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Abstract 

The redistribution of energy and materials across ecosystem boundaries (i.e. resource 

subsidies) can have substantial consequences for ecosystem processes but the magnitude of these 

effects are known to vary. Since most investigations are conducted at local spatial scales our 

understanding of whether, and how, geography underpins this variation is limited. Aquatic 

insects that metamorphose into terrestrial adults, shuttle resource subsidies from aquatic 

ecosystems to terrestrial ecosystems. My dissertation explores how aquatic insect resource 

subsidies can vary geographically because of regional differences in 1) the shape of aquatic 

ecosystems, 2) the trait-composition of aquatic insect communities, and 3) the quantity of insect 

biomass exported from streams and rivers. Finally, to integrate these findings with previous 

studies, I also explore geographical variation in scaling functions that can be used to transfer 

information from one scale to another.  

In chapter one, I investigate how climate, topography, lithology, and vegetation could 

drive variation in stream network geometry and constrain the spatial extent of aquatic insect 

subsidies at the continental scale. The geometric properties of stream networks could influence 

the spatial extent of aquatic subsidies by influencing the degree of contact between the water and 

land. I found that some level of aquatic insect subsidies can travel throughout the entire 

terrestrial ecosystem and is strongly influenced by the drainage density (the length of streams per 

unit watershed area) of the stream network. In turn, drainage density varied across the contiguous 

US and was strongly influenced by overland runoff. These results suggest that the spatial extent 

of aquatic insect subsidies in terrestrial ecosystems varies geographically because of the 

geometry of the stream networks.  
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In chapter two, I synthesize aquatic biomonitoring and biological trait data to quantify the 

relative importance of several environmental gradients on the potential spatial and temporal 

characteristics of aquatic insect subsidies. Species traits related to the development and dispersal 

of adult aquatic insects should determine their availability to terrestrial consumers. I found trait 

composition of benthic macroinvertebrate communities varies among hydrologic regions and 

could affect how aquatic insects transport subsidies as adults. Further, anthropogenic impacts 

could modify the natural variation in community trait composition by decreasing the frequency 

of individuals with adult flight and extending the distance subsidies travel into the terrestrial 

ecosystem. These results suggest that natural and anthropogenic gradients could affect aquatic 

insect subsidies by changing the trait composition of benthic macroinvertebrate communities 

across large spatial scales.  

In chapter three, I investigate how the quantity of aquatic insect subsidies exported form 

streams and rivers in the contiguous United States could be altered by climate change. I estimate 

that streams and rivers can export 78,197 (95% PI: 2,155 - 2.19 x 106) metric tons of insect 

biomass and found that the effects of climate change could lead to as much as a 250% increase in 

some regions while others could experience a 50% decrease. I also show that these changes 

could resonate through terrestrial ecosystems and have consequences for common avian aerial 

insectivores by altering the amount of aquatic insect subsidies available to them. Collectively, 

these results suggest that climate change effects on one ecosystem will resonate throughout other 

ecosystems due to cross-ecosystem linkages.  

In my last chapter, I assess whether simple scaling functions can accurately transfer 

information from one scale of observation to another. Scaling functions can provide a concise 

description of scale dependency and improve our ability to synthesize research conducted at 
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different scales. I quantified spatial pattern of hydrogeomorphic habitat patches in riverine 

landscapes and investigated how it changes with different scale components: spatial extent, grain 

size, and thematic resolution. I found each component of scale influenced the spatial pattern in 

river networks and, when predictable, scaling functions took linear, logarithmic, or power forms. 

Contrary to previous findings from other, well-studied landscapes, our results suggest the effects 

of changing spatial grain may be less predictable than changing spatial extent and thematic 

resolution. Together, these results support the notion that scaling relationships in riverine 

landscapes operate differently than other ecosystems because of their dendritic form. 
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Abstract 

Emergent aquatic insects transport aquatic-derived resources into terrestrial ecosystems 

but are rarely studied at landscape or regional scales. Here, we investigate how stream network 

geometry constrains the spatial influence of aquatic insect subsidies in terrestrial ecosystems. We 

also explore potential factors (i.e. climate, topography, soils and vegetation) that could produce 

variation in stream network geometry and thus change the extent of aquatic insect subsidies form 

one region to another. The “stream signature” is the percentage of aquatic insect subsidies 

traveling a given distance into the terrestrial ecosystem, relative to what comes out of the stream. 

We use this concept to model the spatial extent (area) and distribution (spatial patterning) of 

aquatic subsidies in terrestrial ecosystems across the contiguous US. Our findings suggest that at 

least 8% of the subsidies measured at the aquatic-terrestrial boundary (i.e. the 8% stream 

signature) are typically transferred throughout the entire watershed and that variation in this 

spatial extent is largely influenced by the drainage density of the stream network. Moreover, we 

found stream signatures from individual stream reaches overlap such that the spatial extent of the 

8% stream signature often includes inputs from multiple stream reaches. Landscape-scale stream 

network characteristics increased the area of overlapping stream signatures more than reach-

scale channel properties. Finally, we found runoff was an important factor influencing stream 

network geometry suggesting a potential effect of climate on aquatic-to-terrestrial linkages that 

has been understudied.  

 

Keywords: Aquatic Insects, Confluences, Meanders, Resource Subsidy, Spatial Patterns, Stream 

Networks, Sub-basins 
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Introduction 

Aquatic and terrestrial ecosystems comprise a meta-ecosystem linked by flows of 

material and energy across their boundaries (i.e. “resource subsidies”, Polis et al. 1997, Loreau et 

al. 2003, Schindler and Smits 2017). Emergent aquatic insects counteract gradational forces and 

transport aquatic-derived resource subsidies to terrestrial ecosystems (Baxter et al. 2005, 

Schindler and Smits 2017). These insects, largely members of the orders Diptera 

(Chironomidae), Ephemeroptera, Plecoptera, Trichoptera and Odonata (Baxter et al. 2005), begin 

life as aquatic larva and metamorphose into winged, terrestrial adults. Meta-analysis have 

demonstrated the effects of these aquatic insect subsidies in terrestrial ecosystems can be large 

(Marczak et al. 2007, Allen and Wesner 2016, Montagano et al. 2018) but they are typically 

studied along individual stream reaches (Sabo and Hagen 2012, Muehlbauer et al. 2014). 

Accordingly, the factors that govern the spatial influence of aquatic subsidies at larger spatial 

scales (i.e. within and between watersheds) are not well known.  

At landscape scales, multiple stream reaches form dendritic networks that enhance the 

amount of physical contact between aquatic and terrestrial systems (Turner 1989, Polis et al. 

1997, Gratton and Vander Zanden 2009). The degree a watershed is dissected by streams relates 

to the amount of terrestrial habitat in proximity to the water’s edge (Baker et al. 2007). Stream 

networks also include geomorphological features, such as confluences junctions, sub-basin 

divides and meander bends, that bring individual stream reaches near one another (Sabo and 

Hagen 2012). These locations can form discrete resource patches for terrestrial consumers that 

have elevated and/or more stable subsidy inputs because insects that emerge from different 

stream reaches may overlap when they enter the terrestrial ecosystem (Moore et al., 2015; Power 

& Rainey, 2000). Sabo and Hagen (2012) have theoretically demonstrated that stream network 
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geometry is important for defining the spatial extent and distribution of aquatic insect subsidies 

in terrestrial landscapes, but this theory remains to be studied in real stream networks (but see 

Gratton and Vander Zanden 2009, Bartrons et al. 2013).  

Following the theoretical work of Sabo and Hagen (2012) we expect that the spatial 

extent of aquatic insect subsidies is related to drainage density, and that the number of 

confluences, sub-basin width and channel sinuosity influences how they are distributed in 

watersheds. If components of stream network geometry vary among real stream networks this 

could dive predictable differences in the spatial pattern of aquatic insect subsidies. We also 

expected components stream network geometry are related to basin features, such as climate, 

hydrology, soils, topography and vegetation (Moglen et al. 1998, Smith et al. 2013, Sangireddy 

et al. 2016). If the relationship between basin features and stream network geometry varies 

regionally, it could highlight drivers macroscale patterns in aquatic-terrestrial resource exchange 

(Heffernan et al. 2014).  

Spatial patterning of aquatic insect subsidies may also be influenced by the distance they 

travel from the stream. The stream signature concept defines a ecological stream width as the 

percentage of aquatic subsidies that expected to travel a lateral distance into watersheds 

(Muehlbauer et al. 2014). For example, an 8% stream signature refers to the distance 

perpendicular to the stream where 8% of the subsidies measured at the water’s edge can be 

detected. This distance-decay relationship is derived from a meta-analysis and modeled as an 

inverse power function that reflects empirical observations (Muehlbauer et al. 2014). 

Importantly, this model produces distance estimates that can be used to create boundaries, 

“stream signature buffers”, around individual streams that encompass the terrestrial area that 
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should receive the majority of the aquatic insect subsidies without directly quantifying 

emergence or deposition. 

Here use statistical modeling approaches and Muehlbauer et al. (2014) “stream signature 

concept” to extend Sabo and Hagen’s (2012) theoretical findings to real stream networks across 

the contiguous United States (CONUS). We first investigate the relative importance of each 

component of stream network geometry in driving the spatial pattern of aquatic insect subsides in 

watersheds. We then create a suite of models to quantify the relationship between several basin 

features and components of steam network geometry. These models allowed us to assess the 

relative importance of each basin feature for each component of stream network geometry and 

determine whether these relationships differ among major hydrologic regions of the CONUS. 

We use the term “spatial extent” to describe the area of the stream signature (i.e. footprint) 

relative to the area of the watershed (Sabo and Hagen 2012) and “spatial distribution” to describe 

the spatial heterogeneity of aquatic insect subsidies in the terrestrial landscape. We hypothesize 

that 1) stream network geometry controls the spatial extent and distribution of aquatic subsidies 

in terrestrial ecosystems and 2) regional constrains on these aquatic-terrestrial interactions 

imposed by stream network geometry result from regional differences in climate, hydrology, 

topography, soils and vegetation.   

Methods  

Stream networks  

 The National Hydrography Dataset Plus Version 2 (NHDPlusV2) integrates features from 

the Medium Resolution (1:100K) National Hydrography Dataset, National Elevation Dataset and 

Watershed Boundary Dataset to produce digital stream networks (“flowlines”) for the CONUS 

(http://www.horizon-systems.com/nhdplus; McKay et al. 2012; Moore & Dewald 2016). This 
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dataset provides a spatial framework to assess macroscale processes in aquatic ecology. The 

geographic units (i.e. Vector Processing Units; VPU) of NHDPlusV2 generally follow major 

hydrologic regions of the US that differ in climate, topography, soils and vegetation 

characteristics (McKay et al. 2012). We randomly selected, 35 fourth-order stream networks 

from each of the 21 hydrologic regions (N = 735; Figure 1) for our analysis.   

 

Spatial influence of aquatic insect subsidies 

We created four stream signature distances buffers representing different levels of 

aquatic insect subsidies (i.e. 34, 21, 13 and 8% stream signatures) at different distances (i.e. 1, 

10, 100, 1000m) (Figure 2D; Muehlbauer et al. 2014) in ArcGIS (Version 10.4 Redlands, CA). 

We used the inverse power function derived from a meta-analysis of 109 studies and chose 

coefficients for “all organisms” (i.e. caddisflies, mayflies, stoneflies and midges) dispersing from 

an ecosystem and with “medium productivity” to reflect average conditions (Muehlbauer et al. 

2014). Although stream signature distance is likely influenced by the identity of the subsidy 

(Muehlbauer et al. 2014) and boundary conditions (Greenwood and Booker 2016), these data 

were unavailable at our study sites; thus we assume no variation in mean flight strength among 

communities and completely permeable boundaries. Further, uniform buffers were chosen 

deliberately to isolate the effects stream networks from the biology.   

We quantified the “spatial extent” of aquatic insect subsidies as the proportional area of 

the stream signature buffer relative to the watershed area (Figure 2A). Variation in the 

distribution of aquatic insect subsidies within watersheds can occur when stream signature 

buffers overlap at meander bends, confluences or sub-basin divides (Sabo and Hagen 2012). We 

quantified the effects of network configuration (sub-basin divides and confluence) and channel 
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planform (sinuosity) on the spatial distribution of insect subsidies separately as proportions of 

the spatial extent. For network configuration we quantified the total area of overlapping stream 

signature buffers within the spatial extent and used an area weighted to derive a mean stream 

signature for the network (Figure 2B). For channel planform we took the difference in area 

between a stream signature buffer created around a straight channel and the same buffer created 

around the actual NHDPlusV2 flowline (Figure 2C). It was not possible to directly count the 

number of overlapping stream signatures resulting from channel planform, so comparisons 

between network configuration and channel planform were based on the watershed area 

receiving > 1 stream signature.  

 

Characterizing stream network geometry  

 

For each stream network we quantified the geometrical components that have been 

theoretically shown to influence the spatial extent and distribution of aquatic subsidies (Figure 

2A, Sabo and Hagen 2012). Drainage density (𝐷𝑑) is the total length of streams within a network 

divided by the catchment area (Horton 1945) and expresses how well an area is dissected by 

rivers; sinuosity (𝜆) is defined at as the length of the NHDPlusV2 flowline divided by the valley 

length (i.e. straight line length) and captures the curvature of a stream channel; sub-basin width 

(𝑊𝑏) is calculated as the length of the sub-basin divided by the sub-basin area and captures the 

distance separating adjacent tributaries; and confluences (𝐶) occur when two stream reaches 

merge. Since sinuosity and basin width are measured for every reach within a stream network, 

we derived network scale equivalents as length-weighted mean and median, respectively. All 

variables were derived from the NHDPlusV2 dataset using the StreamNetworkTools R-Package 

(https://github.com/dkopp3/StreamNetworkTools_git).  

https://github.com/dkopp3/StreamNetworkTools_git
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Characterizing climate, topography, soil and vegetation  

We identified several basin features that could influence the geometry of stream 

networks and indirectly contribute to spatial patterns of aquatic subsidies. Cumulative mean 

annual runoff (𝑅) is the sum of the 1971-2000 runoff grids derived by McCabe & Wolock (2011) 

within the NHDPlusV2 catchment (McKay et al. 2012). We divided 𝑅 by catchment area such 

that units are millimeters per square kilometer (mm km-2). Slope estimates are non-negative and 

unitless and derived from an elevation smoothing technique to ensure a smooth transition 

between headwater or confluence and network outlet (McKay et al. 2012). As an artifact of the 

elevation smoothing technique, the lowest slope for a reach that could be obtained was 0.0001. 

Reaches with unidentifiable slopes typically made up less than 1% of all networks within the 

hydrological regions. We aggregated identifiable slopes to the network-scale using a length-

weighted mean of reaches. Percent bare ground was quantified from the National Land Cover 

Database (NLCD 2011; https://www.mrlc.gov/) supplied with NHDPlusV2.   

The whole soil erodibility factor quantifies the susceptibility of soil particles to 

detachment and movement by water while accounting for rock fragments. We derived an area-

weighted mean erodibility factor (𝐾𝑤) from State Soils Geographic Dataset (STATSGO2; 

https://websoilsurvey.nrcs.usda.gov/). First, we obtained a 𝐾𝑤 factor for each STATSGO2 map 

unit using the soil component percentages as a weighting factor. Second, we conducted an 

intersection in ArcGIS (10.4.1, ESRI Redlands CA) between the STATSGO2 map unit polygons 

and NHDPlusV2 catchments to weight each map unit value by their shared area. STATSGO2 

components with unavailable 𝐾𝑤 factors (e.g. rocky outcrop, urban areas) were assigned a value 

of zero (i.e. low erodibility potential).  
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Statistical Analysis  

Statistical analysis proceeded in three parts (Appendix S1: Fig S1). First, we used a 

simple Bayesian regression model to 1) establish a quantitative relationship between the stream 

network geometry variables (predictors) and the spatial extent or mean signature (responses) and 

2) evaluate how these relationships change with different stream signature buffers (34%, 21%, 

13% and 8%). We chose a normal likelihood and minimally informative priors for these models 

(Appendix S1). Although spatial extent is expressed as a proportion, we chose the normal 

likelihood because values can be greater than 1 if the stream signature buffer area exceeds the 

catchment area. We compared the effects of channel planform (i.e. sinuosity) versus network 

configuration (i.e. overlap at confluences and sub-basin divides) on the proportion of the spatial 

extent receiving elevated aquatic insect subsidies using an intercept only model with a beta 

likelihood. Next, we used mixed-effects Bayesian models, to assess regional differences in 

stream network geometry and the relative importance of the basin features in predicting them. 

These models included vector processing unit (VPU) as a random effect, stream network basin 

features (i.e. runoff, erodibility, slope and vegetation) as fixed effects and stream network 

geometry variables as responses. We used a backwards-stepwise approach to generate a suite of 

competing models and selected the best preforming models for each response using wAIC 

(Watanabe 2010).  Last, we modeled the relationship between runoff and drainage density as a 

random effect to assess regional variability in this relationship. For each set of models, we 

centered and standardized variables to make comparisons of parameter values across different 

stream signature buffers and regions. We provide a more detailed description of our modeling 

approach in Appendix S1.  
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The spatial extent models were fit using Maximum a posteriori fitting due to their 

simplicity (McElreath 2016). The remaining, more complex models were estimated using 

Hamiltonian Monte Carlo (HMC). We fit all models in program R (Version 3.5), using the map 

or map2stan (HMC) functions in “rethinking” package (McElreath 2016) or the stan_betareg 

function in “rstanarm” package (Goodrich et al. 2018). For each model we sampled from 4 

independent chains using 10,000 sampling iterations with a 5,000-iteration warmup. We visually 

observed trace plots for convergence of the chains and used the mean observed verses expected 

ratio and R2 to assess goodness of fit.  

Results  

Aquatic insect subsidies and stream network geometry 

The mean spatial extent of the 8% stream signature covered 100% of the watershed 

(Table 1) but higher stream signatures (i.e. 13, 21 and 34%) remained closer to stream channels 

and covered smaller proportions of the watershed (i.e. 15, 1, and 0.2%, respectively; Table 1).  

Drainage density was consistently the most important variable predicting the spatial extent of all 

stream signatures and the number of confluences, mean sinuosity and median sub-basin width 

had little explanatory power (i.e. β > |0.001|) except at the lowest stream signatures (i.e. 8 and 

13%).  

We found stream signatures from different reaches within the same network overlapped 

as many as 37 times (mean ±SD = 9.04 ± 2.8) and that the entire spatial extent could receive 

subsidies form multiple locations (mean = 2.22, CoV = 0.24). However, excluding the 8% stream 

signature, areas of overlap were considerably small relative to the spatial extent (Table 1). Of the 

stream network geometry characteristics, sub-basin width was typically the most important for 

predicting the mean overlap at the higher stream signature percentages (β > 0.50; Table 1). In 
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general, network configuration (sub-basin width and confluences) contributed more to the area 

receiving elevated amounts of aquatic insect subsidies than channel planform (Figure 3).   

Regional patterning was present in the spatial extent of aquatic insect subsidies and 

overlapping stream signatures throughout the CONUS (Figure 4). At the 13% (100m) stream 

signature we found the Lower Mississippi hydrological region (VPU08) had the highest spatial 

extent of aquatic insect subsidies (i.e. 95% CrI = 20, 22% of the watershed; Figure 4A) and 

among the highest average overlap between stream signatures (95% CrI = 1.08, 1.09; Figure 4B). 

Alternatively, the Texas and the Souris-Red-Raniy hydrological regions (VPU12 and 09, 

respectively) had the lowest spatial extent (95% CrI = 0.09, 0.11) (Figure 4A) and number of 

overlapping stream signatures (95% CrI = 1.03, 1.04 and 1.04, 1.04, respectively) (Figure 4B). 

We also found the effects of network configuration (i.e. sub-basin width and confluences; Figure 

4C) and channel sinuosity (Figure 4D) varied regionally with the latter being most prevalent in 

the Midwestern US.   

 

Stream network geometry and basin features 

Intercept estimates for the Bayesian mixed effects models indicate differences in stream 

network geometry components among hydrologic regions (Figure 5A-D; Table S1). Specifically, 

the Lower Mississippi hydrologic region (VPU 08) had high values for both drainage density (𝐷𝑑 

= 0.94 [0.87, 1.02], mean [90%CrI]; Figure 5A) and the number of confluences (𝐶 = 164.25 

[136.44, 198.52]; Figure 5C) and low values for median effective basin width (𝑊𝑏  = 509.4110 

[462.80, 561.20]; Figure 5B). Alternatively, the Texas hydrologic region (VPU12) had relatively 

low drainage density (𝐷𝑑 = 0.64 [0.59, 0.7]; Figure 5A) and high values of median effective 
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basin width (𝑊𝑏  = 980.95 [907.57, 1057.27]; Figure 5B). Estimates for the intercepts and 

90%CrI for other regions are provided in Appendix S1: Table S2. 

Runoff and basin slope were included in the best preforming models for each 

component of stream network geometry (Table 2). The drainage density (𝐷𝑑) model included all 

four basin features (R2 = 0.44) and was most strongly influenced by mean annual runoff (𝛽𝑅 = 

0.22 [0.17, 0.26]) while the effective basin width model (𝑊𝑏) included three basin features (R2 = 

0.26) and was most strongly influenced by basin slope (𝛽𝑆 = –0.07 [–0.09, –0.04]).  Lastly 

confluence number(𝐶) and sinuosity (𝜆) models both included two variables (R2 =0.37 and 0.45, 

respectively) and indicated runoff had a greater or equal influence on the response compared to 

basin slope. Model selection results are provided in Appendix S1: Table S2. 

 

Runoff and drainage density  

 Runoff was an order of magnitude more important than the other variables we considered 

for predicting drainage density at the national scale (Table 2).  Our Bayesian mixed effects 

model revealed the relationship between drainage density and mean annual runoff varied across 

the US (Figure 5E) and were consistently positive. The Lower Colorado (VPU15, 𝛽𝑅  = 0.51[0.2, 

0.82]), Northeast (VPU 01, 𝛽𝑅  = 0.45 [0.30, 0.59]), Rio Grande (VPU13; 𝛽𝑅  = 0.36 [0.01, 0.71]) 

and Souris-Red-Rainy (VPU09, 𝛽𝑅  = 0.35 [0.02, 0.68]) hydrological regions had the strongest 

relationship between drainage density and mean annual runoff. Regions without strictly positive 

90% creditable intervals did not have strong evidence for a relationship between drainage density 

and runoff were generally found in the western US (Figure 5E).  
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Discussion  

 In spite of many studies showing the importance of spatial flows of resources between 

aquatic and terrestrial ecosystems (Baxter et al. 2005, Richardson and Sato 2015, Ramey and 

Richardson 2017, Subalusky and Post 2018), few have done so in a spatially explicit manner (but 

see Sabo and Hagen 2012, Bartrons et al. 2013). Even fewer have studied resource exchanges at 

regional and larger scales to explore factors that constrain the effects of resource subsidies in 

recipient ecosystems (but see Montagano et al. 2018). In exploring how stream network 

geometry contributes to the spatial extent and distribution of aquatic insect subsidies in terrestrial 

ecosystems, we found that a non-trivial portion of aquatic subsidies can be detected throughout 

the entire watershed because streams exist in a dendritic network. Moreover, we found aquatic 

inputs from multiple locations within the stream network overlap to create discrete areas elevated 

or more stable subsidy inputs, and that these hotspots are incredibly common in watersheds 

studied across the contiguous United States. We also found spatial patterns of aquatic insect 

subsidies were related to stream geomorphological features which differed regionally due to 

runoff, topographical, soil and vegetation conditions. Collectively, these results are striking 

because they suggest that the spatial influence of aquatic insect subsidies on terrestrial 

ecosystems may be greater and more complex than previously acknowledged.   

