
UNIVERSITY	OF	OKLAHOMA	

GRADUATE	COLLEGE	

	

	

	

INVENTORY	SCHEDULING	FRAMEWORK	TO	

FULFILL	MULTI-PRODUCT	ORDERS	WITHIN	AN	

INTERCONNECTED	PRODUCTION	NETWORK	

	

	

	

A	THESIS	

SUBMITTED	TO	THE	GRADUATE	FACULTY	

in	partial	fulfillment	of	the	requirements	for	the	

Degree	of	

MASTER	OF	SCIENCE	

	

	

	

By	

CHRISTOPHER	BOURGEOIS	

Norman,	Oklahoma	

2021

INVENTORY	SCHEDULING	FRAMEWORK	TO	

FULFILL	MULTI-PRODUCT	ORDERS	WITHIN	AN	

INTERCONNECTED	PRODUCTION	NETWORK	

	

	

A	THESIS	APPROVED	FOR	THE	

SCHOOL	OF	INDUSTRIAL	AND	SYSTEMS	ENGINEERING	

	

	

	

	

	

	

	

	

BY	THE	COMMITTEE	CONSISTING	OF	

	

	

Dr.	Kash	Barker,	Chair	

Dr.	Andrés	González	

Dr.	Yifu	Li	 	

©	Copyright	by	CHRISTOPHER	BOURGEOIS	2021	

All	Rights	Reserved.

	 iv	

ACKNOWLEDGMENTS	

First,	thank	you	to	Leili	Soltanisehat	for	her	guidance	over	the	past	year.	Leili	

provided	the	original	formulation,	Python	implementation,	and	illustrative	data	that	served	

as	the	foundation	of	this	work.	Between	my	boundless	questions	and	spontaneous	

requests,	she	was	an	invaluable	resource	to	me.	This	work	would	not	have	been	possible	

without	her.	

Second,	thank	you	to	Dr.	Kash	Barker	for	encouraging	me	and	my	peers	to	attend	

graduate	school	and	for	serving	as	my	thesis	advisor.	Kash	was	always	available	and	

offered	a	quick	reply	to	any	and	all	questions	I	had.	In	addition,	thank	you	to	Drs.	Andrés	

González	and	Yifu	Li	for	sharing	their	time	and	expertise	with	me	by	serving	as	members	of	

my	committee.	

Lastly,	thank	you	to	the	faculty	and	staff	at	the	University	of	Oklahoma	for	exceeding	

my	wildest	dreams	over	the	past	five	years.	I	am	indebted	to	all	of	the	educators	that	have	

played	a	role	in	my	journey.	 	

	 v	

TABLE	OF	CONTENTS	

Acknowledgments	...	iv	

Table	of	Contents	..	v	

List	of	Tables	..	vii	

List	of	Figures	...	viii	

Abstract	..	ix	

1	 	Introduction	..	1	

1.1	 Literature	survey	...	1	

1.2	 Research	objectives	..	4	

2	 Methodology	..	7	

2.1	 Sets	and	indices	..	7	

2.2	 Parameters	...	9	

2.2.1	 Risk	calculation	...	10	

2.3	 Decision	variables	..	10	

2.4	 Objective	function	..	11	

2.5	 Constraints	..	12	

3	 Illustration	...	15	

3.1	 Description	and	assumptions	..	15	

3.2		 Financial	scenarios	..	17	

3.3		 Experimental	results	...	18	

3.3.1	 Order	fulfillment	..	18	

3.3.2	 Work	center	utilization	...	20	

3.3.3	 Material	inventory	and	production	...	24	

	 vi	

4	 Conclusion	..	30	

4.1	 Future	opportunities	...	30	

References	..	32	

Appendix	A:	Python	implementation	of	model	..	35	

Appendix	B:	Visualization	of	results	in	R	..	43	

	 	

	 vii	

LIST	OF	TABLES	

Table	1:	List	of	sets	and	indices	..	8	

Table	2:	List	of	parameters	...	9	

Table	3:	Discrete	probability	distribution	of	process	time	risk	..	10	

Table	4:	List	of	decision	variables	..	11	

Table	5:	Number	of	materials	attributed	to	each	final	product	...	16	

Table	6:	Discrete	probability	distribution	of	unit	usage	...	16	

Table	7:	Quantity	of	final	products	attributed	to	each	order	...	16	

Table	8:	Inventory	holding	cost	attributed	to	each	scenario	..	17	

Table	9:	Order	late	fee	attributed	to	each	scenario	..	17	

Table	10:	Run	time	of	ten	simulation	iterations	...	17	

	 	

	 viii	

LIST	OF	FIGURES	

Figure	1:	Timeline	of	order	fulfillment	after	10	simulation	iterations	...	19	

Figure	2:	Maximum	supplier	utilization	across	all	iterations	..	21	

Figure	3:	Maximum	operation	utilization	across	all	iterations	...	22	

Figure	4:	Maximum	inspection	utilization	across	all	iterations	..	23	

Figure	5:	Inventory	held	during	each	iteration	of	Scenario	A	..	26	

Figure	6:	Inventory	held	during	each	iteration	of	Scenario	B	..	27	

Figure	7:	Cumulative	production	for	each	final	product	in	Scenario	A	..	28	

Figure	8:	Cumulative	production	for	each	final	product	in	Scenario	B	..	29	

	 	

	 ix	

ABSTRACT	

Production	facilities	are	critical	components	of	the	global	economy	and	supply	

chain.	Firms	are	forced	to	balance	several	competing	objectives—from	reducing	operating	

costs	by	managing	inventory	to	increasing	profits	by	satisfying	customer	demand.	The	act	

of	scheduling	material	through	an	interconnected	production	network	is	analytically	

challenging;	therefore,	stakeholders	require	statistical	insights	in	order	to	strengthen	

decision	making.	This	inventory	scheduling	application	allows	decision	makers	to	monitor	

the	status	and	impact	of	numerous	production	parameters,	while	aiming	to	mitigate	the	

propagation	of	schedule	risk	through	the	system.	This	work	extends	the	material	planning	

framework	from	Soltanisehat	et	al.	(2021)	that	(i)	jointly	represents	work	center	and	

material	relationships	and	(ii)	integrates	stochastic	methods	to	assess	potential	risk.	Using	

network	flow	optimization	and	Monte	Carlo	simulation,	this	extension	accommodates	three	

primary	considerations:	(i)	safety	stock	and	other	inventory	restrictions,	(ii)	multi-product	

order	satisfaction,	and	(iii)	costs	derived	from	holding	inventory	and	delaying	orders.	An	

illustrative	example	examines	the	impact	of	six	experimental	scenarios	on	order	fulfillment,	

work	center	utilization,	and	material	inventory	and	production.	

Keywords—Material	requirements	planning,	Monte	Carlo	simulation,	Network	flow	

optimization,	Production	schedule	risk	

	 1	

1	 	INTRODUCTION	

An	important	function	of	production	planning	is	inventory	management	and	control.	

The	objective	of	modern	production	systems	is	to	satisfy	customer	orders	on	time	and	

within	budget;	over	the	past	decade,	organizations	have	adopted	several	strategies	(e.g.,	

requiring	inventory	thresholds,	increasing	production	capacity,	optimizing	for	various	

planning	horizons;	Chowdhury	et	al.,	2021)	to	assist	in	achieving	these	goals.	

Recently,	in	the	wake	of	the	COVID-19	pandemic,	production	firms	invested	in	

formal	scheduling	processes	(Mohammadi,	2020)	and	optimum	inventory	management	

procedures	(Islam	et	al.,	2020)	to	reduce	the	impact	of	internal	and	external	risks.	Supply	

chain	stakeholders—ranging	from	businesses	executives	to	governments	officials	to	

academics—are	empowered	to	develop	rigorous	frameworks	to	model	the	intricacies	of	

material	planning	in	production	systems,	while	simultaneously	considering	the	potential	

schedule	and	demand	impacts	caused	by	adverse	events.	This	area	of	research	has	an	

undeniable	impact	on	the	global	economy	and	on	society.	

1.1	 Literature	survey	

Orlicky	(1975)	introduces	the	groundbreaking	material	requirements	planning	

(MRP)	system	that	combines	data	from	the	master	production	schedule	(MPS)	and	the	bill	

of	materials	(BOM).	He	also	defines	two	primary	categories	of	inventory:	manufacturing	

and	distribution.	Manufacturing	inventory	encompasses	raw	materials	delivered	from	

suppliers	and	work-in-process	(WIP)	materials	within	production,	including	components,	

subassemblies,	and	unfinished	goods.	Alternatively,	distribution	inventory	comprises	final	

products	in	transportation	and	storage.	It	is	important	to	note	that	the	original	framework	

Orlicky	(1975)	proposes	does	not	specifically	incorporate	an	optimization	function.	

	 2	

While	previous	strategies	rely	on	heuristics	to	evaluate	multi-level	lot	sizing	

requirements,	Steinberg	and	Napier	(1980)	model	the	production	system	as	a	generalized	

network	that	considers	multi-level	material	structures.	The	result	of	the	model	provides	

optimal	inventory	lot	sizing	recommendations	that	minimize	cost	flows	through	

production.	Steinberg	and	Napier	(1980)	suggest	that	the	framework	requires	algorithm	

optimization	or	perhaps	parameter	simplification	when	applied	to	larger	systems.	Zhang	

and	Chen	(2001)	discuss	the	effectiveness	of	push-	and	pull-based	strategies	in	production	

planning	and	explore	a	hybrid	approach	known	as	constant	work-in-process	(CONWIP),	

which	provides	greater	control	of	WIP	inventory.	An	integer	program	determines	optimal	

lot	sizing	requirements	and	material	sequencing	along	a	single	serial	production	line.	

Zhang	and	Chen	(2001)	also	recommend	future	research	in	algorithm	efficiency	and	

robustness.	Arbib	and	Marielli	(2005)	propose	an	integer	program	that	implements	a	cut-

and-reuse	policy	within	a	cutting-stock	production	with	skiving	option.	The	model	

considers	two	competing	objectives:	minimizing	purchasing	costs	by	reusing	material	

scraps	and	minimizing	production	costs	by	limiting	inventory.	The	novelty	of	the	

framework	once	again	necessitates	improvements	in	computational	efficiency.	

