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Abstract 

Our understanding of fluid behavior and transport in shales, especially in organic or 

kerogen pore systems, has grown rapidly over the last few years. Yet, given the 

prevalence of inorganic material that often hosts the organics in shales, little attention 

has been devoted to how fluids move and distribute themselves in clay-hosted pores. In 

this work, I use classical molecular dynamics simulations to investigate fluid behavior 

and transport in charged clay-hosted nanopores. I focus on mixtures of brines and 

hydrocarbon confined in clay slit pores and consider two different surface charges. A 

very important constraint I impose on the models is rigidity to avoid clay swelling 

behavior. My initial set of simulations focuses on oil-solvent mixtures in clay pores and 

the conditions under which they become miscible, and the impact of confinement on 

the self-diffusion of hydrocarbon as well as viscosity. At specific pore widths and water 

saturations, water is shown to bridge across the pore from one clay surface to the other, 

and not merely be adsorbed. My work discusses the conditions under which these 

bridges form and their impact on fluid movement. I show that increasing brine salinities 

can dissipate the water bridges which motivates me to discuss optimizing salinity for 

waterfloods or hydraulic fracturing fluids when clays are predominant. The final 

discussion is the effect of varying salinity on the shape and stability of surfactant-

solvent microemulsions in clay pores. 
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Chapter 1 Introduction 

1.1 Literature Review 

The U.S. Energy Information Administration (EIA et al. 2019) reports that the proven 

oil and natural gas reserves in US shale plays are 23.2 trillion barrels and 353.1 trillion 

cubic feet respectively, underscoring their significance to the US energy mix. 

However, these plays are characterized by an ultra-low permeability (in the range 

of nanodarcies 1 , six orders of magnitude below the permeability in conventional 

reservoirs) and a very low porosity where the pore width ranges from a few to hundreds 

of nanometers in diameter (Nelson et al. 2009; Curtis et al. 2010; Kuila et al. 2013). In 

these extremely small pores, the pore surface can significantly impact the phase 

behavior and transport of hydrocarbon molecules (Singh et al. 2009; Jin et al. 2016a; 

Singh et al. 2018). Therefore, understanding fluid behavior under confinement in shale 

nanopores is a necessary prerequisite to quantifying both primary and enhanced 

recovery in these tight rocks. There have been several complementary approaches to 

address the complex behavior of fluids in these pore systems: computational approaches 

(Hu et al. 2016; Wang et al. 2016a; Khoa Bui et al. 2017; L. Huang et al. 2018; Perez 

et al. 2020), bench-top experiments (Sheng et al. 2014 and 2015; Sharma et al. 2017; 

Dang et al. 2019; Mamoudou et al. 2020), and field tests (Hoffman et al. 2016; Sheng 

et al. 2015a, 2015b and 2017). This dissertation belongs to the first group and 

specifically focuses on molecular dynamics (MD) simulations.  

 
1 1 𝐷𝑎𝑟𝑐𝑦 ≈ 1 × 10−12𝑚2 
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Hydrocarbons in organic-rich shales are largely understood to be stored within 

organic nanopores, specifically within organic matter known as kerogen (Curtis et al. 

2010 and 2011; Perez et al. 2020 and 2020a). Earlier studies of shales relied on 

molecular proxies for kerogen, such as planar graphene slit pores, in MD simulations 

(Plathe et al. 1997; Wongkoblap et al. 2008; Campos et al. 2009; Mosher et al. 2013; 

Akkutlu et al. 2014; Hu et al. 2015 and 2016; Wang et al. 2016). While these models 

are instructive, they do not represent the complex pore surface chemistry and structure 

seen in kerogen (Gouth et al. 2013; Kazemi et al. 2016; Perez et al. 2020). Ungerer et 

al. (2015) and Bousige et al. (2016) laid the foundations for several subsequent 

modeling studies (Pathak et al. 2016; Borujeni et al. 2019; Perez et al. 2019a; Gong et 

al. 2020; Perez et al. 2020a and 2020b) that rely on the use of more realistic molecular 

models of kerogen. Recent studies have expanded to modeling enhanced oil recovery 

(EOR) in unconventional reservoirs (Perez et al. 2020a and 2020b) and show results 

consistent with lab observations (Dang et al. 2019; Mamoudou et al. 2020) and field 

pilots (Wang et al. 2010; Hoffman et al. 2016; Sheng et al. 2017).  

However, clay minerals and other inorganic material account for 70-90% volume 

fraction in shales (Heidari et al. 2011; Zhai et al. 2014; Zhang et al. 2016a; Chen et al. 

2016; Zhang et al. 2016b; Hao et al. 2018; Szczerba et al. 2020) and play a significant 

role in fluid behavior and transport (Geramian et al. 2016; Lara et al. 2017; Katti et al. 

2017; Liu et al. 2018; Eveline et al. 2018; Rahromostaqim et al. 2018). FIB-SEM 

(Focused Ion Beam-Scanning Electron Microscopy) images also suggest that the 
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organics are typically hosted in an inorganic background and the fluids are likely driven 

from organic pore systems to inorganic pores and eventually to the fracture systems 

(Sondergeld et al. 2010).  

Clay minerals are layer-type aluminosilicates (Sposito et al. 1999), ubiquitous in 

geological deposits (Pevear et al. 1999; Tombácz et al. 2004; Katti et al. 2017; Hao et 

al. 2019b). The crystal structures of clay minerals are usually classified as 1:1 or T:O 

type, typified by kaolinite (T and O stand for one tetrahedral silicate sheet and one 

octahedral hydroxide sheet separately) and 2:1 or T:O:T type, typified by illite (Galán 

et al. 2013). Clay minerals generally are thought to have negatively charged surfaces 

due to the existence of oxygen and hydroxyl groups on the local surface (Pevear et al. 

1999; Tombácz et al. 2004; Katti et al. 2017; Hao et al. 2019b). Experimental results 

also show that cation substitutions (isomorphic replacement of tetrahedral Si4+ by Al3+, 

or octahedral Al3+ by Mg2+ and Fe2+) can often happen in tetrahedral and octahedral 

sheets in clays (Mueller et al. 2014). For example, smaller cations tend to occur in 

tetrahedral sheets (such as Si4+) while larger cations tend to occur in octahedral sheets 

(such as Mg2+ and Fe2+) and cations with intermediate size can occur in either sheet 

(such as Al3+, Fe3+). These cation substitutions lead to a negative structural charge. This 

negatively charged structure is balanced by adsorbing counterions such as Na+, Ca2+, 

and K+ nearby. The largest counterions must enter into the interlayer spaces because 

neither octahedral nor tetrahedral sites have enough space to hold them (Mueller et al. 

2014). 
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During cation substitutions, unbalanced surface charges can occur. For instance, 

Tombácz et al. (2006) and Kumar et al. (2017) use experiments to prove that 2:1 type 

montmorillonite and 1:1 type kaolinite can carry a heterogeneous surface charge as 

shown in Figure 1-1a, and the distribution of charge is the function of the crystal 

structure of clay particles, pH and dissolved electrolytes. Kareem et al. (2016) further 

suggest that surface charge heterogeneities can likely explain varying contact angle 

measurements locally on clays as shown in Figure 1-1b to Figure 1-1g. Later, Umeda 

et al. (2017) use ultra-low noise frequency-modulation atomic force microscopy (FM-

AFM) to image clinochlore as shown in Figure 1-1h and observe a heterogeneous 

surface charge distribution where T denotes negatively charged surfaces and B 

positively charged. The experimental observations enable reconstruction of the 

structure of clinochlore as shown in Figure 1-1i, and the calculated electric potential 

along the surface is shown in Figure 1-1g where the highest and lowest electric 

potentials are 20 and -20V respectively. More interestingly, Fan et al. (2018) observe 

voltage enhancement when a NaCl-based electrolyte flows over this specially charged 

surface. Recently, Hao et al. (2019a) also show that illite might possess an internally 

unbalanced electrical charge due to the heterogeneous distribution of potassium (K+). 

Clay flocculation can also occur with heterogeneously charged surfaces (Nguyen et al. 

2009; Sakhawoth et al. 2017). 
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Figure 1-1 (a) Surface charge map of kaolinite using high-resolution atomic force microscopy (Kumar et 

al. 2017), indicating the existence of heterogeneous surface charge. (b-g) Environmental Scanning 

Electron Microscopy micrographs of non-flat quartz surfaces show the variation of the contact angle due 

to the existence of heterogeneous surface charge (Kareem et al. 2016). (h-j) Frequency-modulation 

atomic force microscopy (FM-AFM) images of clinochlore indicate the existence of heterogeneous 

surface charges (Umeda et al. 2017).  

These heterogeneous surface charges in clay minerals make clay-water interaction 

quite complex (Lockhart et al. 1980; Smalley et al. 1994; Saarenketo et al. 1998; Vlachy 

et al. 2001; Prakash et al. 2015). Current research on clay-water interaction can be 

broadly classified into five different areas: hydration, dispersion, flocculation, 

deflocculation, and aggregation (Low et al. 1961). Hydration refers to the adsorption of 

water and subsequent swelling (Loring et al. 2013). Dispersion, on the other hand, 

occurs when clay platelets disperse as water forces the platelets apart (Czyż et al. 2015). 

Flocculation begins when previously dispersed platelets come together due to the 

attractive force of oppositely charged surfaces on the platelets (Shakeel et al. 2020). 
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Deflocculation typically occurs with a chemical deflocculant that reduces the surface 

and edge charges to eventually impair the forces of attraction (Orton et al. 1906). 

Aggregation is a slightly different phenomenon where the hydrational layer around clay 

platelets is altered by removal of the deflocculant from the positive edge charges 

allowing platelets to assume a face-to-face structure (Guichet et al. 2008).  

This work focuses solely on the hydration issue that occurs as clays absorb water 

but do not consider swelling. My dissertation is focused on the behavior of fluids within 

the pore systems. Traditional MD work has focused on adsorption in clay pores (Hensen 

et al. 2002; Zen et al. 2016; Underwood et al. 2016; Yi et al. 2018; Hwang et al. 2019), 

but a growing body of work on clay-water hydration reports the formation of a water 

bridge in hydrated clay minerals (Osipov et al. 2012; Yanagihara et al. 2013; Striolo et 

al. 2015; Zhang et al. 2016; Liu et al. 2016; Liu et al. 2018; Xiong et al. 2019a;). This 

phenomenon is commonly accepted as ‘capillary condensation’ or ‘capillary bridge’ 

(Yamashita et al. 2013; et al. 2015; Coasne et al. 2010; Monson et al. 2012; Ho et al. 

2015; Dörmann et al. 2015; Leroch et al. 2013; Giner et al. 2019).  

However, clay minerals typically carry negatively charged surfaces and 

nonbonded positive cations (sometimes even with heterogeneous surface charge) 

(Hensen et al. 2002; Kuila et al. 2013). Therefore, the formation of water bridges might 

not solely occur due to ‘capillary condensation’ but due to preferential orientation of 

water thereby influencing its structure (Rigo et al. 2019). There is also strong evidence 

that the water bridge can significantly impact fluid transport in clay nanopores (Liu et 
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al. 2018).  

It is also important to consider the effect of salinity in clay-rich formations where 

the formation of brine salinity can reach as high as 100,000 ppm (Sheng et al. 2014). 

Fracturing fluids, meanwhile, are typically low salinity formulations to mitigate the 

effect of clay swelling (Hensen et al. 2002; Yi et al. 2018; Snosy et al. 2020). The 

underlying mechanism of clay swelling is by repulsion between clay layers (induced by 

the formation of electric double layers) (Hensen et al. 2002). The low salinity 

formulation of fracturing fluids decreases the thickness of the double layer (compared 

with freshwater) and in turn mitigates clay swelling (Bennion et al. 1998). In the electric 

double layer, all ions are hydrated to some extent (Tombácz et al. 2006; Howard et al. 

2010; Fang et al. 2020) but are associated with different hydrated radii. Consequently, 

Na+ (hydration radius of 450 pm) and K+ (hydration radius of 300 pm) (Bennett et al. 

2015) have different impacts on clay swelling (Ahmed et al. 2016) with KCl often used 

as a clay stabilizer to mitigate swelling (Sameni et al. 2015).  

There is however no discussion of optimal salinity levels for clays. While pure 

water promotes swelling (Hensen et al. 2002), higher salinities can also cause other 

problems such as ionic aggregation (Koleini et al. 2019a) and formation damage 

(Galliano et al. 2000). The optimal salinity for hydraulic fracturing is analogous to 

considerations for low salinity waterflooding (Tang et al. 1997; Galliano et al. 2000; 

Lager et al. 2008; Denney et al. 2009; Alotaibi et al. 2011; Kadoura et al. 2016). In this 

dissertation, I also attempt to provide optimal salinity values for hydraulic fracturing 
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fluids and/or waterflooding when clays are present. 

Surfactant flooding is widely used in conventional reservoirs to enhance oil 

recovery by reducing the interfacial tension between oil and water, thus increasing the 

displacement efficiency (Schramm et al. 1992). For ultra-low permeability 

unconventional shales, water-based EOR has traditionally been limited in scope. 

However, a few recent successful experiments show increased well productivity in 

response to microemulsion additives in water-based hydraulic fracturing fluids 

(Champagne et al. 2011; Penny et al. 2012). Microemulsions are clear, 

thermodynamically stable isotropic liquid mixtures of oil, water, and surfactant, 

frequently in combination with a cosurfactant (Kahl et al. 2002). 

Bui et al. (2015a, 2015b, 2016, and 2018) use MD simulations to systematically 

study the behavior of the microemulsions within kerogen, including the penetration 

behavior of microemulsions in shale nanopores, microemulsion effects on oil recovery 

from kerogen, and the mobilization of oil using microemulsions. However, there is little 

to no consideration of the stability of the microemulsions (Eastoe et al. 1990; Klier et 

al. 2000; He et al. 2004; Lee et al. 2018; Ma et al. 2019) in response to changes in 

temperature, pressure, salinity, surfactant-solvent (cosurfactant) ratio, and surface 

interactions. While the impact of varying temperatures, pressures, salinities, and 

surfactant-solvent ratios are more effectively determined using benchtop experiments, 

probing the behavior of microemulsions confined in clay or organic nanopores 

necessitates the use of MD. In this work, I study the stability of microemulsions at 
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varying salinity conditions when confined in clay slit-pores. This is important because 

the delivery of the microemulsion to target organic pores will require the microemulsion 

to traverse and interact with clay surfaces. 

Finally, I would also like to mention that there is a growing body of work in organic 

pores while this dissertation focuses on inorganic, clay pores, thereby laying the 

foundation to understand fluid storage and transport in mixed-wet pore systems (Kim 

et al. 2020). 

 

1.2 Research Motivations 

This dissertation is a computational study into the fluid behavior in clay-hosted 

nanopores. Interactions between clay mineral surfaces, oil components, brine solutions, 

or microemulsions have been modeled using classical atomistic molecular dynamics. 

The emphasis of this study is on understanding how the clay-hosted nanopores change 

the behavior of water, oil, brine solutions, or microemulsions at an atomic level. The 

main motivations of the dissertation are: 

1. To understand solvent-oil interactions in clay-hosted pores: Do clays impact 

the mobility of hydrocarbons or water? Does the distribution of these fluids 

impact the relative mobility of the phases? Are these considerations absent 

from traditional reservoir simulation tools?  

2. To interpret the role of charged clay surfaces on the behavior and transport of 

water and hydrocarbon: Does the distribution of water depend on the type of 
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clay surface or charge distribution? What are the impacts of fluid-clay 

interactions on the relative phase mobility? 

3. To understand the effect of varying salinity on the fluid distribution in the clay-

hosted nanopore: Is there an optimal range of salinity for fracturing fluids or 

low-salinity waterfloods？ 

4. To probe the behavior of microemulsion in clay-hosted nanopores with varying 

salinity: To describe the stability of microemulsions in clay pores under 

different salinity conditions. Can clay pores deliver microemulsions to organic 

pores?  

 

1.3 Organization of the Dissertation 

With these aims in mind, the dissertation is broken down into several chapters. Each 

chapter has been written with forethought of being submitted for publication in the 

future (Chapter 6) or has already been published in peer-reviewed journals (Chapters 2, 

3, and 4) or conference papers (Chapter 5, ready to transfer to peer-reviewed journal). 

A brief description of each chapter is as follows: 

Chapter 2: EOR Solvent-Oil Interaction in Clay-Hosted Pores 

This chapter has previously been published in Fuel: 

Reprinted (adapted) with permission from (Hao Xiong, Deepak Devegowda, 

Liangliang Huang. EOR Solvent-Oil Interaction in Clay-Hosted Pores: Insights from 

Molecular Dynamics Simulations. Fuel, 2019,249:233-251. DOI: 
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https://doi.org/10.1016/j.fuel.2019.03.104). Copyright (2019) Elsevier Ltd. 

This chapter introduces the concept of using atomistic simulations to model 

solvent-oil interactions in clay-hosted nanopores which has not been addressed 

previously. I use illite to represent clays and compare fluid behavior (i.e., diffusion, 

miscibility, viscosity, and oil swelling) between bulk and confined2 conditions. I show 

that recovery estimates using commercially available simulators can be overly 

optimistic because they neglect the effect of confinement on viscosity and self-diffusion 

of the resulting mixtures.  

Chapter 3: Water Bridges in Clay Nanopores: Mechanisms of Formation and 

Impact on Hydrocarbon Transport 

This chapter has previously been published in Langmuir: 

Reprinted (adapted) with permission from (Hao Xiong, Deepak Devegowda, 

Liangliang Huang. Water Bridges in Clay Nanopores: Mechanisms of Formation and 

Impact on Hydrocarbon Transport. Langmuir. 2020, 36(03): 723-733. DOI: 

https://doi.org/10.1021/acs.langmuir.9b03244). Copyright (2020) American 

Chemical Society. 

This chapter has an in-depth analysis of the formation mechanisms of water 

bridges in clay-hosted nanopore using equilibrium MD simulations and their impact on 

hydrocarbon transport. I use two different basal illite surface chemistries: potassium-

 
2 Confinement refers to situations where the pore walls exert an influence on fluid molecules altering their phase 

behavior or other properties. 

https://doi.org/10.1016/j.fuel.2019.03.104
https://doi.org/10.1021/acs.langmuir.9b03244
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hydroxyl (P-H) and hydroxyl-hydroxyl (H-H) structures. Results show that pore width 

and water concentration control the formation of water bridges in addition to the degree 

of charge imbalance between adjacent clay plates. My results also indicate that 

heterogeneous surface charges can induce local electric fields, favoring the formation 

of water bridge.  

Chapter 4 Oil-Water Transport in Clay-Hosted Nanopores: Effects of Long-

Range Electrostatic Forces 

This chapter has previously been published in AIChE Journal: 

Reprinted (adapted) with permission from (Hao Xiong, Deepak Devegowda, 

Liangliang Huang. Oil-Water Transport in Clay-Hosted Nanopores: Effects of Long-

Range Electrostatic Forces. AIChE Journal.2020, 66(08):1-16. DOI: 

https://doi.org/10.1002/aic.16276). Copyright (2020) American Institute of 

Chemical Engineers (License Number: 5021010431821). 

Chapter 4 is an extension of the work done in Chapter 3. This chapter aims to 

understand the effect of long-range electric fields on oil-water transport using non-

equilibrium MD (NEMD) simulations. My NEMD results show complex two-phase 

hydrocarbon and water flow patterns in H-H nanopores. In contrast, flow patterns in P-

H nanopores are more organized because of the presence of an electric field that creates 

a water bridge. Water bridges in H-H nanopore are less stable and break down during 

fluid transport but the presence of an electric field in the P-H nanopore maintains the 

water bridge under more severe conditions. 

https://doi.org/10.1002/aic.16276
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Chapter 5 Fluids Behavior in Clay-Hosted Pores as Salinity Varies 

This chapter has previously been published in two conference papers:   

Reprinted (adapted) with permission from (Hao Xiong, Deepak Devegowda, 

Liangliang Huang. EOR in Clay-Hosted Pores: Effects of Brine Salinity, Water 

Saturation, Pore Surface Chemistry and Pore Width [C]. Unconventional Resources 

Technology Conference (URTeC) fueled by SPE, AAPG, and SEG, 20-22 July 2020 in 

Austin, Texas, USA. https://doi.org/10.15530/urtec-2020-2911.) Copyright (2020) 

Society of Petroleum Engineers. 

Reprinted (adapted) with permission from (Hao Xiong, Deepak Devegowda. 

Insights into Salinity Variations for Waterfloods, Frac-Fluids and Drilling Mud in Clay-

Hosted Pores using Molecular Simulations [C]. Unconventional Resources Technology 

Conference (URTeC) fueled by SPE, AAPG, and SEG, 20-22 July 2020 in Austin, Texas, 

USA. https://doi.org/10.15530/urtec-2020-2909.) Copyright (2020) Society of 

Petroleum Engineers. 

The main aim of this chapter is to understand the impact of salinity on fluid 

behavior in clay nanopores to determine optimal fracturing fluid salinity (or low salinity 

waterflooding applications). I use a wide range of concentrations (0-100000ppm NaCl) 

in these pores and quantify the fluid spatial distribution, surface electric potentials, and 

self-diffusion to model the interaction between clays, water, oil, and salts. I show that 

there is an optimal range of salinity for the pore surface chemistry and pore widths 

under consideration where the mobility of the oil phase is the highest.  

https://doi.org/10.15530/urtec-2020-2911
https://doi.org/10.15530/urtec-2020-2909
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Chapter 6 The Behavior of Surfactant Microemulsion in Clay-hosted Nanopore 

This chapter considers the stability of microemulsion in clay-hosted nanopores at 

different salinities. The microemulsion includes d-limonene (solvent) and dodecanol 

heptaethyl ether (C12E7, nonionic surfactant). I compare the stability of the 

microemulsion in bulk and under confinement with two different clay surface charges. 

Although stable in the bulk under various conditions of salinity, I show that with a 

strong charge imbalance and at low salinities, the microemulsion is unstable. My work 

demonstrates an optimal salinity exists that can weaken the effect of charged clay 

surface and keep the microemulsion stable and therefore, deliver the microemulsion to 

the target kerogen more effectively. 

Chapter 7 Conclusions 

This chapter highlights the key conclusions of the dissertation. It presents the overall 

successes of the work and discusses additional opportunities for examining fluid 

behavior in clay-hosted nanopores using atomistic simulations.  
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Chapter 2 EOR Solvent-Oil Interaction in Clay-Hosted Pores 

2.1 Introduction 

Despite the tremendous progress in horizontal well technology and hydraulic fracturing 

(Sheng et al. 2015a), the expected recovery from unconventional shales is often below 

10% of the original oil-in-place (Hoffman et al. 2013; Salahshoor et al. 2018).  

Enhanced oil recovery (EOR) has been shown to be promising using benchtop 

experiments  (Sheng et al. 2017; Dang et al. 2019; Mamoudou et al. 2020) and field 

pilots (Wang et al. 2010; Hoffman et al. 2016). Huff-n-puff miscible-gas injection 

(Gamadi et al. 2013; Tovar et al. 2014; Sheng et al. 2015a; Kazemi et al. 2019; Zhu et 

al. 2020) is the current area of interest at the time of writing this paper; however, there 

is also a growing interest in chemical EOR  (Deshpande et al. 1999; Bui et al. 2018; 

Sheng et al. 2018; Chen et al. 2021).  

Although our understanding of EOR processes in organic or kerogen pore systems 

has grown rapidly over the last few years (Dang et al. 2019; Perez et al. 2020a; 

Mamoudou et al. 2020), there has been little to no focus on solvent-oil interactions in 

inorganic pore systems, specifically in clays that form a large percentage of the shale 

matrix and that may host pores that deliver fluids from the organics to the fractures.  

 

2.2 Construction of the Illite-fluid Systems 

Clay minerals are ubiquitous accounting for more than 50% by volume in most shales 

(Yang et al. 2016). The most common clay minerals are kaolinite, illite, chlorite, and 
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smectite (Gualtieri et al. 2008). I focus on illite-hosted pores because illite is the most 

common diagenetic product in shales (Galán et al. 2013).  

Illite comprises Al-centered octahedral (O) layers sandwiched between two Si-

centered tetrahedral layers (T) as a 2:1 clay mineral (TOT) (Drits et al. 1993). In this 

study, I use the composition of Kx[Si(8−x)Alx](Al4)O20(OH)4 (x=1) and isomorphic 

substitutions are made by replacing one Si4+ by one Al3+ in every replicated unit cell 

(Zhang et al. 2016b). I follow Loewenstein’s rule for ion substitution in clay minerals 

which states that the locations of two substitution sites are not adjacent to each other 

(Loewenstein et al. 1954). Interlayer counter cations (potassium cations, K+) are 

distributed randomly in the illite interlayer space to counterbalance the electrostatic 

charges induced by the isomorphic substitutions in the illite layers. The K+ cations can 

move in the interlayer space. Material StudioTM is used to build an illite model 

(Accelrys et al. 2016). The unit cell has the parameters of space group: C2/m, a=5.193 

Å, b=8.994 Å, C=10.204 Å, α=90°, β=101.77° and γ=90° (Drits et al. 2006), where the 

parameters a, b and c are dimensions of the unit cell, and parameters α, β, and γ are the 

angles of the unit cell. The modeled atomic coordinates of the unit cell for the illite 

structure are shown in Table 2-1.  