On average, the 8% stream signature covered the entire watershed meaning it may be 

possible to detect some level of aquatic insect subsidies throughout the entire terrestrial 

ecosystem. Whether this level of aquatic insect subsidies can elicit a detectable response in 

terrestrial communities is unclear. Likely the magnitude of response depends the quantity and 

quality of the subsidy leaving the donor system (Marczak et al. 2007, Marcarelli et al. 2011, 

Subalusky and Post 2018). Unfortunately, continential scale estimates of emergent insect 
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production are unavailable at present, so it was not possible to quntify the level of aquatic insects 

being deposited within the spatial extent of the stream signature. Other sutdies have estimated 

emergence as a fraction of benthic insect production (Gratton and Vander Zanden 2009, Bartrons 

et al. 2013) however and recently global predictions of aquatic secondary production have 

become available (Patrick et al. 2019). Thus, future studies could combine these newly available 

secondary production estimates with the stream signature concept and our spatial extent 

estimates to quantify aquatic insect deposition across broad spatial scales.  Even if the subsidy 

magnitude is small, aquatic insects have higher nutritional value than terrestrial prey for 

terrestrial predators, containing substantially more omega-3 fatty acids (Martin-Creuzburg et al. 

2017, Popova et al. 2017, Twining et al. 2019).  Consequently, aquatic insect subsidies could be 

used by terrestrial organisms disproportionally to their level of input and our study demonstrates 

this could have spatially extensive implications.  

 The dendritic nature of stream networks also causes adjacent stream reaches to near one 

another such that their stream signatures overlap at confluences, along ridgelines and, to a lesser 

extent, at adjacent meander bends (Figure 3). Thus these geomorphological features could 

represent areas of elevated (Sabo and Hagen 2012) or more stable (Moore et al. 2015) sources of 

aquatic insect subsidies, affecting habitat complexity (White et al. 2018), trophic interactions 

(Iwata et al. 2003) and spatial patterns of species diversity (Ramey and Richardson 2017). 

Stream networks are often investigated in the context of meta-populations and have been shown 

to confer stability in aquatic ecosystems through the aggregation of dynamics occurring at 

individual stream reaches (Yeakel et al. 2014, Moore et al. 2015). Here, our overlapping stream 

signatures could parallel these findings for terrestrial ecosystems whereby the variance in insect 

emergence at any single reach is dampened by the others (i.e. meta-stability; Wu and Loucks 



15 

 

1995). Interestingly we found stream signatures from individual stream reaches could overlap as 

many as 37 times in some networks and recommend future research assess the degree of 

asynchrony in aquatic insect emergence among stream reaches within river networks, which can 

be generated by heterogeneity in stream water temperatures (Uno 2016).     

A novelty of this research is using a statistical analysis of data from real stream networks 

to evaluate theory put forth by Sabo and Hagen (2012). Specifically, we confirmed drainage 

density is the most important component predicting the spatial extent of aquatic subsidies while 

confluences, basin widths and channel sinuosity become more important at lower stream 

signature percentages (larger distances) as stream signatures begin to overlap. Drainage density 

describes the amount of contact between aquatic and terrestrial ecosystems; thus it is 

unsurprising that it was the best predictor. Coefficients for confluences, sub-basin width and 

channel sinuosity however begin to differ from 0 at the 21% stream signature (i.e. 100m distance 

from the water’s edge) meaning statistically these network characteristics did not affect the 

spatial extent of higher stream signature percentages because they remained closer to the stream 

channel. We propose overlap occurs between moderate levels (lower stream signatures) of 

aquatic insect subsidies. Contrary to Sabo and Hagen (2012) we found network configuration 

(i.e. confluences and sub-basins) were more important for overlapping stream signatures than 

channel sinuosity (Figure 3). This departure from theory could be driven by the irregularity of 

meanders in real stream networks – very rarely do they fit simplified version Sabo and Hagen 

(2012) needed to make the mathematics tractable – which reduces the interaction between 

adjacent meanders.  This finding may be especially important because few if any studies have 

focused on aquatic insect deposition at confluences and/or subbasin divides.  
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Linking the spatial patterning of aquatic insect subsidies to the geomorphic template of 

the stream network allowed us to make predictions about the relative importance of aquatic 

insect subsidies at regional scales and explore the broad-scale factors that potentially drive 

differences among regions. For example, the Lower Mississippi (VPU08) hydrologic region is 

relatively well dissected by streams, has a high number of confluences and narrow sub-basins. 

Accordingly, we might expect aquatic subsidies to play a more important role in terrestrial 

ecosystems in this region (i.e. cover a large spatial extent and to overlap more often). 

Alternatively, the Texas hydrologic (VPU13) region had relatively low drainage density and 

wide sub-basins and thus could potentially have less extensive dependence on aquatic insect 

subsidies. Rarely have spatial subsidies been placed in a geographic context but as ecologists are 

tasked with addressing problems at increasingly large spatial scales, knowing where cross-

ecosystems linkages are most important could inform management interventions or study designs 

to better understand local ecosystem functions (Loreau et al. 2003, Turner and Chapin 2005, 

McCluney et al. 2014).  

Beyond applying a theory of aquatic-terrestrial linkages to a large-scale geospatial dataset 

spanning the contiguous US and evaluating it statistically, we also found relationships between 

runoff and stream network geometry which could indicate a potential indirect role of climate in 

moderating aquatic-to-terrestrial interactions. In particular, associations between runoff and 

drainage density and confluences have been detected elsewhere (e.g. Smith et al. 2013; Seybold 

et al. 2017) and we found evidence for geographical dependence of this relationship. Indeed, 

others have reported nonlinear relationships (i.e. shifting between positive to negative along a 

continuous precipitation gradients) between drainage density and runoff (Moglen et al. 1998; 

Smith et al. 2013; Sangireddy et al. 2016) that are inconsistent with the positive parameter 
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estimates reported here. Still, the credible intervals for some regions were not strictly positive or 

differing from zero and others were exceptionally large, indicating variation in the drainage 

density-runoff relationship within a hydrologic region. The Pacific Northwest (VPU17) for 

instance spans a precipitation gradient large enough to produce both positive and negative 

relationship observed in other studies (Sangireddy et al. 2016). Consequently, at the resolution of 

our analysis (i.e. hydrologic region), positive associations could mask negative ones when both 

exist across a large spatial scale. Though future efforts are needed to clarify the exact 

relationship between basin features and stream network geometry, the linkage we have 

uncovered here could highlight a potential understudied impact of climate change on aquatic-to-

terrestrial resource exchange that could affect some regions more than others (Larsen et al. 

2016).  

 

Caveats and model assumptions 

A uniform stream signature buffer was appropriate for assessing the spatial influence of 

aquatic subsidies and allowed us to isolate the effects of network geometry, but this approach 

greatly reduces the complexity experienced in nature. Foremost we parameterized the stream 

signature models with general values (i.e. “all taxa” and “medium production”) and sacrificed 

specific estimates of uncertainty driven by regional variation in these parameters (i.e. variation 

driven by the ecology of the systems). Specifically, the relative abundance of emergent taxa with 

different flight capabilities (Vieira et al. 2006) and the level of primary productivity (Marczak et 

al. 2007) should differ within and among stream networks and will change the stream signature 

decay curve (Muehlbauer et al 2014). Moreover we did not consider trophic relays (i.e. indirect 

transfers of aquatic subsidies through trophic interactions) in extending the stream signature 
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within (Schindler and Smits 2017) nor integrate potential effects of land cover on the relative 

permeability of the aquatic-terrestrial boundary (Greenwood and Booker 2016). With respect to 

the latter, Muehlbauer et al. (2014) did not find an effect of terrestrial vegetation structure on 

stream signatures but the data included in the meta-analysis were “poorly quantified” by the 

original source. Moving forward we encourage future studies to use national scale biological 

monitoring surveys (e.g. the US Environmental Protection Agency’s National Aquatic Resource 

Survey) to assess continental scale variation in flight traits, aquatic primary production and 

boundary permeability to better parameterize stream signature models.     

Our analysis relies on the NHDPlusV2 flowlines (McKay et al. 2012) for a spatial 

framework and is thus susceptible to issues caused by the spatial resolution  and original 

digitization of USGS Quadrangle maps. The medium resolution of the hydrography dataset could 

underestimate drainage density and therefore affect our estimates of the extent of the aquatic 

insect subsidies (Benstead and Leigh 2012). Also, planimetric 1:24K maps were generalized to 

fill in gaps in the 1:100K maps to create a seamless hydrography coverage for the CONUS. As a 

result, some inconsistencies in drainage densities are present along township boundaries. 

Currently, there is not scale-based method to resolve this issue (NHDPlus Team, Pers Comm.) 

but visual inspection of the entire NHDPlusV2 dataset did not reveal systematic inconsistencies 

between the hydrologic regions. Thus, we assume they are evenly distributed across the US and 

did not bias our analysis.   

Regardless of these limitations, establishing a link between stream network geometry and 

the spatial influence of aquatic insect subsidies provides a potential explanation of regional 

differences in the importance of subsidies and is a crucial step towards understanding ecosystem 

functioning at landscape scales. More generally, this study provides a framework for uniting 
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meta-analyses with theory and large-scale geospatial datasets which could be used to generate 

novel insights into broad scale patterns in ecology. As ecologists are presented with problems 

occurring at larger spatial scales this approach could become increasingly important.     
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Table 1.1. Spatial extent and mean stream signature with parameter estimates (90% credible 

intervals) for network geometry components. CoV= coefficient of variation 𝐷𝑑 = drainage 

density, 𝐶 = number of confluences, 𝑊𝑏  = median subbasin width and 𝜆 = mean sinuosity 

 

Stream 

Signature 

Buffer 

(Distance) 

National 

Mean 

(CoV) 

Parameter Estimates  

R2 
𝐷𝑑 

(90%CrI) 
𝐶 

(90%CrI) 
𝑊𝑏 

(90%CrI) 
𝜆 

(90%CrI) 

E
x

te
n
t 

o
f 

S
tr

ea
m

 S
ig

n
at

u
re

 8% 

(1000m) 

1.007  

(0.229) 

0.947 

(0.920,  

0.978) 

-0.126 

(-0.149,  

-0.102) 

0.154 

(0.124, 

 0.183) 

-0.165 

(-0.189,  

-0.141) 

0.85 

13% 

(100m) 

0.159  

(0.325) 

1.000 

(0.995,  

1.006) 

-0.005 

(-0.01, 

 0.000) 

0.02 

(0.014,  

0.026) 

-0.039 

(-0.044,  

-0.034) 

0.99 

21% 

(10m) 

0.010  

(0.331) 

1.000 

(1.000,  

1.003) 

0.000 

(-0.001, 

0.000) 

0.001 

(0.001,  

0.001) 

-0.001 

(-0.001,  

-0.001) 

1.00 

34% (1m) 
0.002 

(0.332) 

1.000 

(1.000, 

1.000) 

0.000 

(0.000, 

0.000) 

0.000 

(0.000, 

0.000) 

0.0000 

(0.000,  

0.000) 

1.00 

M
ea

n
 S

tr
ea

m
 S

ig
n

at
u

re
s 

8% 

(1000m) 

2.219 

(0.237) 

0.682 

(0.652,  

0.713) 

0.091 

(0.066,  

0.116) 

-0.323 

(-0.353,  

-0.292) 

 0.83 

13% 

(100m) 

1.060 

(0.025) 

0.255 

(0.200,  

0.310) 

0.012 

(-0.033, 

0.056) 

-0.506 

(-0.561,  

-0.452) 

 0.47 

21% 

(10m) 

1.005 

(0.002) 

0.247 

(0.195,  

0.298) 

-0.007 

(-0.048, 

0.0349) 

-0.559 

(-0.610,  

-0.508) 

 0.53 

34% (1m) 
1.000 

(0.000) 

0.245 

(0.194, 

 0.296) 

-0.006 

(-0.0481, 

0.035) 

-0.510 

(-0.611,  

-0.508) 

 0.53 
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Table 1.2. Parameter estimates (90% credible intervals) for mixed effects models predicting 

stream network geometry components. Models are the best preforming (the lowest WAIC) of a 

suite of competing models generated from a backwards step-wise procedure to iteratively and 

sequentially remove a single predictor variable. Predictor variables were mean-centered and 

standardized prior to analysis. 

Network 

Geometry 

(Yi) 

Basin 

Slope 

(𝛽𝑆) 

Runoff 

(𝛽𝑅 ) 

Erodibility 

(𝛽𝐾𝑤 ) 

Bare 

Ground 

(𝛽𝑉 ) 

Sigma 

(𝜎𝑖) 
R2 

Mean 
(O/E) 

(𝐷𝑑) 

0.08 

(0.06, 

0.11) 

0.22 

(0.17, 

0.26) 

0.07 

(0.06, 

0.09) 

-0.02 

(-0.03,  

-0.01) 

0.21 

(0.2, 

0.22) 

0.44 0.99 

Log (𝜆) 

-0.03 

(-0.04,  
-0.02) 

-0.03 

(-0.04, 
-0.02) 

  

0.55 

(0.52, 
0.57) 

0.45 0.30 

Log (𝐶) 

0.3 

(0.24, 

0.35) 

-1.33 

(-1.45, 

-1.22) 

  

0.06 

(0.06, 

0.06) 

0.37 0.63 

Log (𝑊𝑏) 

-0.07 

(-0.09,  

-0.04) 

-0.05 

(-0.11, 

0.01) 

-0.03 

(-0.05,  

-0.01) 

 

0.26 

(0.25, 

0.28) 

0.26 0.84 
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Figure Captions 

Figure 1. NHDPlusV2 vector processing units (e.g. Hydrologic Regions) for the contiguous US: 

01 = Northeast, 02 = Mid-Atlantic, 03N = South Atlantic North, 03S = South Atlantic South, 

03W = South Atlantic West; 04 = Great Lakes, 05 = Ohio, 06 = Tennessee, 07 = Upper 

Mississippi, 08 = Lower Mississippi, 09 = Souris-Red-Rainy, 10U = Upper Missouri, 10L = 

Lower Missouri, 11 = Arkansas- Red-White, 12 = Texas, 13 = Rio Grande, 14 = Upper 

Colorado, 15 = Lower Colorado, 16 = Great Basin, 17 = Pacific Northwest, 18 = California. 

Points are randomly selected fourth order river networks (N = 735).  

 

Figure 2. A) The spatial extent of an 8% stream signature and components of stream network 

geometry. B) The spatial distribution resulting from stream network configuration within an 8% 

stream signature (1000m) buffer. Increasing shading intensity indicates overlapping stream 

signature values. C) The difference in area between a stream signature buffer created around the 

reach (left) and one created around a straight channel of equal length (right) is the area of 

overlapping stream signature caused by channel planform. D) Inverse power function from 

Muehlbauer et al. (2014) used to calculate 34, 21, 13 and 8% stream signatures. The figure 

shows a third-order stream network for clarity while our analysis focused on fourth-order 

systems.  

  

Figure 3. The proportion of the spatial extent consisting of overlapping stream signatures 

resulting from channel planform (Black) or network configuration (Gray) at different stream 

signature distances. 95% credible intervals are displayed over bars.    
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Figure 4. Regional variation in the spatial extent and distribution of aquatic insect resource 

subsidies at the 13% stream signature distance (100m). A) shows the regional variability in the 

mean spatial extent. B) shows area weighted stream signature. C) shows the mean proportion of 

the spatial extent receiving aquatic insect subsidies form multiple stream signatures because of 

overlap at confluences and sub-basin divides. D) shows the mean proportion of the spatial extent 

receiving aquatic insect subsidies form multiple stream signatures because of overlap at meander 

bends. Circles represent the 95% credible interval range and shading intensity reflects the mean 

estimate for the hydrological region.  

 

Figure 5. Regional variability in the components of stream network geometry shown as mean 

parameter estimates. A) mean drainage density, B) mean basin width, C) mean confluence 

number and D) mean sinuosity.  E) shows the mean effect of runoff on drainage density for each 

hydrologic region (VPU). Estimates in panels B, C and D were natural log transformed and 

unshaded VPUs in panel E indicate that the 90% creditable intervals overlap with zero 
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Figure 1.1 
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Figure 1.2 
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Figure 1.3 
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Figure 1.4 
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Figure 1.5
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Appendix S1. Supporting Information 

 

Model Descriptions 

The following model was used to assess the relative role of network characteristics on the 

spatial extent of aquatic subsidies (𝐸𝐴):   

𝐸𝐴𝑖
 ~ 𝑁(𝜇𝑖 ,  𝜎); 𝜇𝑖 = 𝛼 + 𝛽𝐷𝑑  ∗ 𝐷𝑑 + 𝛽𝐶 ∗ log 𝐶 + 𝛽𝜆 ∗ log 𝜆 + 𝛽𝑊𝑏

∗ 𝑊𝑏; 

𝛼 ~ 𝑁(0 ,  1); 𝛽𝐷𝑑   ~ 𝑁(0 ,  1); 𝛽𝐶~ 𝑁(0 ,  1); 𝛽𝜆~ 𝑁(0 ,  1); 𝛽𝑊𝑏
~ 𝑁(0 ,  1); 

𝜎 ~ 𝑈(0 ,  10) 

Eq. 1 

𝑖 indexes the stream signature class (i.e. 31%, 21%, 13% and 8%) and 𝛼 and 𝛽 are intercept and 

regression coefficients. The network characteristics were drainage density (𝐷𝑑), confluence 

number (𝐶), sinuosity (𝜆) and median effective sub-basin width (𝑊𝑏). Prior to fitting each 

model, we log transformed 𝐶 and 𝑆. The priors for the regression coefficients are minimally 

informative and normally distributed. Sigma (𝜎) is the standard deviation for each observation 

and was assigned a minimally informative prior from a uniform distribution. All predictor and 

the response variables were mean-centered and standardized to permit direct comparisons among 

regression coefficients (McElreath 2016).  

To assess the relationship between basin features and network geometry characteristics 

we used a backwards step-wise procedure to remove the parameter with the lowest absolute 

value.  We then compared all candidate models and retained the one with the lowest WAIC. For 

each response variable (i.e. drainage density, sinuosity, confluences and median effective basin 

width) our global model was:  
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𝑌𝑖  ~ 𝑁(𝜇𝑖  ,  𝜎); 𝜇𝑖 = 𝛼𝑌𝑖
[𝑣𝑝𝑢] + 𝛽𝑅 ∗ log 𝑅 + 𝛽𝑆 ∗ log 𝑆 + 𝛽𝐾𝑤 ∗  𝐾𝑤 + 𝛽𝑉 ∗ 𝑉; 

𝛼[𝑣𝑝𝑢]~ 𝑁(0 ,  1); 𝛽𝑅  ~ 𝑁(0 ,  1); 𝛽𝑆 ~ 𝑁(0 ,  1); 𝛽𝐾𝑤 ~ 𝑁(0 ,  1); 𝛽𝑉 ~ 𝑁(0 ,  1); 

𝜎 ~ 𝑈(0 ,  1) 

Eq. 2 

where, 𝑌𝑖 is a component of network geometry (i.e. 𝐷𝑑,  log 𝐶 , log 𝜆 , 𝑜𝑟 log 𝑊𝑏) drawn from a 

normal distribution with mean (𝜇𝑖) and standard deviation (𝜎); 𝛼[𝑣𝑝𝑢] is a random intercept, 

which varies by vector processing unit (𝑣𝑝𝑢); and 𝛽 are regression coefficients for the linear 

model. 𝑅, 𝑆, 𝐾𝑤 , and 𝑉 are runoff, length-weighted mean slope, area weighted mean erodibility 

and bare ground (%), respectively. We log-transformed 𝑅 and 𝑆 due to skewness and mean-

centered and standardized all predictor variables. The priors for the parameters were minimally 

informative and distributed normally or uniformly. Permitting intercepts to vary randomly for 

each VPU allowed us to evaluate regional differences in network characteristics. That is, when 

all predictor variables are zero (i.e. mean value), the intercept, 𝛼[𝑣𝑝𝑢] is the value of the 

response variable. Consequently, we statistically control for basin features while assessing 

regional differences in network geometry. 

Lastly, we evaluated the geographic dependence in the relationship between runoff and 

drainage density using a hierarchical varying effects Bayesian model. The model is similar to Eq. 

