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Abstract 
Remote sensing is described as the art and science of interpreting information (e.g., reflectance) 

collected from a target object (e.g., vegetation) using technology (e.g., satellites, occupied 

aircraft, and small unoccupied aerial systems (sUAS)) that does not need to contact the object. 

Remote sensing has been used to evaluate crop health (e.g., agriculture), assess land reclamation 

efforts (e.g., mining), and, recently to estimate surface water quality (e.g., chlorophyll-a, total 

suspended solids, and Secchi disk depth). By collecting information contained within the visible 

electromagnetic spectrum (e.g., visible reflectance), relationships (e.g., linear and nonlinear) 

have been developed capable of reliably estimating various water quality parameters in large 

optically deep (bottom substrate does not impact reflectance) waterbodies (ODWs). With the 

advent and continued improvement of sUAS, waterbodies otherwise too small for satellite 

applications are becoming more accessible. However, these smaller inland waters can be 

characterized as optically shallow waters (OSWs) (bottom substrate contributes to measured 

spectra), complicating the modeling process and accurate retrieval of water quality parameters, 

which are not well documented. Furthermore, because sUAS platforms, sensors, regulations, and 

target objects vary considerably across the literature, a desperate need exists to establish a 

standard operating procedure.  

Therefore, the focus of this doctoral research relates to describing optically complex shallow 

inland waters in terms of the dependency between sUAS-derived multispectral reflectance and 

various in-situ water quality parameters or optically active constituents (OACs) (e.g., chlorophyll-

a, total suspended solids, turbidity, Secchi disk depth, and metal concentrations). Additional 

examinations included addressing the site-specific nature of surface water quality models by 
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validating models in waters of different geologic origins. An evaluation of the impact operational 

parameters (e.g., flight speed) on the accuracy of sUAS-derived imagery was also completed. 

Thus, this dissertation's four chapters provide an in-depth understanding of light and water 

interactions while demonstrating the environmental applications of sUAS technology for 

monitoring and evaluating aquatic ecosystems.  

Briefly, the results of these efforts revealed: (Chapter 2) approximately 50 percent of the 

variability in in-situ water quality data could be described by sUAS-derived multispectral 

reflectance; (Chapter 3) ordinary least squared regression models capable of predicting 

particulate iron, and total lithium, manganese, nickel, lead, sulfur, and zinc concentrations with 

moderate confidence (R2
adj between 0.74 and 0.81) and low error (mean percent difference < 

5.13), respectively, were developed; (Chapter 4) more accurate estimations of water quality 

parameters occurred in ODWs versus OSWs; and (Chapter 5) development of a standard 

operating procedure for environmental monitoring via sUAS must consider the variety of 

platforms, sensors, operational limitations and conditions, target objects, and tradeoffs 

identified.  
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Chapter 1: Introducing the Dissertation 

Remote sensing is the science and art of obtaining and interpreting information about an object 

on the Earth’s surface without physical contact. The information collected is typically reflected 

electromagnetic (EM) radiation (e.g., reflectance) within the visible portion (e.g., blue, green, and 

red) of the EM spectrum. The visible portion of the EM spectrum ranges from approximately 350 

to 750 nanometers (nm) and contains all colors perceptible by the human eye. The equipment 

used for remote sensing studies typically consists of two main components, the platform (e.g., 

satellites, (un)occupied aerial, terrestrial, or aquatic vehicles) and the sensor (e.g., digital, 

multispectral, or hyperspectral cameras). Historically, environmental remote sensing studies 

used passive satellite-derived multispectral data (e.g., relies on wavelengths emitted from the 

sun as the energy source). Multispectral reflectance has demonstrated uses in forestry (e.g., 

invasive species mapping), agriculture (e.g., estimating crop productivity), and water resources 

(e.g., monitoring ocean surface water quality). However, with the continued advancement of 

remote sensing technologies, there appear to be almost countless unexplored applications. 

Recently, the remote estimation of surface-water quality has become of increasing interest to 

environmental professionals. An ability to collect moderate-resolution (e.g., 10s of meters per 

pixel) satellite-derived data across large areal extents (e.g., 185 X 180 kilometers per image) has 

provided scientists with the opportunity to estimate water quality in large optically deep waters 

(ODWs) (e.g., bodies of water where the substrate and emergent aquatic vegetation do not 

influence measured reflectance). Unfortunately, due to considerable limitations (e.g., low spatial, 

spectral, and temporal resolutions, complex optical properties and bathymetry, mixed pixels, 

cloud cover, impractical deployment costs, and minimal research efforts), the widespread 
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application of traditional remote sensing technologies in optically shallow waters (OSWs) has not 

yet been achieved. The introduction and continued advancement of small Unoccupied Aerial 

System (sUAS) technologies may address some remote sensing limitations. The motivation for 

this research stemmed from the need to describe the advantages of sUAS technologies relative 

to satellite technology, develop an additional innovative tool for monitoring inland waters, 

improve environmental disaster response time and accuracy, and minimize the cost, labor, and 

time required to perform intensive field monitoring efforts to quantify the success of 

environmental remediation projects.  

The focus of this doctoral research relates to describing OSWs in terms of the dependency 

between sUAS-derived multispectral reflectance and various in-situ water quality parameters or 

optically active constituents (OACs) (e.g., chlorophyll-a, total suspended solids, turbidity, Secchi 

disk depth, and metal concentrations). This dissertation aimed to develop an in-depth 

understanding of light and water surface interactions to demonstrate the environmental 

application of sUAS technology for monitoring and evaluating aquatic ecosystems negatively 

impacted by human activities. Thus, the overarching hypothesis of this dissertation was that 

applying sUAS-derived multispectral imagery collected at relatively fine temporal and spatial 

resolutions will improve in-situ monitoring efforts in small optically complex inland waters, will 

provide novel monitoring techniques for mining-impacted ecosystems, and will allow for a 

minute examination of the sources of remote sensing interferences (e.g., optical depth) or 

spectral error. The four dissertation chapters demonstrate the current effectiveness of remote 

sensing via sUAS in full-scale OSWs and ODWs with emphasis on estimation of novel OACs (e.g., 

metal concentrations) while presenting methods to identify interference or error sources with 
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sUAS data and an assessment of operational conditions to begin the development of a standard 

operating procedure. Furthermore, each chapter was developed and formatted as stand-alone 

papers to submit to a peer-reviewed scientific journal.  

Beginning with the effectiveness of sUAS for estimating traditional OACs (e.g., chlorophyll-a) in 

OSWs (e.g., shallow, clear, and productive pond), Chapter 2 is presented. Chapter 2, “Using sUAS-

Derived Multispectral Imagery and Linear Models as Tools for Monitoring Optically Shallow 

Surface Waters,” illustrates how scaled-down traditional environmental remote monitoring 

technologies (e.g., sUAS relative to satellite) in terms of size, cost, and complexity were unable 

to estimate traditional water quality parameters accurately in OSWs utilizing only sUAS-derived 

multispectral imagery. Due to this ineffectiveness, different types of water (e.g., optically deep 

mine waters) and new OACs (e.g., in-situ metal concentrations) were assessed in Chapter 3. 

Chapter 3, “Using sUAS for the Development and Validation of Surface Water Quality Models in 

Optically Deep Mine Waters,” demonstrates novel spectral monitoring techniques for mining-

impacted surface waters utilizing spectral data from two different platforms. Results suggested 

sUAS could be used to describe in-situ metal concentrations in surface waters (e.g., oxidation 

ponds) with prominent optical properties (e.g., abundant suspended iron-oxyhydroxide solids).  

Thus, to focus more on the light and water surface interactions measured via sUAS and assess 

the effectiveness at a different scale, Chapter 4, “In-situ Manipulations of Aquatic Optical Depth 

and its Effect on sUAS-Derived Spectral Reflectance,” presents a controlled experiment 

evaluating these issues. Here mesocosm OSWs were converted to ODWs not only to demonstrate 

how in-situ water quality could readily be estimated in ODWs but to prove further that substrate 

in OSWs impacts the spectral signature measured, which could be quantified via sUAS.  
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Environmental scientists, monitors, and professionals rely on standard operating procedures for 

reliable, repeatable, accurate, and communicable results. Applying sUAS for remote 

environmental monitoring applications should be no different. Thus, the need for a standardized 

method was apparent. Chapter 5, “The Effects of Mission Parameters on the Accuracy and 

Efficiency of sUAS-Derived Multispectral Imagery and Operations,” establishes a baseline for such 

a method to be developed. This chapter emphasizes how altering mission parameters (e.g., flight 

speed and altitude) impacts the sUAS-derived spectra. This study revealed that efficient missions 

(e.g., short flight times) did not produce the most accurate spectra. More importantly, changes 

in solar conditions could account for approximately 60 percent of the measurement error. This 

study not only emphasized the need for the development of a standard method but also 

identified tradeoffs associated with remote sensing via sUAS. 
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Chapter 2: Using sUAS-Derived Multispectral Imagery and Linear Models as Tools for 

Monitoring of Optically Shallow Surface Waters 

This chapter was submitted as a manuscript to Environmental Monitoring and Assessment. 

Abstract: 

Collecting high-resolution spectral data across large areal extents with small Unoccupied Aerial 

Systems (sUAS) provides environmental monitors with the tools to estimate water quality in large 

optically deep bodies of water. The purpose of this study was to illustrate how scaled-down 

traditional environmental remote monitoring technologies (e.g., sUAS relative to satellite) in 

terms of size, cost, and complexity were unable to estimate traditional water quality parameters 

accurately (e.g., chlorophyll-a, total suspended solids, Secchi disk depth, and turbidity), in 

optically shallow surface waters utilizing only sUAS-derived multispectral imagery. Linear 

regression analyses revealed that spectral band or band ratios could accurately describe 

approximately 50 percent of the water quality parameters variability yet still produce statistically 

significant (p-value < 0.05) results. Additionally, various reflectance extraction techniques were 

evaluated, and remote sensing limitations in optically shallow waters were verified. Verification 

of the developed models revealed low accuracy, moderate precision, and a rejection of the 

primary hypothesis that sUAS could describe water quality in optically shallow waters. 

Furthermore, a novel, simple multispectral scattering correction based on the suspended 

sediment's physical properties within the bulk of the waterbody was developed. Currently, sUAS 

technologies are far from replacing traditional in-situ environmental monitoring and should only 

be used as a tool to supplement typical monitoring efforts. However, as technologies continue to 

improve, sUAS can substantially decrease the time, money, human-hours, and laboratory 

analyses required to sufficiently characterize environmental problems. 

 

Keywords:  

Regression, Interpolation, Chlorophyll-a, Spectral Reflectance, Multispectral Correction  
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2.1 Introduction 

2.1.1 Environmental Remote Sensing 

The ability to collect high-resolution data across large areal extents, coupled with advancing 

sensor and computing technologies, equips analysts with the tools to monitor water quality in 

large optically deep bodies of water (e.g., bodies of waters where the substrate and emergent 

aquatic vegetation do not influence measured reflectance) (Doxaran et al. 2002; Williams et al. 

2002; Cannizzaro and Carder 2006; Jensen 2007; Hadjimitsis and Clayton 2009; O’Neill et al. 2011; 

Flener 2013; Wu et al. 2014; Su and Chou 2015; Kubiak and Kotlarz 2016; Su 2017; Zeng et al. 

2017; Abdelmalik 2018; Ehmann et al. 2018; Becker et al. 2019). These ecosystems have been 

negatively impacted via urbanization, eutrophication, sedimentation, land conversion, water 

withdrawal, point and non-point source pollution, and invasive species (MA 2005). 

Unfortunately, monitoring programs are typically field-based and are labor-, cost-, and time-

intensive. Moreover, significant legal, political, and institutional obstacles can impede effective 

monitoring by public agencies that collect most of the data (Biber 2013). Additionally, these 

“spot” monitoring events rarely capture the temporal and spatial variability present in many 

natural phenomena, such as algae blooms.  

2.1.2 Environmental Remote Sensing via sUAS 

Recently small Unmanned Aerial System (sUAS) technologies have addressed some of the 

satellite limitations (Whitehead and Hugenholtz 2014; Su and Chou 2015; Zeng et al. 2017; 

Ehmann et al. 2018). The Federal Aviation Administration (FAA) defines sUAS as an unoccupied 

aircraft weighing less than 55 pounds on takeoff, including any payload (FAA 2016). Some 

features of sUAS that are attractive to the scientific community relative to traditional remote 
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sensing methods (e.g., satellites) include, 1) lower deployment costs; 2) ability to collect data 

autonomously, removing the “human” component of flight and image acquisition; 3) navigability, 

allowing for low-altitude flights in complex natural environments; and 4) user-defined missions, 

allowing the analyst to determine how frequently (temporal resolution), and at what altitude 

(spatial resolution) to fly sUAS missions (Whitehead and Hugenholtz 2014; Zeng et al. 2017; 

Becker et al. 2019). 

Incorporating sUAS, however, is not a complete solution for all traditional remote sensing 

limitations, but can provide a significant contribution to the collection of environmental data, 

particularly for inland ponds, rivers, and reservoirs that are too small for satellite spatial 

resolutions (e.g., Landsat 7 ETM+) (Whitehead and Hugenholtz 2014; Elarab et al. 2015; Su and 

Chou 2015; Ehmann et al. 2018; Becker et al. 2019). Typical in-situ environmental monitoring 

provides information on multiple parameters at a single geographic point, and traditional remote 

sensing provides detailed spatial information on select parameters. Coupling sUAS technologies 

with spatial models can potentially provide a powerful tool for monitoring and estimating surface 

water quality (Dekker et al. 1996; Su 2017; Becker et al. 2019).  

2.1.3 Environmental Remote Sensing in Optically Shallow Waters 

Within the bulk of a water body, optically active constituents (OACs) modify the EM energy, the 

sum of which represents the inherent optical properties (IOPs) of the water body (Mobley 1994; 

Dekker et al. 1996; Jensen 2007; Palmer et al. 2015). The apparent optical properties (AOPs) (e.g., 

diffuse attenuation coefficient (Kd)) depend on the IOPs and the geometry of the light field (e.g., 

solar zenith angle) (Buiteveld et al. 1994). Considerable variability exists in the optical properties 

of water, which are dependent on a variety of OACs. Therefore, optical properties of natural 
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waters have significant spatial and temporal variations and seldom resemble the properties of 

“pure” water (Mobley 1994; Jensen 2007). In order to obtain information on the OACs (e.g., 

Chlorophyll-a (Chl-a)), colored dissolved organic matter (CDOM), or total suspended sediment 

(TSS)) within a water body, the water leaving radiance in the visible and near-infrared (NIR) 

portions of the electromagnetic (EM) spectrum is of most interest (Dekker et al. 1996; Jensen 

2007; Palmer et al. 2015; Dörnhöfer and Oppelt 2016). Gordon (2005) defines water leaving 

radiance as the radiance (or EM energy) that is backscattered out of the water and travels to the 

top of the atmosphere (or multispectral (MS) sensor in this case).  

In optically deep waters, the OACs and the water’s surface represent the primary sources of EM 

radiation leaving the waterbody. However, in optically shallow waters, the backscattered EM 

radiation includes energy signals not only from the OACs and the water’s surface, but also from 

radiation that has been reflected from the bottom substrate. The EM radiation reflected from 

the bottom of optically shallow water bodies provides information about the bottom substrate 

and the waterbody's bathymetry (Mouw et al. 2015; Dörnhöfer and Oppelt 2016). Several studies 

(Lee et al. 1998; Cannizzaro and Carder 2006; Li et al. 2017; Zeng et al. 2017) have determined 

how bottom reflectance in optically shallow waters affects the reflected energy signal retrieved 

from the water’s surface. However, the fact that bottom properties (e.g., substrate composition 

and water depth) often vary independently from the properties of the water column, the 

empirically derived models developed in optically deep waters cannot be applied to optically 

shallow systems (Mouw et al. 2015; Arabi et al. 2020).  

Despite the demonstrated effectiveness of spatial water quality models in optically deep water 

bodies, a literature gap exists. Many studies have reviewed the limitations associated with 
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collecting remote sensing data over optically shallow inland water bodies (Dekker et al. 1996; 

Whitehead and Hugenholtz 2014; Mouw et al. 2015; Palmer et al. 2015; Dörnhöfer and Oppelt 

2016; Hardin et al. 2018; Kislik et al. 2018; Wu et al. 2019), yet few describe the processes, 

successes, or lack thereof when attempting to estimate surface water quality in optically shallow 

waters utilizing sUAS-derived MS imagery. Studies that have successfully developed predictive 

water quality models (Lee et al. 1998; Cannizzaro and Carder 2006; Volpe et al. 2011) are limited 

in application due to the tremendous amounts of input data required (e.g., hyperspectral (HS) 

measurements, bathymetric maps, empirical absorption coefficients, backscattering estimates, 

and extensive calibration and validation) and site-specificity (Arabi et al. 2020). Therefore, the 

purpose of this paper is to illustrate how scaled-down traditional environmental remote 

monitoring technologies (e.g., sUAS-derived MS reflectance) was unable to accurately describe 

various in-situ OACs (e.g., Chl-a, TSS, Secchi Disk Depth (SDD) and turbidity) in an optically shallow 

body of water. The experimental hypothesis evaluated was coupling various bands or band 

transformations from sUAS-derived multispectral imagery and in-situ surface water quality data 

will allow for the development of statistical models capable of predicting (e.g., within the 75 

percent confidence interval) concentrations of traditional OACs (e.g., Chl-a, turbidity, TSS, and 

SDD) in optically shallow surface waters. 

2.2 Materials and Methods 

2.2.1 Study Site Background 

The abandoned Tri-State Mining District (TSMD) (Figure 2.1A) includes approximately 6500 km2 

within southeastern Kansas, southwestern Missouri, and northeastern Oklahoma, where 

underground mining for lead and zinc ores took place from the mid-1800s to the late 1960s. 
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Within the Oklahoma portion of the TSMD is the Tar Creek Superfund Site, which became a 

concern when artesian waters began to flow through abandoned mine shafts and boreholes in 

1979. Substantial degradation of receiving waters occurred due to elevated ecotoxic metals 

concentrations in artesian flowing discharges and runoff/leachate from waste materials left on 

the surface. In 1980, the Tar Creek Task Force was established to investigate the impacts of mine 

drainage on the local water resources. As a result of the findings, the Tar Creek Superfund Site 

was added to the National Priorities List (NLP) on September 8, 1983. 

This study took place at the Mayer Ranch Passive Treatment System (MRPTS) within the Tar Creek 

Superfund Site. MRPTS is a ten-cell passive treatment system operated in two parallel treatment 

trains (Figure 2.1B) designed to promote natural biogeochemical processes to improve water 

quality from artesian mine discharges in specific process units (Nairn et al. 2010). After retention 

of elevated iron, zinc, lead, cadmium, arsenic, and other contaminant concentrations, in all other 

units, the final process unit is a polishing pond (Cell 6 (C6)). C6 serves as an ecological buffer 

between treated mine drainage and the receiving stream while promoting further settling of 

solids and photosynthetic oxygenation (Nairn et al. 2010). Although part of a mine drainage PTS, 

at this point in treatment, ecotoxic metal concentrations are negligible. However, elevated levels 

of calcium, magnesium, sulfate, and alkalinity similar to the artesian source waters were present 

(Nairn et al. 2010). This unit (e.g., C6) was selected for study because of its proximity to other 

historical field locations, and the optical properties of the water body were yet to be studied.  
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2.2.2 sUAS Configuration 

An Aerial Technologies International (ATI) AgBot, paired with the MicaSense RedEdge MS sensor, 

was used in this study. The AgBot is a 5-kilogram, vertical take-off, and landing, dual battery sUAS, 

capable of flying for over 25 minutes at speeds of approximately 18 m s-1. The MicaSense RedEdge 

sensor simultaneously captures five discrete EM bands, with center points in the blue band (475 

nm), green band (560 nm), red band (668 nm), rededge band (717 nm), and NIR band (840 nm). 

Additionally, the RedEdge sensor lens has a 5.5-millimeter (mm) focal length that produces 

uncompressed 16-bit, 1,280 X 960-pixel, TIFF format, raw digital number (DN) MS imagery. This 

sensor can produce extremely fine spatial resolutions (e.g., cm per pixel), making the data ideal 

for examining minute changes in spectral reflectance. The sUAS was equipped with a two-axis 

gimbal that adjusts the sensor to collect imagery at nadir (e.g., directly below the sensor) to 

ensure proper sensor orientation during flight. Collecting MS imagery over water bodies with 

Figure 2.1 Generalized extent of TSMD within Oklahoma, Kansas, and Missouri; red dot represents the location of 
MRPTS (A); MRPTS displaying all ten process units, highlighting study pond (e.g., C6) with red box; white and black 
arrows represent the generalized flow path through the system (B). 
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respect to nadir minimizes geometric distortions and impacts of sun glint, creating an image that 

is more consistent in terms of scale and illumination conditions (Green et al. 2017).  

2.2.3 Mission Planning and Flight Control 

Throughout the study, MS imagery was collected utilizing the ATI AgBot's capability of flying 

autonomously. Autonomy removed the human aspect of flight and allowed for the same mission 

to be repeated multiple times. Flight plans were developed using Mission Planner V1.3.37 

(ArduPilot 2020) before entering the field, with the option of altering the mission while in the 

field (Figure 2.2). Typical mission parameters used for MS data collection included a flight speed 

of approximately 6 m s-1, an altitude of approximately 50 m AGL, a nadir viewing angle, with at 

least 75 percent side and overlap to ensure proper image mosaicking and high-quality data. 

When these parameters were used, the spatial resolution of each pixel was approximately 6.82 

cm.  

Throughout the mission, the pilot-in-command (PIC) maintained visual contact of the sUAS and 

monitored air traffic frequencies. The PIC was prepared to abandon the mission should any risk 

be observed (e.g., increased wind speeds or occupied aircraft enters airspace). For further risk 

avoidance, a visual observer maintained consistent visual contact. Finally, monitoring the ground 

control station identified any issues with the sUAS’s inertial navigation system (INS), global 

positioning system (GPS), or autopilot. 
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2.2.4 Multispectral Image Processing 

Typical sUAS missions at MRPTS required approximately 690 individual images (138 sets of 

images per band) to cover the developed field (Figure 2.2). The raw DN 16-bit TIFF images were 

stitched together to create a mosaic of the study site. Post-processing was completed using the 

manufacturer-recommended Atlas Image Processing Software. Raw MS imagery was uploaded 

to the cloud-based image processing software, and approximately one day later, the products 

were available for download. Limited by the software's proprietary nature, once uploaded, the 

imagery was orthorectified, mosaicked, and radiometrically corrected using a calibrated 

reflectance panel. This “black-box” processing did not allow for customization in terms of digital 

image processing. However, the simplicity, reliability, and repeatability of the products provided 

were desirable for this study. Products available for download from the software included: 

Figure 2.2 Example sUAS flight path (yellow lines) used for MS image collection, with waypoints (green numbered 
markers), and the mission extent (red polygon). 
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reflectance as DNs, a digital surface model (DSM), and a Normalized Difference Vegetation Index 

(NDVI) layer. Once downloaded, the reflectance surfaces were converted from DNs to percent 

spectral reflectance by multiplying each pixel in the surface by a factor of (1/32768) (MicaSense 

2019). The reflectance values were scaled by a factor of 32,768, allowing the data to be stored in 

a 16-bit format. 

2.2.5 Multispectral Reflectance Extractions 

Reflectance values were extracted from the pixel that corresponded to the in-situ sampling 

location (e.g., pixel-by-pixel), similar to the technique demonstrated by Su (2017). For further 

analysis and to manage imperfect pixels, water fluidity, and GPS offset, a buffer-by-buffer 

extraction was performed, much like a study completed by Su and Chou (2015), who created a 

1-m buffer around the in-situ sampling location. The mean and median reflectance values were 

extracted and examined for relationships with measured water quality parameters. Finally, to 

resemble traditional monitoring efforts, where water quality parameters are measured at a 

single location and applied to the entire water body, a composite buffer extraction was 

completed. For this technique, all the reflectance values within the 1-m buffers were compiled 

and extracted as mean values for each of the five bands (e.g., blue, green, red, rededge, and NIR). 

In other words, for all the buffers created in the previous analysis, the means were extracted so 

that each sUAS mission had a single reflectance value for each band that was applied to the entire 

pond.  

2.2.6 Simple Multispectral Scatter Correction 

Attempts were made to address scattering caused by suspended particles (e.g., TSS) within the 

bulk of the waterbody. A novel, simple multispectral scattering correction (SMSC) was developed. 
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Reasons to develop this metric included, (1) no literature could be cited that addressed adjusting 

sUAS-derived MS reflectance for such phenomena (Nansen 2018), (2) the purposefully 

streamlined methodology did not include all of the variables in the radiative transfer model, and 

(3) more traditional environmental data was incorporated into the historically complex optical 

models used to describe surface water quality. The development of the SMSC was based on 

theories from multiple disciplines of science, which were simplified and modified for this 

application (Wentworth 1922; Kanick et al. 2012; Platt and Collins 2015). Several assumptions 

were required to develop this metric including, (1) particle sizes, (2) particle shapes, (3) a 

simplified EM energy scatter theory based on wavelength, and (4) scattering efficiency of the 

suspended material, which was based on the assumed cross-sectional area of the particles.  

2.2.7 In-situ Surface Water Sampling 

Ten in-situ grab surface-water-quality samples were collected from C6 at MRPTS across ten 

individual sUAS missions in the summer of 2018 (June – August) (e.g., 100 in-situ samples total) 

(Figure 2.3). Samples were collected from the shoreline with a 3.6-m swing-arm sampling pole 

within the bulk (e.g., middle) of the water column. By collecting a sample from the middle of the 

“detectable” water column, the water gathered should have been more representative of the 

spectral signature measured. The idea was that the MS sensor would not detect any spectral 

signature from materials below the sampling location if the pond's bottom substrate were not 

visible. To assess substrate visibility and minimize benthic material resuspension, SDD was 

measured from the shoreline with the same sampling pole after completing the sUAS missions. 