17 

Table 2-1 Modeled atomic coordinates of the unit cell for the illite structure (Drits et al. 2009)  

 

The simulation cell contains 20 clay unit cells (10×2×1 supercell) resulting in a 

clay model of 6.4 nm×2.2 nm×1.0 nm (x-, y- and z-direction) as shown in Figure 2-1a 

and Figure 2-1b. The slit pore is constructed with four parallel illite layers confined in 

a three-dimensional simulation cell with the xz plane shown in Figure 2-1c. I use a slit 

pore following Rao et al. (2013), Sun et al. (2015), Underwood et al. (2016), and Hao 

et al. (2018) and because slit pores are the most prevalent pore shape in clays (Adeyeri 

et al. 2019). 
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Figure 2-1 Schematic representation of the illite supercell (10×2×1). The dimension is 6.4 nm×2.2 

nm×1.0 nm. Panels a and b provide top and side views of the illite supercell. Panel C is the slit pore 

constructed with four parallel illite supercells. d is the pore width. Color codes: clay, grey; potassium ion 

K+, light grey. 

I consider four different fluid mixtures that are randomly placed in the illite slit 

pore using the Packmol package (Martínez et al. 2003). Models 1-4 focus on illite-

confined behavior of pure dodecane, methane/dodecane, ethane/dodecane, and 

ethane/dodecane/water respectively. Model 1 contains 100 dodecane molecules in a slit 

pore of width 5nm as shown in Figure 2-2a. Model 2 contains 100 dodecane and 400 

methane molecules (20% C12 +80% C1) in a slit pore of width 6nm as shown in Figure 

2-2b. Model 3 contains 100 dodecane and 400 ethane molecules (20% C12 +80% C2) in 

a slit pore of width 6nm as shown in Figure 2-2c. Model 4 contains 100 dodecanes, 400 

ethane, and 160 water molecules (20% C12 +80% C2+water) in a slit pore of width 9 

nm as shown in Figure 2-2d.  
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Figure 2-2 Snapshots showing the initial configuration of the four illite models containing fluids. Model 

1 contains 100 dodecane molecules; Model 2 contains 100 dodecane and 400 methane molecules (20% 

C12 +80% C1); Model 3 contains 100 dodecane and 400 ethane molecules (20% C12 +80% C2); and Model 

4 contains 100 dodecane, 400 ethane and 160 water molecules (20% C12 +80% C2+water). The clay 

structure contains the same color codes as in Figure 2-1, while the color codes of fluid molecules are: 

ethane, light green; dodecane, light blue; CH4, cyan; and H2O, red. Every simulation cell size is chosen 

to be sufficient to eliminate any finite-size effects. 

I also construct four other simulation cells to study solvent-oil mixture behavior in 

the bulk condition as shown in Figure 2-3. Model 5 contains 100 dodecane molecules 

as shown in Figure 2-3a; Model 6 contains 100 dodecane and 400 methane molecules 

(20% C12 +80% C1) as shown in Figure 2-3b; Model 7 contains 100 dodecane and 400 

ethane molecules (20% C12 +80% C2) as shown in Figure 2-3c; and Model 8 contains 

100 dodecanes, 400 ethane and 160 water molecules (20% C12 +80% C2+water) as 

shown in Figure 2-3d. I add a 1 Å wide area in all three directions to eliminate boundary 

effects (Collell et al. 2015; Liu et al. 2017). All models can freely expand along the z-

axis. Table 2-2 describes my models. 
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Figure 2-3 Snapshots showing the initial fluid configuration in the four bulk fluid models. The fluids 

have the same color codes as in Figure 2-2. Model 5 contains 100 dodecane molecules; Model 5 contains 

100 dodecane and 400 methane molecules (20% C12 +80% C1); Model 7 contains 100 dodecane and 400 

ethane molecules (20% C12 +80% C2); and Model 8 contains 100 dodecane, 400 ethane and 160 water 

molecules (20% C12 +80% C2+water).  
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Table 2-2 Description of the models used in this paper 

 

 

2.3 Molecular Dynamics Simulation Details 

All MD simulations were performed using a Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) (Version 11 Aug 2017) (Plimpton et al. 1995). The 

interatomic interactions for the T-O-T clay structure and the cations are described using 

the ClayFF force field (Cygan et al. 2004), which is widely used in clay interfacial 

simulations (Underwood et al. 2016; Zen et al. 2016). Water molecules are described 

using a flexible SPC model and the shake algorithm is used to make two O-H bonds 

and the H-O-H angle rigid (Berendsen et al. 1981). According to the ClayFF the total 

interaction energy E of the material is given by Equation (2-1): 

E = ∑ 𝑘1(𝑟𝑖𝑗 − 𝑟0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘2(𝜃𝑖𝑗𝑘 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒

+ ∑ 𝜖𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑒2

4𝜋𝜀0
∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑖,𝑗𝑖𝑗

 

(2-1) 

Where, 𝑘1 and 𝑘2 are force constants; 𝜃𝑖𝑗𝑘 is the angle between bond ij and jk; e 

is the electron charge; 𝑞𝑖 is the partial charge of atom i; 𝜀0 is the dielectric permittivity 
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of vacuum ( 8.85419 × 10−12F/m ); 𝑟0  and 𝜃0  are the equilibrium values of the 

corresponding quantities; and 𝜖𝑖 and 𝜎𝑖 are the usual Lennard-Jones (LJ) energy and 

size parameters. The Lorentz-Berthelot mixing rules are used to calculate the interaction 

parameters between the unlike atoms ij (Cygan et al. 2004) as shown below in 

Equation(2-2) and Equation(2-3) : 

𝜎𝑖𝑗 =
1

2
(𝜎𝑖 + 𝜎𝑗) (2-2) 

𝜖𝑖𝑗 = √𝜖𝑖𝜖𝑗 (2-3) 

Organic compounds such as methane, ethane, and dodecane are represented using 

the OPLS All-Atom force field (Jorgensen et al. 1996). It is worth noting that the mixing 

rules of ClayFF force field and OPLS All-Atom are different. The OPLS All-Atom force 

field uses a geometric mixing rule to obtain the Lennard-Jones interaction parameters 

between unlike atoms, while the Lorentz-Berthelot mixing rule is used for the ClayFF 

force field. For the interaction parameters between clay and organic materials, the use 

of the Lorentz-Berthelot mixing rule has been documented in Sun et al. (2018), Zhao et 

al. (2018), and Li et al. (2019). for methane adsorption in clay minerals and is also 

applied in my study. Meanwhile, Ye et al. (2013) state that although the scaling factor 

of 0.5 (default) for the 1-4 intramolecular interactions in OPLS-AA is appropriate for 

linear alkane chains with less than 10 carbon atoms, it yields quasi-crystalline structures 

when the alkane chain has 12 or more carbon atoms. I, therefore, use a scaling factor of 

0.3 for the 1-4 intramolecular interactions in all dodecane molecules. 

Periodic boundary conditions (PBCs) are used in all 3 directions and the short-
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range interactions are represented by a Lennard-Jones (LJ) 12-6 term (Lennard-Jones 

et al. 1924). The cutoff distance for the short-range nonbonded van der Waals 

interactions is 8 Å following the rule that cutoff distance cannot be larger than half of 

the minimum box size. The long-range electrostatic interactions are calculated by the 

Fourier-based Ewald summation method (Toukmaji et al. 1996) - the particle-

particle/particle-mesh (PPPM) method with a precision value of 10−6 (Eastwood et al. 

1984). The simulations were initially carried out at 350K using an isobaric-isothermal 

(NPT) ensemble. The pressure was fixed at 300 atm with volume fluctuation only in 

the z-direction. I also later assess the impact of temperature by varying it from 300K to 

400K, 450K, and 500K. The motivation for varying the temperature is to assess the 

impact of high-temperature solvents to increase shale oil recovery. A time step of 0.01 

fs was used for 100ps, after which it was increased to 1 fs for 10 ns when the simulations 

reached equilibrium. The pressure was controlled by the Parrinello-Rahman barostat 

(Parrinello et al. 1981) while the temperature was controlled by the Nose Hoover 

thermostat (Nosé et al. 1984). With equilibrium in the NPT ensemble, I switch to the 

microcanonical (NVE) ensemble and continue the simulation for another 10 ns. The 

equilibrium results of Model 5 at different temperatures are shown in Figure 2-4, 

demonstrating my simulation time is enough to reach the equilibrium. All snapshots of 

simulation trajectories are created using OVITO 3.0.0 (Stukowski et al. 2010) and VMD 

1.9.3 is used to produce the LAMMPS input file (Humphrey et al. 1996). 
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Figure 2-4 Simulation results of pure dodecane without confinement (Model 5) in equilibrium stage at 

various temperatures. The green, red, yellow, black, and blue colors represent the temperature at 300K, 

350K, 400K, 450K, and 500K, respectively. The densities after equilibrium stage are 0.75572 g/ml, 

0.72044 g/ml, 0.69252 g/ml, 0.66114 g/ml, and 0.63404 g/ml, corresponding to temperature of 300K, 

350K, 400K, 450K, and 500K, respectively. 

 

2.4 Results and Discussion 

2.4.1 Swelling 

When solvents are injected into oil-bearing reservoirs above miscible conditions, one 

of the mechanisms promoting oil recovery is oil volume swelling (Li et al. 2013; Zheng 

et al. 2016). In my study, Models 1-4 quantify oil swelling under illite confinement, and 

Models 5-8 focus on oil swelling in the bulk. The equilibrium results at T=350 K and 

P=300 atm are shown in Figure 2-5 and Figure 2-6. 
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Figure 2-5 Snapshots showing the four models of illite containing fluids after equilibrium at 350K and 

300 atm. The figures have the same color codes as in Figure 2-2. Model 1 is set as a reference condition 

under illite confinement. Models 2, 3, and 4 show oil swelling when I inject solvents (C1/C2/C2+water) 

into Model 1. Regions A and B in Model 2 show that some methane remains insoluble in the dodecane 

at the experimental pressure and temperature. Model 4 shows that water molecules adsorb on the illite 

surface while the unabsorbed water forms a water bridge between the top and bottom of the pore 

(dodecane and ethane are treated by a transparent process). It should be noted that the illite is not fixed 

in these simulations, and the unbalanced distribution of water between the clay layers (Model 4) causes 

some warping of the clay plates in Model 4. I will discuss this phenomenon in detail in Chapter 3.  
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Figure 2-6 Snapshots showing the four models of fluids in bulk condition after equilibrium at 350K and 

300 atm. The four simulation cells have the same color codes as in Figure 2-3. The hydrogen H is not 

shown in these snapshots. Model 5 is set as a reference condition for bulk fluids. Models 6, 7, and 8 show 

oil swelling after injection of solvent with the swelling more pronounced compared to Models 2, 3, and 

4 at the same P and T and solvent and oil composition. There is no distinct gas phase indicating complete 

miscibility of methane with the oil in the bulk. 
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After equilibrium, the slit pore width of Model 1 is 2.5 nm as shown in Figure 2-5a. 

Model 1 is set as the reference condition for illite confinement at T=350K and P=300 

atm. When solvent (methane/ethane/ethane+water) is introduced into Model 1, the slit 

pore widths of Models 2, 3, and 4 increase to 4.6 nm, 6.1 nm, and 6.5 nm resulting in 

1.84 times, 2.42 times, and 2.61 times the slit pore width of Model 1 as shown in Figure 

2-5b to Figure 2-5d. It should be noted that illite is not fixed in these simulations, and 

the unbalanced distribution of water between clay layers (in Model 4) causes some 

warping of the clay plates. 

Model 5 is set as the reference condition for bulk fluid behavior at T=350K and 

P=300 atm. After equilibrium, the height of Model 5 is 4.4 nm as shown in Figure 2-6a. 

Adding solvent to Model 1 results in the simulation cells of Models 6, 7, and 8 having 

heights of 9.6 nm, 11.2 nm, and 12.5 nm respectively resulting in 2.15 times, 2.52 times, 

and 2.80 times the height of Model 5 as shown in Figure 2-6b to Figure 2-6d.  

At the same pressure and temperature, the volume of dodecane in the bulk (Model 

5) is 1.54 times the volume of confined dodecane in Model 1. Confinement appears to 

negatively impact oil swelling with the swelling in bulk being about 1.78, 1.59, and 

1.64 times the swelling under confinement when comparing Models 2 and 6, Models 3 

and 7, and Models 4 and 8, respectively.  

Additionally, Figure 2-5b shows that methane appears partly immiscible with 

dodecane at the pressure and temperature of the experiment and forms a distinct gas 

phase while in Figure 2-6b (methane and dodecane in the bulk), the methane is almost 
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completely miscible in the oil phase at the conditions just below the saturation pressure 

(The phase envelope of the mixture in Figure 2-6b is provided in Figure 2-7a). This 

result indicates that methane molecules have a higher solubility in the bulk condition 

than under illite confinement. I also show the immiscibility of methane at other values 

of pressure and temperature as seen in Figure 2-7c to Figure 2-7d. Figure 2-6d also 

presents an interesting phenomenon where water molecules coalesce to form a water 

bridge, not water droplets. I will discuss this phenomenon in detail in Chapter 3.   
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Figure 2-7 Phase envelope and molecular simulations for methane/dodecane at 350 K, 450 K, and 500 K 

respectively. At 350k, the mixture is just within the 2-phase region, while at 400k and 500K, the mixture 

is a single-phase liquid in bulk. However, looking at the figures above, methane remains only partly 

miscible with dodecane indicating that methane molecules have a higher solubility in the bulk than under 

illite confinement. 
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2.4.2 Viscosity 

There are at least five different atomistic simulation methods developed for computing 

the shear viscosity of liquids such as moving a wall to shear the fluid between two walls 

(Denis et al. 1984), using fixed viscosity and the Muller-Plathe method (Plathe et al. 

1997) or using the Green-Kubo method (Green et al. 1954), etc. Due to its simplicity, 

the Green−Kubo relation based on equilibrium molecular dynamics (MD) simulations 

is perhaps the most widely used method (Allen et al. 1988). In the Green−Kubo 

approach, the shear viscosity is calculated from an integral over time of the pressure 

tensor autocorrelation function as shown in Equation (2-4): 

𝜂 =
𝑉

𝑘𝐵𝑇
∫ ⟨𝑃𝛼𝛽(𝑡) ∙ 𝑃𝛼𝛽(0)⟩𝑑𝑡

∞

0

 (2-4) 

where V is the system volume, 𝑘𝐵 is the Boltzmann constant, T is the temperature, 

𝑃𝛼𝛽 denotes the element 𝛼𝛽 of the pressure tensor (𝛼𝛽 = 𝑥𝑦, 𝑥𝑧, 𝑦𝑥, 𝑦𝑧, 𝑧𝑥,  𝑜𝑟 𝑧𝑦), 

and the bracket indicates the ensemble average. Theoretically, the pressure tensor 

autocorrelation function decays to zero in the long-time limit and the integral in 

Equation (2-4) reaches a constant value, which corresponds to the calculated shear 

viscosity. In practice, however, it is very time-consuming to run the simulations long 

enough to obtain accurate viscosities. An alternative strategy is to run multiple 

independent simulations and taking the average of the running time integrals (Mouas et 

al. 2012; Mondal et al. 2014). This method is computationally tractable, less time-

intensive, and provides reliable results (Zhang et al. 2015).  

To calculate the viscosity at different temperatures (300K, 350K, 400K, 450K, and 
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500K), I ran 200 simulations from 5 independent trajectories starting at the same 

configuration but a different initial velocity assignment, which is obtained from a 

random seed. Each trajectory is 20 ns long with the first 10 ns (equilibrium time) 

ignored in the viscosity calculation. Meanwhile, the elements of pressure tensor (𝛼𝛽 =

𝑥𝑦, 𝑥𝑧, 𝑦𝑧)  are calculated at different temperatures. The average viscosities and 

equilibrium densities of Model 5 at different temperatures are shown in Figure 2-8. 

Alphabets a, b, c, d, and e in Figure 2-8 correspond to the temperatures at 300K, 350K, 

400K, 450K, 500K respectively. Red, green, and blue curves correspond to the average 

pressure tensors at xy, xz, and yz directions separately. Figure 2-8a-e indicates that after 

4 ns, the curves become smooth, and the fluctuations are small. Therefore, I can 

conclude that 10 ns production time is long enough to reach the long-time limit since 

the integral converges to a constant value. Then I average the viscosity over three 

directions (μ =
𝜇𝑥𝑦+𝜇𝑥𝑧+𝜇𝑦𝑧

3
 ) to calculate the fluid viscosity. NIST data for dodecane 

is used to verify the accuracy of the MD simulations. Meanwhile, the final calculated 

viscosities and NIST data are shown in Figure 2-9a. 

Figure 2-8f presents the equilibrium densities of Model 5 for 10 ns at different 

temperatures. In Figure 2-8f, the green, red, yellow, black, and blue curves represent 

the densities at 300K, 350K, 400K, 450K, and 500K respectively. The densities 

obtained after equilibrium are 0.75572 g/ml, 0.72044 g/ml, 0.69252 g/ml, 0.66114 g/ml, 

and 0.63404 g/ml corresponding to the temperature of 300K, 350K, 400K, 450K, and 

500K respectively. The densities at different temperatures are compared between Model 
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5 and NIST data, as shown in Figure 2-9b. Figure 2-9 demonstrates that the calculated 

results have an excellent agreement with NIST data.  

 

Figure 2-8 Calculated averaged running integral (Equation (2-4)) from 5 independent 10 ns long 

equilibrium MD trajectories and equilibrium densities for Model 5 at different temperatures. Panels a, b, 

c, d, and e correspond to the temperature at 300K, 350K, 400K, 450K, 500K, respectively. Red, green, 

and blue curves correspond to the average pressure tensor at xy, xz, and yz directions separately. In panel 

f, the green, red, yellow, black, and blue colors represent the temperature at 300K, 350K, 400K, 450K, 

and 500K, respectively. The densities after equilibrium stage are 0.75572 g/ml, 0.72044 g/ml, 0.69252 

g/ml, 0.66114 g/ml, and 0.63404 g/ml, corresponding to temperature 300K, 350K, 400K, 450K, and 

500K, respectively. 
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Figure 2-9 Calculated densities and viscosities as a function of temperature. The results show that the 

calculated densities (Model 5) agree with NIST densities very well. In Model 8, the calculated viscosities 

are lower than Model 7, since mixtures of water and hydrocarbons exhibit complex multiphase behavior 

at elevated temperatures and the water dissolution makes the liquid phase (hydrocarbons) viscosity lower 

in the simulation 
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I also calculate the viscosities for Models 6-8 (fluid in the bulk) and the results are 

shown in Figure 2-9 with the expected decrease in density and viscosity with 

temperature increases. The density and viscosity of the mixtures also decrease with 

solvent injection. Model 8 (with water in an ethane/dodecane mixture) has a lower 

viscosity than Model 7 without water. In some cases, water can act as a solvent to further 

lower the viscosity and lowering liquid viscosity (Huang et al. 2016; Yang et al. 2017; 

Xiong et al. 2019) which appears to be the case here. 

Figure 2-10 shows the calculated viscosities of Models 1-4 (confined mixtures) as 

a function of temperature. The viscosities of the confined fluids in Models 1-4 are much 

higher than those of Models 5-8 as shown in Figure 2-10 and Figure 2-9a. The confined 

fluid viscosities are in fact up to 2 orders of magnitude higher compared to the fluids in 

bulk demonstrating the strong impact of illite confinement on fluid properties. A few 

previous papers also allude to similar results (Klein et al. 1998; Cui et al. 2001) 

indicating that a strong surface-fluid interaction causes increases in fluid viscosity 

through a phase transition region from liquid-like to solid-like behavior. 

Additionally, water dissolution leads to slight decreases in viscosity in Model 8 

(compared to Model 7) while in Model 4, the viscosity increases in comparison to 

Model 3 with no water. The unabsorbed water molecules form a bridge that is likely to 

increase the viscosity of the mixture. 
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Figure 2-10 Calculated viscosities in Models 1-4 as a function of temperature. The results indicate that 

viscosities are decreased as solvents are injected. Ethane has a better performance than methane due to 

its solubility and stronger oil swelling. However, the viscosities in Model 4 increase a bit compared to 

Model 3. The reason is that water molecules are likely to adsorb on the illite surface, which decreases 

the effective volume change for hydrocarbons. Another reason is that water molecules show less 

solubility than those in bulk density. 

 

2.4.3 Self-diffusion 

There are two common ways to obtain the self-diffusion coefficient (Keffer et al. 2004). 

The Einstein method relates the mean square displacement (MSD) to the observation 

time (Frenkel et al. 2002). The second method uses the velocity auto-correlation 

function in a Green-Kubo relation (Allen et al. 1988). Theoretically, both methods 

should yield the same results. However, Keffer et al. (2001) concluded that there was a 

‘long-time’ tail in the Green-Kubo relation that might result in numerical problems 
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necessitating long simulation times for reliable self-diffusivity from velocities rather 

than from the positions. Therefore, in this study, I will obtain self-diffusion coefficients 

from position data. The MSD is defined as Equation (2-5): 

𝑀𝑆𝐷 = ⟨(𝑥 − 𝑥0)2⟩ =
1

𝑁
∑(𝑥𝑛(𝑡) − 𝑥𝑛(0))

2
𝑁

𝑛=1

 (2-5) 

Where N is the number of particles to be averaged, 𝑥𝑛(𝑡) = 𝑥0 is the reference 

position of each particle, and 𝑥𝑛(𝑡) is the position of each particle in determined t. The 

self-diffusion coefficient is related to the mean square displacement of a particle as a 

function of observation time (Keffer et al. 2004) allowing us to get the self-diffusion 

coefficient from the mean square displacement. The self-diffusion coefficient is defined 

as Equation (2-6): 

𝐷 =
1

2𝑑
lim
𝑡→∞

⟨(𝑥 − 𝑥0)2⟩

𝑡
 (2-6) 

where D is the self-diffusion coefficient, and d is the dimensionality of the system. 

It should be noted that when we use MD simulation to calculate the self-diffusion, it is 

necessary to know whether the mean square displacement behavior is satisfactorily 

close to the long-time limit. Keffer (2001) provides us a method to solve this problem 

by plotting the mean square displacement vs elapsed time as shown in Figure 2-11a on 

a cartesian scale and a log-log scale as shown in Figure 2-11b. There are usually three 

regimes as shown in Figure 2-11b. Regime I is ‘collision-free motion’, which occurs at 

very short observation times. Regime II is the ‘intermediate time regime’. Regime III 

is the long-time behavior where the mean square displacement is proportional to the 

observation time. We only use region III to determine the self-diffusion coefficient. If 
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there is no region three, the simulation time is not long enough to approximate long-

time behavior.  

 

Figure 2-11 Mean square displacement as a function of observation time from reference (D. Keffer et al. 

2001). Panel b is plotted on a log-log scale, which uses the same data from panel a. Panel b shows three 

regimes: I) free motion region; II) intermediate time regime, and III) long time behavior regime. We only 

use regime III to calculate the self-diffusion coefficient. 
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To make the results more reliable, 4 independent trajectories are generated starting 

from the same configuration but a different random seed for initial velocity assignment 

for each model to obtain mean square displacement. The results of Model 3 at 

temperature 350 K and pressure 300 atm are shown in Figure 2-12. Remembered that 

Model 3 contains 100 dodecane and 400 ethane molecules. All of them are under illite 

confinement. In Model 3, the mean square displacements (MSD) of dodecane, solvents 

(methane/ethane), and their mixtures are calculated as shown in Figure 2-12a. Figure 

2-12b indicates that simulation time of 10 ns is long enough to reach the long-time limit 

since all the MSD plots show a linear relationship with observation time on a log-log 

scale. 
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Figure 2-12 Mean square displacement as a function of observation time for Model 3 at temperature 350 

K and pressure 300 atm. Panel b is on the log-log scale. The dashed lines are ethane in methane/dodecane 

mixture; The solid lines are ethane/dodecane mixture; The dashed dot lines are dodecane in 

ethane/dodecane mixture. 

