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Abstract 
 

 

Predicting disease incidence based on Single Nucleotide Polymorphisms (SNPs) for a 

complex multi-factorial disease like sarcoidosis remains a difficult prediction problem. If 

disease prediction could be improved, genetic screening could be implemented to assist 

identifying disease early, potentially improving patient outcomes.  

In this thesis, we examine the predictive performance of several supervised machine 

learning models to assess if genetic variability can be used to accurately predict disease 

incidence in an African American patient population (n = 2,915). Further, we consider 

the use of SNP “functional scores” such as Combined Annotation Dependent Deletion 

(CADD) scores and FATHMM-XF scores to see if they can improve predictive ability. 

Here we show that support vector machine (SVM), and random forest (RF) models can 

significantly outperform the naïve baseline model (p < 0.05) in terms of accuracy and 

achieve area under the ROC curve (AUC) values of 0.6016 and 0.6019, respectively. A 

neural network (NN) model had the optimal AUC value of 0.6103 but was slightly non-

significant (p = 0.05) when compared to the naïve model in terms of accuracy. The 

overall impact of adding functional scores was minimal to negative on predictive 

performance. 

This work reveals that supervised machine learning based on SNPs can significantly 

outperform random chance when predicting sarcoidosis incidence and supports the idea 

that genetic screening and disease modeling prior to disease incidence could improve 

preventative care.  

 

 

Keywords: Supervised Machine Learning, Disease Prediction, Single Nucleotide 
Polymorphisms (SNPs), Sarcoidosis, Disease Modeling, Random Forest, Support 

Vector Machine (SVM), Neural Network  
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Chapter 1 – Introduction 
 

1.1 - Predicting disease is a key challenge that can be aided by machine 
learning 
 

Predicting disease incidence prior to symptom presentation is a key challenge in 

modern medicine, as achieving highly accurate disease predictions could lead to earlier 

detection of initial disease, which has potential to improve patient outcomes. For 

example, clinicians routinely screen patients deemed at high risk for colorectal cancer 

due to family history or prior disease, which has been shown to save countless lives due 

to early detection (Kahi et al., 2018). However, over-screening patients for suspected 

disease when none is present could burden patients with unnecessary cost, invasive 

screening procedures, psychological stress, false positives, and could potentially initiate 

the “nocebo” effect (Colloca & Miller, 2011), triggering negative symptoms despite 

absence of disease. It is imperative therefore that any disease prediction or risk 

assessment method be highly accurate prior to implementation in the clinic. Due to the 

benefits of early disease detection and the risks of inaccurate prediction, novel methods 

of identifying patients at high risk for life-threatening diseases should be explored and 

optimized to maximize accuracy. 

One such method to identify people at high risk for disease is calculating a 

weighted polygenic risk score (Ho et al., 2019; Polygenic Risk Scores, 2020). This 

approach sums the number of individual risk alleles the person carries, weighted by how 

strongly each risk allele associates with disease in a genome-wide association study 

(GWAS), to generate a score which describes the patient’s relative risk of developing a 

specific disease. This approach is attractive because it does not require a person to be 

sick or have a family history to assess disease risk. Additionally, it only requires a 

simple blood draw, DNA extraction, and a genotyping assay, which is becoming 

increasingly inexpensive (Li et al., 2008). However, polygenic risk scores have received 

criticism for being unable to model complex interactions which occur in many diseases 

(Ho et al., 2019), overly training on European ancestry patients which limits their utility 
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in other populations (De La Vega & Bustamante, 2018), and achieving only moderate 

accuracy in predicting disease outcome for several diseases (Belsky et al., 2013; Lewis 

& Vassos, 2020). 

An alternative approach is to utilize supervised machine learning algorithms 

trained on a large cohort of case and control patients, using the most disease-

associated patient single nucleotide polymorphisms (SNPs) identified by GWAS to 

generate a predictive model (Ho et al., 2019). This approach shares the advantages of 

polygenic risk scores yet produces more complex models capable of identifying 

otherwise unseen structure in the data, which has been shown to improve disease 

prediction accuracy compared to polygenic risk scores alone (Joseph et al., 2018; 

Kruppa et al., 2012; Paré et al., 2017). This approach still suffers from relying on data 

from predominately individuals with European ancestry, which limits utility in non-

European populations, as well as demands a large amount of high-quality genotyped 

case and control data to effectively train the model. 

 

1.2 - Hypothesis 1 – Machine learning can classify sarcoidosis cases with 
better than random chance 
 

We hypothesized that machine learning could be useful in improving our ability to 

predict sarcoidosis disease incidence. Sarcoidosis is a complex disease with both 

genetic and environmental components contributing to pathology (Moller et al., 2017) 

and can be life-threatening in severe cases (Baughman & Lower, 2011). Additionally, 

accurately diagnosing sarcoidosis remains challenging due to minimal signs and 

symptoms in early stages of disease as well as similarity of symptoms to other common 

diseases (Sarcoidosis - Diagnosis and Treatment - Mayo Clinic, 2019). The defining 

feature of sarcoidosis is formation of clusters of inflammatory cells called granulomas, 

which typically form in the lungs but can also be found in other organs (Learn About 

Sarcoidosis - American Lung Association, 2020). However, several other diseases also 

feature granulomas, such as Crohn’s disease (Molnár et al., 2005), rheumatoid arthritis 

(Imadojemu et al., 2016), and tuberculosis (Silva Miranda et al., 2012), among others. A 
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battery of tests is typically required to confirm sarcoidosis and rule out other disorders, 

such as chest X-ray, computerized tomography (CT), pulmonary function tests, and 

invasive lung or skin biopsy to collect granuloma samples (Sarcoidosis - Diagnosis and 

Treatment - Mayo Clinic, 2019). The difficulty of diagnosis underscores the need for 

robust genetic prediction tools to aid in identifying high-risk patients. 

The etiology of sarcoidosis is currently unknown, but it is widely believed that 

environmental pollutants and/or bacterial or fungal infection triggers the onset of 

granulomatous formations, then the autoimmune system fails to resolve the granulomas 

once the pollutant or bacteria is cleared (Starshinova et al., 2020). Mycobacterium 

species may play a role, as well as working in environments with high mold/mildew, or 

exposure to some inorganic aerosols such as insecticides, certain metals, or wood 

smoke and ash (Judson, 2020; Moller et al., 2017). 

 Due to the combination of genetic and environmental contributions to sarcoidosis 

pathology, there is a theoretical limit to the performance of any genetics-only approach 

to predicting disease incidence. According to one study of 210 Danish and Finnish twin 

pairs, the heritable component of sarcoidosis was calculated to be 66% (95% C.I. 0.45 

to 0.8) (Sverrild et al., 2008). A Swedish familial aggregation study looking at 23,888 

cases and 171,891 general-population controls estimated the heritability to be 39% 

(95% C.I. 0.12 to 0.65) (Rossides et al., 2018). Both studies reach the conclusion that 

genetics plays a significant but non-exclusive role in sarcoidosis disease incidence. An 

optimal model therefore would require using “blended” data types, including both 

genetics, and known environmental exposures to disease-associated pollutants and/or 

pathogens.  

Construction of this ideal “blended” dataset remains challenging, due to lack of 

knowledge about which specific pollutants contribute most to disease combined with the 

impracticality or impossibility of quantitatively measuring how much exposure a person 

has had to a particular pollutant such as wood smoke or aerosolized metal. Qualitative 

assessment of known exposure to a given pollutant could be obtained via questionnaire 

(e.g., asking a person how often they are around wood burning stoves or fires), which 

may still contain predictive value and improve modeling performance in combination 
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with genotyping data. Incorporating gene-environment interaction in predictive models 

has been shown to improve phenotype predictive performance in yeast and plants 

(Grinberg et al., 2020) as well as Parkinson’s disease prediction (Jacobs et al., 2020); 

however, a robust dataset of this type has not been created for sarcoidosis to our 

knowledge. 

 Despite the limitations of implementing a genetics-only approach to model 

disease incidence of sarcoidosis, we attempted to obtain model sensitivity near the 

estimated heritability of ~40% using a dataset of 2,915 genotyped African American 

sarcoidosis patients and controls with supervised machine learning. We first utilized 

genome-wide association (GWA) to identify the most correlated SNPs with disease, 

then used these top SNPs as features to build three classifiers based on random forest 

(RF), support vector machine (SVM), and neural network (NN). We then evaluated the 

performance of the models on unseen test data [See Chapter 2.2– Data Preparation]. 

The best model’s most important features were identified and could be used to inform 

future studies or experiments. However, simply because a SNP is considered useful for 

classification does not necessarily mean that SNP plays an important biological role in 

disease incidence. The individual SNP in question may be in Linkage Disequilibrium 

(LD) with a nearby SNPs that plays a more causal role, it may be useful for 

classification by random chance, or it may be interacting with another important SNP 

which has a more causal role. 