Another important sampling parameter typically referred to as the time window is the time from 

the end of the sUAS mission to completing the in-situ sampling event. The larger the time 
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window, the higher chance that the relationships could be negatively impacted due to temporal 

variations in water quality and changes to the solar zenith angle (Olmanson et al. 2013; Wu et al. 

2014; Bonansea et al. 2015; Kubiak and Kotlarz 2016; Su 2017). The time windows maintained 

for this study never exceeded 75 minutes. Additional laboratory water quality analyses were 

completed following EPA-approved methods (Table 2.1), except for the Chl-a extraction 

procedure adapted from Chen et al. (2006) utilizing a hot ethanol extraction technique. 

 

 

 

Figure 2.3 Study pond (e.g., C6) displaying clustered sampling locations (e.g., ten), each cluster corresponds to a 
shoreline location where samples were collected once per mission for a total of ten missions throughout the sampling 
period. 
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Table 2.1 Water quality analytical methods utilized in this study. 

Water Quality Parameter Analytical Method 

Chl-a Chen et al. 2006 
TSS EPA 160.2 (1999) 

Turbidity EPA 180.1 (1993) 

 

2.2.8 Descriptive Statistics, Statistical Analyses, and Data Transformations 

Data distributions were examined with the Kolmogorov-Smirnov Test and various theoretical 

distributions (e.g., normal). Accepting the null hypothesis (p-value > 0.05) indicates the 

experimental data was not significantly different from the reference distribution. Evaluation of 

the F-test statistic provided insight as to whether the explanatory variables contributed to the 

developed models. Rejecting the null hypothesis (p-value < 0.05) of this test suggests the added 

variables improved the model's fit relative to an intercept-only model (e.g., regression 

coefficients equal zero). Further efforts examined the multicollinearity, tolerance, and variance 

inflation factor (VIF) among the independent variables. The presence of multicollinearity can 

cause several issues related to regression, mainly when tolerance is below 0.2 and the reciprocal 

(e.g., VIF) is ten or greater (Miles 2005). Outliers were identified and removed using the 

interquartile range (IQR) of each variable. All descriptive statistical analyses were completed 

using various R statistical software packages and the Real Statistics Resource Package in 

Microsoft Excel. Before any regression testing, the larger dataset was randomly split into 

calibration and verification datasets. 

Single variable (e.g., band or band ratio) Geographically Weighted Regression (GWR), a form of 

local linear regression, was employed to examine the relationship, if any, between in-situ MS 

reflectance and water quality parameters. GWR was pursued because it can model the spatial 
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variation of natural relationships. Additionally, various data transformation techniques (e.g., 

logarithmic and exponential) were explored and applied to every extraction procedure. The 

developed models were then evaluated in terms of the strength of the relationship between the 

variables (e.g., correlation coefficient (R)), the independent variable's ability to explain variance 

in the dependent variable (e.g., R2
adj.), and the significance of the independent variable(s). 

Calibration models were verified with the randomly selected verification dataset that was not 

significantly different (p-value > 0.05) than the calibration dataset. The randomly divided 

verification dataset was used as the input to the selected calibration models. Examination of the 

verified models occurred in terms of residual sum of squares (RSS), Akaike Information Criterion 

corrected for small sample sizes (AICc), bias, and root-mean-square error (RMSE).  

Unfortunately, developing the composite buffer dataset and models required an agglomeration 

of the buffer-by-buffer datasets. Therefore, no model verification could be completed with this 

dataset. Instead, a novel scattering correction technique was applied, and the models were 

reevaluated to determine its effects. To further demonstrate the utility of remote monitoring for 

optically shallow waters, a series of surface water quality maps were generated using a second-

order Local Polynomial Interpolation (LPI). 

2.3 Results and Discussion 

The spectral data collected in this study were subjected to variable environmental conditions. 

Examination of the raw pixel-by-pixel reflectance dataset distribution revealed an arcsine 

distribution to be the best fit (p-value = 1.00). However, this fit was unrealistic, so the dataset 

was examined for outliers. The results of this analysis suggested that several samples be removed 

from the raw pixel-by-pixel dataset. Therefore, the dataset then had a remaining sample number 
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(n) of 99, 71, and 51 for reflectance and Chl-a, turbidity and SDD, and TSS, respectively. Summary 

statistics for these data are presented in Table 2.2. 

Further analysis of the “cleaned” dataset revealed a positively skewed logistic distribution fit all 

reflectance bands (Figure 2.4) (p-value > 0.05), except the red band. The red band did not follow 

this distribution due to fundamental EM interactions with water. Water preferentially absorbs 

longer wavelengths of light (e.g., red). Sixty-three percent of the measured reflectance in the red 

band below the mean caused an unequal distribution in the tails of the dataset. Outliers were 

not considered for any extraction technique except pixel-by-pixel because the extraction 

techniques were used to minimize variability (e.g., water fluidity, sun-glint, and imperfect pixels) 

in the datasets (Figure 2.5).  

 

Figure 2.4 Observed MS distribution (black bars) versus theoretical logistic distribution (orange bars) for (A) blue 
band, (B) green band, (C) red band, (D) rededge band, and (E) NIR band; all plots have the same axes and legend as 
plot (A); p-values were results from Kolmogorov-Smirnov Test. 
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Table 2.2 Selected descriptive statistics for MS reflectance bands (decimal percent) and in-situ water quality 
parameters (units listed) with turbidity symbolized as (Turb). 

Parameter Blue Green Red RedEdge NIR 
Chl-a 

(μg L-1) 
Turb 
(NTU) 

SDD 
(m) 

TSS 
(mg L-1) 

n 99 99 99 99 99 99 71 71 51 
Mean 0.037 0.058 0.043 0.052 0.068 5.55 8.94 0.77 4.48 

Median 0.035 0.055 0.039 0.049 0.059 4.46 7.99 1.00 3.25 
Minimum 0.011 0.017 0.017 0.022 0.037 0.36 3.61 0.35 0.50 
Maximum 0.072 0.114 0.084 0.128 0.137 20.20 17.67 1.25 14.38 
Variance 1.63E-4 3.28E-4 2.40E-4 4.69E-4 6.13E-4 18.18 13.00 0.10 11.73 
Standard 
Deviation 

0.013 0.018 0.015 0.022 0.025 4.26 3.61 0.32 3.43 

 

2.3.1 Multispectral Reflectance 

The collection of reflectance data over this optically shallow inland water body was subjected to 

interferences from water transparency and depth (e.g., optically shallow waterbody), type and 

morphology of benthic substrate, presence of and scattering caused by OACs, and the typical 

Figure 2.5 Box and whisker plots for selected MS band (green); filled circles above the third quartile 
represent outliers present in the datasets; the median is represented with a horizontal line and the mean is 
the “x” within the box. 
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algal phenotype (e.g., filamentous versus colonial). Independent variables (e.g., reflectance 

bands) also exhibited multicollinearity with a mean R2 of 0.89, a tolerance of 0.11, and a variance 

inflation factor (VIF) of 9.27. Correlations among the independent variables and the optical 

heterogeneity made the development of predictive statistical models complex, specifically in 

developing linear regression models and assessing the significance of the independent variable's 

ability to explain the dependent variable's variance. Additionally, when evaluating regression 

models, strong autocorrelation between reflectance bands existed. The presence of collinearity 

and autocorrelation between independent variables, along with the weakness of the 

relationships, suggests that additional explanatory variable(s) (e.g., bottom albedo and 

bathymetry, hyperspectral reflectance, and other empirically derived IOPs) would assist in 

developing descriptive statistical models. 

2.3.2 In-Situ Water Quality 

Throughout the study period, the observed mean Chl-a concentrations within C6 were 

representative of a mesotrophic trophic classification (e.g., 2.5 – 8 μg Chl-a L-1) (OECD 1982). 

Further examination of water quality on an individual mission basis supported this trophic 

classification. Therefore, a trophic status-based statistical analysis, with demonstrated 

effectiveness, could not be completed (Arango and Nairn 2020). In theory, the variability (Table 

2.2) of in-situ OAC concentrations across the study period should have assisted in model 

development by providing a more comprehensive range of reflectance and concentrations to the 

model. However, due to the nature of the algae (e.g., benthic and planktonic filamentous algae) 

(Figure 2.3) and the inherent spatial heterogeneity of C6 (e.g., presence of aquatic vegetation, 

physical depth, and water clarity), this was not the case. The relatively low TSS values suggest the 
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substrate was not disturbed during sampling; however, TSS outliers were present in the dataset. 

The outliers that were removed via IQR contained considerable amounts of algae, of which the 

large masses were selectively removed before filtration. However, substantial quantities of 

floating filamentous algae persisted, contributing to the overall TSS concentration. This 

phenomenon was not translated to the in-situ determination of turbidity because the 

measurements were completed with water removed from the water body (e.g., transferred to a 

10 mL sample cell). Grayson et al. (1996) mention turbidity values are dependent on the 

properties of the suspended material (e.g., heterogeneous filamentous algae and suspended 

sediment) and characteristics of the turbidity instrument. As suspended particles within a 

solution increase in size, the symmetrical distribution of scattered light concentrates in a forward 

direction relative to the incident source (Sadar 1998). Overall, the in-situ water quality measured 

throughout the study period was representative of an optically shallow mesotrophic mid-latitude 

lacustrine ecosystem. 

2.3.3 Development and Calibration of Linear Models 

When examining the linear relationships between untransformed spectral reflectance and in-situ 

water quality data, no correlations were observed (R = -0.14 to 0.13). Several data transformation 

techniques were applied to examine the observed relationships. The transformation techniques 

enhanced the relationships between some of the variables while also modifying the directionality 

of some of the relationships. Like nearly all remote sensing water quality studies, no one data 

transformation, band, or band ratio could describe the entire water quality dataset (Cheng et al. 

2013). Overall, 80 single variable (e.g., band or band ratio) models were evaluated for each 

extraction technique (e.g., pixel-by-pixel, mean and median buffer-by-buffer, and composite 
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buffer) for a total of 320 models. From these models, a subset of the most predictive (e.g., highest 

R2
adj.) for each water quality parameter and extraction technique was selected for model 

verification (Table 2.3). All the selected models displayed a significantly (p-value < 0.05) better fit 

than an intercept-only model. Therefore, the null hypothesis of the F-test was rejected, and the 

alternative hypothesis was accepted. However, the R2
adj. values reported in Table 2.3 reflect low 

to moderate predictability, with only seven of the twelve selected models capable of describing 

over 50 percent of the OAC variability.  

Generally, the statistical relationships between in-situ water quality and spectral reflectance 

improved with larger extraction areas. However, unlike other studies, a single type of extraction 

technique did not produce the most robust relationships for all water quality parameters (Arango 

and Nairn 2020). For the extraction techniques applied in this study, each produced at least one 

model with the highest R2
adj. value for at least one of the water quality parameters. Chl-a and TSS, 

turbidity, and SDD could most readily be estimated with the composite buffer, mean buffer-by-

buffer, and pixel-by-pixel extraction technique, respectively (Table 2.3).  

Furthermore, for each extraction technique, the band or band ratio producing the most robust 

(e.g., highest R2
adj.) relationship for each water quality parameter was different. For some 

parameters (e.g., TSS), the band ratio was composed of one similar band (e.g., NIR) across 

extraction methods. In other cases, the water quality parameter (e.g., turbidity) did not 

consistently exhibit strong relationships with any single band or band ratio (Cheng et al. 2013).  
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Table 2.3 Dependent (Y) and independent (X) variables and adjusted coefficient of determination (R2adj.) for linear 
models grouped by extraction technique. All models were significant at p-value < 0.05 when evaluated with the F-
test statistic. 

Analyte (Y) 
Pixel-by-Pixel Buffer-by-Buffer Composite Buffer 

Band(s) (X) R2
adj. Band(s) (X) R2

adj. Band(s) (X) R2
adj. 

Chl-a Blue:Rededge 0.34 Rededge 0.29 Blue:NIR 0.54 
TSS NIR:Green 0.15 NIR:Blue 0.53 NIR:Rededge 0.89 

Turbidity Red 0.28 NIR:Blue 0.59 Rededge:NIR 0.52 
SDD Rededge 0.60 Green:Red 0.15 Red:Blue 0.54 

 

Additionally, attempts were made to evaluate indices that had already been developed and cited 

in the literature. One index evaluated for Chl-a was the Normalized Difference Chlorophyll Index 

(NDCI) which used reflectance from the green (560 nm) and rededge (710 nm) bands to estimate 

Chl-a concentrations in surface waters (Watanabe et al. 2018). A similar index was tested to 

evaluate turbidity (e.g., Normalized Difference Turbidity Index (NDTI)) in surface waters using the 

red (660 nm) and green (560 nm) bands (Lacaux et al. 2007). These models, developed using 

satellite-derived MS imagery, produced weak statistical relationships (-0.33 > R < 0.28) when 

employed in optically shallow waters with sUAS-derived MS imagery collected at similar band 

center points. The rededge band can be strongly correlated with in-situ Chl-a concentrations in 

surface waters (Ha et al. 2017). This band has also been shown to be an optimal Chl-a estimator 

(R2 = 0.92) in turbid waters when used in various combinations (e.g., band ratio or indices) (Cheng 

et al. 2013). The weaker relationships observed relative to Cheng et al. (2013) and other studies 

resulted from several factors. The first is related to the sensor's spectral resolution (e.g., MS 

versus HS). Additionally, the ability to visually observe submerged vegetation and bottom 

substrate likely caused a shift in rededge peak reflectance by approximately 20 nm (Turpie 2013) 

and increased overall reflectance within the visible spectrum by roughly 20 percent (Zeng et al. 
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2017). Overall, the most useful band ratio to estimate in-situ water quality parameters, 

specifically Chl-a, TSS, and turbidity, included the NIR band. Work completed by Gurlin et al. 

(2011), who found that NIR:Red ratio models could accurately estimate Chl-a concentrations in 

turbid waters with a mean absolute error of 1.2 mg m-3, supported these observations. 

Additionally, Su (2017) stated that a positive relationship should exist between NIR:Blue ratio and 

turbidity. The results of this study support this statement, where a strong positive relationship (R 

= 0.77) between turbidity and the NIR:Blue ratio was observed.  

2.3.4 Verification of Linear Models 

Table 2.4 outlines pixel-by-pixel GWR outputs for each water quality parameter. The 

predictability of the calibrated and verified models (Tables 2.3 and 2.4, respectively) was similar 

in magnitude but varied depending on the water quality parameter. Based on the R2 values of 

the calibrated models, it is unlikely any overfitting was carried through to the verification stage. 

Although the observed relationships were weak, the calibration and verification datasets were 

not statistically different, suggesting the reported models were representative of the datasets. 

Even though the reported models' predictability was low, the independent variables significantly 

contributed to the models' overall success. This significant contribution was a promising result 

and consistent with current literature (Su and Chou 2015; Avdan et al. 2019; Wu et al. 2019). To 

demonstrate the application for remote environmental monitoring with sUAS in a series of 

surface water quality maps were generated using LPI (Figures 2.6 – 2.9).  
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Table 2.4 Evaluation metrics for verified pixel-by-pixel models; RMSE = Root Mean Square Error RSS = Residual Sum 
of Squares; AICc = Akaike Information Criterion corrected. 

Analyte R2
adj. RMSE Bias RSS Sigma AICc 

Chl-a 0.30 1.86 μg L-1 1.05 μg L-1 0.50 0.26 7.98 
TSS 0.02 3.90 mg L-1 -0.15 mg L-1 12.55 3.90 133.04 

Turbidity 0.57 1.42 NTU 1.08 NTU 1.38 0.13 -39.78 
SDD 0.21 1.53 m 0.95 m 0.53 0.18 -16.96 

 

 

 

 

Figure 2.6 Observed (A) and Geographically Weighted Regression (GWR) predicted (B) Chlorophyll-a (Chl-a) 
concentration (μg L-1) surface maps with resulting residual surface (C); verification point data are labeled, and all 
surfaces were extrapolated with Local Polynomial Interpolation. 
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Figure 2.7 Observed (A) and Geographically Weighted Regression (GWR) predicted (B) Total Suspended Solids (TSS) 
concentration (mg L-1) surface maps with resulting residual surface (C); verification point data are labeled, and all 
surfaces were extrapolated with Local Polynomial Interpolation. 

Figure 2.8 Observed (A) and Geographically Weighted Regression (GWR) predicted (B) Turbidity (Turb) (NTU) surface 
maps with resulting residual surface (C); verification point data are labeled and, all surfaces were extrapolated with 
Local Polynomial Interpolation. 
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Given the heterogeneity of dataset and waterbody, most regression evaluation metrics (e.g., 

RMSE, bias, and RSS) appear to be acceptable (Table 2.4). However, the model's predictiveness 

(R2
adj.) does not match the metrics evaluated, nor did these values fall within the 75 percent 

confidence interval. This low p-value, low R2 phenomenon indicates that high variability datasets 

can still have a significant trend, and the independent variables evaluated could describe 2 – 57 

percent of that variability. These results were not ideal and resulted in rejecting the primary 

hypothesis of this study. However, a significant statistical relationship was observed between the 

predictors and response variables. The significant relationship observed paired with the relatively 

low RMSE and bias support using sUAS technologies as a preliminary monitoring tool for optically 

shallow surface waters. If the reported models were applied, they would have low accuracy levels 

Figure 2.9 Observed (A) and Geographically Weighted Regression (GWR) predicted (B) Secchi Disk Depth (SDD) (m) 
surface maps with resulting residual surface (C); verification point data are labeled and, all surfaces were 
extrapolated with Local Polynomial Interpolation. 
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but would be relatively precise. Including additional (e.g., HS reflectance - Becker et al. (2019)) 

and different data (e.g., bottom reflectance – Cannizzaro and Carder (2006)), utilizing alternative 

validation (e.g., k-fold cross-validation –Zeng et al. (2017)) and new reflectance extraction 

techniques, or evaluating other modeling options (e.g., spatial autocorrelation – Guimarães et al. 

(2017)) would likely improve the developed model's ability to estimate concentrations of OACs 

in optically shallow surface waters. 

2.3.5 Simple Multispectral Scattering Correction 

Overall, applying the SMSC to the composite reflectance extractions produced significantly 

different datasets (p-values < 0.001). The SMSC simulated the process of scattering, in that the 

energy was removed from EM radiation and reemitted in a different direction, phase, or 

wavelength (Scott 2014). However inexact this correction might be, it provides a novel theoretical 

approach to correct sUAS-derived MS data after post-processing. Zhang et al. (2019) 

demonstrated how a power function could be used to remove the impact of sun glint from sUAS 

spectral data after collection and processing. Zhang et al. (2019) produced retrieval models for 

Chl-a and turbidity with R2 values of 0.62 and 0.91, respectively. These data suggest the higher 

resolution dataset (e.g., HS), type of water (e.g., optically deep), and sun glint correction were 

adequate to quantify the OACs present. Using the assumed scattering efficiency of both silt and 

sand-size particles at each band slightly increased the developed models' predictability. However, 

applying the scattering efficiency of silt to the SMSC data produced the most predictive models 

with R2 values of 0.62, 0.91, 0.59, and 0.61 for Chl-a, TSS, turbidity, and SDD, respectively. These 

model improvements suggest a simple exercise with several assumptions, and minimal ancillary 
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data collection efforts can improve the predictability of statistically derived surface water quality 

models. 

2.4 Conclusions 

In this study, sUAS-derived MS bands or band ratios could not accurately estimate traditional 

water quality parameters in a small optically shallow inland waterbody. Generally, the reported 

models exhibited low explanatory ability, yet were still capable of producing statistically 

significant (p-value < 0.05) results when estimating in-situ surface water quality. Considering the 

optical complexity of the studied waters throughout the study period and the documented 

limitations of this type of experiment, these results were promising and representative of 

statistical modeling in a complex natural environment. Furthermore, this study provides 

environmental professionals a review of various reflectance extraction techniques, the types of 

limitations to expect when attempting to precisely describe the relationship between reflectance 

data and in-situ water quality, and a novel scattering correction technique further post-

processing sUAS-derived MS imagery exposed to optically shallow waters.  

Based on these results, acceptable monitoring of optically shallow waters via sUAS is not possible. 

However, with the continued degradation of surface water quality worldwide, a reevaluation of 

conventional monitoring approaches is required. This study presents one such approach, and as 

sUAS technologies become more prevalent, the need for standard methods and integration into 

regular monitoring activities will be required. Currently, sUAS technologies are far from replacing 

traditional in-situ monitoring and should only be used as a tool for the collection of additional 

and different data. However, if integrated into regular monitoring activities, environmental 

monitors could use these technologies to identify hotspots at a much finer temporal and spatial 
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scale than conventional monitoring, which could substantially decrease the amount of time, 

money, human-hours, and laboratory analyses required to sufficiently characterize the extent of 

the issue. 

  



32 
 

Literature Cited 

Abdelmalik, K. W. (2018). Role of statistical remote sensing for inland water quality parameters 

prediction. The Egyptian Journal of Remote Sensing and Space Sciences, 

https://doi.org/10.1016/j.ejrs.2016.12.002. 

Arabi, B., Salama, M. S., van der Wal, D., Pitarch, J., and Verhoef, W. (2020). The impact of sea 

bottom effects on the retrieval of water constituent concentrations from MERIS and OLCI 

images in shallow tidal waters supported by radiative transfer modeling. Remote Sensing 

of Environment, https://doi.org/10.1016/j.rse.2019.111596.  

Arango, J. G., and Nairn, R. W. (2020) Prediction of optical and non-optical water quality 

parameters in oligotrophic and eutrophic aquatic systems using a small unmanned aerial 

system. Drones, https://doi.org/10.3390/drones4010001. 

ArduPilot. (2020). Mission Planner computer software. Resource document. ArduPilot. 

https://ardupilot.org/planner/. Accessed 8 July 2016. 

Avdan, Y. Z., Kaplan, G., Goncu, S., Avdan, U. (2019). Monitoring the water quality of small water 

bodies using high-resolution remote sensing data. ISPRS International Journal of Geo-

Information, https://doi.org/10.3390/ijgi8120553. 

Becker, R. H., Sayers, M., Dehm, D., Shuchman, R., Quintero, K., Bosse, K., and Sawtell, R. (2019). 

Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms: 

a new paradigm in water quality monitoring. Journal of Great Lakes Research, 

https://doi.org/10.1016/j.jglr.2019.03.006. 



33 
 

Biber, E. 2013. The challenge of collecting and using environmental monitoring data. Ecology and 

Society, https://doi.org/10.5751/ES-06117-180468. 

Bonansea, M., Rodriguez, M. C., Pinotti, L., and Ferrero, S. (2015). Using multi-temporal Landsat 

imagery and linear mixed models for assessing water quality parameters in Río Tercero 

reservoir (Argentina). Remote Sensing of Environment, 

https://doi.org/10.1016/j.rse.2014.10.032. 

Buiteveld, H., Hakvoort, J. H., and Donze, M. (1994). Optical properties of pure water. Proceedings 

of the Society of Photo-Optical Instrumentation (SPIE) 2258, Ocean Optics XII, 

https://doi.org/10.1117/12.190060. 

Cannizzaro, J. P., and Carder, K. L. (2006). Estimating chlorophyll a concentrations from remote-

sensing reflectance in optically shallow waters. Remote Sensing of Environment, 

https://doi.org/10.1016/j.rse.2005.12.002. 

Chen, Y., Chen, K., and Hu, Y. (2006). Discussion on determination of phytoplankton chlorophyll-

a by “Hot Ethanol Method” and its measurement error. Journal of Lake Sciences, 

https://doi.org/10.18307/2006.0519. 

Cheng, C., Wei, Y., Lv, G., and Yuan, Z. (2013). Remote estimation of chlorophyll-a concentration 

in turbid water using a spectral index: a case study in Taihu Lake, China. Journal of Applied 

Remote Sensing, https://doi.org/10.1117/1.JRS.7.073465. 

Dekker, A. G., Zamurović-nenad, Ž., Hoogenboom, H. J., and Peters, S. W. M. (1996). Remote 

sensing, ecological water quality modelling and in situ measurements: a case study in 



34 
 

shallow lakes. Hydrological Sciences Journal, 

https://doi.org/10.1080/02626669609491524. 

Dörnhöfer, K., and Oppelt, N. (2016). Remote sensing for lake research and monitoring – recent 

advances. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2015.12.009. 

Doxaran, D., Froidefond, J-M., Lavender, S. and Castaing, P. (2002). Spectral signature of highly 

turbid waters: Application with SPOT data to quantify suspended particulate matter 

concentrations. Remote Sensing of Environment, https://doi.org/10.1016/S0034-

4257(01)00341-8. 

Ehmann, K., Kelleher, C., and Condon, L. E. (2019). Monitoring turbidity from above: Deploying 

small unoccupied aerial vehicles to image in-stream turbidity. Hydrological Processes, 

https://doi.org/10.1002/hyp.13372. 

Elarab, M., Ticlavilca, A., Torres-Rua, A., Maslova, I., and Mckee, M. (2015). Estimating chlorophyll 

with thermal and broadband multispectral high-resolution imagery from an unmanned 

aerial system using relevance vector machines for precision agriculture. International 

Journal of Applied Earth Observation and Geoinformation, 

https://doi.org/10.1016/j.jag.2015.03.017. 

Federal Aviation Administration (FAA). (2016). Title 14: Aeronautics and Space | Part 107 – Small 

Unmanned Aircraft Systems. Resource document. FAA. https://www.ecfr.gov/cgi-

bin/text-

idx?SID=dc908fb739912b0e6dcb7d7d88cfe6a7&mc=true&node=pt14.2.107&rgn=div5#

se14.2.107_13. Accessed 29 June 2020. 