2 but allows 𝛼 and 𝛽𝑅 to vary by vector processing unit: 

 

𝐷𝑑𝑖
~ 𝑁(𝜇𝑖  ,  𝜎) ; 𝜇𝑖 = 𝛼𝑌𝑖

[𝑣𝑝𝑢] + 𝛽𝑅 [𝑣𝑝𝑢] ∗ log 𝑅 + 𝛽𝑆 ∗ log 𝑆 + 𝛽𝐾𝑤  ∗ 𝐾𝑤  +

 𝛽𝑉 ∗ 𝑉; ; [
𝛼[𝑣𝑝𝑢]

𝛽𝑅 [𝑣𝑝𝑢]
]

 

~ 𝑀𝑉𝑁 ([
𝛼

𝛽𝑅  
] , 𝚻) ;  𝚻 = [

𝜎𝛼 0
0 𝜎𝛽𝑅

] 𝚨 [
𝜎𝛼 0
0 𝜎𝛽𝑅

]; 

𝛼[𝑣𝑝𝑢] ~ 𝑁(0 ,  1); 𝛽𝑅 ~ 𝑁(0 ,  1); 𝛽𝑆~ 𝑁(0 ,  1); 𝛽𝐾𝑤  
~ 𝑁(0 ,  1); 𝛽𝑉  

~ 𝑁(0 ,  1); 

Eq. 3 
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𝜎 ~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0 ,  1); 𝜎𝛼  ~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0 ,  1); 𝜎𝛽𝑅
~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0 ,  1); 

𝚨 ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2) 

Varying slopes and intercepts require estimating their correlation for each VPU. We followed, 

McElreath (2016) in defining the population of varying slopes and intercepts, such that each 

VPU has an intercept and slope with a prior distribution defined by a 2-dimensional Gaussian 

distribution with means, 𝛼 and 𝛽𝑅 and covariance matrix, 𝚻. We designed the covariation matrix 

by factoring it into separate standard deviations (𝜎𝛼 and 𝜎𝛽𝑅
) and a correlation matrix, 𝚨. The 

prior for the correlation matrix, 𝚨, is defined by a weakly informative, LKJcorr distribution 

(McElreath 2016). Priors for the fixed effects regression coefficients are distributed normally and 

minimally informative while standard deviations (𝜎) are from the strictly positive half-Cauchy 

distribution. We provide a schematic of the analysis in Figure S1 

 

Figure S1.1. Schematic of modeling approach used in the analysis.  
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Table S1.1. Intercept estimates (back transformed) with 90%CrI demonstrating regional 

variability in intercept estimates for equation 2. 𝐷𝑑 = drainage density, 𝐶 = number of 

confluences, 𝑊𝑏  = median basin width and 𝜆 = mean sinuosity 

VPU 𝐷𝑑  𝑊𝑏  𝜆 𝐶 
01 0.63 (0.57, 0.7) 620.87 (571.41, 676) 1.23 (1.21, 1.26) 78.52 (66.01, 92.94) 

02 0.62 (0.56, 0.68) 706.01 (653.62, 765.48) 1.21 (1.19, 1.24) 67.87 (57.85, 80.14) 

03N 0.83 (0.76, 0.89) 570.06 (525.35, 618.04) 1.18 (1.16, 1.21) 103.8 (88.22, 122.45) 

03S 0.82 (0.74, 0.89) 536.01 (490.53, 587.27) 1.13 (1.1, 1.15) 89.66 (75.46, 106.42) 

03W 0.91 (0.85, 0.98) 589.84 (541.31, 642.58) 1.2 (1.17, 1.22) 133.45 (111.99, 158.14) 

04 0.7 (0.64, 0.77) 654.04 (603.72, 709.16) 1.26 (1.23, 1.28) 65.24 (55.21, 76.97) 

05 0.67 (0.61, 0.74) 752.51 (695.28, 815.93) 1.25 (1.22, 1.27) 91.38 (77.93, 107.58) 

06 0.76 (0.69, 0.83) 670.09 (615.12, 732.83) 1.24 (1.21, 1.26) 109.83 (92.53, 132.3) 

07 0.75 (0.68, 0.81) 742.02 (686.81, 802.8) 1.23 (1.2, 1.25) 78.62 (66.85, 92.25) 

08 0.94 (0.87, 1.02) 509.41 (462.8, 561.2) 1.23 (1.21, 1.26) 164.24 (136.44, 198.52) 

09 0.69 (0.63, 0.75) 651.53 (603.04, 704.34) 1.3 (1.27, 1.32) 41.24 (34.83, 48.18) 

10L 0.91 (0.85, 0.97) 650.3 (603.2, 701.37) 1.27 (1.25, 1.29) 56.16 (48.11, 65.57) 

10U 0.88 (0.82, 0.93) 687.68 (639.53, 742.81) 1.33 (1.31, 1.36) 38.57 (33.27, 45.11) 

11 0.85 (0.8, 0.91) 609.92 (565.04, 655.94) 1.27 (1.25, 1.3) 57.34 (49.45, 67.04) 

12 0.64 (0.59, 0.7) 980.95 (907.57, 1057.27) 1.3 (1.28, 1.32) 47.55 (40.88, 55.9) 

13 0.71 (0.65, 0.77) 798.35 (740.69, 862.48) 1.18 (1.16, 1.2) 26.42 (22.51, 30.87) 

14 0.85 (0.79, 0.91) 674.05 (622.05, 724.35) 1.21 (1.19, 1.23) 27.64 (23.6, 32.41) 

15 0.96 (0.9, 1.02) 693.59 (638.56, 748.96) 1.22 (1.2, 1.24) 24.27 (20.7, 28.45) 

16 0.83 (0.76, 0.89) 600.77 (555.27, 653.19) 1.18 (1.15, 1.2) 21.59 (18.26, 25.37) 

17 0.63 (0.57, 0.7) 776.06 (717.48, 843.83) 1.2 (1.18, 1.23) 44.54 (37.22, 52.35) 

18 0.82 (0.75, 0.88) 649.14 (597.52, 703.64) 1.23 (1.2, 1.25) 39.56 (33.39, 46.85) 
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Table S1.2. Model selection results for Eq2. S = Slope, R = Runoff, 𝐾𝑤= Erodibility and V = 

Percent Bare Ground. Full indicates the model included all variables. WAIC = Watanabe – 

Akaike information criterion; pWAIC = effective numbers of parameters; dWAIC = delta 

WAIC; SE = Standard error and dSE is the standard error of the delta WAIC 

Model Variables WAIC pWAIC dWAIC weight SE dSE 

Drainage Density 

Full -187.91 27.78 0 0.55 51.32 NA 

𝑆, 𝑅, 𝐾𝑤 -187.52 25.66 0.39 0.45 50.82 7.02 

𝑆, 𝑅 -127.23 24.52 60.67 0 49.81 17.84 

𝑅 -105.58 23.35 82.32 0 47.85 19.76 

Intercept -24.42 22.13 163.49 0 47.38 26.35 

Basin Width 

𝑆, 𝑅, 𝐾𝑤 158.67 25.06 0 0.35 57.5 NA 

𝑆, 𝑅  158.71 26.12 0.04 0.35 58.28 3.03 

Full 159.29 26.61 0.62 0.26 58.3 3.11 

𝑆 163 23.88 4.33 0.04 57.01 3.59 

Intercept 176.92 22.83 18.25 0 56.93 8.89 

Confluences 

𝑆, 𝑅 1197.98 23.44 0 0.7 42.78 NA 

𝑆, 𝑅, 𝑉 1200.37 25.12 2.4 0.21 42.86 3.04 

Full 1202.06 25.92 4.08 0.09 42.93 3.3 

𝑅 1270.37 22.53 72.39 0 41.66 15.38 

Intercept 1518.79 21.45 320.82 0 37.39 32.46 

Sinuosity 

𝑆, 𝑅 -2018.21 25.4 0 0.4 60.5 NA 

Full -2018.12 27.34 0.09 0.39 60.55 3.83 

𝑆, 𝑅, 𝐾𝑤 -2016.92 26.08 1.29 0.21 60.48 0.89 

𝑅 -1994.55 24.29 23.65 0 60.92 10.89 

Intercept -1960.09 23.03 58.12 0 60.51 16.54 
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Abstract 

Ecological flows across ecosystem boundaries are typically studied at spatial scales that 

limit our understanding of broad geographical patterns in ecosystem linkages. Aquatic insects 

that metamorphose into terrestrial adults are important resource subsidies for terrestrial 

ecosystems. Traits related to their development and dispersal should determine their availability 

to terrestrial consumers. Here, we synthesize geospatial, aquatic biomonitoring and biological 

traits data to quantify the relative importance of several environmental gradients on the potential 

spatial and temporal characteristics of aquatic insect subsidies across the contiguous United 

States (CONUS). We found the trait composition of benthic macroinvertebrate communities 

varies among hydrologic regions and could affect how aquatic insects transport subsidies as 

adults. Further, several trait-environment relationships were underpinned by hydrology. Large-

bodied taxa that could disperse further from the stream were associated with hydrologically 

stable conditions. Alternatively, hydrologically variable conditions were associated with 

multivoltine taxa that could extend the duration of subsidies with periodic emergence events 

throughout the year. We also found that anthropogenic impacts decrease the frequency of 

individuals with adult flight but potentially extend the distance subsidies travel into the terrestrial 

ecosystem. Collectively, these results suggest that natural and anthropogenic gradients could 

affect aquatic insect subsidies by changing the trait composition of benthic macroinvertebrate 

communities. The conceptual framework and trait-environment relationships we present shows 

promise for understanding broad geographical patterns in linkages between ecosystems.  
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Introduction   

Material and energy fluxes across ecosystem boundaries, termed “resource subsidies”, 

couple adjacent ecosystems (Polis et al. 1997, Loreau et al. 2003, Holt 2004). Resource subsidies 

are globally common (Polis et al. 1997, Allen and Wesner 2016, Gounand et al. 2018) and play 

critical roles in controlling food webs and ecosystem production (Leroux and Loreau 2008, Yu et 

al. 2015, Gratton et al. 2017). The effect of resource subsidies is typically studied at local scales, 

which limits our understanding of large scale geographical variation in ecosystem linkages 

(Marcarelli et al. 2011, Subalusky and Post 2018, Lafage et al. 2019). When subsidies are 

transported by animals, their dispersal and development traits should influence the recipient 

ecosystem, determining the spatial extent of resource subsidies (i.e. the distance they travel form 

the donor ecosystem) and the period of time they are available to consumers (Yang et al. 2010, 

Muehlbauer et al. 2014, Gratton et al. 2017, Subalusky and Post 2018). If the presence of traits 

varies predictably with environmental conditions, trait distributions could underpin macroscale 

patterns in ecosystem linkages (Montagano et al. 2018, Lafage et al. 2019).  

Aquatic insects that metamorphose into winged, terrestrial adults are important resources 

in terrestrial ecosystems (Baxter et al. 2005, Richardson et al. 2010, Schindler and Smits 2017). 

Traits related to their emergence and potential dispersal as adults should influence the duration 

and magnitude of their effect on terrestrial ecosystems. Terrestrial consumers respond to the 

quantity of aquatic insect subsidies (Nakano and Murakami 2001, Messan et al. 2018, Recalde et 
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al. 2020) which, in turn, should be related to the proportion of individuals with adult flight stages 

in aquatic invertebrate communities (Gratton and Vander Zanden 2009, Greenwood and Booker 

2016, McKie et al. 2018). Juvenile development speed and adult emergence patterns should 

determine when, and for how long, aquatic insects are present in terrestrial ecosystems. More 

frequent emergence events associated with faster development or shorter generation times should 

prolong the duration of aquatic insect subsidies in terrestrial ecosystems (Anderson et al. 2008, 

Gratton et al. 2017, McKie et al. 2018). The distance adult aquatic insects travel from the stream 

determines whether they are accessible to terrestrial consumers living further from the water’s 

edge (Carlson et al. 2016). Dispersal distance should be related to an individual’s flight strength, 

adult life span, and/or body size (Muehlbauer et al. 2014, McKie et al. 2018, Lancaster et al. 

2020).  

Environmental gradients should constrain the spatial and temporal characteristics of 

aquatic insect subsidies by altering trait composition (Statzner et al. 2004, Heino et al. 2013, 

Dodds et al. 2015). For example, traits for faster development and greater dispersal abilities 

typically persist in unpredictable environments because they promote avoidance of, and/or 

recolonization after, floods and droughts (Townsend and Hildrew 1994, Poff et al. 2010, 2018). 

Similarly, agriculture and urbanization impairs water quality, favoring pollutant tolerant taxa 

with smaller body size and shorter generation times (Allan 2004, McKie et al. 2018). At larger 

spatial scales trait composition may depend on environmental legacies (e.g. past glaciation; 

Ribera and Vogler 2004) or the regional species pool (Heino et al. 2013). Thus, evaluating trait-

environment relationships for in-stream macroinvertebrate communities should be useful for 

anticipating how spatial and temporal subsidy characteristics might be impacted by global 

change (Larsen et al. 2016).  
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Here, we evaluate nine univariate trait-environment relationships for traits that could 

regulate the supply, extent and duration of aquatic insect subsidies in terrestrial ecosystems 

(Table 1). Our primary objectives were to: 1) develop a framework to assess large-scale 

geographic variation in the potential spatial and temporal characteristics of aquatic insect 

subsidies and 2) evaluate the relative importance of environmental (natural and anthropogenic) 

and geographical gradients in driving variation in trait composition of benthic macroinvertebrate 

communities (Figure S1). Because traits reflect an organism’s adaptation to their environment, 

trait composition should covary with geographic variation in environmental and anthropogenic 

land use gradients. By synthesizing a national survey of benthic macroinvertebrate communities 

with a biological traits database, our results can be used to develop hypotheses about the spatial 

and temporal heterogeneity of aquatic insect subsidies and the potential connectivity between 

ecosystems.  

 

Methods   

Supply, extent and duration of subsidies 

We used the National Rivers and Streams Assessment (NRSA; U.S. EPA 2016a) benthic 

macroinvertebrate surveys to generate nine metrics related to the supply, extent and duration of 

aquatic insect subsidies (Table 1). The primary goal of the NRSA is to conduct biological 

assessments of flowing waters in the US (U.S. EPA 2016a). As part of this national effort, NRSA 

collected composite benthic macroinvertebrate samples and physical habitat data (described 

below) from 1,924 stream reaches throughout the contiguous US between May and September 

2008-2009 (Figure S2). Benthic macroinvertebrates samples containing > 300 individuals were 
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subsampled to a fixed number of individuals (typically 300; U.S.EPA 2016a) and identified to 

lowest possible taxonomic level (usually genus).   

We calculated the proportion of taxonomic Orders with flying adult life stages (i.e. 

Ephemeroptera, Plecoptera, Trichoptera, Diptera and Odonata; Baxter et al. 2005) relative to 

other members of the community as an indicator of the supply of aquatic insect subsidies. We 

estimated the spatial extent of aquatic insect subsidies using the “stream signature” concept, 

where the stream signature is the distance a given proportion of insect subsidies measured at the 

water’s edge travels perpendicular from the stream (Muehlbauer et al. 2014). We calculated the 

distance that 25% of the subsidies emerging from the stream travel away from the water (i.e. 

“25% stream signature”) using regression coefficients from a negative power function 

parameterized via meta-analysis of 109 studies given in Appendix B of Muehlbauer et al. (2014).  

Major taxonomic groups of flying aquatic insects (i.e. Ephemeroptera, Plecoptera, Trichoptera 

and Chironomidae [Diptera]) have different regression coefficients so we weighted the 25% 

stream signature by the relative abundance of each taxon for each site. We excluded members of 

Odonata and non-chironomid Diptera because stream signature coefficients were unavailable for 

these taxa and used the same “productivity” coefficient for all sites (Muehlbauer et al. 2014).  

We derived seven additional metrics of dispersal and development traits using the 

Freshwater Biological Traits Database (Table 1; U.S. EPA 2012; McKie et al. 2018). Traits were 

assigned to flying genera collected by the NRSA survey and allowed us to explore potential 

variation in spatial and temporal subsidy characteristics at a finer taxonomic resolution than the 

stream signature. Prior to assigning “trait-states” for dispersal and development traits (Table 1; 

Vieira et al. 2006), we harmonized genus names between the two datasets using the Integrated 

Taxonomic Information System (https://www.itis.gov/taxmatch.html). We then quantified trait 

https://www.itis.gov/taxmatch.html
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composition as the proportion of individuals expressing a trait-state that could increase the 

spatial extent or duration of subsidies relative to the total number of flying individuals with trait 

information (Table 1; McKie et al. 2018).  

 

Environmental gradients and anthropogenic disturbance class 

We used a combination of field and GIS data to characterize physical and hydrological 

conditions and anthropogenic disturbances at each site (Table 2). Mean depth and wetted width 

of the stream, percent embeddedness and substrate < 16mm in diameter were collected by the 

NRSA (U.S. EPA 2016a). We obtained catchment area (km2), elevation (m), slope (%), 

discharge (m3 s-1) and land cover (% agricultural or urban) from the National Hydrography 

Dataset Plus, Version 2 (NHDPlusV2; McKay et al. 2012). We extracted temperature and 

hydrologic data at each site from McManamay and Derolph (2019). Briefly, McManamay and 

Derolph (2019) predicted mean summer water temperature at 1,764 reference locations and 

classified hydrological conditions at 2,600 USGS stream gages into 15 different classes. 

Temperature and hydrologic classes were extrapolated to ungaged locations across the entire 

NHDPlusV2 using a suite of environmental variables (McManamay and Derolph 2019).  

The NRSA also classified anthropogenic impacts at each site as “good” (least disturbed), 

“fair” (moderately disturbed) or “poor” (most disturbed) based on a multi-metric index (MMI) 

(U.S. EPA 2016a). The MMI combines multiple attributes of the biological community (e.g. 

composition, tolerance to disturbance and habitat preference) into a single index (Stoddard et al. 

2008, U.S. EPA 2016a, Hill et al. 2017). Condition class of a site is assigned using percentiles of 

MMI scores calculated at minimally impacted sites (Herlihy et al. 2008, Hill et al. 2017). We 

present analyses linking MMI to traits that could reflect the spatial and temporal characteristics 
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of subsidies to place our results in a general bioassessment context, although we acknowledge 

that MMI and some trait-states may be correlated.  

 

Data analysis 

Of the 1,924 NRSA sites surveyed for benthic macroinvertebrates, 36 samples were lost 

during processing and 29 sites lacked sufficient environmental data. We discarded an additional 

7 sites because it was not possible to estimate a stream signature for sites with only Odonata 

and/or non-chironomid Diptera as flying taxa, leaving us with 1,852 sites for this study (Figure 

S2A). Due to data availability, we restricted the trait analysis to sites that had trait assignments 

for > 50% of the flying individuals (n = 574, Figure S2B) and calculated the frequency of a given 

trait-state using only individuals with trait data. We chose this threshold to achieve a minimum 

sample size for each hydrologic region (n ≥ 3, Table S1) but found similar results for more 

conservative thresholds (i.e. > 60, > 70, and > 80%; Table S2). Further, trait data were only 

available for 232 genera (46% of flying genera) and were unequally represented among the 

taxonomic groups collected during the NRSA survey (i.e. 14% Diptera, 75% Ephemeroptera, 

67% Odonata, 88% Plecoptera, 68% Tricoptera; Figure S3A). Given the relatively low 

representation of Diptera in the traits database, sites dominated by these taxa may have been 

excluded from our analysis (Figure S3B).  

We used random forest regression models to predict each of the nine response variables 

from 15 environmental predictor variables (Breiman 2001,Table 2). Random forest is a machine 

learning algorithm that combines predictions from multiple independent decision trees and is 

now common in ecology (Fox et al. 2017, Hill et al. 2017). Prior to model fitting we randomly 

selected and withheld 20% of sites for validation. We removed strongly correlated variables (r > 
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0.7; DISCHARGE, WIDTH and DEPTH and JA_TEMP) to avoid potentially misleading 

estimates of variable importance (Gregorutti et al. 2017). The remaining variables were mean-

centered and standardized. 

Models were fit using the “randomForest” R-package (Liaw and Wiener 2002). Random 

forest models have two tuning parameters that specify the number of variables randomly selected 

at each node (mtry) and the number of trees used to build the model (ntree). We conducted a 

sensitivity analysis to evaluate different parameter values for each model (Figure S4, S5; Fox et 

al. 2017, Brieuc et al. 2018). Consistent with Fox et al. (2017), we found the optimal mtry value 

offered little improvement over the default (mtry = 4) for many of the models (Figure S4), but 

increasing the number of trees enhanced the reproducibility (Figure S5). We specified mtry = 4 

and ntree = 3000 for all models except FSS (mtry =1, ntree = 3000). We evaluated model 

performance with Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), the ratio of the 

root mean square error to the standard deviation of observed data (RSR) and Out-of-Bag R2 

(Moriasi et al. 2007, Greenwood and Booker 2016).  

We used mean decrease in accuracy (MDA) and marginal effects to assess the relative 

importance and direction of each trait-environment relationship. MDA is the change in mean 

squared error after permutating a single predictor variable, averaged and scaled by the standard 

deviation of all trees in the random forest (Liaw and Wiener 2002). Larger MDA values indicate 

more important variables because permutation increased the mean squared error (Liaw and 

Wiener 2002). Marginal effects show how a response variable changes with a single independent 

variable while holding all other variables constant (Elith et al. 2008). We created partial 

dependence plots to illustrate the marginal effects for the five most important predictor variables 

for each trait-environmental relationship. When hydrologic region was among the most 
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important predictor variables, we mapped the marginal effects for hydrologic region to visualize 

geographic differences. The “importance” and “partialPlot” functions were used to calculate 

MDA and marginal effects, respectively (Liaw and Wiener 2002).  

We used Bayesian regression models to evaluate the effect of anthropogenic activities on 

aquatic insect subsidies. Each model included only NRSA condition class as a grouping term 

(e.g. “random effect” or “intercept only model”; Wesner et al. 2019) and had either a beta-

binominal likelihood with logit link function (i.e. proportional responses) or a normal likelihood 

(i.e. stream signature distance). We obtained a mean and standard deviation from Muehlbauer et 

al. (2014) and McKie et al. (2018) to specify the prior for the 25% stream signature and each trait 

model, respectively (Table S3). All models were fit using the “Rethinking” R package 

(McElreath 2016) with 4 chains and 10,000 iterations (first 2,000 discarded as warmup). The 

large number of iterations allowed us to estimate the probability that the posterior distributions of 

two condition classes overlapped.   

 

Results 

Random forest models explained approximately 31% of the variation in the proportion of 

flying individuals and 18% of the variation in the stream signature distance (Mean Absolute 

Error [MAE] = 0.17 and 8.79, respectively; Table S4). Elevation, agricultural land use, 

catchment area and region were among the most important variables in both models (Figure 1A-

B). Elevation was associated with an increase in the proportion of flying taxa but a decrease in 

stream signature distance. Conversely, agriculture had the opposite association. Catchment area 

had a negative relationship with the proportion of flying taxa and the stream signature distance.  
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Random forest models explained > 10% of the variation in all trait-states except strong 

flight strength (min MAE = 0.15, max MAE = 0.23, Table S4). Hydrologic class was the most 

important variable trait states related to emergence duration (Figure 1C-E) and for large body 

size (Figure 1F). The “Intermittent Flashy” hydrologic class appeared to have the lowest 

proportion of individuals with poorly synchronized emergence and fast development but high 

multivoltinism while the “stable” hydrologic classes had higher proportions of large body size 

(Figure 1F). Catchment area was most important for high female dispersal (Figure 1G) and the 

proportion of individuals with long life span declined with the percent of fine substrate (Figure 

1H).  

Hydrologic region was an important variable in all random forest models except strong 

flight strength (Figure 2). The California (hydrologic unit code [HUC] 18), Rio Grande (HUC13) 

and Upper Colorado (HUC 14) had the highest proportion of flying individuals and the Upper 

Mississippi (HUC 07), Ohio (HUC 05) and South Atlantic (HUC 03N and 03S) had the largest 

stream signature distance (Figure 2B-C). The proportion of poorly synchronized emergence, 

multivoltinism and fast developing individuals were highest in the Lower Colorado (HUC 14), 

and Rio Grande (HUC 13) hydrologic regions (Figure 2D-F). Large body size, long life span and 

high female dispersal were most prevalent in the California (HUC 18) hydrologic region but 

were generally variable among hydrologic regions (Figure 2G-I).  