 

1.3 - Determining if single nucleotide polymorphisms have functional 
consequences or if they are benign is an active area of research 
 

 Assessing if a SNP has a functional role in forming a person’s phenotype is an 

active area of research, both experimentally and computationally. Over 335 million 

SNPs have been identified from humans across the globe and a single individual 

contains around 4 to 5 million differences compared to the reference genome (Auton et 

al., 2015). Understanding which of these SNPs play functional roles in determining 

human traits or disease and which are inconsequential is an ongoing scientific effort. 
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Projects such as the Encyclopedia of DNA Elements (ENCODE), the Roadmap 

Epigenomics Project, RegulomeDB, and HaploReg aim to help address this large 

challenge (Abascal et al., 2020; Boyle et al., 2012; Roadmap Epigenomics Consortium 

et al., 2015; Ward & Kellis, 2016). 

Determining functional consequences of SNPs in protein-coding regions, while 

still challenging, is more straightforward than non-coding SNPs, because changes to 

protein-coding regions of a genome can result in predictable changes to amino acid 

sequence based on the standard genetic codon table. If an early stop codon is 

introduced for example, entire proteins or chunks of proteins can be lost, leading to 

diseases such as Duchenne muscular dystrophy and cystic fibrosis (Keeling et al., 

2013). A compendium of known inherited genetic disorders based on changes to protein 

coding sequences, known as the Online Mendelian Inheritance in Man (OMIM) was 

created and is maintained to assist in identifying which disorders (phenotypes) are 

generated from which specific changes to protein coding sequences (Amberger et al., 

2019).  

In general, phenotypic characterization of amino acid changes due to SNPs still 

requires experimental and/or observational validation, because predicting function 

involves predicting protein folding, then predicting protein-protein interactions, then 

predicting how those altered interactions will affect the rest of the organism’s biology, 

which remains an immensely challenging task. Great strides have been made recently 

to improve protein folding predictions using deep learning (Senior et al., 2020). Still, the 

challenge of in silico predicting phenotypic changes based on changes to protein coding 

regions remains standing. 

The problem of predicting functional effects is compounded when non-protein 

coding SNPs are considered. Most SNPs occur outside the protein-coding regions of 

the genome, primarily due to increased selection pressure on the coding regions 

compared to the non-coding regions (Barreiro et al., 2008). Areas of the non-coding 

regions can still play vital regulatory roles by enabling transcription factor or promoter or 

silencer binding, acting as a cis- or trans-regulatory elements, being involved in 

epigenetic regulation, or regulating telomeres (Carroll, 2008; Cusanelli & Chartrand, 



6 
 

2014; Kasowski et al., 2010). Other areas of the non-coding region may have lost their 

function entirely and thus carry no evolutionary consequences when mutations occur in 

these regions, leading to accumulation of SNPs without functional effects (Zheng et al., 

2007). Due to this variability across the non-coding regions of the genome, it is unclear 

if a given SNP will have a functional consequence or not simply based on nucleotide 

change alone. Additional context, such as adjacency to a coding region, location in 

known regulatory regions, or experimental modification in cell or tissue culture, is 

required to estimate the likelihood of a SNP’s potential to have a functional effect. 

Several machine learning efforts have been conducted to classify each known 

SNP as either functional or non-functional. One such effort has been the generation of 

Combined Annotation Dependent Depletion (CADD) scores (Kircher et al., 2014). In this 

study, researchers trained a support vector machine (SVM) to differentiate between 

14.7 million high-frequency human alleles versus 14.7 million simulated variants using a 

suite of over 60 different features as predictors. Some features used include 

measurements of evolutionary conservation, open chromatin, acetylation or methylation, 

distance from the nearest transcription factor binding site, human genetic frequency, 

along with many more. The logic behind comparing actual observed high-frequency 

alleles with simulated alleles is that deleterious mutations that reduce an organism’s 

fitness tend to decrease over time due to natural selection, but these deleterious 

mutations will not be reduced in the simulation. The CADD-score, or “C-score,” 

therefore measures how likely a given SNP is to be deleterious to an organism’s fitness. 

This measurement correlates with changes in both molecular functionality and 

pathogenicity of a particular SNP. The researchers applied their trained model to 

generate C-scores for every human SNPs and have continued to update their scores for 

the latest version of the GRCh38 genome assembly (Rentzsch et al., 2019). One 

limitation of this approach is that disease-causing SNPs can survive natural selection if 

they cause disease in middle or old age, past the point of reproductive pressure. 

Another approach that has been attempted to assess the deleteriousness of a 

specific SNPs is called FATHMM-MKL (Shihab et al., 2015). This approach leverages a 

manually curated database of known, heritable, disease-causing variants, the Human 
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Gene Mutation Database (Stenson et al., 2017), to generate a robust list of deleterious 

SNPs that are known to cause disease. They then generated a list of SNPs unlikely to 

cause disease by pulling SNPs from the 1000 genomes project (Altshuler et al., 2012) 

which were presumed to be benign due to their absence in the Gene Mutation 

Database. The features they used to train this model included: vertebrate sequence 

conservation, histone modification, transcription factor binding sites, open chromatin, 

local GC content 5bp around the SNP, and more. They trained their model using SVM 

with multiple kernel learning, and demonstrated superior performance compared to 

CADD on unbiased test samples. In early 2018, an updated model called FATHMM-XF 

was published, improving the results from FATHMM-MKL by utilizing additional features 

during model training (Rogers et al., 2018). Prediction scores are available for all 

GRCh37 and GRCh38 SNPs . 

A meta-analysis conducted in 2018, prior to the release of FATHMM-XF, 

compared 15 different genome-wide deleterious prediction scores and 8 conservation 

scores to evaluate which models perform the best when predicting non-coding 

deleteriousness and found that the FATHMM-MKL model outperformed the competition 

(Liu et al., 2017). However, this result is perhaps biased toward FATHMM-MKL 

compared to CADD because the test samples used in the meta-analysis were pulled 

from the Human Gene Mutation Database. Nonetheless, in silico functional 

characterization of SNPs has demonstrated remarkable accuracy in predicting variants 

likely to cause deleterious effects in humans, and hopefully can be leveraged to 

potentially improve sarcoidosis modeling accuracy. 

 

1.4 - Hypothesis 2 – Incorporating functional scores can improve 
sarcoidosis disease incidence predictive accuracy 

 

Since sarcoidosis has a strong heritability component (~40-66%), some disease-

causing variants must also be heritable and therefore might be identifiable via 

FATHMM-XF scores or C-scores. We hypothesized that incorporating functional 
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prediction scores into our sarcoidosis prediction model would improve prediction 

accuracy, specifically by helping to identify and prioritize causal variants over variants 

that are associated with disease simply by chance or simply by being passengers in LD 

with the causal variants. This approach also has the advantage of generating novel lists 

of SNPs that can be used to investigate mechanisms of disease incidence in future 

studies. We generated a single “blended” association plus pathogenicity score, which 

rewards a SNP for being highly correlated with disease as well as having a high C-score 

or FATHMM-XF score [See Chapter 4.1 – Functional Score Assignment].  
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Chapter 2 – Data Preparation 
 

2.1 - Code Availability 
 

All R code, Bash shell commands, and trained model files used in this project are 

available at: https://github.com/cejdan/sarc-predictions  

 

2.2 - Data Preparation and Quality Control 
 

 2,918 African American patient samples were obtained as part of the ACCESS 

sarcoidosis study (Freemer & King, 2001), the SAGA sarcoidosis study (Rybicki et al., 

2005), or the Henry Ford Health System (HFHS) and were genotyped. More details on 

sample collection and genotyping can be found in previous work (Adrianto et al., 2012).   

Nucleotides not captured by the original sequencing arrays were imputed with the 

TOPmed imputation server (Taliun et al., 2021) using the following settings: r2 

reference panel, GRCh38 reference build, no R-squared filter, and Eagle v2.4 phasing. 

TOPmed imputations were then quality controlled to remove any SNPs that were in high 

linkage disequilibrium with other SNPs (defined as r-squared < 0.5). Next, we replaced 

imputed nucleotides with observed nucleotides when available. This data set contained 

2,918 individuals from 1,969 unique families, 819 males and 2,099 females, 1,273 

cases and 1,645 controls, and 69,887,691 SNP variants.  

 The following quality controls were then used to filter and clean the data to make 

it more suitable for GWAS and subsequent modeling:  

1) Remove any individuals with < 90% genotyping rate (10% missing rate).  

2) Remove SNPs that have any missing values for any individual. This step helps 

simplify downstream modeling by ensuring all data is free of missing values.  