35 
 

Flener, C. (2013). Estimating deep water radiance in shallow water: adapting optical bathymetry 

modeling to shallow river environments. Boreal Environment Research, 18, 488-502. 

Gordon, R. H. (2005). Normalized water-leaving radiance: revisiting the influence of surface 

roughness. Applied Optics, https://doi.org/10.1364/ao.44.000241. 

Grayson, R. B., Finlayson, B. L., Gippel, C. J., and Hart, B. T. (1996). The potential of field turbidity 

measurements for the computation of total phosphorus and suspended solids loads. 

Journal of Environmental Management, https://doi.org/10.1006/jema.1996.0051. 

Green, K., Congalton, G. R., and Tukman, M. (2017). Imagery fundamentals. In Imagery and GIS: 

Best practices for extracting information from imagery (pp. 27 – 68). California: Esri Press. 

Guimarães, T. T., Veronez, R. M., Koste, C. E., Gonzaga, Jr. L., Bordin, F., Inocencio, C. L., Larocca, 

C. A., de Oliveira, Z. M., Vitta, C. D., and Mauad, F. F. (2017). An alternative method of 

spatial autocorrelation for chlorophyll detection in water bodies using remote sensing. 

Sustainability, https://doi.org/10.3390/su9030416. 

Gurlin, D., Gitelson, A. A., Moses, J. W. (2011). Remote estimation of chl-a concentration in turbid 

productive waters – Return to a simple two-band NIR-red model? Remote Sensing of 

Environment, https://doi.org/10.1016/j.rse.2011.08.011. 

Ha, N., Thao, N., Koike, K., and Nhuan, M. (2017). Selecting the best band ratio to estimate 

chlorophyll-a concentration in a tropical freshwater lake using Sentinel 2A images from a 

case study of Lake Ba Be (Northern Vietnam). ISPRS International Journal of Geo-

Information, https://doi.org/10.3390/ijgi6090290. 



36 
 

Hadjimitsis, D. G., and Clayton, C. (2009). Assessment of temporal variations of water quality in 

inland water bodies using atmospherically corrected satellite remotely sensed image 

data. Environmental Monitoring and Assessment, https://doi.org/10.1007/s10661-008-

0629-3. 

Hardin, J. P., Lulla, V., Jensen, R. R., and Jensen, R. J. (2018). Small unmanned aerial systems 

(sUAS) for environmental remote sensing: challenges and opportunities revisited. 

GIScience and Remote Sensing, https://doi.org/10.1080/15481603.2018.1510088. 

Jensen, R. J. (2007). Remote sensing of the environment: an earth resource perspective – 2nd ed. 

India: Prentice-Hall. 

Kanick, S. C., Krishnaswamy, V., Gamm, U. A., Sterenborg, H. J. C. M., Robinson, D. J., Amelink, A., 

and Pogue, B. W. (2012). Scattering phase function spectrum makes reflectance spectrum 

measured from intralipid phantoms and tissue sensitive to the device detection 

geometry. Biomedical Optics Express, https://doi.org/10.1364/BOE.3.001086. 

Kislik, C., Dronova, I., and Kelly, M. (2018). UAVs in support of algal bloom research: a review of 

current applications and future opportunities. Drones, 

https://doi.org/10.3390/drones2040035. 

Kubiak, K., and Kotlarz, J. (2016). Monitoring Cyanobacteria Blooms in Freshwater Lakes using 

Remote Sensing Methods. Polish Journal of Environmental Studies, 

https://doi.org/10.15244/pjoes/60175. 



37 
 

Lacaux, J., Tourre, Y., Vignolles, C., Ndione, J., Lafaye, J. (2007). Classification of ponds from high-

spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. 

Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2006.07.012. 

Lee, Z., Carder, L. K., Mobley, D. C., Steward, G. S., and Patch, S. J. (1998). Hyperspectral remote 

sensing for shallow waters. A semianalytical model. Applied Optics, 

https://doi.org/10.1364/ao.37.006329. 

Li, J., Yu, Q., Tian, Y. Q., and Becker, B., L. (2017). Remote sensing estimation of colored dissolved 

organic matter (CDOM) in optically shallow waters. ISPRS Journal of Photogrammetry and 

Remote Sensing, https://doi.org/10.1016/j.isprsjprs.2017.03.015. 

MicaSense. (2019). What are the units of the Atlas GeoTIFF output. Resource document. Atlas 

and MicaSense. https://support.micasense.com/hc/en-us/articles/215460518-What-

are-the-units-of-the-Atlas-GeoTIFF-output-. Accessed 27 Jun. 2018. 

Miles, J. (2005). Tolerance and Variance Inflation Factor. Encyclopedia of Statistics and Behavioral 

Science, https://doi.org/10.1002/9781118445112.stat06593. 

Millennium Ecosystem Assessment (MA). (2005). Ecosystems and Human Well-Being: Synthesis. 

Washington, DC: Island Press. 

Mobley, D. C. (1994). Optical Properties of Water. In M. Bass (Ed.), Handbook of Optics, Second 

Edition (pp. 60 – 144). New York: McGraw-Hill, Inc. 

Mouw, B. C., Greb, S., Aurin, D., DiGiacomo, M. P., Lee, Z., Twardowski, M., Binding, C., Hu, C., 

Ma, R., Moore, T., Moses, W., and Craig, E. S. (2015). Aquatic color radiometry remote 



38 
 

sensing of coastal and inland waters: challenges and recommendations for future satellite 

missions. Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2015.02.001. 

Nairn, R. W., LaBar, J. A., Strevett, K. A., Strosnider, W. H., Morris, D., Garrido, A. E., Neely, C. A., 

and Kauk, K. (2010). Initial evaluation of a large multi-cell passive treatment system for 

net-alkaline ferruginous lead-zinc mine waters. Journal of the American Society of Mining 

and Reclamation (JASMR), https://doi.org/10.21000/JASMR10010635. 

Nansen, C. (2018). Penetration and scattering – two optical phenomena to consider when 

applying proximal remote sensing technologies to object classifications. Public Library of 

Science (PLOS) One, https://doi.org/10.1371/journal.pone.0204579. 

Olmanson, L. G., Brezonik, P. L., and Bauer, M. E. (2013). Airborne hyperspectral remote sensing 

to assess spatial distribution of water quality characteristics in large rivers: The Mississippi 

River and its tributaries in Minnesota. Remote Sensing of Environment, 

https://doi.org/10.1016/j.rse.2012.11.023. 

O’Neill, D. J., Costa, M., and Sharma, T. (2011). Remote sensing of shallow coastal benthic 

substrates: in situ spectra and mapping of Eelgrass (Zostera marina) in the Gulf Islands 

National Park Reserve of Canada. Remote Sensing, https://doi.org/10.3390/rs3050975. 

Organization for Economic Cooperation and Development (OECD). (1982). Eutrophication of 

waters: monitoring, assessment and control. Paris, France: OECD. 



39 
 

Palmer, C.J. S., Kutser, T., and Hunter, D. P. (2015). Remote sensing of inland waters: Challenges, 

progress and future directions. Remote Sensing of Environment, 

https://doi.org/10.1016/j.rse.2014.09.021. 

Platt, C. M. R., and Collins, L. R. (2015). LIDAR | Backscatter. In G. R. North (Ed.), Encyclopedia of 

Atmospheric Sciences 2nd Edition (pp. 270-276). Oxford: Academic Press. 

Sadar, J. M. (1998). Turbidity Science. United States: HACH Company.  

Scott, J. F. (2014). Scattering of electromagnetic radiation. AccessScience, 

https://doi.org/10.1036/1097-8542.605200. 

Su, T.-C., and Chou, H.-T. (2015). Application of multispectral sensors carried on unmanned aerial 

vehicle (UAV) to trophic state mapping of small reservoirs: a case study of Tain-Pu 

Reservoir in Kinmen, Taiwan. Remote Sensing, https://doi.org/10.3390/rs70810078.  

Su, T.-C. (2017). A study of a matching pixel by pixel (MPP) algorithm to establish an empirical 

model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. 

International Journal of Applied Earth Observation and Geoinformation, 

https://doi.org/10.1016/j.jag.2017.02.011. 

Turpie, R. K. (2013). Explaining the spectral red-edge features of inundated marsh vegetation. 

Journal of Coastal Research, https://doi.org/10.2112/JCOASTRES-D-12-00209.1. 

United States Environmental Protection Administration (USEPA). (1993). Method 180.1: 

Determination of Turbidity by Nephelometry. Rev 2.0. Environmental Systems Monitoring 

Laboratory, Office of Research and Development, Cincinnati, Ohio. 



40 
 

USEPA. (1999). Method 160.2: Residue, Non-Filterable (Gravimetric, Dried at 103-105 C). Rev 2.0. 

Environmental Systems Monitoring Laboratory, Office of Research and Development, 

Cincinnati, Ohio. 

Volpe, V., Silvestri, S., and Marani, M. (2011). Remote sensing retrieval of suspended sediment 

concentration in shallow waters. Remote Sensing of Environment, 

https://doi.org/10.1016/j.rse.2010.07.013. 

Watanabe, F., Alcantara, E., Rodrigues, T., Rotta, L., Bernardo, N., and Imai, N. (2017). Remote 

sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita 

Reservoir, Brazil). Anais da Academia Brasileira de Ciências, 

https://doi.org/10.1590/0001-3765201720170125. 

Wentworth, C. (1922). A scale of grade and class terms for clastic sediments. The Journal of 

Geology, 30(5), 377-392. 

Whitehead, K., and Hugenholtz, H. C. (2014). Remote sensing of the environment with small 

unmanned aircraft systems (UASs), part 1: a review of progress and challenges. Journal of 

Unmanned Vehicle Systems, https://doi.org/10.1139/juvs-2014-0006. 

Williams, J. D., Bigham, M. J., Cravotta III, A. C., Traina, J. S., Anderson, E. J., and Lyon, G. J. (2002). 

Assessing mine drainage pH from the color and spectral reflectance of chemical 

precipitates. Applied Geochemistry, https://doi.org/10.1016/S0883-2927(02)00019-7. 

Wu, J.-L., Ho, C.-R., Huang, C.-C., Srivastav, A. L., Tzeng, J.-H., and Lin, Y.-T. (2014). Hyperspectral 

sensing for turbid water quality monitoring in freshwater rivers: empirical relationship 



41 
 

between reflectance and turbidity and total solids. Sensors, 

https://doi.org/10.3390/s141222670. 

Wu, D., Li, R., Zhang, F., and Liu, J. (2019). A review on drone-based harmful algae blooms 

monitoring. Environmental Monitoring and Assessment, https://doi.org/10.1007/s10661-

019-7365-8. 

Zeng, C., Richardson, M., and King, D. (2017). The impacts of environmental variables on water 

reflectance measured using lightweight unmanned aerial vehicle (UAV)-based 

spectrometer system. ISPRS Journal of Photogrammetry and Remote Sensing, 

https://doi.org/10.1016/j.isprsjprs.2017.06.004. 

Zhang, X., Li, H., Cybele, N. S. M., Dai, W., and Li, Z. (2019). Remotely sensed water reflectance 

measurements based on unmanned aerial vehicle (UAV). International Society of Offshore 

and Polar Engineers, 614-619. 



42 
 

Chapter 3: Using sUAS for the Development and Validation of Surface Water 

Quality Models in Optically Deep Mine Waters 
This chapter was formatted as a manuscript for submission to Mine Water and the Environment. 

Abstract: 

Remote estimation of water quality is of increasing interest to monitoring professionals. 

Predictive regression models have been developed using satellite and small Unoccupied Aerial 

System (sUAS) remote sensing techniques. Typically, these remote sensing techniques were 

applied to optically deep waters (e.g., the bottom was not visible), targeting traditional 

contaminants of concern (e.g., chlorophyll-a and total suspended solids). Therefore, by 

considering a water body that is shallow in terms of physical depth (e.g., water surface to 

substrate surface), yet optically deep (e.g., highly turbid) like many mine water systems, 

examinations may be made of relationships between physical and optical depth, water clarity, 

water chemical composition, and spectral reflectance. Thus, this study's purpose was to 

demonstrate novel spectral monitoring techniques for mining-impacted surface waters utilizing 

spectral data from two different platforms. First, the feasibility of utilizing sUAS-derived 

multispectral imagery (e.g., tens of spectral measurements) to estimate in-situ metal 

concentrations in ferruginous lead-zinc mine drainage was examined. Results describe strong 

linear relationships (e.g., R2
adj. > 0.74) between remotely collected multispectral reflectance and 

in-situ metal concentrations (e.g., Fe, Li, Mn, Pb, and Zn). Developed models could estimate mean 

metal concentrations within a percent of the observed value with great confidence (e.g., 70 

percent confidence interval). The “success” of the non-optical metal predictions (e.g., metals not 

making a significant contribution to spectra – Li, Mn, Pb, and Zn) was attributed to the surface 

properties of the iron precipitates (e.g., high sorption affinity). Model validation at a site with 

waters of a different geologic origin allowed the authors to assess this phenomenon's site-

specificity. Unfortunately, validation of all models developed (Mn, Ni, Pb, S, and Zn) was not 

possible within this study’s statistical constraints (e.g., prediction within ± 25 percent of the 

observed value). However, two models (Fe and Li) were validated, and when other relationships 

were examined with site-specific spectra, significant improvements were observed. Employing 

hyperspectral (e.g., thousands of spectral measurements) remote sensing techniques produced 
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a novel identification technique for optically shallow waters (e.g., the bottom was visible) and 

other remote sensing interferences. To do this, the exponential decay of light in water was 

modeled using two physical measurements (e.g., Secchi disk depth and actual depth) and sUAS-

derived red band reflectance. The established level of confidence (e.g., R2 = 0.73) observed using 

data from two different sites suggests this model may provide environmental monitors with a 

means to evaluate the feasibility of using remote sensing technologies to assess water quality in 

mine drainage passive treatment systems. Utilizing cost-effective sUAS-derived multispectral 

imagery to estimate mine water quality may represent a new tool and pave the way for the next 

generation of environmental monitoring. Adopting this technology will advance the efficiency 

and effectiveness of monitoring, alter traditional environmental remote sensing strategies, and 

provide a glimpse into the ever-advancing future of environmental restoration. 

Keywords: 

Regression, Remote Sensing, Multispectral, Hyperspectral, Optical Depth  
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3.1 Introduction 

3.1.1 Monitoring Mining Impacted Environments 

All mining stages (e.g., exploration, design and planning, construction, production, closure, and 

reclamation) influence landscapes worldwide (Sonter et al. 2014; Bebbington et al. 2018; 

Buczyńska 2020; Werner et al. 2020). However, mineral and fuel extraction is expected to 

continue for the foreseeable future (Martins et al. 2020), with an ever-increasing need for 

sustainable reclamation practices based on sound science. Reclamation of a mining-impacted 

landscape is not a rapid process and can require in-situ data across vast spatial and temporal 

scales (Werner et al. 2020). Unfortunately, evaluating mining reclamation projects' success is 

often disregarded due to time, person-hours, monetary and logistical constraints. Specifically, 

these attempts often fail to capture the spatial and temporal variation of complex inland water 

bodies (Holl 2002; Biber 2013; Becker et al. 2019). 

Advancing environmental monitoring strategies and data collection technologies are critical. One 

such approach includes incorporating remote sensing data, specifically small Unoccupied Aerial 

System (sUAS)-derived information (e.g., multispectral reflectance) into traditional 

environmental monitoring and reclamation projects (Becker et al. 2019; Shi et al. 2019). As 

electromagnetic (EM) energy passes through Earth’s atmosphere and encounters an object, 

several interactions occur (e.g., reflection, transmission, absorption, and scattering) between the 

photons and particles within the medium. In a shallow and transparent water body, photons 

interact with the bottom substrate altering the expected energy signal (e.g., optically shallow 

waters (OSWs)) (Albert and Gege 2006; Cannizzaro and Carder 2006; Salama et al. 2009). 

Conversely, if optically active constituents (OACs) (e.g., particulate Fe, chlorophyll-a, total 
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suspended solids) are present in elevated concentrations rendering the bottom substrate not 

visible, even within physically shallow surface waters, visible (VIS) EM energy will decay at an 

exponential rate, and interactions with the substrate will be nominal (Cannizzaro and Carder 

2006; Zeng et al. 2017). These factors of optically deep waters (ODWs) allow for the development 

of relationships between reflected spectral energy and in-situ metal concentrations.  

Terrestrial applications of sUAS technologies have been practical in several mining phases (Lee 

and Choi 2016; Ren et al. 2019; Park and Choi 2020). Cress et al. (2015) established a roadmap 

for performing geological surveys in the conterminous United States. Lee and Choi (2016) 

demonstrated how sUAS could produce high-resolution topographic surveys. Fang et al. (2019) 

utilized hyperspectral data and regression techniques to map Fe accumulation in exposed soil at 

a reclamation site. Several authors have demonstrated how spectral measurements can estimate 

concentrations of various traditional OACs (e.g., chlorophyll-a, total suspended solids, and 

turbidity) (Dekker et al. 1996; Cannizzaro and Carder 2006; Lim and Choi 2015; Matthews and 

Odermatt 2015; Su 2017; Arango and Nairn 2020) in water bodies. However, limited research has 

examined how sUAS-derived multispectral reflectance can describe an aquatic environment 

impacted by mining activities. 

However, most sUAS are not without their limitations (Whitehead and Hugenholtz 2014; 

Gholizadeh et al. 2016; Zeng et al. 2017; Zhang et al. 2019). Some regulatory and technical 

constraints of sUAS include flight altitude limitations, line of sight requirements, short flight 

times, and limited payload capabilities, along with concerns about GPS and sensor accuracy 

(Watts et al. 2012; FAA 2016; Ren et al. 2019). From a scientific perspective, the lack of a 

standardized operating procedure for collecting environmental data and applying it to 
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reclamation monitoring has been a considerable limitation identified by this study and others 

(Buters et al. 2019; Shi et al. 2019). Many authors have also commented on the difficulty of 

developing empirical models, referencing the need to derive site-specific inherent optical 

properties (IOPs) and manage complex signals from turbid water, bottom reflectance, and mixed 

pixels (Lee et al. 1998; Lee and Carder 2002; Voss et al. 2003; Cannizzaro and Carder 2006; Salama 

et al. 2009; Palmer et al. 2015; Gholizadeh et al. 2016; Su 2017). Thus, the need to establish 

robust datasets for non-traditional water quality parameters (e.g., metals) and explore the 

applications' potential is apparent. 

3.1.2 Hypotheses and Purpose 

The two hypotheses of this study were (1) coupling various bands or band transformations from 

sUAS-derived multispectral imagery, and in-situ surface-water quality will allow for the 

development of statistical models capable of predicting metal concentrations in mining-impacted 

surface waters and (2) water quality models will remain valid when developed and tested in 

waters of different geologic origin. Thus, this study's purpose was to demonstrate novel spectral 

monitoring techniques for mining-impacted surface waters utilizing spectral data from two 

different platforms. First, the feasibility of utilizing sUAS-derived multispectral imagery to 

estimate in-situ metal concentrations in lead-zinc mine drainage was examined. Then, the models 

were assessed for accuracy and statistical validity in coal mine drainage of a different geologic 

origin. Finally, a method to remotely evaluate a waterbody's potential for these applications of 

sUAS technologies was presented.  
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3.2 Materials and Methods 

3.2.1 Study Site Descriptions 

The study locations for this study were two mine drainage passive treatment systems (PTS). The 

Mayer Ranch PTS (MRPTS) and the Hartshorne PTS (HPTS) served as the test and validation study 

sites, respectively. MRPTS is located within the Tar Creek Superfund Site, in the Oklahoma portion 

of the 6475 km2 Tri-State Lead-Zinc Mining District (TSMD) (Figures 3.1a, 3.1b, 3.1c, and 3.1d). 

Nearly 460 million tons of lead and zinc ore were produced from the mid-1800s to 1970, leaving 

a derelict landscape contaminated with mining-related hazards (e.g., mining waste and 

contaminated water resources) (ODEQ 2017). MRPTS was designed and implemented to address 

nearly 1000 L/minute of net-alkaline artesian-flowing mine drainage contaminated with elevated 

levels of As, Cd, Fe, Ni, Pb, Zn, and SO4
2- (Nairn et al. 2020). Operated in two parallel treatment 

trains, the ten-cell PTS has effectively treated net alkaline ferruginous mine drainage since 2008 

(Nairn et al. 2010). HPTS is located within the Oklahoma portion of the 87500 km2 Arkoma Basin 

coal field (Figures 3.1a, 3.1b, 3.1e, and 3.1f). Specifically, HPTS is located adjacent to Rock Island 

Improvement (RI) mine #7 (e.g., RI #7), which from 1907 to 1931 had approximately 500,000 tons 

of Lower Hartshorne coal mined from more than 100 meters underground (Friedman 1996; USGS 

1996). Designed to treat approximately 40 L/minute of net-acidic artesian-flowing mine drainage 

contaminated with elevated levels of Fe, Mn, and SO4
2-. Since 2007, the six-cell PTS has 

consistently removed trace metals and mineral acidity and discharges a net alkaline effluent 

(LaBar and Nairn 2009; Nairn et al. 2020).  
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Figure 3.1 The study location within the United States of America (a), and general location within the state of 
Oklahoma (b). Mayer Ranch Passive Treatment System with process units identified with the general flow path 
indicated by white arrows (c) and the locations in-situ samples were collected and hyperspectral profiles were 
completed (d). Hartshorne Passive Treatment System with identification of groups of process units with the general 
flow path indicated by white arrows (e), and the locations in-situ samples were collected, and hyperspectral profiles 
were generated (f). 
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Both PTS has an initial oxidative unit near the beginning of the treatment train that served as the 

study ponds. It was the similarities concerning optical depth (OD), system design and age, influent 

water quality, and dominant optical properties that made the two oxidative units ideal 

candidates for testing water quality models developed using VIS/NIR EM energy. One important 

note is that each system's source waters differed in geologic origin and the targeted mining 

products (e.g., Pb and Zn at MRPTS; coal at HPTS). Mine drainage at MRPTS was produced from 

Mississippian carbonate host rocks (e.g., limestone and dolostone) with ores dominated by lead 

and zinc sulfides (McKnight and Fischer 1970). In contrast, mine drainage at HPTS stems primarily 

from the Hartshorne sandstone, which was characterized as quartzose sandstone with 

interbedded shales (Trumbull 1957). Understanding this difference in mine drainage 

development, the acidic nature (e.g., net alkaline versus net acidic) of the source waters was not 

crucial in the context of this study. However, what was important, was that due to the geologic 

host rock present at MRPTS and the incorporation of a vertical anoxic limestone drain (VALD) 

(alkalinity production via limestone dissolution and bicarbonate generation) (Figure 3.1e) at HPTS 

when the waters reached the studied units, both were net alkaline with elevated metal 

concentrations. Even though the studied waters were similar, assessing sUAS-derived models' 

validity in waters sourced from different geologic origins remains an unexplored scientific 

question. 

3.2.2 In-situ Spectral Measurements 

Before collecting spectral data, each instrument was field-calibrated. An Analytical Spectral 

Devices (ASD) FieldSpec3 was optimized and standardized with a white calibrated reflectance 

panel (CFP) to reflect 95 – 99 percent of EM energy. This calibration procedure was completed 
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every ten minutes or when illumination conditions changed (e.g., cloud cover) during data 

collection. The data generated at each wavelength represents the average of ten samples taken 

in 0.1 s increments. The hyperspectral (e.g., 350 – 2500 nm) profiles were collected at nadir (e.g., 

perpendicular to the water surface). Measurements were collected approximately one meter 

above the water surface at one-meter horizontal increments starting at the water’s edge (e.g., 0-

meters) (Figures 3.1d and 3.1e). Each set of ten measurements was collected five times, 

averaged, and post-processed to spectral reflectance using ASD ViewSpec Pro V. 6.2 processing 

software.  

Calibration of the MicaSense RedEdge Multispectral Sensor (RedEdge sensor) required pre- and 

post-flight reflectance information from the same CFP. To account for changes to solar conditions 

throughout the flight, the processing software (Pix4DMapper) used both sets of images. The 

sensor was fixed via a gimbal to the Aerial Technologies International (ATI) vertical take-off and 

landing (VTOL) AgBot quadcopter. This VTOL sUAS simultaneously collected imagery in five 

discrete spectral bands (e.g., blue, green, red, rededge, and near-infrared (NIR)) with center 

points at 475, 560, 668, 717, and 840 nm, respectively. At both PTS, the sUAS-derived 

multispectral imagery was collected autonomously within ±2 hours of local solar noon. The flight 

planning software (Mission Planner V. 1.3.37) allowed for the development of autonomous 

missions throughout the study. Parameters at each PTS included operations at 6 meters second-

1, 60 meters above ground level, with at least 75 percent image side and overlap. With these 

parameters, the raw uncompressed 16-bit digital number imagery was transformed to high-

resolution (e.g., < 10 cm per pixel) 32-bit spectral reflectance orthomosaics using the processing 
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software. If remote sensing interferences impacted either multispectral spectral dataset, outliers 

were identified and removed using the interquartile range of each multispectral band. 

3.2.3 In-Situ Water Quality 

The model development dataset consisted of thirty in-situ surface water grab samples collected 

from MRPTS during the summer of 2019, within ± 1-hour of acquiring the spectral measurements. 

