UH0-

3km, maximum vertical velocity, STP, SHIP, simulated reflectivity) for each hazard. Many of 

these relationships were nonlinear, but only some (e.g., UH2-5km and SHIP for severe hail, 

maximum vertical velocity for severe hail and wind) were S-shaped. The learned S-shaped 

relationships between UH2-5km and severe hail and wind probability are consistent with the use 

of UH2-5km thresholds to forecast severe weather (e.g., Sobash et al. 2011, 2016b, 2019; Gallo 

et al. 2016; Loken et al. 2020). However, the continuous nature of the RFs’ learned S-shaped 

relationships suggests that the commonly-used thresholding process is oversimplified, since not 

all values above (or below) the threshold are equivalent.  

Not all learned relationships were intuitive or easy to explain. For example, I found that 

larger values of (spatially-smoothed, daily maximum) simulated reflectivity did not substantially 

increase severe hail probabilities but increased severe wind probabilities more notably. Why this 

was the case will have to be explored in future work.  

Somewhat surprisingly, I found that single variables were generally much more important 

than multi-variable predictor combinations, although multivariate relationships were not 

negligible. I found that the most important multivariate relationships involved two storm fields or 

one storm and one index field. Specifically, I found that RFs calibrated their probabilities by 

considering the precise value of certain multi-variable combinations at the same and/or 

neighboring grid points. For example, with only a modest value of UH2-5km forecast at the 

point of prediction, RFs still learned to increase severe hazard probability if UH2-5km was large 

at a neighboring grid point or if a relevant index variable (or another storm variable) was large at 
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the point of prediction. This is an important finding because it suggests that the RFs learned to 

implicitly account for model error.  

 

2. Summary and discussion of key lessons learned 

 This dissertation enhanced our understanding of how to construct RFs for next-day 

precipitation and severe weather prediction, how RFs compare to other top-performing post-

processing techniques and human forecasts, and how RFs use ensemble data to produce skillful 

severe weather forecasts. Specifically, we have learned the following:  

 

1. For next-day precipitation and severe weather forecasts, a simple but effective way of 

preprocessing hourly CAE data is to take a 24-h minimum/maximum/standard deviation, 

upscale to a coarser grid, and use grid-point-based ensemble mean fields. Temporally 

aggregating 24-h data helps account for model uncertainties in time, while upscaling 

helps account for model uncertainties in space. Grid-point-based predictors allow for 

skillful predictions even when simulated and observed storms do not perfectly 

correspond.   

 

Previous studies (e.g., Gagne et al. 2014; Herman and Schumacher 2018c; Hill et al. 

2020) have used point-based ensemble data at multiple forecast hours as RF predictors. While 

such a method has demonstrated skill, it assumes perfect ensemble member timing information. 

In contrast, temporally aggregating ensemble data uses less predictors and does not require 

modeled convection or environments to be perfectly simulated in time. Further, temporal 

maximum storm variables (e.g., UH2-5km) have repeatedly shown a strong association with 
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observed severe weather (e.g., Kain et al. 2010; Sobash et al. 2011). Spatial upscaling further 

reduces the number of predictors and does not penalize slight spatial errors of ensemble 

members’ simulated convection. Indeed, upscaling makes it computationally feasible to use grid-

point-based predictors, which are advantageous because they do not require perfect 

correspondence between observed and simulated storms and they allow for the easy creation of 

2-dimensional output probabilities.  

 

2. RF-based post-processing benefits convection-parameterizing ensembles and lower 

precipitation thresholds more than CAEs and higher precipitation thresholds, 

respectively. Convection-parameterizing ensembles receive more benefit than CAEs 

because they have more initial biases, while the lower precipitation thresholds are 

climatologically more common and thus provide more training examples from which the 

RF can learn.  

 

This finding has several implications for how RFs are used operationally. First, it 

suggests that RFs may be most helpful to forecasters in the most common/routine forecasting 

situations and may (comparatively) struggle with producing calibrated guidance for rare events. 

Since the rarest forecasting situations (e.g., extremely high-end precipitation, EF-5 tornadoes, 

etc.) also tend to be the most impactful, this finding suggests that RFs (human forecasters) may 

provide the least (most) value in the most high-end situations. Indeed, the Weather Prediction 

Center (WPC) is already beginning to view the relationship between human forecaster and RF as 

dynamic depending on the nature of the expected event (e.g., Novak et al. 2021). With that said, 

RFs are still skillful even for higher-end events and more work is needed to determine exactly 
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when RFs add most and least value to human forecasts (see the Recommendations for future 

research section below).  