3) Remove minor alleles with < 1% frequency.  

https://github.com/cejdan/sarc-predictions
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4) Remove variants that reach 0.0001 significance on the Hardy-Weinberg equilibrium 

test.  

5) Remove individuals that have more than 5% Mendelian errors. 

After quality control, the remaining dataset contained 2,915 individuals from 1,969 

unique families, 818 males and 2,097 females, 1,272 cases and 1,643 controls, and  

7,723,467 SNP variants. 

2.3 - Creation of Test and Training data subsets 
 

 Prior to any modeling, we separated test and training datasets to ensure 

independence of samples. Careful consideration had to be taken during this step to 

ensure that whole families were kept entirely within either the training set or the test set, 

as family members present in both training and test sets would reduce the 

independence of the test set.  

To accomplish this, we randomly sampled the quality-controlled data based on 

family ID, not individual ID. We also wanted to maintain similar ratio of cases and 

controls in both training and test sets. We randomly sampled ~10% of the 935 families 

containing at least one member with sarcoidosis (94 families sampled of the 935) as 

well as ~10% of the 1,367 families containing at least one member as a control (137 

families sampled out of 1367 families), which left us 231 families in the test set. 

However, 4 of these families were sampled twice by random chance and were dropped 

from the test set, which left 227 families in the test set. In total, 412 individuals (229 

controls and 183 cases) from 227 families were used as the test set (55.6% controls, 

44.4% cases), while 2,503 (1,414 controls and 1,089 cases) from 1742 families were 

used as the training set (56.5% controls, 43.5% cases). No families were separated. 

New training-specific and test-specific binary plink files were generated to ensure that 

the test and train samples remained separated for all downstream analysis. 
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2.4 - Principle Component Analysis, Logistic regression, and LASSO 
regression 
 

 We performed principal component analysis (PCA) on the training samples to 

help adjust for correlated ancestry during the logistic regression step and used the first 

4 PCs as covariates in the model. It is common practice in GWA studies to account for 

correlated ancestry by using PCs as covariates in your model, as it improves the 

robustness of the results (C. Chen, 2019).  

 Next, to help narrow the list of SNPs down from 7.7 million, we performed logistic 

regression using Plink v1.9 (Chang et al., 2015) to generate odds ratios and p-values 

for each SNP and plotted the resulting GWAS results in a Manhattan plot (Figure 1). 
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Figure 1. Manhattan plot of the training samples GWAS. Blue line at p = 1x10-5 indicates 
genome-wide suggestive SNPs. Red line at p = 5x10-8 indicates genome-wide 
significant SNPs. The large number genome-wide significant SNPs on chromosome 6 
correspond to the major histocompatibility complex (MHC) region of the genome, which 
is highly variable and involved in antigen presentation. SNPs ranked below p > 1x10-3  
were omitted from the plot for clarity. 
 

The resulting Manhattan plot displayed similar significant SNPs to those previously 

published (Adrianto et al., 2012). The main advantage of performing the logistic 

regression was that we were able to obtain a list of the most highly linearly correlated 

SNPs with the disease. In essence, this analysis was feature selection, helping to 
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narrow our initial list of 7.7 million features down to only the top features expected to 

contribute to predictive modeling. We did not limit ourselves to using only the genome-

wide significant SNPs while modeling, because one major advantage of using machine 

learning to model disease incidence is that using SNPs with smaller effect sizes can still 

improve performance.  

 After performing logistic regression, we also performed a least absolute 

shrinkage and selection operator (LASSO) regression, which performs an L1 

regularization, a linear modeling technique that reduces the effect sizes of unimportant 

features down to zero while keeping features with non-zero effect sizes. (Tibshirani, 

1996). This approach offered an alternative way to prioritize SNPs. After performing 

LASSO, we had 484 SNPs with non-zero effect sizes remaining. 

 

2.5 - Preparation for modeling and exploratory data analysis 
 

 After sorting the logistic regression results by p-value, we extracted the top 10 

SNPs, top 100 SNPs, top 500 SNPs, top 1000 SNPs, and top 2000 SNPs. Using Plink 

v1.9, we then extracted the total number of minor alleles carried by each patient at each 

SNP, generating a matrix defined by: 

𝑀𝑀𝑖𝑖,𝑗𝑗 =  �
      0    𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ℎ𝑎𝑎𝑝𝑝 𝑝𝑝𝑝𝑝 𝑚𝑚𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆 𝑗𝑗 

  1    𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ℎ𝑎𝑎𝑝𝑝 1 𝑚𝑚𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆 𝑗𝑗
2    𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑎𝑎𝑝𝑝 2 𝑚𝑚𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆 𝑗𝑗

 

In addition, the individual’s sex (based on XX or XY genotype) was added as a feature 

to the model, and the phenotype (class) column was added so that we could perform 

supervised machine learning. This matrix contained the raw data used for modeling. 

Some data cleaning was necessary prior to modeling because many of the features 

were very highly correlated due to linkage disequilibrium (LD) and thus contained 

redundant information. LD occurs because genetic recombination, the process of mixing 

an organism’s alleles during meiosis, occurs with decreasing probability the closer two 

sections of DNA are in the genome. Nearby SNPs on the same chromosome are 
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unlikely to have recombination occur between them, so they will usually be inherited as 

a unit. In our list of top 10 SNPs, almost all were SNPs on Chromosome 6 in proximity, 

and therefore high LD, with each other (Figure 2). In the case of the top 100 SNP 

correlation matrix, we find that large blocks of SNPs have high correlation coefficients 

within the block (Figure 3). These are known as haplotype blocks, sections of DNA that 

are often inherited together due to LD (Zhu et al., 2004).  

 

 

Figure 2. Pearson’s r2 correlation matrix of the top 10 SNPs extracted from the logistic 
regression model. Dark blue circles indicate that all SNPs have near-perfect correlations 
with each other (r2 ≈ 1.0), and thus contain redundant information for downstream 
modeling. 

 



15 
 

 

Figure 3. Pearson’s r2 correlation matrix of the top 100 SNPs (only top 50 SNPs are 
shown here for clarity). Large “blocks” of SNPs tend to be highly correlated as they are 
in close proximity to each other in the genome and thus are inherited together. These 
are known as haplotype blocks and contain large sections of redundant information that 
is not useful for downstream modeling. 

 

2.6 - Removal of correlated features 
 

To remove redundant information and improve model performance, the most 

highly correlated variables needed to be removed. To address this issue for the logistic 

regression models, we utilized the findCorrelation method in the caret package (Kuhn, 

2008) to eliminate correlated variables. This function works by checking each pairwise 

correlation value, and if the value is above a specified r2 threshold, the column with the 

higher mean correlation across all rows is selected for elimination. Several models were 
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trained with differing correlation values (0.75, 0.8, 0.85, 0.9, 0.95) to find the optimal 

correlation removal threshold (see Chapter 2 – Random Forest modeling). An example 

using an r2 cutoff of 0.95 on the top 100 SNPs is shown (Figure 4). The number of 

features retained for each subset of the initial data matrix across the different correlation 

cutoffs is described in Table 1.  

For the LASSO model, SNPs were eliminated by comparing each pairwise 

Pearson r2 value and eliminating the column with the lower absolute value effect size. 

This was done to preserve the maximum amount of useful information in the final 

model. The SNPs retained for each Pearson r2 threshold cutoff for the LASSO model is 

also summarized in Table 1. In general, fewer SNPs were eliminated from the LASSO 

model because the L1 regularization process reduces effect sizes to zero or near-zero 

for highly correlated / redundant variables. 
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Figure 4. Top 100 SNP correlation matrix with Pearson r2 correlations > 0.95 removed. 
18 SNPs survive this cutoff and are shown here. Most of the highly correlated haplotype 
blocks are removed or reduced. 

 

Number of SNPs retained ≤0.75 ≤0.8 ≤0.85 ≤0.9 ≤0.95 
Logistic Top10 SNPs 1 1 1 1 1 
Logistic Top100 SNPs 10 12 12 16 18 
Logistic Top500 SNPs 69 78 90 104 114 
Logistic Top1000 SNPs 171 180 197 221 248 
Logistic Top2000 SNPs 451 469 507 558 625 
LASSO 484 SNPs 430 431 433 437 441 

Table 1. Number of SNPs retained for each “Top SNP” subset for various Pearson’s r2 
correlation cutoffs. Lower cutoffs are stricter and remove more SNPs. 
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Chapter 3 – Random Forest, SVM, and Neural 
Network modeling 
 

3.1 - Random Forest Modeling – Background 
 

 After correlation removal, we could now begin addressing if machine learning 

could accurately predict sarcoidosis. We began by utilizing random forests (RFs) to 

construct the initial predictive models because RFs have been shown to be robust for 

learning structure in a variety of contexts, including genetics-based disease prediction 

for diseases like Type 2 Diabetes (López et al., 2018).  