Using a fully extended 3.6-meter swing-arm sampling pole allowed the collection of twenty 

samples from the pond's shore below the surface (< 1-meter) or until the 1-L HDPE bottle was no 

longer visible. Ten additional samples were collected similarly from the center of the pond via a 

canoe. The validation data set comprised ten in-situ surface water grab samples from HPTS during 

the fall of 2020. Samples at HPTS were collected in the same manner as the shoreline samples at 

MRPTS. At every sampling location, GPS coordinates and samples for total and dissolved (<0.45 

µm) metal analyses were collected. Total and dissolved metals (e.g., Ag, Al, As, Ba, Ca, Cd, Co, Cr, 

Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, S, Se, Si, and Zn) were analyzed following EPA approved methods 

(e.g., EPA 3015A (1994) and EPA 6010C (2000)) which allowed for the particulate fraction also to 

be calculated (e.g., total minus dissolved). To further characterize the water body while 

remaining within the desired time window (1-hour) of sUAS flights, alkalinity (e.g., EPA 310.1 

(1978)), turbidity (e.g., ASTM 2130-B (2017)), and multiple physicochemical parameters (e.g., 

temperature, pH, specific conductance) measurements were collected only from the center of 

the pond at MRPTS. Statistical differences between the two sets of water quality data were 

quantified using Welch’s unequal variances T-test and Tukey-Kramer test in Microsoft Excel. By 

employing these tests, data sets could be compared without assumptions regarding variance or 
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sample size. Outliers in each water quality dataset were identified and removed using the 

interquartile range of each water quality parameter. 

3.2.4 In-Situ Examination of Optical Depth Influences 

After collecting spectral data, Secchi disk depth (SDD) and actual water depth (AD) were 

measured in transects at equal increments (e.g., 1-meter) from the shores of the oxidation ponds 

(Figures 3.1d and 3.1e). To minimize the resuspension of substrate and modification of the water 

column's optical properties, SDD was measured first. Then AD was measured by lowering a 

weighted line into the water column until it contacted the substrate's surface. Assuming that SDD 

is proportional to OD, an SDD to AD ratio equal to one would result in remote sensing 

interferences (e.g., bottom substrate). Derivation of the relationship used the SDD to AD ratio 

and reflectance from the center point of the RedEdge sensor red band (668 nm) from both PTS 

(e.g., OD model). Utilizing the Raster Calculator in ArcMap V. 10.6.1 to generate a surface 

demonstrated the ability to identify remote sensing interferences in ODWs (e.g., SDD: AD ≥ 1). 

3.2.5 Modelling Surface-Water Quality 

Overall, the approach used to develop the water quality models followed the empirical method 

described by Dekker and Donze (1994) and applied by numerous other authors, as mentioned 

earlier. This method utilizes derived statistical relationships between measured multispectral 

reflectance and in-situ water quality. However, the authors of this study will attempt to disprove 

the statement that “the results have no multitemporal validity” made by Dekker and Donze 

(1994) when commenting on the practical limitations of such models.  

Candidate water quality models were identified by first performing exploratory ordinary least 

squares (OLS) regression in ArcMap V. 10.6.1. OLS regression uses the entire dataset to minimize 
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the mean squared error (MSE) of the algorithm. Each exploratory run evaluated every possible 

combination (approximately 40,000) of one, two, and three input candidate explanatory 

variables (e.g., untransformed and log-transformed multispectral reflectance bands and band 

ratios) to develop the OLS models that best explained the dependent variable (e.g., in-situ total 

and particulate metal concentrations). Relationships among these variables were identified using 

the correlation coefficient (R), allowing for simple data exploration. Model selection criteria 

(Table 3.1) were set to satisfy OLS regression assumptions and produce statistically significant, 

well-fit, and unbiased surface water quality models.  

The OLS tool in ArcMap V. 10.6.1 provided a way to calculate and evaluate the criteria in Table 

3.1. However, a brief explanation of each metric may assist with interpreting the results of this 

study. An insignificant Jarque-Bera Statistic (p-value > 0.01) indicated the regression residuals 

(e.g., observed minus predicted value) were normally distributed, and the predictions displayed 

no significant bias. Non-normally distributed residuals suggest not all explanatory variables were 

accounted for, nonlinear relationships were modeled, or outliers significantly impacted the 

models (ESRI 2018). The Koenker Studentized (Bruesch-Pagan) (BP) Statistic (e.g., Koenker) was 

used to assess the consistency of the relationship between the independent and dependent 

variables in geographic and dataspace. Specifically, if the relationship (e.g., slope) was similar 

between the variables at all sampling locations (e.g., stationary) and that relationship did not 

change (e.g., linear to nonlinear) with changes in the magnitude of the explanatory variable (e.g., 

homoscedasticity) the models were specified correctly (e.g., a key variable was not missing). 

Moran’s I and Getis-Ord Global G (Gi*) were used to assess spatial autocorrelation and clustering 

of the raw data and regression residuals. Evidence of significant spatial autocorrelation (p-value 
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> 0.05) further suggests an explanatory variable was excluded from the model. Clustering was 

used to identify if any sampling location or region produced consistently higher or lower values 

(e.g., high-low clusters) which was considered significant at p-values > 0.05. The Joint-F test 

Statistic (Joint-F) provided an assessment of multiple regression model significance (p-value < 

0.01) compared to a model with no independent variables (e.g., intercept only model). Finally, 

the Variance Inflation Factor (VIF) was a metric describing the redundancy among explanatory 

variables in the multiple regression model. VIF is the reciprocal of tolerance. Although no explicit 

rule exists, some authors have suggested that VIF > 10 indicates severe collinearity, poor 

estimation of regression coefficients, and an inflated standard error of the regression (Marquardt 

1970; Miles 2005). All the statistical metrics and tools described in this paragraph were outputs 

from the OLS tool or analyzed separately in ArcMap V. 10.6.1 (ESRI 2018). 

Table 3.1 Exploratory regression model criteria set to satisfy the assumptions of OLS regression in ArcMap V. 10.6.1. 

Statistical Parameter Selection Threshold 

R2
adjusted > 0.75 

Minimum Jarque-Bera p-value > 0.01 
Minimum Koenker p-value > 0.01 

Minimum Moran's I p-value > 0.05 
Minimum Getis-Ord p-value > 0.05 

Maximum Joint-F p-value < 0.01 
Maximum VIF < 7.5 

Models selected for further evaluation outperformed the selection criteria. In these cases, 

models with the highest adjusted (e.g., number of explanatory variables) coefficient of 

determination (Radj.
2) and lowest Akaike information criterion adjusted for small sample sizes 

(AICc) were chosen for testing and validation. Several metrics (e.g., residuals, percent difference, 

MSE, Mean Absolute Error (MAE), along with the upper and lower confidence intervals) assessed 

the validity of the models developed and tested in MRPTS waters at HPTS. Acceptance of the 
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experimental hypotheses required (1) that the models produce predictions of MRPTS metal 

concentrations within the 75 percent confidence interval and (2) the predicted HPTS mean metal 

concentrations fall within ±25 percent of the measured value.  

3.3 Results and Discussion 

3.3.1 In-situ Water Quality 

Mean in pond metal concentrations at MRPTS and HPTS were similar to mining-impacted waters 

found throughout the TSMD and Arkoma Basin, respectively (Table 3.2) (LaBar and Nairn 2009; 

Nairn et al. 2010). Some parameters were not detected in either system (Ag, As, Cr, and Se). 

Others (Ba, Ca, K, Mg, Na, and Si) were not considered due to the minimal environmental risk 

posed at the observed concentrations. Additionally, some metals (Cd, Co, and Cu) were 

quantifiable (e.g., > PQL) at MRPTS but not at HPTS, thus were not considered within the context 

of this manuscript (Holzbauer-Schweitzer and Nairn 2020). Emphasis will be placed on in-situ 

particulate Fe, and total Li, Mn, Ni, Pb, S, and Zn concentrations. 

A statistical review of the relationships between water quality parameters revealed that Li, Mn, 

Ni, Pb, S, and Zn were strongly collinearly related (R > 0.90) at MRPTS. Interestingly, the dominant 

OAC (particulate Fe) exhibited no relationship (R < 0.10) with the other metals. At HPTS, only Li, 

Mn, Ni, Pb displayed strong collinearity (R < -0.80). S exhibited weak relationships (R < 0.20) with 

the investigated metals, and Zn was only moderately related (R = 0.64, -0.55, and 0.68) with Li, 

Mn, and Ni, respectively. However, the dominant OAC (particulate Fe) in this system displayed 

relationships of varying strength (R = 0.83, -0.48, 0.71, -0.54, 0.14, and 0.59) with Li, Mn, Ni, Pb, 

S, and Zn, respectively. Neither set of water quality data displayed significant signs of spatial 

autocorrelation (Moran’s I) or hotspots (Getis-Ord Gi*) when evaluated in ArcMap V. 10.6.1. In 
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total, outliers represented 10 percent (one water quality sample) and 7 percent (two water 

quality samples) of the data at HPTS and MRPTS, respectively. It appeared both sets of outliers 

were produced while attempting to collect surface samples representative of reflectance 

measurements near the surface debris (amorphous iron-oxyhydroxide) persistent in each 

oxidation pond. 

Table 3.2 Observed in-situ multispectral reflectance for each band and water quality for the metals examined; dataset 
minimum (Min.), maximum (Max.), variance (Var.) and Welch's T-Test Assuming Unequal Variance (W-T) and Tukey-
Kramer Test (T-K) were used to assess significant differences between the two sets (e.g., Mayer Ranch Passive 
Treatment System (MR) and Hartshorne Passive Treatment System (H)) of samples; “-“ in the T-K column indicates 
samples were analyzed using the W-T test, and vice versa both examinations were evaluated at p-value < 0.05, 
indicated by “*” for significantly different sets. 

Parameter Site Mean Median Min. Max. Var. 

W-T 

p-value 

T-K 

p-value 

Reflectance         

Blue 
MR 0.040 0.038 0.027 0.079 1.15E-04 

6.46E-02 - 
H 0.036 0.037 0.029 0.038 7.27E-06 

Green 
MR 0.106 0.105 0.082 0.125 1.95E-04 

- 1.48E-01 
H 0.115 0.125 0.082 0.136 3.70E-04 

Red 
MR 0.205 0.191 0.175 0.262 8.51E-04 

- 7.57E-04* 

H 0.246 0.255 0.216 0.275 4.82E-04 

NIR 
MR 0.130 0.113 0.083 0.303 2.61E-03 

3.99E-03* - 
H 0.089 0.079 0.075 0.134 3.72E-04 

RedEdge 
MR 0.199 0.197 0.153 0.316 1.41E-03 

7.86E-01 - 
H 0.197 0.198 0.175 0.206 7.53E-05 

[Metals] (mg L-1)         

Total Li 
MR 0.259 0.245 0.231 0.289 6.51E-04 

- 6.35E-12* 

H 0.378 0.373 0.330 0.432 9.08E-04 

Total Mn 
MR 1.167 1.118 1.053 1.285 9.31E-03 

2.19E-23* - 
H 1.918 1.919 1.885 1.946 3.09E-04 

Total Ni 
MR 0.658 0.634 0.581 0.742 4.13E-03 

4.33E-23* - 
H 0.045 0.045 0.042 0.049 4.28E-06 

Total Pb 
MR 0.297 0.279 0.260 0.333 8.70E-04 

8.67E-22* - 
H 0.067 0.067 0.064 0.072 6.54E-06 

Total S 
MR 746 709 661 832 5.39E+03 

3.46E-14* - 
H 478 478 474 485 1.11E+01 

Total Zn 
MR 4.115 4.110 3.556 4.580 1.39E-01 

2.03E-24* - 
H 0.025 0.023 0.020 0.036 3.45E-05 

Particulate Fe 
MR 10.59 9.15 4.89 22.01 2.57E+01 

- 9.35E-01 
H 10.75 9.91 4.51 17.01 1.28E+01 
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3.3.2 Spectral Measurements 

At MRPTS, an evaluation of the relationships between individual reflectance bands revealed 

strong relationships between blue and NIR (R = 0.76) and NIR and rededge (R = 0.76). The red 

band exhibited relationships with rededge and green bands (R = 0.68 and 0.52, respectively). 

Otherwise, little to no correlation (R < 0.50) was observed for reflectance values at the MRPTS 

sampling locations. Fortunately, wind action issues (e.g., glint), cloud cover, and optical depth 

were minimal. However, interferences from surface debris (e.g., amorphous iron-oxyhydroxide) 

and algae growth were present, particularly in the southwestern and northeastern portions of 

the MRPTS oxidation pond, respectively (Figure 3.1d).  

Multispectral reflectance values at HPTS were more strongly correlated than MRPTS, but the 

most robust relationships were observed between different sets of bands. The green band 

exhibited strong correlations with the red and NIR bands (R = 0.92 and -0.93, respectively). The 

red and NIR bands also displayed a strong negative relationship (R = -0.78). Surprisingly, little 

correlation between the red and rededge bands (R = 0.11) existed. The lack of relationship 

between these bands could be due to some remote sensing interferences present. For example, 

the surface debris present at MRPTS was also present at HPTS but to a greater degree. Shadows 

caused by trees adjacent to the pond were also present, but all samples were collected outside 

of the impacted area. On average, the rededge band had a 25 percent greater response (e.g., 

higher reflectance) than the red band reflectance. Anderson and Robbins (1998) supported these 

results finding that iron-oxide precipitates have peak reflectance values above 700 nm. 

Furthermore, Jackisch et al. (2018) indicate that goethite has an absorption edge at 668 nm, 

which was the red band's center point, resulting in lower reflectance values. An evaluation of the 



58 
 

hyperspectral profiles confirms the presence of this absorption feature when in ODWs at both 

PTSs (e.g., MRPTS 2 and 4 m; HPTS 2 and 3 m) (Figure 3.2). The absence of spectral outliers was 

confirmed using the remote sensing interference raster (OD model) described earlier. 

 

3.3.3 Developing and Testing Surface Water Quality Models: MRPTS 

Every explanatory variable (e.g., band or band ratio) included in each OLS regression model made 

significant contributions (p-value < 0.05). Each model was also statistically significant (p-value < 

0.01; Joint F Statistic). The explanatory variables displayed no significant redundancy (VIF < 7.5), 

spatial autocorrelation (p-value > 0.05; Global Moran’s I), or clustering (p-value > 0.05; Getis-Ord 

Figure 3.2 Hyperspectral profiles displaying the effect that remotely sensing substrate (e.g., OSW) had on measured 
reflectance (e.g., MRPTS and HPTS 0 m) compared to ODWs (e.g., MRPTS 2 and 4 m; HPTS 2 and 3 m), with all 
compared to reflectance of a sample of dried pure goethite powder from Kokaly et al. (2017). 
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Gi*) with one another. Values produced by the models displayed no significant bias (p-value > 

0.01; Jarque-Bera Statistic), and the residuals were not significantly different from a normal 

distribution. Overall, the Koenker Statistic (p-value > 0.01) verified that the observed 

relationships were stationary and homoscedastic, indicating the models were properly specified 

(Table 3.3).  

Table 3.3 Developed total and particulate metal models passing the set model criteria at MRPTS. Blue, green, red, 
rededge, and NIR symbolized B, G, R, RE, and NIR, respectively. Log transformations of bands or band ratios 
abbreviated with "L". Significance at p-value (p) < 0.01 and 0.05 symbolized with * and **, respectively. 

Metal Total  
Li 

Total  
Mn 

Total  
Ni 

Total  
Pb 

Total  
S 

Total 
Zn 

Particulate 
Fe 

Coefficient 1 -1.66 0.30 -1.19 -1.61 -1508.99 -4.267 110.48 

Variable 1 G* RE_G* R* G* R* R* NIR* 

Coefficient 2 0.21 -0.98 -0.23 0.11 -282.67 -0.71 -5.81 

Variable 2 B_NIR* L_R* NIR_R* L_R_RE* NIR_R* NIR_G* NIR_B** 

Coefficient 3 0.09 -0.62 0.19 0.11 225.18 1.39 24.49 

Variable 3 L_B_RE* L_R_NIR* RE_G* L_NIR_RE* RE_G* RE_G* L_B_R** 

Intercept 0.18 0.40 0.67 0.22 788.49 3.21 -35.51 

AICc -126.60 -65.18 -85.97 -121.98 240.28 -2.19 112.12 

R2
adjusted 0.76 0.76 0.77 0.78 0.76 0.74 0.81 

Jarque-Bera p 0.99 0.97 0.67 0.98 0.70 0.70 0.74 

Koenker p 0.17 0.42 0.63 0.26 0.34 0.99 0.05 

Moran's I p 0.08 0.07 0.07 0.07 0.08 0.10 0.79 

Getis-Ord p 0.84 0.86 0.77 0.96 0.90 0.70 0.24 

Joint-F p < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

VIF 2.57 2.10 2.10 1.22 2.10 3.27 2.56 

 

When tested at MRPTS, the assessed models (Table 3.4) produced promising results. All tests 

were performed on each sample and averaged to produce a single value to simplify and more 

closely resemble results of a traditional in-situ sampling event (e.g., one in-situ sample). Only 

three models (Fe, Ni, and S) produced a greater than one percent difference from the observed 

mean concentrations. The same models also exhibited the highest bias at 0.64, 0.02, and 18.73 
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mg L-1, respectively. Furthermore, only a 90 percent confidence interval for the Ni and S models 

could be achieved ([0.64, 0.66] and [718.45, 742.99], respectively). For metals with mean 

concentrations below 1 mg L-1 (e.g., Li, Ni, and Pb), the standard deviation of the predicted Ni 

concentrations was the greatest, increasing the interval's relative size. Thus, it was expected for 

Ni to fall within the established confidence interval.  

Table 3.4 MRPTS testing metrics from developed OLS models passing set criteria. All values presented in mg L-1, unless 
otherwise noted (e.g., Mean percent (%) difference); Confidence limits (CL) for Li, Mn, Pb, Zn, and Fe were established 
at 70 percent while values for Ni and S represent the 90 percent confidence limit; MSE and MAE stand for Mean 
Standard Error and Mean Absolute Error, respectively.  

 
Total  

Li 
Total  
Mn 

Total  
Ni 

Total  
Pb 

Total  
S 

Total 
Zn 

Particulate 
Fe 

Measured mean 0.26 1.17 0.66 0.30 749 4.15 12.40 

Predicted mean 0.26 1.17 0.65 0.30 731 4.14 11.76 

Mean residual -3.45E-4 2.78E-3 1.58E-2 2.99E-4 1.87E+1 1.34E-2 6.36E-1 

MSE 0.00 0.07 0.01 0.00 10523.59 0.01 12.13 

MAE 0.01 3.24 0.03 0.01 18.73 0.17 3.61 

Mean % difference -0.13 0.24 2.39 0.10 2.50 0.32 5.13 

Upper CL 0.27 1.18 0.66 0.30 745.96 4.20 12.75 

Lower CL 0.26 1.15 0.63 0.29 715.48 4.10 10.78 

 

Regardless, the observed success of all other models (e.g., particulate Fe, and total Li, Mn, Pb, 

Zn) warranted further discussion. These total models displayed negative relationships (R < -0.36 

and -0.58) with the blue and green bands, respectively, while exhibiting strong collinearity among 

each other (R > 0.90). Because the total metals were considered non-optical (e.g., constituents 

with little to no contribution to the observed spectra), the relationships with visible reflectance 

must be explained. Thus, the fact that the red band was not used more extensively to model the 

dominant optical parameter (particulate Fe) was somewhat unexpected. Theoretically, regions 

with deeper red colors would contain elevated particulate Fe concentrations and reflect 

proportionally more red EM energy. The observed strength (R = 0.88) of the linear relationship 
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between the red band and particulate Fe supported this theory. Since the blue and green bands 

were included in every non-optical metal model, other interactions likely occurred. Torren and 

Baron (2002) note that Fe oxides can also reflect strongly in the NIR while absorbing blue energy. 

Therefore, as particulate Fe concentrations increased, so did the quantity of red EM reflected, 

which proportionally decreased the amount of blue and green EM reflected (e.g., spectral 

shifting). As concentrations of non-optical metals collinearly decreased, the amount of blue and 

green EM increased. However, due to the spectral shifting (e.g., dominant optical properties), 

the increase likely occurred at longer wavelengths (e.g., red, rededge, or NIR). This shift was 

evident in the band or band ratios used to estimate the non-optical metals (e.g., a combination 

of blue, green, or NIR in every model). Thus, it appears this study exploited these fundamental 

EM interactions and physical relationships (e.g., prominence and adsorption capabilities of iron-

oxyhydroxides) to successfully develop predictive, unbiased, and robust surface water quality 

models. 

Although the 75 percent confidence interval of two models (Ni and S) did not contain the 

observed mean values, the study's overall success warranted an acceptance of the first 

hypothesis. The observed mean values for only these two models were within all calculated 

confidence intervals above 85 percent. All other models had observed mean values within at least 

a 70 percent confidence level. According to Petty (2012), a 95 percent confidence level is 

acceptable; however, some simulation experts use a confidence level of 80 percent for statistical 

validation. With lower confidence exist lower probability estimates fall within the intervals, but 

those estimates will have higher precision. Therefore, the levels of confidence established were 

deemed appropriate for a novel environmental study of this nature.  
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3.3.4 Validating Surface Water Quality Models: HPTS 

Validation of the models developed and tested at MRPTS at HPTS produced mixed results. Ideally, 

at each PTS, the relationships between the independent and dependent variables (e.g., in-situ 

water quality and multispectral reflectance, respectively) would be proportional. Unfortunately, 

that was not observed, either in terms of the band and band ratios used or the relationships' 

directionality. Otherwise, most models exhibited bias proportional to the differences in the two 

datasets' mean metal concentrations, and all concentrations except Zn produced randomly 

distributed residuals (Table 3.5 and Figure 3.3). The Zn model did not perform well because not 

only were the two water quality datasets significantly different (p-value = 2.03E-24; Welch’s 

Test), but the difference was greater than two orders of magnitude. Reflectance measurements 

did not appear to be the cause because the bands (e.g., blue, red, NIR) that exhibited significant 

differences (p-value < 0.05) between the two PTSs were also used in some combinations for all 

other models. Since the optical properties at MRPTS and HPTS were comprised primarily by Fe, 

the ability to derive meaningful statistical relationships must be attributed to the prominence 

and adsorption capabilities of iron-oxyhydroxides.  

Table 3.5 HPTS validation metrics from applied OLS models developed at MRPTS. All values presented in mg L-1, unless 
otherwise noted (e.g., e.g., Mean percent (%) difference). All established confidence limits (CL) represent the 95th 
percentile. MSE and MAE stand for Mean Standard Error and Mean Absolute Error, respectively. 

 
Total  

Li 
Total  
Mn 

Total  
Ni 

Total  
Pb 

Total  
S 

Total  
Zn 

Particulate 
Fe 

Measured mean 0.38 1.91 0.45 0.07 478 0.03 10.75 

Predicted mean 0.29 1.23 0.67 0.10 790 4.04 10.21 

Mean residual 0.09 0.68 -0.22 -0.03 -312.09 -4.01 0.54 

MSE 0.07 4.69 0.42 0.01 876610 144.79 2.60 

MAE 0.09 0.76 0.22 0.03 312.09 4.01 1.55 

Mean % difference -23.18 -35.75 48.51 46.92 65.29 16582 -0.53 

Upper CL 0.30 1.26 0.69 0.11 814.34 4.16 11.96 

Lower CL 0.27 1.20 0.64 0.09 765.83 3.91 8.46 
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Furthermore, an apparent need to develop site-specific IOPs (Salama et al. 2009) seems 

unnecessary and overly complicated considering the disagreements regarding the theory of IOPs 

(Morel 2005). In-situ determinations of IOPs can prove problematic due to various physical, 

environmental, and instrumental limitations (Roesler and Boss 2007). Incorporating IOPs requires 

several assumptions, further complicating the modeling process, mainly because it is impossible 

to measure the IOPs of each constituent (Roesler and Boss 2007). Thus, it appears when remote 

sensing in the VIS/NIR range with limited spectral resolution (e.g., five narrow bands), the sensor-

perceived color had a greater impact. The color of the studied systems was primarily a result of 

reflectance from iron-oxyhydroxides within the water column. The optical prominence of Fe 

paired with its linear relationship with total Li (R = 0.83) allowed for the development of models 

capable of accurately (e.g., ±25 percent of the measured value) describing these two metals 

(Table 3.5). However, in this study, the application of empirically derived surface water quality 

models confirmed the site-specific limitation discussed by numerous studies (Lee and Carder 

2002; Voss et al. 2003; Cannizzaro and Carder 2006; Salama et al. 2009; Palmer et al. 2015; 

Gholizadeh et al. 2016; Su 2017). Although validation of meaningful statistical relationships was 

possible for two models (e.g., particulate Fe and total Li), all other models failed to meet the 

validation criteria (e.g., ±25 percent of the measured value) (Table 3.5) and warrant further 

examination. Thus, the second hypothesis was rejected because five of the seven studied metal 

models were not verifiable within the set criteria and scope of this study. 
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Figure 3.3 HPTS OLS regression residuals normalized by the standard deviation of the population 
versus the examined metal concentration estimated by applying the MRPTS OLS models. 
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By completing several other analyses, it could be determined whether the hypothesis's rejection 

was due to the applied models or simply lack of relationships between variables. The 

relationships between some of the independent and dependent variables at each PTS were 

drastically different. Exploratory regression at HPTS was used to quantify these differences. This 

exercise resulted in an entirely different set of independent variables (e.g., band or band ratios) 

capable of effectively describing in-situ water quality at HPTS. All models were properly specified 

and homoscedastic (p-value > 0.01; Koenker Statistic), produced statistically unbiased and 

normally distributed residuals (p-value > 0.01; Jarque-Bera Statistic), and exhibited no evidence 

of spatial autocorrelation (p-value > 0.05; Moran’s I) (Table 3.6). The theory of utilizing sUAS-

derived multispectral imagery to model in-situ water quality appears to be statistically valid. 