Hnaien	et	al.	(2008)	study	parametrization	of	lead	times	under	uncertainty	to	

address	concerns	over	computational	requirements.	The	recommended	integer	program	

utilizes	a	discrete	time	horizon	to	optimize	single-level	production	systems.	When	applied	

to	multi-level	production	facilities,	the	result	serves	as	a	preprocessing	procedure	to	

significantly	increase	and	decrease	the	lower	and	upper	bounds,	respectively,	of	the	

objective	function.	This	feature	is	based	on	the	branch-and-bound	technique	to	limit	the	

size	of	inventory	optimization	problems.	In	contrast,	Yenisey	(2006)	explores	the	

	 3	

algorithmic	benefits	of	modeling	material	transformation	throughout	production	using	a	

flow	network	approach.	The	model	considers	material	lead	times	as	well	as	the	product	

structures	defined	by	the	BOM.	Yenisey	(2006)	also	discusses	external	lot-for-lot	supplier	

policies	and	internal	holding	policies	that	buffer	and	limit	in-house	inventory.	The	

deterministic	program	assumes	that	sufficient	supply	exists,	that	process	operations	never	

fail,	and	that	demand	is	consistent.	

Noori	et	al.	(2008)	adapt	the	network	flow	model	Yenisey	(2006)	proposes	by	

incorporating	a	second	competing	objective	to	minimize	total	completion	time	of	the	

production	system.	The	extended	model	also	considers	fuzzy	logic	to	account	for	

uncertainty	in	conjunction	with	expert	judgements	and	weights.	Noori	et	al.	(2008)	claim	

that	multi-objective	formulations	of	network	flow	problems	in	the	context	of	inventory	

management	and	requirements	planning	have	not	been	considered	in	previous	research.	

Mula	et	al.	(2008)	propose	a	dual	framework	to	manage	inventory	within	the	

manufacturing	environment	that	utilizes	both	linear	and	fuzzy	approaches.	The	fuzzy	

program	serves	as	a	compliment,	as	opposed	to	a	replacement,	to	the	original	linear	

program	in	order	to	provide	greater	insight	to	decisionmakers.	Lin	et	al.	(2009)	revisit	the	

network	flow	model	Yenisey	(2006)	suggests	by	adapting	the	framework	for	

manufacturers	of	thin-film	transistor	liquid	crystal	displays.	The	semiconductor	industry	

presents	unique	challenges	where	material	planning	is	critical.	Products	can	vary	greatly	in	

quality,	so	most	manufacturers	use	an	alternative	BOM	that	details	the	compatibility	

relationships	and	restrictions	between	different	suppliers.	Lin	et	al.	(2009)	also	discuss	the	

importance	and	complexity	of	supplier	evaluation	and	selection.	

	 4	

Building	upon	decades	of	research,	Soltanisehat	et	al.	(2021)	provide	a	stochastic	

framework	for	predicting	supplier	capacity,	simulating	material	flow,	and	assessing	

schedule	risk	in	an	interconnected	production	facility.	The	system	is	represented	as	a	

directed	network	flow	optimization	problem	that	estimates	process	delays	via	Monte	Carlo	

simulation.	The	framework	expands	upon	previous	literature	by	delivering	two	novel	

contributions:	(i)	the	joint	representation	of	material	and	work	center	interdependencies	

and	(ii)	the	integration	of	stochastic	methods	to	assess	schedule	risk.	

First,	while	previous	works	notate	network	relationships	in	different	manners,	

Soltanisehat	et	al.	(2021)	successfully	model	three	production	relationships	

simultaneously:	(i)	material	transformation,	(ii)	work	center	precedence,	and	(iii)	material	

flow	through	work	centers.	The	optimization	program	utilizes	the	network	relationships	

and	the	unit	usage	constraints	from	the	BOM	to	model	inventory	flow	through	the	

production	system.	Second,	the	framework	simulates	schedule	risk	as	a	random	discrete	

variable	in	order	to	identify	critical	work	centers	based	on	their	unused	capacity.	This	

application	allows	stakeholders	to	monitor	the	status	of	each	work	center	and	its	impact	on	

the	production	system.	Therefore,	by	allocating	more	resources	to	critical	work	centers	

(e.g.,	increasing	the	capacity,	creating	parallel	production	lines,	assigning	more	human	

resources),	stakeholders	can	mitigate	the	propagation	of	process	time	risk.	

1.2	 Research	objectives	

The	goal	of	this	research	is	to	extend	the	recent	contributions	from	Soltanisehat	et	

al.	(2021).	First,	the	framework	does	not	consider	maximum	inventory	levels	derived	from	

physical	storage	limitations.	The	application	also	does	not	allow	decision	makers	to	set	

minimum	inventory	requirements.	In	reality,	this	is	a	common	policy	and	necessary	

	 5	

inventory	strategy	to	sustain	production,	prevent	inventory	stock-outs,	and	satisfy	

customer	demand	when	firms	experience	a	sudden	reduction	of	material	(Macchi	et	al.,	

2012).	As	complexity	increases	within	a	system,	vulnerability	to	adverse	events	(e.g.,	

machinery	failure,	product	expiration)	also	increases.	Buffer	inventory	is	an	essential	

element	in	maintaining	resilient	production	systems	(Alikhani	et	al.,	2021).	Goncalves	et	al.	

(2020)	survey	existing	literature	for	operations	research	techniques	to	determine	optimal	

safety	stock	policies.	While	several	safety	stock	determination	models	exist,	that	is	outside	

the	scope	of	this	work.	

Second,	Soltanisehat	et	al.	(2021)	assume	that	customer	orders	will	only	contain	a	

single	type	of	product.	While	this	is	common	in	many	papers,	the	assumption	does	not	

reflect	the	needs	of	modern	production	facilities	that	face	increasingly	complex	and	

customizable	orders	from	customers.	In	this	work,	the	model	extension	restricts	partial	

deliveries;	that	is,	a	customer	order	cannot	be	fulfilled	until	the	required	number	of	units	

for	each	product	type	are	available.	Only	some	prior	scheduling	algorithms	consider	

customer	orders	of	multiple	product	types	(Leung	et	al.,	2006).	

Third,	the	framework	by	Soltanisehat	et	al.	(2021)	assigns	a	different	weight	to	each	

customer	order	and	aims	to	maximize	the	number	of	orders	fulfilled	using	this	

prioritization	scheme.	Order	weights	are	also	indexed	by	time	in	a	descending	manner	such	

that	customer	orders	are	fulfilled	as	quickly	as	possible.	In	other	applications,	Méndez	et	al.	

(2000)	address	the	delicate	balance	between	production	cost	and	customer	satisfaction	by	

minimizing	order	tardiness	and	WIP	inventory.	Wang	and	Lei	(2015)	also	consider	

customer	deadlines	and	penalize	late	orders	based	on	their	size.	In	order	to	capture	the	

important	economic	context	of	the	production	environment,	the	extended	model	in	this	

	 6	

work	adopts	a	new	objective	function	that	minimizes	cost	while	considering	the	competing	

goals	of	minimizing	inventory	and	minimizing	order	delays.	

The	remaining	sections	are	organized	as	follows:	(§2)	definition	of	the	optimization	

and	simulation	framework	that	highlights	new	extensions;	(§3)	illustrative	example	that	

outlines	data	assumptions	and	six	experimental	scenarios,	followed	by	results	and	

visualizations;	and	(§4)	concluding	remarks	that	discuss	limitations	as	well	as	future	

opportunities.	 	

	 7	

2	 METHODOLOGY	

The	methodology	presented	in	this	section	is	a	direct	extension	of	the	framework	

Soltanisehat	et	al.	(2021)	propose.	As	such,	the	production	system	is	represented	as	a	

directed	network	that	allows	material	to	flow	through	a	series	of	nodes	and	connected	arcs.	

Several	types	of	interdependencies	exist	in	the	production	network—from	predecessor	and	

successor	work	center	interactions	to	material	unit	usage	requirements.	Because	of	these	

work	center	and	material	relationships,	process	time	delays	easily	propagate	through	the	

network	and	can	greatly	impact	production	costs,	inventory	levels,	and	customer	

satisfaction.	The	optimization	model	defined	in	this	section	aims	to	evaluate	the	potential	

impact	of	process	time	risk	on	inventory	holding	costs	and	order	late	fees.	In	order	to	

develop	a	comprehensive	schedule	risk	profile,	the	optimization	framework	relies	on	

probabilistic	risk	parameters	and,	therefore,	is	evaluated	using	Monte	Carlo	simulation.	

The	results	of	multiple	simulation	iterations	can	be	aggregated	to	provide	a	more	holistic	

perspective	on	material	flow,	work	center	criticality,	and	demand	fulfillment.	

2.1	 Sets	and	indices	

The	production	system	is	represented	by	a	directed	network	denoted	by	! = ($, &).	

This	ordered	pair	represents	the	set	of	work	centers	$	(e.g.,	suppliers,	operations,	

inspections)	connected	using	a	set	of	directed	arcs	&.	The	subsets	of	virtual	supply	work	

centers	$(⊆ $	and	virtual	demand	work	centers	$* ⊆ $	are	defined	to	push	orders	of	

raw	materials	to	suppliers	and	to	pull	final	products	through	production,	respectively.	Set	

+	is	defined	to	include	all	of	the	material	types	(e.g.,	raw	material,	WIP	inventory,	final	

product)	that	travel	from	work	center	to	work	center	along	the	directed	arcs.	Subset	+* ⊆

+	specifically	represents	the	final	products	(i.e.,	distribution	inventory;	Orlicky,	1975).	

	 8	

Table	1:	List	of	sets	and	indices	

Set	 Definition	

!	 Set	of	work	centers	indexed	by	",	#,	or	$	

!%	 Subset	of	virtual	supply	work	centers	where	!% ⊆ !	

!'	 Subset	of	virtual	demand	work	centers	where	!' ⊆ !	

(Set	of	materials	indexed	by),	*,	or	+	

('	 Subset	of	final	products	where	(' ⊆ (

,	 Set	of	orders	indexed	by	-	

.	 Set	of	time	indexed	by	/	or	0	

1	 Set	of	relationships	between	materials	and	work	centers	indexed	
by	(), ", *, #)	such	that	material)	at	work	center	"	is	related	to	
material	*	at	work	center	#	where), * ∈ (and	", # ∈ !: " ≠ #	

8	 Set	of	risks	indexed	by	9	

8: 	 Subset	of	risks	at	work	center	" ∈ !\{!% ∪ !'}	where	8: ⊆ 8	

	

The	arcs	that	connect	work	centers	are	created	from	the	BOM,	which	defines	(i)	

material	relationships,	(ii)	work	center	relationships,	and	(iii)	material	and	work	center	

relationships.	To	track	the	changes	in	material	between	work	centers,	set	,	is	constructed	

using	the	BOM	and	indexed	by	(-, ., /, 0)	such	that	material	- ∈ +	at	work	center	. ∈ $	is	

related	to	material	/ ∈ +	at	work	center	0 ∈ $.	Namely,	material	- ∈ +	from	work	center	

. ∈ $	is	sent	to	work	center	0 ∈ $	to	be	transformed	into	material	/ ∈ +.	