RFs are composed of numerous binary decision trees. The individual trees are 

generally constructed using the Classification and Regression Tree (CART) 

methodology, whereby splits are created based on maximizing “information gain”, or 

maximum improvement to a given impurity index, usually the Gini Index. (Breiman et al., 

1984). In a CART decision tree, the initial node begins with all data from both classes 

present. We generate a split using one of the data’s columns based on the column that 

provides the maximum information gain, and the data is broken into two pieces, with the 

goal being to concentrate observations from class “A” on one side, and class “B” on the 

other. The more homogenous the class mixture in the new data, the “purer” the node is. 

The algorithm is repeated recursively, until all nodes reach a desired purity or until the 

tree reaches a desired depth or until there are no additional ways to separate the 

classes. If the tree grows to complete purity, all leaf nodes will contain data belonging to 

only a single class, but the tree may become very deep and complex. An example of a 

simple decision tree is shown in Figure 5. 
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Figure 5. Simple binary decision tree using a single SNP, 6:32607969_G. The labels 
inside the nodes represent: majority class in that node, % of observations from the 
“control” class, % of observations from the “sarcoidosis” class, and % of total 
observations in that node. We follow the tree by evaluating the conditional on each 
branch, if TRUE go left, if FALSE go right. The class assignment in the leaf nodes can 
then be used for classification. 

 

Decision trees benefit from being highly interpretable, however they suffer from 

an inherent instability, as decision trees are very sensitive to the sample chosen. 

Addition or deletion of even a single observation could change the resulting tree, and 

thus individual trees are considered unstable. Tree ensembles, or “Forest” methods 

have been developed to improve the robustness of decision tree classifiers, including 

methods such as Bagging (Breiman, 1996), Boosting (Freund & Schapire, 1996), and 

Random Forests (Breiman, 2001).  

Bagging operates by generating bootstrapped samples (with replacement) from 

the input training data, then generating a tree for each sample. Class prediction is done 
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by majority vote across all the trees. Boosting operates by generating weighted errors 

for each constructed tree, and generating a new tree based on the residual errors from 

the previous tree to minimize the final error. Random forests operate by also generating 

bootstrapped samples (with replacement), but instead of using all the columns to 

generate individual trees like Bagging, a randomly selected subset of columns is used. 

This enables more diversity across trees compared with Bagging and tends to improve 

the final prediction accuracy by “de-correlating” the individual trees. Construction of a 

RF model follows these steps (X. Chen & Ishwaran, 2012): 

1) Sample ntree bootstrapped samples from the input data, with replacement. 

2) Grow a decision tree using the CART methodology and the Gini Index for each 

ntree sample. At each node in the tree, consider a random set of mtry columns to 

decide how to split. Grow the tree until the sample size in each node reaches a 

specified nodesize value, or until the tree can no longer be split further. 

3) Aggregate the information across all ntree nodes so that new data can be 

classified by majority vote. 

4) Compute the out-of-bag (OOB) error rate for each of the ntrees by using the data 

left out of the bootstrapped sample as test data. 

Another key advantage of forest-based approaches is that variable importance can 

be measured, and thus the algorithm can be used for feature selection. Variable 

importance is calculated by measuring how much a given variable improves the 

information gain across the trees. This importance metric is calculated by evaluating 

how much a given variable decreases the Gini Index, summed for every node where 

that variable is used in each tree and normalized by the number of trees. This 

procedure allows us to determine which variables have the most information to assist 

classification and rank their importance. As such, RF models have been used in “high-p, 

low-n” problems (high feature count, low sample count problems) such as genomic 

prediction with SNPs (X. Chen & Ishwaran, 2012). 
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3.2 - Random Forest Modeling – Methodology 
 

All RF models were generated with 10-fold cross validation, repeated three times 

to reduce overfitting, using the train function in the Caret package in R. K-fold Cross 

validation is a technique which reduces overfitting by randomly separating the input data 

into k discrete partitions, then leaving one subset out of the training process to use as a 

validation set while the other k-1 partitions are used as a training set. The process is 

repeated until all k subsets have been used as the validation set, and the results of all k 

models are averaged to generate a final model. One advantage of this approach is that 

every observation is guaranteed to be used exactly once in the validation set. We 

repeated the 10-fold cross validation three times and averaged the results from all three 

iterations to further reduce overfitting and to help create a more generalizable model on 

real test data. 

 Additionally, we optimized the hyperparameter mtry (the number of columns 

randomly selected for each node in each individual decision tree). We used a range of 

five evenly spaced numbers ranging from one to the total number of columns, to try and 

find a near-optimal value of mtry in reasonable computational time. Each value of mtry 

was tested on a full RF with 10-fold cross validation repeated three times, and the 

optimal Kappa value was measured for each of the fitted models, and the optimal mtry 

was selected for use in the final model. The Kappa statistic is a modified accuracy 

statistic that also considers the expected accuracy based on random chance. Kappa 

ranges from -1 to 1, with a Kappa of 1 indicating perfect classification, Kappa of 0 

indicating accuracy exactly in line with the expected values (a perfectly random 

classifier), and a Kappa of -1 indicating a perfectly opposite classification. Optimal 

values of mtry are described in Table 2.  
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Optimal mtry values ≤0.75 ≤0.8 ≤0.85 ≤0.9 ≤0.95 
Logistic Top10 SNPs 2 2 2 2 2 
Logistic Top100 SNPs 1 3 3 1 1 
Logistic Top500 SNPs 57 65 74 85 93 
Logistic Top1000 SNPs 70 73 160 134 201 
Logistic Top2000 SNPs 92 284 205 449 505 
LASSO 484 SNPs 87 174 175 352 266 

Table 2. Optimal values for the random forest hyperparameter mtry after 10-fold cross 
validation, repeated three times. These values were generated without the use of test 
data to ensure test data remained independent from model construction. Trained 
models were created with these optimal values and applied to the test data to evaluate 
final model performance.  

 

3.3 - Random Forest Modeling – Results 
 

Each trained model was applied to the test data to evaluate model performance. 

The test data was not involved in the training or validation or hyperparameter 

optimization process, and thus represents a real-world test of the model’s 

generalizability to new data. We plotted the area under the receiving operating 

characteristic curve (AUC), which is a common metric used to evaluate model 

performance (Figure 6), as well as plotted the Kappa values (Figure 7). Each model was 

also evaluated in comparison to the “no-information model”, which is the accuracy you 

would expect if you simply always predicted the majority class. In this case, our test 

data contained 55.58% controls, which means that a no-information model would simply 

always predict that a person is a control and reach exactly 55.58% accuracy 

automatically. Therefore, we are only interested in models that can outperform this 

baseline. In this experiment, only one model statistically outperformed the no-

information model, the top500 SNP model with an r-squared cutoff of 0.9. This model 

achieved an absolute accuracy of 0.5995 (p = 0.041), a Kappa of 0.1599, a sensitivity of 

0.377, and a specificity of 0.777. See Table 3 for a full breakdown of the results from 

each model. 
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Random Forest 
Results 

Accuracy Accuracy > 
Null 
Accuracy? 
(P-value) 

Kappa Sensitivity Specificity AUC 

Logistic Top10 - 0.95 0.5364 0.8005 0.0275 0.306 0.7205 0.5367 
Logistic Top100 – 0.95 0.5801 0.1732 0.1121 0.3169 0.7904 0.5785 
Logistic Top100 – 0.90 0.5777 0.1998 0.1044 0.3005 0.7991 0.5759 
Logistic Top100 – 0.85 0.5777 0.1998 0.1225 0.3989 0.7205 0.5827 
Logistic Top100 – 0.80 0.5631 0.4028 0.0933 0.388 0.7031 0.5843 
Logistic Top100 – 0.75 0.5607 0.4416 0.0678 0.2787 0.786 0.5827 
Logistic Top500 – 0.95 0.5752 0.2288 0.1059 0.3333 0.7686 0.5844 
Logistic Top500 – 0.90 0.5995 0.041 (*) 0.1599 0.377 0.7773 0.6019 
Logistic Top500 – 0.85 0.5898 0.0901 0.1375 0.3552 0.7773 0.5914 
Logistic Top500 – 0.80 0.5947 0.0618 0.1477 0.3607 0.7817 0.5859 
Logistic Top500 – 0.75 0.5825 0.1489 0.1217 0.3443 0.7729 0.5792 
Logistic Top1000 – 0.95 0.585 0.127 0.1152 0.2842 0.8253 0.5931 
Logistic Top1000 – 0.90 0.5825 0.1489 0.1126 0.2951 0.8122 0.5916 
Logistic Top1000 – 0.85 0.5898 0.0901 0.1246 0.2842 0.8341 0.5973 
Logistic Top1000 – 0.80 0.5874 0.1074 0.1209 0.2896 0.8253 0.6073 
Logistic Top1000 – 0.75 0.5704 0.2932 0.0767 0.2295 0.8428 0.5921 
Logistic Top2000 – 0.95 0.5631 0.4028 0.0594 0.2131 0.8428 0.5769 
Logistic Top2000 – 0.90 0.5825 0.1489 0.1012 0.235 0.8603 0.5886 
Logistic Top2000 – 0.85 0.585 0.127 0.1017 0.2131 0.8821 0.5973 
Logistic Top2000 – 0.80 0.5752 0.2288 0.0731 0.1639 0.9039 0.5983 
Logistic Top2000 – 0.75 0.5752 0.2288 0.072 0.1585 0.9083 0.5993 
LASSO – 0.95 0.5631 0.4028 0.0461 0.1475 0.8952 0.5868 
LASSO – 0.90 0.5874 0.1074 0.1044 0.2022 0.8952 0.6014 
LASSO – 0.85 0.5752 0.2288 0.0687 0.1421 0.9214 0.5952 
LASSO – 0.80 0.568 0.3283 0.06 0.1694 0.8865 0.5846 
LASSO – 0.75 0.568 0.3283 0.0567 0.153 0.8996 0.5947 