Figure 2-13 shows the calculated self-diffusion of fluids as a function of 

temperature. Figure 2-13a indicates that injected solvents can enhance the self-diffusion 

of dodecane by comparing Model 1 to Models 2-4. Figure 2-13a-b also demonstrates 

that the self-diffusion of dodecane and ethane in Model 3 is larger than that in Model 4 
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and is likely because of the presence of water in Model 4. Figure 2-13c-d shows the 

calculated self-diffusion from Models 1-8. The results indicate that illite confinement 

has a strong effect on self-diffusion. The self-diffusions of fluids in the bulk are almost 

3 times the self-diffusion coefficient of fluids under illite confinement. 
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Figure 2-13 Calculated self-diffusion of fluids as a function of temperature. Panel a shows the calculated 

self-diffusions of dodecane from Models 1-4. Panel b shows the calculated self-diffusions of solvents 

from Models 2-4. Panel c and d show the calculated self-diffusions of mixtures from Models 1-8. The 

results indicate that illite confinement has a strong effect on self-diffusion, and injected solvents can 

enhance the self-diffusion of dodecane. Meanwhile, water molecules adsorbed on the illite surface will 

decrease the effective flow volume and finally lower the self-diffusion of dodecane. 
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2.5 Numerical Simulation 

3 numerical simulation models are constructed to investigate the effects of confinement 

in shale oil recovery using the CMG GEM simulator. The model consists of 25×25×5 

(I×J×K) blocks. The grid sizes along I and J directions are 50 ft. In the K direction, it is 

25, 20, 15, 20, and 30 ft respectively. The schematic is shown in Figure 2-14. The initial 

oil saturation is 0.76. The aqueous (W) phase initially exists at its irreducible saturation 

of 0.24. A dual permeability model is used to simulate the matrix and hydraulically 

fracture. The reservoir temperature and pressure are 350K and 300 atm respectively. 

Table 2-3 summarizes the rock physical used in the numerical simulations (Sheng, 

2017). Table 2-4 summarizes fluid composition and the Peng-Robinson EOS 

parameters. The primary production time is 30 months. The injection time is 3 months. 

Shut-in time is 1 month. The time of the ‘Puff’ process is 13 months. There are 3 cycles 

in Simulations 1 and 2. The relative permeability curves for CMG simulations are given 

in Figure 2-15 (Sheng, 2017). It is important to mention that this simulation is a very 

idealized simulation with a single-component fluid and only considers one pore size. 

The results shown here are indicative of the impact of confinement on fluid mobility 

but the numbers should not be used for anything other than instructional purposes.  
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Table 2-3. Rock physical properties for CMG simulation model 

Rock physical property Value 

Reservoir depth 10500 ft 

Matrix porosity  0.056 

Fracture porosity 0.0056 

Matrix permeability 0.0003 mD 

Fracture permeability 0.022 mD 

Rock compressibility of fracture 1e-5 

Rock compressibility of matrix 1e-6 

Reference pressure of rock compressibility determination 300 atm 

Injected solvent C2H6 

 

Table 2-4. Fluid properties for CMG simulation model 

Component 
Initial mole 

fraction 

Pc (atm) Tc (K) Vc 

(L/mole) 

Acentric 

Factor 

MW 

(g/mole) 

C2H6 (injection gas) 0 45.4 190.6 0.099 0.008 16.04 

C12H26 (reservoir oil) 1 21.6 663.9 0.626 0.5222 161 

 

 

Figure 2-14 Schematic of the base model from the top view. 
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Figure 2-15 Water and oil relative permeabilities (Sheng, 2017). 

I assume that the formation is homogenous and comprised of a single pore throat 

size allowing me to assume that the viscosity of the oil-solvent mixture increases by a 

factor of 300 and the diffusion coefficient decreases by a factor of 3 under confinement 

as shown in Figure 2-9a, and Figure 2-10. Simulation 1 shows oil recovery for bulk oil, 

solvent, and mixture properties while Simulation 2 shows oil recovery under 

confinement for huff-n-puff enhanced oil recovery. Simulation 3 shows primary oil 

recovery under confinement. Simulations 1 and 2 have 3 cycles during the huff-n-puff 

process. A summary of 3 numerical simulations is provided in Table 2-5. Note: The 

number of 2.4 × 10−8 cm2/s is obtained from molecular dynamics, as shown in Figure 

2-13b. The number of 8 × 10−8 cm2/s is also calculated from molecular dynamics, as 

shown in Figure 2-16, where I provide the diffusion coefficients of methane and ethane 

as a function of temperature in bulk conditions.  
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Table 2-5 Summary of numerical simulation models 

 

 

Figure 2-16 Self-diffusion coefficients of methane and ethane as a function of temperature in bulk 

condition. 

The results of oil recovery of 3 numerical simulations are shown in Figure 2-17a 

with Simulations 1 (green curve), 2 (red curve), and 3 (black curve) having oil 

recoveries of 27.5%, 12.5%, and 5% respectively. Comparing Simulations 2 and 3, huff-

n-puff miscible gas injection is promising for unconventional reservoir enhanced oil 

recovery even if confinement effects compromise the benefits that would have been 

possible with fluids in the bulk. In addition to the surface area arguments, the effect of 

confinement can help explain why field tests perhaps do not show as high of recovery 

compared to numerical and experimental studies.  

The gas-oil ratio is shown in Figure 2-17b. showing that the produced GOR is higher 
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when confinement effects dominate. This is because of the slower diffusion coefficients 

as well as the higher oil viscosities which compromise gas solubility and oil production 

rates. 

 

Figure 2-17 Oil recovery and gas oil rate of 3 numerical simulations as a function of production time. 

The oil recovery factor of simulations 1 (green curve), 2 (red curve) and 3 (black curve) are about 27.5%, 

12.5% and 5% respectively. Panel a indicates that huff-n-puff still acts a positive role in unconventional 

reservoir oil recovery according to Simulations 2 and 3. However, when I consider the confinement 

effects, the oil recovery decreases from 27.5% to 12.5% according to Simulations 1 and 2. This 

phenomenon might explain why previous numerical studies have a higher oil recovery than the field tests. 

Panel b demonstrates that miscibility is difficult to achieve in the unconventional reservoir. During the 

‘puff’ process, a huge amount of undissolved gas comes out suddenly to form a GOR peak. Simulation 

1 shows the lowest GOR, while Simulation 2 shows the highest. 
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2.6 Final Remarks 

In this chapter, I have conducted a series of molecular dynamics and numerical 

simulations to study solvent-oil mixtures in clay minerals, specifically within illite. I 

demonstrate that oil swelling, viscosity, and self-diffusion coefficients as well as the 

behavior of water are impacted by illite confinement. The key observations of this study 

are summarized as follows: 

⚫ The illite confinement hinders gas solubility and under the same conditions, 

methane is seen to be only partly miscible under confinement while being 

fully miscible with dodecane in the bulk.  

⚫ The solvent-oil mixture viscosity under confinement is higher by about two 

orders of magnitude compared to the fluid in bulk condition compromising 

liquid production. 

⚫ The self-diffusion coefficients of fluids in bulk condition are almost 3 times 

their value under confinement illustrating that confinement can negatively 

impact liquid production.  

 

2.7 Nomenclature 

𝑘1 and 𝑘2 = force constants, kcal/mol Å2 

𝜃𝑖𝑗𝑘 = the angle between bond ij and jk , degree 

e = the electron’s charge, e 

𝑞𝑖 = the partial charge of an atom I, e 
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𝜀0= the dielectric permittivity of vacuum (8.85419 × 10−12), F/m 

𝑟0 and 𝜃0 = the equilibrium values of the corresponding quantities. Å and degree 

𝜖𝑖 = the usual Lennard-Jones (LJ) energy parameters, kcal/mol 

𝜎𝑖 = the usual Lennard-Jones (LJ) size parameters, Å 

V = the system volume, nm3 

𝑘𝐵 = the Boltzmann constant 

T = the temperature, Kelvin 

P=the pressure, atm 

𝑃𝛼𝛽 = the element 𝛼𝛽 of the pressure tensor (𝛼𝛽 = 𝑥𝑦, 𝑥𝑧, 𝑦𝑥, 𝑦𝑧, 𝑧𝑥,  𝑜𝑟 𝑧𝑦) 

N = the number of particles to be averaged 

𝑥0 = the reference position of each particle 

𝑥𝑛(𝑡) = the position of each particle in determined t 

D = the self-diffusion coefficient, cm2/s 

d = the dimensionality of the system 

μ𝑥𝑦=the viscosity from xy direction. 

μ𝑥𝑧=the viscosity from xz direction. 

μ𝑦𝑧=the viscosity from yz direction.  
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Chapter 3 Water Bridges in Clay Nanopores: Mechanisms of 

Formation and Impact on Hydrocarbon Transport 

3.1 Introduction 

Chapter 2 showed the formation of a water bridge alongside adsorption in clay pores. 

In this chapter, I take a closer look at the formation mechanisms of this water bridge 

and its impact on hydrocarbon transport. 

 

3.2 Clay Slit Pore Models  

The clay model is created using the illite structure described in Chapter 2 and illustrated 

in Figure 2-1. Here I discuss different clay surface chemistries to investigate their effect 

on fluid distribution. 

There are generally four illite slit pore structures discussed in literature based on 

the charged clay surface chemistry: potassium-hydroxyl (P-H) (Hao et al. 2018) which 

is also presented in Chapter 2, hydroxyl-hydroxyl (H-H) (Jin et al. 2013), potassium-

potassium (P-P) (Zhang et al. 2016a), and a structure between the P-H and H-H pore 

systems (Jin et al. 2014), as shown in Figure 3-1. 

In the P-H model, all the potassium ions are adjacent to the upper surface leading 

to a charge imbalance and these ions can move freely in the interlayer space as shown 

in Figure 3-1a. In the H-H model, as shown in Figure 3-1b, there are no ions on the clay 

surface and the charges are balanced. In the P-P model (Figure 3-1c), the upper and 

lower surfaces have an equal number of potassium ions. In Figure 3-1d, the potassium 

ions are randomly distributed in the clay nanopores which leads to a clay structure that 
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lies in between the P-H and H-H structures (Jin et al. 2014) following an equilibrium 

MD simulation. The unbalanced ionic distribution on the clay surfaces is also consistent 

with Jin et al.(2013 and 2014) and detailed results are provided in Appendix B. 

Clay minerals consist of asymmetrically distorted Si-tetrahedra and Al-octahedra 

sheets (Richard et al. 2019), which might change ion distribution and consequently, the 

electrical properties of the clays. For instance, during cation substitutions, an 

unbalanced surface charge might occur (Tombácz et al. 2006; Kumar et al. 2017; 

Umeda et al. 2017; Fan et al. 2018; Hao et al. 2019a). Therefore, these four different 

illite-slit pore structures can also be classified by the ion distribution: unbalanced 

(Figure 3-1a and Figure 3-1d) and balanced (Figure 3-1b and Figure 3-1c). To simplify 

my study and following extensive published work in this area (Jin et al. 2013 and 2014; 

Sun et al. 2015; Zhang et al. 2016b; Lara et al. 2017; Hao et al. 2018 and 2019b; Xiong 

et al. 2019b;). I choose P-H and H-H structures to represent clay surfaces with 

unbalanced and balanced ionic distributions throughout the remainder of this 

dissertation. Since the fluid behavior within the P-P structure is similar to that in the H-

H structure the interested reader can refer to Kim et al. (2020). 
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Figure 3-1 Illustration of four illite slit-pore structures. P and H stand for potassium and hydroxyl. a) P-

H pore has potassium ions on only one surface; b) is the H-H pore with no potassium ions; c) is the P-P 

pore with an equal number of potassium ions on both surfaces and d) is the structure that lies in between 

the P-H and H-H pore structures in terms of ion distribution.   

Kuila et al. (2013) use N2 gas-adsorption and mercury intrusion porosimetry (MIP) 

showing that clays are associated with multiple scales of pore structures (~3-100 nm). 

Therefore, in my study, three different basal spacings (5nm, 10nm, and 15nm) are 

constructed for each illite pore model.  

To study the effect of water concentration on fluid transport, I construct seven 

models with different concentrations for each slit pore width. Dodecane and ethane are 

chosen to represent hydrocarbon (oil-solvent) following Chapter 2. The number of fluid 

components is determined by the Peng-Robinson equation to guarantee the target 

pressure and temperature (Peng et al. 1976). Models A1-A7, B1-B7, and C1-C7 contain 

different water concentrations in the P-H nanopore of width 5, 10, and 15 nm 

respectively. Table 3-1 summarizes all the 21 P-H models. Another 21 MD models with 

the H-H configuration are constructed and they share the same fluid composition as 

listed in Table 3-1. Initial configurations of Models A1-A7 are shown in Figure 3-2. To 
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keep the temperature and pressure constant at 350 K and 400 atm respectively, when 

the hydrocarbon concentration decreases as the water concentration increases.  

 

Table 3-1Description of the models used in chapter 3 

Slit pore 

width, nm 
P-H/H-H Models  

Number of molecules Water 

concentration 

(Cw), mol % 
Water Dodecane Ethane 

5 A 

1 0 90 360 0.00 

2 100 86 344 18.87 

3 250 80 320 38.46 

4 500 70 280 58.82 

5 750 60 240 71.43 

6 1000 50 200 80.00 

7 2000 0 0 100.00 

10 B 

1 0 180 720 0.00 

2 200 172 688 18.87 

3 500 160 640 38.46 

4 1000 140 560 58.82 

5 1500 120 480 71.43 

6 2000 100 400 80.00 

7 4000 0 0 100.00 

15 C 

1 0 270 1080 0.00 

2 300 258 1032 18.87 

3 750 240 960 38.46 

4 1500 210 840 58.82 

5 2250 180 720 71.43 

6 3000 150 600 80.00 

7 6000 0 0 100.00 
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Figure 3-2 Snapshots showing the initial configurations of the Models A1-A7 in slit pore of 5 nm, where 

Cw stands for the water concentration. The clay structure contains the same color codes as in Figure 3-1. 

The color codes of fluid molecules are ethane, green; dodecane, light blue; and H2O, red. 

 

3.3 Simulation Details 

The simulation process followed is similar to that described in Section 2.3, starting with 

the random placement of dodecane, ethane, and water in the slit nanopore using the 

Packmol package (Martínez et al. 2003). ClayFF force field is applied to describe the 

interatomic interactions for illite structure and the cations (Cygan et al. 2004). Water 

molecules are described using a flexible SPC model and the shake algorithm is used to 

make two O-H bonds and the H-O-H angle rigid (Berendsen et al. 1981). OPLS All-

Atom force field is employed to represent the organic components such as ethane and 

dodecane (Jorgensen et al. 1996). Periodic boundary conditions (PBCs) are used in all 
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three directions and the cutoff distance for the short-range nonbonded van der Waals 

interactions is 8 Å. The long-range electrostatic interactions are calculated by the 

particle-particle/particle-mesh (PPPM) method with a precision value of 10−6 

(Eastwood et al. 1984). The illite-structural atoms (Al, Si, and O) are kept rigid to their 

crystal lattice sites, except that H+ in hydroxyl and the cation K+ are mobile with thermal 

motion (Hao et al. 2018).  

The initial step involves running an NVT ensemble MD simulation with a time 

step of 0.01 fs for a total time of 100ps, after which it is increased to 1 fs for a time of 

10 ns. The temperature is held at 350 K by the Nose-Hoover thermostat (Nosé et al. 

1984). All snapshots of simulation trajectories are created using OVITO 3.0.0 

(Stukowski et al. 2010) and VMD 1.9.3 is used to produce the LAMMPS input file 

(Humphrey et al. 1996). 

 

3.4 Results and Discussion 

3.4.1 Distribution of Water and Hydrocarbon in P-H Nanopore 

Figure 3-3 shows the equilibrium configurations and water number density profiles (in 

the x-direction) for different water concentrations (Cw) in a 5 nm pore. The illite 

structure is not presented for clarity. Unsurprisingly, Figure 3-3 indicates that water 

molecules preferentially adsorb onto the clay surface with one distinct peak in the 

number density profile indicating a single adsorption layer. This is attributed to the 

strong electrostatic interactions between water and clay surface (Phan et al. 2012), and 
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the hydrogen bond between water and surface hydroxyl and oxygen groups (Bourg et 

al. 2012).  

Another observation is that more water molecules are adsorbed on the surface 

hydroxyl layer than the potassium layer as shown in Figure 3-3a, which agrees with 

previous reports (Osipov et al. 2012; Rao et al. 2013; Hao et al. 2018) and is because 

the hydration energy of oxygen and hydroxyls on the clay surface is comparable or even 

slightly higher than the hydration energy of potassium cations (Sposito et al. 2006). 

Additionally, adsorption between water and oxygen atoms and hydroxyl groups due to 

hydrogen bonds are stronger than the electrostatic interaction between water and 

potassium (Méring et al. 1967). Also when cations interact with a mineral surface, their 

hydration weakens naturally during adsorption (Osipov et al. 2012), therefore the water 

adsorption on the potassium layer in my simulations is relatively weak. I also calculate 

the Van der Waals force of one water molecule in a P-H nanopore as shown in Figure 

3-4. It indicates that the absolute value of van der Waals force near the hydroxyl layer 

is about 0.65 Kcal/mol/Å, which is higher than that near potassium layer (absolute value 

is about 0.3 Kcal/mol/Å). Thus, the calculated result confirms that water is more likely 

to adsorb on the hydroxyl layer than the potassium layer. The configuration and water 

number density profiles (x-direction) of different concentrations in pore widths of 10 

nm and 15 nm are provided in Figure 3-5 showing the distributions of water in the 

nanopore, which are like the trends in Figure 3-3. 
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Figure 3-3 Configurations and water number density profiles (in yellow curves) of different water 

concentrations at equilibrium at 350 K and 400 atm for a P-H nanopore. Illite structure is not presented 

for clarity. The higher density peaks adjacent to the hydroxyl surface indicate that water preferentially 

adsorbs on the hydroxyl and oxygen layer compared to the potassium layer. Liquid color codes: Oxygen 

in H2O, red; Hydrogen, white; Carbon in dodecane, blue; Carbon in ethane, green. 

 

Figure 3-4 Schematic diagram of calculated Van der Waals force near P-H surface. The calculated Van 

der Waals force confirms that water is more likely to adsorb on the hydroxyl layer than the potassium 

layer. 
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Figure 3-5 Configurations and water number density profiles (x-direction) of different water 

concentrations in pore width of 10 nm and 15 nm after the equilibrium in MD simulations at 350 K and 

pressure 400 atm. The illite structure is not shown for clarity. The blue lines are water number density 

profiles. The result illustrates that the distribution of water and dodecane-ethane in the nanopore, which 

are similar to that in Figure 3-3. 

Figure 3-6 shows the structures and number density profiles (z-direction) of water 

and the hydrocarbon mixture at different water concentrations for a pore width of 5 nm 

for a P-H nanopore. The illite structure is not presented and the hydrocarbons are 

rendered translucent for the ease of observation. Figure 3-6a indicates that when the 

water concentration is 18.87 %, the water film connects across the pore in the form of 

a water bridge at 350K and 400 atm. The number density profile of hydrocarbon is non-

zero because the bridge does not span the entire width in the y-direction (The side view 
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of hydrocarbon and water for Figure 3-6a is provided in Figure 3-7).  

Figure 3-6b demonstrates that when water concentration is increased to 58.82 %, 

two water bridges form as interpreted from two peaks of the water density profile. 

Figure 3-6c (front view) and Figure 3-6e (side view taken at 2 nm from the left) are the 

simulation results at a water concentration of 71.43%. According to the number density 

profiles of water and hydrocarbon in Figure 3-6c, the water and hydrocarbon are almost 

equally distributed along the x-direction in an x-z film with a minimum thickness of 

12.4 Å. However, from the side view, as shown in Figure 3-6e, it shows that the water 

film connects across the whole slit pore. Figure 3-6c also illustrates that both water and 

hydrocarbon are continuous phases at a water concentration of 71.43%. When the water 

concentration is further increased to 80%, the hydrocarbon mixture forms a droplet in 

between 2 water films as seen in Figure 3-6d. It should be noted that the fluctuation in 

the number density profiles in Figure 3-6 mainly comes from the periodical 

arrangement of hydroxyl groups and oxygen on the clay surfaces (Liu et al. 2017).  
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Figure 3-6 Equilibrium configurations and number density profiles (z-direction) for different water 

concentrations in the 5 nm pore at 350 K and 400 atm for a P-H nanopore. Illite structure is not shown 

for clarity. The results illustrate that water solubility in the hydrocarbon is possible at a certain 

temperature and pressure conditions and the ‘free’ water molecules can disperse in the hydrocarbon to 

form water bridges. 

 

Figure 3-7 Configurations of hydrocarbon and water distribution in the 5 nm P-H nanopore at the water 

concentration of 18.87%. The white line in panel a is the slice place. Panel b is the slice view for Fig. 6a. 

Panel b indicates that there is a water bridge formed in the P-H nanopore, but the bridge does not span 

the entire width in the y-direction.  
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In Chapter 2, I report that water adsorbs onto the clay surface till fully saturated, 

and then the excess water molecules subsequently form a water bridge. Other 

researchers also report similar ‘water bridges’ in inorganic nanopores (Yanagihara et al. 

2013; Yamashita et al. 2015; Li et al. 2016; Liu et al. 2018), and refer to them as 

‘capillary bridges’ or ‘capillary condensation’ (Yamashita et al. 2013; Tan et al. 2015; 

Danov et al. 2018). It is worth noting that the ‘capillary condensation’ often occurs 

when two adsorbed water films are adequately close to each other (Li et al. 2016). In 

this study, the water bridge persists in P-H nanopores at even 10 or 15 nm pore width 

as shown in Figure 3-8 and Figure 3-9. Thus, the water bridges observed in this work 

are not solely due to ‘capillary condensation’. In the next section, I discuss the 

formation mechanism of the water bridge. 

 

Figure 3-8 Equilibrium configurations and number density profiles (z-direction) of water and 

hydrocarbon for different water concentrations in a P-H nanopore of width 10 nm at 350 K and 400 atm. 

Illite structure is not shown for clarity.   
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Figure 3-9 Equilibrium configurations and number density profiles (z-direction) of water and 

hydrocarbon for different water concentrations in a P-H nanopore of width 15 nm at 350 K and 400 atm. 

Illite structure is not shown for clarity. The results illustrate that the water bridge still exists even when 

the pore width increases from 5 nm to 10nm or 15 nm.  

 

3.4.2 Mechanism of Formation of the Water Bridge 

In this section, I will describe the conditions (partial charge, water concentration, and 

pore width) for the formation of the water bridge. Figure 3-10, Figure 3-11, and Figure 

3-12 present the configurations and number density profiles (z-direction) of 

hydrocarbon and water in H-H slit pores of width 5, 10, and 15 nm in respectively, 

where the illite structure is not shown and hydrocarbons are shown as translucent 

particles for clarity.  
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Figure 3-10 Configurations and number density profiles of water and oil in the hydroxyl-hydroxyl (H-H) 

surface clay slit pore of width 5 nm. Increasing the water concentration promotes the formation of a water 

bridge. 

 

 

Figure 3-11 Configurations and number density profiles of water and oil in the hydroxyl-hydroxyl (H-H) 

clay pore of width 10 nm.  
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Figure 3-12 Configurations and number density profiles of water and oil in the hydroxyl-hydroxyl (H-H) 

clay pore of width 15 nm. The results demonstrate that pore width will affect the formation of water 

bridge and the illite surface shows less effect on the water molecules at the pore center with the increasing 

the pore width. 

1) Partial charge 

Figure 3-10a and Figure 3-10b indicate that there is no water bridge formed in the H-H 

slit pore structure at water concentrations of 18.87% and 58.82% with almost all water 

molecules adsorbed on the hydroxyl surfaces. Figure 3-11a, Figure 3-11b, Figure 3-12a, 

and Figure 3-12b are similar as well. However, Figure 3-6a and Figure 3-6b show a 

water bridge in P-H slit pores for the same concentration of water.  

Inspired by the work of Zhang et al.( 2019), Namin et al.(2013), Fuchs et al. (2007 

and 2008), Ponterio et al. ( 2010), and Chen et al. (2016) who indicate that an electric 

field can change the OH stretching band and water distribution, I hypothesize that the 

positive potassium cations and negative surface in clay nanopores might produce a local 

electric field that influences the structure of water. To validate this hypothesis, I 

calculate the electric field of P-H and H-H pore systems by computing the electrostatic 
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force on a test atom with charge e.  

This is done by measuring a cross-section of the pores devoid of any fluid. I first 

calculate the electric field of P-H and H-H pore systems by computing the electrostatic 

force on a test atom with charge e. As shown in Equation (3-1), the electrostatic force, 

F is the product of the electric field, E and the charge, e: 

𝐹 = 𝐸𝑒 (3-1) 

Because I use a test atom with charge e, the electrostatic force is equal to the 

electric field. In MD simulations, there are 5 force fields: bond, angle, dihedral, van der 

Waals and electrostatic forces. To calculate the electrostatic forces, I ignore the other 

forces. It should be noted that in my LAMMPS script, the measured force is in the units 

of Kcal/mol/Angstrom, where 1 Kcal/mol=0.043eV. e is the electron and V is the volt. 

After a simple unit conversion, 
𝐹

𝑒
= 𝐸 = 0.43

𝑉

𝑛𝑚
. Due to the complexity of the clay 

structure and the small distance (< 10 nm), it is possible to have such a high magnitude 

electric field as shown in Appendix B. Taking the 5 nm P-H (Figure 3-13a) and H-H 

nanopores (Figure 3-13b) as an example, I move a charge e (shown in the red circle) 

along the black curve from the bottom to the top surface of the pore. In LAMMPS 

simulations, I can manually move the charge e along the black curve by changing its 

coordinate step-by-step and recording the corresponding electrostatic force. 
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Figure 3-13 Illustration of the process to calculate the electrostatic force. (a) 5 nm P-H system, and (b) 5 

nm H-H system. 