Set	2	provides	the	customer	orders	that	the	production	system	aims	to	fulfill.	The	

flow	of	material	through	work	centers	continues	until	the	final	customer	order	is	fulfilled	

or	until	the	time	horizon	expires,	whichever	event	occurs	first.	Set	3	provides	the	discrete	

time	horizon,	and	set	4	provides	the	potential	time	risks	(e.g.,	machine	failure,	human	

error,	material	rework)	that	impact	process	times	at	work	centers.	The	specific	risks	that	

can	occur	at	non-virtual	work	center	. ∈ $\{$(∪ $*}	are	represented	by	subset	49 ⊆ 4.	

For	a	comprehensive	list	of	sets	and	indices,	see	Table	1.	

	 	

	 9	

Table	2:	List	of	parameters	

Parameter	 Definition	

?: 	 Capacity	of	work	center	" ∈ !\{!% ∪ !'}	where	?: ∈ ℤ
A	

B: 	 Baseline	process	time	of	work	center	" ∈ !\{!% ∪ !'}	where	B: ∈ ℤ
A	

C:
D	 Process	time	delay	at	work	center	" ∈ !\{!% ∪ !'}	due	to	risk	9 ∈ 8: 	

where	C:̃
D ∈ ℤ∗	

G: 	 Total	process	time	of	work	center	" ∈ !\{!% ∪ !'}	where	G: ∈ ℤ
A	

HIJ	 Unit	usage	of	material) ∈ (to	produce	material	* ∈ (such	that	
(), ", *, #) ∈ 1	and	where	HIJ ∈ ℤ∗	

KL
I	 Initial	inventory	of	material) ∈ (at	time	/ = 0	where	KL

I ∈ ℤ∗	

Omin
I 	 Minimum	inventory	of	material) ∈ (where	Omin

I ∈ ℤ∗	

Omax
I 	 Maximum	inventory	of	material) ∈ (where	Omax

I ∈ ℤA	

ℎI	 Cost	of	holding	material) ∈ (where	ℎI ∈ ℝ∗	

+W
I	 Quantity	of	final	product) ∈ ('	in	order	- ∈ ,	where	+W

I ∈ ℤ∗	

XW	 Deadline	to	fulfill	order	- ∈ ,	where	XW ∈ .	

YW	 Cost	of	delaying	order	- ∈ ,	where	YW ∈ ℝ
∗	

	

2.2	 Parameters	

Every	non-virtual	work	center	. ∈ $\{$(∪ $*}	has	a	defined	capacity	:9 ∈ ℤ
<
	and	

baseline	process	time	=9 ∈ ℤ
<
.	The	actual	process	time	>9 ∈ ℤ

<
	at	work	center	. ∈

$\{$(∪ $*}		considers	the	potential	process	delay	?9̃
A ∈ ℤ∗	due	to	each	risk	C ∈ 49 .	Note	

that	virtual	work	centers	are	not	subject	to	any	risks	and	do	not	have	capacity	limitations	

or	process	time	considerations.	

Considering	the	material	transformations	that	occur	during	production,	parameter	

DEF ∈ ℤ∗	represents	the	unit	usage	of	material	- ∈ +	necessary	to	produce	material	/ ∈

+,	as	prescribed	in	the	BOM,	such	that	(-, ., /, 0) ∈ ,.	Parameter	GH
E ∈ ℤ∗	provides	the	

initial	inventory	of	each	material	- ∈ +	at	time	I = 0.	Due	to	buffer	policies	and	storage	

restrictions,	this	extension	to	the	framework	by	Soltanisehat	et	al.	(2021)	considers	that	

the	inventory	of	each	material	- ∈ +	must	fall	between	the	minimum	Kmin
E ∈ ℤ∗	and	

maximum	Kmax
E ∈ ℤ<	boundaries.	This	work	also	assumes	that	the	production	firm	incurs	

holding	cost	ℎE ∈ ℝ∗
	for	each	unit	of	material	- ∈ +	held	during	each	time	period.	

	 10	

Table	3:	Discrete	probability	distribution	of	process	time	risk	

C:̃
D	 0	 1	 2	 3	 4	 5	

_(C:̃
D)	 0.37	 0.31	 0.18	 0.09	 0.04	 0.01	

	

Another	distinction	from	the	original	framework	is	that	customer	orders	can	

contain	multiple	types	of	final	products.	Parameter	ST
E ∈ ℤ∗	provides	the	quantity	of	final	

product	- ∈ +*	in	order	U ∈ 2.	Customer	orders	are	also	time-bound	in	this	extension.	

The	deadline	to	fulfill	order	U ∈ 2	is	given	by	VT ∈ 3.	For	each	time	period	that	order	U ∈ 2	

is	delayed,	the	production	firm	incurs	late	fee	WT ∈ ℝ
∗
.	For	a	comprehensive	list	of	

parameters,	see	Table	2.	

2.2.1	 Risk	calculation	

In	the	original	framework,	the	potential	time	extension	?9̃
A ∈ ℤ∗	for	each	risk	C ∈ 49 	

at	work	center	. ∈ $\{$(∪ $*}	is	a	probabilistic	value	generated	randomly	from	the	

discrete	probability	distribution	in	Table	3.	Thus,	the	input	parameters	of	the	optimization	

model	will	differ	across	each	Monte	Carlo	simulation	iteration.	The	total	process	time	>9 ∈

ℤ<	is	calculated	using	the	formulation	in	equation	(1)	that	aggregates	the	time	impact	for	

all	sources	of	risk.	In	this	instance,	an	arithmetic	average	of	process	delays	for	each	risk	

type	is	calculated.	Note	that	the	total	process	time	>9 ∈ ℤ
<
	is	rounded	up	to	the	nearest	

integer	because	time	is	considered	discrete.	

G: = dB: +
1

|8|
g C:̃

D

D∈hi

j	 ∀	" ∈ !\{!% ∪ !'}	 (1)	

2.3	 Decision	variables	

Five	decision	variables	determine	the	results	of	the	model.	Variable	KX
E ∈ ℤ∗	tracks	

the	total	inventory	of	each	material	- ∈ +	at	time	I ∈ 3	during	production.	Material	flow	

	 11	

Table	4:	List	of	decision	variables	

Variable	 Definition	

Om
I	 Total	inventory	of	material) ∈ (at	time	/ ∈ .	where	Om

I ∈ ℤ∗	

n:om
IJ
	 Flow	of	material) ∈ (to	material	* ∈ (via	work	centers	

", # ∈ !	at	time	/ ∈ .	such	that	(), ", *, #) ∈ 1	and	n:om
IJ

∈ ℤ∗	

p:m
I	 Amount	of	final	product) ∈ ('	arriving	at	virtual	demand	

node	" ∈ !'	at	time	/ ∈ .	where	p:m
I ∈ ℤ∗	

qWm	 Fulfillment	of	order	- ∈ ,	at	time	/ ∈ .	where	qWm ∈ {0,1}	

rWm	 Delay	of	order	- ∈ ,	at	time	/ ∈ .	where	rWm ∈ {0,1}	

	

through	the	network	is	managed	via	variable	Y9ZX
EF ∈ ℤ∗,	where	material	- ∈ +	flows	from	

work	center	. ∈ $	to	work	center	0 ∈ $	at	time	I ∈ 3	to	be	transformed	into	material	/ ∈ +	

such	that	(-, ., /, 0) ∈ ,.	Variable	[9X
E ∈ ℤ∗	notes	the	amount	of	final	product	- ∈ +*	that	

reaches	virtual	demand	work	center	. ∈ $*	at	time	I ∈ 3.	Binary	variable	\TX ∈ {0,1}	

indicates	that	order	U ∈ 2	is	fulfilled	(1)	or	unfulfilled	(0)	at	time	I ∈ 3.	Likewise,	this	

extension	defines	binary	variable	^TX ∈ {0,1}	to	indicate	that	order	U ∈ 2	is	delayed	(1)	or	

not	delayed	(0)	at	time	I ∈ 3.	For	a	comprehensive	list	of	decision	variables,	see	Table	4.	

2.4	 Objective	function	

In	contrast	to	Soltanisehat	et	al.	(2021),	the	goal	of	this	model	is	to	minimize	the	

total	cost	derived	from	holding	inventory	during	production	and	delaying	orders	past	their	

deadlines.	Equation	(2)	provides	the	function	that	considers	these	competing	objectives.	At	

each	time	period,	the	production	firm	incurs	the	holding	cost	for	each	material	and	the	late	

fee	for	each	order	delay.	

min
s,t,u,v,w

g g ℎIOm
I

I∈xm∈y

+ggYWrWm
W∈zm∈y

	
	

(2)	

	 12	

2.5	 Constraints	

Constraint	(3)	restricts	the	outflow	from	each	work	center	to	account	for	work	

center	capacity	limitations.	This	assumes	that	every	material	has	a	uniform	impact	on	

capacity.	Note	that	virtual	work	centers	do	not	have	capacity	limitations.	

g g g n:om
IJ

o:(I,:,J,o)∈{J:(I,:,J,o)∈{I:(I,:,J,o)∈{

≤ ?: 	 ∀	" ∈ !\{!% ∪ !'}:	(), ", *, #) ∈ 1	
∀	/ ∈ .	

(3)	

The	next	constraints	restrict	the	total	inventory	of	each	material.	Constraint	(4)	

initializes	the	inventory	of	each	material	at	the	beginning	of	the	time	horizon.	Constraints	

(5)	and	(6)	are	additions	to	the	original	framework	and	guarantee	that	the	inventory	of	

each	material	remains	within	its	minimum	and	maximum	bounds,	respectively.	

Om'}
I = KL

I	
∀) ∈ (
∀	/ ∈ .: / = 1	

(4)	

Om
I ≥ Omin

I 	
∀) ∈ (
∀	/ ∈ .	

(5)	

Om
I ≤ Omax

I 	
∀) ∈ (
∀	/ ∈ .	

(6)	

Constraints	(7)	and	(8)	track	inventory	as	material	flows	and	transforms	from	work	

center	to	work	center.	Flow	equilibrium	is	guaranteed	by	considering	unit	usage	

requirements,	as	prescribed	by	the	BOM,	in	conjunction	with	inbound	and	outbound	flows	

from	each	work	center.	