Table 3. Full results from the Random Forest models. Logistic Top500 with 0.9 cutoff 
achieved significant improvement (p=0.041) over the no-information model. 
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Figure 6. Area under the ROC curve for each SNP subset across five Pearson r2 
threshold cutoffs. Each bar represents a fully trained 10-fold cross validated 3x repeated 
random forest model.  
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Figure 7. Random forest models - Kappa values for each SNP subset across five 
Pearson r2 threshold cutoffs. Star indicates that the model was significantly more 
accurate (p <0.05) compared to the no-information model. Each bar represents a fully 
trained 10-fold cross validated 3x repeated random forest model.  
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3.4 - Support Vector Machine with Radial Kernel – background 
 

 After running the RF models, we wondered if we could improve the results by 

utilizing support vector machines (SVM). SVMs are a powerful class of machine 

learning algorithms that have been used successfully in genomic prediction of traits in 

plant and animal breeding, analyzing genetic subtypes of cancer, discovery of active 

epigenic regions of the genome, and prediction of coronary heart disease, chronic 

kidney disease, and diabetes, among others diseases (Harimoorthy & Thangavelu, 

2020; Huang et al., 2018; Zhang et al., 2017; Zhao et al., 2020). SVMs operate by 

drawing a hyperplane through your data to maximally separate the classes. To select an 

optimal hyperplane separator, a SVM works to maximize the distance between the 

hyperplane and the nearest datapoints. The nearest datapoints to the hyperplane are 

called the support vectors, and SVMs use the support vectors when calculating the 

class of a new observation. This technique relies on the ability to draw a linear 

hyperplane capable of separating your observations. However, for complex non-linear 

problems, a hyperplane drawn in the current problem dimension will generally not result 

in a good separator. To enable non-linear classification, SVMs have adopted the 

“Kernel Trick”, which applies a function to each observation which projects the data to a 

higher dimensional space. Good linear separations can usually be found in higher-

dimensional space, enabling the SVM to operate normally but still learn non-linear 

relationships. 

 Several kernel functions exist which can project data to a higher dimension. 

Polynomial functions, the radial-basis function, and the sigmoid function are three 

examples widely used by SVMs. In general, the radial-basis function works well on a 

variety of data types and was selected as the kernel function for use in this project. 

Each kernel has unique parameters that can be tuned to further optimize the model’s 

performance. In the case of the radial-basis kernel SVM, the hyperparameters needed 

to tune are the sigma and the soft margin cost parameter. Sigma controls how much 

influence a support vector has on determining the final class of the predicted data point. 

Lower sigma means less influence of individual support vectors, which increases the 



27 
 

variance but decreases the bias. The soft margin cost parameter, or C, controls how 

soft or hard the decision boundary is, larger values of C allow less mis-classified 

datapoints, but too hard of a decision boundary can hurt the overall generalizability of 

the model on new data. As with all hyperparameters, a range of values should be tested 

to determine the optimal values for a given problem. To optimize C and sigma for the 

SVM, we utilized the train function in the Caret package in R. We used a grid search 

with 15 total combinations of C and Sigma and ran 10-fold cross validation with 3x 

repeats to find the optimal combination of parameters (Table 4). 

 

Optimal sigma and C 
 values 

≤0.75 ≤0.8 ≤0.85 ≤0.9 ≤0.95 

Logistic Top100 SNPs (0.069, 
0.5) 

(0.056, 8) (0.056, 8) (0.045, 8) (0.040, 2) 

Logistic Top500 SNPs (0.008, 
0.5) 

(0.007, 
0.25) 

(0.006, 
0.25) 

(0.005, 
0.25) 

(0.005, 
0.5) 

Logistic Top1000 SNPs (0.003, 
0.25) 

(0.003, 1) (0.003, 1) (0.002, 1) (0.002, 1) 

Logistic Top2000 SNPs (0.001, 
0.5) 

(0.001, 
0.5) 

(0.001, 
0.5) 

(0.001, 
0.5) 

(0.001, 1) 

LASSO 484 SNPs (0.001, 
0.25) 

(0.001, 
0.25) 

(0.001, 
0.25) 

(0.001, 
0.25) 

(0.001, 
0.25) 

Table 4. Optimal values for the SVM radial kernel hyperparameter sigma and C after 
10-fold cross validation, repeated 3x. These values were generated without the use of 
test data to ensure test data remained independent from model construction. Trained 
models were created with these optimal values and applied to the test data to evaluate 
final model performance.  

 

 

3.5 - Support Vector Machine – Results 

 As with RF, we plotted both the AUC (Figure 8) and the Kappa value (Figure 9) 

for each model to visually inspect relative quality. In general, we saw an increase in 

performance up to the Top1000 models which performed the best. Performance then 

decreased at the Top2000 model and the LASSO model, both of which contain many 

more features. We found that SVM utilizing the top1000 SNP 0.75 r2 model 

outperformed the best RF model in terms of absolute accuracy, achieving accuracy of 
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0.6068 (p = 0.0207), kappa of 0.1858, sensitivity of 0.4484, specificity of 0.7336, and an 

AUC of 0.6016.  Full results, including accuracy, Accuracy p-value, Kappa, sensitivity, 

specificity, and AUC, are available for each model (Table 5). 

 

SVM Radial Kernel  
Results 

Accuracy Accuracy 
> Null 
Accuracy? 
(P-value) 

Kappa Sensitivity Specificity AUC 

Logistic Top100 – 0.95 0.5874 0.1074 0.125 0.3115 0.8079 0.5885 
Logistic Top100 – 0.90 0.551 0.5985 0.0526 0.2951 0.7555 0.58 
Logistic Top100 – 0.85 0.5558 0.5205 0.0597 0.2842 0.7729 0.5775 
Logistic Top100 – 0.80 0.5607 0.4416 0.0646 0.2623 0.7991 0.5799 
Logistic Top100 – 0.75 0.5704 0.2932 0.0905 0.3005 0.786 0.564 
Logistic Top500 – 0.95 0.5801 0.1732 0.1261 0.3934 0.7293 0.5823 
Logistic Top500 – 0.90 0.5752 0.2288 0.118 0.3989 0.7162 0.5928 
Logistic Top500 – 0.85 0.5777 0.1998 0.1235 0.4044 0.7162 0.59 
Logistic Top500 – 0.80 0.5801 0.1732 0.129 0.4098 0.7162 0.5904 
Logistic Top500 – 0.75 0.5558 0.5205 0.0777 0.377 0.6987 0.5724 
Logistic Top1000 – 0.95 0.6044 0.0262 (*) 0.1766 0.4208 0.7511 0.5877 
Logistic Top1000 – 0.90 0.6044 0.0262 (*) 0.1785 0.4317 0.7424 0.5885 
Logistic Top1000 – 0.85 0.5922 0.0749 0.1518 0.4098 0.738 0.5884 
Logistic Top1000 – 0.80 0.5801 0.1732 0.129 0.4098 0.7162 0.5917 
Logistic Top1000 – 0.75 0.6068 0.0207 (*) 0.1858 0.4481 0.7336 0.6016 
Logistic Top2000 – 0.95 0.551 0.5985 0.0676 0.3716 0.6943 0.5629 
Logistic Top2000 – 0.90 0.5461 0.6728 0.0628 0.3934 0.6681 0.5643 
Logistic Top2000 – 0.85 0.5437 0.7077 0.0562 0.3825 0.6725 0.5645 
Logistic Top2000 – 0.80 0.5485 0.6363 0.0673 0.3934 0.6725 0.5722 
Logistic Top2000 – 0.75 0.5388 0.7717 0.0461 0.377 0.6681 0.5701 
LASSO – 0.95 0.534 0.8269 0.0489 0.4372 0.6114 0.5625 
LASSO – 0.90 0.5267 0.8922 0.0335 0.4262 0.607 0.5613 
LASSO – 0.85 0.5267 0.8922 0.0335 0.4262 0.607 0.5605 
LASSO – 0.80 0.5364 0.8005 0.0544 0.4426 0.6114 0.5619 
LASSO – 0.75 0.5316 0.8511 0.0434 0.4317 0.6114 0.5615 