Figure 3-14 shows the calculated electric field in 5 nm, 10 nm, and 15 nm P-H 

and H-H pores. The average strengths of the electric field in 5 nm, 10 nm, and 15 nm 

P-H pores, as shown in Figure 3-14a, are 12.92 V/nm, 8.72 V/nm, 6.56 V/nm with a 

standard deviation of 0.51, 0.39, and 0.44 V/nm respectively. While in theory, the 

electric field should be uniform (Barrachina et al. 2011), non-uniformly distributed 

charges in the clay minerals cause variations in the electric field near the clay surface. 

The calculated charge distribution of illite is provided in Figure 3-15. In the inset chart 

of Figure 3-15, it shows the non-uniform charge distribution on the illite structure. 

Although the whole illite model is electrically neutral, the main chart shows that the 

surfaces have heterogeneous charge distributions with the average upper and lower 

charge densities of 0.97 and -4.02 c/m2, which can influence fluid distributions. 
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Figure 3-14 Calculated electric fields in different widths. Absolute values of the electric field strengths 

in P-H pores (left) are observed to be larger than those in H-H nanopores (right). Increases in pore width 

decrease the strength of the electric field in both pore systems. It should be noted that no fluid is 

considered when calculating the electric field. 

 

 

Figure 3-15 Charge distribution of illite structure (the inset chart) and the surface charge density (the 

main chart) 

Figure 3-14b shows the calculated electric field in 5 nm, 10 nm, and 15 nm H-H 

pores which range from -1.5 V/nm and 1.5 V/nm. In Figure 3-14b, near the upper 

surface, the strength of the electric field is about 1.5 V/nm. Moving across the pore, the 

field strength decreases to zero, and its absolute value increases again (with an 

accompanying change in direction). Such electric fields have also been observed to 
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occur naturally in zeolite cavities because they have an electrical surface charge 

(Barrachin et al. 1986; Liu et al. 2014; Chen et al. 2015). In both pore systems, an 

increase in pore width is accompanied by a decrease in electric field strength, an 

observation that is consistent with Bueno et al. (2011). 

Skinner et al.(2012), Cramer et al.(2008), and Hao et al.(2019a) also indicate that 

electric field strengths larger than 1 V/nm change the structure of water. A comparison 

of the electric fields in Figure 3-14 suggests that P-H pores exhibit stronger and more 

long-range fields in comparison to H-H pores. In the H-H pore, the electric field is 

greater than 1V/nm for only less than 0.5 nm from the pore surface as shown in Figure 

3-14b. In the P-H nanopore, a strong electric field extends across the entire pore width 

promoting the formation of water bridges.  

In Figure 3-16, I discuss the orientation of the water molecules at a concentration 

of 58.82% in both pore systems. The water orientational direction is defined as the angle 

between V1 and V2 vectors (Figure 3-16a), where V1 is a unit vector normal to the 

surface and V2 is the OH vector. Figure 3-16b shows one sharp peak in the P-H pore at 

130° indicating that the two OH bonds are aligned with the direction of the electric field. 

These results are similar to those presented in Skinner et al. (2012). The OH bond 

orientation in H-H pores is more heterogeneous with a relatively weaker peak at 90°, 

which is consistent with Cramer et al. (2008). Figure 3-14 and Figure 3-16 confirm that 

the existence of the electric field influences the orientation of water molecules within 

the pore. 
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Figure 3-16 In (a), V1 is the unit normal vector. V2 is the OH vector (OH bond angle). θ is the angle 

between two vectors. In (b), It shows the OH bond angle for all water molecules for different pore widths 

in H-H and P-H pores. In P-H pores, a dominant angle of 130° is observed while in H-H pores, the OH 

bond angles are largely random with a weaker peak at 90°. The electric field of Figure 3-15 influences 

the orientation of water molecules in both pore systems. 

Ossowska et al. (2013) report that dipole moments in crystal slabs can induce an 

electric field. When I use periodic boundary conditions in all three directions, there is a 

possibility that the surface and image surface in the z-direction can generate a large 

dipole moment favoring the formation of a water bridge. To eliminate this effect, I 

remove periodic boundary in the z-direction (normal to the surface) and the water 

bridge persists in a 15nm P-H pore as shown in Figure 3-17. This confirms that the 

formation of the water bridge is caused by the electric field induced in the illite 

nanopore, not the dipole moment generated by the surface and image surface. 
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Figure 3-17 Initial (left) and final (right) configurations for 15 nm P-H nanopore with water saturation 

of 38.46%. Note: the cutoff distance is 0.8 nm and hydrocarbon not shown in panel b. The periodic 

boundary in the z-direction is removed. 

 

2) Water concentration 

Figure 3-10 indicates that the water concentration can also influence the formation of 

water bridges even in H-H nanopores. At low water concentrations such as 18.87% and 

58.82%, almost all water molecules are adsorbed onto the illite surface and no water 

bridges are observed as shown in Figure 3-10a and Figure 3-10b. When the water 

concentration increases to 71.43%, a water bridge is formed as shown in Figure 3-10c. 
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For the last 2 ns, the average minimum thickness of the water bridge in the x-direction 

is 2.1 nm with a variance of 0.08 nm as shown in Figure 3-18. It should be noted that 

even though Figure 3-10c shows a water bridge at high-water concentration, the oil 

phase is not continuous in contrast to Figure 3-6c (for a P-H nanopore) where both oil 

and water are continuous phases. Finally, at a water concentration of 80%, a small oil 

droplet forms as shown in Figure 3-10d which is similar to Figure 3-6d and the results 

presented in Liu et al. (2018). Figure 3-11 and Figure 3-12 show the results for pore 

widths of 10 and 15 nm. 

 

Figure 3-18 Thickness of water bridge at the water saturation of 71.43% in 5 nm H-H nanopore during 

the whole simulation time.  

 

3) Pore width 

Figure 3-10, Figure 3-11, and Figure 3-12 demonstrate that pore width also affects the 

formation of a water bridge. Figure 3-10c indicates that the water bridge is formed in 5 

nm H-H nanopore with a minimum thickness of 2.1 nm in the x-direction. Increasing 
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the pore width to 10 nm as shown in Figure 3-11c, the thickness of the water bridge 

decreases to 0.7 nm. Further increasing to 15 nm, there is no water bridge as shown in 

Figure 3-12c. That is, at the same water concentration, the water bridge is more inclined 

to form in smaller pores. Meanwhile, comparing Figure 3-11a/Figure 3-12a and Figure 

3-11b/Figure 3-12b, we can see that increasing the pore width reduces the influence of 

the illite pore surface on the water, leading to the formation of small water droplets in 

the middle of the pore as shown in Figure 3-12a and Figure 3-12b. This phenomenon is 

similar to capillary condensation as reported in Yamashita et al. (2013), Tan et al. (2015), 

and Li et al. (2016). 

 

3.4.3 Self-diffusion 

The self-diffusion coefficient is obtained following the procedure described in Section 

2.4.3 in Chapter 2. The calculated self-diffusions of the different fluid molecules in P-

H and H-H nanopores are shown in Figure 3-19 and Figure 3-20 respectively as a 

function of the water concentration. Figure 3-19a to Figure 3-19c show the calculated 

self-diffusion of P-H illite nanopores as the function of water concentration in the pore 

width of 5, 10, and 15 nm respectively. 
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Figure 3-19 Calculated self-diffusion in P-H illite nanopores. The lines representing the self-diffusion of 

dodecane are in red, those for ethane are in black, water in green, and the mixture in blue. The results 

indicate that the self-diffusion coefficient increases initially with increasing water concentration probably 

because of the formation of a water film that promotes hydrocarbon transport. Subsequent increases lead 

to a water bridge that impedes hydrocarbon flow, leading to a decrease in the self-diffusion coefficient. 

Pore width also plays a role in dictating the effect of water adsorption on fluid transport.  

 

The results indicate that initial increases in the water concentration enhance the 

self-diffusion of hydrocarbon because of the creation of water films that create a smooth 

surface for hydrocarbon transport (Liu et al. 2018). At higher concentrations (for 

example, above 18.87% in P-H) the formation of water bridges impedes the 

hydrocarbon flow. Further increasing the water concentration leads to strong reductions 

in the self-diffusion coefficients.  

Figure 3-19a to Figure 3-19c also indicate that at a water concentration of 18.87%, 
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despite the formation of water bridges in the pores of 5, 10, and 15 nm, the negative 

effects of the water-bridge effect are counterbalanced by the smooth adsorption walls, 

leading to an increase in the self-diffusion coefficients. Therefore, I can conclude that 

in P-H illite nanopores the fluid behavior is initially dominated by the water adsorption 

film and later by the formation of a water bridge.  

Figure 3-19d shows the calculated self-diffusions of the mixture (averaged self-

diffusion from water-dodecane-ethane) in P-H nanopores as the function of water 

concentration in pores of width 5, 10, and 15 nm respectively. It indicates that the pore 

width has an impact on self-diffusion. The calculated self-diffusions in the pore width 

of 15 nm are the largest compared to that in pore widths of 5 and 10 nm. The smaller 

the pore width is, the lower the self-diffusion coefficient. Figure 3-19d also 

demonstrates that the smooth effect of water adsorption film is affected by the pore 

width. When the water concentration increases to 18.87%, the increased self-diffusions 

in the pore widths of 5, 10, and 15 nm are 0.157×10-9 m2/s, 0.79×10-9 m2/s, and 

0.971×10-9 m2/s, respectively. In the pore width of 5 nm, although the water adsorption 

film will promote the hydrocarbon flow, the decreased effective flow radius due to 

water adsorption film will compromise this positive effect. However, such a negative 

effect contributes less to larger pores of 10 and 15 nm. Therefore, the increased degree 

of self-diffusion is more apparent in the studied 10 and 15 nm pores. 
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Figure 3-20 Calculated self-diffusion coefficients in H-H nanopores. The results indicate that water 

adsorption promotes hydrocarbon flow sharing the same trend in P-H pores. Once the water bridges form, 

a drastic reduction in the self-diffusion coefficients is seen.  

Figure 3-20a to Figure 3-20c show the calculated self-diffusion in H-H illite 

nanopores as a function of water concentration in pores of width 5, 10, and 15 nm 

respectively. The results show the same trends as in the P-H nanopores. However, 

because the water bridge does not form until higher concentrations of water (in the 

absence of an electric field in H-H nanopores), I observe a self-diffusion plateau for 

intermediate values of water concentrations. Increasing the water concentration beyond 

~58% leads to the formation of a water bridge (as shown in Figure 3-10c and Figure 

3-11c). For the 15nm pore in Figure 3-20c, the slope change happens at the water 

concentration of 71.43% at which a water bridge is observed as seen in Figure 3-12d.  
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Figure 3-20d is the calculated self-diffusion coefficients of the mixture in H-H 

illite nanopores as a function of water concentration in the pores of 5, 10, and 15 nm 

respectively. The results confirm that the self-diffusion coefficient varies with the pore 

width. These values are higher than the corresponding values in a P-H nanopore because 

of the absence of a water bridge. However, we can notice that when the water 

concentration increases to 18.87%, the increased self-diffusions in the pore widths of 5, 

10, and 15 nm are 0.864×10-9 m2/s, 1.052×10-9 m2/s, and 1.083×10-9 m2/s respectively, 

which are larger than the results in P-H illite nanopores. This is because, in P-H 

nanopores, the water bridges are formed as shown in Figure 3-6, Figure 3-8, and Figure 

3-9. But in H-H illite nanopores, there are no water bridges as shown in Figure 3-10 

and Figure 3-11. Therefore, the formation of the water bridge will compromise the 

smooth effect of water adsorption film.  

Figure 3-21 is the comparison of the self-diffusion coefficients of the mixture, 

dodecane, ethane, and water in both H-H and P-H nanopores. Figure 3-21a indicates 

that because of the water bridge, the self-diffusion of the mixture in the 5nm H-H 

nanopore (red curve) is higher than that in the P-H nanopore (black curve) except for 

the initial point where water concentration is 0%. More importantly, the self-diffusion 

coefficient of the mixture in the P-H nanopore at a pore width of 10 nm (brown curve) 

is still lower than the one in a 5nm H-H nanopore (black curve) indicating that water 

bridges have a strong impact on hydrocarbon flow and increasing the pore width may 

not be able to overcome this negative effect. Figure 3-21b-d provides the same insights 
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as Figure 3-21a. 

 
Figure 3-21 Comparisons of self-diffusion between H-H and P-H in different pore widths. The results 

indicate that self-diffusion in P-H is lower than that in H-H, demonstrating that electric fields can 

influence the self-diffusion of hydrocarbon through the formation of the water bridge.  

 

3.5 Final Remarks 

This chapter uses MD simulations to investigate the formation of water bridges and 

their influence on fluid transport in clay nanopores through a discussion of spatial 

molecule distribution and self-diffusion. The positive potassium layers and negative 

hydroxyl groups in the P-H illite structure can induce local electric fields which can 

favor the formation of the water bridge. The formation of a water bridge is influenced 

by the concentration of water. In P-H nanopores, water bridges appear at relatively low 



77 

water concentrations (In my study, as low as 18.87%). In H-H nanopores, water bridge 

only happens at high water concentration (as high as 71.43%). The formation of a water 

bridge is also influenced by pore width. For a given concentration of water, smaller pore 

widths promote the formation of a water bridge. In both P-H and H-H nanopores, the 

initial formation of an adsorbed water film creates a smooth surface to promote the 

hydrocarbon flow, leading to an increase in the self-diffusion coefficient. However, 

increasing water concentration promotes the formation of water bridges that impede 

hydrocarbon flow, leading to a decrease in self-diffusion coefficients. Because of the 

presence of water bridges, the self-diffusion coefficients in P-H nanopores are lower 

than that in H-H nanopores except where water concentration is 0%. However, it can 

also favor the formation of the water bridge in an aqueous environment to impede the 

hydrocarbon flow. Future work is needed to investigate the minimum water 

concentration to form the water bridge in both P-H and H-H nanopores.  
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Chapter 4 Oil-Water Transport in Clay-Hosted Nanopores: Effects of 

Long-Range Electrostatic Forces  

4.1 Introduction 

In this chapter, I continue with the studies of Chapter 3 and use non-equilibrium MD 

simulation to investigate transport and the stability of water bridges in clay pores.  

 

4.2 Models and Methodology 

4.2.1 Structure of Illite and Charged Surface Chemistry 

The illite structure used here is the same as in Section 3.2 with two different surface 

chemistries (P-H and H-H) following Chapter 3. I consider seven different values of 

water concentrations (Cw) for each of the three slit pore widths (5, 10, and 15 nm). All 

the simulation models are the same as in Section 3.2 and summarized in Table 3-1. In 

the interests of space, I only show the initial configurations of the P-H models with a 

pore width of 5 nm in Figure 4-1. The temperature and pressure are kept constant at 350 

K (170 °F) and 400 atm (5878 psi). To keep pressure conditions similar across all 

models, an increase in water concentration is accompanied by a decrease in the number 

of hydrocarbon molecules. 
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Figure 4-1 Initial configurations of the seven P-H slit pore models of 5 nm width with varying water 

concentration. Cw stands for water concentration. The color codes of clay are as in Figure 3-2. (a) the 

direction of the arrows indicates the direction of an imposed acceleration in subsequent sections of this 

paper. The fluid-color regimes: ethane (light green), H2O (red), and dodecane (light blue). 

 

4.2.2 Simulation Details 

My modeling relies on the use of the ClayFF and OPLS All-Atom force field to describe 

illite (Underwood et al. 2016; Zen et al. 2016) and organic components (Jorgensen et 

al. 1996) respectively, while the flexible SPC model and the shake algorithm are applied 

to model water. Lorentz-Berthelot mixing rules describe the interactions between 

different atoms. I use LAMMPS (Large-scale Atomic/Molecular Massively Parallel 

Simulator) (Plimpton et al. 1995) with periodic boundary conditions applied in 3 

directions.  
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My workflow is as follows: In the initial set-up, the number of fluid components 

is determined by the Peng-Robinson equation to guarantee the target pressure and 

temperature (Peng et al. 1976), and the fluid molecules are placed randomly between 

the slit pore using the Packmol package (Martínez et al. 2003). The illite-structural 

atoms (Al, Si, and O) are kept rigid to their crystal lattice sites, except that H+ in 

hydroxyl and the cation K+ are mobile with thermal motion (Hao et al. 2018). I then run 

the equilibrium MD (EMD) simulations using an NVT ensemble for 10 ns. During NVT, 

the pore surfaces are partially flexible where H+ in hydroxyl and the cation K+ are 

mobile with thermal motion. Temperature is maintained at 350 K using Nose Hoover 

thermostat (Nosé et al. 1984). 

After EMD simulations, non-equilibrium MD (NEMD) simulations are performed 

for another 10 ns to mimic hydrocarbon-water transport. Several methods exist for 

inducing flow in molecular dynamics, such as forced (Malevanets et al. 1999 and 2000; 

Lamura et al. 2001), surface-induced, pressure difference (Thomas et al. 2009), osmotic 

pressure (Kalra et al. 2003), and gravitational approaches (Nikoubashman et al. 2010 

and 2013; Allahyarov et al. 2002). In my simulations, I adopt the gravitational technique 

because other methods have been known to distort the velocity-field and density profile 

along with the flow direction ( Allahyarov et al. 2002; Liu et al. 2016; Liu et al. 2018). 

A uniform gravity-like force (F, along the x-direction as shown in Figure 4-1), is 

imposed on all molecules inside the illite nanopores (Falk et al. 2012; Wang et al. 2016). 

The Published literature suggests applying large accelerations in simulations can 
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produce a sudden velocity jump, therefore, using small accelerations on the order of 10-

4 to 10-3 nm/ps2 (Wang et al. 2016b; Zhao et al. 2017) is a must to ensure a linear 

response in the system. In my study, the acceleration ranges from 0.0005 to 0.002 

nm/ps2.  

It should be noted that in MD simulations, fluid temperature is calculated from the 

kinetic energy(𝐾𝐸 =
1

2
𝑚𝑣2) (Wang et al. 2016a) where KE is the kinetic energy, m is 

the mass of the molecule and v is the velocity. More detailed information about 

temperature calculation can refer to Appendix A-1. However, in NEMD simulations, 

since I have added an external force, in the x-direction the molecule velocities consist 

of both thermal velocities and the imposed center-of-mass velocity. To ensure the 

temperature is maintained and not raised, fluid temperature calculations do not include 

the imposed center-of-mass velocity (Liu et al. 2018). The temperature and pressure 

during the NEMD simulations are shown in Figure 4-2.  

 

Figure 4-2 Pressure and temperature as a function of simulation time. The setting temperature and 

pressure are 350K and 400atm. In the NEMD simulations, there is only a small increase in temperature. 

The average equilibrium of temperature is about 352K 
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4.3 Results and Discussion 

4.3.1 Fluid Transport in H-H Nanopores 

In Chapter 3, I discussed the fluid distribution using equilibrium MD simulation. In this 

section, I report on the hydrocarbon and water velocity profiles with different 

accelerations (0.0005, 0.001, and 0.002 nm/ps2) at 350 K and 400 atm. This would be 

analogous to imposing advective flow on the fluid confined within the pores. The 

velocity profile is obtained applying the bin method (Hansen et al. 2011). The slit pore 

is divided into N bins in the z-direction. The bin size is equal to 0.5 Å. For each bin, the 

center of mass velocity of water and hydrocarbon is extracted from time step tn to tm, 

and the velocity calculated as shown in Equation (4-1).  

𝜈𝑏𝑖𝑛 =
∑ ∑ 𝑚𝑖𝜈𝑖𝑦,𝑡𝑖

𝑡𝑚
𝑡𝑛

∑ 𝑚𝑖𝑖
 (4-1) 

Where mi is the mass of the particle i in the bin, viy is the component velocity of the 

particle i at the time step t in the bin. 

I present the water (Figure 4-3a) and hydrocarbon (Figure 4-3b) velocity profiles 

at 0.0005 nm/ps2 in the 5 nm H-H nanopore. Because the hydrocarbon and water 

velocity profiles at the acceleration of 0.001 nm/ps2 and 0.002 nm/ps2 show similar 

trends with that of 0.0005 nm/ps2, they are not shown here and provided in Figure B-3 

in Appendix B. 

Figure 4-3a indicates that the water velocity changes with water concentration. At 

100% water, I observe the classical parabolic signature of liquid flow in slit-pores.  

Figure 4-3b indicates that increasing water concentration promotes hydrocarbon 
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flow up to a point. The initial increase has been attributed to the creation of smooth 

surfaces following the adsorption of water (Liu et al. 2018). Subsequent increases in 

the concentration of water decrease the effective flow radius, as shown in Figure 4-4, 

leading to a decline of hydrocarbon velocity.  

 

Figure 4-3 Water and hydrocarbon velocity profiles at 0.0005 nm/ps2 in 5 nm H-H nanopore. Cw stands 

for water concentration. Water concentration is seen to strongly impact both water and hydrocarbon 

velocities. For the water and hydrocarbon velocities, the reader can refer to Figure B-3 in Appendix B. 

 

Figure 4-4 Distribution of water molecules for various water concentrations. Hydrocarbon is not shown. 

On the left, Cw = 18.97% and on the right, Cw = 71.43%. Increases in water concentration increase the 

adsorbed layer thickness that in turn influences water and hydrocarbon velocities. 
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Figure 4-5 shows the water and hydrocarbon velocity profiles at a higher value of 

the acceleration of 0.002 nm/ps2 in a larger 15 nm H-H nanopore (velocity profiles for 

the 10 nm H-H nanopore are provided in Figure B-4 in Appendix B). The flow profiles 

are observed to be more complex at all values of saturation and are a function of the 

location of the respective phases within the pore.  

 

Figure 4-5 Water and hydrocarbon velocity profiles at 0.002 nm/ps2 in 15 nm H-H pores. The flow 

profiles for both phases appear more complex and simply correspond to the local phase densities within 

the pore.   

 

Figure 4-6 shows the velocity profiles in 5 nm, 10nm, and 15nm H-H nanopores 

with a water concentration of 71.43%. The peaks and the troughs in the velocity profiles 

correspond to the local density of the water and hydrocarbon phases within the pore. 

Figure 4-6a indicates that in a 5nm nanopore, most of the water molecules are adsorbed 

and expected velocity profiles are observed. However, with larger pore widths, a more 

disordered flow pattern emerges. Unabsorbed water molecules form water droplets that 

elongate under the imposed acceleration as shown in Figure 4-6b and Figure 4-6c, 

making both the hydrocarbon and water phases discontinuous. Therefore, the velocity 

profiles of water and hydrocarbon in the 10 and 15 nm nanopores are asymmetric. I will 
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now discuss transport in P-H clay nanopores. 

 

 

Figure 4-6 Distribution of water at 0.002 nm/ps2 and Cw = 71.43% in 5nm, 10nm, 15nm H-H nanopores. 

The hydrocarbon molecules are not shown. The result indicates that at each pore width, the peaks and 

troughs in the velocity profiles correspond to the local density of each of the phases. The motion of the 

water elongates the droplets entrained in the hydrocarbon phase. 

 

4.3.2 Fluid Transport in P-H Nanopores 

In the previous section, I reviewed the transport of water and hydrocarbon in H-H pore 

systems where water bridges are largely absent. In this section, I present the 

corresponding results for P-H pores where water bridges are prevalent across multiple 

pore widths and water concentrations.  
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The hydrocarbon and water velocity profiles for 54 NEMD simulations in P-H 

nanopore are provided in Figure B-5 and Figure B-6 in Appendix B. In this section, I 

only analyze a few representative hydrocarbon-water velocity profiles in P-H 

nanopores and address the effects of pore width, water concentration. The effect of the 

local electric field is important and discussed in Section 5.  

1) Effect of Pore width 

Figure 4-7 shows the water (Figure 4-7a) and hydrocarbon (Figure 4-7b) velocity 

profiles at an acceleration and water concentration of 0.002 nm/ps2 and 71.43% 

respectively in different P-H nanopore widths. Water and hydrocarbon velocities 

increase with an increase of pore width which is in agreement with Liu et al.(2017). 

Additionally, water and hydrocarbon velocity profiles are parabolic in the 5 nm P-H 

nanopore and show flatter profiles for the 10nm and 15nm pores with increasing 

distance from the pore walls and the accompanying decrease in fluid-pore wall 

interactions. 