Om
I = Om'}

I − HIJ g g noÄm
JÅ

Ä:(J,o,Å,Ä)∈{Å:(J,o,Å,Ä)∈{

	
∀	# ∈ !\{!'}	
∀) ∈ (\{('}:	(), ", *, #) ∈ 1	
∀	/ ∈ .: (/ − Go) ≤ 0	

(7)	

Om
I = g n

:oÇm'ÉÑÖ

IJ

::(I,:,J,o)∈{

+ Om'}
I − HIJ g g noÄm

JÅ

Ä:(J,o,Å,Ä)∈{Å:(J,o,Å,Ä)∈{

	
∀	# ∈ !\{!'}	
∀) ∈ (\{('}:	(), ", *, #) ∈ 1	
∀	/ ∈ .: (/ − Go) ≥ 1	

(8)	

Constraint	(9)	tracks	the	amount	of	final	product	that	arrives	at	the	virtual	demand	

work	center.	Likewise,	constraint	(10)	considers	the	quantity	of	each	final	product	required	

	 13	

to	fulfill	customer	orders.	The	value	of	\TX	is	equal	to	1	if	sufficient	final	product	arrives	at	

the	virtual	demand	work	center,	indicating	that	the	order	is	fulfilled.	

g g n:om
IJ

::(I,:,J,o)∈{I:(I,:,J,o)∈{

= pom
J
	

∀	# ∈ !'	
∀	* ∈ ('	
∀	/ ∈ .	

(9)	

Om
I = g p:m

I

:∈Üá

+ Om'}
I −g+W

IqWm
W∈z

	 ∀) ∈ ('	
∀	/ ∈ .	

(10)	

The	concept	of	order	deadlines	and	delays	is	an	extension	to	the	original	framework	

from	Soltanisehat	et	al.	(2021).	Constraint	(11)	restricts	each	order	from	being	satisfied	

before	its	deadline,	thus	requiring	the	production	firm	to	hold	inventory.	Constraint	(12)	

guarantees	that	each	order	is	only	fulfilled	once	over	the	time	horizon,	if	at	all.	

qWm = 0	
∀	- ∈ ,	
∀	/ ∈ .: / < XW	

(11)	

gqWm
m∈y

≤ 1	 ∀	- ∈ ,	 (12)	

The	next	two	constraints	track	order	delays	for	each	time	period.	Constraint	(13)	

states	that	the	value	of	^TX	is	equal	to	0	when	the	time	precedes	the	order	deadline.	

Contrarily,	constraint	(14)	states	the	value	of	^TX	is	equal	to	1	when	the	time	is	greater	than	

or	equal	to	the	order	deadline	and	the	order	was	not	fulfilled	in	previous	periods.	

rWm = 0	
∀	- ∈ ,	
∀	/ ∈ .: / < XW	

(13)	

rWm + g qWâ

m

â%äã

= 1	
∀	- ∈ ,	
∀	/ ∈ .: / ≥ XW	

(14)	

The	final	set	of	constraints	(15)	through	(19)	control	the	nature	of	non-negative	

integer	variables	KX
E
,	Y9ZX

EF
,	and	[9X

E
	and	binary	variables	\TX	and	^TX .	

Om
I ∈ ℤ∗	

∀) ∈ (
∀	/ ∈ .	

(15)	

	

	 14	

n:om
IJ

∈ ℤ∗	
∀	(), ", *, #) ∈ 1	
∀	/ ∈ .	

(16)	

p:m
I ∈ ℤ∗	

∀	" ∈ !'	
∀) ∈ ('	
∀	/ ∈ .	

(17)	

qWm ∈ {0,1}	
∀	- ∈ ,	
∀	/ ∈ .	

(18)	

rWm ∈ {0,1}	
∀	- ∈ ,	
∀	/ ∈ .	

(19)	

	 	

	 15	

3	 ILLUSTRATION	

In	order	to	assess	the	validity	of	the	framework	extensions,	this	section	outlines	an	

artificial	example	that	immolates	a	real-world	production	system.	The	results	discussed	

and	visualized	in	this	section	describe	how	the	behavior	of	the	model	adjusts	to	

accommodate	different	input	parameters.	The	discussion	also	considers	how	production	

stakeholders	can	use	the	results	to	inform	their	decision	making.	

3.1	 Description	and	assumptions	

In	this	example,	consider	a	time	horizon	where	|3| = 50	and	each	time	period	is	one	

hour.	The	production	system	is	comprised	of	19	suppliers,	9	operations,	and	5	inspections.	

These	work	centers	comprise	the	set	of	non-virtual	nodes	$\{$(∪ $*}.	Each	supplier	has	a	

material	capacity	of	45,	while	each	operation	and	inspection	have	a	material	capacity	of	30.	

All	work	centers	have	a	baseline	processing	time	of	one	hour	and	are	subject	to	uniform	

sources	of	risk	such	that	|49| = 12.	The	exact	impact	each	risk	has	on	the	process	time	at	

each	work	center	is	determined	during	each	Monte	Carlo	simulation	iteration.	In	order	to	

push	and	pull	material	through	the	network,	the	example	also	considers	one	virtual	supply	

node	and	one	virtual	demand	node	such	that	|$(| = 1	and	|$*| = 1,	respectively.	Note	that	

virtual	work	centers	do	not	have	capacity	limitations	or	process	time	requirements.	

This	example	includes	three	different	final	products.	Each	product	is	produced	from	

53	raw	materials	that	contribute	to	19	distinct	production	stages	(e.g.,	components,	

subassemblies)	and	60	inspections.	The	first	product	is	completely	unique	and	does	not	

share	any	materials	with	the	other	two	products.	In	comparison,	the	second	and	third	

products	are	very	similar	and	share	the	same	raw	materials	(see	Table	5).	The	production		

	

	 16	

Table	5:	Number	of	materials	attributed	to	each	final	product	

	 Raw	 Processed	 Inspected	

Exclusive	to	first	product	 53	 19	 60	

Exclusive	to	second	product	 –	 19	 7	

Exclusive	to	third	product	 –	 19	 7	

Shared	between	second	and	third	products	 53	 –	 53	

Total	across	all	three	products	 106	 57	 127	

	

Table	6:	Discrete	probability	distribution	of	unit	usage	

HIJ	 1	 2	 3	 4	

_(HIJ)	 0.94	 0.02	 0.01	 0.03	

	

Table	7:	Quantity	of	final	products	attributed	to	each	order	

Order	-	 First	product	+W
}	 Second	product	+W

å	 Third	product	+W
ç	 Deadline	XW	

1	 9	 –	 –	 10	

2	 2	 7	 –	 20	

3	 1	 5	 3	 30	

4	 –	 –	 9	 40	

	

facility	cannot	store	more	than	10	units	of	each	material.	According	to	its	buffer	policy,	the	

production	firm	requires	at	least	two	units	of	each	inspected	material	to	remain	in	

inventory	at	all	times.	At	the	beginning	of	this	time	horizon,	the	initial	inventory	of	each	

inspected	material	is	eight.	

In	total,	the	materials	required	to	produce	the	final	products	travel	along	63	

interconnecting	paths	that	account	for	7	to	12	material	transformations	each.	The	unit	

usage	of	each	material	transformation	follows	the	discrete	probability	distribution	in	Table	

6.	The	set	of	relationships	between	work	centers	and	materials	represents	the	flow	of	

material	from	the	virtual	supply	node	to	suppliers,	to	operation	and	inspection	work	

centers,	and	to	the	virtual	demand	node	such	that	|,| = 353.	This	example	also	considers	

the	four	customer	orders	with	varying	quantities	and	deadlines	in	Table	7.	The	number	of		

	 17	

Table	8:	Inventory	holding	cost	attributed	to	each	scenario	

Scenario	 Raw	 Processed	 Inspected	 Final	

A	 $0.50	 $0.50	 $0.50	 $0.50	

B	 $0.25	 $0.50	 $0.75	 $1.00	

	

Table	9:	Order	late	fee	attributed	to	each	scenario	

Scenario	 First	order	Y}	 Second	order	Yå	 Third	order	Yç	 Fourth	order	Yé	

I	 $5.00	 $5.00	 $5.00	 $5.00	

II	 $2.50	 $5.00	 $7.50	 $10.00	

III	 $10.00	 $7.50	 $5.00	 $2.50	

	

Table	10:	Run	time	of	ten	simulation	iterations	

Scenario	 A-I	 A-II	 A-III	 B-I	 B-II	 B-III	

Minutes	 60	 65	 65	 30	 42	 44	

	

materials	required	in	each	order	and	of	each	product	type	is	consistent	(9	and	12,	

respectively).	

3.2		 Financial	scenarios	

Inventory	holding	costs	and	order	delay	fees	are	the	significant	financial	parameters	

that	affect	the	objective	function.	Table	8	presents	two	different	financial	scenarios	with	

different	inventory	holding	costs.	Scenario	A	assumes	that	holding	cost	is	uniform	across	all	

materials,	while	Scenario	B	assumes	that	holding	cost	increases	as	materials	are	processed,	

inspected,	and	completed.	Similarly,	Table	9	defines	three	different	financial	scenarios	for	

order	late	fees.	Scenario	I	assumes	that	the	late	fee	attributed	to	each	customer	order	is	the	

same.	In	comparison,	Scenarios	II	and	III	prioritize	orders	with	later	and	earlier	deadlines,	

respectively.	The	combination	of	different	holding	costs	and	late	fees	create	six	distinct	cost	

environments	(A-I,	A-II,	A-III,	B-I,	B-II,	and	B-III).	By	evaluating	the	interactions	between	

	 18	

different	cost	schemes,	stakeholders	are	able	to	identify	critical	materials	and	work	centers	

while	also	evaluating	pricing	strategies.	

3.3		 Experimental	results	

The	framework	defined	in	§2	is	programmed	in	Python	using	Gurobi.	In	this	

implementation,	the	optimization	model	executes	within	a	1%	optimality	gap	each	

iteration.	Using	the	example	data	and	financial	environments	previously	defined,	the	

optimization	is	solved	10	times	for	each	experimental	scenario	(60	iterations	total).	The	

program	run	time	for	each	scenario	is	given	in	Table	10.	In	general,	the	holding	cost	and	

late	fee	scheme	that	is	most	computationally	efficient	is	Scenario	B-I.	

3.3.1	 Order	fulfillment	

Figure	1	visualizes	the	time	at	which	each	order	is	met	after	10	simulation	

iterations.	The	sequence	in	which	orders	are	most	frequently	satisfied	is	Order	2,	Order	1,	

Order	3,	and	Order	4.	While	Orders	2	and	4	are	usually	fulfilled	by	their	respective	

deadlines,	it	is	common	for	Orders	1	and	3	to	be	several	time	periods	late.	Specifically,	

Order	1	is	always	met	at	least	10	hours	after	its	deadline,	regardless	of	experimental	

scenario.	