The habitat condition class affected the potential spatial and temporal characteristics of 

aquatic insect subsidies (Figure 3). The least disturbed sites had the greatest proportion of flying 

individuals (Mean, [95% Credible Interval]: 0.71, [0.68, 0.74]; Figure 3A) but the lowest 25% 

stream signature distance (27.17, [25.65, 28.69]; Figure 3B). In both instances, the probability of 

overlap between the posterior distributions of the least and most disturbed condition (hereafter 
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“Pr”) was < 0.0001. Poorly synchronized emergence and fast development were higher at the 

least disturbed sites (Pr = 0.11 and 0.02, respectively; Figure 3C & 3E) but multivoltinism was 

higher at the most disturbed sites (Pr < 0.01, Figure 3D). Large body size and long life span were 

more prevalent in the least disturbed condition (Pr = 0.04 and 0.03, respectively; Figure 3F & 

3H) and the proportion of high female dispersal and strong flying strength was higher in the most 

disturbed condition (Pr = 0.03 and 0.11, respectively; Figure 3G & 3I).  

 

Discussion  

Understanding how ecosystems are linked is a focal area of ecological research (Allen 

and Wesner 2016, Tanentzap et al. 2017, Gounand et al. 2018) but understanding how these 

linkages vary across large spatial scales remains unclear. We developed a conceptual framework 

centered on hydroclimatic and physiographic variables that generate geographical variation in 

species traits that could influence spatial and temporal characteristics of animal-mediated 

resource subsidies in recipient ecosystems. Using aquatic insects as a focal organism, we tested 

this framework and found that a combination of watershed and land use variables could influence 

the supply, duration and distance of aquatic insect subsidy transport to terrestrial ecosystems.  

Stream signatures and the potential supply of insect subsidies 

The proportion of flying individuals and the 25% stream signature was largely influenced 

by network position (i.e. catchment area and elevation; Tonkin et al. 2016). Larger proportions of 

flying individuals at higher elevations and in smaller catchments could result from environmental 

filters common to these habitats. For example, cooler water temperatures in headwater systems 

could preclude warm-adapted, non-flying taxa such as many snails (Nelson et al. 2017). 

Alternatively, the enhanced dispersal abilities of flying taxa could enable them to colonize 
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headwaters as isolated termini of stream networks (Clarke et al. 2008, Finn et al. 2011). Stream 

signature distance, however, was negatively related to both catchment area and elevation which 

may be due to the taxa that are most associated with headwaters. Muehlbauer et al. (2014) found 

that the stream signature decays quickest for Ephemeroptera and Plecoptera (i.e. these orders 

have the shortest stream signature). Indeed, some Ephemeroptera develop as larva in mainstem 

river sections (Uno and Power 2015), and cooler water temperatures at higher elevations could 

favor Plecoptera as cold water adapted taxa (Anderson et al. 2019). Importantly, these findings 

suggest that the potential supply and spatial extent of aquatic insect subsidies could vary along 

longitudinal gradients in streams as a result of differences in trait frequencies within benthic 

macroinvertebrate communities in headwaters vs. mainstems. 

Agricultural land use in the watershed was associated with a decrease in the proportion of 

flying insects but an increase in stream signature distance. Land use intensification can alter the 

trait composition of benthic macroinvertebrate communities by favoring pollution tolerant taxa 

(Allan 2004, Dolédec et al. 2006), such as Chironomidae (Diptera) (Serra et al. 2017, Raitif et al. 

2019) or mollusks (Harding and Winterbourn 1995, Greenwood and Booker 2016). 

Chironomidae have the longest stream signature distance of all flying orders studied by  

Muehlbauer et al. (2014), and increasing their relative abundances could increase the spatial 

extent of aquatic insect subsidies. Consequently, anthropogenic impacts in the watershed may 

decrease the relative magnitude of aquatic insect subsidies in the terrestrial environment, but the 

spatial extent of that subsidy might be relatively greater.  

The importance of hydrologic region for explaining the proportion of flying individuals 

and the 25% stream signature distance supports the notion that cross-ecosystem linkages can 

vary across broad spatial scales. For example, if we assume the entire larval community can 
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metamorphose into winged adults, then the California (HUC 18) hydrologic region could export 

10% more aquatic insect subsidies than the Southern Atlantic (HUC 03S), all else being equal.  

Similarly, aquatic insects may be expected to travel further from where they emerge in the Upper 

Mississippi (HUC 07) than the Upper Colorado (HUC 13) because of longer stream signature 

distances. These regional patterns in trait composition could reverberate throughout the 

landscape and drive differences in subsidy use among terrestrial consumers (Lafage et al. 2019).  

 

Traits of flying individuals  

Hydroclimatic features played an important role in structuring the presence and 

abundance of trait-states that should influence the spatio-temporal characteristics of aquatic 

insect subsidies. For example, flying individuals living in perennial or groundwater dominated 

systems were typically larger and have long-lived adult phases and sites with lower precipitation 

were associated with higher frequencies of asynchronous emergence and fast development. 

Given these relationships, we might expect hydrologically stable reaches to export aquatic insect 

subsidies that are larger in size and can live longer in terrestrial ecosystems and more arid 

locations to export subsidies more consistently when there is water in the stream channel. If these 

trait-states increase an organisms ability to survive and reproduce in their environment 

(Townsend and Hildrew 1994, Giam et al. 2017), these results could provide insights into how 

the aquatic insect subsidies might be impacted by climate change, as many flow regimes are 

predicted to become less stable (Barnett et al. 2008, Mallakpour and Villarini 2015, Blöschl et al. 

2017).  

Many of the trait-environment relationships we analyzed may be partly explained by 

interdependence among traits (Hamilton et al. 2020) and therefore difficult to mechanistically 
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interpret or to attribute causation (Verberk et al. 2013). For example, we found the percentage of 

fine substrate was associated with a decreased frequency of large body size among flying taxa, 

presumably because smaller substrates do not provide refuge and interstitial habitat for larger 

taxa (Townsend and Hildrew 1994). We also found substrate size was associated with lower 

frequencies of long life span, and high female dispersal and higher frequency of multivoltinism. 

These trait-environment relationships are more difficult to attribute to the availability of refugia 

provided by substrate size but instead are likely correlated with body size (Resh et al. 1988, 

Usseglio-Polatera et al. 2000, Verberk et al. 2008, Lancaster et al. 2020). Indeed, univariate trait-

environment relationships are known to be challenging to interpret from a strict mechanistic 

perspective (Poff et al. 2006) and may not accurately describe how trait composition will change 

in under future conditions (Verberk et al. 2013).  

 Our results elucidate large-scale patterns in trait composition of flying taxa that could 

drive regional differences in the characteristics aquatic insect subsidies. For example, the 

California hydrologic region (HUC 18) was associated with taxa with greater body size, female 

dispersal ability and longer life span. Larger bodied individuals may yield a larger quantity of 

subsidy to terrestrial consumers and individuals that live longer as adults, or fly further before 

ovipositing, may be more likely to be consumed further from the stream (McKie et al. 2018)  

Similarly, terrestrial consumers in the Great Basin (HUC 16) could have access to aquatic insect 

subsidies for longer periods of time because flying insects in benthic communities typically 

develop quicker and emerge irregularly throughout the year. Collectively, the geographical  

patterns we detected in the trait composition of benthic macroinvertebrate communities could 

provide insights into the large scale variation in the use of aquatic insect subsidies by terrestrial 

consumers detected in other studies (Lafage et al. 2019).  
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Extended consequences of anthropogenic impacts  

Consistent with other investigations, our results demonstrate that anthropogenic activities 

could impact aquatic insect subsidy dynamics by altering the trait composition of benthic 

macroinvertebrate communities (Greenwood and Booker 2016, McKie et al. 2018). We found 

sites classified as most disturbed had lower proportions of individuals that could fly, and could 

therefore leave the stream to subsidize terrestrial ecosystems. Proportional data however may not 

correspond to absolute emergence values. Others have found nutrient additions can increase the 

abundances of all invertebrate taxa, including those with winged adult phases (Davis et al. 2011, 

Greenwood and Booker 2016, McKie et al. 2018). Among our sites elevated nitrogen or 

phosphorous concentrations were a good predictor of site degradation (U.S. EPA 2016b), but 

absolute abundance values could not be calculated given the survey methods. If anthropogenic 

activities increase the overall abundance of flying taxa, exceptional emergence events from 

disturbed sites may be able to offset some anthropogenic nutrient loading in waterways 

(Stepanian et al. 2020).   

The most disturbed sites also had the longest stream signatures which could suggest 

aquatic insect subsidies are available to consumers living further from the water’s edge at these 

sites. Members of Chironomidae (Diptera) often dominate disturbed sites (but see Serra et al. 

2017) and, being generally small bodied taxa, their longer stream signature distance may be due 

to wind transport (Muehlbauer et al. 2014). Diptera are an exceptionally diverse order, however, 

and we only included members of Chironomidae to calculate the stream signature due to 

limitations of data availability in the meta-analysis of Muehlbauer et al. (2014). It is possible that 

other Diptera taxa could change the potential relationship between the level of disturbance and 
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lateral extent of aquatic insect subsidies. Further we do not know how the condition of the 

aquatic ecosystem interacts with the permeability of the terrestrial boundary (but see Greenwood 

2014, Carlson et al. 2016 and Alberts and Sullivan 2016). Clarifying these uncertainties will 

require increasing the representation of Diptera in traits databases and increasing our 

understanding of how boundary conditions could alter the spatio-temporal characteristics of 

aquatic insect subsidies beyond what their traits suggest.  

The frequency of trait-states among flying taxa also differed according to disturbance 

class. High female dispersal, strong flight strength and multivoltinism were more common at the 

most disturbed sites, suggesting that individuals may be able to travel comparatively further into 

the terrestrial environment and, because of their shorter generation times, emerge from the 

stream more often. We also found that large body size, long life span, poorly synchronized 

emergence and fast development were more common at least disturbed sites. Interestingly, it 

seems that both least and most disturbed sites could increase the spatial extent and duration of 

insect subsidies by favoring different trait-states. One should note, however, that high female 

dispersal in agricultural sites can result from the presence of small-bodied, blood-feeding Diptera 

(Ceratopogonidae and Simuliidae, McKie et al. 2018) which may be available to a different suite 

of terrestrial consumers than large bodied taxa (Davis et al. 2011). Thus, even though the least 

and most disturbed sites are associated with traits that increase spatial extent, their subsequent 

effect on terrestrial consumers may be different. Future research should address the relative 

importance of, and interactions between, larval traits as indicators of spatial and temporal 

characteristics of aquatic insect subsidies.  

 

Limitations 
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Our results are indicative of potential characteristics of aquatic subsidies as they are 

transported into terrestrial ecosystems by adults. Although adults and their traits are sourced 

from aquatic communities, emergence rates are likely variable among taxa (Poepperl 2000, 

Moyo 2020) and location (Gratton and Vander Zanden 2009). The trait-environmental 

relationships we uncovered however, could be used in tandem with large-scale analyses of 

aquatic secondary production (Patrick et al. 2019) to refine estimates of aquatic insect deposition 

(Gratton and Vander Zanden 2009, Bartrons et al. 2013). For example, the proportion of flying 

taxa in a larval community may constrain the amount of secondary production that can be 

exported from a stream. Site-specific estimates of the stream signature distance could better 

capture variation in lateral extent of subsidies in the terrestrial ecosystem.  

Additionally, trait-environment relationships were assessed at the genus (or order for 

stream signature) level, and thus sensitive to the availability of trait data. This could mask 

variation at lower taxonomic levels (Heino et al. 2013). Resolving these limitations will require 

increasing our knowledge of the relative intra-generic variability in traits and the number of non-

chironomid Diptera represented in traits databases.   

Finally, we used univariate models to assess trait environment relationships. Although 

univariate models permit relatively straightforward and transparent interpretation of the trait-

environment relationships (Hamilton et al. 2020), multivariate statistical techniques can assess 

multiple traits simultaneously (Poff et al. 2010, Heino et al. 2013). Evaluating multiple traits 

could be insightful for identifying the trait(s) that explain most variation among sites and 

potentially the most important trait driving differences in spatial and temporal characteristics of 

subsidies.  
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Conclusions 

Benthic macroinvertebrate communities and their traits vary along natural and 

anthropogenic gradients within and among drainage basins. Importantly, here we show this 

variation could potentially impact terrestrial consumers by changing the spatial and temporal 

characteristics of aquatic insect resource subsidies. Several trait-environment relationships were 

associated with hydroclimate features. If these relationships are mechanistically grounded they 

could inform predictions about how the frequency of these traits and the potential linkages 

between aquatic and terrestrial ecosystems could be impacted by global change (Larsen et al. 

2016). More generally, the framework and trait-environment relationships we present may be 

useful for understanding broad geographical patterns in linkages between ecosystems and 

promote novel applications of biomonitoring data to address novel questions in macroscale 

ecology.   
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Table 2.1. Description of trait-states potentially effecting the spatial and temporal characteristics of aquatic insect subsidies in 

terrestrial ecosystems. Modified from McKie et al (2018) and The Freshwater Traits Database (U.S. EPA 2012).  

Trait-State Name Description Assumed Function 

Winged Adult 

Life Stage 
Flying 

Proportion of flying individuals (Diptera, 

Ephemeroptera, Plecoptera, Odonta and 

Trichoptera) in benthic communities 

Individuals with flying adult life stages can exit 

the aquatic ecosystem, while non-flying 

individuals cannot 

Stream Signature 

Distance 
SS25 

Community weighted 25% stream 

signature distance (m)  

Stream signature could reflect the lateral 

distance aquatic insects could travel from the 

stream 

Body Size 

(Large) 
BSL 

Large Body Size. Proportion of flying 

individuals having a maximal body size > 

9mm 

Large body size could correspond to more 

energy reserves that allow individuals to 

disperse further from the stream  

Life Span (Long) LSL 

Long Life Span. Proportion of flying 

individuals having an adult life span > 

1week 

Long adult life span could correspond to 

individuals that have more time in the terrestrial 

environment to disperse further from the stream  

Flight Strength 

(Strong) 
FSS Proportion of flying individuals that can 

fly into a light breeze 

Strong flight strength could correspond to 

individuals that have innate abilities (e.g. wing 

morphologies) that allow them to disperse 

further from the stream  

Female Dispersal 

(High) 
FDH 

Proportion of flying individuals having 

females capable of flying >1km before 

laying eggs 

High female dispersal could correspond to 

females that disperse further from the stream in 

search of a suitable oviposition sites  

Development 

Speed (Fast) 
DSF 

Proportion of flying individuals having 

fast development occurring over 

spring/summer 

Fast development could correspond to taxa that 

have multiple emergence events throughout the 

season and extend the duration of subsidies.  

Emergency 

Synchrony 

(Poor) 

ESP Proportion of flying individuals having 

poorly synchronized emergence 

Poorly synchronized emergence could 

correspond to individuals that emerge from the 

stream at different times and extend the 

duration of subsidies 

Voltinism 

(Multi) 
VOM Proportion of flying individuals having > 

1 generation per year 

Multivoltinism could correspond to taxa that 

reach adult life stages and emerge from the 

stream multiple times during the year and 

extend the duration of subsidies 



106 

 

Table 2.2. Predictor variable used in our analysis and their descriptions.  

Gradient Abrev. Description Data Source 

Region REGION Major hydrologic region NHDPlusV2 

Habitat 

EMBED Embeddedness (%) NRSA 

FINES Substrate <16mm in diameter (%) NRSA  

SLOPE Slope of channel (%) NHDPlusV2 

Network 

Positon 

ELEV Elevation (m) NHDPlusV2 

AREA Log of catchment area (km2) NHDPlusV2 

Land 

Use 

AGRI Agricultural land cover (%) NHDPlusV2 

URBAN Urban land cover (%) NHDPlusV2 

Hydro-

climate 

PRECIP Mean annual precipitation (mm)  NHDPlusV2 

TEMP_MA Mean annual temperature (degC)  NHDPlusV2 

TEMP_JA 
Mean July August temperature 

(degC) 

McManamay 

and Derolph 

(2019) 

TEMP_CoV 
Mean monthly temperature 

coefficient of variation 
NHDPlusV2 

PRECIP_CoV 
Mean monthly precipitation 

coefficient of variation 
NHDPlusV2 

WIDTH Mean channel width (m) NRSA  

DEPTH Mean thawleg depth (cm) NRSA  

DISCHARGE Mean annual discharge (m3 s-1) NHDPlusV2 

HYDROCLASS Hydrological Class 

McManamay 

and Derolph 

(2019) 
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Figure Captions 

Figure 1: Partial dependence plots for random forest models with > 10% proportion of variation 

explained. (A) proportion of flying individuals, “Flying”; (B) 25% stream signature distance, 

“SS25”; (C) poorly synchronized emergence, “ESP”; (D) multivoltinism, “VOM”; (E) fast 

development speed, “DSF”; (F) large body size, “BSL”; (G) high female dispersal, “FDH”;  (H) 

long life span, “LSL”. AREA = Catchment area, ELEV = Elevation, SLOPE = Channel Slope, 

FINES = Percent Fine Substrate, EMBED = Percent Embeddedness, AGRI = Percent 

Agricultural Land Cover, URBAN = Percent Urban Land Cover, PRECIP = Mean Annual 

Precipitation, TEMP_CoV = Mean Annual Temperature Coefficient of Variation, PRECIP_CoV 

= Mean Annual Precipitation Coefficient of Variation.  For hydrological class, 

“HYDROCLASS”:  1 = “Intermittent Flashy 1”, 2 = “Late Timing Runoff”, 3 = “Perennial 

Runoff 1”, 4 = “Perennial Runoff 2”, 5 = “Super Stable Groundwater”, 6 = “Stable High 

Baseflow”, 7 = “Intermittent Flashy SW”, 8 = “Snowmelt 2”, 9 = “Perennial Flashy”, 10 = 

“Intermittent Flashy 2”, 11 = “Western Coastal Runoff”, 12 = “Stable High Runoff”, 13 = 

“Harsh Intermittent”, 14 = “Snowmelt 1”, 15 = “Glacial High Runoff” (see McManamay and 

Derolph 2019). All predictor variables were mean-centered and scaled by their standard 

deviation prior to analysis. Line widths represent ranked importance of each variable. 

 

Figure 2: Regional variability in benthic macroinvertebrate traits displayed as marginal effects of 

hydrologic region. A) hydrologic regions; B) proportion of flying individuals, “Flying”; C) 25% 

stream signature distance, “SS25”; D) poorly synchronized emergence, “ESP”; E) 

multivoltinism, “VOM”; F) fast development speed, “DSF”; G) large body size, “BSL”; H) high 

female dispersal, “FDH”;  I) long life span, “LSL”. Trait definitions are provided in Table 1. 



108 

 

Legend shows hydrologic region codes and “rank” indicates the ranked importance of hydrologic 

region relative to other variables in the random forest models.  

 

Figure 3: Posterior distributions of the mean for each response variable and for each habitat 

condition class. White is least disturbed, gray is intermediate and black is most disturbed. Flying 

= proportion of flying taxa; SS25 = 25% Stream Signature Distance; FDH = Female Dispersal 

(High), BSL = Body Size (Large), LSL = Life Span (Long), FSS= Flight Strength (Strong); ESP 

= Emergence Synchrony Poor; DSF = Development Speed (Fast) and VOM = Voltinism (Multi); 

Trait definitions are provided in Table  
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Appendix S1. Supporting Information 

 

Table S2.1. Number of sites exceeding a threshold indicating the proportion of flying individuals 

with trait data for each hydrologic region. For this analysis we chose > 0.5 to maintain a 

minimum sample size (n ≥ 3) for all hydrologic regions.   

 

 Threshold for Inclusion in Traits Analysis 

Hydrological 

Region >0.1 >0.2 >0.3 >0.4 >0.5 >0.6 >0.7 >0.8 >0.9 

01 84 64 52 39 32 21 11 4 0 

02 103 93 77 56 42 19 5 1 0 

03N 53 38 25 10 7 5 3 0 0 

03S 17 8 5 4 3 2 1 0 0 

03W 51 43 29 18 13 6 3 2 0 

04 75 54 44 36 27 19 8 3 0 

05 102 79 63 42 30 16 8 3 0 

06 30 23 17 12 6 1 0 0 0 

07 124 95 77 51 31 22 13 9 2 

08 79 59 44 30 22 13 8 2 2 

09 23 18 12 9 6 3 1 0 0 

10L 93 78 63 50 31 26 20 14 7 

10U 180 161 143 122 98 79 51 28 12 

11 111 91 71 50 37 22 12 4 0 

12 33 31 29 21 17 10 7 4 2 

13 21 20 17 16 14 11 10 4 2 

14 53 50 47 38 32 25 19 12 4 

15 38 35 31 25 21 17 11 7 1 

16 44 37 34 33 22 16 12 5 0 

17 117 103 89 74 61 42 26 14 3 

18 39 35 32 29 22 15 9 5 3 

Total 1470 1215 1001 765 574 390 238 121 38 
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Table S2.2. Variable importance rankings for duration and extent traits using sites at threshold values for community traits data. At the 

50% threshold only sites with > 50% of their flying taxa have traits data are included in the analysis. Predictor variables are: AREA = 

Catchment area, ELEV = Elevation, SLOPE = Channel Slope, FINES = Percent Fine Substrate, EMBED = Percent Embeddedness, 

AGRI = Percent Agricultural Land Cover, URBAN = Percent Urban Land Cover, PRECIP = Mean Annual Precipitation, TEMP_MA 

= Mean Annual Temperature, TEMP_CoV = Mean Annual Temperature Coefficient of Variation, PRECIP_CoV = Mean Annual 

Precipitation Coefficient of Variation, HYDROCLASS = hydrological class. Note, many thresholds have similar important variables, 

but the percent variation explained (PVE) decreases with more conservative threshold values. 