 

Figure 4-7 Water and hydrocarbon velocity profiles at the acceleration and water concentration of 0.002 

nm/ps2 and 71.43% respectively in different P-H nanopore widths. The result indicates that pore width 

impacts the velocity patterns. At 5nm, I observe a parabolic shape for the flow profiles which get 

progressively flattered as the pore width increases.  
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In Figure 4-8, I take a closer look at the water bridges present in the P-H pores at 

a water concentration of 71.43%. Hydrocarbon molecules are not shown for clarity. The 

red-colored water molecules are those adjacent to the pore surface and the yellow-

colored water molecules are those present in the water bridge. Figure 4-8a shows the 

distribution of water in a 5nm P-H pore obtained from my equilibrium MD (EMD 

simulations) on top and under an imposed acceleration of 0.002 nm/ps2 on the bottom. 

The water bridge in Figure 4-8a is essentially a sheet extending across the entire x-

direction in the 5nm P-H nanopore.  

Figure 4-8b and Figure 4-8c show the corresponding information for 10nm and 

15nm pore widths. The intermingling of adsorbed water and water from within the 

bridge causes the velocity profile in Figure 4-8a (shown in a blue line). However, when 

pore widths increase to 10 nm or 15 nm, there is limited or no exchange of water 

molecules between the film and the bridge. The combination of constant acceleration 

and no exchange contributes to the flat velocity profiles observed in Figure 4-8b and 

Figure 4-8c. It is important to mention that under the imposed acceleration, the bridges 

remain intact. 
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Figure 4-8 Molecular distribution and velocity profiles of water in P-H pores of different widths at a 

water concentration of 71.43%. The acceleration is 0.002 nm/ps2. Hydrocarbon is not shown for clarity. 

The red dots represent adsorbed water, and the yellow dots are those in the water bridge. In a 5 nm P-H 

nanopore, acceleration causes the adsorbed layer to exchange both mass and velocity with water at the 

pore center. Increasing the pore width to 10 nm or 15 nm, no mass or velocity exchange occurs between 

the adsorbed layer and water in the bridge or pore center, as revealed by the flatter velocity profile, 
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2) Effect of Water Concentration 

Figure 4-9 shows the water (Figure 4-9a) and hydrocarbon (Figure 4-9b) velocity 

profiles at 0.002 nm/ps2 in a 10 nm P-H nanopore for different values of water 

concentration. The velocity of water decreases with increasing water concentration 

(Figure 4-9a) because of the increased thickness of the water bridge. The minimum 

thickness (averaged over the last 2 ns) of the water bridge at water concentrations of 

18.87%, 58.82%, 71.43%, and 80.00% is 0.94 nm, 1.24 nm, 1.60 nm, and 1.96 nm 

respectively. Figure 4-10 shows a boxplot of the bridge thickness over the last 2 ns of 

simulation time.  

Figure 4-9b shows an increased hydrocarbon velocity for an initial increase in the 

water concentration which has been attributed to the creation of smoother surfaces for 

hydrocarbon flow (Liu et al. 2018). However, when the water concentration is increased, 

the width of the water bridge progressively increases (shown in Figure 4-10), thereby 

hampering hydrocarbon flow.  

Figure 4-9 shows flat velocity profiles for both the oil and water phases. Because 

of the hydrophilic surface, hydrocarbon molecules are responding to the acceleration 

and are not strongly influenced by the pore surfaces, leading to a flatter velocity profile. 

The effect of acceleration on velocity profile is provided in Appendix B. 
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Figure 4-9 Water and hydrocarbon velocity profiles at the acceleration of 0.002 nm/ps2 in 10 nm P-H 

nanopore. The result indicates that water concentration can impact the flow pattern. 

 

 

Figure 4-10 The bar errors of water-bridge thickness with different water concentrations. The minimum 

thickness of water bridges at a water concentration of 18.87%, 58.82%, 71.43%, and 80.00% is 0.94 nm, 

1.24 nm, 1.60 nm, and 1.96 nm respectively. Increasing the water concentration creates thicker water 

bridges rather than increase the width of the adsorbed layer in P-H pores. 

 

4.4 Single-Phase Velocity Profile Comparison between H-H and P-H Pores 

This section focuses on single-phase velocities for different pore widths at a fixed 

acceleration of 0.002 nm/ps2 in P-H and H-H pores. The results are shown in Figure 

4-11 indicating that the P-H nanopore exhibits flatter flow profiles at the pore center 
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due to the presence of the electric field as shown in Figure 3-14.  

Normally, adsorption is the result of van der Waals forces, covalent bonding, and 

electrostatic attraction (Ferrari et al. 2010). In this work, I do not consider covalent 

bonding (Huber et al. 2019). Therefore, in my study, adsorption is solely due to the van 

der Waals force and electrostatic attraction. Adjacent to the surface, these forces impact 

fluid transport. However, van der Waals force quickly diminishes for increasing 

distances from the pore surface (Autumn et al. 2002), while the influence of the 

electrostatic interaction force can extend more than 10 nanometers (Hao et al. 2019a).  

Therefore, in the P-H pore, fluid transport is controlled by the electric field and 

imposed acceleration, leading to a flat pattern as shown in Figure 4-11a and Figure 

4-11b. Increasing pore widths for P-H pores increases the width of the flat pattern as 

shown in Figure 4-11c and Figure 4-11d because of the increase in the width of the zone 

dominated by the electric field. However, in H-H pores with a negligible electric field, 

I observe classical parabolic velocity patterns as shown in Figure 4-11.  
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Figure 4-11 Comparison of single-phase (water and hydrocarbon) velocities between H-H and P-H 

nanopores of different widths. The self-generated electric field in P-H pores and the imposed acceleration 

dictate fluid transport in the center of the pore. For the same acceleration, the fluid velocity profile is flat 

in P-H pores and parabolic in H-H pores.   

 

Figure 4-12 shows the distribution of water in 5 nm P-H and H-H pores. 

Hydrocarbon is not shown for clarity and water concentration is 80%. Figure 4-12a and 

Figure 4-12b are the EMD results for P-H and H-H nanopores respectively and Figure 

4-12c and Figure 4-12d are the NEMD results for P-H and H-H nanopores respectively. 

During transport, water bridges persist in P-H pores as shown in Figure 4-12c. However, 

the water bridge of the H-H nanopore breaks down as shown in Figure 4-12d.  
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Figure 4-12 Water distribution in EMD and NEMD simulations in 5 nm P-H (left) and H-H (right) 

nanopore. Hydrocarbons are not presented for clearance. It indicates that the water bridge breaks down 

during flow in the NEMD simulation in the H-H nanopore, demonstrating that the strength of the 

hydrogen bond is weak to persist the water bridge. However, in the P-H nanopore, with the assistance of 

the electric field, the water bridge persists in NEMD simulations. 

 

I will now discuss the observations of Figure 4-13 in the context of H-bonds. 

Figure 4-13a shows the definition of H-bond (Costa et al. 2005) while Figure 4-13 
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shows the number of H-bonds calculated from Figure 4-12a and Figure 4-12b. In an H-

bond, the distance between 2 oxygen atoms is less than 3.6 Å, the distance between 

hydrogen (donor) and oxygen (acceptor) is less than 2.4 Å, and the angle between VOO 

and VOH is less than 30° where VOO is the vector starting from the oxygen to another 

oxygen and VOH is the vector from the oxygen to hydrogen. The total numbers of H-

bonds in P-H and H-H nanopores are 148 and 77 respectively. In the P-H system, the 

local electric field promotes the occurrence of an H-bond which leads to the stability of 

the water bridge under an imposed acceleration.  

 

 

Figure 4-13 (a) Illustration of the H bond. An H bond(Costa et al. 2005) occurs when the distance between 

oxygen and oxygen is less than 3.6 Å, the distance between hydrogen (donor) and oxygen (acceptor) is 

less than 2.4 Å, and the angle between VOO and VOH is less than 30° where VOO is the vector starting from 

the oxygen to another oxygen and VOH is the vector from the oxygen to hydrogen. (b) the distribution of 

H bond from the bottom to the top pore surface in P-H and H-H systems. 

 

4.5 Mass Transport 

Over the past two chapters, I discuss differences between the behavior of fluids in P-H 
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and H-H nanopores. The differences are considerable in terms of the structure of water 

present in these systems. These differences also result in varying flow patterns that 

appear to influence mass transport through these different pores. In this section, I show 

that although the flow patterns are distinctly separate, the overall mass transport is not 

all that different.  

I consider a pore size of 10 nm, water saturation of 71.43%, and acceleration of 

0.002 nm/ps2 as shown in Figure 4-6b and Figure 4-7. The velocity profile and flow 

area are used to characterize the mass transport. The calculated mass transports of water 

and oil in H-H nanopore are ~8.9 × 10−16 𝑚3/𝑠  and  13.2 × 10−16 𝑚3/𝑠 

respectively. For the P-H nanopore, they are ~8.1 × 10−16 𝑚3/𝑠  and  11.9 ×

10−16 𝑚3/𝑠 respectively. From the point of view of transport, the differences are less 

than 10%, although the storage modes and flow patterns are different. This calculation 

is essential to demonstrate that flow experiments will likely not be sensitive enough to 

detect these differences. Given the extremely narrow pore widths under consideration, 

it may also be impossible to visualize the different structures of water even with the 

most advanced forms of microscopy. This is also likely the reason for the absence of a 

discussion of water bridges in clays although the literature is rich with experimental 

observations of clay hydration.  

 

4.6 Final Remarks 

This chapter focuses on the use of Non-equilibrium MD (NEMD) simulations to 
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investigate hydrocarbon-water interactions, structure, and transport in clay-hosted 

nanopores with two different charged clay surface chemistries (H-H and P-H 

nanopores). With an imposed acceleration, the velocity profiles in H-H and P-H clay 

pores are different. Water preferentially flows adjacent to the pore surface for H-H pores 

with hydrocarbon occupying the center of the pore. With P-H pores, the water bridge 

persists under acceleration and a different velocity profile is observed irrespective of 

pore width. 

As mentioned earlier, in H-H pores, water bridges can form under specific conditions 

but dissipate during flow. However, in P-H nanopores, the water bridges persist under 

flowing conditions.   
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Chapter 5 Fluids Behavior in Clay-Hosted Pores as Salinity Varies 

5.1 Introduction 

In Chapters 3 and 4, I focus on the behavior of pure water in clay pores. This chapter 

considers the effect of salinity on fluid behavior. 

 

5.2 The Story So Far 

As described earlier, Figure 5-1 recaps the findings of the previous chapters. Figure 

5-1(A-B) shows illite structure from xy and xz projections, respectively. The slit pore is 

constructed with four parallel illite layers and two different illite-slit pore structures are 

constructed: potassium-hydroxyl (P-H) and hydroxyl-hydroxyl (H-H) to study the 

impacts of surface charge, as illustrated in Figure 5-1(C-D). Different pore widths and 

water concentrations (Cw) are considered. Dodecane is chosen to represent the oil phase. 

With no zwitterionic molecules in the hydrocarbon, they do not impact the charged clay 

surface (Underwood et al. 2015). Polar hydrocarbon components are outside the scope 

of the current study.  

Figure 5-1(E-F) shows adsorbed water in H-H nanopore (Figure 5-1F) while at the 

same concentration, water bridges form in P-H nanopores (Figure 5-1E). Hydrocarbon 

is not shown for clarity in Figure 5-1 (E-F). The calculated electric fields across the 

whole nanopore in different pore widths are shown in Figure 5-1(G-H), occurring 

because of a charge imbalance in the P-H nanopore (Figure 5-1G) leading to the 

formation of a water bridge. The electric field in the H-H nanopore (Figure 5-1H) 
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weaker and most of the water is solely adsorbed. 

 
Figure 5-1 Previous works review (Xiong et al. 2020 and 2020b). (A-B) Illite structure from xy and xz 

projections. (C-D) Two different illite pore structures: P-H and H-H, where P-H and H-H represent the 

heterogeneous and homogeneous surface charges, respectively. (E) Water bridges in P-H nanopores. 

Hydrocarbon is not shown for clarity. (F) Adsorbed water in H-H nanopores. (G) Calculated electric 

fields across the whole P-H nanopore at different pore widths (5, 10, and 15 nm), where all the electric 

field strengths are larger than 1 V/nm, promoting the formation of a water bridge. (H) Weaker electric 

fields across the H-H nanopore lead to water existing as an adsorbed phase.  Color codes: grey, clay; 

light grey, potassium (K+); and red, water. 

 

5.3 Simulation Models 

In this chapter, I consider two different water concentrations (Cw, 38% and 70%), two 
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surface chemistries (P-H and H-H), two different pore widths (10 and 20 nm), and three 

different salinities of 3200, 37000, and 100,000 ppm representing low, middle and high 

salinities, respectively. The 24 models are shown in Table 5-1.  

I only consider NaCl in my work and no other salts such as KCl or CaCl2 or CaCO3 

because I can observe ion adsorption and the formation of electric double layers as 

reported in Moučka et al. (2017), Svoboda et al. (2018), Underwood et al. (2018) and 

Hamidian et al. (2019). Additionally, I am not investigating ion exchange capacity in 

clay minerals (Carroll et al. 1959).  

I initially populate my models to achieve the target pressure and temperature using 

the Peng-Robinson EOS (Peng et al. 1976) with oil, water, and NaCl randomly placed 

in the clay pores via the Packmol package (Martínez et al. 2003). In the interests of 

brevity, I only show the initial configurations of P-H models with varying salinities at 

the pore width of 10 nm and water concentration of 70% in Figure 5-2.  
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Table 5-1 Description of simulation models used in this paper. 

 

 

 

Figure 5-2 The initial configurations of the P-H models with varying salinities (pore width=10 nm, Cw= 

70%). (A) 3200 ppm; (B) 37000 ppm; and (C) 100000 ppm. Color codes: grey, clay; light grey, potassium 

(K+); red, water, light blue, oil; blue, Na+; and yellow, Cl-. 
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5.4 Molecular Simulations 

5.4.1 Force Field Details 

In this work, I use the CLAYFF force field (Cygan et al. 2004) to simulate clay minerals 

and NaCl. Water molecules are simulated using the rigid SPC/E force field (Berendsen 

et al. 1987) where the SHAKE algorithm (Ryckaert et al. 1977) is used to keep the water 

molecules rigid throughout the whole simulation. The parameters to describe the oil 

molecules are taken from OPLS-AA and updated values of torsional energy 

contribution to the total energy (Price et al. 2001) are used in my model. Lorentz-

Berthelot mixing rules are used to compute the interactions between nonbonded atoms 

in clay mineral and NaCl (followed by the CLAYFF force field) and geometric mixing 

rules for all the other nonbonded interactions (Perez et al. 2020c). 

 

5.4.2 Simulation Details 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) (Plimpton et 

al. 1995) is applied to do the simulations. Periodic boundary conditions are used to 

produce a series of parallel clay nanopores that are kept rigid and forbids clay swelling 

due to adsorption/desorption/EDL (Sposito et al. 1999). Lennard-Jones (LJ) 12-6 term 

(Lennard-Jones et al. 1924) is used to describe the short-range interactions and the 

cutoff distance is 8 Å following the rule that cutoff distance cannot be larger than half 

of the minimum box size. Although a cutoff distance of 12 Å is usually used in the 

OPLS-AA force field, my previous works (Xiong et al. 2020) show that a cutoff 
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distance of 8 Å is valid. The particle-particle/particle-mesh (PPPM) method with a 

precision value of 10−6 (Eastwood et al. 1984) is adopted to estimate long-range 

electrostatic interactions.  

I use the PR-EOS to determine an appropriate number of fluid molecules to 

achieve the target pressure (400 atm) and temperature (350K). Then simulations are 

carried out at 350K using a canonical NVT ensemble, where the temperature is 

controlled by the Nose Hoover thermostat (Nosé et al. 1984). First, a time step of 0.1 fs 

was used for 100ps, after which it is increased to 1 fs for 10 ns when the simulations 

reach equilibrium followed by another 10ns for data analyses. Snapshots of simulation 

trajectories are created using OVITO (Stukowski et al. 2010) and rendered with 

Tachyon (Stone et al. 1998). 

5.5 Results and Discussion 

5.5.1 Fluid Distribution 

Figure 5-3 shows the equilibrated systems of fluid distribution in different salinities, 

water concentrations, and surface chemistries. The pore width is 10 nm and oil is not 

shown for clarity.  

Figure 5-3 (A-C) illustrates the fluid distribution at a water concentration of 38% 

in P-H nanopore with different salinities. It shows that at a salinity of 3200 ppm (Figure 

5-3A), the formation of a water bridge is observed that spans the pore width and 

connects the upper and lower pore surfaces. However, as I increase the salinity to 37000 

ppm and 100000 ppm (Figure 5-3B-C), the water bridge disappears and ionic 
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aggregates form at the salinity of 100000 ppm, highlighted by a circle (Figure 5-3C).  

I hypothesize that the adsorption of Na+ and Cl- ions onto the clay surface will 

influence the clay surface charge, modifying the electric field, leading to the breakage 

of the water bridge. To confirm this, I employ a test atom with charge e in the clay 

nanopore and measure the electrostatic force on this atom from one surface of the pore 

to the other to measure the electric field. I perform this exercise with only the Na+ and 

Cl- ions and no fluid molecules (Hao et al. 2019b). The calculated electric fields at the 

pore center for different salinity values (3200, 37000, and 100000 ppm) are 4.58, 0.53, 

and 0.51 V/nm, respectively. At a salinity of 0 ppm, Chapter 3 showed the electric field 

strength to be 8.84 V/nm. Salinity, therefore, influences the local electric field through 

the adsorption of the Na+ and Cl- ions. As reported in Skinner et al.(2012), Cramer et 

al.(2008), Hao et al.(2019a), Zhang et al.(2019), Namin et al.(2013), Fuchs et al. (2007 

and 2008), Ponterio et al. (2010), and Chen et al. (2016), an electric field strength larger 

than 1 V/nm can change the structure of water and at 3200 ppm, at 4.58 V/nm we 

observe a water bridge (Figure 5-3A). However, at the salinity of 37000 and 100000 

ppm (Figure 5-3B and Figure 5-3C), both the electric fields are lower than 1 V/nm and 

a water bridge is absent. 
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Figure 5-3 Fluid distribution in different salinities, water concentrations, and surface chemistries. The 

pore width is 10 nm and Oil is not shown for clarity. (A-C) Fluid distribution at a water concentration of 

38% in P-H nanopore with different salinities. (D-F) Fluid distribution at a water concentration of 38% 

in H-H nanopore with different salinities. (G-I) Fluid distribution at a water concentration of 70% in P-

H nanopore with different salinities. (J-L) Fluid distribution at a water concentration of 70% in H-H 

nanopore with different salinities. Color codes are the same as in Figure 5-2. 

Figure 5-3 (D to F) presents the fluid distribution at a water concentration of 38% 

in H-H nanopore with different salinities. Unsurprisingly, as reported in previous 

chapters, there are no water bridges. Instead, at 37000 ppm and 100000 ppm salinity 

(Figure 5-3E and Figure 5-3F), ionic aggregates are also observed, shown in the circles. 

In P-H pores, Na+ and Cl- ions are largely adsorbed as shown in Figure 5-3B and Figure 

5-3C, however in H-H pores as seen in Figure 5-3E and Figure 5-3F, they form clusters 

and are partially adsorbed. This is largely because of the presence of an electric field 

and not due to the occurrence of rare events during the MD sampling process (Noé et 

al. 2018). I confirm this by running another six independent systems with different 
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initial velocity distributions and arrive at the same conclusion. 

Figure 5-3 (G to I) and Figure 5-3 (J to L) present the fluid distribution at a water 

concentration of 70% in P-H and H-H nanopores with different salinities, respectively. 

We can see that the formation of water bridges is observed irrespective of salinity and 

surface chemistry. The reason is that the formation mechanism of a water bridge is 

mainly dependent on three factors (pore width, surface chemistry, and water 

concentration), reported in Chapter 3 (Xiong et al. 2020b). In this work, high water 

concentration (70%) makes water continuous phase with suspended oil droplets. This 

observation of water bridge at high water concentration is also consistent with 

Yamashita’s et. al. (2013 and 2015) and Ho’s et al.(2015) works. 

Although Figure 5-3 (G to I, for P-H pores) and Figure 5-3 (J to L, for H-H pores) 

appear similar, there are differences in the occurrence of H-bonds. The orientation and 

number of hydrogen bonds at a water saturation of 70% and salinity of 3200 ppm are 

shown in Figure 5-4A and Figure 5-4B, respectively. The H-bond has been described in 

Chapter 4. 

Figure 5-4A indicates that in a small electric field, the orientation of water 

molecules is randomly distributed as shown by the Gaussian distribution of orientation 

for water shown in blue, which is consistent with Cramer et al.(2008) and Hao et 

al.(2019b). However, in a stronger electric field (black), the orientation of water 

molecules aligns with the direction of the electric field (at 130°) to produce a 

phenomenon called orientational polarizability (Harder et al. 2005). Figure 5-4B is the 
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calculated number of H-bonds from the bottom to the top surface at the pore width of 

10 nm, demonstrating that the strong electric field in the P-H system increases the 

number of H-bonds (191) compared to the H-H system (119). This finding is important 

because the high number of H-bonds in the P-H system will enhance the strength of 

water bridges, thus needing more energy to break them (refer to Figure 4-12 in Chapter 

4). Therefore, increasing the salinity to decrease the electric field in the P-H nanopore 

is a good way to impair the formation of H-bonds (or water bridge) and to improve fluid 

mobility. 

 

Figure 5-4 Water orientation and hydrogen bond. (A) Calculated possible orientation in P-H and H-H 

nanopores, data from Figure 5-3G and J. (B) Calculated number of H-bonds from the bottom to the top 

surface at the pore width of 10 nm. The H-bond has been described in Chapter 4. 

 

The equilibrated systems of fluid distribution at the pore width of 20 nm as shown 

in Figure 5-5 are similar to that in a 10nm pore (Figure 5-3). At 3200 ppm, we still 

observe the presence of water (Figure 5-5A) while at higher salinities Na+ and Cl- form 

ionic aggregates in the pore center. 
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Figure 5-5 Fluid distribution in different salinities, water concentrations, and surface chemistries. The 

pore width is 20 nm and Oil is not shown for clarity. (A-C) Fluid distribution at a water concentration of 

38% in P-H nanopore with different salinities. (D-F) Fluid distribution at a water concentration of 38% 

in H-H nanopore with different salinities. (G-I) Fluid distribution at a water concentration of 70% in P-

H nanopore with different salinities. (J-L) Fluid distribution at a water concentration of 70% in H-H 

nanopore with different salinities. Color codes same as Figure 5-2. 

 

5.5.2 Salinity Effect 

At this point, my results show that high salinity values disrupt the formation of water 

bridges and high salinities lead to the formation of ionic aggregates. To establish a 
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complete understanding of the salinity effect, I construct another 8 with intermediate 

values of salinity as shown in Table 5-2. 

 

Table 5-2 Description of additional eight models 

 

 

Figure 5-6 shows the equilibrated systems of fluid distribution in different 

salinities. Pore width is 10 nm, water concentration is 38%, and oil is not shown for 

clarity. Figure 5-6A indicates at the salinity of 8100 ppm; the formation of the water 

bridge is still observed. However, when the salinity is higher than or equal to 12400 

ppm (Figure 5-6B to Figure 5-6D), there are no water bridges. The calculated electric 

fields at the salinity of 8100, 12400, 16000, and 27000 ppm are 1.06, 0.56, 0.54, and 

0.55 V/nm respectively. The threshold value of salinity that disrupts the formation of a 

water bridge is between 8100 and 12400 ppm. Figure 5-6D shows ionic aggregate at 

the salinity of 27000 ppm.  
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Figure 5-6 Fluid distribution in different salinities. Pore width is 10 nm, water saturation is 38%, surface 

chemistry is P-H and oil is not shown for clarity. (A) 8100 ppm; (B) 12400 ppm; (C) 16000 ppm; (D) 

27000 ppm. The threshold value of salinity is between 8100 and 12400 ppm. In this model, the threshold 

value is about 8500 ppm, provided in the Supporting Information. Color codes same as Figure 5-2. 

 

The equilibrated systems of fluid distribution at the pore width of 20 nm are shown 

in Figure 5-7. With an increased pore width, the calculated electric fields at the salinities 

of 8100, 12400, 16000, and 27000 are 0.52, 0.27, 0.26, and 0.23 V/nm, respectively and 

the water bridge is absent.  
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Figure 5-7 Fluid distribution in different salinities. Pore width is 20 nm, water saturation is 38%, surface 

chemistry is P-H and oil is not shown for clarity. (A) 8100 ppm; (B) 12400 ppm; (C) 16000 ppm; (D) 

27000 ppm. Color codes same as Figure 5-2. 

 

5.5.3 Surface Electric Potential 

In this section, I explain the effect of salinity using the concept of surface electric 

potential. 

The distribution of surface electric potential ψ as the function of distance (x, y, z) 

is given by the Poisson equation (Kappl et al. 2003). Here, I only consider the 

distribution of surface electric potential in the z-direction, which is calculated from 

Gouy-Chapman's theory (Kappl et al. 2003) in Equation (5-1). 