When	comparing	the	two	holding	cost	structures,	in	general,	Scenario	A	is	more	

likely	to	satisfy	orders	in	a	timely	manner.	Because	there	is	no	difference	in	holding	cost	

between	different	material	types,	the	optimization	model	does	not	have	an	incentive	to	

strategically	schedule	material	transformations	during	production.	In	Scenario	B,	the	

distribution	of	order	fulfillment	is	more	widespread.	

Similarly,	Scenario	I	also	has	a	large	time	distribution.	In	Scenario	II,	as	later	orders	

become	more	important,	there	is	the	greatest	amount	of	crossover	between	fulfillment		

	 19	

	

A-I

A-II

A-III

B-I

B-II

B-III

Figure	1:	Timeline	of	order	fulfillment	after	10	simulation	iterations	

	

	 20	

times.	For	instance,	in	Scenario	B-II,	Order	1	is	sometimes	fulfilled	after	Order	4,	resulting	

in	a	delay	greater	than	30	hours.	That	said,	the	most	frequent	number	of	delays	occurs	in	

Scenario	III.	This	is	likely	due	to	the	fact	that	the	late	fee	is	higher	for	earlier	orders	and	

that	orders	cannot	be	satisfied	before	their	deadlines.	

3.3.2	 Work	center	utilization	

When	scheduling	the	flow	of	material	through	production,	decision	makers	can	

easily	identify	work	centers	that	are	operating	close	to	their	capacity.	Stakeholders	can	

increase	the	capacity,	create	parallel	production	lines,	or	assign	more	resources	as	

necessary	in	order	to	minimize	the	propagation	of	schedule	risk.	Figures	2,	3	and	4	

visualize	the	maximum	utilization	of	each	supplier,	operation,	and	inspection,	respectively,	

from	all	simulation	iterations	during	the	time	horizon.	In	general,	the	results	across	each	

scenario	combination	are	similar.	

Initially,	two	suppliers	experience	a	drastic	increase	in	demand	(see	Figure	2).	At	

the	tenth	hour,	numerous	suppliers	reach	capacity;	this	level	of	demand	is	sustained	for	the	

majority	of	the	time	horizon.	The	remaining	suppliers	have	utilizations	less	than	0.25.	Note	

the	significant	difference	between	holding	cost	scenarios.	In	Scenario	A,	production	

appears	to	continue	as	more	raw	materials	are	ordered	from	suppliers,	which	all	reach	full	

utilization	by	the	end	of	the	time	horizon.	In	Scenario	B,	production	phases	out	once	the	

final	orders	are	satisfied.	

Considering	the	initial	state	of	each	operation,	while	there	are	a	few	work	centers	

that	range	from	0.25	to	0.75	utilization,	only	one	work	center	is	in	danger	of	reaching	

maximum	capacity	(see	Figure	3).	After	the	first	10	hours,	utilization	consistently	remains		

	

	 21	

	

A-I

A-II

A-III

B-I

B-II

B-III

Figure	2:	Maximum	supplier	utilization	across	all	iterations	

	

	 22	

	

A-I

A-II

A-III

B-I

B-II

B-III

Figure	3:	Maximum	operation	utilization	across	all	iterations	

	

	

	 23	

	

A-I

A-II

A-III

B-I

B-II

B-III

Figure	4:	Maximum	inspection	utilization	across	all	iterations	

	

	

	 24	

beneath	0.25	for	all	operations.	Towards	the	end	of	the	time	horizon,	a	handful	of	

operations	approaches	0.50	utilization.	

For	inspections,	there	is	one	work	center	that	reaches	capacity	within	the	first	few	

hours	and	remains	at	capacity	until	Order	4	is	fulfilled	(see	Figure	4).	In	Scenario	A,	the	

other	inspections	range	from	0.00	to	0.50	utilization.	In	Scenario	B,	the	other	inspections	

are	vacant	until	approximately	the	tenth	hour.	Then,	inspection	utilization	grows	until	the	

end	of	the	time	horizon.	This	tendency	is	expected	due	to	the	increased	cost	of	holding	

inspected	material.	

3.3.3	 Material	inventory	and	production	

Figures	5	and	6	summarize	how	inventory	fluctuates	for	each	material	type.	Overall,	

there	are	no	noticeable	differences	between	the	late	fee	schemes.	Contrarily,	holding	cost	

greatly	affects	the	inventory	strategy	that	the	optimization	model	adopts.	In	Scenario	A,	

inspected	materials	comprise	the	largest	proportion	of	inventory.	Processed	materials	

significantly	dwindle	from	hour	25	until	the	end	of	the	time		horizon.	In	preparation	for	

customer	orders,	the	model	often	holds	6	units	of	final	product.	In	contrast,	Scenario	B	

capitalizes	on	the	low	holding	cost	of	raw	and	processed	materials,	which	covers	the	

majority	of	inventory.	Inspected	materials	from	initial	inventory	are	quickly	transformed	

into	other	materials	to	minimize	holding	costs.	Because	they	have	the	greatest	holding	

costs,	final	products	are	finished	just-in-time	to	fulfill	customer	orders.	In	all	scenario	

combinations,	materials	are	unlikely	to	reach	the	maximum	holding	capacity	of	10.	

Lastly,	Figures	7	and	8	consider	the	cumulative	production	of	each	final	product.	

Most	notably,	Scenario	A	introduces	the	greatest	variation	between	runs,	whereas	Scenario	

B	standardizes	appropriate	inventory	levels	over	time.	Scenarios	II	and	III	also	lead	to	

	 25	

greater	deviation	in	inventory	because	the	late	fee	attributed	to	each	order	is	not	the	same;	

therefore,	the	model	prioritizes	certain	final	products	over	others.	The	product	with	the	

greatest	variation	between	simulation	iterations	is	Product	3	(likely	due	to	the	fact	that	this	

product	is	only	required	for	Orders	3	and	4,	which	have	the	furthest	deadlines).

	 26	

A-I

A-II

A-III

Figure	5:	Inventory	held	during	each	iteration	of	Scenario	A	 	

	 27	

B-I

B-II

B-III

Figure	6:	Inventory	held	during	each	iteration	of	Scenario	B	 	

	 28	

A-I

A-II

A-III

Figure	7:	Cumulative	production	for	each	final	product	in	Scenario	A	 	

	 29	

B-I

B-II

B-III

Figure	8:	Cumulative	production	for	each	final	product	in	Scenario	B

	 30	

4	 CONCLUSION	

This	work	presents	several	extensions	to	the	production	inventory	formulation	

from	Soltanisehat	et	al.	(2021)	that	(i)	combines	interdependencies	between	work	centers	

and	materials	and	(ii)	estimates	the	probabilistic	impact	of	schedule	risk.	Expanding	upon	

the	network	flow	optimization	and	Monte	Carlo	simulation,	this	extension	presents	three	

modifications	to	the	original	framework:	(i)	the	addition	of	inventory	buffer	and	storage	

parameters,	(ii)	restrictions	that	allow	multi-product	customer	orders,	and	(iii)	the	

minimization	of	holding	costs	and	order	late	fees.	

The	illustrative	example	in	§3	validates	the	efficacy	and	applicability	of	the	model	to	

decision	makers.	The	results	and	discussion	of	six	potential	scenarios	demonstrate	the	

potential	analytical	benefits	for	existing	production	systems.	Overall,	the	framework	invites	

stakeholders	to	monitor	the	status	and	impact	of	numerous	production	parameters	in	the	

hopes	of	mitigating	the	propagation	of	schedule	risk.	

4.1	 Future	opportunities	

In	future	work,	this	framework	should	be	applied	in	a	real-world	setting	to	an	

existing	production	system.	A	production	firm	can	provide	a	more	accurate	network	of	

work	centers	and	materials	with	precise	relationships	and	interdependencies,	as	well	as	

more	cost	parameters	related	to	production,	purchasing,	pricing,	etc.	that	can	contribute	to	

the	objective	function.	Access	to	sales	information	will	also	deliver	more	accurate	demand	

forecasting.	

Considering	risk	estimation,	future	work	should	also	improve	upon	the	assumption	

that	risk	follows	a	discrete	probability	distribution	by	incorporating	a	more	robust	

	 31	

prediction	model.	In	reality,	different	risks	likely	follow	different	distributions.	Moreover,	

the	framework	could	incorporate	a	risk	weighting	scheme	to	improve	aggregation.	

Finally,	future	research	should	explore	the	computational	challenges	that	impact	

run	time.	Increasing	the	time	horizon	greatly	affects	the	number	of	variables	and	

constraints.	Future	iterations	of	this	framework	should	explore	and	justify	long-term	

planning.	 	

	 32	

REFERENCES	

Alikhani,	R.,	Torabi,	S.	A.	&	Altay,	N.	(2021).	Retail	supply	chain	network	design	with	

concurrent	resilience	capabilities.	International	Journal	of	Production	Economics,	

234,	Article	108042.	

Arbib,	C.	&	Marinelli,	F.	(2005).	Integrating	process	optimization	and	inventory	planning	in	

cutting-stock	with	skiving	option:	An	optimization	model	and	its	application.	

European	Journal	of	Operational	Research,	163(3),	617-630.	

Chowdhury,	P.,	Paul,	S.	K.,	Kaisar,	S.	&	Moktadir,	M.	A.	(2021).	COVID-19	pandemic	related	

supply	chain	studies:	A	systematic	review.	Transportation	Research	Part	E:	Logistics	

and	Transportation	Review,	148,	Article	102271.	

Goncalves,	J.	N.	C.,	Carvalho,	M.	S.	&	Cortez,	P.	(2020).	Operations	research	models	and	

methods	for	safety	stock	determination:	A	review.	Operations	Research	Perspectives,	

7,	Article	100164.	

Hnaien,	F.,	Dolgui,	A.	&	Ould	Louly,	M.	A.	(2008).	Planned	lead	time	optimization	in	material	

requirement	planning	environment	for	multilevel	production	systems.	Journal	of	

Systems	Science	and	Systems	Engineering,	17(2),	132-155.	

Islam,	M.	T.,	Azeem,	A.,	Jabir,	M.,	Paul,	A.	&	Paul,	S.	K.	(2020).	An	inventory	model	for	a	

three-stage	supply	chain	with	random	capacities	considering	disruptions	and	

supplier	reliability.	Annals	of	Operations	Research.	Advance	online	publication.	

Leung,	J.	Y.	T.,	Li,	H.	&	Pinedo,	M.	(2006).	Scheduling	orders	for	multiple	product	types	with	

due	date	related	objectives.	European	Journal	of	Operational	Research,	168(2),	370-

389.	