Predictor 

Variable 

Development Speed (Fast) 

Threshold 

Voltinism (Multi) 

Threshold 

Emergence Synchrony (Poor) 

Threshold  

>50% >60% >70% >80% >50% >60% >70% >80% >50% >60% >70% >80%    

AGRI  2 1 3             
FINES   5 1             
SLOPE       6 5         
TEMP_MA 6 3 3 4    3 5 5 4 1     
TEMP_CoV 1 1 2  1 2 2 2 2 1 2 5     
EMBED   6         6     
ELEV 2 4 4 2        4     

HYDROCLASS 5 6   4 3 3  6        
PRECIP_CoV    5 5 4 5 6  6 6      
PRECIP 4   6 6 6 4 4 4 4 3 3     
REGION 3    2 1 1 1 3 2 1 2     
URBAN  5               
AREA     3 5   1 3 5      

PVE 0.26 0.2 0.17 0.06 0.3 0.3 0.3 0.16 0.21 0.26 0.23 0.12     

Predictor 
Variable 

Flight Strength (Strong)  
Threshold 

Life Span (Long)  
Threshold 

Female Dispersal (High)  
Threshold 

Body Size (Large)  
Threshold 

>50% >60% >70% >80% >50% >60% >70% >80% >50% >60% >70% >80% >50% >60% >70% >80% 

AGRI     6 3 2   2 2  5    
FINES   6  4    2 3 1      
SLOPE  1 2        5   5 6  
TEMP_MA   4   6 4        4 3 
TEMP_CoV 3 2 5  1 2 1  4  4  1 1 2 5 
EMBED 2 6   5 5 6  6       6 

ELEV                 
HYDROCLASS 5    2 1 3  3 5   4 4 5 4 
PRECIP_CoV             6    
PRECIP  3     5      3 3 3 2 
REGION 4        5 6   2 2 1 1 
URBAN 6 5 3  3 4    4 6      
AREA 1 4 1      1 1 3   6   

PVE 0.04 0.01 0.01 -0.04 0.13 0.05 0.02 -0.06 0.16 0.13 0.08 0 0.26 0.25 0.25 0.05 
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Table S2.3. Prior distributions for Bayesian regression models. Mean and standard deviation for 

proportional data are logit transformed. Trait abbreviations are: FDH = Female Dispersal (High), 

BSL = Body Size (Large), LSL = Life Span (Long), FSS= Flight Strength (Strong); ESP = 

Emergence Synchrony Poor; DSF = Development Speed (Fast) and VOM = Voltinism (Multi); 

Trait definitions are provided in Table 1 

 

Subsidy 

Characteristic  
Trait 

Prior 

Information 

Supply Flying  N(0.85, -1.45) 

Extent SS25 N(21.5, 18) 

BSL N(-2.44, -2.59) 

LSL N(-1.90, -1.82) 

FDH N(0.28, -1.15) 

FSS N(-1.66, -1.39) 

Duration DSF N(1.52, -1.59) 

VOM N(-0.58, -1.39) 

ESP N(-1.45, -1.73) 

 

Table S2.4. Descriptive statistics and model performance metrics. Trait abbreviations are: SS25 

= community-weighted 25% stream signature, BSL = maximal body length > 9mm, LSL = adult 

life span > 1 week; FDH = high female dispersal, FSS = Strong flying strength, DFS = Fast 

development, VOM = Multivoltinism, ESP = Poorly Synchronized Emergence. Trait definitions 

are given in Table 1. OBO R2 = Out of Bag R2, NSE = Nash–Sutcliffe efficiency, RSR = ratio of 

the root mean square error to the standard deviation of observed data (RSR) and MAE = mean 

absolute error.  

 

Subsidy 

Characteristic  
Trait 

National 

Mean (±SD) 
OBO R2 NSE RSR MAE 

Supply Flying  0.65 (±0.26) 0.31 0.32 0.83 0.17 

Extent SS25 31.09 (±12.59) 0.18 0.22 0.88 8.79 

BSL 0.32 (±0.26) 0.26 0.23 0.87 0.17 

LSL 0.29 (±0.26) 0.10 0.12 0.93 0.2 

FDH 0.16 (±0.20) 0.19 -0.01 1 0.15 

FSS 0.20 (±0.24) 0.03 0.06 0.96 0.18 

Duration DSF 0.47 (±0.31) 0.26 0.24 0.87 0.23 

VOM 0.48 (±0.31) 0.28 0.26 0.86 0.23 

ESP 0.37 (±0.28) 0.18 0.22 0.88 0.21 
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Figure S2.1 Schematic of investigation with path to research questions in the main text. NRAS = 

composite benthic macroinvertebrate samples collected by the national rivers and streams 

assessment; Flying taxa = Diptera, Ephemeroptera, Plecoptera, Odonata and Trichoptera; EPTC 

taxa = Ephemeroptera, Plecoptera, Trichoptera and Chironomidae [Diptera]; Traits Record = 

flying taxa with matching record in traits database. Trait abbreviations are: Trait abbreviations 

are: FDH = Female Dispersal (High), BSL = Body Size (Large), LSL = Life Span (Long), FSS= 
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Flight Strength (Strong); ESP = Emergence Synchrony Poor; DSF = Development Speed (Fast) 

and VOM = Voltinism (Multi); Trait definitions are provided in Table 1 

 

 

 

Figure S2.2. Top: Major Hydrologic Regions of the United States with survey locations used by 

National Rivers and Stream Assessment program (Points, n = 1,857).  Bottom: Survey locations 

where > 50% of the EPTDO genera have suitable information about traits (Triangles, n = 578). 
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Figure S2.3. Left: The proportion of flying genera with trait data collected during the NRSA 

survey. Note trait data were available for 14% of the Diptera, thus these taxa may be 

underrepresented in the traits analysis. Right: The composition of flying taxonomic Orders at all 

NRSA survey locations (All flying) and at sites included in the 50% threshold (i.e. trait data 

available for >50% of the flying taxa community) and 80% threshold. Relative to all NRSA 

survey locations, the sites included in the traits analysis have lower frequencies of Diptera and 

higher frequencies of Ephemeroptera.  
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Figure S2.4. Convergence of the proportion of variation explained (PVE) for different values of 

mtry (p) with increasing the number of trees (ntree). We selected 1, 2√𝑝,  0.2𝑝, 𝑝/3 and 𝑝 as 

candidate mtry values. Consistent with other studies (Fox et al. 2017), we found the optimal 

value for mtry offered little improvement (i.e. <5% change in PVE) over the default (𝑝/3 = 4) for 

all models except FSS. This model explained little variation in the proportion of individuals with 

strong flight strength and mtry=1 is possibly indicating stochastic outcome.    
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Figure S2.5. Correlation coefficients between the variable importance values from two 

independent random forest models. We tested several values for ntree (500, 1000, 1500, 2000, 

2500 and 3000) and found the consistency of results (i.e. correlation coefficient) increased with 

the number of trees. At ntree =3000 the agreement in the variable importance values >0.98 for all 

models. 



119 

 

 

Figure S2.6. Variable importance plots (MDA = mean decrease accuracy). Predictor variables 

are: AREA = Catchment area, ELEV = Elevation, SLOPE = Channel Slope, FINES = Percent 

Fine Substrate, EMBED = Percent Embeddedness, AGRI = Percent Agricultural Land Cover, 

URBAN = Percent Urban Land Cover, PRECIP = Mean Annual Precipitation, TEMP_MA = 

Mean Annual Temperature, TEMP_CoV = Mean Annual Temperature Coefficient of Variation, 

PRECIP_CoV = Mean Annual Precipitation Coefficient of Variation, HYDROCLASS = 

hydrological class. Trait abbreviations are: FDH = Female Dispersal (High), BSL = Body Size 

(Large), LSL = Life Span (Long), FSS= Flight Strength (Strong); ESP = Emergence Synchrony 

Poor; DSF = Development Speed (Fast) and VOM = Voltinism (Multi); Trait definitions are 

provided in Table 1
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Abstract 

Fluxes of materials and energy across ecosystem boundaries (i.e. “resource subsidies”), 

are globally common and likely impacted by climate change. Aquatic insect larvae 

metamorphose into flying terrestrial adults that subsidize terrestrial ecosystems with energy and 

nutrients. The magnitude of this effect should be controlled by the quantity of insects that emerge 

from the aquatic ecosystem, but it is not clear how climate change could impact aquatic insect 

emergence. Here, we investigate how climate change could alter the quantity of aquatic insect 

subsidies reaching terrestrial ecosystems. Leveraging existing large-scale datasets, we modeled 

1) the surface area of streams and rivers and 2) the production of emergent aquatic insects per 

unit area under present day climate and two climate change scenarios for 2070. We then 

extrapolate these results to the nearly 2.3 million streams and rivers of the contiguous United 

States and explore how the quantity of emergent aquatic insects may or may not satisfy the 

metabolic demand of insectivorous birds that inhabit these regions. Our estimates suggest that 

these ecosystems can export 78,197 (95% PI: 2,155 - 2.19 x 106) metric tons of insect biomass 

under present conditions, and climate change could increase emergent biomass by 250% in some 

regions while decreasing it by 50% in others. These changes could resonate through terrestrial 

ecosystems by shifting the energy supplied by aquatic insect subsidies to common avian aerial 

insectivores. Under future climate projections, many southern hydrologic regions are expected to 

experience a decline in the ratio of energy supplied by aquatic insects relative to energy 

demanded by insectivores. Collectively, our results demonstrate that climate change effects on 

one ecosystem will resonate throughout other ecosystems due to cross-ecosystem linkages.  
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Keywords: Climate change, resource subsidies, emergent aquatic insects, avian aerial 

insectivores, temperature, precipitation, cross ecosystem linkages 

 

Introduction 

Fluxes of materials and energy that cross ecosystem boundaries are often termed, 

“resource subsidies” (Polis et al., 1997; Loreau et al., 2003; Montagano et al., 2019). In recipient 

ecosystems, resource subsides can influence consumers (Twining et al., 2018), trophic 

interactions (Sabo and Power, 2002), and ecosystem processes (Bultman et al., 2014). Although 

resource subsidies are ubiquitous (Marczak et al., 2007; Allen and Wesner, 2016; Gounand et al., 

2018), we know little about how they might be affected by climate change (Greig et al., 2012; 

Larsen et al., 2016). The quantity of resource subsidies reaching a recipient ecosystem is an 

important factor that can drive the magnitude of their effect (Marczak et al., 2007; Marcarelli et 

al., 2011; Subalusky and Post, 2018). In many instances, subsidy quantity is proportional to 

productivity of the donor ecosystem (Polis et al., 1997; Gratton and Vander Zanden, 2009; 

Bartrons et al., 2013). Consequently, climate change-induced shifts in ecosystem production 

could resonate across ecosystem boundaries (Zhao and Running, 2010; Patrick et al., 2019).  

Insects that develop in aquatic ecosystems as larva and emerge as flying terrestrial adults 

(hereafter, “emergent insects”) subsidize terrestrial ecosystems (Baxter et al., 2005; Richardson 

et al., 2010; Schindler and Smits, 2017). They can account for a significant proportion of the 

energy budgets of terrestrial consumers or meaningfully contribute to the detrital resource pool 

(Baxter et al., 2005; Dreyer et al., 2015; Wesner et al., 2019). Among the consumers that are 

subsidized, emergent insects may be especially beneficial for avian aerial insectivores (Nakano 

and Murakami, 2001; Marczak et al., 2007; Schilke et al., 2020). For example, emergent insects 
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have been linked to avian breeding success and population density (Gray, 1993; Epanchin et al., 

2010; Twining et al., 2018). Unconsumed emergent insects are also important for detrital food 

webs and contribute limiting nutrients to plants (Bultman et al., 2014; Dreyer et al., 2015; 

Wesner et al., 2019). In many instances the fate of aquatic insect subsidies in terrestrial 

ecosystems is still unclear but may depend on quantity of insect subsidies relative to energetic 

demands of terrestrial consumers (Wesner et al., 2019).   

The quantity of emergent insects entering the terrestrial ecosystem is contingent on 

production of aquatic insects and surface area of the aquatic ecosystem (Gratton and Vander 

Zanden, 2009; Bartrons et al., 2013). Emergent insects are a fraction of the entire aquatic 

community’s secondary production, as many aquatic invertebrates do not have flying life stages 

(e.g. snails, leeches, etc., Huryn and Wallace 2000, Gratton and Vander Zanden 2009). Because 

this fraction is generally consistent among invertebrate populations, aquatic ecosystems with 

higher insect production should export more subsidies to terrestrial ecosystems (Statzner and 

Resh, 1993; Huryn and Wallace, 2000; Gratton and Vander Zanden, 2009). On the other hand, 

Surface area is one measure of aquatic ecosystem size and, on a per unit area basis, larger 

ecosystems will export a greater amount of aquatic insect subsidies (Gratton and Vander Zanden, 

2009; Bartrons et al., 2013). Multiplying per unit area insect production by surface area yields 

estimates for quantity of emergent insects exported from an aquatic ecosystem (Bartrons et al., 

2013; Schilke et al., 2020). 

Climate change could impact secondary production of aquatic ecosystems and surface 

area by altering water temperatures and water availability through changes in precipitation and 

evapotranspiration patterns (Woodward et al., 2010; Patrick et al., 2019; Konapala et al., 2020). 

In the United States, mean annual temperature is expected to increase between 1.6 and 6.6 ºC 
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while changes in precipitation patterns are expected to vary regionally (USGCRP, 2018). 

Secondary production in aquatic ecosystem may increase because increases in water temperature 

could elevate primary production, providing a greater resources base for consumers (Mulholland 

et al. 2001, Demars et al. 2011, Patrick et al. 2019). Indeed, a mesocosm experiment found 

warming increased the emergence of aquatic insects (Greig et al. 2012). As temperatures 

increase and precipitation patterns change, the surface area of aquatic ecosystems may also be 

impacted by increased evaporation rates or anthropogenic demands (USGCRP, 2018). Although 

climate change will have widespread impacts on aquatic systems (Woodward et al., 2010), there 

is little information about how these impacts could resonate across the aquatic-terrestrial 

interface (Larsen et al., 2016).  

Here, we investigate how climate influences, emergent insect production and surface area 

of lotic ecosystems within the contiguous United States (CONUS). We focus on stream 

ecosystems because, relative to lakes, they are more spatially extensive across the CONUS and 

have more contact with adjacent terrestrial ecosystems (Bartrons et al., 2013). After we establish 

an empirical linkage between climate, stream surface area and emergent insect production, we 

extrapolate our results to the approximately 2.3 million streams and rivers of the CONUS under 

present day climate and under two future climate change scenarios (RCP 2.6 and 8.5). This 

allowed us to assess 1) the large-scale variation in quantity of emergent insects across the 

CONUS and 2) how climate change might affect these patterns. Lastly, we compare energy 

content of emergent insects to the field metabolic rates (FMR) of common avian aerial 

insectivores under both present day and future climate scenarios to generate insights about the 

fate and potential conservation implications of aquatic insect subsidies.  
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Methods  

Overview 

 Our primary goals were to estimate the quantity of insects emerging from lotic 

ecosystems of the CONUS under present day and projected climates, and to compare these 

estimates to metabolic demands of avian aerial insectivores. To accomplish these objectives, we 

created two separate models to predict 1) per unit area production of emergent aquatic insects 

and 2) stream surface area using climate and watershed variables. We combined these estimates 

to calculate total emergence from each stream in units of grams ash free dry mass per year 

(gAFDM y-1) as the product of emergent insect production in grams ash free dry mass per square 

meter per year (gAFDM m-2 y-1) and wetted stream area (m2). Both models used a suite of 

bioclimate variables and watershed area, that are readily available for the entire CONUS. This 

spatial coverage allowed us to extrapolate predictions to nearly 2.3 million streams and rivers 

and forecast potential changes given future climate projections. We also used these predictions to 

calculate potential energy supplied by emergent insects (kilojoules per year, kJ y-1) to terrestrial 

ecosystems and draw comparisons with energetic demand of avian aerial insectivores (kJ y-1).  

 

Datasets for predicting emergent insect production 

We used the National Hydrography Dataset Version 2 (NHDPlusV2) as a geospatial 

hydrologic framework (McKay et al., 2012; Moore and Dewald, 2016). This dataset was 

assembled at 1:100K resolution and available for all major hydrologic regions and subregions 

with the CONUS (i.e. 2-digit and 4-digit hydrologic unit codes, Figure 1). It consists of digital 

flowlines and value-added attribute tables that contain ancillary data. Since we were focused on 

insect emergence from lotic ecosystems, we did not consider flowlines that were classified as a 
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divergent path, connector, coastline, pipeline, canal or ditch, or associated with a lake, pond, ice 

mass, reservoir, swamp, marsh or playa. After removing these features, 2.3 million streams and 

rivers remained. 

Insects that emerge from streams are sourced from in-stream production of aquatic 

insects (Gratton and Vander Zanden, 2009). We obtained estimates of aquatic insect production 

from a global database of annual invertebrate community secondary production measurements 

(Patrick et al. 2019). This database was compiled from a literature review and included studies 

that measured the annual production of stream invertebrate communities using repeated field 

sampling (Patrick et al., 2019). We reviewed the 56 publications within the database and 

identified 92 locations with taxa-specific production estimates (Figure 1). For these 92 studies, 

we subtracted the non-insect production from the total invertebrate production to calculate 

annual insect production (gAFDM m-2 yr-1). We then multiplied annual insect production by 

0.19, an estimate of the fraction that emerges from streams, to obtain our estimate of annual 

insect emergence (Gratton and Vander Zanden 2009, Bartrons et al. 2013, Schilke et al. 2020).  

To estimate stream surface area we obtained 2,077 field measurements of summer wetted 

stream width from the National Rivers and Streams Assessment (NRSA, Figure 1, U.S. EPA 

2016a). The NRSA was established to inventory the biological condition of the nation’s streams. 

At each biomonitoring site, sampling reaches are defined as a length 40x the wetted width or a 

minimum of 150m. The mean wetted width for each site was derived from measurements taken 

at 11 equally spaced transects in summer 2008-2009 (U.S. EPA, 2016b). We georeferenced each 

location to the closest NHDPlusV2 flowline to identify the hydrologic region, upstream 

catchment area and extract climate variables for modeling (discussed below). We used the 
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predicted wetted width to create a uniform buffer around each NHDPlusV2 flowline to estimate 

the stream surface area.  

We obtained climate data for current and future projections from the Worldclim database 

(https://www.worldclim.org/, Hijmans et al. 2005). These data are available at a ~4.5 x 4.5 km 

resolution and consist of mean monthly precipitation and temperature, and 18 bioclimatic 

variables (Table S1). Bioclimatic variables represent climatic trends, seasonality or extreme or 

limiting factors and are often used in species distribution modeling (Hijmans et al., 2005; Gill et 

al., 2020). Future projections of these variables were derived from several General Circulation 

Models (GCM) at four representative concentration pathways (RCP) (https://worldclim.org/). 

We selected projections for the year 2070 generated by the HadGEM2-ES model (Jones et al., 

2011). The HadGEM2-ES is one of 17 core models used in the Coupled Model Intercomparison 

Project (CMIP5) to evaluate large-scale climatology (Sheffield et al., 2013) and includes 

components of the Earth System to integrate chemical reactions and biological interactions with 

physical processes that influence climate (Collins et al., 2011). We parametrized this model with 

two representative concentrations pathways (RCP) that reflect future greenhouse gas emissions. 

RCP 8.5 reflects a very high emissions scenario while RCP 2.6 reflects stringent mitigation of 

greenhouse gases (IPCC, 2014). We downloaded the three downscaled climate raster datasets 

using the “raster” R package (Hijmans, 2017).  

 

Avian aerial insectivore field metabolic rates 

 Avian aerial insectivores are birds that catch insects exclusively or almost exclusively in 

flight and consume emergent aquatic insects to, at least partially, meet their energetic demands 

(Baxter et al., 2005). We identified 53 species of North American breeding birds that belong to 
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Nightjars and Allies (Caprimulgidae), Swifts (Apodidae), Tyrant Flycatchers (Tyrannidae), or 

Swallows (Hirundinidae) from the Birds of the World database (https://birdsoftheworld.org). For 

each species, we estimated the field metabolic rate following Nagy et al. (1999): 

𝐹𝑀𝑅 = 10.5 𝑀0.681  

where FMR is the field metabolic rate (kJ d-1) and M is the body mass (g). We obtained body 

mass estimates from Dunning (2008). When multiple estimates of body mass were available for 

a species, we used a weighted average as a single estimate (Table S3).  

We obtained abundance information for each species from the eBird Status and Trends 

data products (Fink et al., 2020b). These data are available at weekly intervals for the entire 

Western Hemisphere at a ~2.96 x 2.96 km resolution. Abundance estimates were derived from 

birding observations conducted by citizen scientists and reflect the number of individuals a 

skilled observer would count beginning at the optimal time of day and expending the effort 

necessary to maximize detection (Fink et al., 2020a; Johnston et al., 2020). Although these 

values underestimate absolute abundance, they are relative to all other sites such that it is 

possible to draw informative comparisons among them (Johnston et al., 2020). To calculate the 

annual energetic demand of the avian aerial insectivores, we first multiplied the abundance of a 

species by its FMR (kJ d-1) and then multiplied this value by 7 days to obtain the weekly FMR 

for each species. The annual energetic demand (kJ y-1) is the sum of weekly FMR for all weeks 

and species.  

 

Analysis 

We used random forest regression to establish an empirical relationship between the 

annual production of aquatic insects and the suite of bioclimatic variables (Table S1). Random 

forest is a nonparametric ensemble modeling technique that combines results of multiple 
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independent decision trees (Breiman, 2001). These models are commonly used in ecology (Fox 

et al., 2017; Hill et al., 2017) but predictions from new data are single point estimates (i.e. mean 

response, Meinshausen 2006). Therefore, we also estimated 95% prediction intervals using 

quantile regression forests (Meinshausen, 2006). In brief, quantile regression forests are a 

generalization of random forest regression that considers the full conditional distribution of the 

response variable (Meinshausen, 2006). As such, upper and lower bounds of a prediction can be 

established for a given interval as a measure of uncertainty of an estimate.  

Prior to model fitting, we randomly split the 92 estimates of insect production into 

training (80%) and testing data (20%) and removed strongly correlated bioclimatic variables (i.e. 

r > 0.7). The final model included mean annual temperature, mean diurnal range, isothermality, 

mean temperature of wettest quarter, mean temperature of driest quarter, mean annual 

precipitation and precipitation seasonality as predictor variables (Table S1, 

https://www.worldclim.org/). We optimized the number of variables that are randomly selected 

at each node (mtry = 4) and the number of independent trees (ntree = 400) by choosing the 

combination that maximized the percent variation explained by, and repeatability of, the model 

(Fox et al., 2017; Brieuc et al., 2018). The mean conditional response (i.e. point estimates) were 

generated using the “randomForest” R-package (Liaw and Wiener, 2002) and we constructed 

95% prediction intervals using the “quantregForest” R-package (Meinshausen, 2017). 

We used a Bayesian mixed effects model to assess the relationship between mean stream 

width and climate variables and watershed area (Table S1). Climatic variables (i.e. mean annual 

precipitation, mean annual temperature, and precipitation seasonality) were considered 

population-level effects and drainage area was a group-level effect with hydrologic region as the 

single grouping term. The wetted width measurements from the NRSA and catchment area were 
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log-transformed prior to modeling because stream channel properties typically follow simple 

power functions with changing catchment area (Faustini et al., 2009). We also centered and 

scaled the predictor and response variables and split the dataset into random training (80%) and 

testing (20%) portions. We then used a backwards stepwise routine to iteratively remove the 

single variable with the weakest relationship to wetted width and generate a suite of competing 

models. Leave-one-out cross validation was then used to identify the model with the best 

predictive accuracy (Vehtari et al., 2017). All models were fit with 5,000 iterations (2,000 

warmup) using the BRMS R-package (Bürkner, 2017).  