Table 5. Full results from the SVM models. Logistic Top1000 with 0.95 and 0.90 cutoff 
(p=0.0262), as well as Top1000 with 0.75 cutoff  (p=0.0207) achieved significant 
improvement over the no-information model. 
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Figure 8. Support vector machine models - Area under the ROC curve for each SNP 
subset across five Pearson r2 threshold cutoffs. Each bar represents a fully trained 10-
fold cross validated repeated three times repeated SVM model.  
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Figure 9. Support vector machine models - Kappa values for each SNP subset across 
five Pearson r2 threshold cutoffs. Star indicates that the model was significantly more 
accurate (p <0.05) compared to the no-information model. Each bar represents a fully 
trained 10-fold cross validated repeated three times random forest model. 

 

 

3.6 - Neural Network modeling – background 
 

 After SVM modeling showed some improvement compared to RF, we wondered 

if we could gain even more performance by utilizing neural networks (NNs). NNs have 

become increasingly popular supervised machine learning tools, in part due to their 

ability to flexibly learn non-linear functions, and have widespread use and applications 

in many domains, including disease prediction. At the most basic level, a NN is a 
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directed graph with weighted edges which convert raw input with n-dimensional features 

into a single-valued outcome, usually a probability of that observation belonging to a 

particular class. The basic until of many NNs is the sigmoid neuron, which converts a 

vector of input values (multiplied by their respective weights) into a (0,1) interval. If the 

sigmoid neuron is the final neuron in the network, the output value represents the 

probability of that observation belonging to a given class. For the model to learn, we 

must supply class labels for each observation in the training set and evaluate the 

accuracy of the final output based on an evaluation function. If the output does not 

match the class label, we must update the weights to minimize the evaluation function’s 

error through a process known as back-propagation. Usually, back-propagation is 

achieved with a process known as gradient descent. Gradient descent is a non-linear 

optimization technique which calculates the derivative of the evaluation function with 

respect to the weights and updates the weights to lower the overall error (the function 

takes a step “downhill” to reach a lower error value). This process of backpropagation is 

repeated until weights are stabilized (they have reached convergence at the local 

minima), or until a set number of backpropagation cycles have occurred (known as 

early-stopping).  

A single-layer NN is one in which input features are directly connected to the 

output neuron. A network of this type is only capable of learning direct linear 

relationships. To increase the flexibility of NNs, multi-layer networks have been 

developed which include the addition of one or more layers of “hidden neurons”, which 

are intermediate sigmoid neurons. The addition of a hidden layer(s) enables the model 

to flexibly learn non-linear functions. In general, the more hidden layers you add, the 

more abstract the function is you can learn. However special consideration must be 

made to preserve the gradient across deep networks, which is known to rapidly deplete 

(known as the vanishing gradient problem). Recent advances in the field have helped to 

alleviate this issue, enabling many-layer networks (known as deep learning) to become 

useful and powerful techniques for learning solutions to very complex problems, like 

how to select winning moves in the board games Go and Chess (Silver et al., 2018), or 

how to drive a car in full self-driving vehicles (Autopilot AI - Tesla, 2021). However, deep 
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learning NNs generally require and greatly benefit from large volumes of training 

examples to accurately learn their very abstract functions. 

In this work, we applied a multi-layer NN with sigmoid neurons and a single 

hidden layer to our training data, using the nnet package in R. An example of the 

network architecture on the Top100 0.9 r2 model is shown (Figure 10).  The 

hyperparameters we were able to optimize were size and decay. Size is the number of 

neurons in the hidden layer. Decay is an additional parameter used to control how large 

the weights can become, which can help avoid overfitting your model by preventing a 

few very large weights dominate the model. Specifically, decay multiplied by the L2 

norm of all the weights is added to the evaluation function at each iteration of 

backpropagation, which effectively keeps the weights at a small size. A grid of 

hyperparameters was tested, using size = 1, 3, or 5, and decay = 0, 0.01, 0.1, 0.2, and 

0.5. The size of the hidden layer was kept small to reduce computation time. A table 

showing the optimized hyperparameters is shown in Table 6. 
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Figure 10. Single hidden layer neural network architecture for the Top100 0.9 r2 cutoff 
model (16 SNPs + Sex used as features).  

 

Optimal size and decay values ≤0.75 ≤0.8 ≤0.85 ≤0.9 ≤0.95 
Logistic Top10 SNPs (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) 
Logistic Top100 SNPs (1, 0.00) (1, 0.01) (3, 0.1) (5, 0.5) (5, 0.5) 
Logistic Top500 SNPs (1, 0.5) (1, 0.1) (1, 0.2) (1, 0.1) (1, 0.1) 
Logistic Top1000 SNPs (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) 
Logistic Top2000 SNPs (5, 0.5) (5, 0.5) (5, 0.00) (5, 0.5) (5, 0.5) 
LASSO 484 SNPs (5, 0.5) (5, 0.5) (5, 0.5) (5, 0.5) (5, 0.5) 

Table 6. Optimal values for the neural network hyperparameters size and decay after 
10-fold cross validation, repeated three times. These values were generated without the 
use of test data to ensure test data remained independent from model construction. 
Trained models were created with these optimal values and applied to the test data to 
evaluate final model performance.  
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3.6 - Neural Network modeling – results 
 

As with RF and SVM, we recorded the full results for each model (Table 7) as 

well as plotted the AUC (Figure 11) and the Kappa value (Figure 12) to visually inspect 

the quality of each model. No models achieved significantly better accuracy compared 

with the naïve model; however, the Top100 0.85 and Top100 0.80 models came very 

close, achieving accuracies of 0.5971 (p = 0.051). The top100 0.85 model had a Kappa 

of 0.1657, AUC of 0.6103, sensitivity of 0.4372, and specificity of 0.7249, while the 

top100 0.8 model had a Kappa of 0.1759, AUC of 0.6042, sensitivity of 0.4973, and 

specificity of 0.6769. Overall performance of the NNs tended to decrease as the feature 

space grew. One possible reason for this decrease could be that the hidden layer was 

too small relative to the number of features, which limited the total number of 

interactions that could be modeled which in turn hurt performance. We would like to 

investigate this question in more detail in the future. 
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Neural Network 
Results 

Accuracy Accuracy > 
Null 
Accuracy? 
(P-value) 

Kappa Sensitivity Specificity AUC 

Logistic Top10 – 0.95 0.5485 0.6363 0.0348 0.2295 0.8035 0.5375 
Logistic Top100 – 0.95 0.5825 0.1489 0.1277 0.377 0.7467 0.5957 
Logistic Top100 – 0.90 0.5922 0.0749 0.1441 0.3661 0.7729 0.5938 
Logistic Top100 – 0.85 0.5971 0.0505 0.1657 0.4372 0.7249 0.6103 
Logistic Top100 – 0.80 0.5971 0.0505 0.1759 0.4973 0.6769 0.6042 
Logistic Top100 – 0.75 0.5874 0.1074 0.1504 0.4536 0.6943 0.5986 
Logistic Top500 – 0.95 0.5316 0.8511 0.0528 0.4809 0.5721 0.5545 
Logistic Top500 – 0.90 0.5267 0.8922 0.0388 0.4536 0.5852 0.5564 
Logistic Top500 – 0.85 0.5583 0.481 0.0822 0.377 0.7031 0.5627 
Logistic Top500 – 0.80 0.5485 0.6363 0.0735 0.4262 0.6463 0.5674 
Logistic Top500 – 0.75 0.5485 0.6363 0.0662 0.388 0.6769 0.5609 
Logistic Top1000 – 0.95 0.5655 0.3649 0.1039 0.4208 0.6812 0.574 
Logistic Top1000 – 0.90 0.5752 0.2288 0.1249 0.4372 0.6856 0.5792 
Logistic Top1000 – 0.85 0.5947 0.0618 0.1611 0.4372 0.7205 0.5819 
Logistic Top1000 – 0.80 0.5655 0.3649 0.1029 0.4153 0.6856 0.5892 
Logistic Top1000 – 0.75 0.5752 0.2288 0.1219 0.4208 0.6987 0.5855 
Logistic Top2000 – 0.95 0.5485 0.6363 0.0735 0.4262 0.6463 0.5635 
Logistic Top2000 – 0.90 0.5413 0.7407 0.057 0.4098 0.6463 0.5423 
Logistic Top2000 – 0.85 0.5558 0.5205 0.0777 0.377 0.6987 0.5576 
Logistic Top2000 – 0.80 0.5631 0.4028 0.0943 0.3934 0.6987 0.5774 
Logistic Top2000 – 0.75 0.5461 0.6728 0.0607 0.3825 0.6769 0.5539 
LASSO – 0.95 0.5461 0.6728 0.0731 0.4481 0.6245 0.5513 
LASSO – 0.90 0.5437 0.7077 0.0635 0.4208 0.6419 0.544 
LASSO – 0.85 0.5558 0.5205 0.095 0.4699 0.6245 0.5465 
LASSO – 0.80 0.5607 0.4416 0.1029 0.4645 0.6376 0.5628 
LASSO – 0.75 0.5461 0.6728 0.0721 0.4426 0.6288 0.5517 