	 33	

Lin,	J.	T.,	Chen,	T.	L.	&	Lin,	Y.	T.	(2009).	Critical	material	planning	for	TFT-LCD	production	

industry.	International	Journal	of	Production	Economics,	122(2),	639-655.	

Macchi,	M.,	Kristjanpoller,	F.,	Garetti,	M.,	Arata,	A.	&	Fumagalli,	L.	(2012).	Introducing	buffer	

inventories	in	the	RBD	analysis	of	process	production	systems.	Reliability	

Engineering	&	System	Safety,	104,	84-95.	

Méndez,	C.	A.,	Henning,	G.	P.	&	Cerdá,	J.	(2000).	Optimal	scheduling	of	batch	plants	

satisfying	multiple	product	orders	with	different	due	dates.	Computers	&	Chemical	

Engineering,	24(9),	2223-2245.	

Mohammadi,	M.	(2020).	Designing	an	integrated	reliable	model	for	stochastic	lot-sizing	and	

scheduling	problem	in	hazardous	materials	supply	chain	under	disruption	and	

demand	uncertainty.	Journal	of	Cleaner	Production,	274,	Article	122621.	

Mula,	J.,	Poler,	R.	&	Garcia-Sabater,	J.	P.	(2008).	Capacity	and	material	requirement	planning	

modelling	by	comparing	deterministic	and	fuzzy	models.	International	Journal	of	

Production	Research,	46(20),	5589-5606.	

Noori,	S.,	Feylizadeh,	M.	R.,	Bagherpour,	M.,	Zorriassatine,	F.	&	Parkin,	R.	M.	(2008).	

Optimization	of	material	requirement	planning	by	fuzzy	multi-objective	linear	

programming.	Journal	of	Engineering	Manufacture,	222(7),	887-900.	

Orlicky,	J.	(1975).	Material	Requirements	Planning.	McGraw-Hill.	

Soltanisehat,	L.,	Ghorbani-Renani,	N.,	Barker,	K.	&	González,	A.	D.	(2021).	Assessing	

production	scheduling	risk	from	interconnected	sources:	Application	to	pandemic	

health	equipment.	In	progress.	

Steinberg,	E.	&	Napier,	H.	A.	(1980).	Optimal	multi-level	lot	sizing	for	requirements	

planning	systems.	Management	Science,	26(12),	1258-1271.	

	 34	

Wang,	G.	&	Lei,	L.	(2015).	Integrated	operations	scheduling	with	delivery	deadlines.	

Computers	&	Industrial	Engineering,	85,	177-185.	

Yenisey,	M.	M.	(2006).	A	flow-network	approach	for	equilibrium	of	material	requirements	

planning.	International	Journal	of	Production	Economics,	102(2),	317-332.	

Zhang,	W.	&	Chen,	M.	(2001).	A	mathematical	programming	model	for	production	planning	

using	CONWIP.	International	Journal	of	Production	Research,	39(12),	2723-2734.	

	 	

	 35	

APPENDIX	A:	Python	implementation	of	model	

General Libraries
import os
import time as tt

Optimization Libraries
import csv
import pandas as pd
from gurobipy import *

Monte Carlo Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import itertools
import pylab
import numpy
import random
import time as tt

def ScheduleRisk(Time_Horizon, Simulation_Runs):

 # Define and read the path of folder
 os.getcwd()

 # Creating the new path for the outputs inside the current directory
 OutputDir = 'Outputs'
 if not os.path.exists(OutputDir):
 os.makedirs(OutputDir)

 # ---
 # Define the mathematical model sets, indices, and parameters
 # ---

 # Track the computational time
 start = tt.time()

 # Set the time horizon of the mathematical model
 timeN = list()
 Time = Time_Horizon
 for t in range(1, Time + 1):
 timeN.append(t)

 # Define sets, indices and parameters associated with work centers
 WorkStations= open('work_center.csv', 'r')
 csv_WorkStations = csv.reader(WorkStations)

 mydict_workstation_capacity = {}
 mydict_operation_capacity = {}
 mydict_operation_time = {}
 mydict_inspection_capacity = {}
 mydict_inspection_time = {}
 mydict_VS_time = {}
 mydict_demand_time = {}
 mydict_Supplier_capacity = {}
 mydict_Supplier_time = {}
 mydict_Allnode_time = {}

 for row in csv_WorkStations:
 if 'O' in row[1]:
 mydict_operation_capacity[(row[0])] = int(row[3])
 mydict_operation_time[(row[0])] = int(row[2])
 if 'I' in row[1]:
 mydict_inspection_capacity[(row[0])] = int(row[3])
 mydict_inspection_time[(row[0])] = int(row[2])
 if 'V' in row[1]:
 mydict_VS_time[(row[0])] = int(row[2])
 if 'D' in row[1]:
 mydict_demand_time[(row[0])] = int(row[2])
 if 'S' in row[1]:
 mydict_Supplier_capacity[(row[0])] = int(row[3])

	 36	

 mydict_Supplier_time[(row[0])] = int(row[2])
 mydict_Allnode_time[(row[0])] = int(row[2])
 mydict_workstation_capacity[(row[0])] = int(row[3])

 Inode, inspection_cap_value = multidict(mydict_inspection_capacity)
 Inode, inspection_time_value = multidict(mydict_inspection_time)

 Onode, operation_cap_value = multidict(mydict_operation_capacity)
 Onode, operation_time_value = multidict(mydict_operation_time)

 VSnode, VS_time = multidict(mydict_VS_time)

 Dnode, demand_time_value = multidict(mydict_demand_time)

 Snode, Supplier_cap_value = multidict(mydict_Supplier_capacity)
 Snode, Supplier_time_value = multidict(mydict_Supplier_time)

 Anode, time = multidict(mydict_Allnode_time)

 # Define sets, indices and parameters associated with materials
 inventory = open('material.csv', 'r')
 csv_inventory = csv.reader(inventory)

 mydict_Omaterial_inventory = {}
 mydict_Imaterial_inventory = {}
 mydict_VS_inventory = {}
 mydict_Fmaterial_inventory = {}
 mydict_Rmaterial_inventory = {}
 mydict_Amaterial_inventory = {}

 mydict_Omaterial_min = {}
 mydict_Imaterial_min = {}
 mydict_VS_min = {}
 mydict_Fmaterial_min = {}
 mydict_Rmaterial_min = {}
 mydict_Amaterial_min = {}

 mydict_Omaterial_max = {}
 mydict_Imaterial_max = {}
 mydict_VS_max = {}
 mydict_Fmaterial_max = {}
 mydict_Rmaterial_max = {}
 mydict_Amaterial_max = {}

 mydict_Omaterial_cost = {}
 mydict_Imaterial_cost = {}
 mydict_VS_cost = {}
 mydict_Fmaterial_cost = {}
 mydict_Rmaterial_cost = {}
 mydict_Amaterial_cost = {}

 for row in csv_inventory:
 if 'O' in row[1]:
 mydict_Omaterial_inventory[(row[0])] = int(row[2])
 mydict_Omaterial_min[(row[0])] = int(row[3])
 mydict_Omaterial_max[(row[0])] = int(row[4])
 mydict_Omaterial_cost[(row[0])] = float(row[5])
 if 'I' in row[1]:
 mydict_Imaterial_inventory[(row[0])] = int(row[2])
 mydict_Imaterial_min[(row[0])] = int(row[3])
 mydict_Imaterial_max[(row[0])] = int(row[4])
 mydict_Imaterial_cost[(row[0])] = float(row[5])
 if 'V' in row[1]:
 mydict_VS_inventory[(row[0])] = int(row[2])
 mydict_VS_min[(row[0])] = int(row[3])
 mydict_VS_max[(row[0])] = int(row[4])
 mydict_VS_cost[(row[0])] = float(row[5])
 if 'D' in row[1]:
 mydict_Fmaterial_inventory[(row[0])] = int(row[2])
 mydict_Fmaterial_min[(row[0])] = int(row[3])
 mydict_Fmaterial_max[(row[0])] = int(row[4])
 mydict_Fmaterial_cost[(row[0])] = float(row[5])
 if 'S' in row[1]:

	 37	

 mydict_Rmaterial_inventory[(row[0])] = int(row[2])
 mydict_Rmaterial_min[(row[0])] = int(row[3])
 mydict_Rmaterial_max[(row[0])] = int(row[4])
 mydict_Rmaterial_cost[(row[0])] = float(row[5])
 mydict_Amaterial_inventory[(row[0])] = int(row[2])
 mydict_Amaterial_min[(row[0])] = int(row[3])
 mydict_Amaterial_max[(row[0])] = int(row[4])
 mydict_Amaterial_cost[(row[0])] = float(row[5])

 Omaterial, OInventory = multidict(mydict_Omaterial_inventory)
 Imaterial, IInventory = multidict(mydict_Imaterial_inventory)
 VSmaterial, VSInventory = multidict(mydict_VS_inventory)
 Fmaterial, FInventory = multidict(mydict_Fmaterial_inventory)
 Rmaterial, RInventory = multidict(mydict_Rmaterial_inventory)
 Amaterial, AInventory = multidict(mydict_Amaterial_inventory)

 Omaterial, Omin = multidict(mydict_Omaterial_min)
 Imaterial, Imin = multidict(mydict_Imaterial_min)
 VSmaterial, VSmin = multidict(mydict_VS_min)
 Fmaterial, Fmin = multidict(mydict_Fmaterial_min)
 Rmaterial, Rmin = multidict(mydict_Rmaterial_min)
 Amaterial, Amin = multidict(mydict_Amaterial_min)

 Omaterial, Omax = multidict(mydict_Omaterial_max)
 Imaterial, Imax = multidict(mydict_Imaterial_max)
 VSmaterial, VSmax = multidict(mydict_VS_max)
 Fmaterial, Fmax = multidict(mydict_Fmaterial_max)
 Rmaterial, Rmax = multidict(mydict_Rmaterial_max)
 Amaterial, Amax = multidict(mydict_Amaterial_max)

 Omaterial, Ocost = multidict(mydict_Omaterial_cost)
 Imaterial, Icost = multidict(mydict_Imaterial_cost)
 VSmaterial, VScost = multidict(mydict_VS_cost)
 Fmaterial, Fcost = multidict(mydict_Fmaterial_cost)
 Rmaterial, Rcost = multidict(mydict_Rmaterial_cost)
 Amaterial, Acost = multidict(mydict_Amaterial_cost)

 # Define sets, indices and parameters associated with orders
 order = open('order.csv', 'r')
 csv_order = csv.reader(order)

 mydict_order_deadline = {}
 mydict_order_fee = {}

 for row in csv_order:
 mydict_order_deadline[(row[0])] = int(row[1])
 mydict_order_fee[(row[0])] = float(row[2])

 order, deadline = multidict(mydict_order_deadline)
 order, fee = multidict(mydict_order_fee)