Unsurprisingly, some data used to develop models tested at HPTS were significantly different (p-

value < 0.05; Welch’s Test and Tukey-Kramer) than values measured at HPTS (Table 3.2). The only 

variables that did not exhibit significant differences were the blue, green, and rededge bands and 

particulate Fe concentrations (p-value = 0.07, 0.15, 0.79, and 0.94, respectively). Thus, the 

empirical nature of these models, particularly the range of OAC concentrations and types 

modeled paired with the difficulty of identifying relationships between various environmental 

processes across spatial and temporal scales, remains a complex challenge and requires future 

studies (Dekker and Donze 1994; Seppelt et al. 2009; Bennett et al. 2013).  
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Table 3.6 Results of exploratory regression analysis with models using only in-situ HPTS data that passed set criteria. 
Blue, green, red, rededge, and NIR symbolized B, G, R, RE, and NIR, respectively. Particulate Fe concentrations, 
turbidity values, Akaike Information Criterion correct for small sample sizes, and Variance Inflation Factor symbolized 
as [Part. Fe], Turb, AICc, and VIF, respectively. Positive and negative signs before the variable indicate the 
directionality of the relationship. Significance at p-value (p) < 0.01 and 0.05 symbolized with * and **, respectively. 

 Total  
Li 

Total  
Mn 

Total  
Ni 

Total  
Pb 

Total  
S 

Total  
Zn 

Particulate 
Fe 

Variable 1 +R_NIR* - +NIR* +G_NIR* -B_R* +NIR* -G_NIR* 

Variable 2 +RE_G* -RE_R* +R_B* +RE_R* -B_NIR* +G_NIR* -NIR_B* 

Variable 3 +[Part. Fe]* +L_NIR* -NIR_B* -Turb** +L_B* +RE_R +Turb* 

AICc -96.03 -2.54 -202.41 -169.45 153.02 -143.94 99.75 

R2
adjusted 0.99 0.90 0.99 0.80 0.99 0.77 0.96 

Jarque-Bera p 0.11 0.10 0.45 0.93 0.23 0.57 0.12 

Koenker p 0.14 0.21 0.12 0.16 0.27 0.03 0.16 

Moran's I p 0.45 0.25 0.49 0.48 0.59 0.44 0.39 

VIF 4.35 1.45 3.97 4.56 7.30 4.87 4.61 

 

3.3.5 Optical Depth Interferences 

Detecting substrate through a water column decreased the overall EM reflected and, more 

importantly, altered the overall spectral response (e.g., changes to peak reflectance 

wavelengths). Because it is impossible to separate individual OAC contributions to the response, 

some authors have used the peak reflectance wavelengths to develop meaningful relationships 

(Anderson and Robbins 1998; Roesler and Boss 2007; Matthews and Odermatt 2015; Gholizadeh 

et al. 2016; Jackisch et al. 2018). Accounting for this issue often requires empirically derived 

models with numerous in-situ measurements (e.g., OAC concentrations, absorption coefficients, 

bottom depth, and bottom albedo) (Albert and Gege 2006; Voss et al. 2003; Cannizzaro and 

Carder 2006).  

By utilizing only sUAS-derived red band reflectance, in-situ measurements of SDD and AD, and 

the SDD to AD ratio allowed for the development of a method to identify optically shallow or 

regions impacted by other remote sensing interferences within ODWs. Using the SDD:AD ratio 
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and red band reflectance at each PTS transect (OD model) produced a moderately strong 

negative exponential relationship (R2 = 0.73) (Figures 3.1d, 3.1f, and 3.4). The established 

exponential function (see equation in Figure 3.4), modeled after the Beer-Lambert law, 

represented the decay of spectral energy in water. Considering the OD model was developed 

from PTS with significantly different optical properties (e.g., red band reflectance), the 

agreement between the observed and predicted values, although small in sample size (n = 7), 

was encouraging (Figure 3.5). It appears the established methodology represents a reasonable 

approach to remotely evaluate a waterbody's potential for the application of sUAS technologies. 

Two spatial maps identifying the extent of remote sensing interferences (e.g., OSWs, algal 

blooms, surface debris, and shadows) demonstrate this application (Figures 3.6a and 3.6b). 

Neither sUAS mission was void of remote sensing interferences. However, nearly all sampling 

locations were in areas unimpacted by optical depth interferences (e.g., SDD: AD < 1.0). In future 

studies, optically complex waterbodies should first be evaluated with the OD model to assess the 

feasibility of employing remote sensing technologies for in-situ water quality monitoring. 
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Figure 3.4 Exponential relationship developed with data from both PTS to identify portions of ODWs 
impacted by optical depth and other remote sensing interferences. 

Figure 3.5 Relationship between observed and predicted Secchi disk depth (SDD) actual depth 
(AD) ratio at HPTS. 



69 
 

 

 

Figure 3.6 Remote sensing interference (e.g., OSWs) surfaces within the oxidation pond at MRPTS (a) 
and HPTS (b) developed with in-situ spectral measurements at the marked transect locations and applied 
to the entire pond using the Raster Calculator in ArcMap V. 10.6.1. 
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3.4 Conclusions 

Remote sensing with sUAS can produce accurate and reliable surface-water quality models in 

ODWs with prominent optical properties. The exploitation of the natural (e.g., physical and 

chemical) relationships between various OACs allowed the development of non-optical metal 

models. When developed with PTS-specific reflectance and in-situ water quality, the results 

produced robust, unbiased, and accurate statistical models. Attempts to validate MRPTS models 

at HPTS suggest the models were somewhat site-specific. However, further research will be 

required to determine whether the limitation resulted from the applied models, chemical and 

physical relationships (e.g., sorption) in the ponds, or significant differences between the test 

and validation datasets. A statistically derived exponential relationship represents a 

methodology to remotely assess the feasibility of utilizing the technologies described herein to 

assess ODWs. Currently, due to the variability in accuracy, along with the lack of a standardized 

sUAS operating procedure and reporting criteria, these technologies should only be used as 

exploratory tools. This study expands on the current OACs that can be estimated remotely and 

demonstrates the benefits of incorporating sUAS technologies into traditional mine water 

monitoring efforts. With increased refinement, testing, and validation in additional forms of mine 

water, sUAS can be integrated with traditional monitoring efforts of mine drainage PTS. The 

systems and models discussed in this study may provide a reasonable alternative to in-situ 

surface water quality sampling and offer further insight into the nature of optically complex mine 

waters.  
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3.5 Future Work 

The methodology presented herein should be tested in ODWs dominated by an OAC with 

different optical properties (e.g., As, Cu, Pb, and Zn hydroxides) on waters with lower OAC 

concentrations and commonly clear artesian source waters of mining-impacted environments. 

Alternative multispectral reflectance extraction techniques should be examined to determine 

which represents real-world conditions more accurately (Su and Chou 2015; Arango and Nairn 

2020). If the ultimate goal is to minimize traditional in-situ sampling events and save time, 

money, and human hours, the widespread application requires the models to be refined with up-

to-date water quality and reflectance measurements. Including data from each PTS in the model 

development phase could further refine and expand on the effective range of the models. 
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Chapter 4: In-situ Manipulations of Aquatic Optical Depth and its Effect on sUAS-

Derived Spectral Reflectance 

This chapter was formatted as a manuscript for submission to Remote Sensing of Environment. 

Abstract: 

The remote collection of spectral data (e.g., multi- and hyperspectral) with sensors fixed to 

various platforms (e.g., satellites, occupied aerial vehicles, and small unoccupied aerial systems 

(sUAS)) has allowed for the estimation of several optically active constituents (OACs) common in 

surface waters. However, in small, complex, and optically shallow waters where multiple OACs 

(e.g., chlorophyll-a and total suspended solids) impact the spectral signature, these technologies 

have experienced significant limitations. However, altering the scale at which these examinations 

are performed from surface waters (e.g., ponds, lakes, and reservoirs) to mesocosm systems will 

allow for a minute examination of the interactions between OACs and the impact of aquatic 

optical depth has on remotely sensed spectra. Thus, this study examines both optically shallow 

and optically deep water bodies at the mesocosm scale to determine the impact aquatic optical 

depth has on developing accurate surface-water quality models. Furthermore, the impact of 

bottom reflectance on the sUAS-derived spectral signature was described in two manners. 

Results demonstrated an accurate representation of OACs present in various forms and 

concentrations in optically deep mesocosms compared to optically shallow mesocosms when 

assessed with sUAS. Also, using an sUAS allowed for quantification of the effects of bottom 

reflectance. The interferences observed under these conditions (e.g., reflectance increased by 5 

- 21 percent) were comparable to literature values when studying optically complex water bodies 

with hyperspectral data. Therefore, this study provides a basis for understanding the benefits 

and limitations of monitoring in-situ water quality via sUAS in optically deep and shallow 

waterbodies. 

Keywords: 

Ordinary Least Squares Regression; Mesocosm; Optically Active Constituents; Remote Sensing 
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4.1 Introduction 

Inland aquatic ecosystems provide a range of goods and services (e.g., water and nutrient 

regulation, habitat and food provisioning, and recreational services) for humans and other 

organisms (MA 2005). For these systems to continue to provide the goods and services, their 

overall health (e.g., water quality) needs to be maintained and monitored. However, the 

chemical, physical, and optical properties of these environments can vary considerably, making 

it difficult to characterize the natural spatial and temporal variability with traditional methods 

(e.g., in-situ point monitoring) (Liu et al. 2003; Dörnhöfer and Oppelt 2016; Zeng et al. 2017; 

Seidel et al. 2020).  

Many researchers have incorporated integrated in-situ and remote sensing data collection 

strategies to address some limitations of the current monitoring approach (Dall’Olmo and 

Gitelson 2005; Cannizzaro and Carder 2006; Larson et al. 2017; Zhou et al. 2017; Becker et al. 

2019; Seidel et al. 2020). Incorporating existing (e.g., satellites) and developing remote sensing 

technologies (e.g., small Unoccupied Aerial Systems (sUAS)) has provided researchers the ability 

to measure spectra across entire aquatic ecosystems. Inherent optical properties (IOPs) of the 

water column and the optically active constituents (OACs) compose a majority of the reflected 

energy signal (e.g., reflectance) in optically deep waters (ODWs) (Liu et al. 2003; Voss et al. 2003; 

Cannizzaro and Carder 2006; Seidel et al. 2020). Utilizing the reflectance measured in the visible 

and near-infrared (VIS and NIR) spectra (e.g., 400 – 1000 nm) and observed in-situ water quality 

data have allowed for the retrieval and estimation of various OACs (e.g., chlorophyll-a (Chl-a), 

total suspended solids (TSS), Secchi disk depth (SDD)) in ODWs. These types of studies were 

successful because they documented OAC concentrations and the resulting spectral signature to 
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develop predictive surface water quality models (e.g., via various forms of regression) (Odermatt 

et al. 2012; Gholizadeh et al. 2016; Zhang et al. 2019; Seidel et al. 2020). 

Alternately, in optically shallow waters (OSWs), reflectance can be impacted by the bottom 

substrate, the OACs present and their concentration, along with their IOPs, all of which vary 

among water bodies and are independent of one another (Liu et al. 2003; Odermatt et al. 2012; 

Palmer et al. 2015; Seidel et al. 2020). Researchers have developed algorithms to address some 

of these contributions (Gould and Arnone 1997; Voss et al. 2003; Cannizzaro and Carder 2006). 

Gould and Arnone (1997) partitioned bottom reflectance using a bio-optical model. The model 

required estimates of the water's IOPs (e.g., optical properties of water independent of 

illumination geometry), bottom depths, and albedos. Others have also used look-up tables, and 

neural network approaches to extract the IOPs, bottom depths, and bottom albedos from 

hyperspectral reflectance (e.g., hundreds to thousands of bands) data (Sandidge and Holyer 

1998; Mobley et al. 2005). However, because most in-situ hyperspectral measurements are 

considered “point” measurements, they may not capture the spatial variation necessary to 

characterize a waterbody sufficiently (Seidel et al. 2020). Additional site-specific considerations 

(e.g., heterogeneity of OSWs) limit the use of empirically derived water quality models (Liu et al. 

2003). 

Furthermore, many studies examine a single OAC because discriminating individual OAC spectral 

signatures is complex and not well documented in the literature (Gholizadeh et al. 2016). Natural 

aquatic ecosystems rarely contain only one OAC (e.g., Chl-a), and in situations where multiple 

OACs were present, not all contribute to spectral reflectance equally (Liu et al. 2003). The OAC 

distribution (e.g., horizontal and vertical), density gradients (e.g., vertical), and light penetration 
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(e.g., SDD) within the water column have also presented concerns for remote sensing in OSWs. 

If the OACs form a layer outside the “detectable” water layer, the accurate estimation of OAC 

concentrations becomes unresolvable (Seidel et al. 2020). Thus, the accurate quantification of 

any OAC relies on the constituent's optical activity and whether interactions with other OACs 

alter its spectral signature (Liu et al. 2003). Before applying integrated remote sensing techniques 

in a waterbody, an understanding of OAC types and concentrations, along with any interactions 

among them, should be evaluated. Thus, in terms of real-world monitoring applications, these 

issues present a complex scientific question that has limited remote sensing in shallow inland 

waters with unique and ever-changing optical signatures. 

The benefits of sUAS compared to satellite remote sensing (e.g., finer spatial resolution, custom 

revisit periods, and lower deployment costs) have been discussed in several reviews of remote 

sensing technologies (e.g., Whitehead and Hugenholtz 2014; Gholizadeh et al. 2016; Becker et al. 

2019). One of the benefits frequently cited includes the spatial resolution of data produced by 

sUAS for evaluating small, shallow, inland waters, which were otherwise too small for satellite-

derived imagery. Thus, a literature gap exists in that most studies examined full-scale 

waterbodies, likely to convey the results in a manner that promotes the widespread use of the 

technologies. However, to further understand the interactions between OACs, the impact of 

aquatic optical depth (OD) on remotely sensed spectra and to determine if sUAS imagery can 

describe these optically complex systems, a shift in scale is required. Specifically, an evaluation 

of mesocosm systems with varying types and concentrations of OACs which, appears to have 

been avoided in the literature. Thus, characterization of mesocosm optically complex waters by 
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exploiting the technological benefits of sUAS that many authors describe (e.g., pixel resolution) 

has not been achieved. 

By examining both OSWs and ODWs, this study offers a stepping stone for real-world in-situ 

environmental remote monitoring with sUAS. Through careful examination of the mesocosm 

systems, the possibilities of integrated in-situ remote sensing techniques were demonstrated. 

Impacts on the measured spectral signature from detecting substrate through a water column 

were also examined. This study's objectives were two-fold: (1) document the presence of various 

OACs and the impact their concentrations had on sUAS-derived multispectral imagery and (2) 

determine how bottom reflectance alters the optical properties of the water column when 

examined with an sUAS in optically complex mesocosm scale systems. Therefore the two 

experimental hypotheses evaluated in this study were: (1) if actual depth exceeds the aquatic OD 

(e.g., ODW), the optical properties of the water column will represent the concentrations and 

types of OACs (e.g., total suspended solids, chlorophyll-a, and metals) in-situ when measured 

with sUAS, and (2) if detectable through a column of water (e.g., OSW) the electromagnetic (EM) 

signature of the substrate will be represented when measured with an sUAS. With the overall 

goal of documenting the effects that various optically complex mesocosm systems have on 

establishing accurate water quality models with sUAS-derived multispectral imagery. 

4.2 Material and Methods 

4.2.1 Study Site Description  

The mesocosms examined in this study were constructed in northeastern Oklahoma (36.570, -

94.964) at an aquatic plant nursery managed by the Grand River Dam Authority (GRDA). Initial 

setup required constructing six large (4 m long, 1.5 m wide, and 1 m deep) in-situ pseudo water 
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baths or boxes. These boxes were oriented in a north-south direction, minimizing variable 

illumination conditions, and were spaced approximately 2 meters apart to address the shading 

potential and provide easy access. Liners were installed in all boxes to moderate the mesocosms 

water temperature throughout the yearlong study (August 2019 – October 2020). For much of 

this study, a concurrent but unrelated mesocosm study with a similar setup was completed 

(Figure 4.1A). 

 

Figure 4.1 (A) Study site setup at managed aquatic nursery, showing box orientation, locations of each vessel studied, 
the sUAS flight pad (take-off and landing zone), and the sampling tent which was used for protection against the 
elements (e.g., heat). Vessels not identified were part of a concurrent study unrelated to this experiment. (B) Location 
of study site (e.g., red dot) within Oklahoma and the continental United States of America. 
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4.2.2 Mesocosm Setup 

The mesocosms in this study consisted of four types of vessels (e.g., 19-L buckets), each 

replicated six times. The four vessel types examined were identified as control (C), biomass (B), 

metals (M), and biomass plus metals (BM). Each vessel contained approximately 5 kg of substrate. 

This study explored two substrate types, the first of which (soil) was sourced from the study 

location and placed in each of the C and B vessels. The second substrate was sourced from a mine 

drainage passive treatment system (Mayer Ranch Passive Treatment System) in Miami, 

Oklahoma. The substrate was the result of iron oxidation and precipitation (mine drainage 

residuals (MDR)) (for detailed information, see Tang and Nairn 2021). The only substrate in the 

M vessels was MDR. Substrate within the BM vessels consisted of a mixture of approximately 50 

percent soil and 50 percent MDR by weight (Figures 4.2A and 4.2B). 

Water from a nearby surface water pond was added to the boxes via pumping. Using a 1-L 

graduated cylinder and the same water supply (stock water) to fill the vessels minimized 

substrate resuspension. Algal growth was promoted in the B and BM vessels by adding 

approximately 0.5-L of water from a wastewater lagoon (dosing water) in Commerce, Oklahoma 

(Table 4.1). Vessels were then randomly assigned a box (e.g., 1-6) and a location within the box 

(Figure 4.1A). Placing vessels atop a cinderblock ensured they were insulated by the water bath 

and shadows were minimized. 
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Table 4.1 Mean water quality data for waters used during mesocosm setup; Hazen Units (HU), Total Nitrogen (TN), 
Total Phosphorus (TP); dosing water data sourced from Arango and Nairn (2020), which did not examine the same 
parameters as this study, thus (-) indicates the parameter was not quantified; n = 4 and 11 for stock and dosing 
water, respectively. 

 Chl-a 

(ug L-1) 

TSS 

(mg L-1) 

Color 

(HU) 

Total Fe 

(mg L-1) 

TN 

(mg L-1) 

TP 

(mg L-1) 

Stock water 3.27 8.65 73.25 0.08 - - 

Dosing water 358.30 65.33 - - 12.47 3.33 

 

4.2.3 In-situ Water Quality Sampling and Analyses 

In-situ surface water quality sampling was completed pre- and post-mixing. The sampling efforts 

included OACs frequently cited in sUAS-based remote sensing literature (Chl-a, TSS, and SDD) 

(Dall’Olmo and Gitelson 2005; Cannizzaro and Carder 2006; Larson et al. 2017; Zhou et al. 2017; 

Becker et al. 2019; Seidel et al. 2020), and those less commonly examined (metal concentrations 

A B 

Figure 4.2 Vessels with soil (e.g., B - top vessels) and MDR (e.g., BM - middle vessels) substrate in place. (B) BM (e.g., 
middle) and M (e.g., bottom) vessels partially filled with water prior to being placed in their respective boxes. 
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and color) (Rostom et al. 2017). Additional ancillary data collected included various weather 

parameters (air temperature, relative humidity, wind speed, and precipitation via a rain gauge). 

Section 4.2.6 Data Collection Schedule and Experimental Design provides a detailed description 

of the field data collection schedule for this study. 

From each vessel, approximately 1-L of water was removed during each sampling event (e.g., 

pre-mixing). All aqueous samples were collected near the middle of the water column with a 

peristaltic pump at the lowest setting (e.g., 120-mL min-1). A 250-mL sample bottle was filled and 

preserved with approximately 2-mL of trace metal grade nitric acid (e.g., pH < 2) for total metal 

analyses. Following the same procedure, the collection of a second 250-mL bottle filled with 

water passed through a 0.45 µm groundwater filter allowed for quantification of the dissolved 

metal fraction. These samples were analyzed within the six-month hold-time following USEPA 

Methods 3015A and 6010C (2007 and 2007)). Chl-a concentrations were quantified by collecting 

a 100-mL sample and immediately storing it on ice and away from light. Samples were then 

immediately returned to the laboratory and analyzed following the non-acidic USEPA Method 

445.0 (1997). An additional 250-mL sample was collected, stored on ice, and analyzed for TSS 

following ASTM Standard Method 2540D (1997). A final 60-mL sample was collected for color 

determinations. Unpreserved, these samples' hold time was only 48 h. Therefore, analysis 

occurred upon returning to the laboratory or the morning of the next day following USEPA 

Method 147A (2016). Throughout each sampling event, at least three turbidity measurements (if 

all within ±10 percent) were obtained from each vessel using a portable turbidimeter following 

USEPA Method 180.1 (1993). After collecting all aqueous samples, the peristaltic pump was used 

to introduce water into the bottom of a 1.5-m transparency tube used for in-situ SDD 
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determinations. A multiparameter data sonde quantified additional water quality parameters 

(specific conductance, pH, and dissolved oxygen). Finally, the physical depth was measured with 

a weighted tape measure before moving to the next vessel and repeating the sampling process.  

In total, four in-situ sampling events were completed. The initial sampling event took place two 

days after setup. It was intended that this event serve as the first pre-mixing event (e.g., OSWs). 

However, the resulting SDD measurements characterized all of the vessels as ODWs. Two 

additional events involved sampling every vessel pre- and post-mixing. Due to logistical 

limitations, a partial event was completed with a randomly selected sample of all the vessels 

(e.g., three of each type for pre- and post-mixing). The resulting sample number (n) for each pre-

mixing vessel was 15. Post-mixing n for C, B, M, and BM was 21, 21, 19, and 20, respectively. The 

M and BM vessels had slightly lower n for several reasons. Sampling limitations began in March 

of 2020 as the global SARS-CoV-2 (e.g., COVID-19) pandemic restricted research efforts (e.g., 

limits on personnel, laboratory, and fieldwork) until the summer of 2020. This unexpected delay 

in sampling resulted in abandoning two of the M vessels and one of the BM vessels due to natural 

conditions (e.g., floated off cinderblock, filled with vegetation, or little to no water present).  

4.2.4 Spectral Data Collection, Processing, and Extraction 

An Aerial Technologies International (ATI) AgBot equipped with a MicaSense RedEdge sensor was 

the specific sUAS utilized in this study. The sensor simultaneously captured spectral reflectance 

in five discrete bands with center points in the blue (475 nm), green (560 nm), red (668 nm), 

rededge (717 nm), and NIR (840 nm) portions of the spectrum. Using the AgBot’s autonomous 

capabilities (e.g., missions developed with MissionPlanner V. 1.6.67) removed the human aspect 

of flight and allowed for a single mission to be repeated, thus directly comparing reflectance 
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values. A typical mission's operational parameters included a flight altitude of 50 m above ground 

level, a flight speed of 5 m s-1, with image overlap and sidelap set to 80 percent. Using these 

parameters produced an accurately georeferenced orthomosaic of the study site with a pixel 

resolution of approximately 3.40 cm per pixel. To keep cloud cover and glint to a minimum 

spectral data were collected nadir ± 2 hr of local solar noon. 

Raw sUAS multispectral imagery was geolocated, radiometrically corrected, and mosaiced to 

produce spectral reflectance rasters with PIX4DMapper Pro V4.3.9. Although few custom 

processing options were available, this software provides the user with high-quality results with 

minimal input requirements. An image of a calibrated reflectance panel was captured 

immediately before takeoff and after landing, which accounted for changes to the flight's 

illumination conditions. 

Reflectance was manually extracted from each vessel, avoiding any potentially mixed pixels, glint, 

or shading. Median values were extracted from the nine most central pixels (Figure 4.3). These 

pixels were those most likely unaffected by remote sensing interferences (e.g., mixed pixels, glint, 

and shading). The extraction procedure was completed in ESRI ArcMap V. 10.6.1 by creating a 

24-polygon feature class to extract the pixel values from each mission (e.g., pre- and post-mixing) 

reflectance raster. Using the Raster to ASCII tool and Microsoft Excel, the reflectance data was 

organized, processed, and added to the appropriate datasets. The two substrates were 

purposefully left exposed so the sUAS could simultaneously measure their spectra. Pixels within 

the substate's extent were identified and extracted randomly to ensure representation of the 

variability. 
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4.2.5 Substrate Spectral Analysis 

Spectral angle mapping (SAM) provided a metric to quantify the effect of remote sensing 

substrate through OSW columns. SAM is a classification method that utilizes a theta (ϴ) angle to 

determine the spectral similarity between measured and reference spectra. The ϴ angle 

Figure 4.3 Example reflectance extraction technique performed for each vessel (e.g., PostB2) and raster 
(e.g., blue) throughout the study; the adjacent vessel (e.g., PostC2) was shown to provide information on 
spacing; the black circle and white squares represent the extent of the vessel (e.g., edge of 19-L bucket); 
the red square represents the nine pixels extracted; glint resulted in mixing of pixels near the edge of the 
vessels. 



94 
 

represents the spectral similarity between two objects symbolized as vectors in a color space 

whose dimensions were equal to the number of bands used in the analysis (Van der Meer 1997; 

Torrent and Barrón 2002; Williams et al. 2002; Hamza et al. 2016). In this study, the sUAS 

collected spectral information from three bands within the RGB/VIS color space (e.g., blue, green, 

and red). These bands allowed for the calculation of the dot product (Eq. 1). Then similarities 

(e.g., ϴ angles) were calculated using the arc-cosine of the dot product. Like Williams et al. (2002), 

when two objects were spectrally similar to the reference, the dot product was approximately 

equal to 1, and low (e.g., < 10 degrees) ϴ angles were observed. Comparing two spectrally 

dissimilar objects produced dot products less than one and ϴ angles greater than 10 degrees. 