𝜓(𝑧) =
2𝑘𝐵𝑇

𝑒
𝑙𝑛 (

1 + 𝛼(𝜓0)e−𝜅𝑧

1 − 𝛼(𝜓0)e−𝜅𝑧
) (5-1) 

Where ψ(z) is the distribution of surface electric potential in the z-direction, 𝑘𝐵  is 
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the Boltzmann constant in J/K, T is the temperature in K, e is the charge of the 

electron, 𝛼 = 𝑡𝑎𝑛ℎ (
𝑒𝜓0

4𝑘𝐵𝑇
) with 𝜓0 where the surface electric potential is at z=0. 𝜅 is 

the inverse of the decay length 𝜆𝐷 (Leike et al. 2002). and can be expressed as Equation 

(5-2): 

κ = 𝜆𝐷
−1 = √

2𝑐0𝑒2

𝜀𝜀0𝑘𝐵𝑇
 (5-2) 

Where 𝑐0 is the bulk ion concentration in 1/m3; ε and 𝜀0 are the permittivity of 

water and vacuum in c2/ (J m) that can be obtained from Malmberg’s et. al. work 

(Malmberg et al. 1956).  

Therefore, the only unknown parameter in Equation (5-1) is the surface electric 

potential, 𝜓0 . The Grahame equation (Kappl et al. 2003) provides the relationship 

between surface charge density (𝜎 𝑖𝑛
𝐶

𝑚2)  and surface electric potential (𝜓0 𝑖𝑛 𝑚𝑣) , 

expressed in Equation (5-3): 

𝜎 = √8𝑐0𝜀𝜀0𝑘𝐵𝑇 ∙ 𝑠𝑖𝑛ℎ (
𝑒𝜓0

2𝑘𝐵𝑇
) (5-3) 

The surface charge densities (𝜎)  for the lower and upper surfaces are directly 

calculated from MD simulations ( Figure 3-15)  The average charge densities on the 

upper and lower surfaces are 0.97 c/m2 and -4.02 c/m2.Table 5-3 summarizes the main 

parameters to calculate the distribution of surface electric potential in the z-direction.   
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Table 5-3 Calculated decay length, surface charge density, and surface potential with different salinities, 

valid for both 10 and 20 nm models. 

 

 

Figure 5-8 shows the calculated surface potential in z-direction using Equation 

(5-1) with the parameters listed in Table 5-3. From Figure 5-8A at the salinity of 

3200ppm, the surface potentials of both upper and lower surfaces have non-zero values 

at the pore center (black dash line) thereby promoting the formation of a water-bridge. 

 

Figure 5-8 Calculated surface electric potentials in the z-direction. The pore width is 10 nm and the water 

concentration is 38%. The blue and orange curves are the surface potential of upper and lower surfaces, 

respectively. (A) 3200 ppm; (B) 8100 ppm; (C) 12400 ppm. The results indicate that the water-bridge 

phenomenon is attributed to the overlapping non-zero potentials from both surfaces. Increasing the 

salinity decreases the strength of surface potentials at the pore center to values close to zero. 
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When the salinity increases to 8100ppm, the decay length decreases to 7.86 Å 

(Table 5-3) and the potentials drop to a small, non-zero value at the pore center (Figure 

5-8B). Both pore surfaces continue to exert an influence on the behavior of water at the 

pore center but with a reduction in magnitude leading to a water bridge with a lower 

thickness as shown in Figure 5-9. 

 

Figure 5-9 Water number density profiles for different salinities in 10 nm nanopores in the x-z plane (top 

panels) and along the z-axis (bottom panels). (A-B) Water bridges are observed; (C) A number density 

of zero indicates the absence of a water bridge. It indicates that water molecules are more inclined to be 

adsorbed on the lower surface than on the upper surface given the configuration used in my models with 

K+ ions on the lower surface. This is expected given that hydroxyl groups and oxygen atoms on the top 

surface have larger van der Waals forces than potassium on the lower surface. Meanwhile, increasing the 

salinity will decrease the thickness of the water bridge (see panels A to B). 

At the salinity of 12400ppm (Figure 5-8C), the high salinity leads to a further 

decrease of decay length (6.35 Å) and both surface potentials are zero at the pore center 

leading to the absence of a water bridge (Figure 5-8B). 
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5.6 Further Discussion 

Given the results of the previous discussion, we can expect that the presence of water 

bridges at low salinities and ionic aggregates at high salinities might impede fluid flow. 

To verify this hypothesis, I calculate the self-diffusion coefficients of oil and water in 

the 10 and 20 nm P-H pores across all salinity ranges using the concept of MSD (mean 

square displacement), and the result is shown in Figure 5-10 and Figure 5-11. The 

procedure follows the discussion provided in Chapter 2 in section 2.4.3. The calculated 

self-diffusion at the pore width of 20 nm shows trends similar to the 10 nm pore (Figure 

5-10). Intuitively, increasing the pore width increases the self-diffusion coefficients  

 

 

Figure 5-10 Calculated self-diffusion coefficients in nine models with different salinities in the 10nm 

pores. When the salinity is below 8500ppm, the presence of a water bridge impedes fluid flow. However, 

when the salinity is higher than 12400ppm, the formation of ionic aggregates is the primary factor to 

impede flow. Therefore, there exists an optimal range of salinity (8500-12400ppm, grey region) where 

the mobility of oil and water is the highest in clay pores. 
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Figure 5-11 Calculated self-diffusion coefficients in seven models with different salinities in the 20nm 

pores.  

 

Figure 5-10 shows that initially increasing the salinity will increase the fluid self-

diffusion. However, once it increases to a certain point (8500 ppm), further increases in 

salinity lead to moderate decreases in fluid self-diffusion. Denney et al (2009) also 

report that an initial increase in salinity promotes oil recovery with a subsequent 

decrease for further increases in salinity. Morrow et al. (2011) also report that high 

salinity reduces recovery for waterflooding.  

If the water salinity is too low (below 8500ppm in this section), water bridges can 

form (see Figure 5-3A and Figure 5-6A) and lead to low oil/water diffusion coefficients 

hampering the transport of both water and oil. If the salinity is too high, Na+ and Cl- 

ions adsorb on the clay surface due to the charge screening effect, and the excessed 

unabsorbed Na+ and Cl- ions appear as aggregates (see Figure 5-3C and Figure 5-6D), 
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which also impede the fluid flow. Therefore, the optimal salinity value should create a 

condition where both ionic aggregates and water bridges are largely absent. It should 

be noted the optimal salinity value is likely to be a function of pore size and my results 

should be considered as valid strictly only for the pore width of 10 and 20 nm 

considered in this work. 

Although different pore widths and water concentrations can influence the optimal 

range of salinity, we can generalize my findings to hypothesize that if the salinity of 

formation water is extremely high such as 100,000 ppm, we can inject low salinity fluid 

to lower the formation salinity to more optimal ranges to disrupt the formation of ionic 

aggregates. On the other hand, in the hypothetical situation where the formation water 

is extremely fresh, injection of a moderately saline brine may perhaps not compromise 

productivity as it disrupts the formation of water bridges. An analogous argument can 

be made for adjusting the salinity of waterflooding in response to the formation of water 

salinity. 

 

5.7 Final Remarks 

This chapter extends my understanding of the effect of salinity variations on fluid 

distribution and its impact on oil transport in clay pores and demonstrates that there 

exists an optimal range of salinity that promotes oil recovery. The main conclusions are 

listed as follows: 

1. Salinity shows a dramatic impact on the distribution of water molecules.  
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a. At low salinities, a water bridge exists within the clay pores. Increasing the 

salinity reduces the thickness of the water bridge until it finally disappears. 

Water then exists mostly in the adsorbed phase.  

b. Further increasing the salinity (> 124000ppm) leads to ionic aggregates that 

impede oil recovery moderately. 

2. An optimal range of salinity for low salinity waterflooding corresponds to the 

absence of ionic aggregates or ion hydration shells and the prevalence of adsorbed 

water over water bridging. Under these conditions, the mobility of the oil phase is 

the highest.  

3. The water-bridge phenomenon occurs because of the local electric field and surface 

potentials in clay nanopores. Increasing the salinity weakens the strength of the 

electric field due to the charge screening effect of the counterions, leading to a 

decrease of surface potentials in the interior region of the pore. 
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Chapter 6 The Behavior of Surfactant Microemulsions in Clay-

hosted Nanopores 

6.1 Introduction 

The successful use of microemulsions during hydraulic fracturing and subsequent shut-

in periods in enhancing oil production from shale reservoirs is documented in numerous 

studies (Champagne et al. 2011; Penny et al. 2012). But the mechanisms describing the 

process for improved oil recovery using microemulsions are still not fully understood. 

Recently, Bui et al. (2016) investigate improved recovery using microemulsions 

in an ideal graphene slit pore using molecular dynamics. They conclude that the 

surfactants (carried by microemulsions) act as a linker between oil and water surface 

reducing the slippage of water at the oil/water interface, and finally dragging oil with 

the aqueous phase. Meanwhile, the solvents (carried by microemulsions) dissolve into 

the oil and modify its rheological properties. Later, Bui et al. (2017) demonstrate that 

the penetration of microemulsions in shale nanopores depends on the pore surface and 

size. When the pore width is less than 4.5 nm, a microemulsion with a diameter of 6.5 

nm is shown to be unable to enter the pore. However, when the pore width is 5.4 nm, 

deformation of the microemulsion allows penetration as shown in Figure 6-1. Most 

recently, Bui et al. (2019) use realistic kerogen models with different pore widths (4.3 

nm- 6.9 nm) demonstrating that the effectiveness of microemulsions on oil recovery 

highly dependent on pore width. When the largest pore width is less than 4.3 nm, the 

microemulsion simply adsorbs on the pore surface with little penetration. However. 

with a pore width of ~6.5 nm, a 22.6% increase in oil recovery is observed. 
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Figure 6-1 Schematic illustration showing how the microemulsion droplet can squeeze itself through the 

nanopore and recover its original structure (Bui et al. 2017).  

Although these three papers reveal important aspects of microemulsion behavior 

in shales, the question of whether these microemulsions can penetrate deeper into the 

formation remains unanswered. For deeper infiltration, the microemulsion will have to 

traverse both organic and inorganic pore networks. Given that clay minerals account 

for more than 50% of the volume in shale reservoirs (Yang et al. 2016), it is essential to 

understand the behavior (stability) of microemulsions in clay-hosted pores and the 

answers to this question forms the basis of the current chapter. 

 

6.2 Computational Methodology 

6.2.1 Force Field Details 

I use LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) 

(Plimpton et al. 1995) with periodic boundary conditions in all simulations. Following 

Bui et al. (2017 and 2019), the microemulsion comprises molecular models of d-

limonene (solvent, Figure 6-2a) and dodecanol heptaethyl ether (C12E7, nonionic 

surfactant, Figure 6-2b). The molecule of C12E7 contains one hydrophobic tail of 12 

alkyl groups and one hydrophilic head of seven ethylene oxide groups and one terminal 
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hydroxyl group. I use the OPLS-AA force field to describe d-limonene and C12E7 

following a similar process as described in Section 5.4.1. I also use the SPC/E force 

field (Berendsen et al. 1987) to simulate water molecules where the SHAKE algorithm 

(Ryckaert et al. 1977) is used to keep the water molecules rigid throughout the whole 

simulation.  

 

 

Figure 6-2 Schematic configuration of d-limonene (a) and C12E7 (b). Color code: pink, carbon in solvent; 

brown, carbon in surfactant; red, oxygen; and white, hydrogen. 

 

I use the clay structure (illite) described in earlier chapters with the ClayFF force 

field (Cygan et al. 2004) to describe the interatomic interactions for the clay structure 

and the cations. I also use the Lennard-Jones (LJ) 12-6 term (Lennard-Jones et al. 1924) 

to describe the short-range interactions with a cutoff distance of 15 Å and the particle-

particle/particle-mesh (PPPM) method with a precision value of 10−6 (Eastwood et al. 

1984) to estimate long-range electrostatic interactions. I also use Lorentz-Berthelot 

mixing rules to compute the interactions between nonbonded atoms in clay minerals 

(followed by the CLAYFF force field) and geometric mixing rules for all the other 

nonbonded interactions (Perez et al. 2020c). 
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6.2.2 Construction of Microemulsion with Varying Salinities in Bulk Conditions 

Initially, water, solvent, and surfactant are randomly distributed in a cubic box with a 

length of 50 nm using Packmol package (Martínez et al. 2003), as shown in Figure 6-3a. 

The number of water (in red), solvent (in pink), and surfactant (in brown) molecules 

are 42000, 86, and 55 respectively following Bui's et al. (2018) work. It should be noted 

that to distinguish solvent and surfactant easily, the oxygen atoms in surfactant are also 

colored brown in the remainder of this chapter. I run the equilibrium MD (EMD) 

simulations using an NPT ensemble to obtain a stable microemulsion. Temperature and 

pressure are maintained at 400 atm (5878 psi) and 380 K (224 °F) using Parrinello-

Rahman barostat (Parrinello et al. 1981) and Nose Hoover thermostat (Nosé et al. 1984) 

respectively.  

Figure 6-3b shows the equilibrium configuration of the simulation box containing 

a stable microemulsion droplet where the total simulation time is 50 ns. The length of 

the simulation box after equilibrium is about 11 nm and the diameter of the 

microemulsion is about 6.5 nm (Figure 6-3c), both of which are consistent with Bui's 

et al. (2018) work. 

I then create another 9 models with varying salinities (M2-M10) as shown in Table 

6-1 to model microemulsion behavior under bulk conditions. The salinity variation is 

in a range of 3,000-500,000 ppm. First, I use the Packmol package (Martínez et al. 2003) 

to fix the microemulsion at the center of a cubic box with a length of 11 nm (same size 

in Figure 6-3b). Second, water and NaCl are randomly distributed around the 
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microemulsion and salinity is increased by adding a greater number of Na+ and Cl- ions. 

M1 is treated as a reference model where salinity is not considered. The 9 

remaining models are categorized into three groups: low (3000-8000 ppm), mid 

(10000-40000 ppm), and high (100000-500000 ppm) salinity. The initial configurations 

are shown in Figure 6-4. These 9 models are equilibrated using an NPT ensemble 

through the whole simulation process. First, a time step of 0.1 fs is used for 100ps, after 

which it is increased to 1 fs for 10 ns when the simulations reached equilibrium. Then 

another 40 ns of simulations are carried out for the analysis in this chapter. 

 

Figure 6-3 (a) Initial configuration of the simulation box containing random placement of water (red), 

solvent (pink), and surfactant (brown). (b) Equilibrium configuration of the simulation box containing a 

stable microemulsion. (c) Microemulsion extracted from panel b. The diameter of the microemulsion is 

about 6.5 nm and the scale is not the same as panel b. The total simulation time is 50 ns.  
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Table 6-1 Summarized models in bulk condition 

 

 

Figure 6-4 Initial Configuration of models in bulk condition with varying salinities. The color code 

follows in Figure 6-3. The color codes of salt are Na, red, and Cl, yellow. 
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6.2.3 Construction of Microemulsion in Clay-hosted Nanopore 

I choose the salinities of 3000, 10000, and 100000 ppm representing low, mid, and high 

salinity, respectively from Table 6-1. Zero salinity is chosen as a reference model. 

Different clay surface chemistries (P-H and H-H structures) are also considered in this 

work following Chapter 3. All models are summarized in Table 6-2. Initial 

configurations are shown in Figure 6-5. The pore width is 11 nm. The surface chemistry 

in M11-M14 is P-H while in M15-M18 is H-H, where P and H stand for potassium and 

hydroxyl respectively following the convention in Chapter 3. 

The clay structure is kept rigid throughout the simulations, except that H+ in 

hydroxyl and cation K+ are mobile with thermal motion (Hao et al. 2018). This choice 

forbids the geochemical study of clay swelling due to adsorption/desorption/EDL 

(Sposito et al. 1999). All 8 simulations are carried out at 380K using a canonical NVT 

ensemble, where the temperature is controlled by the Nose Hoover thermostat (Nosé et 

al. 1984). It should be noted that the volume of the simulation box is primarily 

determined in M1 with the pressure of 400 atm, and is the same in M2-M10 that 

includes NaCl, consistent with the observations of Koleini et al. (2019b). Models M11-

M18 also have the same pressure during the NVT ensemble simulations.  
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Table 6-2 Summarized models in clay-hosted nanopores 

 

 

 
Figure 6-5 Initial Configuration of models in clay-hosted nanopore with varying salinities. The fluid 

color code follows in Figure 6-4. Grey color is the clay, and light grey is potassium (K+). The pore width 

is 11 nm. The surface chemistry in M11-M14 is P-H while in M15-M18 is H-H. 

 

6.3 Results and Discussion 

6.3.1 Fluid Distribution in Bulk Condition 

Figure 6-6 shows the fluid distribution in models M2-M10 in bulk condition after 50 ns 

of simulation. I also render the microemulsion surfaces in gray in Figure 6-7 using 

OVITO (Stukowski et al. 2010). Figure 6-7 indicates that the shape of the 
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microemulsions remains spherical at all salinities underscoring its stability under these 

conditions. To further validate this conclusion, I calculate the density profiles in x-y and 

x-z directions, as shown in Figure 6-8 and Figure 6-9 respectively. High-density 

numbers correspond to red colors and low-density numbers to blue colors. The density 

plots use 100 × 100 × 100  bins in the simulation box to count particle numbers 

spatially.  

These results underscore the stability of the microemulsions under varying 

salinities. The high density within the microemulsion shows a centered solvent 

surrounded by the surfactant.  

 

Figure 6-6 Equilibrium configuration of Models 2-10 after 50 ns. The color code is the same as Figure 

6-4. 
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Figure 6-7 The shape of microemulsions in Models 2-10. The microemulsion surface is rendered as a 

light grey surface. The color code is the same as Figure 6-4. 

Microemulsions tend to show different behavior with variations in salinity, 

temperature, and pressure ( Eastoe et al. 1990; Bera et al. 2015). In this work, the 

calculated microemulsion surface areas (light grey surfaces in Figure 6-7) as a function 

of salinity are shown in Figure 6-10 indicating that with increasing salinity, the 

microemulsion surface area correspondingly increases, which agrees with Bera et al. 

(2015) and Torrealba et al. (2019).  

Although, I do not observe a change in the microemulsion stability with respect to 

salinity, it is important to note that, in reality, the type of microemulsion will change 

from Winsor Type I (oil-in-water) to Type III (bicontinuous) to Type II (water-in-oil) 

with increases in salinity. This however only occurs if oil and water are present in 
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approximately equal quantities (Yuan et al. 2018). In this work, I chose a large 

percentage of water compared to oil to consider only the effect of salinity on the 

microemulsion. My simulation also allows comparison to the work by Bui et al. (2019) 

where the oil-water ratio is similar to this work.  

Here, I use two definitions of ‘stability’. If the microemulsion is largely spherical, 

the microemulsion is considered to be ‘highly stable’. If the shape changes and becomes 

more ellipsoidal, it is considered as ‘moderately stable’. Otherwise, I refer to it as 

‘unstable’. Therefore, the stability of microemulsions in M1-M10 is highly stable.  

 

Figure 6-8 Projection on the xy- plane of microemulsion after the simulation time of 50 ns. 
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Figure 6-9 Projection on the xz- plane of microemulsion after the simulation time of 50 ns illustrating 

that they are stable at all salinities 

 

Figure 6-10 Calculated surfaces of microemulsions at varying salinities. It indicates that by increasing 

the salinity, the microemulsion surface will correspondingly increase. Meanwhile, the surface areas of 

the microemulsions with varying salinity range from 9152 to 9487 A2 with a standard deviation of 111 

A2 illustrating microemulsions are stable at all salinities. 
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6.3.2 Fluid Distribution in Clay-hosted Nanopores 

Figure 6-11 shows the fluid distribution in P-H clay-hosted nanopores as a function of 

simulation time (in the vertical direction) and salinity (in the horizontal direction). The 

salinities of M11-M14 are 0, 3000, 10000, and 100000 ppm, respectively. Water 

molecules are not shown for clarity. Figure 6-12 shows the density plot of M11-M14 in 

xy-projection at the simulation time of 50 ns. High-density numbers correspond to red 

colors and low-density numbers to blue colors.  

In M11, at a simulation time of 10 ns, the microemulsion moves toward the clay 

surface and appears to wet the surface. As simulation time progresses, the droplet 

continues to wet the surface and finally breaks up at around 40ns. At 50ns, the 

microemulsion simply covers the lower clay surface. I show the same result in the 

calculated density of Figure 6-12a. Note that the upper and bottom parts in Figure 6-12a 

are linked together due to the periodic boundary condition.  

Increasing the salinity to 3000 ppm (Figure 6-11, M12), the microemulsion shows 

some degree of affinity to the clay surface (20-50 ns). Figure 6-12b also validates this 

observation. Further increasing the salinity to 10000 ppm (Figure 6-11, M13), the 

microemulsion remains intact during the whole simulation (0-50 ns), except for a few 

liberated solvent molecules. This observation is reinforced by Figure 6-12c. It should 

be noted that I continue to run both M12 and M13 for another 50 ns to assess the 

stability of the microemulsion and the results do not change.  

At the highest salinity of 100000 ppm (Figure 6-11, M14), the microemulsion 
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remains spherical and this observation is confirmed in Figure 6-12d.  

I, therefore, indicate that the stability of microemulsions is unstable in M11-12, 

moderately stable in M13, and highly stable in M14. This is a rather surprising result 

indicating that the microemulsion stability in P-H clay-hosted pores increases with 

increasing salinity.  
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Figure 6-11 Fluid distribution in P-H clay-hosted nanopores as the function of simulation time (in the 

vertical direction) and salinity (in the horizontal direction). Remembered that the salinities of M11-M14 

are 0, 3000, 10000, and 100000 ppm, respectively. Water molecules are not shown for clarity. It indicates 

the behavior of the microemulsion is a function of salinity and increasing the salinity to a certain value 

(i.e., 10000 ppm) can enhance the stability of the microemulsion in P-H clay-hosted nanopores. 
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Figure 6-12 Density plot of M11-M14 in xy- projection at the simulation time of 50 ns in P-H clay-hosted 

nanopores. High-density numbers correspond to red colors and low-density numbers to blue colors. The 

calculated method follows the same process described in Section 6.3.1. 

Figure 6-13 (upper four panels) shows the fluid distribution in H-H clay-hosted 

nanopores as the function of salinity where water molecules are not shown for clarity. 

I also plot them individually in the bottom four panels of Figure 6-13. Simulation time 

is 50 ns. The salinities of M15-M18 are 0, 3000, 10000, and 100000 ppm, respectively. 

Figure 6-14 shows the density plot of M15-M18 in xy- projection at the simulation time 

of 50 ns. 

Figure 6-13 indicates that irrespective of the salinity, the microemulsions are 

highly stable with a spherical shape in H-H clay-hosted nanopores. The calculated 

density plot in Figure 6-14 also validates this conclusion.  
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Therefore, we can conclude that the behavior of the microemulsion is the function 

of salinity (in Figure 6-11) and surface chemistry (comparing Figure 6-11 and Figure 

6-13). In the next section, I investigate these observations further.  

 

Figure 6-13 (Upper four panels) Fluid distribution in H-H clay-hosted nanopores as the function of 

salinity where water molecules are not shown for clarity. (Bottom four panels) Extracted microemulsions 

from the corresponding models. It indicates that irrespective of the salinity, the microemulsions are stable 

keeping the shape as a sphere in H-H clay-hosted nanopores. 
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Figure 6-14 Density plot of M15-M18 in xy- projection at the simulation time of 50 ns in H-H clay-

hosted nanopores. High-density numbers correspond to red colors and low-density numbers to blue 

colors. The calculated method follows the same process described in Section 6.3.1. 

 

6.3.3 Surface Chemistry 

In Chapter 3, I document the presence of local electric fields in the P-H nanopore. 

Therefore, following the same process in Chapter 3, I insert one charge inside the 

nanopores and calculate the electric fields in models M11-M18 (M11-M14 is P-H and 

M15-M18 H-H). The results are shown in Figure 6-15. The average electric fields are 

7.77 (in M11), 4.94 (in M12), 1.13 (in M13), 0.41 (in M14), 0.51 (in M15), 0.39 (in 

M16), 0.35 (in M17) and 0.26 V/nm (in M18). Figure 6-15 reaffirms the conclusions of 
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Chapter 3. It should be noted that despite the presence of a strong electric field in M11, 

the clay surfaces do not move when allowed to do so as shown in Appendix B. 

Figure 6-15 also demonstrates that increasing the salinity impairs the strength of 

the electric field as discussed in previous chapters. Since we observe highly or 

moderately stable microemulsions in M13-M18 but not in M11-M12, the presence of 

strong electric fields is likely one of the reasons to break down the microemulsion. 

Salinity tempers the strength of the field and renders the microemulsion stable.  

However, there is also the surface effect to consider where the microemulsion 

coats the clay surface as seen in Figure 6-11 for a few values of salinity. Thus, I build 

another two models to test the effects of electric field and clay surface on 

microemulsion stability separately. 