 # Define sets, indices and parameters associated with order relations
 order_rel = open('order_rel.csv', 'r')
 csv_order_rel = csv.reader(order_rel)

 mydict_order_s = {}

 for row in csv_order_rel:
 mydict_order_s[(row[0], row[1])] = int(row[2])

 order_rel, size = multidict(mydict_order_s)

 # Define sets, indices and parameters associated with the material and work center relations
 interdependecy_relations = open('relation.csv','r')
 csv_interdependecy_relations = csv.reader(interdependecy_relations)

 mydict_interdependecy_relations = {}
 mydict_Workstation_relations = {}
 mydict_material_relations = {}

 for row in csv_interdependecy_relations:
 mydict_interdependecy_relations[row[0], row[1], row[2], row[3]] = row[4]
 mydict_Workstation_relations[row[1], row[3]] = int(row[4])

	 38	

 mydict_material_relations[(row[0], row[2])] = int(row[4])

 relations, value1 = multidict(mydict_interdependecy_relations)
 Wrelations, value2 = multidict(mydict_Workstation_relations)
 Mrelations, quantity = multidict(mydict_material_relations)

 # ---
 # Network flow optimization model
 # ---

 def Mathematical_Model (work_center_risk):

 # Set up the mathematical model and name it as HW_M
 HW_M = Model()
 HW_M.setParam('MIPGap', 0.01)

 # Constraints (15),(16),(17),(18),(19): manage decision variables
 Y = HW_M.addVars(Dnode, Fmaterial, timeN, vtype=GRB.INTEGER, lb=0, name="Y")
 X = HW_M.addVars(relations, timeN, vtype=GRB.INTEGER, lb=0, name='X')
 V = HW_M.addVars(Amaterial, timeN, vtype=GRB.INTEGER, lb=0, name='V')
 Z = HW_M.addVars(order, timeN, vtype=GRB.BINARY, name='Z')
 D = HW_M.addVars(order, timeN, vtype=GRB.BINARY, name='D')

 # Constraints (3): work center capacity
 for t in timeN:
 for m,i,p,j in relations:
 if i not in Dnode and i not in VSnode:
 HW_M.addConstr(quicksum(X[m, i, p, j, t] for m, i, p, j in

relations.select('*', i, '*', '*')) <=
(mydict_workstation_capacity[(i)]))

 # Constraints (4),(7),(8): Flow balance and unit usage
 for t in timeN:
 for m, i, p, j in relations:
 if j not in Dnode:
 for p, j, q, k in relations:
 if (m,p) in Mrelations:
 if t == 1:
 if (t - int(mydict_Allnode_time [(j)]) -work_center_risk[j]<= 0
):
 HW_M.addConstr(mydict_Amaterial_inventory[m]-
((mydict_material_relations[(m,p)]) * quicksum(X[p,j,q,k,t] for p,j,q,k in
relations.select(p,j,'*','*'))) == V[m,t] ,name="(3)(6) Flow equilibrium at t=1 by considering
unit usage")
 else:
 HW_M.addConstr(quicksum(X[m,i,p,j,t-int(mydict_Allnode_time
[(j)])-work_center_risk[j]] for m,i,p,j in relations.select(m,'*',p, j)) +
mydict_Amaterial_inventory[m]- ((mydict_material_relations[(m,p)]) * quicksum(X[p,j,q,k,t] for
p,j,q,k in relations.select(p,j,'*','*'))) == V[m,t] ,name="(3)(7) Flow equilibrium at t=1 by
considering unit usage")
 else:
 if (t - int(mydict_Allnode_time [(j)]) -work_center_risk[j]<=0):
 HW_M.addConstr(V[m, t - 1] - ((mydict_material_relations[(m,
p)]) * quicksum(X[p, j, q, k, t] for p, j, q, k in relations.select(p, j, '*', '*'))) == V[m,
t],name="(-)(6) Flow equilibrium at t>1 by considering unit usage")
 else:
 HW_M.addConstr(quicksum(X[m, i, p, j, t -
int(mydict_Allnode_time[(j)])-work_center_risk[j]] for m, i, p, j in relations.select(m, '*', p,
j)) + V[m, t - 1] - ((mydict_material_relations[(m, p)]) * quicksum(X[p, j, q, k, t] for p, j, q,
k in relations.select(p, j, '*', '*'))) == V[m, t], name="(-)(7) Flow equilibrium at t>1 by
considering unit usage")

 # Constraints (9): Deliver final product to demand nodes
 for t in timeN:
 for m, i, p, j in relations:
 if j in Dnode:
 HW_M.addConstr(quicksum(X[m, i, p, j,t] for m, i, p, j in
relations.select('*', '*', p, j)) == Y[j, p,t], name="(8) Final product reaches virtual demand
work center")

 # Constraints (10): Satisfy orders by considering sizes
 for t in timeN:
 for p in Fmaterial:

	 39	

 if t == 1:
 HW_M.addConstr(quicksum(Y[j,p,t] for j in Dnode) +
mydict_Amaterial_inventory[p] - quicksum(mydict_order_s[p,o]* Z[o,t] for p,o in
order_rel.select(p, '*')) == V[p,t], name="(9) fulfill orders at t=1 by considering size")
 else:
 HW_M.addConstr(quicksum(Y[j,p,t] for j in Dnode) + V[p, t-1] -
quicksum(mydict_order_s[p,o]* Z[o,t] for p,o in order_rel.select(p, '*')) == V[p,t], name="(9)
fulfill orders at t>1 by considering size")

 # Constraints (12): Ensure each order only met once
 for o in order:
 HW_M.addConstr(quicksum(Z[o,t] for t in timeN) <= 1, name="(10) fulfill order once")

 # Constraints (11),(13),(14): Track order delays
 for t in timeN:
 for o in order:
 if t < mydict_order_deadline[o]:
 HW_M.addConstr(Z[o,t] == 0, name="(new) hold inventory until deadline")
 HW_M.addConstr(D[o,t] == 0, name="(11) order delay before deadline")
 else:
 HW_M.addConstr(D[o,t] + quicksum(Z[o,s] for s in
timeN[(mydict_order_deadline[o]-1):t]) == 1, name="(12) order delay after deadline")

 # Constraints (5): Minimum inventory constraints
 for t in timeN:
 for m in Amaterial:
 HW_M.addConstr(V[m,t] >= mydict_Amaterial_min[m], name="(4) min inventory")

 # Constraints (6): Maximum inventory constraints
 for t in timeN:
 for m in Amaterial:
 HW_M.addConstr(V[m,t] <= mydict_Amaterial_max[m], name="(5) max inventory")

 # Equation (2): Objective function that calculates total holding and delay costs
 OBJ = quicksum(mydict_Amaterial_cost[m]*V[m,t] for m in Amaterial for t in timeN) +
quicksum(mydict_order_fee[o]*D[o,t] for o in order for t in timeN)

 # Solve the mathematical model and get the results
 HW_M.setObjective(OBJ, GRB.MINIMIZE)
 HW_M.optimize()
 flow = HW_M.getAttr('X', X)
 final_product = HW_M.getAttr('X', Y)
 met_order = HW_M.getAttr('X', Z)
 delay_order = HW_M.getAttr('X', D)
 inventory = HW_M.getAttr('X', V)

 # Add material index to order
 met_order_rel = {}
 for t in timeN:
 for m,o in order_rel:
 met_order_rel[(m,o,t)] = met_order[(o,t)]

 # Return the mathematical model outputs
 return met_order_rel, final_product, flow, inventory, delay_order

 # ---
 # Monte Carlo simulation
 # ---

 def Risk(filename):
 with open(filename,'r') as riskfile:
 csv_Risk = csv.DictReader(open(filename))
 Risk_Measure = {}
 NO_Risk_Measure={}
 for row in csv_Risk:
 R_key = row.pop('workcenter')
 Risk_Measure[R_key] = row

 for key ,value in Risk_Measure.items():
 for k, v in value.items():
 a=random.uniform(0, 1)
 if 0.0 <= a <= 0.01:
 Risk_Measure[key][k]= 5* int(Risk_Measure[key][k])

	 40	

 elif 0.01 <= a <= 0.05:
 Risk_Measure[key][k]= 4* int(Risk_Measure[key][k])
 elif 0.05 <= a <= 0.14:
 Risk_Measure[key][k]= 3* int(Risk_Measure[key][k])
 elif 0.14 <= a <= 0.32:
 Risk_Measure[key][k]= 2* int(Risk_Measure[key][k])
 elif 0.32 <= a <= 0.63:
 Risk_Measure[key][k]= 1* int(Risk_Measure[key][k])
 elif 0.63 <= a <= 1:
 Risk_Measure[key][k]= 0 * int(Risk_Measure[key][k])

 Risk_value= {}
 for key ,value in Risk_Measure.items():
 Risk_value[key]=0
 b = 0
 for k, v in value.items():
 b = (b + int(Risk_Measure[key][k]))
 Risk_value[key]= math.ceil(b/len(value))

 return Risk_value

 # ---

 def MonteCarlo (Simulation_num, filename):

 counter = 1
 while counter <= Simulation_num:
 ws_risk = Risk(filename)

met_order_count,final_product_count,unused_capacity_count,flow_count,inventory_count,delay_order_
count=Mathematical_Model(ws_risk)

 # Z df
 if counter ==1:
 met_order_df = pd.DataFrame.from_dict(met_order_count,
orient='index').reset_index()
 met_order_df.columns = ['index','met'+ str(counter)]
 relations2, value2 =multidict(met_order_count)
 relations2 = [list(elem) for elem in relations2]
 Met_Order= pd.DataFrame(relations2, columns=['material', 'order', 'time'])
 Met_Order['met'+ str(counter)]=met_order_df['met'+ str(counter)]
 MetOrder_df=Met_Order
 else:
 met_order_df = pd.DataFrame.from_dict(met_order_count,
orient='index').reset_index()
 met_order_df.columns = ['index','met'+ str(counter)]
 relations2, value2 =multidict(met_order_count)
 relations2 = [list(elem) for elem in relations2]
 Met_Order= pd.DataFrame(relations2, columns=['material', 'order', 'time'])
 Met_Order['met'+ str(counter)]=met_order_df['met'+ str(counter)]
 MetOrder_df= (pd.merge(MetOrder_df, Met_Order, on=['material','order', 'time']))