Theta angles were symbolized in a three-dimensional space with axes representing median 

reflectance values from all events for each band (e.g., RGB). (Hamza et al. 2016). These data 

represent the total amount of spectral energy reflected from each object and the spectral 

difference within the VIS spectrum remotely sensed by the sUAS.  

𝜃 =  𝑐𝑜𝑠−1  
𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒∗𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒

‖𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ ∗ ‖𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 
                                  (Eq. 1) 

4.2.6 Data Collection Schedule and Experimental Design 

The most important and controllable portion of this study was the experimental design. This 

study operated on the assumption that SDD could be used as a surrogate to identify aquatic OD. 

In other words, if the actual depth of water exceeded the SDD and the bottom substrate was not 

visible, vessels were considered to be ODW. Conversely, if the SDD exceeded the vessel's actual 

water depth, it was characterized as an OSW. Controlling the physical depth of water within the 

vessels while manipulating aquatic OD via mixing was vital. Mixing was completed using a 40 cm 

mixing paddle with a 6 cm impellor and a cordless 9.6V battery-powered drill (maximum rotations 
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per minute (RPM) of 750). Mixing occurred within the bulk (e.g., center) of the water column, at 

maximum RPM for approximately 15 – 20 s or until the substate was no longer visible. Examples 

of vessels pre- and post-mixing are presented in Figures 4.4A and 4.4B. For the remainder of this 

manuscript, vessels and their respective models will be identified by the treatment (e.g., pre-

mixing), type (e.g., C), and if necessary, replicate (e.g., box) number (e.g., PreC1). To identify the 

models more precisely, each includes the suffix of the modeled OAC (e.g., PreCChla). 

 

 

Each data collection effort adhered to the following sampling protocol: (1) performed in-situ 

water quality sampling – removing water from the vessels, (2) collected actual and aquatic OD 

measurements, (3) acquired sUAS-derived multispectral imagery, (4) mixed vessels (e.g., convert 

B A 

Figure 4.4 (A) PreB2 with substrate visible through water column containing 3.83 mg L-1 of TSS, a turbidity 
of 31.20 nephelometric turbidity units (NTU), an SDD equal to 37 cm (physical depth was 23.50 cm) and 
an apparent color of approximately 200 Hazen units (H.U). (B) PostB2 with substrate no longer visible 
containing 123.33 mg L-1 of TSS, a turbidity of 376.50 NTU, an SDD equal to 9 cm (physical depth was 
constant) and an apparent color equal to approximately 496 H.U. Shading was present but minimal in 
each vessel, Figure 4.3 demonstrates how this interference was avoided. 
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from OSW to ODW), (5) acquired sUAS-derived multispectral imagery, (6) collected actual and 

aquatic OD measurements, (7) performed in-situ water quality sampling – removing more water 

from the vessels. Reestablishment of pre-sampling water levels (e.g., approximately 75 percent 

full) occurred after completing in-situ efforts. 

4.2.7 Statistical Analyses and Justification 

To assess if mixing caused significant increases in OAC concentrations and reflectance, a one-

tailed Mann-Whitney U-Test was performed with band-specific reflectance from each set of 

vessels (e.g., pre- and post-mixing C blue band) and an alpha equal to 0.05. If significant (p-value 

< 0.05), results suggest mixing significantly increased median values of measured OAC 

concentrations and reflectance. This test was selected because the datasets exhibited non-

normal distributions, unequal variances, and different sample sizes.  

Exploratory regression was used as a preliminary data mining tool when all the factors 

contributing to the relationship between two variables were unknown (ESRI 2018a). In this study, 

exploratory regression evaluated all combinations of the explanatory variables (e.g., 

multispectral bands or band ratios). This analysis produced models that fulfilled the requirements 

and assumptions of ordinary least squares (OLS) regression. Explanatory (independent) variables 

consisted of each band (blue, green, red, rededge, NIR), band ratio (e.g., blue:green), and the log-

transformed value of both. This number (50) of explanatory variables resulted in over 20,000 

trials (sets of explanatory variables) that attempted to describe the OAC in question accurately 

and precisely. This approach was pursued because all the factors contributing to the relationships 

between OACs and multispectral reflectance were unknown and were not known a priori.  
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Correctly specified models met or exceeded the set criteria, meaning all explanatory variables 

were statistically significant, exhibited a justifiable relationship with the dependent variable, and 

were not redundant (e.g., variance inflation factor (VIF) < 7.5). Furthermore, the residuals 

produced by these models exhibited a normal distribution, suggesting no significant bias in the 

outputs (e.g., Jarque-Bera p-value > 0.10). Thus, to satisfy these conditions, the exploratory 

regression criteria included an adjusted R squared (R2
adj.) greater than 0.65, a Jarque-Bera p-value 

above 0.10, a VIF below 7.50, and each explanatory variable must have made a significant (p-

value < 0.05) contribution to the model. In many cases, numerous sets of explanatory variables 

satisfied these requirements. Therefore, the “best” models were those with the greatest R2
adj.. If 

R2
adj. was similar, models with the lowest Akaike Information Criterion (AICc) and VIF values were 

given priority. In the event no models satisfied the criteria, those chosen for evaluation produced 

the highest R2
adj.. The modeling tools available in ESRI ArcMap V. 10.6.1 were utilized to complete 

this exercise (ESRI 2018b; ESRI 2018c). In total, 20 different sets of pre- and post-mixing models 

(e.g., five OACs examined for each of the four types of vessels pre- and post-mixing) were selected 

for evaluation.  

A partial F-Test provided an assessment of the condition (mixing) and if it altered the relationship 

(regression constants and coefficients) between in-situ OAC concentrations and multispectral 

reflectance. Establishing a conditional variable for the pre- and post-mixing datasets (zero and 

one, respectively) allowed for a statistical description of the changes in pre- and post-mixing 

regression constants (e.g., intercept). Furthermore, to determine if manipulating OD altered the 

response (e.g., slopes) of the dependent variable to the independent variables, an interaction 

term was included in the analysis. This interaction term was the product of the condition (e.g., 
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mixing) and multispectral reflectance of one of the bands included in the respective regression 

model. If significance (p-value < 0.05) was observed for either the condition (e.g., mixing) or 

interaction effect (e.g., the effect of mixing on multispectral reflectance) this indicated that 

manipulating in-situ OD affected the relationship between the inputs and outputs statistically 

(Frost 2020).  

If the partial F-test did not produce significant results, the relationships examined were 

consistent and comparable for OSWs and ODWs. If significant differences were observed, the 

relationships were not consistent, making the statistical comparison more related to how mixing 

alters the relationships observed, rather than addressing whether the spectra of OACs were 

represented more in ODWs than OSWs when measured with sUAS. Calculation of additional 

metrics allowed for a more robust examination of the model's fit, which was necessary due to 

the variability of the datasets and the nature of R2
adj.. These metrics included the mean absolute 

error (MAE), standard error of the regression (SE), relative percent difference (RPD), and the sum 

of the squared errors (SSE), which assisted in evaluating the first experimental hypothesis.  

4.3 Results and Discussion 

4.3.1 In-Situ Water Quality 

Observed water quality varied significantly (p-value < 0.05) for all OACs examined when 

comparing pre- and post-mixing concentrations. Evaluating the relationship between all TSS and 

turbidity values produced a correlation coefficient (R) of 0.79. When examined separately, the 

relationships diminished (e.g., 0.57 and 0.32) for pre- and post-mixing datasets, respectively. The 

post-mixing R was lower because particles immediately began to settle after mixing. However, 

when comparing the apparent color (e.g., perceived color resulting from particulates and 
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turbidity) to the TSS, the post-mixing data were more strongly correlated than pre-mixing (e.g., 

0.74 and 0.63, respectively). Overall, the most robust relationship (R = 0.82) observed was among 

color and turbidity in the pre-mixing dataset.  

The ranges and number of OACs examined in this study differ from typical remote sensing studies 

(Table 4.1). Cannizzaro and Carder (2006) estimated Chl-a concentrations ranging from 0.026 – 

20.6 µg L-1 (n = 451) in shallow oceanic waters off Florida's coast. With this range, the authors 

classified the data as OSWs and ODWs and developed two separate models to explain this 

variability. Su (2017) employed sUAS remote sensing techniques to characterize concentrations 

of several OACs (e.g., Chl-a, SDD, and turbidity) in four separate water bodies. Chl-a 

concentrations evaluated were comparable to this study (e.g., 111-325 µg L-1). However, the 

author presented separate models for each waterbody, with one requiring two models. The 

reported R2 values ranged from 0.00 to 1.00 for Chl-a when estimated with the NIR:red ratio in 

ODWs. Larson et al. (2017) examined TSS concentrations in a portion of the Maumee River in 

Toledo, Ohio. These authors collected 21 surface (e.g., 0 - 15 cm) samples with a median TSS 

concentration of 55.0 mg L-1. Using an sUAS similar to this study, the authors report an R2
adj. of 

0.32, and note applications of sUAS-derived multispectral imagery were optimized (e.g., highest 

R2
adj. observed) at a water depth of approximately 91 cm. Overall, a study completed by Dall’Olmo 

and Gitelson (2005) provided comprehensive water quality examination (e.g., Chl-a, SDD, TSS, 

and turbidity) but only focused on estimating Chl-a concentrations with various combinations of 

hyperspectral bands.  

Few studies have explored the capability of remote sensing techniques to estimate nontraditional 

OACs (e.g., metal concentrations). One such study examined various metal concentrations in 
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Mariout Lake, located in northern Egypt (Rostom et al. 2017). This study reported relatively high 

R values ranging from 0.27 – 0.97 considering the observed mean concentrations of 0.1 and 0.036 

mg L-1 for Zn and Cu, respectively (n =22). Surprisingly, Fe was readily estimated (R2 = 0.87) with 

reflectance from a single wavelength (e.g., 366 nm). However, the authors provide no further 

evaluation of the models fit, nor how the models were developed. Using hyperspectral data to 

model in-situ water quality requires managing the inherent collinearity and noise present when 

applying hyperspectral remote sensing in optically complex waters (Seidel et al. 2020).  

Table 4.2 Summary water quality data for the OACs examined by treatment (e.g., pre- and post-mixing) and type 
(e.g., C, B, M, and BM); Minimum (Min), median (Med), and maximum (Max) values and units presented; Hazen Units 
(HU); All values were statistically different (p-value < 0.05) when comparing treatments (e.g., PreC and PostC) with 
one-tailed Mann-Whitney U Test. 

  PreC PostC PreB PostB PreM PostM PreBM PostBM 
 Min 0.09 2.65 0.20 2.09 0.05 0.94 0.20 1.32 

Chl-a (ug L-1) Med 0.73 22.81 0.74 27.46 2.73 21.75 3.53 22.43 
 Max 3.91 220.72 33.60 106.95 93.62 178.86 24.46 199.76 
 Min 0.86 39.00 0.14 32.50 0.14 17.50 0.71 13.13 

TSS (mg L-1) Med 5.86 104.00 2.80 100.50 2.29 42.00 2.29 40.75 
 Max 15.40 330.00 18.20 272.67 16.40 129.00 10.40 145.00 
 Min 11 5 16 6 12 1 13 4 

SDD (cm) Med 25 8 25 10 25 12 24 13 
 Max 47 27 37 26 26 19 26 17 
 Min 9.60 75.30 7.10 35.10 4.90 52.20 4.50 56.90 

Color (HU) Med 41.70 269.60 47.90 131.30 11.20 136.60 17.50 130.70 
 Max 658.40 1021.30 356.50 815.90 144.10 353.60 121.40 237.80 
 Min 0.02 0.83 0.04 0.53 0.03 5.17 0.04 3.90 

Total Fe (mg L-1) Med 0.16 2.41 0.21 1.71 0.18 15.64 0.19 16.95 
 Max 3.24 8.22 2.18 4.93 3.23 104.68 2.19 37.03 

 

4.3.2 Multispectral Reflectance 

The multispectral reflectance measured across all bands was not significantly different (p-value 

> 0.05) when comparing pre- and post-mixing C and B vessels. Conversely, the only bands that 

did not exhibit a significant difference (p-value > 0.05) for the M and BM vessels were the blue 
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and NIR bands (Table 4.2). Reflected NIR energy was not significantly different because water 

strongly absorbed NIR energy, causing a shift from lower (e.g., green) to higher (e.g., red) 

wavelengths (Shah et al. 2020). However, the peak reflectance measured for the C and B vessels 

was from the NIR band. NIR energy can help distinguish between physically shallow and deep 

waters (e.g., bathymetry) because between 0.3 and 0.9 m, NIR energy can be readily absorbed 

(Shah et al. 2020). Studies have also used NIR energy to develop single band (Shafique et al. 2003) 

and band ratio (Larson et al. 2018) relationships with TSS, suggesting the high NIR values 

observed were the result of interactions with the bottom substrate (PreC and PreB vessels) and 

substrate in solution (e.g., TSS) (PostC and PostB). The statistical difference between pre- and 

post-mixing TSS values should have also resulted in significantly different reflectance values. The 

lack of significant differences supports that NIR reflectance measured from the pre-mixing 

vessels resulted from interactions with the bottom substrate.  

Median blue band reflectance was the lowest across all vessels and bands. Interestingly, when 

the substrate was soil (e.g., C and B vessels), pre-mixing vessels reflected more blue EM energy. 

When MDR was the substrate, post-mixing vessels reflected more blue energy. Gholizadeh et al. 

(2016) state that in clear waters, the maximum light penetration at 475 nm (e.g., RedEdge sensor 

blue band center point) can be as deep as 55 m and as shallow as 60 cm when TSS concentrations 

approach 400 mg L-1. Jensen (1989) and Shah et al. (2020) support this by stating that if OAC 

concentrations were low, the optimum wavelength range to assess bathymetric properties is 440 

– 540 nm. Within a similar spectral region (e.g., 450 – 600 nm), bottom reflectance has been 

shown to significantly increase (e.g., approximately 20 percent) reflectance values measured 
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(Cannizzaro and Carder 2006; Zeng et al. 2017). These factors suggest the blue band reflectance 

resulted from interactions with the substrate and TSS.  

Green and red band reflectance were significantly different for the M and BM vessels due to the 

MDR's visual prominence in both. The PreM and PreBM green band reflected the least amount 

of EM energy compared to the rest of the vessels and as much or more red EM energy than other 

vessels. Fundamental EM interactions indicate that a body of water exhibiting the color red 

reflects more red EM energy while absorbing green EM. Furthermore, the intended use of the 

RedEdge sensor was to examine Chl-a in terrestrial ecosystems. Thus, the rededge band was 

centered where Chl-a absorbs the most EM (e.g., approximately 717 nm). As already mentioned, 

the increased particulates in solution (e.g., TSS) and interactions with substrate also caused the 

spectra to shift from green to red wavelengths. This shift's magnitude was important because 

Anderson and Robbins (1998) found iron precipitates (e.g., MDR) to have a mean peak 

reflectance near 650 nm. In theory, vessels containing MDR should have had a peak reflectance 

in the red band (e.g., 668 nm). However, observed peak reflectance occurred in rededge (e.g., 

717 nm). Suggesting the various types and abundance of OACs could have caused a shift of 

approximately 49 nm. 
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Table 4.3 Summary sUAS-derived multispectral reflectance by treatment (e.g., pre- and post-mixing) and type (e.g., 
C, B, M, and BM); Minimum (Min), median (Med), and maximum (Max) values presented as decimal percent; 
statistical differences identified with Mann-Whitney U-Test (p-value < 0.05) and symbolized as bolded values. 

  
PreC PostC PreB PostB PreM PostM PreBM PostBM  

Min 0.016 0.024 0.015 0.025 0.015 0.024 0.014 0.025 

Blue Med 0.054 0.042 0.051 0.043 0.024 0.034 0.024 0.031  
Max 0.076 0.085 0.084 0.081 0.059 0.051 0.064 0.050  
Min 0.022 0.026 0.023 0.029 0.026 0.031 0.024 0.033 

Green Med 0.084 0.068 0.083 0.069 0.048 0.085 0.049 0.069  
Max 0.105 0.138 0.110 0.124 0.086 0.147 0.097 0.145  
Min 0.024 0.032 0.022 0.017 0.026 0.042 0.030 0.047 

Red Med 0.090 0.075 0.084 0.076 0.071 0.151 0.074 0.140  
Max 0.101 0.156 0.106 0.141 0.098 0.291 0.111 0.293  
Min 0.037 0.042 0.043 0.049 0.060 0.058 0.049 0.074 

Rededge Med 0.091 0.090 0.095 0.090 0.107 0.159 0.110 0.159  
Max 0.111 0.183 0.110 0.167 0.130 0.328 0.141 0.335  
Min 0.061 0.071 0.064 0.074 0.080 0.055 0.067 0.055 

NIR Med 0.101 0.094 0.100 0.090 0.098 0.103 0.106 0.108  
Max 0.126 0.230 0.125 0.197 0.131 0.277 0.152 0.270 

 

4.3.3 Remote Sensing in Optically Complex Waters 

If the presence and concentrations of OACs were represented in the optical properties of ODWs, 

the post-mixing OLS models would reflect this. Specifically, post-mixing models will be capable of 

describing greater variability (e.g., higher R2
adj.) or produce more accurate estimations of the OAC 

in question when evaluated with additional statistical metrics (e.g., RPD, MAE, SE, and SSE). 

However, to ensure the pre- and post-mixing OLS models were consistent and comparable, only 

models that were not significantly different (e.g., partial F-test) were compared and discussed in 

the context of this study. For example, significant differences in the models' slopes suggest the 

condition (e.g., mixing) altered the relationship between reflectance and in-situ OAC 

concentrations. Overall, nine of the twenty sets of models evaluated did not have significantly 

different regression constants and slopes (Table 4.3).  
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Table 4.4 OLS models evaluated that were not significantly different (p-value > 0.05; Partial F-Test), bolded values 
indicate the OLS selection criteria were exceeded; units of MAE and SE presented in units of the model parameter 
(e.g., µg L-1, cm, mg L-1, mg L-1, and Hazen units for Chl-a, SDD, Fe, TSS, and color, respectively); SEE presented in 
squared units of the model parameter. 

 R2
adj 

Koenker 
p-val 

Jarque-Bera 
p-val 

VIF AICc 
RPD  
(%) 

MAE SE SSE 

PreCChl-a 0.79 1.27E-01 0.91 47.78 30.61 41.82 0.30 0.45 2.22 

PostCChl-a 0.53 8.54E-02 0.11 4.90 220.02 80.70 26.00 36.31 22412.17 

PreBChl-a 0.84 1.49E-01 0.10 4.62 91.28 -126.74 2.22 3.40 127.05 

PostBChl-a 0.90 7.52E-01 0.68 5.20 -8.81 26.22 0.12 0.39 2.60 

PreBSDD 0.74 2.74E-01 0.59 494.88 87.83 8.38 2.06 3.03 100.95 

PostBSDD 0.69 5.27E-02 0.15 3.79 117.80 18.27 2.04 3.18 172.36 

PreBFe 0.72 3.44E-01 0.65 4.82 29.03 -67.99 0.30 0.43 2.00 

PostBFe 0.85 7.90E-02 0.27 3.41 37.34 15.82 0.31 0.47 3.74 

PreMTSS 0.89 1.16E-01 0.52 4.58 63.27 146.74 0.94 1.34 19.64 

PostMTSS 0.80 9.44E-01 0.10 5.96 13.09 24.50 0.14 0.84 10.63 

PreMColor 0.66 5.03E-01 0.13 3.12 148.54 78.28 14.47 22.92 5776.65 

PostMColor 0.52 5.68E-01 0.03 5.28 10.37 27.75 0.13 0.41 2.54 

PreMFe 0.54 7.81E-01 0.64 4.74 28.43 63.03 0.50 1.56 26.74 

PostMFe 0.71 9.44E-01 0.16 3.14 6.03 32.35 0.15 0.58 5.10 

PreBMChl-a 0.70 1.12E-01 0.50 173.87 90.90 -36.54 2.44 3.36 123.86 

PostBMChl-a 0.82 7.66E-01 0.08 4.81 13.72 34.27 0.19 0.93 13.76 

PreBMFe 0.74 9.78E-03 0.85 2.98 17.12 107.30 0.18 0.27 0.78 

PostBMFe 0.39 8.61E-02 0.67 2.26 151.62 45.07 6.34 8.38 1124.09 

 

Given the statistical differences observed in the in-situ OAC concentrations and multispectral 

reflectance (Table 4.1 and Table 4.2, respectively), significant differences in the developed 

models were not expected. However, since all models did not exhibit significant differences, 

further exploration was warranted. Vessels containing soil (e.g., C, B, and BM) as substrate 

produced significantly different models for TSS and color. The slopes of the color were 

significantly different, indicating the condition (e.g., mixing) affected the relationship between 

color and multispectral reflectance in OSWs compared to ODWs. The statistical differences in TSS 

models may be attributed to the soil substrate's presence, which leads to scattering and 

saturation, causing multispectral reflectance to not significantly increase as OAC concentrations 
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increase (Giardino et al. 2019). Thus, the number of suspended particles (e.g., TSS) appeared to 

alter the spectra complicating the models (Gholizadeh et al. 2016). The MChl-a models exhibited 

significant differences in both slope and constants. The significant increase in Fe from PreM to 

PostM likely caused the spectra to shift and change shapes at higher wavelengths impacting the 

region in which Chl-a could be readily estimated (e.g., RE) (Shah et al. 2020).  

Additional evidence that spectra from ODWs more accurately represented in-situ OACs was the 

greater R2
adj. observed in the PostBChl-a, PostBFe, PostMFe, and PostBMChl-a models. Although 

the PreMTSS and PreMColor models could explain more variation in the dependent variables 

(e.g., R2
adj.), the datasets' variability was lesser by an order of magnitude. Evaluation of the 

outputs revealed the PreM model estimates were more than 75 and 140 percent different (e.g., 

RPD) from the observed color and TSS, respectively. A review of absolute differences (e.g., MAE 

and SE) showed both PostM models to be higher quality estimators (e.g., lower MAE), the 

estimates of which were closer to the regression line (e.g., lower SE) (Table 4.3). In four cases, 

the pre-mixing data failed to produce models that satisfied the OLS regression criteria (e.g., 

PreCChl-a, PreBSDD, PreBMChl-a, and PreBMFe). Severe collinearity or redundancy (e.g., VIF) was 

present in the explanatory variables included in the PreCChl-a, PreBSDD, and PreBMChl-a models. 

The significant Koenker Statistic observed for the PreBMFe model suggests heteroscedasticity 

between the independent and dependent variables. Therefore, these models did not accurately 

represent the optical properties of the OACs in-situ, likely as a result of the limitations of remote 

sensing OSWs discussed earlier. These results support the first experimental hypothesis that in 

statistically similar OLS models, the optical properties of OACs were represented more accurately 

in ODWs than OSWs.  
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4.3.4 Effects of Remotely Sensing Substrate 

To further assess the effects of remotely sensing substrate on spectral signatures, two 

evaluations (e.g., quantitative and qualitative) comparable to work published by Williams et al. 

(2002) and Hamza et al. (2016), who utilized SAM to assess two materials' spectral properties 

quantitatively were completed. In this study, assessment of spectral differences occurred in the 

three dimensions (e.g., RGB) within the VIS spectrum and captured by the RedEdge sensor. Due 

to the nature of manipulating aquatic OD and OAC concentrations, the spectral similarity 

between the pre-mixing vessels and the reference (e.g., soil or MDR) indicated the OSWs spectral 

signature was representative of the substrate. For the same reasons, all post-mixing vessels were 

expected to be spectrally similar to the reference (e.g., substrate).  

For all spectra examined, the only vessel characterized as spectrally dissimilar to its reference 

was PreBM. BM was also the only vessel containing a mixture of the two reference substrates. 

The two substrates required separate analyses because the optical properties were not additive. 

Each substrate produced spectral dissimilarities, so the smaller angle was selected for 

presentation. Figure 4.5 graphically describes these spectral dissimilarities in a three-dimensional 

space where (ꞵ, γ, α) represent blue, green, and red band reflectance, respectively. The angles 

(e.g., ϴ1 and ϴ2) represent the angular dissimilarity from the MDR reference for PreBM and 

PostBM, respectively. Overall, bottom reflectance increased measured reflectance by 

approximately 4.5, 5.1, 21.8, and 15.6 percent when comparing the C, B, M, and BM vessels, 

respectively. These differences were similar in magnitude (e.g., 20 percent increase in OSWs) to 

studies examining the substrate's contribution to hyperspectral reflectance (e.g., Cannizzaro and 

Carder 2006; Zeng et al. 2017). The differences suggest sUAS-derived multispectral may serve as 
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a reasonable alternative to hyperspectral data allowing for more comprehensive examination 

(e.g., in terms of extent) of impaired surface waters for environmental remote sensing studies. 

Completing a simple digital image analysis produced a qualitative assessment of the substrate's 

impact on sUAS-derived multispectral imagery. Anderson and Robins (1998) found iron 

precipitates to have high reflectance when examined with a false-color composite relative to 

scenes containing no iron precipitates. Figures 4.6A and 4.6B visualize the results of this exercise. 

The pre-mixing (Figure 4.6A) produced lower reflectance relative to the post-mixing counterpart 

(Figure 4.6B). These two analyses confirm that when the substrate was detectable (e.g., visible) 

through an OSW column, the substrate's EM signature was represented when measured with an 

sUAS—resulting in acceptance of the second experimental hypothesis. 

Figure 4.5 Results of SAM exercise for the only spectrally dissimilar vessel (e.g., PreBM) where (ꞵ, γ, α) represent 
blue, green, and red band reflectance, respectively; grey plane used to assist in visualization of three-dimensions, 
but is dimensionless (e.g., if γ were equal to zero points would fall on this plane); PreBM and PostBM spectral 
angles presented as ϴ1 and ϴ2, respectively. 