We extrapolated the empirical relationships established for insect production and stream 

width to the nearly 2.3 million NHDPlusV2 stream reaches in the CONUS for present day and 

future climate projections. For each reach we obtained the upstream catchment area from the 

NHDPlusV2 and extracted climate variables (current and projected, Table S1) at the center of 

each flowline. We used these data to predict per unit area production of emergent aquatic insects 

(gAFDM m-2 yr-1) and stream surface area (m2). Since both models were fit on the log scale, we 

used exponentiation to back-transformed predictions. We bounded our estimate of total 

emergence using the product of the lower and upper bounds of the 95% prediction intervals for 

per unit area insect production and stream surface area. Finally, the potential effect of climate 

change on emergent aquatic insect subsidies was assessed using the percent change in per unit 

area emergent insect production (gAFDM m-2 yr-1), stream surface area (m2) and total emergence 

(tADFM yr-1). To explore potential regional variation, we present the median percent change of 

all reaches within each major hydrologic region (HUC 2, Figure 1).  

To investigate how energy provided by aquatic insect subsidies could support terrestrial 

consumers, we compared energy content of emergent aquatic insect to field metabolic rates 
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(FMR) of common avian aerial insectivores (kJ yr-1). Since the resolution of the insectivore 

dataset was large enough to intersect several individual streams, we reduced our analysis to 

8,221 randomly sampled pixels (Figure 1). We stratified sampling by hydrologic subregions (4-

digit hydrologic units, HUC4) such that there were approximately 30 pixels within each (Figure 

1). We calculated the total emergence as the product of stream surface area within pixel and the 

predicted emergence production for both current and future climate scenarios. We converted 

units of total emergence (gAFDM yr-1) to grams carbon per year (gC yr-1) (1 gAFDM = 0.55 gC, 

Waters 1977) and assumed 1 gC of insect biomass contains 23.01 kJ of energy (Wesner et al., 

2020).   

We used supply and demand ratios (SDR) to assess energy supplied by emergent insects 

relative to energy demanded by insectivores for each site. We log-transformed SDR such that 

values < 0 indicate locations where energy supply exceeds demand. We assessed change caused 

by future climate by subtracting the SDR under current conditions from the SDR under both 

future climate scenarios. Here, negative values indicate that the SDR declines under future 

conditions. Of the 8,221 randomly selected pixels, we removed 16 from the analysis because the 

common aerial insectivores we identified from the eBird dataset were not predicted to be present. 

We aggregated remaining sites to the subregional scale (HUC4) using median pixel value 

(Figure 1).  

 

Results  

The emergent insect production and stream width models provided adequate reflections 

of the underlying structure of the data (Figure 2). The insect production model explained 56% of 

the variation in the data and mean annual precipitation, mean annual temperature and 



132 

 

precipitation seasonality were positively related to insect production (Figure 3, Table S1). The 

stream width model explained 88% (95% CrI: 0.87, 0.88) of the variation among wetted width 

measurements and included upstream catchment area, mean annual precipitation, mean annual 

temperature, and precipitation seasonality (Table S1 & S3). Wetted width was positively 

associated with larger catchment areas (β = 0.95, 95% CrI: 0.88, 1.01) and higher mean annual 

precipitation (β = 0.26, 95% CrI: 0.23, 0.29) and negatively associated with higher mean annual 

temperatures (β = -0.12, 95% CrI: -0.15, -0.08) and precipitation seasonality (β = -0.15, 95% CrI: 

-0.18, -0.12, Figure 4).  

We estimate that streams and rivers within the CONUS export 78,197 (95% PI: 2,155 - 

2.19 x 106) metric tons of insect biomass to terrestrial ecosystems annually (tAFDM yr-1). 

Emergent insect production (gAFDM m-2 yr-1), stream surface area, and total emergence 

(gAFDM y-1) varied among hydrologic regions (Table 1). The geometric mean of emergence 

production for each region ranged from 0.53 to 4.61 gAFDM m-2 yr-1, which is comparable to 

other estimates (i.e. Gratton and Vander Zanden 2009, mean [95% Confidence Interval]: 2.104 

[0.844, 6.238] gAFDM m-2 yr-1 ). The California, Rio Grande, and Upper Missouri hydrologic 

regions had the lowest median stream surface area while Texas, Northeast, and Tennessee had 

the greatest stream surface area. Often per unit area emergent production did not track total 

emergence in the same region. For example, the Pacific Northwest was among the lowest in 

emergent insect production per unit area, but among the highest in total emergence. Similarly, 

the Souris Red Rainy hydrologic region had moderate production per unit area but generally low 

total emergence (Table 1).   

We found that climate projections under RCP 2.6 and RCP 8.5 scenarios could alter per 

unit area emergent insect production, stream surface area, and total emergence (Figure 4). 
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emergent insect production could increase in northern hydrologic regions (i.e. Pacific Northwest, 

Upper Missouri and Northeast) and decrease in southern regions (i.e. Rio Grande, Texas, Lower 

Mississippi, and Southern Atlantic). On the other hand, median stream surface area will decline 

in all regions by as much as 20% under RCP 2.6 scenario and 40% under RCP 8.5 scenario 

(Figure 4). The combined effects of climate-induced changes on per unit area emergent insect 

production and stream surface area could cause several southern hydrologic regions (e.g. South 

Atlantic, Lower Mississippi and Rig Grande) to experience a decline in total aquatic insect 

emergence and northern hydrologic regions (e.g. Northeast, Great Lakes, and Pacific Northwest) 

to experience an increase. In general, climate-induced changes are more extreme under RCP 8.5 

than RCP 2.6 scenario (Figure 5).  

The contribution of emergent aquatic insects to the annual energetic demands of avian 

aerial insectivorous varied within the CONUS (Figure 5). The median demand within a 

hydrologic subregion ranged from 31 to 1,542 (kJ x1000 yr-1) (Figure 5A). In much of the 

southeastern US, the energy content provided by emergent insects exceeded the demand by aerial 

insectivores. Alternatively, throughout the western US, demand exceeded supply (Figure 5B). 

Under future climate projections the amount of energy supplied by aquatic insects is predicted to 

decline the greatest in subregions of the upper Missouri, Lower Colorado, and Rio Grande while 

in many subregions in the northern US, insect supply will exceed current demand (Figure 5C-D).  

  

Discussion 

Although climate change is a pervasive threat to aquatic ecosystems (Woodward et al., 

2010), little is known about how the effects could resonate throughout terrestrial ecosystems 

(Greig et al., 2012; Larsen et al., 2016). We expand the frameworks of Gratton and Vander 
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Zanden (2009) and Bartrons et al. (2013) to estimate that approximately 78,000 tAFDM yr-1 

(95% PI: 2,155 - 2.19 x 106) of insect biomass are exported from streams and rivers to terrestrial 

ecosystems within the CONUS. Together, variation in emergent insect production per unit area 

and stream width revealed that under present day conditions quantity of aquatic insect subsidies 

entering terrestrial ecosystems varies among hydrologic regions. For example, the Lower 

Mississippi hydrologic region could potentially export 60-fold more aquatic insect subsidies than 

the Great Basin hydrologic region. We also demonstrate that climate change could impact 

terrestrial ecosystems by altering the quantity of aquatic insect subsidies. Indeed, some regions 

could experience up to a 50% decline in total emergence, while others could experience up to a 

250% increase. Finally, these changes could subsequently alter energy budgets for common 

aerial insectivores by either increasing or decreasing the amount of energy that aquatic insect 

subsidies could contribute to their metabolic demands. Collectively, our results reveal that the 

effects of climate change on one ecosystem can resonate throughout other ecosystems by altering 

subsidy quantity.  

Per unit area insect production was influenced most by mean annual precipitation, 

seasonality of precipitation, and mean annual temperature. In our study, insect production had a 

nonlinear response with mean annual precipitation, increasing near mean precipitation levels and 

leveling at the extremes. Others have found that precipitation patterns may influence insect 

production through floods and droughts (Whiles and Wallace, 1995; Kendrick et al., 2019; 

Patrick et al., 2019). For example, Fisher et al. (1982) found a flash flood reduced invertebrate 

biomass by 98% but recovered to preflood levels 2-3 weeks later. Similarly, Ledger et al. (2011) 

found drought reduced aquatic secondary production by half. The positive relationship between 

insect production and precipitation seasonality could be driven by taxa with multiple cohorts and 
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fast development traits (Jackson and Fisher, 1986). Finally, the positive effect of mean annual 

temperature could be underpinned by concomitant increases in water temperatures and the 

availability of nutrients or food resources (Morin and Dumont, 1994; Huryn and Wallace, 2000; 

Patrick et al., 2019). Collectively, our results may support the notion that aquatic insect 

production is constrained by climate and large-scale climatic patterns could explain regional 

differences in the per unit area emergent insect production.  

Future climate scenarios may affect insect production per unit area differently depending 

on the region. In many northern hydrologic regions (e.g. Pacific Northwest, Upper Missouri, and 

Northeast) insect production is expected to increase presumably because of the expected 

increases in mean annual air temperature (USGCRP, 2018).  Higher temperatures could benefit 

organism metabolism and, by extension, increased emergence (Greig et al., 2012; Muehlbauer et 

al., 2020). Indeed, whether these relationships persist into the future will depend on the thermal 

tolerance and survival of different taxa.  Alternatively, in many southern hydrologic regions, 

insect production is expected to decline because of the anticipated effects of climate change on 

precipitation and seasonality (USGCRP, 2018). Importantly, these results suggest that the effects 

of climate change on per unit area emergent insect production will vary among major hydrologic 

regions of the CONUS.  

The surface area of aquatic ecosystems rivers is a major determinant of total insect 

emergence (Gratton and Vander Zanden, 2009; Bartrons et al., 2013). In general, we found 

wetted width was positively associated with mean annual precipitation and negatively associated 

with mean annual temperature and precipitation seasonality. Higher precipitation levels may 

contribute to overland runoff and higher temperatures could be indicative of evaporative losses, 

both could explain relationships stream width. On the other hand, precipitation seasonality could 
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increase variation in streamflow and the duration of water in the stream channel. Since our 

measures were taken during the summer season, increased variation in precipitation could reduce 

the opportunity for field measures to correspond the wettest seasons. Given these associations it 

is also likely that major hydrologic regions differ in quantity of aquatic insect subsidies because 

of differences in stream surface area (Gratton and Vander Zanden, 2009; Bartrons et al., 2013). 

 Under future climate scenarios we found wetted stream width could decline in many 

hydrologic regions of the CONUS by 2070. Among these regions, the Lower Mississippi and Rio 

Grande may incur the greatest reduction in stream surface area which could be caused by future 

decreases in precipitation and higher air temperatures (USGCRP, 2018). Alternatively, we found 

that stream surface in the Souris Red Rainy and Upper Mississippi hydrologic regions could 

experience limited change from present day conditions. In the Northern US, precipitation and 

temperature are expected to increase (USGCRP, 2018). Consequently, the relatively small effect 

of climate on stream surface area in these hydrologic regions could be due to elevated 

precipitation potentially offsetting evaporative losses associated with higher temperatures. 

Indeed, we did not incorporate changes in societal water demands which are likely to increase 

given higher temperatures and further impact stream surface area (Perkin et al., 2017; USGCRP, 

2018). As such future declines in stream surface area and subsidy exchanges may be greater than 

what our estimates suggest.  

Regional differences in aquatic insect subsidies could underpin large scale variation in 

terrestrial food webs under present and future conditions (Montagano et al., 2018; Lafage et al., 

2019). Throughout much of the western United States we found energetic demands of aerial 

insectivores exceed energy supplied by emergent aquatic insects and throughout much of the 

southeastern United States we found the opposite. In regions where aquatic insect subsidies 



137 

 

cannot exceed the metabolic demands of insectivores, they may be relatively more important to 

consumers and eaten at greater rates that what their availability suggests. Indeed there is 

increasing evidence that emergent insects are a higher quality prey item relative to terrestrial 

insects (Marcarelli et al., 2011; Martin-Creuzburg et al., 2017; Twining et al., 2018). Conversely, 

where emergent aquatic insect subsidies exceed the energetic demands of insectivores, they 

could become available to other consumers or enter the detrital resource pool because 

insectivores become satiated (Bultman et al., 2014; Dreyer et al., 2015; Wesner et al., 2019). 

Understanding the geographic variation in subsidies relative to the energetic demands of 

common insectivores provides insights into large-scale variation in the energy budgets and the 

potential fate of aquatic insect subsidies in recipient ecosystems.  

Climate-induced changes in quantity of aquatic insect subsidies could impact the ratio 

between energy supplied by emergent aquatic insects and energy demanded by aerial 

insectivores. In general, throughout much of the southern United States, we predict supply 

demand ratios (SDR) will decline and could exacerbate already declining insectivorous bird 

populations (Twining et al., 2018; Spiller and Dettmers, 2019). Alternatively, SDR in many 

northern regions may increase as a result of climate change. In these regions, the energy supplied 

by aquatic insects is predicted to exceed present day energy demand by common avian aerial 

insectivores and perhaps increase population levels. Importantly, both increases and decreases in 

SDR could illicit several complex indirect effects on other consumers and prey (Baxter et al., 

2005; Allen and Wesner, 2016; Montagano et al., 2018) and our results suggest that these effects 

will also vary regionally. 

 

Caveats and limitations  
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We provide the first attempt to quantify insect emergence from streams and rivers in the 

CONUS but other attempts have quantified total emergence from individual rivers or regions 

(Bartrons et al., 2013; Wesner et al., 2020). For example, Wesner et al. (2020) estimated that the 

mainstem of the Missouri River and its off-channel habitats can export a median of ~136 tAFDM 

yr-1 of insect biomass. On the other hand, Bartrons et al. (2013) estimated rivers and streams 

within the state of Wisconsin export ~2,856 tAFDM yr-1 insect biomass. To put our results in the 

context of these previous initiatives, we re-estimated emergence for these locations. We estimate 

the mainstem of the Missouri River (excluding reservoirs and off-channel habitats) could export 

~333 tADFM yr-1 insect biomass while streams and rivers within the state of Wisconsin could 

export ~606 tAFDM yr-1. There are at least two methodological reasons for the discrepancy.  

First, Wesner et al. (2020) was able to delineate the surface area of the Missouri River 

and its off-channel habitats directly from historical maps and aerial photography. Due to the 

scale of our analysis, we had to rely on simple downstream hydraulic geometry relationships to 

infer stream surface area (Wohl, 2004; Faustini et al., 2009; Allen and Pavelsky, 2015). 

Downstream hydraulic geometry relationships do not account for human modifications (Allen 

and Pavelsky, 2015). The Missouri River has experienced anthropogenic impacts such as 

channelization and the loss of backwater habitats that could alter the wetted width relative to that 

predicted from its catchment area (Yager et al., 2013; Wesner et al., 2020). Recent advances in 

satellite image processing should be useful for resolving these differences (Allen and Pavelsky, 

2015; Allen et al., 2018). 

Second, Bartrons et al. (2013) used a high resolution (1:24K) hydrography dataset 

obtained from the Wisconsin Department of Natural Resources. Although a high-resolution 

national hydrography dataset (NHDHR) is currently in production for the CONUS, it was not 
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completely available at the time of our analysis (Moore et al., 2019). Instead, we relied on the 

medium resolution (1:100K) NHDPlusV2 for our geospatial framework (McKay et al., 2012). 

Differences in the resolution of the two hydrography datasets likely reduced the number of 

streams represented on our maps and contributed to our lower estimates. Other studies have 

mentioned the importance of considering spatial grain (resolution) for estimating fluxes from 

lotic ecosystems (Benstead and Leigh, 2012). Here, we reiterate this point in the context of 

resource subsidies. 

To investigate the effects of climate change on aquatic insect subsidies, we intentionally 

developed simplistic models using only climate variables. Indeed, climate is a major driver of 

secondary production in aquatic ecosystems (Bartrons et al., 2013; Patrick et al., 2019), and 

climate projections are often used to model climate-induced changes in species or habitats 

(Araújo and Peterson, 2012; Gill et al., 2020). However, this approach does not account for other 

environmental variables that could modify the relationship between climate and aquatic insect 

emergence. For example, Greig et al. (2012) found that the presence of a predator could offset 

the combined effects of nutrient additions and temperature warming on the production of 

emergent insects. Although our results provide insights into the potential effects of climate on 

the quantity of emergent aquatic insects exported from streams and rivers, the effects of 

changing climate will likely be accompanied by multiple agents of global change (Larsen et al., 

2016).  

 Finally, our predictions under future climate were derived from a single general 

circulation model (GCM), HadGEM2-ES (Jones et al., 2011). Although this model is one of 17 

core models used in the Coupled Model Intercomparison Project (CMIP5) and includes 

components of the Earth System (Collins et al., 2011; Sheffield et al., 2013), many other GCMs 
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are available. Because each model has inherent bias, the use of multiple of GCMs is sometimes 

favorable to better capture uncertainty in future climates (Hannah, 2015; Gill et al., 2020). 

However, increasing the number of GCM also increases the complexity and computational 

resources. We intentionally selected a single model because of the scale of our analysis and to 

reduce the complexity of the results. Relative to other core GCMs, HadGEM2-ES preformed 

reasonable well in predicting precipitation in North America but generally underestimated winter 

temperature and overestimated summer temperatures (Sheffield et al., 2013). 

Conclusions 

Climate change will impact ecosystems globally and these impacts are likely to resonate 

across ecosystem boundaries. Here we explored the potential consequences of climate change 

and showed that the total emergence of aquatic insect subsidies will vary geographically and 

alter the energy budgets of common insectivorous birds. We anticipate these results could have 

implications for the management of cross-ecosystem boundaries and conservation of declining 

bird populations.  
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Table 3.1. The number of streams, median stream surface area, geometric mean insect emergence per unit area and total emergence for 

the major hydrologic regions of the United States. Numbers in the parenthesis reflect the upper and lower 95% prediction intervals for 

each estimate within a region. These values are either the median, geometric mean or sum of the upper and lower 95% prediction 

intervals for the estimated surface area, insect emergence and total emergence, respectively. 

2-digit 

HUC 
Hydrologic Region 

Streams 

(#) 

Median Surface 

Area (ha) 

Mean Insect 

Emergence  

(gAFDM m-2 yr-1) 

Total Emergence 

(tAFDM yr-1) 

01 Northeast 48517 0.57 (0.18, 1.84) 0.64 (0.05, 5.21) 665.36 (27.33, 22808.79) 

02 Mid Atlantic 104309 0.39 (0.12, 1.25) 0.98 (0.2, 11.3) 2268.51 (138.83, 95092.48) 

03N South Atlantic North 106026 0.34 (0.11, 1.11) 4.52 (0.29, 26.62) 6835.99 (113.67, 104386.46) 

03S South Atlantic South 39430 0.31 (0.09, 1.03) 4.39 (0.21, 27.61) 2318.26 (32.81, 45313.48) 

03W South Atlantic West 119572 0.35 (0.11, 1.13) 4.61 (0.23, 28.67) 5893.01 (92.46, 119511.73) 

04 Great Lakes 84205 0.48 (0.15, 1.54) 0.89 (0.08, 7.18) 1767.24 (53.21, 58367.21) 

05 Ohio 156150 0.41 (0.13, 1.31) 1.69 (0.26, 15.62) 5650.91 (275.69, 191600.81) 

06 Tennessee 50640 0.51 (0.16, 1.7) 2.86 (0.28, 27.2) 1864.29 (52.52, 54516.6) 

07 Upper Mississippi 161349 0.36 (0.11, 1.16) 1.34 (0.13, 11.09) 5492.72 (191.11, 225283.46) 

08 Lower Mississippi 121472 0.44 (0.14, 1.43) 4.06 (0.25, 28.05) 18165.01 (314.6, 478631.07) 

09 Souris Red Rainy 20842 0.37 (0.11, 1.23) 1.1 (0.06, 10.96) 335.36 (8.42, 10742.9) 

10L Lower Missouri 177728 0.38 (0.12, 1.23) 2.34 (0.33, 11.06) 3817.04 (170.67, 57251.66) 

10U Upper Missouri 220982 0.18 (0.05, 0.56) 1.6 (0.28, 10.29) 2718.97 (143.89, 51284.86) 

11 Arkansas Red White 180216 0.49 (0.15, 1.58) 2.62 (0.25, 21.26) 6866.32 (171.79, 171125.38) 

12 Texas 55108 0.6 (0.19, 1.96) 3.3 (0.21, 27.37) 3937.76 (70.92, 94775.4) 

13 Rio Grande 50050 0.19 (0.06, 0.65) 1.55 (0.17, 14.72) 1039.39 (26.45, 34285.53) 

14 Upper Colorado 73492 0.28 (0.09, 0.92) 0.89 (0.14, 9.46) 660.79 (34.74, 22382.88) 

15 Lower Colorado 92576 0.25 (0.08, 0.83) 1.23 (0.17, 16.54) 679.27 (28.13, 30267.74) 

16 Great Basin 85534 0.2 (0.06, 0.66) 0.66 (0.08, 9.41) 296.37 (17.02, 12369.8) 

17 Pacific Northwest 217234 0.37 (0.12, 1.2) 0.53 (0.03, 7.55) 5313.11 (153.98, 260522.33) 

18 California 122506 0.19 (0.06, 0.63) 1.76 (0.13, 20.77) 1611.53 (37.43, 58330.02) 
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Figure Captions 

Figure 1: A schematic of study area and sampling design. Estimates for median stream surface 

area, geometric mean insect emergence per unit area, and total insect emergence were 

summarized for all rivers and stream within each 2-digit hydrologic unit (HUC 2). We 

summarized annual supply of aquatic insects and the annual energetic demand of common aerial 

insectivores for each 4-digit hydrologic units (HUC 4) as the median pixel value within the 

boundary. At the site level, the resolution was large enough to include multiple streams such that 

total emergence is the product of the total stream surface area within pixel. 

Figure 2. Model performance for the insect production model (top) and wetted stream width 

model (bottom) for training and testing portions of the datasets. Solid circles are observed values, 

open circles are modeled point estimates and grey lines are 95% prediction intervals. Open red 

circles are observations that were not within the prediction intervals.  

Figure 3: Partial dependence plots for the most important bioclimatic variables used in the insect 

production models. We natural log transformed insect production prior to analysis. Variables are 

ranked from most (top) to least important (bottom): mean annual precipitation, mean annual 

temperature, precipitation seasonality (coefficient of variation in mean monthly precipitation), 

mean temperature of wettest quarter and mean diurnal range (mean monthly difference between 

the maximum and minimum temperature). Values for predictor variables are mean-centered and 

scaled.  

Figure 4: Posterior distributions of population-level effects for the variables used in the wetted 

width model. Variables are ranked from the largest (top) to the least effect (bottom) on the 

wetted stream width: catchment area, mean annual precipitation, precipitation seasonality 
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(coefficient of variation in mean monthly precipitation mean annual temperature) and mean 

annual temperature. 

Figure 5: Percent change in surface area, emergent insect production per unit area and total 

emergence for 2070 climate scenarios under representative concentration pathways (RCP) 2.6 

and 8.5. Blue is the climate scenario given stringent mitigation of greenhouse gasses (RCP 2.6). 

Red is the climate scenario that reflects a very high emissions scenario (RCP 8.5). The dotted 

line represents no change from current conditions. 