 # D df
 if counter ==1:
 del_order_df = pd.DataFrame.from_dict(delay_order_count,
orient='index').reset_index()
 del_order_df.columns = ['index','del'+ str(counter)]
 relations4, value4 =multidict(delay_order_count)
 relations4 = [list(elem) for elem in relations4]
 Del_Order= pd.DataFrame(relations4, columns=['order', 'time'])
 Del_Order['del'+ str(counter)]=del_order_df['del'+ str(counter)]
 DelOrder_df=Del_Order
 else:
 del_order_df = pd.DataFrame.from_dict(delay_order_count,
orient='index').reset_index()
 del_order_df.columns = ['index','del'+ str(counter)]
 relations4, value4 =multidict(delay_order_count)
 relations4 = [list(elem) for elem in relations4]
 Del_Order= pd.DataFrame(relations4, columns=['order', 'time'])
 Del_Order['del'+ str(counter)]=del_order_df['del'+ str(counter)]
 DelOrder_df=(pd.merge(DelOrder_df, Del_Order, on=['order', 'time']))

 # V df

	 41	

 if counter ==1:
 inv_df = pd.DataFrame.from_dict(inventory_count, orient='index').reset_index()
 inv_df.columns = ['index','inv'+ str(counter)]
 relations5, value5 =multidict(inventory_count)
 relations5 = [list(elem) for elem in relations5]
 Inv = pd.DataFrame(relations5, columns=['material', 'time'])
 Inv['inv'+ str(counter)]=inv_df['inv'+ str(counter)]
 Inv_df=Inv
 else:
 inv_df = pd.DataFrame.from_dict(inventory_count, orient='index').reset_index()
 inv_df.columns = ['index','inv'+ str(counter)]
 relations5, value5 =multidict(inventory_count)
 relations5 = [list(elem) for elem in relations5]
 Inv = pd.DataFrame(relations5, columns=['material', 'time'])
 Inv['inv'+ str(counter)]=inv_df['inv'+ str(counter)]
 Inv_df=(pd.merge(Inv_df, Inv, on=['material', 'time']))

 # Y df
 if counter ==1:
 fin_df = pd.DataFrame.from_dict(final_product_count,
orient='index').reset_index()
 fin_df.columns = ['index','fin'+ str(counter)]
 relations6, value6 =multidict(final_product_count)
 relations6 = [list(elem) for elem in relations6]
 Fin = pd.DataFrame(relations6, columns=['work center', 'material', 'time'])
 Fin['fin'+ str(counter)]=fin_df['fin'+ str(counter)]
 Fin_df=Fin
 else:
 fin_df = pd.DataFrame.from_dict(final_product_count,
orient='index').reset_index()
 fin_df.columns = ['index','fin'+ str(counter)]
 relations6, value6 =multidict(final_product_count)
 relations6 = [list(elem) for elem in relations6]
 Fin = pd.DataFrame(relations6, columns=['work center', 'material', 'time'])
 Fin['fin'+ str(counter)]=fin_df['fin'+ str(counter)]
 Fin_df=(pd.merge(Fin_df, Fin, on=['work center', 'material', 'time']))

 # X df
 if counter ==1:
 flow_df = pd.DataFrame.from_dict(flow_count, orient='index').reset_index()
 flow_df.columns = ['index','flo'+ str(counter)]
 relations7, value7 =multidict(flow_count)
 relations7 = [list(elem) for elem in relations7]
 Flow = pd.DataFrame(relations7, columns=['m', 'i', 'p', 'j', 'time'])
 Flow['flo'+ str(counter)]=flow_df['flo'+ str(counter)]
 Flow_df=Flow
 else:
 flow_df = pd.DataFrame.from_dict(flow_count, orient='index').reset_index()
 flow_df.columns = ['index','flo'+ str(counter)]
 relations7, value7 =multidict(flow_count)
 relations7 = [list(elem) for elem in relations7]
 Flow = pd.DataFrame(relations7, columns=['m', 'i', 'p', 'j', 'time'])
 Flow['flo'+ str(counter)]=flow_df['flo'+ str(counter)]
 Flow_df=(pd.merge(Flow_df, Flow, on=['m', 'i', 'p', 'j', 'time']))

 # Save to spreadsheet
 sheets = {'X':Flow_df,
 'Y':Fin_df,
 'V':Inv_df,
 'Z':MetOrder_df,
 'D':DelOrder_df}
 writer = pd.ExcelWriter('final_output.xlsx', engine='xlsxwriter')
 for name in sheets.keys():
 sheets[name].to_excel(writer, sheet_name=name, index=False)
 writer.save()

 return

 # ---

 MonteCarlo(Simulation_Runs,'Risk.csv')

 end = tt.time()

	 42	

 a=end-start
 print ('Computational time:',a)

Run the schedule risk assessment programm
ScheduleRisk(50,10)

	 	

	 43	

APPENDIX	B:	Visualization	of	results	in	R	

LIBRARIES
library(readxl)
library(tidyverse)
library(ggplot2)

INPUT
file_N = "/Users/chrismbourgeois/Documents/GitHub/thesis/work_center.csv"
file_M = "/Users/chrismbourgeois/Documents/GitHub/thesis/material.csv"
file_results <- "A-I.xlsx"

READ DATA FILES
N_raw <- read_csv(file_N, col_names=FALSE)
M_raw <- read_csv(file_M, col_names=FALSE)
X_raw <- read_excel(file_results, sheet="X")
Y_raw <- read_excel(file_results, sheet="Y")
V_raw <- read_excel(file_results, sheet="V")
Z_raw <- read_excel(file_results, sheet="Z")
D_raw <- read_excel(file_results, sheet="D")

ORDER FULFILLMENT
Z_raw[Z_raw$material=="P1-A-60220_F",] %>%
 group_by(order,time) %>%
 summarise(count = sum(met1,met2,met3,met4,met5,
 met6,met7,met8,met9,met10)) %>%
 ggplot(aes(time,count)) + theme_bw() +
 geom_bar(aes(fill=order), position="dodge", stat="identity") +
 xlim(13,47) + ylim(0,10) +
 xlab("Time") + ylab("Count") +
 scale_fill_discrete(name="Order", labels=c("1","2","3","4"))

WORK CENTER CAPACITY
N_cap_all <- X_raw %>%
 group_by(i,time) %>%
 summarise(run1 = sum(flo1),
 run2 = sum(flo2),
 run3 = sum(flo3),
 run4 = sum(flo4),
 run5 = sum(flo5),
 run6 = sum(flo6),
 run7 = sum(flo7),
 run8 = sum(flo8),
 run9 = sum(flo9),
 run10 = sum(flo10),
 max = max(run1,run2,run3,run4,run5,
 run6,run7,run8,run9,run10)) %>%
 select(-run1,-run2,-run3,-run4,-run5,
 -run6,-run7,-run8,-run9,-run10)
N_cap_all <- N_cap_all %>%
 inner_join(N_raw[1:2], by=c("i"="X1"))

Suppliers
N_cap_all[N_cap_all$X2=="S",] %>%
 ggplot() + theme_bw() +
 geom_line(aes(x=time, y=jitter(max/45), color=i)) +
 xlab("Time") + ylab("Utilization") +
 scale_color_discrete(name="Suppliers",
 labels=c("1","2","3","4","5",
 "6","7","8","9","10",
 "11","12","13","14","15",
 "16","17","18","19")) +
 guides(color=guide_legend(ncol=2))

Operations
N_cap_all[N_cap_all$X2=="O",] %>%
 ggplot() + theme_bw() +
 geom_line(aes(x=time, y=jitter(max/30), color=i)) +

	 44	

 xlab("Time") + ylab("Utilization") +
 scale_color_discrete(name="Operations",
 labels=c("1","2","3","4","5","6","7","8","9"))

Inspections
N_cap_all[N_cap_all$X2=="I",] %>%
 ggplot() + theme_bw() +
 geom_line(aes(x=time, y=jitter(max/30), color=i)) +
 xlab("Time") + ylab("Utilization") +
 scale_color_discrete(name="Inspections",
 labels=c("1","2","3","4","5"))

PRODUCTION RATE
Y_cum <- Y_raw %>%
 pivot_longer(
 cols = starts_with("fin"),
 names_to = "run",
 values_to = "fin")
Y_cum$cum <- 0

mat = "P1-A-60220_F"
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin1",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin1",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin2",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin2",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin3",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin3",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin4",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin4",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin5",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin5",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin6",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin6",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin7",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin7",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin8",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin8",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin9",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin9",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin10",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin10",]$fin)

mat = "P2-A-60220_F"
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin1",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin1",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin2",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin2",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin3",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin3",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin4",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin4",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin5",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin5",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin6",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin6",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin7",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin7",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin8",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin8",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin9",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin9",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin10",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin10",]$fin)

mat = "P3-A-60220_F"
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin1",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin1",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin2",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin2",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin3",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin3",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin4",]$cum <-

	 45	

 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin4",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin5",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin5",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin6",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin6",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin7",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin7",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin8",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin8",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin9",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin9",]$fin)
Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin10",]$cum <-
 cumsum(Y_cum[Y_cum[,2]==mat & Y_cum[,4]=="fin10",]$fin)

Y_cum[Y_cum[,2]=="P1-A-60220_F",]$material <- "Product 1"
Y_cum[Y_cum[,2]=="P2-A-60220_F",]$material <- "Product 2"
Y_cum[Y_cum[,2]=="P3-A-60220_F",]$material <- "Product 3"

Y_cum %>%
 ggplot(aes(x=time, y=cum, color=run)) + geom_line() +
 facet_wrap(vars(material), nrow=3, ncol=1) +
 theme_bw() + xlab("Time") + ylab("Production") +
 scale_color_discrete(name="Iteration",
 labels=c("1","2","3","4","5",
 "6","7","8","9","10"))

MATERIAL INVENTORY
V_inv <- V_raw %>%
 pivot_longer(
 cols = starts_with("inv"),
 names_to = "run",
 values_to = "inv") %>%
 inner_join(M_raw[1:2],
 by=c("material"="X1"))

V_inv[V_inv$X2 == "S",]$X2 <- "Raw"
V_inv[V_inv$X2 == "O",]$X2 <- "Processed"
V_inv[V_inv$X2 == "I",]$X2 <- "Inspected"
V_inv[V_inv$X2 == "D",]$X2 <- "Final"

V_inv$X2 <- factor(V_inv$X2,
 levels=c("V","Raw","Processed",
 "Inspected","Final"),
 ordered=TRUE)

V_inv[V_inv$inv != 0 & V_inv$X2 != "V",] %>% ggplot() +
 geom_point(aes(x=time, y=inv),
 alpha=0.05, size=2) +
 theme_bw() + xlab("Time") + ylab("Inventory") +
 facet_wrap(vars(X2), nrow=4, ncol=1)