108 
 

 

4.4 Conclusions and Future Directions 

Through integrated remote sensing techniques and a novel experimental design, this study 

demonstrated how OACs present in various forms and concentrations were more accurately 

represented in mesocosm ODWs than OSWs when assessed with sUAS. Results confirm that the 

dominant OAC included in each treatment (e.g., Chl-a in B) significantly influenced the spectral 

signature measured, which limited the ability to estimate concentrations of other OACs in-situ. 

Unfortunately, interactions among OACs were not well reported in the literature, nor the focus 

of this study. Thus, future studies were suggested. 

Figure 4.6 Qualitative identification of MDR substrate remotely sensed with sUAS and visualized in a false color 
composite (e.g., GBR) to demonstrate the impact substrate visible through a column of shallow water has on sUAS-
derived multispectral imagery in OSWs (A) (e.g., pre-mixing) and ODWs (B) (e.g., post-mixing). 
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This study also suggests two approaches for determining the optical impacts of remote sensing 

substrate through OSW columns, the results of which were comparable to studies that utilized 

hyperspectral data, suggesting sUAS represent a reasonable alternative for spectral data 

collection in optically complex waters. This study's results indicate that an sUAS equipped with a 

multispectral sensor could estimate OAC concentrations in shallow optically complex waters. 

sUAS could also identify OSWs and determine whether the spectra measured from an OSW 

column represent the bottom substrate. Together these examinations provide insight into the 

capabilities and limitations of remote monitoring with sUAS in optically complex inland waters. 

However, further work will be required to confirm if SDD may be an in-field surrogate for aquatic 

OD. Additional research should attempt to quantify the undocumented interactions between 

OACs present in natural waters. Performing a similar study with higher-resolution sensors (e.g., 

hyperspectral) and sUAS would allow for comparisons between the platforms. This level of 

characterization may also provide enough spectral data to estimate OAC in OSWs. Overall, this 

study provides a basis for real-world in-situ monitoring with sUAS in natural optically complex 

waters common around the world.  
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Chapter 5: Effects of Mission Parameters on the Accuracy and Efficiency of sUAS-

Derived Multispectral Imagery and Operations 

This chapter was formatted as a manuscript for submission to the ISPRS Journal of 

Photogrammetry and Remote Sensing. 

Abstract: 

Data collection from afar (e.g., remote sensing) allows scientists to study natural phenomena at 

more acceptable temporal resolutions and greater areal extents than traditional (e.g., in-situ) 

environmental studies. Unfortunately, the scientific literature lacks a defined standard method 

for collecting small Unoccupied Aerial Systems (sUAS)-derived multispectral imagery for 

environmental modeling purposes (e.g., water quality estimation). The development of a 

proposed method must incorporate the understanding that each sUAS has system-specific 

constraints (e.g., battery life, flight speed, and wind stability) and collects mission-specific data 

(e.g., true color, multispectral, or hyperspectral imagery). Therefore, this study's goal was to 

provide a basis for developing an sUAS image collection standard operating procedure for 

environmental monitoring by examining the impact mission parameters had on imagery 

generated. An assessment of the spatial and spectral characteristics of the sUAS imagery was 

presented in a standardized manner. Evaluation of accuracy (e.g., reflectance and color) and 

efficiency (e.g., flight time and battery consumption) of individual sUAS missions produced a set 

of operational parameters to be considered in future environmental remote sensing studies. 

Providing a methodological approach for the development of calibrated target objects was 

required because no one set of parameters will work for all sUAS, target objects, or study goals. 

Results demonstrate the precise identification of color was heavily reliant on pixel resolutions 

and in-situ solar conditions during operations. Furthermore, changes in solar conditions could 

describe approximately 60 percent of the error observed in color identification. Overall, the most 

efficient mission, in terms of flight time and image storage space, did not produce the most 

precise color representation, suggesting the balance between sUAS operations and data quality 

has yet to be achieved. Future studies must further examine the tradeoffs between changes in 

solar conditions (e.g., solar elevation angle), areal coverage (e.g., high altitude flights), fine spatial 

resolutions, and the accurate retrieval of spectra (e.g., color) while communicating in a manner 
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that is transferable across the digital environment, ensuring future environmental remote 

sensing studies produce the highest quality data possible.  

Keywords: 

Multispectral Reflectance, Munsell, Environmental Remote Sensing 
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5.1 Introduction 

5.1.1 Remote Sensing with sUAS 

Small Unoccupied Aerial Systems (sUAS) have demonstrated applications for precision 

agriculture (Peter et al. 2020), land cover identification (Ridd 1994), mining exploration (Park and 

Choi 2020), land reclamation (Martin et al. 2015), and in-situ surface water quality examinations 

(Holzbauer-Schweitzer and Nairn 2020). sUAS present tremendous benefits over satellite remote 

sensing, such as finer spatial resolution, operations under clouds with limited atmospheric 

effects, and the ability to perform missions autonomously at the operator's discretion. Finer 

spatial resolutions allow for studies in smaller focus areas and more minute examinations of the 

scene (Small 2003). The reported “success” of studies varies across the literature, with a heavy 

dependency on the application and the object(s) being remotely sensed (Whitehead and 

Hugenholtz 2014; Gholizadeh et al. 2016; Park and Choi 2020).  

Since remote sensing with sUAS is in its adolescence, a need exists to develop standardized 

operational methods (Shah et al. 2020). This need arises from the laborious and, at times, 

temporally or spatially misrepresentative nature of the traditional in-situ monitoring of terrestrial 

and aquatic environments (Biber 2013). Numerous studies have already demonstrated the 

benefit of environmental remote sensing. Incorporating sUAS in regular monitoring efforts would 

not only improve the extent of current monitoring efforts but over time, with increased 

computing (e.g., artificial intelligence) and technological capabilities (e.g., increased sensor 

abilities and accuracies), sUAS may serve as a reasonable alternative to traditional monitoring 

efforts. This standardization of operational parameters must consider differences in sUAS 

platforms (e.g., flight time, maximum velocity, and image stabilization capabilities), operational 
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conditions (e.g., operation mode, illumination, wind or other risks), and sensor capabilities (e.g., 

ground sampling distance). 

Examining how altering specific parameters on an autonomously operated sUAS may be of 

particular interest. Ranquist et al. (2016) explored the impact various weather parameters (e.g., 

fog, haze, and glare) had on sUAS operations and operators but did not assess data quality. Zeng 

et al. (2017) described the environmental effects of remote sensing with sUAS over various water 

bodies. Results demonstrated that spectra measured in the same location at different times had 

a standard deviation of 10.4 percent, changes in altitude (e.g., 20 to 100 m) had negligible effects 

on reflectance, and spectra exposed to glint or shadows abruptly and unpredictably changed 

(Zeng et al. 2017). Mamaghani et al. (2019) used a MicaSense RedEdge 3 (MicaSense, Inc., Seattle, 

Washington, USA 98103) to examine changes in vegetation reflectance (via Normalized 

Difference Vegetation Index (NDVI) calculations) throughout a day, at a single altitude (e.g., 1.5 

m) while applying various sensor calibration techniques. The results show reflectance increased 

with decreases in solar zenith angles (e.g., complementary to solar elevation angle) and had 

higher standard deviations on sunny versus cloudy days. Increases in standard deviations were 

attributed to shadows on sunny days, which significantly altered the scene's overall reflectance. 

Most environmental remote sensing applications state the products developed (e.g., water 

quality retrieval models) exhibit certain levels of site-specificity (Liu et al. 2003), and the studies 

described earlier were no different. Standardizing target objects, like those used to calibrate 

spectral sensors (e.g., calibrated reflectance panels) would provide a unique opportunity to 

communicate sUAS performance. However, before developing a standard method, one must 

consider the sensors utilized (e.g., the specific band(s) and multi- or hyperspectral imaging 
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capabilities), the optical properties of the target object desired (e.g., reflectance, transmittance, 

or absorbance), along with all other sUAS characteristics mentioned earlier. Since most 

environmental remote sensing studies report products (e.g., NDVI) with spectra contained in the 

visible spectrum, it appears a standardization of color would be most appropriate (e.g., 

Gholizadeh et al. 2016). Therefore, a study controlling sUAS operational parameters while 

examining calibrated target objects and reporting success in a standardized metric may fill the 

identified literature gap. Such a study may also provide a basis for the integration of sUAS into 

traditional environmental monitoring practices. 

5.1.2 Color 

Although the perception of color, its communication, derivation, or conversion was not 

necessarily the focus of this study, a basic understanding was required. The perception of color 

is subjective among observers, both natural (e.g., humans) and digital (e.g., monitors, printers, 

and sensors). Various color models or color spaces have managed color mathematically by 

representing colors as tuples of values. Developed in 1996 for digital displays, printers, and 

throughout the internet, sRGB is one of the most common color spaces. Based on the human 

perception of color, sRGB is an additive color model based on the combination of light from the 

three primary sources (e.g., red, green, and blue) with values ranging from 0 - 255. However, the 

colors represented were device-specific, resulting in the perception of different colors across 

devices if a color management scheme (e.g., standardization) was not applied (Mokrzycki and 

Tatol 2011).  

Typically, from the environmental perspective, the Munsell system is utilized to identify soil and 

other natural colors (Anderson and Robbins 1998; Torrent and Barrón 2002; Poppiel et al. 2020). 
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Three components (e.g., chroma, value, and hue) comprise the system used to describe the 

richness or saturation, lightness, and color (e.g., blue) of the material, respectively (Poppiel et al. 

2020). In the Munsell color space, a combination of chroma, value, and hue make up the 

perceived color. For remote sensing applications, the Munsell neutral color scale can be used for 

sensor calibration (e.g., calibrated reflectance panels), testing imagery, or reflectance standards 

(X-Rite 2021A). In this system, absolute achromatic colors (e.g., white, black, and pure greys) have 

zero chromas and no hue. Instead, the letter “N” replaces the hue notation. Thus, the value can 

range from 0 (e.g., absolute black) to 10 (e.g., absolute white), where N5 would occur halfway 

between the absolutes, visually (X-Rite 2021A). 

However, both the sRGB and Munsell systems describe the human perception of color but do not 

account for illumination or observation conditions at the time of viewing. On the other hand, 

uniform color spaces (UCS) standardize color differences, so the perceived color difference is 

proportional to the spatial distance in the color space (Mokrzycki and Tatol 2011). Specifically, a 

conversion to the International Commission on Illumination (CIE) L* a* b* (L*a*b*) coordinates, 

where L* represents lightness, a* is the red/green coordinate, and b* is the blue/yellow 

coordinate. Once in this UCS, colors can be discussed in a standardized manner. More 

importantly, the calculated difference (e.g., Delta Empfindug (∆E)) in color can be communicated. 

∆E represents the Euclidean distance between two colors, which is proportional to the visually 

perceived difference. Generally, ∆E values below 2 require experienced observers to 

differentiate. Values of 2 – 4 are perceivable to the average human eye, while values greater than 

5 indicate significant color differences (Mokrzycki and Tatol 2011). Another valuable metric is the 

Color Quality Scale (CQS) which Davis and Ohno (2005) described in detail. Briefly, CQS ranges 
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from 0 to 100 (e.g., indicates true color match) and assesses overall color quality by penalizing 

(e.g., decreasing CQS) colors that shifted in hue or lightness and decreased in chroma by 

compensating for illumination and observation conditions. 

Therefore, this study communicates the effect altering sUAS operational parameters had on 

reflectance from calibrated target objects with known colors consistently and comparably. Thus, 

it was hypothesized that various operational parameters (e.g., flight speed, altitude, image 

overlap, and operations around solar noon) would impact the quality of sUAS-derived 

multispectral imagery and the ability to develop accurate statistical models. The hypothesis was 

evaluated by quantifying the spectral error caused by performing sUAS missions under differing 

conditions and identifying the set of parameters that produced the highest quality data most 

efficiently. Overall, the goal was to provide a basis for the development of standard operating 

procedures to be used for environmental monitoring via sUAS. 

5.2 Materials and Methods 

5.2.1 Study Site Characteristics 

The study site utilized was in Noble, Oklahoma (35.128710, -97.325059) and provided an area to 

examine the target objects. Although small (< 10,000 m2), the site was relatively level and void of 

shadows minimizing the potential for shading from vegetation or panel components. The site was 

visited once on February 5th, 2021. Solar azimuth and elevation angles were collected after 

operations using the Solar Calculator maintained by the National Oceanic and Atmospheric 

Administration (NOAA) Global Monitoring Laboratory (GML) at the latitude and longitude 

provided (NOAA GML 2021). 
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5.2.2 Description and Classification of Target Objects 

Calibrated target objects were created for this study. These objects consisted of six 1.2 X 1.2 m 

medium density fiberboard (MDF) calibrated panels. Each side of the calibrated panels was 

sanded with 80-grit sandpaper to promote primer adhesion (Figure 5.1A). Between each sanding, 

dust was removed with a vacuum and a damp cloth (e.g., mineral spirits). The front was then 

sanded with 150-grit sandpaper and cleaned following the same process (Figure 5.1B). Panels 

were primed with an oil-based interior/exterior primer using 7.5-cm chiseled foam brushes and 

allowed to dry (Figure 5.1C). Unfortunately, because MDF is highly absorbent, it took two to three 

coats to sufficiently cover the panel's surface. Between each coat, the panels were sanded (e.g., 

150-grit) and cleaned according to the described process. Upon achieving sufficient coverage, the 

panels' front side was sanded with 220-grit sandpaper to remove unevenly primed surfaces 

(Figure 5.1D). A final cleaning followed the final sanding. Then each of the six boards received 

two coats of flat matte spray paint manufactured by MyPerfectColor®. The manufacturers’ 

website (MyPerfectColor.com) provided reference Light Reflectance Values (LRVs), and a 

comparison to the observed LRV allowed for an assessment of application and manufacturing 

consistencies. Paints were applied according to manufacturer specifications and allowed to air 

dry. Once panels dried, they were cleaned a final time and prepared for divisions. The divisions 

were established with 2.5-cm black duct tape allowing for examination of mixed pixels and 

identification of measurement areas. Each panel was initially divided into four equally sized 

squares (e.g., 0.6 m X 0.6 m). Each square was then further divided into a smaller 15 X 15 cm 

square (e.g., measurement square) where colorimetric measurements were collected.  
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Examination of four “natural” panels also occurred (Table 5.1). These MDF panels were similar in 

dimensions to the calibrated panels but were not prepared (e.g., sanded) before field 

deployment. The materials used to cover these panels consisted of tan play sand (TSand), grey 

paver sand (GSand), dried mine drainage residuals (MDR) from the Mayer Ranch Passive 

Treatment System (see Tang and Nairn (2021) for more details), and local topsoil (Soil). These 

objects were selected to represent a variety of colors present in natural environments. MDR and 

TSand were processed to pass a #40 sieve (e.g., particles < 0.420 mm), the GSand was processed 

to pass #20 sieve (e.g., particles < 0.841 mm), and the topsoil was unprocessed. The processing 

created homogenous (e.g., size, color, and the ability to level material) surfaces, which allowed 

A B 

D C 

Figure 5.1 Calibrated panels in development, (A) after being sanded with 80-grit (B) and 
150-grit sandpaper, (C) application of a single coat of primer, and (D) multiple coats of 
primer and a final sanding with 220-grit sandpaper. 
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an assessment of particle size impacted sUAS-derived multispectral imagery. These boards were 

divided with 1.22 m X 2.5 cm furring (wood) strips to resemble the divisions established on the 

calibrated panels and allow a more direct comparison of the spectra.  

The perceived color of each panel was measured with an X-Rite CAPSURE RM200 (X-Rite 2021B) 

(Table 5.1) (Figure 5.2). Technology within the CAPSURE was capable of compensating for 

irregular surfaces (e.g., textured samples compared to smooth color swatches), allowed for the 

selection of sample area size (2, 4, or 8 mm), and provided its illumination source (e.g., D65 – 

average daylight illumination). Before CAPSURE measurements were collected, the instrument 

was calibrated with a device-specific calibrated reflectance panel (e.g., white reference slider) 

which also served to protect the instruments’ optical components. Color measurements were 

collected with an 8 mm aperture in each of the four measurement squares and consisted of three 

“perfect” matches (e.g., 12 matches per panel). In this study, a “perfect” match was identified 

for each panel by allowing the instrument to select from three Munsell fan decks (e.g., Munsell 

Book of Color Matte, Munsell Glossy Book, and Munsell Soil Book). Collecting numerous color 

measurements on the panel suggested the perceived color of the entire panel was relatively 

consistent. The focus is on panels described in Table 5.1 due to image saturation issues caused 

by two panels (e.g., N9 and N8) which will be further discussed in Section 5.3.2 Representation 

of Color. 
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Table 5.1 Munsell color characteristics of calibrated and natural panels, (-) indicate no value, and MyPerfectColor 
supplied manufacturer LRV. 

 Munsell Color Characteristics Manufacturer 

Panel ID Hue Value Chroma LRV (percent) 

N7 - 7/ 0 (N) 44.11 

N6 - 6/ 0 (N) 28.86 

N4 - 4/ 0 (N) 9.74 

N3 - 3/ 0 (N) 7.49 

TSand 10YR 6/ 4 - 

GSand 5Y 7/ 1 - 

MDR 5YR 4/ 8 - 

Soil 7.5YR 4/ 3 - 

 

 

 

 

BA C

c

D

c

E

c

F

Figure 5.2 Finished calibrated panels (1.2 m X 1.2 m), divided with 2.5 cm black duct tape into four equally sized 
(0.6 m X 0.6 m) squares and further divided in the corners to smaller (15 cm X 15 cm) measurement where 
colorimetric measurements were collected. Panels (A), (B), (C), (D), (E), and (F) represent values of N3, N4, N6, N7, 
N8, and N9 on the Munsell neutral color scale, respectively. 
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5.2.3 Description of sUAS, Operations, and Reflectance 

The sUAS utilized in this study was an Aerial Technologies International (ATI) AgBot V2 equipped 

with a MicaSense RedEdge multispectral sensor (RedEdge sensor) and a downwelling solar 

irradiance (e.g., light) sensor (DLS). The AgBot is a vertical takeoff and landing (VTOL) quadcopter 

(e.g., four-rotor) operated autonomously using MissionPlanner Software V. 1.6.67, a 3D Robotics 

PixHawk autopilot, and a HEX/ProfiCNC Here2 GPS module. The AgBot can reach flight speeds of 

approximately 15 m sec-1, a range of approximately 25 km, with a flight time of about 20 minutes. 

The RedEdge sensor simultaneously captures spectral data in five discrete bands with center 

points at 475 (blue), 560 (green), 668 (red), 717 (rededge), and 840 (near-infrared (NIR)) nm. The 

ground sampling distance (e.g., pixel resolution) produced by this sensor is approximately 3, 4.5, 

and 6.5 cm pixel-1 when operated at 50, 75, and 100 m above ground level (AGL). Raw “.TIF” 

format multispectral imagery produced by this sensor was radiometrically corrected, mosaiced, 

and orthorectified using the manufacturer recommended Pix4DMapper Pro V 4.3.9. To assist in 

the radiometric correction, a DLS was integrated into the sUAS. This sensor improves the 

imagery's radiometric quality by measuring solar irradiance conditions throughout the mission 

and supplying the information to the processing software. Before and after each mission, an 

image of a calibrated reflectance panel was captured with the RedEdge sensor for additional 

radiometric correction. Although this software provides limited custom processing options, it was 

selected for simplicity, repeatability, and to represent a reliable processing option, should sUAS 

achieve more widespread use (Mamaghani and Salvaggio 2019).  

The RedEdge sensor manufacturer (MicaSense 2021) suggests specific operational parameters to 

produce the highest quality data. By far, the recommendation for overlap (e.g., 75 percent of the 
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image overlaps with subsequent images) appeared to the most influential parameter. Additional 

considerations were given to altitude and flight speed, time of operation (e.g., solar noon), the 

calibration procedure, and the need to collect imagery at nadir. Thus, the parameters 

manipulated in this study to determine their effect on spectral reflectance were operations 

around solar noon, flight speed, altitude, and image overlap (Table 5.2). The missions were 

developed in sets of three, allowing for a comparison of spectra from minor changes to the 

operational parameters. For example, mission 1 (M1), M7, and M11 served as the control 

missions emphasizing solar noon operations. Image overlap was also studied because the 

manufacturers focused on required values (e.g., 75 percent). M8, M9, and M10 examined overlap 

at the manufacturer specification and ± 10 percent of the recommendation to assess whether 

sacrificing data quality could increase mission efficiency (e.g., coverage, mission time, and battery 

consumption). A final set of operational parameters based on sUAS mission efficiency (e.g., 

coverage time-1) and data accuracy was examined. 

Once post-processed, the sUAS-derived multispectral pixel values (e.g., spectral reflectance) and 

stretched values (e.g., sRGB) were manually extracted in ArcMap V. 10.6.1 using the Pixel 

Inspector tool. The nine central-most pixels within the measurement square were of focus, 

assessing the mixed pixel phenomenon (e.g., pixel and stretched values were not pure 

representations of the target object). Cross-sectional profiles of the panels showing how 

reflectance changed across the surface were developed with the Interpolate Line and Profile 

Graph tools in ArcMap V. 10.6.1.  
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Table 5.2 Operational parameters examined, sets indicated with bold; italicized missions (e.g., M1, M7, and M11) 
served to assess operations around solar noon, ∆Azimuth and ∆Elevation indicate the change in solar azimuth and 
elevation angles throughout sUAS missions. 

Mission 
Altitude  

(m) 
Flight speed 

(m sec-1) 
Image Overlap 

(percent) 
∆Azimuth 
(degree) 

∆Elevation 
(degree) 

M1 50 5 80 1.21 0.18 

M2 75 5 80 1.22 0.12 

M3 100 5 80 1.24 0.06 

M4 50 7.5 80 1.24 -0.03 

M5 50 10 80 1.24 -0.08 

M6 50 12.5 80 1.23 -0.13 

M7 50 5 80 1.48 -0.30 

M8 50 5 65 1.15 -0.28 

M9 50 5 75 0.83 -0.25 

M10 50 5 85 1.31 -0.50 

M11 50 5 80 1.25 -0.58 

 

5.2.4 Assessment of Perceived Color 

Removing the human aspect of color perception was necessary for this study. Utilizing a UCS was 

required to compare colors quantified by different instrumentation and to communicate across 

the digital environment. Fortunately, most modern technology defaults to the sRGB colorspace, 

which uses red, blue, and green as the primary color channels with possible values ranging from 

0 to 255. The sUAS-derived sRGB values were extracted from processed imagery using techniques 

described earlier. Reference Munsell values (e.g., perfect CAPSURE matches) were converted to 

sRGB using open-source R Statistical Software V. 3.5.2 code provided by Rossel et al. (2006). Both 

the reference sRGB and sUAS-derived sRGB values were then further standardized (e.g., 

illumination and observation conditions) to CIE L*a*b* coordinates with the open-source 

ColorMine library V 1.1.3 supported by the Massachusetts Institute of Technology (MIT) and 

executed in Python programming language (Colormine 2014).  
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Once all spectra were converted to a UCS, additional metrics could be calculated to evaluate the 

colors perceived by the sUAS. The LRV was used to describe how light or dark a material looked 

with values ranging from 0 (e.g., black) to 100 (e.g., white) and was calculated with Equation 1. 

To evaluate the color differences (e.g., Euclidean distance within the CIE color space or perceived 

difference in visual sensation), ∆E calculations occurred for each panel contained within the sUAS 

missions (Equation 2). To assess which set of sUAS parameters produced color most 

representative of the references (e.g., panels), the National Institute of Standards and 

Technology (NIST) CQS V 7.40 was applied. CQS was determined using the calculated ∆E of each 

panel from all sUAS missions, D65 illumination conditions (e.g., average daylight illumination) and 

Equations 3 and 4. Equation 4 was required to scale the CQS values from the outdated Color 

Rendering Index (CRI) (Davis and Ohno 2005). A final comparison was performed to examine the 

multispectral reflectance pixel value and CAPSURE reference spectra (e.g., assumed to represent 

spectral reflectance (from 380 – 730 nm, in ten nm bands) of various Munsell colors) collected 

under different illumination and observation conditions. This exercise's goal was to demonstrate 

the need to communicate color (e.g., VIS spectra) in a standardized manner. 

𝐿𝑅𝑉 =  (
𝐿∗+16

116
)
3

∗ 100                                                                  Eq. 1 

Where: 

LRV = Light Reflectance Value, percentage 

L* = CIE standard lightness value 

∆𝐸 = √(𝐿𝑠𝑎𝑚𝑝𝑙𝑒
∗ − 𝐿𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

∗ )
2
+ (𝑎𝑠𝑎𝑚𝑝𝑙𝑒

∗ − 𝑎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∗ )

2
+ (𝑏𝑠𝑎𝑚𝑝𝑙𝑒

∗ − 𝑏𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∗ )

2
    Eq. 2 
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Where: 

∆E = Delta Empfindug – Euclidean distance between two colors in UCS 

L* = CIE standard lightness value 

a* = CIE red/green coordinate 

b* = CIE blue/yellow coordinate 

𝑅𝑎 = √
1

𝑛
 ∑ ∆𝐸𝑖

2𝑛
𝑖=1                                                                      Eq. 3 

Where: 

Ra = General color rendering index 

n = sample size 

∆E = Delta Empfindug – Euclidean distance between two colors in UCS 

𝐶𝑄𝑆 = 10 ∗ 𝑙𝑛 [𝑒𝑥𝑝
𝑅𝑎
10 + 1]                                                                Eq. 4 

Where: 

CQS = Color Quality Scale  

Ra = General color rendering index 

5.2.5 Evaluation of Mission Efficiency 

Evaluation of sUAS mission efficiency occurred using the ∆E calculations. Mission parameters 

evaluated included mission storage capacity (e.g., disk space required), number of images per 

band, spatial resolution, area covered, relative percent difference between initial and optimized 

camera parameters (e.g., focal length), which should always be lower than 5 percent, pixel 

reprojection error in the orthomosaic, battery voltage and percentage consumed, along with the 

change in azimuth and solar elevation angles throughout the mission. Assessing the linear 

relationship between calculated ∆E and the quality report parameters output from the 
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processing software (Pix4DMapper) provided such an efficiency metric. The goal was to identify 

mission parameters capable of describing the error (e.g., coefficient of determination (R2)) 

observed with color identification (e.g., ∆E) to assist in the quantification of the performance of 

individual missions and identification of error sources. 