The above finding also suggests that RFs may be particularly useful in situations when 

CAM or CAE data is unavailable, such as when forecasting at multi-day lead times using a 

global ensemble (e.g., as in Hill et al. 2020). Of course, RFs still provide considerable value to 

CAE forecasts, especially in the domain of severe weather forecasting (see point 4 below), since 

severe weather hazards are not explicitly simulated by the CAE.   

 

3. Only approximately one season of training data is necessary to obtain skillful and 

useful RF precipitation forecasts, even for relatively “rare” events, such as 3-inch-or-

greater precipitation.  

 

This is an important finding that has implications for the use of RFs in operations. Since 

dynamical models and ensembles frequently undergo updates, long multi-year data archives for 

any given configuration are rare. Fortunately, the results in this dissertation suggest that they are 

not strictly needed—at least for precipitation—since only a relatively modest amount of training 

data is required to obtain skillful RF forecasts.  

 

4. Automated next-day RF severe weather forecasts are better than corresponding 

calibrated-UH forecasts and as good or better than SPC human forecasts for all hazards. 

For the significant severe hazards, most of this benefit comes from RFs’ ability to 

forecast continuous probabilities below 10%. However, RFs still perform well even when 

their probabilities are discretized to match the probabilities used by the SPC and when 
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continuous SPC probabilities are compared against continuous RF probabilities. Severe-

weather-predicting RFs perform best for wind and hail in the warm season in the central 

and eastern U.S. and struggle more with tornado prediction, especially in the west, where 

tornado reports are much rarer. 

 

This finding is important because it suggests that, for next-day severe weather forecasts, 

RFs not only outperform a top non-ML method, but also human-generated forecasts in many 

situations. Indeed, the work in Chapter 3 is among the first to equitably compare RF and SPC 

forecasts, and it shows that RFs have begun to achieve super-human performance in some next-

day severe weather forecasting situations (e.g., warm season severe hail and wind prediction). 

The work in Chapter 3 also suggests that RFs could improve the utility of the SPC’s next-day 

significant severe hazard forecasts by facilitating the creation of continuous probabilities—which 

the SPC currently does not provide. At the same time, Chapter 3 suggests that RFs have a much 

more difficult time with predicting tornadoes compared to severe wind and hail; thus, more 

sophisticated methods are likely required to achieve clearly superior RF tornado forecasts (see 

Recommendations for future research below).  

 

5. Ensemble mean predictors are slightly more skillful than individual member 

predictors, even for an “ensemble of opportunity” whose members have different 

climatologies and biases. The reason is that, for a given forecast field, the ensemble 

mean has a clearer relationship with observed severe weather than any individual 

ensemble member forecast.  
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 The implication of this finding is straightforward: to maximize RF skill, RFs should be 

trained using ensemble mean variables as opposed to predictors from individual ensemble 

members. However, the caveat is that RFs using individual member predictors can provide 

useful information about the importance of different members’ raw forecast fields, which can 

potentially alert model developers to specific members’ strengths and deficiencies. 

 

6. RFs emphasize different, but physically-relevant, fields for each hazard. Overall, storm 

predictors are found to be most important, followed by index and then environment 

predictors. However, the most skillful RFs consider both storm and index predictors.  

 

 The work in Chapter 4 suggests that RFs emphasize similar variables as human 

forecasters to make their predictions. For tornadoes, the most important RF predictors are UH0-

3km, UH2-5km, STP, and 0-1km SRH. For severe hail, the RF emphasizes SHIP, UH2-5km, 

UH0-3km, and upward and downward vertical velocity, and for severe wind prediction, the RF 

relies most on UH2-5km, UH0-3km, upward and downward vertical velocity, simulated 

reflectivity, and longitude. For the most part, these predictors are intuitive, as many of these 

variables have been independently shown to be skillful severe weather hazard predictors. The 

result is an important one, then, not because it necessarily identifies new severe weather 

predictors, but because it fosters trust that the RFs are primarily relying on ensemble data that is 

known to be important for severe weather prediction.  

With that said, the RFs also provide some useful insights into the forecasting process. For 

example, they suggest that upward and downward vertical velocity are best used to enhance 

probability of detection of severe wind and hail, and they hint that other variables (e.g., UH2-
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5km and upward and downward vertical velocity) are more useful for severe wind forecasting 

than simulated maximum wind speed itself. It is also interesting that, overall, RFs learn to 

emphasize the storm variables but also learn to assign non-negligible “weight” (or relative 

consideration) to index variables. This suggests that RFs place a high degree of trust in the 

simulated storms but also recognize that these simulated storms do not always adequately reflect 

reality.    