Figure 6: The geography of avian aerial insectivore energic demands and emergent aquatic insect 

energetic supply under present day and future conditions. A) Median energetic demand of 

common aerial insectivorous species. B) Median energetic supply of emergent aquatic insect 

subsidies. C) The natural log of the supply and demand ratio (SDR). C) Median natural log SDR 

for 2070 under RCP 2.6 climate scenario. D) Median natural log SDR for 2070 under RCP 8.5 

climate scenario. In some subregions, the effect of climate change could cause the amount of 

energy to exceed present day demand (black outline) while in others it could cause it to decline 

under present day demand (red outline).  
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 

 

Figure 3.4 
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Figure 3.5 
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Figure 3.6
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Appendix S1. Supporting Information 

 

Table S3.1: Bioclimate variable descriptions used in the stream width and insect production 

models. Descriptions are adapted from https://www.worldclim.org/. A quarter is defined as a 

period of three months. We removed highly correlated variables such that bold were included in 

the analysis. 

 

BIO1 = Annual Mean Temperature 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 = Isothermality (BIO2/BIO7) (×100) 

BIO4 = Temperature Seasonality (standard deviation ×100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

 

 

 

 

 

 

 

 

 

https://www.worldclim.org/
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Table S3.2. Avian Areal Insectivorous Birds used to calculate energetic demand. Body mass 

estimates were obtained from Dunning (2008). Field metabolic rate were estimated from body 

mass using allometric scaling (Nagy et al. 1999) 

Scientific Name Common Name 
Body Mass 

(g) 

Field Metabolic 

Rate (kJ d-1) 

Chordeiles acutipennis Lesser Nighthawk 47.7 146.08 

Chordeiles minor Common Nighthawk 79.3 206.34 

Chordeiles gundlachii Antillean Nighthawk 50 150.72 

Nyctidromus albicollis Common Pauraque 56.1 163.07 

Phalaenoptilus nuttallii Common Poorwill 48.1 146.84 

Antrostomus carolinensis Chuck-will's-widow 109 256.25 

Antrostomus vociferus Eastern Whip-poor-will 53.4 157.63 

Cypseloides niger Black Swift 41.3 132.47 

Chaetura pelagica Chimney Swift 23.6 90.39 

Chaetura vauxi Vaux's Swift 17.1 72.58 

Aeronautes saxatalis White-throated Swift 32.1 111.46 

Stelgidopteryx serripennis Northern Rough-winged Swallow 15.8 68.94 

Progne subis Purple Martin 53.8 158.46 

Tachycineta bicolor Tree Swallow 21.2 84.02 

Tachycineta thalassina Violet-green Swallow 14.1 63.82 

Riparia riparia Bank Swallow 13.2 61.08 

Hirundo rustica Barn Swallow 17.2 73.12 

Petrochelidon pyrrhonota Cliff Swallow 21.6 85.10 

Petrochelidon fulva Cave Swallow 24.1 91.76 

Camptostoma imberbe Northern Beardless-Tyrannulet 7.4 41.03 

Contopus cooperi Olive-sided Flycatcher 32.1 111.46 

Contopus pertinax Greater Pewee 27.2 99.57 

Contopus sordidulus Western Wood-Pewee 13.1 60.54 

Contopus virens Eastern Wood-Pewee 13.9 63.03 

Empidonax flaviventris Yellow-bellied Flycatcher 11.8 56.38 

Empidonax virescens Acadian Flycatcher 12.6 58.95 

Empidonax alnorum Alder Flycatcher 12.7 59.27 

Empidonax traillii Willow Flycatcher 13.3 61.40 

Empidonax minimus Least Flycatcher 10 50.37 

Empidonax hammondii Hammond's Flycatcher 10.5 52.08 

Empidonax wrightii Gray Flycatcher 12.3 57.99 

Empidonax oberholseri Dusky Flycatcher 10.4 51.73 

Empidonax difficilis Pacific-slope Flycatcher 10.7 52.74 

Empidonax occidentalis Cordilleran Flycatcher 11.6 55.72 

Empidonax fulvifrons Buff-breasted Flycatcher 7.9 42.90 

Sayornis nigricans Black Phoebe 18.3 76.22 

Sayornis phoebe Eastern Phoebe 19.7 79.93 

Sayornis saya Say's Phoebe 20.9 83.21 
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Pyrocephalus rubinus Vermilion Flycatcher 14.4 64.57 

Myiarchus tuberculifer Dusky-capped Flycatcher 18.9 77.88 

Myiarchus cinerascens Ash-throated Flycatcher 28.2 102.04 

Myiarchus crinitus Great Crested Flycatcher 32.1 111.46 

Myiarchus tyrannulus Brown-crested Flycatcher 42.8 135.67 

Pitangus sulphuratus Great Kiskadee 63.7 177.91 

Myiodynastes luteiventris Sulphur-bellied Flycatcher 46.9 144.29 

Tyrannus melancholicus Tropical Kingbird 37.4 123.68 

Tyrannus couchii Couch's Kingbird 39 127.26 

Tyrannus vociferans Cassin's Kingbird 45.6 141.56 

Tyrannus crassirostris Thick-billed Kingbird 55.9 162.62 

Tyrannus verticalis Western Kingbird 39.6 128.59 

Tyrannus tyrannus Eastern Kingbird 38.6 126.41 

Tyrannus dominicensis Gray Kingbird 46.5 143.45 

Tyrannus forficatus Scissor-tailed Flycatcher 39.3 127.92 

 

 

Table S3.3. Leave-one-out model comparison and population-level effects for wetted stream 

width models.  

 Population-level effects  

Model 

Rank 

Catchment 

Area 

(95% CrI) 

Mean 

Annual 

Precipitation 

(95% CrI) 

Precipitation 

Seasonality 

(95% CrI) 

Mean 

Annual 

Temperature 

(95% CrI) 

Predictive 

Accuracy 

Change 

(SE) 

1 
0.94 

(0.88, 1.01) 

0.24 

(0.21, 0.27) 

-0.17 

(-0.2, -0.13) 

-0.11 

(-0.15, -0.08) 
 

2 
0.92 

(0.85, 0.98) 

0.20 

(0.17, 0.23) 

-0.16 

(-0.20, -0.13) 
 

-16.9 

(6.9) 

3 
0.90 

(0.83, 0.97) 

0.21 

(0.18, 0.23) 
  

-54.8 

(12.7) 

4 
0.86 

(0.83, 0.88) 
   

-154.7 

(20.1) 
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Abstract  

Abstract:   

Context 

Spatial pattern reflects ecological processes but is scale dependent. In riverine landscapes, 

scaling relationships are poorly known and could differ from other well-studied landscapes 

because of their dendritic form. 

 

Objectives 

The objectives of this study were 1) to assess how spatial pattern of hydrogeomorphic habitat 

patches (HGP) change with spatial extent, grain size, and thematic resolution, and 2) to quantify 

how spatial pattern in river networks varies across the contiguous United States (CONUS). 

 

Methods 

We identified hydrogeomorphic patches in river networks located in different ecoclimatic 

domains of the CONUS. We then quantified spatial pattern using a suite of landscape metrics 

and investigated scaling relationships for each component of scale. We also assessed whether 

watershed area, river network length, and drainage density were related to spatial pattern and 

explored regional differences in the hydrologic, geomorphologic, and climatic variables that 

differentiate HGP types. 

 

Results 

Scaling relationships varied among river networks. When predictable, they followed either 

linear, logarithmic, or power functions. Spatial pattern among river networks was related to total 
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network length, catchment area or drainage density. HGP types in different networks were rarely 

characterized by the same suite of hydrogeomorphic variables. 

 

Conclusions 

In riverine landscapes, there are a variety of relationships between scale and spatial pattern 

which often vary among different river networks. The scaling functions we present can provide a 

concise description of scale dependency in these landscapes and improve our ability to 

synthesize research conducted at different scales. 

 

Keywords: Hydrogeomorphic patches, scaling, landscape pattern analysis, riverine ecosystems, 

dendritic networks, spatial pattern. 

Introduction  

Spatial pattern is closely linked to ecological processes but the relationship depends on 

the scale of the investigation (Wiens 1989; Wu et al. 2002; Jackson and Fahrig 2015). Scaling 

functions can describe how spatial pattern changes with scale and facilitate the transfer of 

information from one scale to another (Wu et al. 2002; Šímová and Gdulová 2012). Within rivers 

and streams, heterogeneity of aquatic habitats is an important feature governing ecological 

processes (Thorp et al. 2006; Thoms et al. 2018; Erős and Lowe 2019). However, previous 

studies have viewed aquatic ecosystems as homogenous compartments embedded within larger 

landscapes (Šímová and Gdulová 2012; Erős and Lowe 2019). Aquatic ecosystems are 

structurally different from terrestrial landscapes (i.e. dendritic networks) and require different 

metrics and methods to quantify spatial pattern (Williams et al. 2013; Thoms et al. 2018). 
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Understanding how these metrics change with scale is necessary for identifying the operational 

scale of an ecosystem processes (Jackson and Fahrig 2015; Qiu et al. 2019).  

Spatial pattern is typically quantified using landscape metrics that measure the 

composition (i.e. diversity) or configuration (i.e. spatial arrangement) of habitat patches 

(McGarigal et al. 2012). Scale can include multiple components (Wu and Li 2006; Turner and 

Gardner 2015), but most often it refers to spatial extent, the total area used in a study, or spatial 

grain, the finest resolution that can detect a pattern (e.g. pixel size or linear unit; Wiens 1989, 

Wu and Li 2006, Cushman et al. 2010). A third component of scale, thematic resolution, refers to 

the level of detail used to differentiate landscape components. For example, land cover 

classification maps are often represented as nested hierarchies: at lower levels of the hierarchy 

thematic resolution increases such that a larger number of subordinate land cover classes are 

revealed (Buyantuyev and Wu 2007; Šímová and Gdulová 2012; Qiu et al. 2019).  

Each component of scale can influence landscape metrics differently. In some instances, 

these effects are predictable (Wu et al. 2002; Buyantuyev and Wu 2007; Xu et al. 2020). For 

example, landscape metrics that represent absolute values of spatial pattern, such as mean size or 

distance between landscape components, should increase monotonically with spatial extent and 

decrease with spatial grain and thematic resolution (Baldwin et al. 2004; Šímová and Gdulová 

2012). Similarly, landscape metrics that quantify diversity should increase when novel landscape 

components are encountered at larger spatial extents or unveiled by increased thematic detail 

(Turner et al. 1989; Šímová and Gdulová 2012). They should also decrease with coarsening grain 

because small or rare landscape components disappear (Turner et al. 1989; Šímová and Gdulová 

2012). Changing scale can also cause metrics to display either staircase-like or chaotic patterns, 

making them less predictable (Wu et al. 2002; Šímová and Gdulová 2012). Evaluating the effects 
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of scale on landscape metrics in multiple landscapes can uncover potential generalities in these 

relationships (Wu et al. 2002; Shen et al. 2004; Buyantuyev and Wu 2007). 

Riverine landscapes include components of the Earth’s surface that are influenced by a 

river, including aquatic habitats in the river, and riparian corridors and floodplains that occur 

alongside them (Fausch et al. 2002; Ward et al. 2002; Thorp et al. 2006). These systems are 

characterized by “habitat patches” which can be classified by their hydrological and 

geomorphological conditions, often termed "hydrogeomorphic patches" (Thoms and Parsons 

2002, Williams et al. 2013). Hydrogeomorphic patches (hereafter “HGP”) are associated with 

geomorphic and hydrologic forces that shape sections of a riverine ecosystem (i.e. “functional 

process zones”), and influence ecological processes (Thorp et al. 2006, 2008). The composition 

and configuration of HGP can characterize the physical structure of entire river networks 

(Williams et al. 2013; Thoms et al. 2018), influence species diversity patterns (Maasri et al. 

2019) and ecosystem processes (Hadwen et al. 2010; Thorp et al. 2010; Collins et al. 2018).  

Previous efforts to characterize river networks by their HGPs have focused on a small 

number of river networks at different spatial scales (Collins et al. 2014; Thoms et al. 2018; 

Maasri et al. 2019). Since scale dependency is common, this may hinder efforts to synthesize 

their findings. Scaling functions could provide an accurate way to predict how spatial pattern of 

HGP changes with spatial extent (watershed area), grain size (resolution of hydrography) or 

thematic detail. River networks are also embedded in biomes that vary in their climate, 

hydrology and geomorphology which could contribute to geographical variation in the factors 

that differentiate HGP types and their spatial pattern (Dodds et al. 2015, 2019). Thus, systematic 

evaluations of scaling relationships across multiple riverine landscapes will improve our 
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understanding of scale dependencies in spatial pattern within and among different biomes (Wu et 

al. 2002).   

Here, we investigate how the spatial pattern of HGP changes with scale in 18 river 

networks in the contiguous United States (hereafter “CONUS”). We used climate, hydrologic, 

and geomorphic variables to identify HGP and adapted several landscape metrics to quantify 

their configuration and composition in each river network. We then evaluate the relationship 

between each landscape metric and three components of scale: spatial extent, spatial grain, and 

thematic resolution (Wu et al. 2002; Buyantuyev and Wu 2007; Xu et al. 2020). Finally, we 

investigated the role of river network size (i.e. total stream length or catchment area) and 

topology (drainage density) in driving variation in spatial pattern among biomes and determine if 

the suite of hydrologic, geomorphic and climatic variables used to differentiate HGP remains 

consistent across the studied river networks.  

  

Methods 

Study sites 

We chose a single river network in each of the National Ecological Observation Network 

(NEON; https://www.neonscience.org/) ecoclimatic domains in the CONUS (Figure 1; Hargrove 

and Hoffman 2004). Ecoclimatic domains were delineated using multivariate geographic 

clustering of nine climate variables (Hargrove and Hoffman 2004). Where possible, we used a 

NEON aquatic or terrestrial site to locate a suitable river network within each ecoclimate 

domain. We handpicked sites in the Southern Pacific domain (17) to represent a Mediterranean 

climate (NEON stream sites in the domain 17 are in the Sierra Nevada mountains, with similar 

climate to other NEON sites), and in the Prairie Peninsula domain (06) due to restrictions in the 

https://www.neonscience.org/
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availability of High Resolution National Hydrography Dataset (NHDHR) at the time of the study 

(Viger et al. 2016, Moore et al. 2019). We also selected two sites in the Ozarks complex (08) and 

omitted the Atlantic Neotropical domain (04) because of its relatively small spatial coverage in 

the CONUS (Figure 1). 

We delineated river networks by associating each site to a digital flowline in the NHDHR 

and navigating downstream to until reaching a catchment area closest 5,000 km2 (range = 364.12 

and 5,733.06 km2; Strahler Stream Order > 5). We extracted all flowlines draining the catchment 

from the NHDHR and reconditioned them into valley and reach segments. We define a valley 

segment as a section of the river between a headwater and confluence, or two confluences. 

Valley segments < 1km were classified as a single reach while valley segments > 1 km were split 

into reaches of equal length. River reaches typically ranged between 0.5 and 1 km and served as 

our spatial unit of replication for each river network (1,154 ≤ n ≤ 13,222; Table 1).  

 

Hydrogeomorphic and climate variables   

Hydrologic, geomorphologic and climatic variables were extracted or derived for each 

reach from several GIS datasets (Table 2; Williams et al. 2013, Thoms et al. 2018, Maasri et al. 

2019). Mean annual air temperature (˚C) and precipitation (mm) were obtained from the PRISM 

Climate Group (1981-2010; https://prism.oregonstate.edu/normals/). Whole soil erodibility factor 

(kw) and pH values we obtained from the Soil Survey Geographic Database 

(https://websoilsurvey.nrcs.usda.gov/) and classified as low (kw < 0.25, pH < 6.5), medium (0.25 

≤ kw < 0.4, 6.5 ≤ pH < 8.5) and high (kw ≥ 0.4, pH ≥ 8.5). Depth to bedrock (cm) was obtained 

from Shangguan et al. (2017). Finally, we used the digital elevation model provided with the 

https://prism.oregonstate.edu/normals/
https://websoilsurvey.nrcs.usda.gov/
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NHDHR to determine the elevation (cm) of a reach and derive a suite of metrics to quantify 

geomorphologic characteristics (Table 2, Figure S1).  

Climate, geology, and elevation were extracted at the midpoint of each reach and we 

established transects perpendicular to the river to measure valley-side slope, valley width, and 

valley floor width (Figure S1). We used points at the inlet and outlet of the valley segment to 

measure valley slope. Channel sinuosity and mean meander length were measured using the 

endpoints of each reach. We reconditioned NHDHR flowlines, identified reaches, sampling 

points, and transects using the “create module” R-script. We assigned hydrogeomorphic 

variables to each reach using the “attribute module” R-script 

(https://github.com/dkopp3/HydrogeomorphicPatches).  

 

Hydrogeomorphic patch identification 

Hydrogeomorphic patches (HGP) were identified using agglomerative hierarchical 

clustering (Borcard et al. 2018). This approach successively groups individual reaches into larger 

classes based on the similarity of their hydrogeomorphic characteristics (Thoms et al. 2018; 

Maasri et al. 2019). At the lowest level of the hierarchy, each river reach is an individual class 

while at the highest level, all reaches are combined into a single class. We used Gower’s 

dissimilarity index to measure pairwise associations between reaches and Ward’s minimum 

variance to create hierarchically nested groupings (Borcard et al. 2018; Maasri et al. 2019). We 

objectively identified the optimal number of HGP types for each network using the maximum 

average silhouette width (Borcard et al. 2018). Silhouette width is a metric of group similarity at 

each partition of the dendrogram and the maximum average width corresponds to the partition 

with the greatest degree of separation among subordinate groups. We used the “daisy” function 
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to generate distance matrices, the “agnes” function for agglomerative hierarchical clustering and 

the “silhouette” function to conduct the silhouette analysis (Maechler et al. 2019). These 

functions are embedded within the  “cluster module” 

(https://github.com/dkopp3/HydrogeomorphicPatches). 

   

Spatial pattern analysis 

We quantified the spatial pattern using four landscape metrics that measure the 

composition or configuration of HGP (McGarigal et al. 2012). To measure composition, we 

combined adjacent stream reaches of the same HGP type and counted the uninterrupted river 

segments as total number of patches (TP). In addition, we calculated the Shannon Diversity 

index (SHDI) for each network. The SHDI is commonly used to measure landscape 

heterogeneity and has recently been applied to riverine landscapes (O’Neill et al. 1988; Turner et 

al. 1989; Thoms et al. 2018). Following Thoms et al (2018), we calculated SHDI as: 

𝑆𝐻𝐷𝐼 = − ∑ 𝑝𝑖 ln 𝑝𝑖 

where 𝑝𝑖 is the proportional length of the 𝑖th hydrogeomorphic patch relative to the total length 

of the river network.  

To measure the configuration of HGP within each network we calculated the mean 

distance separating HGP types as mean patch distance (MPD) and used the dendritic 

connectivity index (DCI) to measure how connected the different HGP types were in each 

network (Cote et al. 2009). DCI is based on the probability that an organism can cross a 

boundary separating one patch from another:  

𝐷𝐶𝐼 = ∑ ∑ 𝑐𝑖𝑗

𝑙𝑖

𝐿

𝑙𝑗
𝐿

𝑛

𝑗=1

𝑛

𝑖=1

∗ 100 
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where 𝑐𝑖𝑗 is probability that an organism can traverse a boundary separating patch 𝑖 and 𝑗, 𝑙 is the 

length of patch and 𝐿 is the total length of the network. The index is multiplied by 100 to scale 

the value between 1 and 100. This index assumes boundaries do not occupy space in the network 

such that when 𝑐𝑖𝑗 = 1 (i.e. complete boundary permeability), 𝐷𝐶𝐼 = 1 (Cote et al. 2009). 

Because we expected the connectivity between two HGPs of the same type depends on the 

distance separating them we modified DCI as:  

𝐷𝐶𝐼𝑘 =  ∑ ∑ 𝑐𝑘𝑖𝑘𝑗

𝑙𝑘𝑖

𝐿𝑘

𝑙𝑘𝑗

𝐿𝑘

𝑛

𝑗=1

𝑛

𝑖=1

∗ 100 

where 𝑘 indexes the HGP type. To specify 𝑐𝑘𝑖𝑘𝑗
 we consider the dispersal distance of an 

organism, 𝑋, as a random variable with a probability distribution, 𝑋~exp(𝜆). We parameterize 

the probability density function using the median maximum parent-offspring dispersal distance 

for riverine fishes (i.e. λ = 1/12km, Comte and Olden 2018). For a parent fish living in patch 𝑖 of 

type 𝑘, 𝑐𝑘𝑖𝑘𝑗
 reflects the probability that the offspring of that fish can disperse to patch 𝑗. We 

used the mean of 𝐷𝐶𝐼𝑘 to aggregate the connectivity between 𝑘 patch types to the landscape 

level (i.e. 𝐷𝐶𝐼𝑘
̅̅ ̅̅ ̅̅ ̅). Landscape metrics were calculated using the “landscape metrics” module 

(https://github.com/dkopp3/HydrogeomorphicPatches).   

 

Statistical Analysis 

Within each river network we evaluated how HGP spatial patterns change with spatial 

extent, spatial grain, and thematic resolution. In rivers, spatial extent is represented by watershed 

area, or the surface area contributing runoff to a river channel during precipitation events. We 

changed spatial extent by randomly identifying sub-networks at 10 km2 increments of increasing 

catchment area (Figure 2). We assessed between 25 and 234 values of spatial extent depending 
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on the size of the network. We manipulated the spatial grain of a stream network by increasing 

the minimum channel length represented in the network (Figure 2). Each interval coarsened or 

“pruned” the river network, to provide a range of 24 to 94 values of spatial grain in our analysis. 

Finally, we manipulated the thematic resolution by decreasing the level of dissimilarity among 

HGP types beginning at the level specified during the silhouette analysis (i.e. 4-8 HGP types) up 

to 30 HGP types for each network (Figure 2).   

We visually inspected the scaleograms for each river network prior to fitting linear, 

power, and logarithmic functions. This allowed us to classify each relationship as “predictable”, 

if the functions could provide a reasonable approximation for the data, or “unpredictable” if the 

relationship was better characterized by staircase-like patterns or behaved erratically (Wu et al. 

2002). For predictable relationships, we fit each function to the data and used the coefficient of 

determination (i.e. R2) to identify the strongest relationship (Rüegg et al. 2016).  

We used a regression analysis to test whether river network length, total catchment area 

or drainage density explained variation in spatial pattern among river networks in different 

ecoclimatic regions. Network length is the total length of streams in a network; catchment area is 

the surface area that contributes overland runoff to a river network; and drainage density is the 

network length divided by the catchment area. We fit linear, power, and logarithmic models to 

each pairwise combination of spatial pattern and river network characteristic.  