5.3 Results and Discussion 

Changes to solar azimuth (e.g., the clockwise angle from true north to object) and elevation (e.g., 

the angle from the horizon to object) angles during the study day (February 5th, 2021 1200 – 1444 

CST) are reported in Table 5.2. The most substantial positive (0.18°) and negative (-0.58°) changes 

in solar elevation angles occurred throughout the first (e.g., M1) and last missions (e.g., M11), 

respectively (e.g., closer to sunrise and sunset). Solar noon occurred just before starting M4, 

while the greatest change in solar azimuth angles was observed during M7 (1.48°). These 

conditions fit the study design well, which purposefully exposed all three control missions (e.g., 

M1, M7, and M11) to these changes in solar conditions (e.g., operations around solar noon). 

Furthermore, shading caused by vegetation was absent, while cloud cover and shading from 

panel components were minimal throughout operations. Before beginning the missions, the 

maximum measured wind speed and temperature at the ground surface were 2.2 m sec-1 and 

13.4 °C, respectively. Since the DLS accounted for illumination variations throughout the mission, 

any changes to the spectra collected were assumed to be a result of the mission parameters (e.g., 

flight altitude, speed, and image overlap) and solar conditions (e.g., operation around solar noon) 

for each flight (Table 5.3, Figure 5.3). Multispectral imagery and data will be presented from the 

most representative (e.g., lowest ∆E for all panels) mission within a set (e.g., M1, M2, M4, M9).  
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Table 5.3 Bolded reference (e.g., N7) values were provided by paint manufacturer; other values were measured 
(reflectance (center point in nm) and color as sRGB (red, green, and blue)) or calculated (L*a*b* and ∆E). 

 Red (668) Green (560) Blue (475) Red Green Blue L* a* b* ∆E 

N7 0.42 0.43 0.43 156 153 161 63.69 2.64 -3.80 - 

M1 0.43 0.40 0.38 143 115 123 51.30 12.33 -0.24 16.13 

M2 0.34 0.35 0.30 161 178 194 71.77 -2.50 -10.12 11.47 

M4 0.13 0.14 0.14 123 131 137 54.29 -1.67 -4.25 10.35 

M9 0.04 0.04 0.05 94 117 139 48.22 -2.82 -14.74 19.72 

N6 0.36 0.36 0.36 151 146 154 61.19 3.39 -3.57 - 

M1 0.30 0.28 0.27 97 77 88 35.11 10.47 -3.27 27.03 

M2 0.24 0.25 0.24 113 126 154 52.69 1.82 -16.61 15.65 

M4 0.09 0.10 0.10 85 89 99 37.80 0.72 -6.29 23.70 

M9 0.03 0.03 0.04 67 84 103 35.03 -1.44 -13.10 28.26 

N4 0.14 0.15 0.15 99 95 101 40.86 2.84 -2.85 - 

M1 0.14 0.13 0.13 42 35 40 14.67 4.44 -2.11 26.25 

M2 0.12 0.13 0.12 51 58 72 24.31 0.84 -9.56 17.96 

M4 0.04 0.05 0.05 37 40 45 16.01 -0.02 -3.73 25.03 

M9 0.01 0.01 0.02 28 39 44 14.84 -3.24 -4.84 26.79 

N3 0.10 0.10 0.10 74 71 75 30.57 2.13 -1.95 - 

M1 0.09 0.08 0.08 26 21 23 7.39 2.93 -0.48 23.24 

M2 0.08 0.08 0.08 34 36 45 14.35 1.56 -6.25 16.79 

M4 0.03 0.03 0.03 24 24 27 8.36 0.81 -2.10 22.24 

M9 0.01 0.01 0.01 17 22 25 6.89 -1.30 -2.83 23.94 

TSand 0.39 0.32 0.17 175 145 106 62.00 5.74 24.92 - 

M1 0.45 0.33 0.19 150 93 61 45.15 19.97 27.96 22.26 

M2 0.42 0.33 0.19 197 166 118 69.79 4.70 29.07 8.89 

M4 0.14 0.12 0.08 135 107 70 47.12 6.05 24.91 14.89 

M9 0.04 0.03 0.03 107 110 73 45.30 -7.67 20.30 21.91 

GSand 0.35 0.36 0.09 181 174 159 71.28 -0.12 8.58 - 

M1 0.36 0.30 0.25 119 83 79 39.02 14.44 8.34 35.39 

M2 0.33 0.29 0.24 154 149 152 62.20 2.40 -0.93 13.40 

M4 0.11 0.10 0.09 104 95 88 40.95 2.28 5.30 30.61 

M9 0.03 0.03 0.03 83 100 92 40.78 -8.25 2.38 32.17 

MDR 0.38 0.17 0.05 138 76 26 38.98 22.29 39.24 - 

M1 0.37 0.13 0.04 124 35 11 28.14 37.40 35.55 18.95 

M2 0.35 0.14 0.05 164 67 30 39.22 28.10 40.91 6.05 

M4 0.12 0.05 0.02 112 44 17 27.54 28.54 31.24 15.30 

M9 0.03 0.01 0.01 88 47 21 24.20 16.25 24.31 21.85 

Soil 0.15 0.12 0.06 96 64 41 30.19 11.06 19.61 - 

M1 0.19 0.12 0.07 61 30 22 15.37 14.13 12.11 16.89 

M2 0.19 0.13 0.08 86 59 49 27.65 10.45 10.95 9.05 

M4 0.06 0.04 0.03 56 36 25 16.37 7.92 11.17 16.49 

M9 0.02 0.01 0.01 43 37 26 15.01 0.67 8.37 21.55 
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Figure 5.3 Study site RGB composites of representative missions within “sets” where M1, M2, M4, and M9 were 
represented by (A), (B), (C), and (D), respectively. The first group of panels (northeastern set of four) comprise the 
natural panels, starting furthest northeast and working clockwise were GSand, MDR, TSand, and Soil, respectively. 
The calibrated panels (set of six) identified from right to left, north then south; N9, N8, N7, N6, N4, N3. The scale 
and orientation of (A) was representative of all other images. 
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5.3.1 Spatial Discrimination 

The ground sampling distance (e.g., spatial resolution) of the missions ranged from 3.15 cm pixel-

1 (M9) to 6.47 cm pixel-1 (M3). M2 produced imagery with a spatial resolution of 4.78 cm pixel-1, 

which typically produced the best representation of the central most pixel in the measurement 

square. Missions completed at 50 m AGL (e.g., M1 and M4-11) had relatively consistent pixel 

resolutions (e.g., 3.26 ± 0.08 cm pixel-1). Pixel sizes increased with flight altitude, which also 

increased pixel mixing and the accurate retrieval of spectra when comparing M2 and M3 (e.g., 

75 and 100 m AGL, respectively) (Baltsavias 1999; Mesas-Carrascosa et al. 2015). However, flights 

completed at lower altitudes had slightly greater pixel reprojection errors compared to the high-

altitude flights. Finer resolutions may be desired when studying specific natural environments 

(e.g., small inland waters). However, as Hsieh et al. (2001) pointed out, these spatial resolutions 

may not consistently improve data quality. Conversely, if the environment studied was 

heterogeneous (e.g., urban environments), finer spatial resolutions will be required to discern 

individual objects (e.g., small buildings) (Small 2003). Although the difference in reprojection 

error was minor (e.g., 0.042 pixels), this demonstrates one of the tradeoffs between spatial 

resolution, operation altitude, and data quality.  

Furthermore, Figure 5.4 demonstrates the impact mixed pixels had on reflectance from the 

missions selected from each set. Missions with small pixels (M1 and M4) showed increased 

responses to borders used in both the calibrated and natural panels. Near the panels' edges (e.g., 

measurement squares), it appears both borders caused a measurable increase in reflectance 

when comparing M1 and M2. The mixing of spectra becomes even more problematic if used to 
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develop statistical models based on the relationship between the assumed pure pixel value and 

the parameter of interest (e.g., water quality parameters) (Gholizadeh et al. 2016). 

 

 

5.3.2 Representation of Color 

The fact that image saturation caused issues with two panels in this study was surprising 

considering the time of year, illumination conditions reported, and the DLS presence. Attempts 

to reprocess the imagery did not alter the results. Thus, the raw imagery was examined and 

confirmed image saturation. In the VIS spectrum, the blue and green bands had the widest 

1B 1A 

2A 2B 

Figure 5.4 Cross sectional profiles from M1, M2, M4 and M9 with M1, M4, and M9 using the upper x-axis and M2 
using the lower x-axis (1A and 1B) showing the impact of spectral mixing (e.g., mixed pixels) especially around the 
edges of the panels and divisions. Examples of extraction (along black dotted line) shown for calibrated panel N6 
with blue band reflectance (2A) and natural panel MDR showing red band reflectance (2B) both from M2 clearly 
demonstrating this phenomenon. Missions with finer spatial resolution produced a more pronounced spectral 
response than missions with coarser spatial resolution (M2) and less image overlap (M9). 
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bandwidth (e.g., 20 nm), allowing more electromagnetic (EM) energy to enter the RedEdge 

sensor than the other VIS bands (e.g., red and rededge). These were also the only bands impacted 

by saturation and only for two panels. Larger bandwidths combined with the level of contrast in 

the scene (e.g., Munsell N9 to N3) likely produced saturation (Whitehead and Hugenholtz 2014). 

However, a relatively consistent percentage of pixels were impacted (e.g., 50 to 75 percent) 

(Figure 5.3) across all missions. Since the eight other panels were seemingly unaffected, panels 

N9 and N8 were not considered within this study's scope and were removed from further 

discussion. 

LRV calculations provided an assessment of panel lightness (e.g., value) and a metric to confirm 

that all panels were not affected by image saturation. The manufacturer-provided LRVs (Table 

5.1) were all within ten percent of the observed LRVs with N7, N6, N4, N3 different by 9.69, -0.61, 

-2.04, 1.02 percent, respectively. These calculated LRVs were reasonable considering the other 

factors (e.g., manufacturing and application) that may have impacted the panel's LRV, confirming 

the paints were within manufacturer specifications, applied consistently, and not affected by 

saturation. Saturation is typical throughout environmental remote sensing studies (Huete et al. 

1997; Haboudane et al. 2004; Mouw et al. 2015; Zeng et al. 2017) and has been managed by 

ensuring adequate sensor sensitivity and by simply avoiding bright objects (Wang 2007; Hu et al. 

2012; Mouw et al. 2015).  

Calculations of ∆E were completed for each mission, and the panels examined. Mouw et al. 

(2015) allude to the standardization of color products (e.g., NDVI) from post-processing software 

that should be provided if sUAS technologies achieve widespread implementation. Carrascosa et 

al. (2015) demonstrated this standardization theory by quantifying how NDVI values were 
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impacted by sUAS altitude, operation mode, and ground control point settings. However, further 

standardization was required, particularly of the target object. Thus, to demonstrate how altering 

mission parameters impact the sensor-perceived color, emphasis was placed on M1, M2, M4, 

and M9 (Figure 5.5). For all missions and panels examined, there was only one instance M4 

outperformed (e.g., produced a lower ∆E value) M2. However, the magnitude of the difference 

between these missions was minimal compared to the differences between all other panels. 

Thus, it appears the parameters utilized in M2 produced the most representative panel colors of 

all other sUAS missions. M2 had an ideal spatial resolution (e.g., 4.78 cm pixel-1 in the 15 cm 

measurement square) minimizing mixed pixels, the lowest mean solar irradiance measured (0.43 

W sr-1 m-2 (e.g., radiance unit in watt per steradian per square meter)) and the smallest change 

in solar elevation angle (0.12°) of all missions. Although mixed pixels were minimized, 

environmental factors outside the control of any study (e.g., solar conditions) substantially 

impacted the reflectance measured.  

Therefore, to allow for comparison of spectra collected under various illumination conditions, 

both datasets (e.g., panel and sUAS) were further standardized with the CQS tool provided by 

Davis and Ohno (2005). Under D65 illumination conditions, the ∆E values in Figure 5.5 and Table 

5.3 were applied to Equations 3 and 4, providing an assessment of the overall color 

representation of individual missions across all panels. M2 produced the highest CQS of 73, 

followed by M4, M1, and M9 with CQS of 53, 47, and 45, respectively. Thus, under the assumed 

illumination conditions, M2 still produced the most representative spectra across all missions 

and nearly all panels. 
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M1 

M2 

M4 

M9 

Figure 5.5 L*a*b* colors of Munsell identified reference (Ref.) panels (e.g., N7 - calibrated and Tan Sand (Tsand) - 
natural) and those produced from M1, M2, M4, and M9 (Test) displaying the calculated color difference (e.g., ∆E) 
for each of the panels examined. 
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The need to communicate color in a standardized manner becomes evident with the data 

presented in Figures 5.6A and 5.6B. These figures represent what was assumed to serve as the 

spectra referenced by the CAPSURE to produce Munsell color matches, plotted with the sUAS-

derived multispectral reflectance pixel values produced by the post-processing software. The 

magnitude of reflectance corresponds directly to the change in solar azimuth and elevation 

angles. For example, M1 produced the highest reflectance values, had the smallest change in 

azimuth angle (1.21°), and the largest positive change in solar elevation angle (0.18°). 

Surprisingly, M4 produced relatively low reflectance values even though it was performed five 

minutes after local solar noon and had the slightest absolute change in solar elevation angle 

(0.03°). These were also likely why M4 produced a slightly more representative color than M2 for 

panel N7 (Figure 5.5).  

To further demonstrate the need for standardization, it appeared the “correct” color 

identification was more a function of the shape of the spectra (e.g., profile shape) rather than 

the similarity in relative reflectance (e.g., magnitude of reflectance) (Figures 5.6A and 5.6B). The 

UCS utilized (e.g., CIE L*a*b*) consists of three dimensions. The L*a*b* values acted as coordinates, 

and if one was substantially different from reference values, the perceived color was modified 

accordingly. This question of accuracy (e.g., reflectance) versus precision (e.g., L*a*b* colors) 

should be further examined in the context of using sUAS to describe natural ecosystems. 

Specifically, this study could be increased in scale to differentiate between missions (e.g., 

duration and coverage) to truly provide the most efficient set of operational parameters for real-

world in-situ environmental monitoring with sUAS. 
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A 

B 

Figure 5.6 CAPSURE reference spectra for Munsell N6 (N6) (A) and Munsell 5YR 4/8 (MDR) (B) and 
sUAS-derived reflectance values produced from various missions (e.g., M1, M2, M4 and M9) at 
calibrated panel N6 (A) and natural panel MDR (B) with colors symbolized from extracted sRGB 
values from each mission. 
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5.3.3 sUAS Operational Performance 

Therefore, to demonstrate a scaled version of the suggested future work, linear relationships 

between various mission parameters and ∆E values were developed, and simple efficiency 

metrics were explored. Efficiency metrics were established by assuming a study area of 

approximately 400,000 m2 and applying some post-mission characteristics (e.g., flight time, 

required disk space, and percentage of battery consumed). The increased area provided a more 

apparent differentiation between parameters that were otherwise identical throughout the 

study (Table 5.4). M3 was the most efficient in terms of post-mission characteristics, taking 

approximately 80 minutes and half the next mission's storage space. Nevertheless, flight altitude 

heavily impacted these metrics, which was the highest (e.g., 100 m) for M3. M2 was second in 

terms of disk space required and ranked fourth among all missions for coverage time and battery 

consumption percentage (e.g., tradeoffs). The differences in efficiency between M1 (rank two) 

and M2 (rank four) were minimal (e.g., 15 minutes for coverage and 2.73 percent battery 

consumption) relative to the perceived color differences (Figure 5.5). To further demonstrate 

how this difference in efficiency was negligible, the linear relationships between all mission 

parameters and ∆E values were examined. Results of this simple exercise revealed two 

parameters that could describe greater than 60 percent of the variability (e.g., coefficient of 

determination (R2)) in ∆E values. Both parameters have been discussed at length and were lowest 

for M2. These two parameters (e.g., solar elevation angles and downwelling solar irradiance) 

accounted for errors in color perception (∆E values) with moderate confidence (e.g., R2 = 0.63 

and 0.61, respectively).  

 



144 
 

 

Table 5.4 Missions ranked by efficiency metrics from lowest to highest for each metric; developed using post-mission 
parameters and an assumed study area of 100 ac. 

Mission Coverage Time (min) Mission Storage Required (MB) Mission Battery Consumed (%) 

M3 178 M3 8307 M3 10.00 

M1 263 M2 17087 M1 11.17 

M9 270 M8 20543 M7 13.33 

M2 278 M6 37948 M2 13.89 

M4 327 M5 38950 M5 15.78 

M5 332 M9 39127 M4 17.18 

M10 336 M4 45083 M9 18.03 

M6 340 M1 45257 M6 19.14 

M11 352 M11 45400 M10 19.46 

M7 360 M7 45667 M8 20.27 

M8 541 M10 65772 M11 24.64 

 

5.4 Conclusions 

Overall, this study identified the need to develop and test a standard operational procedure for 

environmental remote sensing via sUAS. Due to the variability in sUAS, a method for developing 

calibrated target objects to identify sUAS-specific mission parameters was presented. 

Assessment of manufacturer mission recommendations suggested the focus should shift to 

different operational parameters. In terms of precision, the mission (M2) with the most 

appropriate spatial resolution, lowest mean solar irradiance measured, and smallest change in 

solar angles produced the most accurate representation of color when all panels were 

considered. Straightforward linear relationships were developed that demonstrated changes in 

solar conditions throughout operations that could describe approximately 60 percent of the color 

identification error. In terms of tradeoffs between efficiency and precision, the most efficient 

mission (M3), although identified color more precisely on one occasion, the magnitude of error 

in all other instances was so large efficiency could be sacrificed for the level of relative precision 
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achieved. Clearly, a balance exists and must be further established between sUAS operational 

parameters, data precision, and efficiently achieving the study's goal. For environmental remote 

sensing with sUAS to become established, the equilibrium between all these factors must be 

maintained for any hope in addressing the need for widespread monitoring and evaluation of 

terrestrial and aquatic ecosystems worldwide.  
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Chapter 6: Conclusions 

The focus of this doctoral research was to describe shallow optically complex inland waters in 

terms of the relationships between observed in-situ water quality and small Unoccupied Aerial 

System (UAS)-derived multispectral reflectance. The goal was to develop and expand on the 

understanding of the light and water surface interactions to demonstrate and promote the 

environmental application of sUAS technologies for monitoring and evaluating complex aquatic 

environments. The need to quantify the benefits of sUAS technologies over traditional remote 

sensing methods (e.g., satellites) and to develop innovative tools to assist in monitoring complex 

inland waters, while identifying the technological, operational, and applicational limitations, 

served as motivation. 

Overall, the accurate retrieval of data for traditional optically active constituents (OACs) (e.g., 

chlorophyll-a) in inland optically shallow waters (OSWs) is still out of reach when using a turn-key 

sUAS and various statistical modeling, reflectance extraction, and data transformation 

techniques. However, a novel multispectral imagery post-processing technique slightly improved 

the accuracy and precision of water quality retrieval models in inland OSWs. These model 

improvements suggest a simple exercise with several assumptions, and minimal ancillary data 

collection efforts, can improve statistically derived surface water quality models (Chapter 2).  

Furthermore, exploiting physical relationships (e.g., sorption) between various mine water 

contaminants produced strong linear relationships (R2
adj. > 0.74) with high confidence and 

allowed for the estimation of non-optical (i.e., those that did not contribute to the measured 

spectra) metals. When using site-specific spectra and in-situ water quality, estimates of in-situ 

metal concentrations were within one percent of the observed value for most parameters 
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examined (e.g., Fe, Li, Mn, Pb, and Zn). In the studied mine drainage passive treatment systems 

(PTS), the dominant optical parameter (iron-oxyhydroxides – particulate Fe) was readily 

estimated with models developed and validated in waters of different geologic origin. However, 

in optically deep waters (ODWs) impacted by mine drainage, site-specific spectra produced the 

most representative relationships for all other metals analyzed. The derivation of a robust 

exponential relationship (R = 0.73) between sUAS-derived red band reflectance and the Secchi 

disk depth (SDD) and actual depth (AD) ratio will assist in identifying OSWs and other remote 

sensing interferences in mine drainage PTS (Chapter 3). 

To further understand the interactions between OACs, the impact of aquatic optical depth (OD) 

on remotely sensed spectra, and to determine if sUAS imagery can describe these optically 

complex systems, mesocosm-scale systems were studied. The shift in scale allowed for a more 

detailed examination of these impacts and resulted in spectra more accurately estimating OACs 

in ODWs compared to OSWs. sUAS-derived imagery not only assisted in identifying OSWs but 

could discern the effects of reflectance from the substrate on spectra collected from mesocosm-

scale systems (Chapter 4). 

Examining impacts on the spectra measured by altering specific flight parameters on an 

autonomously operated sUAS was of particular interest. Such a study provided a basis for the 

integration of sUAS into traditional environmental monitoring practices. Significant trade-offs 

existed between sUAS data quality, the operational parameters used to collect the data, and the 

solar conditions throughout operations. Unsurprisingly, increases in mission efficiency (e.g., 

decreased flight duration) proportionally decreased the sUAS-derived multispectral imagery 

accuracy and quality. Additionally, changes in solar conditions throughout the missions 
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accounted for approximately 60 percent of the spectral measurements’ error. With the countless 

platforms and sensors currently available, the development of a standard operating procedure 

for environmental monitoring via sUAS must consider all platforms and sensors available, or 

evaluate and define which should be employed. Further efforts should also identify operational 

limitations and conditions, target object-specific variability, and the tradeoffs between sUAS 

mission efficiency and the quality of the data collected (Chapter 5). 

Currently, sUAS technologies are far from replacing traditional in-situ monitoring. Due to the 

variability in accuracy, along with the lack of standardized sUAS operating procedures and 

reporting criteria, these technologies should only be used as exploratory tools. If integrated into 

regular monitoring activities, environmental monitors could use these technologies to identify 

hotspots at much finer temporal and spatial scales than conventional monitoring, which could 

substantially decrease the amount of time, money, human-hours, and laboratory analyses 

required to sufficiently characterize the extent of environmental issues. This dissertation also 

expands on the current OACs that can be estimated remotely and demonstrates the benefits of 

incorporating sUAS technologies into traditional environmental monitoring efforts. However, a 

balance exists and must be further established between sUAS operational parameters, data 

precision, and efficiently achieving the study's goal. For environmental remote sensing with sUAS 

to become widely established, the equilibrium between all these factors must be maintained for 

any hope in addressing the need for monitoring and evaluation of terrestrial and aquatic 

ecosystems worldwide. Together the chapters in this dissertation provide insight into the 

capabilities and limitations of remote monitoring with sUAS in optically complex inland waters. 
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Appendix: Data Availability 

The information in Table A.1 summarizes the data used to complete this dissertation that is 

available from the author upon request.  
 

Table A.1 Data available upon request from author used to complete the studies included in this dissertation; small 
Unoccupied Aerial System (sUAS); Multispectral (MS); Chlorophyll-a (Chl-a); Total Suspended Solids (TSS); Secchi 
Disk Depth (SDD); Dissolved Oxygen (DO); Specific Conductance (Sp. Cond.); MissionPlanner Waypoint File Format 
(.WP); Tag Image File Format (.TIFF); Georeferenced Tag Image File Format (.GEOTIFF); Microsoft Excel File Format 
(.XLS); Text File Format (.TXT). 

Dissertation Chapter Data Type Parameters Format 

Chapter 2    
 sUAS Mission Plans/Flight Logs Operational Characteristics .WP 
 Unprocessed sUAS images Digital Number .TIFF 
 Processed sUAS MS imagery Relative Reflectance .GEOTIFF 
 In-situ water quality Chl-a; TSS; SDD; Turbidity; 

DO; pH; Sp. Cond. 
.XLS 

Chapter 3    
 sUAS Mission Plans/Flight Logs Operational Characteristics .WP 
 Unprocessed sUAS images Digital Number .TIFF 
 Processed sUAS MSimagery Relative Reflectance .GEOTIFF 
 In-situ water quality Total and dissolved metals; 

Turbidity; SDD: DO; pH; Sp. 
Cond. 

.XLS 

Chapter 4    
 sUAS Mission Plans/Flight Logs Operational Characteristics .WP 
 Unprocessed sUAS images Digital Number .TIFF 
 Processed sUAS MSimagery Relative Reflectance .GEOTIFF 
 In-situ water quality Chl-a; TSS; SDD; Turbidity; 

Total and dissolved metals; 
Color; Alkalinity; DO; pH; Sp. 
Cond. 

.XLS 

Chapter 5    
 sUAS Mission Plans/Flight Logs Operational Characteristics .WP 
 Unprocessed sUAS images Digital Number .TIFF 
 Processed sUAS MSimagery Relative Reflectance .GEOTIFF 
 Down dwelling irradiance Solar Irradiance .TXT 
 Colorimetric measurements Munsell Colors .XLS 

 