 

7. Severe-weather-predicting RFs learn to use predictors in complex but intuitive ways. 

For each hazard, they emphasize storm and index predictors at the point of prediction 

but also learn to consider other relevant variables at nearby grid points. Importantly, 

rather than requiring UH2-5km to exceed a static threshold, RFs calibrate their 

probabilities by considering the precise value of UH2-5km (and other storm predictors) 

in the context of other variables at the point of prediction and neighboring points. For 

example, the same marginal value of UH2-5km can help increase RF hail probabilities if 

the significant hail parameter (SHIP) is large (e.g., greater than 2) or decrease RF hail 

probabilities if SHIP is near 0. Similarly, UH2-5km can increase hail probabilities at a 

point if forecast UH2-5km at that point is 0 if the UH2-5km at neighboring grid points is 

relatively large. This suggests that RFs, like human forecasters, learn to account for 

model errors when formulating their forecast probabilities.   

 

This finding is important because it demonstrates that RFs use ensemble data in a similar 

manner as human forecasters—with the understanding that the underlying dynamical model is 

imperfect and that the precise values of ensemble forecast variables matter. Other, non-ML 
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automated severe weather guidance products (e.g., Sobash et al. 2011, 2016b, 2019; Gallo et al. 

2016) simply don’t function this way. In general, they require UH2-5km (or another storm 

variable, such as maximum vertical velocity) to exceed a given threshold and thus cannot 

distinguish between two similar values below (or above) the given threshold. This dissertation 

shows that not only can RFs distinguish between two similar UH2-5km values, but they can also 

distinguish between the same UH2-5km value in differing environments. While human 

forecasters may do this to a degree (e.g., by discounting a low (high) value of UH2-5km in the 

presence of a very (un-)favorable environment), RFs excel at accurately quantifying the impact 

of the precise set of variables. Although more work is needed on the subject, it is likely that this 

advantage of precise calibration is what gives RFs an edge over human forecasters in many 

severe weather forecasting situations.  

  
 
3. Recommendations for future research 
   

This dissertation described techniques for creating and analyzing next-day, random 

forest- (RF-) based high-impact weather forecast guidance. In doing so, it laid a foundation on 

which future work should build. One obvious avenue for future research would be to extend the 

analysis to a wider range of spatiotemporal scales, since this dissertation focused exclusively on 

next-day lead times and spatial scales. Indeed, research is already beginning to investigate how 

to use machine learning (ML) and/or deep learning to better predict high-impact weather at lead 

times of 90 minutes or less (e.g., Lagerquist et al. 2017, 2020), 0-3 hours (e.g., Flora et al. 2021), 

1-3 days (e.g., Herman and Schumacher 2018c; Hill et al. 2020), and 1-4 weeks (e.g., Scheuerer 

et al. 2020). Future work should explicitly compare the benefits of RFs at each scale and 

interrogate how different predictors are used at the different scales. This type of analysis should 
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provide insights into high-impact weather predictability. Relatedly, future work may wish to 

examine methods of “blending,” or transitioning, guidance from one scale to another, which may 

be beneficial for operational use. Indeed, it is conceivable that, in the not-too-distant future, 

multiple ML products will collectively enable the production of continuously-updating hazard 

probabilities from lead times of months to minutes. Such a vision would fit nicely into the 

Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 2018) paradigm.  

 Another important avenue for future research is to examine the impact of including more 

types of predictors than just NWP forecast variables. For example, it is possible that observed 

radar, satellite, and sounding data will enhance RF forecast skill at next-day (and shorter) lead 

times. Future work should investigate the best ways of “summarizing” this information to RFs or 

other ML algorithms. The learned importance of observed and NWP predictors, respectively, 

should also be examined to enhance our understanding of high-impact weather predictability. 

Of course, future work should continue exploring how to create better ML predictors 

from pure CAE forecast data. Since a storm’s morphology is related to the hazards it produces 

(e.g., Gallus et al. 2008; Smith et al. 2012; Thompson et al. 2012), it is speculated that explicit 

mode-related predictors could improve RF hazard prediction. Thus, it is conceivable that a future 

severe-weather-predicting RF could achieve greater skill by considering automated mode 

guidance from a second, mode-predicting ML system (e.g., Jergensen et al. 2020).   

A final, but crucial, area for future research is determining when and how RFs (and other 

ML guidance products) add value to human forecasters. For example, in cases where RFs are 

used operationally, it is currently assumed that they provide most value on the lowest-impact 

days (e.g., Novak 2021). While this makes sense based on results from this dissertation (i.e., that 

RFs are most skillful for the most frequent events, which tend to be less impactful), research has 
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not yet fully examined exactly when and how RFs provide most and least value to humans. A big 

part of this research will involve further testing RF (and interpretability) products in real-time 

testbed (e.g., Gallo et al. 2017; Clark et al. 2021) and operational environments. More in-depth, 

situation-specific comparisons between human and RF forecasts are also planned for the near 

future.  
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