 

Figure 6-15 Calculated electric fields as the function of salinity and surface chemistry. Remembered that 

the surface chemistry of M11-M14 is P-H and M15-M18 H-H. The average electric fields in M11-M18 

are 7.77, 4.94, 1.13. 0.41, 0.51, 0.39, 0.35 and 0.26 V/nm respectively. 

Figure 6-16 shows the behavior of microemulsion in the presence of an electric 

field as the function of simulation time. With no salinity and an imposed external 
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electric field of 9.83 V/nm (same strength in M11, Figure 6-15) in the z-direction, I 

observe elongation of the microemulsion at a simulation time of 10 ns (Figure 6-16b); 

however, it continues to remain intact even at the end of 50ns of simulation time. So, 

the electric field alone perhaps is not sufficient to compromise microemulsion stability.  

 

Figure 6-16 Behavior of microemulsion at the only presence of electric field as the function of simulation 

time. Color code refers to Figure 6-3. 

In Figure 6-17, to eliminate the effect of the electric field, I only use the H-H 

nanopore with no salinity to test the effect of clay surfaces on microemulsion. Water 

molecules are not shown for clarity. I perform the simulations with an initial distance 

of 0.4 nm between the wall and the microemulsion (Figure 6-17a) and observe results 

similar to Akkutlu et al.(2014) showing adsorption can occur Figure 6-17b.  

The microemulsion is highly stable when touching the clay surface as shown in 

Figure 6-17b. Figure 6-17c and Figure 6-17d are the density plots on xz and xy 

projections respectively. The contact angle in Figure 6-17c is about 130° which is 

between 90° and 180°, confirming that the microemulsion has low wettability on the 

clay surface but is still stable indicating that the clay surface alone, in the absence of a 

strong electric field cannot break the microemulsion.  
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Figure 6-17 (a-b) Behavior of microemulsion at the only presence of clay surface as the function of 

simulation time. (c-d) Density plots on xz and xy projections respectively. High-density numbers 

correspond to red colors and low-density numbers to blue colors. The calculated method follows the same 

process described in Section 6.3.1. 

 

6.3.4 Self-diffusion 

Figure 6-18 shows the calculated self-diffusion coefficients of water, solvent, and 

surfactant in M1-M18. Self-diffusion is calculated using the standard relationship 

between the diffusion coefficient and the slope of the mean square displacement (MSD), 

following the process described in Section 2.4.3. Remember that M1-M10 are in bulk 

condition (Figure 6-18a), M11-M14 in P-H nanopore (Figure 6-18b), and M15-M18 in 
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H-H nanopore (Figure 6-18c). Red, pink, and brown represent the water, solvent, and 

surfactant molecules respectively.  

 

Figure 6-18 Calculated self-diffusions of water, solvent, and surfactant in M1-M18.  

In M1 (no salinity), the self-diffusion of water is 8.79 × 10−9 m2/s. Holz et al. 

(2000) fitted the experimental data and obtained the self-diffusion coefficients of water 

as the function of temperature, as shown in Equation (6-1): 

𝐷 = 𝐷0 [(𝑇
𝑇𝑆

⁄ ) − 1]
𝛾

 (6-1) 

Where D is the self-diffusion of water as the function of temperature, 𝑇𝑆 is a singular 

temperature, T is the target temperature, 𝐷0 and 𝛾 are fitting parameters. According 

to Holz et al. (2000),  

𝐷0 = (1.635 × 10−8 ± 2.242 × 10−11)𝑚2𝑠−1 (6-2) 
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𝑇𝑆 = (215.05 ± 1.20)𝐾 (6-3) 

𝛾 = 2.063 ± 0.051 (6-4) 

Therefore, combining Equations (6-1), (6-2), (6-3), and (6-4), the self-diffusion of 

water at the temperature of 380 K is 9.47 × 10−9  m2/s and my calculated value 

(8.79 × 10−9 m2/s) shows a small deviation (7%) from the Holz's et al. (2000) result. 

Irrespective of bulk condition and confinement (P-H and H-H), increasing the 

salinity (NaCl) leads to the decrease of self-diffusion of water. This trend agrees with 

observations in Kim et al. (2012), Ghaffari et al. (2013), and Ding et al. (2014). This is 

because the hydration of the ions causes a decrease in the self-diffusion of water (Kim 

et al. 2012). Furthermore, Ding et al. (2014) using ab initio molecular dynamics 

conclude that the ions can cause electronic heterogeneity of water molecules, which in 

turn results in significant variability in the ability of water to polarize its surroundings 

which eventually impacts the self-diffusion of water (In NaCl environments, it is a 

decrease of self-diffusion). 

Meanwhile, the self-diffusion of water in the bulk is higher than that in 

confinement, which is consistent with our previous results (Xiong et al. 2020a). This is 

because the confinement (i.e., clay surface) will influence the behavior of water. A 

detailed discussion is presented in Chapter 3. Moreover, the self-diffusion of water in 

the H-H nanopore is also higher than in the P-H nanopore (i.e., M11 and M15) where 

the presence of an electric field promotes H-bond formation, decreasing the mobility of 

water.  
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The self-diffusions of solvent and surfactant are similar in both the bulk as well as 

in H-H nanopores where the microemulsion remains centered in the pore with little 

influence of clay surface. However, in the P-H nanopore, a large gap is observed, 

especially in M11 (zero salinity), where the microemulsion is not stable (Figure 6-11) 

causing the solvent and surfactant to diffuse separately. With increasing salinity in the 

P-H nanopore, the microemulsions become stable so the gap is narrows. 

6.4 Further Discussion 

Referring back to the question mentioned in Section 6.1 (Introduction) as to 

whether these microemulsions can be delivered deeper into the matrix via inorganic 

pores, the work in this chapter shows that the stability of microemulsion is the function 

of salinity and clay surface chemistry. This necessitates selecting an optimal salinity 

that does not lower the stability of the microemulsion and that does not promote the 

formation of ionic aggregates. In this work for the pore sizes considered, the optimal 

salinity is ~11,000 ppm. Figure 6-19a and Figure 6-19b show the equilibrium 

configuration of the model at the salinity of 11000 ppm in different projections. The 

simulation time is 50 ns. During the whole process, the microemulsion is highly stable 

and distributed at the pore center in which the calculated electric field (0.75 V/nm) is 

not strong enough to drag the microemulsion to the clay surface. It should be noted that 

the pore sizes considered in this work are limited and therefore the salinity 

recommendations, which will vary with pore size, should not be generalized to other 

pore widths.  
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Figure 6-19 Equilibrium configuration of the model at the salinity of 11000 ppm in different projections. 

The simulation time is 50 ns. The color code refers to Figure 6-5. 

 

6.5 Final Remarks 

Effective delivery of microemulsions to the target kerogen is essential for chemical 

EOR. This chapter extends our understanding of the effects of salinity variations on 

microemulsions in clay-hosted nanopores. Different clay surface chemistries are 

considered in this work. In the bulk, I show that the microemulsions are stable across a 

wide range of salinities. In H-H nanopores, the microemulsions remain stable. In the P-

H nanopore, the fluids are subject to the induced local electric fields. In these cases, 

both the electric field and the clay surface compromise the stability of the 

microemulsion.   
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Chapter 7 What Have We Learned?  

7.1 Conclusions 

This dissertation has been a study into the fluid behavior inside clay-hosted nanopores. 

Interactions between clay mineral surfaces and fluids (i.e., water, oil, solvent, or brine 

solutions) have been successfully modeled using classical atomistic molecular 

dynamics. 

The following conclusions can be drawn from this work: 

1. Oil swelling, diffusion, and viscosity reduction are a few of the dominant pore-

scale mechanisms governing EOR. However, my findings also demonstrate that bulk 

fluid properties can cause overly optimistic predictions of the efficacy of EOR when 

dealing with inorganic, clay pore systems.  

 

2. Confinement in illite is shown to negatively impact miscibility for methane-rich 

solvents. Secondly, the self-diffusion of fluids under illite confinement is only 30% of 

their values in the bulk. Most significantly, oil-solvent mixture viscosities under illite 

confinement are about two orders of magnitude higher compared to their bulk values. 

The presence of water exacerbates all of these effects and compromises the solubility 

of the injected solvent.  

 

3. Charge imbalances on adjacent clay surfaces as in P-H nanopores can induce 

local electric fields, favoring the formation of water bridges. In P-H nanopores, water 
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bridges occur at a relatively low water concentration and are primarily driven by the 

electric field governing the structure of water. However, in H-H nanopores water 

bridges only form at high water concentrations due to capillary condensation.  

 

4. In P-H nanopores, water bridges persist under acceleration due to the formation 

of hydrogen bonds under the influence of the electric field. However, in H-H pores, 

water bridges can form at high water saturations but dissipate during flow. 

 

5. At high salinity (above 16000ppm) Na+ and Cl- ions primarily adsorb on the 

clay surface due to the charge screening effect. The unabsorbed Na+ and Cl- ions appear 

as aggregates that impede oil flow. At low salinity (below 8100ppm), water bridges 

across the pore due to a strong surface potential that is not neutralized by the low salt 

concentration. These water bridges severely hamper the flow of any free water and oil.  

 

6. At intermediate values of salinity (8500-12400ppm), ionic aggregates are 

largely absent and water molecules merely adsorb on the surface of the pore. At these 

intermediate values of salinity, the mobility of the oil phase is the highest and 

constitutes the best range of salinity for the pore surface chemistry that I consider. 

 

7. The microemulsions considered in this work are highly stable in solution across 

a wide range of (0-500,000 ppm) in the bulk. In the P-H nanopores, strong electric fields 
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(discussed in Chapter 3) can attract the microemulsion toward the clay surface, and 

finally, the microemulsion becomes unstable (i.e., broken or divided into two parts). 

However, in the H-H nanopore with a negligible electric field, the microemulsions 

remain stable for all values of salinity. 

7.2 Limitations 

1. Throughout this dissertation, atomistic molecular simulations have been used 

to help understand the behavior of fluids in clay-hosted nanopore from a molecular 

level. The primary aim of this study is to examine the interfaces between charged clay 

surfaces and fluids and to provide a more complete picture of fluid transport in 

unconventional reservoirs. However, in this context, the study still suffers from a few 

limitations beyond the traditional limitation of MD simulations: Since this work focuses 

on the impact of clay surfaces on fluid distribution, a more realistic representation of a 

fluid mixture is warranted. However, I chose dodecane as a starting point for further 

studies in this area.  

2. The brine used in this work only contains NaCl. In general, brines contain 

several other dissolved salts, such as KCl, CaCl2, and CaCO3, and their presence needs 

to be considered especially when dealing with clays. Moreover, more complicated 

minerals should be investigated on further (or mixed) minerals, kaolinite or 

montmorillonite with various salts. 

3. In Chapters 5 and 6 which focus on optimal salinity ranges, I want to highlight 

that my work is limited in terms of the pore widths and fluid saturations considered. 
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The recommendations should be viewed in the light of these limitations. The main 

purpose of my study was to show that there exists an optimal value of salinity that is 

neither too high nor too low. For specific clays, pore widths and saturations, these still 

need to be determined.   
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Appendix A 

A-1 Temperature 

In LAMMPS, the temperature is calculated by the kinetic energy (KE) based on the 

equation (A-1) as shown below: 

𝐾𝐸 = ∑
1

2
𝑚𝑖𝑣𝑖

2 =
𝑑𝑖𝑚

2
𝑁𝑘𝐵𝑇

𝑁

𝑖=1

 (A1) 

Where KE is the total kinetic energy of the group of atoms, 𝑚𝑖 is the mass of i particle, 

𝑣𝑖 is the velocity of i particle, dim is the dimensionality of the simulation, N is the 

number of atoms in the group, T is the temperature and 𝑘𝐵 is the Boltzmann constant 

number.  

Derivation  

 

Figure A-1 Schematic of a cubic box 

There is a cubic box with a length of x in all directions (Figure A-1left), which is 

saturated by N particles. We make some assumptions: (1) all the particles are 

monatomic; (2) there is no energy loss when they hit the wall (boundary); (3) along 

with each axis, the same number particles are hitting the wall. Here we take a side view 
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(Figure A-1right) and study only one particle with a mass of m and velocity of v. 

According to Newton’s second law: 

𝐹 = 𝑚𝑎 = 𝑚
∆𝑣

∆𝑡
=

∆(𝑚𝑣)

∆𝑡
=

∆𝑝

∆𝑡
 (A2) 

Where p is the momentum, the change of momentum:∆𝑝 = 2𝑚𝑣  and the particle 

traveling through the cubic box is: ∆𝑡 =
2𝑥

𝑣
. Putting the ∆𝑡 and ∆𝑝 into equation A2 

gives: 

𝐹 =
2𝑚𝑣

2𝑥
𝑣

=
𝑚𝑣2

𝑥
 (A3) 

Then the pressure is: 

𝑃 =
𝐹

𝐴
=

𝐹

𝑥2
=

𝑚𝑣2

𝑥3
=

𝑚𝑣2

𝑉
 (A4) 

Where V is the volume of the simulation box. 

This is just pressure from one particle, so the total pressure in one direction is: 

𝑃𝑇𝑜𝑡 =
𝑚𝑣2

𝑉
∙

𝑁

3
 (A5) 

We can arrange the equation (A5): 

3𝑃𝑇𝑜𝑡𝑉 = 𝑚𝑣2𝑁 (A6) 

3𝑃𝑇𝑜𝑡𝑉

2
=

𝑚𝑣2

2
𝑁 = 𝐾𝐸 (A7) 

𝐾𝐸 =
3

2
𝑁𝑘𝐵𝑇 (A8) 

Where KE is the total energy of the group. And PV = 𝑁𝑘𝐵𝑇  

Note: in this derivation, the dimensionality is 3. 

 

A-2 Pressure 

In LAMMPS, the pressure is computed by equation (A9): 
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𝑃 =
𝑁𝑘𝐵𝑇

𝑉
+

∑ 𝒓𝒊 ∙ 𝑭𝒊
𝑁
𝑖

𝑑𝑖𝑚 ∙ 𝑉
 (A9) 

Where 𝒓𝒊 and 𝑭𝒊 are the position and force vector of i particle. 

Derivation 

Let us consider the system of N particles in a finite space. According to Clausius virial 

function(GRAY et al. 1895): 

𝑊𝑇𝑜𝑡 = ∑ 𝒓𝒊 ∙ 𝑭𝒊
𝑇𝑜𝑡

𝑁

𝑖=1

 (A10) 

Where 𝑭𝒊
𝑇𝑜𝑡

 is the total force acting on i particle. 

Assuming the total simulation is τ. Averaging over the MD trajectory is shown below: 

〈𝑊𝑇𝑜𝑡〉 = lim
𝜏→∞

1

𝜏
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〈𝑊𝑇𝑜𝑡〉 = lim 
𝜏→∞
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𝒓𝒊(𝜏) ∙ 𝒓𝒊(𝝉)̇ − 𝒓𝒊(𝟎) ∙ 𝒓𝒊(𝟎)̇

𝜏

𝑁

𝑖

− lim 
𝜏→∞

1

𝜏
∫ ∑ 𝑚𝑖 ∙ |𝒓𝒊(𝜏)|𝟐̇

𝑁

𝑖=1

𝑑𝜏
𝜏

0

 

(A14) 

If the system is in a finite region and particles are not accelerating to infinity. The 

numerator of the first term in Equation A14 is finite, but the denominator (time) is 

infinity. Therefore, the first term of Equation A14 is zero. Combing equation A8 gives: 

〈𝑊𝑇𝑜𝑡〉 = −lim 
𝜏→∞

1

𝜏
∫ ∑ 𝑚𝑖 ∙ |𝒓𝒊(𝜏)|𝟐̇

𝑁

𝑖=1

𝑑𝜏 = −2〈𝐾𝐸〉 = −3𝑁𝑘𝐵𝑇
𝜏

0

 (A15) 
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Figure A- 2 Schematic of external pressure  

Pressure P is defined by considering a system enclosed in a parallelepiped container as 

shown in Figure A- 2. The total force acting on i particle is composed of internal force 

and external force. 

𝑭𝑖
𝑇𝑜𝑡 = 𝑭𝑖

𝐼𝑛𝑡 + 𝑭𝑖
𝐸𝑥𝑡 (A16) 

The total viral function can also be written as the sum of internal and external virials: 

〈𝑊𝑇𝑜𝑡〉 = 〈𝑊𝐼𝑛𝑡〉 + 〈𝑊𝐸𝑥𝑡〉 = −3𝑁𝑘𝐵𝑇 (A17) 

The external virial part of the container with coordinate origin on one of its corners is: 

〈𝑊𝐸𝑥𝑡〉 = 𝐿𝑥(−𝑃𝐿𝑧𝐿𝑦) + 𝐿𝑦(−𝑃𝐿𝑧𝐿𝑥) + 𝐿𝑧(−𝑃𝐿𝑥𝐿𝑦) = −3𝑃𝑉 (A18) 

Combing Equations A10, A17, and A18: 

3𝑃𝑉 = 3𝑁𝑘𝐵𝑇 + 〈𝑊𝐼𝑛𝑡〉 = 3𝑁𝑘𝐵𝑇 + 〈∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡

𝑁

𝑖=1

〉 (A19) 

𝑃 =
𝑁𝑘𝐵𝑇

𝑉
+

〈∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡𝑁

𝑖=1 〉

3 ∙ 𝑉
 (A20) 

From Equation A20, we know that the pressure is determined by temperature (first term) 

and internal force (second term) such as pair, bond, angle, dihedral, improper and 

electrostatic force. For the second term (pairwise interaction), we can calculate from 
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potential energy. 

The total internal force 𝑭𝒊
𝐼𝑛𝑡

  on particle i is the sum of all the forces from other 

particles j in the system: 

𝑭𝒊
𝐼𝑛𝑡 = ∑ 𝑭𝒋𝒊

𝐼𝑛𝑡

𝑵

𝒋=𝟏

 (A21) 

Therefore, 

∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡

𝑁

𝑖=1

= ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑁

𝑗=1

∙

𝑁

𝑖=1

𝒓𝒊 (A22) 

Given that no particle can act on itself, therefore 𝑭𝒊𝒊
𝐼𝑛𝑡 = 0. Therefore, we split the 

Equation A22 into two parts: 

∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡

𝑁

𝑖=1

= ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗<𝑖

∙

𝑁

𝑖=1

𝒓𝒊 + ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗>𝑖

∙

𝑁

𝑖=1

𝒓𝒊 (A23) 

Using Newton’s third law where 𝑭𝒊𝒋
𝐼𝑛𝑡 = −𝑭𝒋𝒊

𝐼𝑛𝑡
 and rearranging Equation A23, we 

can get: 

∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡

𝑁

𝑖=1

= ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗<𝑖

∙

𝑁

𝑖=1

𝒓𝒊 − ∑ ∑ 𝑭𝒊𝒋
𝐼𝑛𝑡

𝑗>𝑖

∙

𝑁

𝑖=1

𝒓𝒊 (A24) 

Here, we can arrange the last term in Equation A24: 

∑ ∑ 𝑭𝒊𝒋
𝐼𝑛𝑡

𝑗>𝑖

∙

𝑁

𝑖=1

𝒓𝒊 = 𝑭𝟏𝟐
𝑰𝒏𝒕 ∙ 𝒓𝟏 + 𝑭𝟏𝟑

𝑰𝒏𝒕 ∙ 𝒓𝟏 + 𝑭𝟏𝟒
𝑰𝒏𝒕 ∙ 𝒓𝟏 + ⋯ + 𝑭𝟏𝑵

𝑰𝒏𝒕 ∙ 𝒓𝟏 + 

𝑭𝟐𝟑
𝑰𝒏𝒕 ∙ 𝒓𝟐 + 𝑭𝟐𝟒

𝑰𝒏𝒕 ∙ 𝒓𝟐 + 𝑭𝟐𝟓
𝑰𝒏𝒕 ∙ 𝒓𝟐 + ⋯ + 𝑭𝟐𝑵

𝑰𝒏𝒕 ∙ 𝒓𝟐 + 

……………. 

𝑭𝑵−𝟏𝑵
𝑰𝒏𝒕 ∙ 𝒓𝑵−𝟏 

(A25) 

Rearrange Equation (A25): 
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∑ ∑ 𝑭𝒊𝒋
𝐼𝑛𝑡

𝑗>𝑖

∙

𝑁

𝑖=1

𝒓𝒊 = 𝑭𝟏𝟐
𝑰𝒏𝒕 ∙ 𝒓𝟏 + 

𝑭𝟏𝟑
𝑰𝒏𝒕 ∙ 𝒓𝟏 + 𝑭𝟐𝟑

𝑰𝒏𝒕 ∙ 𝒓𝟐 

𝑭𝟏𝟒
𝑰𝒏𝒕 ∙ 𝒓𝟏 + +𝑭𝟐𝟒

𝑰𝒏𝒕 ∙ 𝒓𝟐 + 𝑭𝟑𝟒
𝑰𝒏𝒕 ∙ 𝒓𝟑 + 

……………. 

𝑭𝟏𝑵
𝑰𝒏𝒕 ∙ 𝒓𝟏 + 𝑭𝟐𝑵

𝑰𝒏𝒕 ∙ 𝒓𝟐 + 𝑭𝟑𝑵
𝑰𝒏𝒕 ∙ 𝒓𝟑 + ⋯ + 𝑭𝑵−𝟏𝑵

𝑰𝒏𝒕 ∙ 𝒓𝑵−𝟏 

= ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗<𝑖

∙

𝑁

𝑖=1

𝒓𝒋 

(A26) 

Combing Equations A23 and A26: 

∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡

𝑁

𝑖=1

= ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗<𝑖

∙

𝑁

𝑖=1

𝒓𝒊 − ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗<𝑖

∙

𝑁

𝑖=1

𝒓𝒋

= ∑ ∑ 𝑭𝒋𝒊
𝐼𝑛𝑡

𝑗<𝑖

∙

𝑁

𝑖=1

(𝒓𝒊 − 𝒓𝒋) 

(A27) 

Usually, the force can be derived from potential energy V that is a function only of the 

distance 𝒓𝒋𝒊 between particle j and i. 

𝑭𝑗𝑖
𝐼𝑛𝑡 = −∇𝑟𝑖

𝑉 = −
𝑑𝑉

𝑑𝑟
(

𝒓𝒊 − 𝒓𝒋

𝑟𝑗𝑖
) (A28) 

Combing Equations A27 and A28: 

∑ 𝒓𝒊 ∙ 𝑭𝒊
𝐼𝑛𝑡

𝑁

𝑖=1

= − ∑ ∑
𝑑𝑉

𝑑𝑟
(

𝒓𝒊 − 𝒓𝒊

𝑟𝑗𝑖
)

𝑗<𝑖

∙

𝑁

𝑖=1

(𝒓𝒊 − 𝒓𝒋) = − ∑ ∑
𝑑𝑉

𝑑𝑟
𝑗<𝑖

∙ 𝑟𝑗𝑖

𝑁

𝑖=1

 (A29) 

Put Equation A28 into Equation A19: 

𝑃 =
𝑁𝑘𝐵𝑇

𝑉
−

1

3 ∙ 𝑉
〈∑ ∑

𝑑𝑉

𝑑𝑟
𝑗<𝑖

∙ 𝑟𝑗𝑖

𝑁

𝑖=1

〉 
(A30) 

Note: the dimensionality is 3. 
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Appendix B-Supplementary Data 

MD Simulation with Ions Randomly Distributed in Clay Nanopore 

We build one model with potassium ions randomly distributed in clay nanopores 

following the way as Jin et al. (2014), as shown in Figure B-1a. The color code follows 

in Chapter 3. Water saturation is 38%. Figure B-1b shows the initial ion distribution 

without showing water and oil where the total number of ions is 40. The purpose of this 

model is to characterize ion distribution when oil and water are present in clay-hosted 

nanopores and to quantify its impact on the distribution of water-oil mixture. We start 

our simulation from the same model but with different initial velocities. The equilibrium 

results after 20 ns are shown in Figure B-1c to Figure B-1g where oil is not shown for 

clarity. Figure B-1c to Figure B-1g indicate that although starting from the same model, 

the distribution of ions is the function of initial velocities. The numbers in Figure B-1c 

to Figure B-1g are the number of potassium ions corresponding to upper and bottom 

surfaces. Meanwhile, the distribution of water molecules is strongly determined by the 

adsorption of potassium ions. When the clay surfaces are charge-balanced or with 

moderate imbalance (Figure B-1c and e), a familiar sandwich structure of water film-

hydrocarbon-water film is formed which is also similar to the silica-based nanopores. 

With a strong charge imbalance (Figure B-1d, f, and g), however, water bridges instead 

of water adsorption films are observed due to the electric field induced by a strong 

unbalanced charged surface (discussed in detail in Chapter 3). 
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Figure B-1 (a) Initial model where potassium ions are randomly distributed in clay nanopore, the pore 

width is 5 nm and water saturation 38%. (b) An initial model where oil and water are not shown. (c-g) 

Equilibrium results after 20 ns starting from the same model but with 5 different initial velocities. The 

numbers in panels c to g are the number of potassium ions corresponding to upper and bottom surfaces. 

Color codes: clay, grey; potassium, light grey; water, red; and oil, blue. 