To investigate which variables were most important in differentiating HGP types within 

river networks we used an Analysis of Similarity (ANOSIM) followed by Similarity Percentage 

Analysis (SIMPER) (Harris et al. 2009; Thoms et al. 2018; Oksanen et al. 2019). ANOSIM 

confirmed a statistical difference among HGP types within each river network and SIMPER 

identified the single variable that was most dissimilar for each pairwise combination. We used 



174 

 

the aggregated list of variables for each river network to describe the suite of climatic, 

hydrologic, and geomorphic variables that contribute most to the differentiation of HGP types for 

each river network.  

Results 

 Effects of scale on spatial pattern of HGP depended on the component of scale and the 

landscape metric. For composition metrics, we found a logarithmic function consistently 

explained the relationship between Shannon diversity index (SHDI) and spatial extent in five 

river networks (Table 3, R2 range: 0.61 - 0.77). The relationship between SHDI and spatial grain 

on the other hand, often followed a staircase-like pattern and was not reasonably represented by 

simple functions we considered in our analysis (Table 3, Figure S2). Total patches (TP) had a 

consistently strong linear relationship with spatial extent in 12 stream networks (R2 > 0.93) and 

followed a power relationship with spatial grain in three networks (R2 > 0.93, Figure S2). 

Finally, thematic resolution was almost perfectly related to both SHDI (R2 > 0.98) and TP (R2 > 

0.96) by either, logarithmic or power functions (Table 3). 

 In general, scaling relationships for the configuration metrics were different from 

composition metrics (Table 3). For example, scaling the modified dendritic connectivity index 

(𝐷𝐶𝐼𝑘
̅̅ ̅̅ ̅̅ ̅) with spatial extent followed linear, power, or logarithmic functions in 12 networks (R2 

range: 0.66 - 0.94, Table 3) and scaling with thematic resolution followed linear or power 

functions in 8 networks (R2 range: 0.69 - 0.92). When mean patch distance (MPD) was 

predictable, it also scaled with extent and thematic resolution following linear, power, or 

logarithmic functions. The effect of changing grain on 𝐷𝐶𝐼𝑘
̅̅ ̅̅ ̅̅ ̅ were predictable in 6 networks 

using linear functions (R2 range: 0.80 - 0.97) but was unpredictable for MPD where the 

relationships were characterized as either chaotic or staircase-like (Figure S2). 
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We identified between 4 and 8 HGP types in each river network (ANOSIM global R 

range: 0.4, 0.95, p < 0.001 for all networks; Table 4) and found the variation in spatial pattern 

among them was related to network length, catchment area and drainage density (Figure 3). 

Catchment area and total length of the stream network were positively associated with TP (R2 = 

0.29, P < 0.001; R2 = 0.59, P<0.001, respectively), and MPD (R2 = 0.80, P < 0.001; R2 = 0.90, P 

< 0.001, respectively). In addition, total network length was negatively associated with  𝐷𝐶𝐼𝑘
̅̅ ̅̅ ̅̅ ̅ (R2 

= 0.32, P < 0.05). Lastly, drainage density was negatively associated with SHDI (R2 = 0.24, P < 

0.05) and MPD (R2 = 0.26, P < 0.05).  

For each network, we characterized the suite of variables that contributed to the 

differentiation of HGPs (Table 4). In general, HGPs in different river networks were 

characterized by different suites of hydrogeomorphic and climate variables. However, many 

networks shared at least a single variable. For example, soil erodibility was an important factor 

driving dissimilarity between HGP types in 13 networks and valley-floor ratio was important for 

9 networks. River networks that shared similar hydrogeomorphic variables were typically located 

in different ecoclimate regions (Table 4).  

 

Discussion  

Understanding scale dependencies in spatial patterns can elucidate the operational scale 

of an ecological process (Wu et al. 2002; Jackson and Fahrig 2015). Increasingly, spatial pattern 

is quantified within river networks to understand the physical and ecological characteristics of 

the entire ecosystem (Thoms et al. 2018; Maasri et al. 2019). However, river networks vary in 

their spatial extent, spatial grain, and thematic detail (Benstead and Leigh 2012; Rüegg et al. 

2016), which could hinder opportunities for synthesis or mask important relationships. We 
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extended the framework developed by Wu et al. (2002) and found scaling relationships in river 

networks vary across a broad geographic area. The effect of thematic resolution was most 

predictable for composition metrics while the effect of spatial extent was most predictable for 

configuration metrics. We also found that the effects of changing spatial grain are least 

predictable, possibly owing to the dendritic structure of river networks and the method used to 

manipulate grain size (i.e. minimum mapping unit). Importantly, this work demonstrates that 

spatial pattern in some river networks changes predictably with scale which could facilitate the 

transfer of information obtained at one scale to another.  

 

Scaling relationships in riverine landscapes 

We assessed how spatial patterns of HGP are influenced by three different components of 

scale and, similar to other landscapes, found that landscape metrics could change either 

predictably (i.e. following simple scaling functions), or unpredictably (i.e. exhibiting staircase-

like or chaotic patterns). In general, the effects of changing spatial extent were more predictable 

than the effects of changing grain size. Indeed others have found that changing spatial extent is 

less predictable than change grain size (Wu et al. 2002; Wu 2004). Together, these patterns could 

support the notion that the method used to manipulate spatial grain influences the scaling 

relationships that emerge from analyses (Turner and Gardner 2015; Xu et al. 2020). For example, 

data stored as raster images is commonly upscaled by aggregating smaller pixels via majority 

rules (Wu and Li 2006; Qiu et al. 2019). River networks on the other hand, are often represented 

as vector data because of their dendritic structure. Accordingly, we manipulated spatial grain by 

changing the minimum mapping unit (i.e. iteratively pruning the river networks) such that 

coarsening grain can result in the removal of HGP types. Indeed, the addition or removal of 
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habitat patches is known to reduce the predictability of scaling relationships (Shen et al. 2004). 

Thus our results may suggest that there are more opportunities to transfer values of spatial 

pattern between different spatial extents than hydrography datasets that differ in their spatial 

resolution (Lehner et al. 2008; McKay et al. 2012; Moore et al. 2019). 

Effects of thematic resolution are expected to be similar to those of spatial grain 

(Buyantuyev and Wu 2007). In general, we found that these effects were more predictable than 

those of spatial grain for composition metrics and less predictable for configuration metrics. The 

relationship between thematic resolution and spatial pattern for the composition metrics is 

unsurprising because increasing the number of HGP types simultaneously increases richness and 

fragmentation. Configuration metrics on the other hand, were less predictable and often behaved 

erratically. Indeed, changing thematic resolution may combine, or separate, spatially distant 

patches and lead to unpredictable scaling relationships (Buyantuyev and Wu 2007).  

Lotic ecosystems are known vary geographically as a result of regional differences in 

climate and geomorphology (Dodds et al. 2015, 2019). We found scaling relationships generally 

differed among river networks. Indeed, Rüegg et al. (2016) demonstrated that scaling 

relationships between stream channel characteristics (i.e. width and depth) and catchment area 

varied geographically. Collectively this suggests that differences among river networks could 

alter the scaling relationships. However, we only included one river network for each ecoclimate 

domain and could not ascertained whether scaling relationships were similar within a geographic 

region. It would be interesting to investigate mechanisms driving apparent variation in scaling 

relationships.   

 

Spatial patterns in river networks 
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We quantified spatial pattern at the river network scale by adapting several landscape 

metrics related to ecological characteristics of lotic ecosystems (Le Pichon et al. 2007; Datry et 

al. 2016; Thoms et al. 2018). The Shannon diversity index has been applied to quantify 

heterogeneity in terrestrial and riverine landscapes (Turner et al. 1989; Thoms et al. 2018). 

Higher SHDI values indicate a greater variety of physical habitat types, which should influence 

the ecological function of the river network given tight coupling between HGP and ecological 

processes in rivers (Harris et al. 2009; Thoms et al. 2018; Maasri et al. 2019). Among river 

networks, we found that drainage density was negatively related to SHDI. This result is 

surprising because increasing drainage density can increase complexity in river networks 

because of tributary junctions and their associated confluence effects (Benda et al. 2004; 

Fullerton et al. 2017). In our study, higher drainage density likely resulted stream reaches 

coming in closer proximity to one another and thereby having similar hydrologic, 

geomorphologic and climate properties. Consequently, hydrogeomorphic variables may be more 

important for driving spatial heterogeneity in networks with lower drainage density while 

confluence effects may be more important for networks with higher drainage density.  

Connectivity among HGPs in stream networks could have implications for species 

diversity patterns and meta-community dynamics (Cote et al. 2009; Campbell Grant 2011). We 

found the modified dendritic connectivity index (𝐷𝐶𝐼𝑘
̅̅ ̅̅ ̅̅ ̅) varied among river networks and was 

negatively related to the total length of the network. We used the watercourse distance separating 

two HGP types as a measure of permeability and did not consider the concurrent effects of any 

other barriers (e.g. dams and road culverts, Cote et al. 2009). Since the total length of a river 

network allows for longer watercourse distances separating two HGPs it is expected that network 

length would be negatively related to connectivity. From an ecological perspective, this 
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relationship could suggest dispersal limitation may be important in large river networks (Tonkin 

et al. 2017; Schmera et al. 2018).  

The total number of patches (TP) and mean distance separating them (MPD) are absolute 

measurements of spatial pattern that reflect degree of fragmentation and isolation of HGP types, 

respectively. We found river networks with greater total stream length had more patches and 

greater distances separating them. If HGP types have asynchronous dynamics, river networks 

with more patches could potentially have greater stability in their ecological (Moore et al. 2015). 

Alternatively, positive association between stream length and mean patch distance suggests 

dispersal may be limited in larger networks. In general, quantifying spatial patterns in river 

networks can concisely describe their characteristics and facilitate comparisons among them (Le 

Pichon et al. 2007; Datry et al. 2016; Thoms et al. 2018).  

 

Hydrogeomorphic patch characteristics 

Although the river networks we studied differed in the suite of hydrogeomorphic 

variables that contributed to differentiation of HGP types, some variables were common among 

them. For example, soil erodibility contributed to differentiation HGP types in all river networks. 

This could suggest that these river networks have HGPs that receive relatively higher sediment 

loads from the adjacent terrestrial environment (Walling 1999). Excess fine sediments can 

influence benthic macroinvertebrate communities which, because of their central position in 

aquatic food webs, could have implications for ecosystem processes (Hubler et al. 2016). 

Considering most of the river networks we studied have HGP types characterized by soil 

erodibility, it would be interesting to investigate if they also have similar benthic 

macroinvertebrate communities. Indeed the ecological functions of HGP may also depend on 
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intra- and inter-patch interactions (Wu and Loucks 1995; Thorp et al. 2006) and rarely, did we 

find two networks share the same suite of hydrogeomorphic variables. Thus, although some HGP 

types may be similar among river networks, they likely contain other HGP that differ. Another 

interesting avenue for future investigation could be to consider effect of “hydrogeomorphic 

context” on the ecological processes occurring within an HGP.  

 

Limitations and caveats 

Hydrologic, geomorphologic and climatic characteristics can be readily calculated with 

GIS-based approaches (Williams et al. 2013; Thoms et al. 2018). For this study, we created a 

suite of scripts using Program R (https://www.r-project.org/) to eliminate dependencies on 

proprietary software (e.g. ArcGIS, ESRI, Redlands, CA). We also designed these scripts to 

depend exclusively on the High Resolution National Hydrography Dataset to facilitate large 

scale, comparative analyses across the CONUS (Moore et al. 2019). However, the major 

limitation with this approach is that it can take several weeks of processing and is potentially 

limited to river networks < 5,000 km2 because of computational demands. Further, given the 

scale of our study it was not feasible to ground-truth the accuracy the GIS-based variables. Still, 

we followed a similar approach to others that found GIS-derived variables can produce similar 

results to empirical field-based measures (Thorp et al. 2008; Williams et al. 2013; Thoms et al. 

2018).  

The choice of the landscape metrics used to quantify spatial pattern should be 

ecologically justified and may differ depending on the goals of a study (Li and Wu 2004). There 

are literally hundreds of landscape metrics and many each respond differently to scale 

(McGarigal et al. 2012; Šímová and Gdulová 2012). We found scaling relationships vary among 

https://www.r-project.org/


181 

 

different river networks, but we only considered four metrics. Evaluating a larger number of 

metrics will improve our ability to draw general conclusions about differences in the behavior of 

composition versus configuration metrics. Because there are few landscape metrics that can be 

adapted to, or are suitable for, riverine landscapes (Le Pichon et al. 2007; Datry et al. 2016; Erős 

and Lowe 2019), increasing the number of landscape metrics for riverine landscapes should be 

also be a consideration for investigating general scaling laws.  

 

Conclusions  

Spatial pattern analysis can reveal complex linkages between spatial pattern and 

ecological processes in landscapes (Jackson and Fahrig 2015; Qiu et al. 2019). Although spatial 

pattern is quantified within river networks to understand ecological processes occurring within 

them (Thorp et al. 2006; Erős and Lowe 2019), issues of scale dependence can limit 

opportunities to synthesize results from different spatial scales or potentially mask important 

relationships. Scaling functions can provide concise descriptions of the multiscaled 

characteristics of spatial pattern and will improve our ability to detect the most appropriate scale 

underpinning an ecological process in riverine ecosystems.  
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Table 4.1. Characteristics of the river networks used in this study. Stream order is the Strahler Stream order at the outlet of the 

network. Catchment area is the upstream catchment areas of the network. Total length is the sum of all streams in the network. 

Reaches are the number of reaches that were classified for each network.  

Site NEON Domain Name 

Degrees 

Latitude 

Degrees 

Longitude 

Stream 

Order 

Catchment 

Area (km2) 

Total 

Length (km) 

Reaches 

(#) 

NRTH Northeast 42.1491 -72.6214 6 1764.45 2375.43 3747 

MDAT Mid-Atlantic 38.94293 -78.1905 7 4153.86 6522.36 10313 

STHS Southeast 31.1785 -84.4741 6 2741.97 2299.17 3293 

GRTL Great Lakes 46.87233 -89.3254 8 3480.89 5332.66 12018 

PRRP Prairie Peninsula 42.81041 -94.4454 6 5080.37 4058.4 5183 

APCP 

Appalachian Cumberland 

Plateau 35.92358 -83.5851 7 976.07 2747.48 6817 

OC-1 Ozarks Complex-1 33.03368 -87.6057 5 459.18 777.57 1222 

OC-2 Ozarks Complex-2 33.88835 -95.9396 6 1753.77 3002.11 4510 

NRTP Northern Plains 46.68421 -100.788 5 558.5 845.8 1154 

CNTP Central Plains 40.03608 -101.53 5 4419.07 3877.19 5406 

STHP Southern Plains 32.86007 -97.5002 6 4989.64 8845.51 13223 

NRTR Northern Rockies 44.99472 -110.576 7 5733.06 7352.96 10921 

STHR Southern Rockies 40.26525 -104.877 7 2345.82 4610.43 10562 

DSRS Desert Southwest 33.63354 -111.659 6 497.81 1113.26 1718 

GRTB Great Basin 40.43697 -112.385 6 1851.59 2959.47 3937 

PCFN Pacific Northwest 45.71767 -121.79 7 582.89 2276.95 7897 

PCFS Pacific Southwest 36.35155 -121.209 6 364.12 1304.21 2554 
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Table 4.2. Hydrogeomorphic variables and data sources used to identify hydrogeomorphic 

patches 

Variable Description Source 

Elev. Elevation at reach midpoint 

NHDPlusHR: 

https://www.usgs.gov/core-science-

systems/ngp/national-

hydrography/nhdplus-high-

resolution 

Ann. Precip. 
Mean annual precipitation (1981-

2010)  PRISM Climate Group: 

https://prism.oregonstate.edu/ 
Ann. Temp. 

Mean annual temperature (1981-

2010)  

Erosion Factor 

Whole Soil Erosion factor (kw) 

measures susceptibility of soil to 

erosion  

SSURGO: 

https://websoilsurvey.nrcs.usda.gov/ 

Soil pH Soil pH  

Bedrock Depth 
Depth of soil or regolith covering 

bedrock  

Soil Grids 

http://globalchange.bnu.edu.cn/ 

Valley Width 
Width of the catchment 

perpendicular to the river channel  

Derived for this study from 

NHDPlusHR: 

https://www.usgs.gov/core-science-

systems/ngp/national-

hydrography/nhdplus-high-

resolution 

Valley Floor 

Width 

The lateral extent of a flood 

reaching a depth 4 times bankfull 

depth.* 

Valley Floor 

Ratio 

Ratio between valley floor width 

and valley width 

Valley Slope 

 

Slope between upstream and 

downstream points of a valley 

Valley Side 

Slope 

Mean of the slope between the river 

and ridgeline on either side of the 

channel 

Channel 

Sinuosity 

Ratio of the channel distance to 

straight line distance of a reach 

Channel Slope 
Slope between upstream and 

downstream points of a reach 

Mean Meander 

Length 

Mean channel distance separating 

two sequential meanders 

 

* bankfull depth estimated from upstream catchment area (Bieger et al. 2015)

https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://prism.oregonstate.edu/
https://websoilsurvey.nrcs.usda.gov/
http://globalchange.bnu.edu.cn/
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
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Table 4.3. Results of regression analyses to determine the scaling function for each river 

network. SHDI = Shannon Diversity Index; TP = Total Number of patches, DCI = Dendritic 

Connectivity Index; MPD = mean patch distance; NRTH = Northeast; MDAT = Mid-Atlantic; 

STHS = Southeast; GRTL = Great Lakes; PRRP = Prairie Peninsula; APCP = Appalachian 

Cumberland Plateau; OC-2 = Ozarks Complex-2; OC-1 = Ozarks Complex-1; NRTP = Northern 

Plains; CNTP = Central Plains; STHP = Southern Plains; NRTR = Northern Rockies; STHR = 

Southern Rockies; DSRS = Desert Southwest; GRTB = Great Basin; PCFN = Pacific Northwest; 

PCFS = Pacific Southwest; LIN = Linear function (𝑦 =  𝛼 + 𝛽𝑥); LOG = Logarithmic function 

𝑦 =  𝛼 + 𝛽 log 𝑥); and PWR = Power Function (𝑦 =  𝛼𝑥𝛽) where 𝑥 is the value of extent, grain, 

or thematic resolution and 𝑦 is the spatial pattern. Coefficient of determination (R2) is given in 

parenthesis under model. 
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(0.90) 
  

LIN 
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Table 4.4. The hydrologic, geomorphologic and climate variables with the highest contribution to dissimilarity among 

hydrogeomorphic patch types. Definitions for variables provided in Table 2.  

NEON 

Domain 

HGP 

(#) 

Global  

R* 

Erosion 

Factor 

Valley-Floor 

Ratio 

Ann. 

Precip. 

Soil 

pH 

Ann. 

Temp 

Mean 

Meander 

Length 

Bedrock 

Depth 
Elev. 

Valley 

Slope 

Northeast 4 0.50  X    X  X  

Mid-Atlantic 4 0.67 X     X   X 

Southeast 7 0.79 X X X  X X X   

Great Lakes 4 0.85 X X  X      

Prairie Peninsula 4 0.86 X X   X     

Appalachian 

Cumberland Plateau 
4 0.76 X  X    X   

Ozarks Complex-1 4 0.58  X X   X  X  

Ozarks Complex-2 4 0.95 X   X    X  

Northern Plains 6 0.91 X  X X   X   

Central Plains 5 0.98 X   X X     

Southern Plains 4 0.88 X X  X      

Northern Rockies 4 0.59  X X      X 

Southern Rockies 6 0.83 X X X X X     

Desert Southwest 5 0.95   X X X  X   

Great Basin 4 0.94 X   X X     

Pacific Northwest 4 0.70 X X   X     

Pacific Southwest 4 0.70 X X X       
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Figure Captions  

Figure 1: Representative spatial patterns of hydrogeomorphic patches within 4 river networks. 

Inset shows all river network locations used in the analysis within the NEON ecoclimate domain. 

NRTH = Northeast; MDAT = Mid-Atlantic; STHS = Southeast; GRTL = Great Lakes; PRRP = 

Prairie Peninsula; APCP = Appalachian Cumberland Plateau; OC-2 = Ozarks Complex-2; OC-1 

= Ozarks Complex-1; NRTP = Northern Plains; CNTP = Central Plains; STHP = Southern 

Plains; NRTR = Northern Rockies; STHR = Southern Rockies; DSRS = Desert Southwest; 

GRTB = Great Basin; PCFN = Pacific Northwest; PCFS = Pacific Southwest 

Figure 2: Schematic demonstrating the changing the scale of spatial extent (top), spatial grain 

(middle) and thematic resolution (bottom) in river networks. MSL = minimum stream length. 

Figure 3:  The relationship between characteristics of stream networks and the spatial pattern of 

hydrogeomorphic patches. SHDI = Shannon diversity index; TP = total number of patches, DCI 

= dendritic connectivity index; MPD = mean distance between patches. Lines of best fit are 

drawn for significant relationships (p<0.05). Hashed lines represent power function, dotted lines 

represent linear function. NRTH = Northeast; MDAT = Mid-Atlantic; STHS = Southeast; GRTL 

= Great Lakes; PRRP = Prairie Peninsula; APCP = Appalachian Cumberland Plateau; OC-2 = 

Ozarks Complex-2; OC-1 = Ozarks Complex-1; NRTP = Northern Plains; CNTP = Central 

Plains; STHP = Southern Plains; NRTR = Northern Rockies; STHR = Southern Rockies; DSRS 

= Desert Southwest; GRTB = Great Basin; PCFN = Pacific Northwest; PCFS = Pacific 

Southwest 
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Figure 4.3 
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Appendix S1. Supporting Information 

 

 

 

Figure S4.1. Sampling schematic for extracting Hydrogeomorphic variables used to identify 

hydrogeomorphic patches. Valley segments are defined as the stream section between 

headwaters and a confluence or two confluences. Valley segments exceeding 1 km were split 

into reach segments of equal length. Reach segments are indicated by different colors. Variables 

were calculated for all reach segments at their midpoint (points) and along transects (lines 

perpendicular to channel). 
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Figure S4.2 Representative scaling relationships between spatial pattern metrics and components of scale: spatial extent (left), spatial 

grain (middle) and thematic resolution (right). SHDI = Shannon Diversity Index, TP = total number of patches, DCI = Dendritic 

Connectivity Index, and MPD = mean patch distance. For each column, the left plot is an example of a predictable relationship with 

the line of best fit and the right plot is an example of an unpredictable relationship. NRTH = Northeast; MDAT = Mid-Atlantic; STHS 

= Southeast; GRTL = Great Lakes; PRRP = Prairie Peninsula; APCP = Appalachian Cumberland Plateau; OC-2 = Ozarks Complex-2; 

OC-1 = Ozarks Complex-1; NRTP = Northern Plains; CNTP = Central Plains; STHP = Southern Plains; NRTR = Northern Rockies; 

STHR = Southern Rockies; DSRS = Desert Southwest; GRTB = Great Basin; PCFN = Pacific Northwest; PCFS = Pacific Southwest  