Table 7. Full results from the neural network models. No models achieved significant 
improvement  p< 0.05 over the no information model, however Logistic Top100 with 
0.85 and 0.80 cutoff were very close with p=0.0505. Despite this, the AUC was quite 
high for these models, with 0.6103 and 0.6042, respectively. 
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Figure 11. Neural network models - Area under the ROC curve for each SNP subset 
across five Pearson r2 threshold cutoffs. Each bar represents a fully trained 10-fold 
cross validated repeated three times NN model.  
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Figure 12. Neural network models - Kappa values for each SNP subset across five 
Pearson r2 threshold cutoffs. Each bar represents a fully trained 10-fold cross validated 
repeated three times NN model. 
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Chapter 4 – Functional Score Assignment and 
Modeling 
 

4.1 Functional Score Assignment – CADD and FATHMM-XF 
 

 We then determined if blending the logistic regression feature selection with a 

measurement of the likelihood of a SNP to contribute to disease would improve 

modeling performance. We chose CADD scores and FATHMM-XF scores for this task, 

in part because they are both available for most of the SNPs in the GRCh38 genome 

assembly, allowing annotation of most SNPs. Both resources also have online tools 

(https://cadd-staging.kircherlab.bihealth.org/score and 

http://fathmm.biocompute.org.uk/fathmm-xf/) which enable a user to simply upload a list 

of SNPs and download the relevant scores.  

 For CADD scores, we first filtered out poorly correlate SNPs by sorting the 

logistic regression results by p-value and extracting all SNPs with p < 0.05. With this 

subset of 429,870 SNPs, we used the SNP ID to extract CADD scores and obtained 

80.5% of SNPs (346,384 / 429,870) with labeled CADD scores. All FATHMM scores 

were downloaded from the website and merged with all the logistic regression SNPs. A 

total of 92.57% of SNPs (7,149,617 / 7,723,468) had labeled FATHMM-XF scores. 

91.3% of these SNPs (316,276 / 346,384) had both CADD and FATHMM-XF scores. 

Figure 13 shows the density of FATHMM-XF and CADD scores for all 316,276 of these 

SNPs. Most have very low functional scores, which is to be expected since most SNPs 

in the genome have low functional scores. 

We then merged the CADD scores or the FATHMM-XF scores with the logistic 

regression p-values in R and applied the following formulas to generate a “blended” 

score. 
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 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐_𝑎𝑎𝑝𝑝𝑔𝑔𝑖𝑖𝑝𝑝𝑎𝑎𝑖𝑖𝑐𝑐_𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑔𝑔𝑐𝑐 �
1

𝑝𝑝. 𝑣𝑣𝑎𝑎𝑎𝑎
� + 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐_𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝   

𝑖𝑖𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑚𝑚_𝑎𝑎𝑝𝑝𝑔𝑔𝑖𝑖𝑝𝑝𝑎𝑎𝑖𝑖𝑐𝑐_𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑔𝑔𝑐𝑐 �
1

𝑝𝑝. 𝑣𝑣𝑎𝑎𝑎𝑎
� + 𝑖𝑖𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑚𝑚_𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 

𝑐𝑐 ∈ (1,∞) 

This formulation allows us to adjust the proportion of p-value contributing to the overall 

score versus the proportion of functional score. As c increases, the contribution of the p-

value to the overall score decreases. As c approaches 1, the contribution of the p-value 

to the overall score becomes increasingly large. For all initial experiments, the value of c 

was set to 2. 

It should be noted that the CADD scores range from 0 to 99 based on their 

pathogenicity rank relative to all other possible 8.6 billion substitutions in the human 

genome, while the FATHMM-XF scores range from 0 to 1. In practice, this difference in 

potential values meant that in all initial experiments, the relative contribution from the 

logistic p-value was higher for the fathmm_logistic scores compared to the cadd_logistic 

scores (Figure 14). Future experiments could correct this issue by increasing the log 

base c of the fathmm_logistic blended score.  
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Figure 13. Density plot of the distribution of CADD and FATHMM scores across all 
316,276 SNPs with both scores in common. CADD scores were normalized to fit within 
a 0 to 1 range so that the two scores could be compared. 

 

 



41 
 

 

Figure 14. Density plot of the distribution of CADD and FATHMM scores across the top 
10,000 SNPs based on the top blended functional scores. 1,375 SNPs were found in 
both subsets. CADD scores were normalized to fit within a 0 to 1 range. It is clear we 
are enriching for higher CADD score SNPs, but not enriching as much for higher 
FATHMM-XF score SNPs. 

 

4.2 CADD + Logistic blended results – Random Forest, SVM, and Neural 
Network 
 

 The top 10, 100, 500, 1000, and 1000 SNPs based on the cadd_logistic blended 

score was extracted and modeled with RF, SVM, and NN as before. To reduce the total 

computation time, a single Pearson’s r2 correlation cutoff of 0.9 was used for these 

experiments, with a slight difference in the method used for SNP removal. Previously, if 

a pair of SNPs had a correlation coefficient above the threshold, the SNP with the 
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higher mean correlation across all columns was selected for removal. This is an 

appropriate strategy when the two SNPs are otherwise equal. However, SNPs can have 

variable functional scores even when they are otherwise correlated, and we are 

interested in testing the hypothesis that adding functional scores improves predictive 

performance. Therefore, when a pair of SNPs has a correlation cutoff above the 

threshold, we would like to keep the SNP with the higher functional score. The total 

number of SNPs retained in the cadd_logistic models are summarized in Table 8. The 

number of retained SNPs is significantly higher than in the no-functional score models 

used in Chapter 3. This is an indication that there are fewer correlated variables in the 

top SNPs because the functional score component of the blended score is boosting the 

rank of uncorrelated lower p-value SNPs.    

 

Number of SNPs retained 
CADD + Logistic 

≤ 0.9 r2 

Top10 SNPs 9 

Top100 SNPs 76 

Top500 SNPs 405 

Top1000 SNPs 832 

Top2000 SNPs 1677 

Table 8.  Number of SNPs retained after filtering correlated variables for the CADD + 
logistic blended models. There are significantly more SNPs retained after correlation 
filtering compared to the baseline no-functional score models. 

 

 The models were run as before, optimizing hyperparameters using 10-fold 3x 

repeated cross validation on the training data before applying the optimal model / 

hyperparameters to the test data. Hyperparameter optimization is summarized in Table 

9. Full results for all models are reported in Table 10. AUC measurements are plotted in 

Figure 15, and Kappa measurements are plotted in Figure 16. No models achieved 

significantly better performance compared to the naïve model. In general, the 

performance on average tended to worsen with this strategy over simply using the most 

linearly correlated SNPs by logistic regression. 
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Optimal hyperparameters NNET –  
size and decay 

RF –  
mtry 

SVM – 
sigma and C 

cadd_logistic Top10 (3, 0.5) 3 (0.075, 0.25) 
cadd_logistic Top100 (5, 0) 47 (0.007, 0.25) 
cadd_logistic Top500 (5, 0.5) 163 (0.001, 0.5) 
cadd_logistic Top1000 (5, 0.1) 501 (0.001, 0.5) 
cadd_logistic Top2000 (5, 0.2) 1008 (0.0003, 0.5) 

Table 9.  Optimized hyperparameters for all cadd_logistic models. 