Although recently some experiments proved the existence of heterogeneous 

surface charge in clay and our simulations are also consistent with their results, the 

phenomenon of water bridge is still interesting. If the ion distribution in clay nanopore 

is unbalanced which can produce instant electric field (discussed in detail in Chapter 3), 

a naturally subsequent question arises: can the produced electric field drag the ions to 

the other side and make a balanced ion distribution? Carried with this question, we 

build another 3 models with different pore widths (1, 2, and 5 nm), as shown in Figure 

B-2 where oil and water are not shown. The models in Figure B-2 are P-H structures 

with the highest unbalanced ion distribution which can produce the largest electric field 

(discussed in detail in Chapter 3) compared with the rest of the structures (H-H, P-P, 

and the one between H-H and P-H). Therefore, in these models, we want to test whether 
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the strongest electric field can drag the ions to other side and reach a balanced ion 

distribution. Results are shown in Figure B-2a to Figure B-2c where potassium ions are 

handled by a transparent process and green lines are the trajectories of potassium ions. 

Figure B-2a indicates when the pore width is 1 nm, there is a strong interaction 

between clay upper and bottom surfaces. After 20 ns, 14 potassium ions move to the 

bottom surface. When we increase the pore width to 2 nm (Figure B-2b), after 20 ns, 

only 5 potassium ions move to the bottom surface and an impaired interaction between 

clay upper and bottom surfaces is observed. Further increasing the pore width to 5 nm 

(Figure B-2c), after 20 ns, no potassium ions move to the bottom surface and all of them 

are firmly adsorbed on the upper clay surface with a small move. Therefore, we can 

conclude that potassium ions are almost located firmly on the clay surface at a pore 

width larger than 2 nm, consistent with Hao's et al. (2019b) work.  

That is, at a large pore width (i.e., 5 nm in Figure B-1), the produced electric field 

due to unbalanced ion distribution cannot drag the ions to the other side, demonstrating 

that the existence of electric fields in clay nanopore can persist without other 

perturbations such as salinity which is discussed in detail in Chapter 5. 
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Figure B-2 (Upper three figures) initial configuration of models with different pore widths (1, 2, and 5 

nm). (a-c) Equilibrium results after 20 ns where potassium ions are handled by a transparent process 

(transparency is 0.8) and green lines are the trajectories of potassium ions. Color codes refer to Figure 

B-1. 
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Results of NEMD Simulation 

 

Figure B-3 Water and hydrocarbon velocity profiles at the acceleration of 0.0005 nm/ps2 ,0.001 nm/ps2, 

and 0.002 nm/ps2 in a 5 nm H-H nanopore. Cw stands for water concentration. Water concentration is 

seen to strongly impact both water and hydrocarbon velocities. 
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Figure B-4 Water and hydrocarbon velocity profiles at the acceleration of 0.002 nm/ps2 in 10 nm and 15 

nm H-H nanopores. Increasing the pore width causes a more complex and disturbed flow pattern. The 

peaks and troughs in the velocity profiles correspond to local phase density variations.  
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Figure B-5 Hydrocarbon velocity profiles from all 54 NEMD simulations for P-H pores, where the effects 

of acceleration, pore width, and water concentration are analyzed. The results indicate that at increasing 

water concentrations, hydrocarbon velocity decreases. An increase in pore width and acceleration also 

increases the velocities. The flat velocity profile is more pronounced at larger pore widths because of the 

decreasing interaction between hydrocarbon molecules and clay surface. 
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Figure B-6 Water velocity profiles for 54 NEMD simulations in P-H nanopore. The results indicate that 

increasing water concentrations will decrease water velocity. An increase in pore width and acceleration 

also increases the velocities. The flat velocity profile is more pronounced at larger pore widths because 

of the decreasing interaction between water molecules and the clay surface. 

 

Effect of Acceleration 

Figure B-7 shows the water velocity profiles at different values of acceleration and 

100% water concentration in a 15 nm P-H nanopore. It indicates that water velocity 

increases with acceleration due to the larger kinetic energy of water molecules with the 

higher acceleration. At the acceleration of 0.0005 nm/ps2, the water velocity profile is 

parabolic. However, increasing the acceleration to 0.001 nm/ps2 or 0.002 nm/ps2, the 

velocity profiles for water acquire a flat profile at the pore center. This happens when 
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pore wall effects play a smaller role than the imposed acceleration.  

 

Figure B-7 Water velocity profiles at different accelerations and 100% water concentration in 15 nm P-

H nanopore. The result indicates that a flatter velocity profile is observed when the acceleration is 

dominant and any other wall effects are less significant’. 

 

Equilibrium Result with Flexible Clay Structure 

 

Figure B- 8 Equilibrium Result with a flexible clay structure. In the presence of a strong electric field, 

even when I allow the clay structure to move, the distance between upper and lower surfaces is still not 

changed. 
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Unit Conversion of Electrostatic Force 

Because the electrostatic force, F is the product of the electric field, E and the charge, 

e: 

𝐹 = 𝐸𝑒  

Where 𝐹 = 𝑘𝑒
|𝑞1𝑞2|

𝑟2 . In SI units, 𝑘𝑒 is Coulomb’s constant (≈ 8.988 × 109 𝑁 ∙ 𝑚2 ∙

𝐶−2).  q1 and q2 are the signed magnitudes of the charges in Coulombs (C), and the 

scalar r is the distance between the charges in meter (m).  

Theoretically, when the distance r is near zero, the electrostatic force can reach 

infinity. In my work, the distance r is in the range of nanometer. Therefore, in this small 

distance, it is possible to have a high magnitude electric field. Here, I will give a simple 

example. We have two electrons (1 𝑒 = 1.6 × 10−19𝐶) and the distance between them 

is 10 nm. Therefore, the electrostatic force is: 

𝐹 = 8.988 × 109 𝑁 ∙ 𝑚2 ∙ 𝐶−2 ∙
𝑒 ∙ 𝑒

(10 𝑛𝑚)2

= 8.988 × 109 𝑁 ∙ 𝑚2 ∙ 𝐶−2 ∙
𝑒 ∙ 𝑒

(10 × 10−9𝑚)2

= 8.988 × 109 × 1016𝑁 ∙ 𝐶−2 ∙ 𝑒 ∙ 𝑒

= 8.988 × 1027𝑁 ∙ 𝐶−2 ∙ 1.6 × 10−19𝐶 ∙ 𝑒 = 1.438 × 107
𝑁

𝐶
∙ 𝑒

= 1.438 × 107
𝑉

𝑚
∙ 𝑒 = 1.438 × 10−2

𝑉

𝑛𝑚
∙ 𝑒 

The electric field is 1.438 × 10−2 𝑉

𝑛𝑚
. Overall, due to the complexity of the clay 

structure and the small distance (< 10 nm), it is possible to have a such high electric 

field.  
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Appendix C-LAMMPS Scripts 

Solvent pdb File 

CRYST1 0 0 0 90 90 90 P 1 1 
  

ATOM 1 C1 LIG X 1 1.031 0.952 0.018 1 0 Cd 

ATOM 2 C2 LIG X 1 -0.496 0.939 0.06 1 0 Cd 

ATOM 3 C1 LIG X 1 -0.93 0.925 1.525 1 0 Cd 

ATOM 4 C4 LIG X 1 -0.295 2.078 2.273 1 0 Cd 

ATOM 5 C5 LIG X 1 0.841 2.7 1.893 1 0 Cd 

ATOM 6 C1 LIG X 1 1.591 2.235 0.649 1 0 Cd 

ATOM 7 C5 LIG X 1 -1.054 -0.26 -0.689 1 0 Cd 

ATOM 8 C3 LIG X 1 1.299 3.893 2.707 1 0 Cd 

ATOM 9 C3 LIG X 1 -0.723 -1.699 -0.335 1 0 Cd 

ATOM 10 C6 LIG X 1 -1.881 -0.035 -1.724 1 0 Cd 

ATOM 11 HR LIG X 1 1.419 0.089 0.56 1 0 Hd 

ATOM 12 HR LIG X 1 1.387 0.859 -1.009 1 0 Hd 

ATOM 13 HR LIG X 1 -0.862 1.858 -0.402 1 0 Hd 

ATOM 14 HR LIG X 1 -2.015 1.019 1.584 1 0 Hd 

ATOM 15 HR LIG X 1 -0.66 -0.006 2.024 1 0 Hd 

ATOM 16 HX LIG X 1 -0.864 2.501 3.088 1 0 Hd 

ATOM 17 HR LIG X 1 2.644 2.093 0.892 1 0 Hd 

ATOM 18 HR LIG X 1 1.548 3.042 -0.083 1 0 Hd 

ATOM 19 HR LIG X 1 0.645 4.093 3.557 1 0 Hd 

ATOM 20 HR LIG X 1 2.304 3.72 3.092 1 0 Hd 

ATOM 21 HR LIG X 1 1.323 4.787 2.083 1 0 Hd 

ATOM 22 HR LIG X 1 -1.042 -1.926 0.682 1 0 Hd 

ATOM 23 HR LIG X 1 -1.214 -2.407 -1.002 1 0 Hd 

ATOM 24 HR LIG X 1 0.351 -1.871 -0.401 1 0 Hd 

ATOM 25 HX LIG X 1 -2.308 -0.845 -2.298 1 0 Hd 

ATOM 26 HX LIG X 1 -2.153 0.966 -2.027 1 0 Hd 

END 
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Surfactant pdb File 

CRYST1 0 0 0 90 90 90 P 1 1 
  

ATOM 1 Cb MOL X 1 -19.23 1.695 3.246 1 0 C 

ATOM 2 Cs MOL X 1 -18.75 0.856 4.445 1 0 C 

ATOM 3 Cs MOL X 1 -18.192 1.789 5.535 1 0 C 

ATOM 4 Cs MOL X 1 -17.711 0.949 6.733 1 0 C 

ATOM 5 Cs MOL X 1 -17.174 1.882 7.834 1 0 C 

ATOM 6 Cs MOL X 1 -16.689 1.039 9.029 1 0 C 

ATOM 7 Cs MOL X 1 -16.169 1.97 10.14 1 0 C 

ATOM 8 Cs MOL X 1 -15.676 1.125 11.33 1 0 C 

ATOM 9 Cs MOL X 1 -15.163 2.053 12.446 1 0 C 

ATOM 10 Cs MOL X 1 -14.659 1.206 13.63 1 0 C 

ATOM 11 Cs MOL X 1 -14.149 2.133 14.749 1 0 C 

ATOM 12 Co MOL X 1 -13.638 1.284 15.929 1 0 C 

ATOM 13 Os MOL X 1 -13.137 2.19 17.028 1 0 O 

ATOM 14 Co MOL X 1 -12.629 1.355 18.18 1 0 C 

ATOM 15 Co MOL X 1 -12.118 2.277 19.304 1 0 C 

ATOM 16 Os MOL X 1 -11.607 1.442 20.454 1 0 O 

ATOM 17 Co MOL X 1 -11.107 2.346 21.556 1 0 C 

ATOM 18 Co MOL X 1 -10.582 1.495 22.727 1 0 C 

ATOM 19 Os MOL X 1 -10.082 2.399 23.829 1 0 O 

ATOM 20 Co MOL X 1 -9.563 1.561 24.975 1 0 C 

ATOM 21 Co MOL X 1 -9.056 2.481 26.102 1 0 C 

ATOM 22 Os MOL X 1 -8.535 1.644 27.246 1 0 O 

ATOM 23 Co MOL X 1 -8.043 2.548 28.351 1 0 C 

ATOM 24 Co MOL X 1 -7.508 1.696 29.518 1 0 C 

ATOM 25 Os MOL X 1 -7.019 2.6 30.624 1 0 O 

ATOM 26 Co MOL X 1 -6.488 1.763 31.764 1 0 C 

ATOM 27 Co MOL X 1 -5.993 2.684 32.894 1 0 C 

ATOM 28 Os MOL X 1 -5.456 1.849 34.032 1 0 O 

ATOM 29 Co MOL X 1 -4.975 2.756 35.139 1 0 C 

ATOM 30 Co MOL X 1 -4.42 1.906 36.297 1 0 C 

ATOM 31 Os MOL X 1 -3.952 2.812 37.411 1 0 O 

ATOM 32 Co MOL X 1 -3.426 1.972 38.55 1 0 C 

ATOM 33 CH MOL X 1 -2.995 2.888 39.711 1 0 C 

ATOM 34 OH MOL X 1 -2.482 2.044 40.853 1 0 O 

ATOM 35 Hs MOL X 1 -19.642 1.005 2.439 1 0 H 

ATOM 36 Hs MOL X 1 -18.354 2.293 2.825 1 0 H 

ATOM 37 Hs MOL X 1 -20.048 2.411 3.59 1 0 H 

ATOM 38 Hs MOL X 1 -17.935 0.135 4.105 1 0 H 

ATOM 39 Hs MOL X 1 -19.627 0.264 4.869 1 0 H 
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ATOM 40 Hs MOL X 1 -19.015 2.5 5.878 1 0 H 

ATOM 41 Hs MOL X 1 -17.319 2.392 5.117 1 0 H 

ATOM 42 Hs MOL X 1 -16.883 0.242 6.394 1 0 H 

ATOM 43 Hs MOL X 1 -18.585 0.342 7.144 1 0 H 

ATOM 44 Hs MOL X 1 -18.005 2.583 8.175 1 0 H 

ATOM 45 Hs MOL X 1 -16.304 2.495 7.425 1 0 H 

ATOM 46 Hs MOL X 1 -15.851 0.345 8.689 1 0 H 

ATOM 47 Hs MOL X 1 -17.556 0.418 9.432 1 0 H 

ATOM 48 Hs MOL X 1 -17.012 2.657 10.483 1 0 H 

ATOM 49 Hs MOL X 1 -15.307 2.598 9.738 1 0 H 

ATOM 50 Hs MOL X 1 -14.83 0.443 10.984 1 0 H 

ATOM 51 Hs MOL X 1 -16.535 0.491 11.729 1 0 H 

ATOM 52 Hs MOL X 1 -16.011 2.73 12.797 1 0 H 

ATOM 53 Hs MOL X 1 -14.308 2.692 12.046 1 0 H 

ATOM 54 Hs MOL X 1 -13.81 0.532 13.278 1 0 H 

ATOM 55 Hs MOL X 1 -15.513 0.564 14.029 1 0 H 

ATOM 56 Hs MOL X 1 -14.999 2.805 15.103 1 0 H 

ATOM 57 Hs MOL X 1 -13.297 2.777 14.349 1 0 H 

ATOM 58 Hm MOL X 1 -12.787 0.614 15.572 1 0 H 

ATOM 59 Hm MOL X 1 -14.488 0.638 16.328 1 0 H 

ATOM 60 Hm MOL X 1 -11.777 0.69 17.818 1 0 H 

ATOM 61 Hm MOL X 1 -13.475 0.704 18.579 1 0 H 

ATOM 62 Hm MOL X 1 -12.97 2.942 19.667 1 0 H 

ATOM 63 Hm MOL X 1 -11.272 2.929 18.904 1 0 H 

ATOM 64 Hm MOL X 1 -11.961 3.007 21.92 1 0 H 

ATOM 65 Hm MOL X 1 -10.265 3.002 21.155 1 0 H 

ATOM 66 Hm MOL X 1 -9.727 0.834 22.362 1 0 H 

ATOM 67 Hm MOL X 1 -11.423 0.838 23.127 1 0 H 

ATOM 68 Hm MOL X 1 -8.706 0.906 24.606 1 0 H 

ATOM 69 Hm MOL X 1 -10.402 0.901 25.373 1 0 H 

ATOM 70 Hm MOL X 1 -9.913 3.136 26.471 1 0 H 

ATOM 71 Hm MOL X 1 -8.217 3.143 25.703 1 0 H 

ATOM 72 Hm MOL X 1 -8.904 3.198 28.72 1 0 H 

ATOM 73 Hm MOL X 1 -7.208 3.215 27.954 1 0 H 

ATOM 74 Hm MOL X 1 -6.646 1.047 29.149 1 0 H 

ATOM 75 Hm MOL X 1 -8.343 1.028 29.915 1 0 H 

ATOM 76 Hm MOL X 1 -5.624 1.12 31.391 1 0 H 

ATOM 77 Hm MOL X 1 -7.319 1.09 32.159 1 0 H 

ATOM 78 Hm MOL X 1 -6.858 3.325 33.268 1 0 H 

ATOM 79 Hm MOL X 1 -5.164 3.36 32.497 1 0 H 

ATOM 80 Hm MOL X 1 -5.846 3.388 35.516 1 0 H 

ATOM 81 Hm MOL X 1 -4.155 3.44 34.741 1 0 H 
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ATOM 82 Hm MOL X 1 -3.546 1.277 35.924 1 0 H 

ATOM 83 Hm MOL X 1 -5.241 1.22 36.689 1 0 H 

ATOM 84 Hm MOL X 1 -2.534 1.359 38.191 1 0 H 

ATOM 85 Hm MOL X 1 -4.248 1.271 38.912 1 0 H 

ATOM 86 Hs MOL X 1 -3.892 3.496 40.064 1 0 H 

ATOM 87 Hs MOL X 1 -2.172 3.594 39.358 1 0 H 

ATOM 88 HO MOL X 1 -2.176 2.706 41.69 1 0 H 

END 
           

 

Water pdb File 

HEADER water 
      

COMPND 
       

SOURCE 
       

HETATM 1 HW HOH 1 9.626 6.787 12.673 

HETATM 2 HW HOH 1 9.626 8.42 12.673 

HETATM 3 OW HOH 1 10.203 7.604 12.673 

CONECT 1 3 
     

CONECT 2 3 
     

CONECT 3 1 2 
    

END 
       

 

Salt pdb File 

CRYST1 0.32 1.013 1.37 90 90 90 P 1 1 

ATOM 1 rN X -2 -2.727 0.648 1.924 0 0 

ATOM 2 rC X -2 -2.407 1.661 3.294 0 0 

END 
         

 

Input File 

#  LAMMPS input script for Microemulsion 

#################################################################### 

variable        dump_rate       equal 20000 

variable        thermo_rate     equal 100 

# relaxation time (timesteps) 

variable        relax           equal 400000 

# timestep 

variable        ts              equal 1 # fs 
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# temperature 

variable        T               equal 380. # K 

# thermostat damping constant 

variable        Tdamp           equal 100 # fs 

# pressure 

variable        p               equal 400. # atm 

# barostat damping constant 

variable        pdamp           equal 1000 # fs 

# random seed 

variable        seed            equal 102180844 

# cutoff 

variable        rc              equal 10. # A   

variable    V equal vol 

variable    p equal 400     # correlation length 

variable    s equal 5       # sample interval 

variable    d equal $p*$s   # dump interval 

# convert from LAMMPS real units to SI 

variable    kB equal 1.3806504e-23    # [J/K/** Boltzmann 

variable    atm2Pa equal 101325.0 

variable    A2m equal 1.0e-10 

variable    fs2s equal 1.0e-15 

variable    convert equal 

${atm2Pa}*${atm2Pa}*${fs2s}*${A2m}*${A2m}*${A2m}                      

#################################################################### 

# ------------------------ INITIALIZATION ---------------------------- 

units              real 

dimension           3 

boundary            p   p   p 

atom_style         full 

read_data           R3.data 

 

 

pair_style          lj/cut/coul/long ${rc} 

pair_coeff 1 1 0.066 3.5 #C1 

pair_coeff 2 2 0.066 3.5 #C2 

pair_coeff 3 3 0.066 3.5 #C3 

pair_coeff 4 4 0.076 3.55 #C4 

pair_coeff 5 5 0.076 3.55 #C5 

pair_coeff 6 6 0.076 3.55 #C6 

pair_coeff 7 7 0.066 3.5 #CH 

pair_coeff 8 8 0.066 3.5 #Cb 

pair_coeff 9 9 0.066 3.5 #Co 
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pair_coeff 10 10 0.066 3.5 #Cs 

pair_coeff 11 11 0 0 #HO 

pair_coeff 12 12 0.03 2.5 #HR 

pair_coeff 13 13 0 0 #HW 

pair_coeff 14 14 0.03 2.42 #HX 

pair_coeff 15 15 0.03 2.5 #Hm 

pair_coeff 16 16 0.03 2.5 #Hs 

pair_coeff 17 17 0.17 3.12 #OH 

pair_coeff 18 18 0.1553  3.166 # O-O (SPC Refined) 

pair_coeff 19 19 0.14 2.9 #Os 

pair_coeff 20 20 0.1001 4.9388 

pair_coeff 21 21 0.155416412 3.5532 

 

bond_style          harmonic 

bond_coeff 1 268 1.529 #C-C 

bond_coeff 2 317 1.51 #=C-C 

bond_coeff 4 340 1.08 #=C-H2 

bond_coeff 3 340 1.09 #C-H 

bond_coeff 5 367 1.08 #=C-H 

bond_coeff 6 549 1.34 #C=C 

bond_coeff 7 268 1.529 #C-C 

bond_coeff 8 320 1.41 #C-O 

bond_coeff 9 340 1.09 #C-H 

bond_coeff 10 553 0.945 #O-H 

bond_coeff 11 554.1349 1 #H2O 

 

 

angle_style         harmonic 

angle_coeff 1 33 107.8 #H-C-H 

angle_coeff 2 35 109.5 #=C-C-H 

angle_coeff 3 37.5 110.7 #C-C-H 

angle_coeff 4 63 111.1 #C-C-C= 

angle_coeff 5 58.35 112.7 #C-C-C 

angle_coeff 6 35 117 #H-C=H 

angle_coeff 7 60.43 118.76 #C-C=H 

angle_coeff 8 35 120 #C-C=H2 

angle_coeff 9 70 124 #C-C=C 

angle_coeff 10 70 130 #C-C(=)-C 

angle_coeff 11 33 107.8 #H-C-H 

angle_coeff 12 35 109.5 #O-C-H 

angle_coeff 13 37.5 110.7 #C-C-H 

angle_coeff 14 50 109.5 #C-C-O 
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angle_coeff 15 55 108.5 #C-O-H 

angle_coeff 16 58.35 112.7 #C-C-C 

angle_coeff 17 60 109.5 #C-O-C 

angle_coeff 18 45.7696 109.47 #H2O 

 

 

dihedral_style      opls 

dihedral_coeff 1 0.346 0.405 -0.904 0 #C=C-C-C 

dihedral_coeff 2 0 0 -0.372 0 #C=C-C-H 

dihedral_coeff 3 0 14 0 0 #C-C=C-H 

dihedral_coeff 4 0 -8 0 0 #C-C-C(=)-H 

dihedral_coeff 5 1.3 -0.2 0.2 0 #C-C-C-C= 

dihedral_coeff 6 0 0 0.3 0 #C-C(=)-C-H 

dihedral_coeff 7 0 0 0.318 0 #H-C(=)-C-H 

dihedral_coeff 8 0 0 0.366 0 #H-C-C-C= 

dihedral_coeff 9 2.817 -0.169 0.543 0 #C-C(=)-C-C 

dihedral_coeff 10 -0.55 0 0 0 #O-C-C-O 

dihedral_coeff 11 4.319 0 0 0 #O-C-C-OH 

dihedral_coeff 12 1.3 -0.2 0.2 0 #C-C-C-C 

dihedral_coeff 13 0 0 0.3 0 #C-C-C-H 

dihedral_coeff 14 0 0 0.352 0 #H-O-C-H 

dihedral_coeff 15 0 0 0.468 0 #O-C-C-H 

dihedral_coeff 16 -0.356 -0.174 0.492 0 #C-C-O-H 

dihedral_coeff 17 1.711 -0.5 0.663 0 #C-C-C-O 

dihedral_coeff 18 0.65 -0.25 0.67 0 #C-C-O-C 

dihedral_coeff 19 0 0 0.76 0 #C-O-C-H 

 

 

pair_modify          mix arithmetic tail yes 

special_bonds       lj/coul 0.0 0.0 0.3 

kspace_style        pppm 1.0e-6 

comm_modify         vel yes 

 

 

group               solvent type 1 2 3 4 5 6 12 14  

group               surfactant type 7 8 9 10 11 15 16 17 19 

group               all type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

group               water type 13 18 

group               Na type 21 

group               Cl type 20 

 

#----------------------Run NPT-ISO------------------------- 
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reset_timestep 0 

velocity            all create $T ${seed} mom yes rot yes dist gaussian 

 

neighbor           2.0 bin 

neigh_modify       every 1 delay 10 check yes 

timestep ${ts} 

#fix 1 all nvt temp $T $T ${Tdamp} 

fix                  1     water shake 0.0001 100 0 b  11 a 18 

fix                  2     all npt temp $T $T ${Tdamp} iso ${p} ${p} 

${pdamp}  pchain 3 mtk yes nreset 100      

thermo 100 

thermo_style        custom step temp press pe etotal vol density  

dump               1 all atom ${dump_rate} npt1.lammpstrj 

dump_modify        1 sort id scale no 

run                 210000 

write_data          R4.data 

run                 100000 

write_data          R5.data 

 