 

 

 

CADD + Logistic 
Results 

Accuracy Accuracy > 
Null Accuracy? 
(P-value) 

Kappa Sensitivity Specificity AUC 

RF – Top10 0.9 0.5825 0.1489 0.1197 0.3333 0.7817 0.5781 
RF – Top100 0.9 0.5583 0.481 0.0707 0.3169 0.7511 0.591 
RF – Top500 0.9 0.5825 0.1489 0.1147 0.306 0.8035 0.5859 
RF – Top1000 0.9 0.5898 0.0901 0.1185 0.2514 0.8603 0.6005 
RF – Top2000 0.9 0.5898 0.0901 0.1112 0.2131 0.8908 0.6027 
NNET – Top10 0.9 0.5583 0.481 0.0512 0.2186 0.8297 0.4504 
NNET – Top100 0.9 0.5825 0.1489 0.1461 0.4809 0.6638 0.5807 
NNET – Top500 0.9 0.5607 0.4416 0.1233 0.5792 0.5459 0.5683 
NNET – Top1000 0.9 0.5437 0.7077 0.0718 0.4645 0.607 0.5409 
NNET – Top2000 0.9 0.551 0.5985 0.081 0.4426 0.6376 0.5404 
SVM – Top10 0.9 0.5777 0.1998 0.0982 0.2678 0.8253 0.566 
SVM – Top100 0.9 0.5631 0.4028 0.1034 0.4426 0.6594 0.5921 
SVM – Top500 0.9 0.5631 0.4028 0.1103 0.4809 0.6288 0.57 
SVM – Top1000 0.9 0.5437 0.7077 0.0759 0.4863 0.5895 0.5874 
SVM – Top2000 0.9 0.5728 0.26 0.1272 0.4754 0.6507 0.5996 

Table 10.  Full results table for the cadd_logistic blended models. No models were 
significantly more accurate compared to the naïve model. 
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Figure 15.  AUC values for all cadd_logistic models. In general, we see lower AUC 
values compared with the no-functional score models. 
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Figure 16.  Kappa values for all cadd_logistic models. No models were significantly 
more accurate compared to the naïve model. 
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4.3 FATHMM-XF results – Random Forest, SVM, and Neural Network 
 

 Modeling with RF, NNET, and SVM was repeated for the fathmm_logistic 

blended score top10, top 100, top500, top1000, and top2000 SNPs, again using a 

single 0.9 r2 correlation cutoff threshold and keeping the SNP with the higher functional 

score when choosing which SNP to keep. The number of SNPs retained was similar to 

those seen in the no-functional score models (Table 11), indicating that the balance of 

the fathmm_logistic score is too heavily in favor of the logistic p-value.  

 

Number of SNPs retained 
FATHMM-XF + Logistic 

≤ 0.9 r2 

Top10 SNPs 1 

Top100 SNPs 15 

Top500 SNPs 103 

Top1000 SNPs 213 

Top2000 SNPs 528 

Table 11.  Number of SNPs retained after filtering correlated variables for the 
fathmm_logistic blended models. 

 

Hyperparameter optimization was conducted as before, with 10-fold cross 

validation repeated three times across a grid of hyperparameters and is summarized 

(Table 12), full fathmm_logistic results are reported (Table 13), and AUC values are 

plotted (Figure 17), as well as Kappa values (Figure 18). One model, top500 RF, 

achieved significance (p=0.026) compared with the naïve model, and achieved 0.6044 

absolute accuracy, 0.1663 Kappa, 0.3607 sensitivity, 0.7991 specificity, and 0.5966 

AUC. 
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Optimal hyperparameters NNET –  
size and decay 

RF –  
mtry 

SVM – 
sigma and C 

fathmm_logistic Top10 (1, 0.5) 2 (0.301, 256) 
fathmm_logistic Top100 (5, 0) 1 (0.046, 0.5) 
fathmm_logistic Top500 (5, 0.2) 64 (0.005, 0.5) 
fathmm_logistic Top1000 (5, 0.2) 87 (0.002, 1.0) 
fathmm_logistic Top2000 (5, 0.5) 425 (0.0001, 0.5) 

Table 12.  Optimized hyperparameters for the fathmm_logistic blended models. 

 

 
 

FATHMM + Logistic 
Results 

Accuracy Accuracy > 
Null Accuracy? 
(P-value) 

Kappa Sensitivity Specificity AUC 

RF – Top10 0.9 0.5534 0.5598 0.0452 0.235 0.8079 0.5364 
RF – Top100 0.9 0.5801 0.1732 0.1171 0.3443 0.7686 0.5783 
RF – Top500 0.9 0.6044 0.0262 (*) 0.1663 0.3607 0.7991 0.5966 
RF – Top1000 0.9 0.5631 0.4028 0.0692 0.2623 0.8035 0.5866 
RF – Top2000 0.9 0.5898 0.0901 0.1154 0.235 0.8734 0.5931 
NNET – Top10 0.9 0.5534 0.5598 0.0452 0.235 0.8079 0.5378 
NNET – Top100 0.9 0.551 0.5985 0.0655 0.3607 0.7031 0.5529 
NNET – Top500 0.9 0.5291 0.8728 0.0411 0.4426 0.5983 0.5649 
NNET – Top1000 0.9 0.5461 0.6728 0.0543 0.3497 0.7031 0.5563 
NNET – Top2000 0.9 0.5583 0.481 0.0811 0.3716 0.7074 0.5619 
SVM – Top10 0.9 0.5558 0.5205 0 0 1 0.5209 
SVM – Top100 0.9 0.5655 0.3649 0.076 0.2732 0.7991 0.5777 
SVM – Top500 0.9 0.585 0.127 0.1372 0.4044 0.7293 0.5931 
SVM – Top1000 0.9 0.5801 0.1732 0.132 0.4262 0.7031 0.5972 
SVM – Top2000 0.9 0.5898 0.0901 0.1482 0.4153 0.7293 0.5773 

Table 13.  Full results table for the fathmm_logistic blended models. The Top500 RF 
significantly outperformed the naïve model (p=0.026) 
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Figure 17.  AUC values for all fathmm_logistic models. No models achieved > 0.6 AUC. 
In general, we see lower AUC values compared with the no-functional score models. 
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Figure 18. Kappa values for all fathmm_logistic models. The top500 RF model was 
significantly better than the naïve model (p=0.026).  
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Chapter 5 – Conclusions and Future Directions 
  

5.1 – Conclusions 
 

Here we have shown that sarcoidosis disease incidence in African Americans 

can be successfully modeled with various supervised machine learning techniques such 

as RF, SVM, and NN. We have generated multiple models that significantly outperform 

a naïve model in terms of absolute accuracy on test samples. The best model in terms 

of absolute accuracy and Kappa was the SVM Top1000 0.75 no-functional score model, 

with an accuracy of 0.6068 and a Kappa of 0.1858. The best model in terms of AUC 

was the NN Top100 0.75 with a 0.6103 AUC. 

The top performing models were able to classify sarcoidosis cases with a 

sensitivity of 0.437 to 0.448, which are in-line with the expected theoretical heritability of 

40-66% published in the literature for Scandinavian populations. While heritability for 

diseases can differ greatly between populations, these results support the idea that this 

estimate is plausible for African Americans with sarcoidosis. 

The question then becomes, are we near the theoretical limit of predictive power 

using a genetics-only approach for a disease with an estimated 40-66% heritability or 

would more powerful machine learning techniques such as deep learning improve 

predictive accuracy further? Would increasing the sample size of the training or test sets 

result in a subsequent  improvement to accuracy? Answers to these questions could 

help further establish the heritability estimate for sarcoidosis in African Americans as 

well as be of clinical utility. 

Functional score incorporation with CADD and FATHMM-XF does not seem to 

improve predictive power. However, some SNPs with high functional scores and 

reasonable logistic regression p-values may still contain important clues about the 

mechanism of sarcoidosis granuloma formation. Further experimentation with these 

SNPs may prove fruitful in future work.  
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5.2 – Future Directions  
 

 We can envision several next steps for this project, both short-term and longer 

term. Most pressingly in the short term is the need to adjust log base c in the 

fathmm_logistic calculation so that functional score will take a higher proportion of the 

blended score. Additionally, we could consider running the functional score models with 

all the Pearson r2 cutoffs used in the non-functional score section to further improve 

robustness of the results. Next, we need to increase the maximum size in the NN 

hyperparameter search grid, which could result in significant improvements to those 

models.  

 We would additionally like to employ deep learning to help identify more complex 

structure in the data and potentially improve prediction accuracy. Further, we are 

interested in consolidating the individual SNPs into their respective haplotype blocks, so 

that more information is contained within a single feature. We are also interested in 

comparing our predictive modeling results with previously established statistical 

methods which use polygenic risk scores to predict disease incidence, such as best 

linear unbiased prediction (BLUP), BayesA, and LDPred (Clark & Van Der Werf, 2013; 

Meuwissen et al., 2001; Vilhjálmsson et al., 2015). Finally, we plan to apply alternative 

feature selection algorithms beyond logistic regression and LASSO to the entire list of  

~7.7 million SNPs, to see if alternate methods can yield SNPs which are even more 

useful for predictive modeling. 
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