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Abstract 

Many issues exist when using highly nonlinear radar reflectivity forward observation 

operator in three-dimensional variational data assimilation methods (3DVAR), especially 

with hydrometeor mixing ratios as control variables (denoted as Q). One of the 

outstanding problems is when hydrometeor mixing ratios from the model background are 

very small, the cost function gradient can be extremely large, which causes slow 

convergence. In order to solve this problem, two methods were recently proposed. One 

uses logarithmic hydrometeor mixing ratios (LOGQ) as control variables during 

minimization process. Another uses power transformed mixing ratios (PQ), which applies 

a power parameter p to the variable transformation, as new control variables.  

In this study, all three methods are implemented in a weather adaptive, high-

resolution, deterministic Warn-on-Forecast analysis and forecast system and tested on 

three severe weather events that occurred during the Hazardous Weather Testbed (HWT) 

spring experiment period in May 2019. Radar reflectivity and radial velocity are 

assimilated along with pseudo-water vapor observations derived from vertically 

integrated liquid water. The power transformation function is also applied on water vapor 

mixing ratios to test the impact. Both qualitative and quantitative evaluation are 

performed on 0–3-hour forecasts launched hourly from 1900 to 2300 UTC for each of the 

3 cases. It is found that analysis performance in experiments with PQ and LOGQ as 

control variables are better than those experiments with Q. The convergence rate of cost 

function minimization with PQ is faster than the experiments with Q. It is also found 

spurious analysis increments are produced in experiments with Q and LOGQ sometimes. 

Using PQ as control variables can alleviate this problem which produces less spurious 
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analysis increment and slightly improves short-term severe forecasts compared to Q as 

control variables. Applying power transformation function to pseudo-water vapor is 

shown to have little benefit to the performance of analysis and forecast. 
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1. Introduction 

1.1 Overview of Different Data Assimilation Methods in Convective Scale NWP 

With the development of numerical weather prediction (NWP) models, it is 

important to seek the most accurate estimate of initial conditions to produce better 

forecast quality. Data assimilation (DA) is a process that combines observations and 

short-range forecasts to obtain the initial conditions for NWP models. Weather radar 

observations are very important for convective NWP and can provide sufficient 

information for convective storms because of their high temporal and spatial resolutions 

(Lilly, 1990). Therefore, the assimilation of radar data within NWP models can greatly 

improve analysis and forecasts of convective storms which is proved by numerous studies 

(Carley, 2012; Gao et al., 1999, 2016; Gao & Stensrud, 2012; Stensrud & Gao, 2010; 

Tong & Xue, 2005, and many others). There are several DA methods which were used to 

assimilate radar data in convective scale NWP. 

The simplest way to assimilate radar data into convective scale NWP models is 

through complex cloud analysis schemes which retrieve hydrometers and adjust in-cloud 

temperature and moisture using radar reflectivity data (Hu et al., 2006a). In this study, Hu 

et al. (2006) show that the spinup problem of forecasts can be alleviated through a cloud 

analysis method, which also can reduce spurious storms. When the cloud analysis 

procedure is combined with radial velocity DA through another analysis scheme, short 

term forecasts of convective storms can be improved (Hu, et al., 2006b). The cloud 

analysis approach is efficient for low computational cost, but it is limited by relying on 

empirical relations that may lose information from the forecast background. Therefore, 
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the cloud analysis procedure is applied in conjunction with other direct DA method in 

many studies.  

Other radar DA methods mainly include three- or four-dimensional variational DA 

(3DVAR or 4DVAR), ensemble Kalman filter (EnKF) and hybrid ensemble-variational 

(EnVar) approaches. Within the variational framework, the goal is to find the desired 

analysis state by directly minimizing a cost function that measures the distance of the 

analysis from background forecasts and that from observations (Kalnay, 2003). Many 

studies demonstrated that 3DVAR has positive impacts on deterministic forecasts of 

convective storms (Gao et al., 2004; Hu, et al., 2006b; Schenkman et al., 2011; Sugimoto 

et al., 2009; Xiao et al., 2005). Gao et al. (2004) developed a 3DVAR approach which 

included a mass continuity equation as a weak constraint. The method was mainly used 

to assimilate radar data for convective scale NWP. It has been shown that the use of mass 

continuity equation as a weak constraint is beneficial for dual-Doppler radar wind 

analysis (Gao et al. 2013a). The system was designed for convective-scale radar DA at 

the Center for Analysis and Prediction of Storms (CAPS; Gao et al., 1999, 2004; Ge et 

al., 2010; Hu et al., 2006a, b) and further improved at National Severe Storms Laboratory 

(Stensrud and Gao, 2010; Gao and Stensrud 2012, 2016). 

Gao and Stensrud (2012) proposed a new radar reflectivity forward operator based 

on a cycled 3DVAR system. The new forward operator uses a hydrometeor classification 

algorithm provided by the background temperature field from NWP model. Results 

showed that the spinup problem can be alleviated when both radial velocity and 

reflectivity data are assimilated, and the analyses of convective storms are greatly 

improved with hydrometer classification. Instead of applying a hydrometer classification 
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algorithm to the reflectivity observation operator, Liu et al. (2019) introduced 

temperature-dependent background error profiles to classify radar-observed precipitation 

information based on the 3DVAR method. When the background errors are homogenous, 

unphysical analysis increments of hydrometeors occur and spread vertically. This issue 

can be reduced when using the new temperature-dependent background error profiles. 

Lai et al. (2019) retrieved pseudo-water vapor mass mixing ratios from deep moist 

convection areas identified by vertically integrated liquid water, which is derived from 

radar reflectivity data. Therein, it is demonstrated that both analyses and forecasts of 

convective storms are improved when pseudo-water vapor observations are assimilated 

along with radar radial velocity and reflectivity within the 3DVAR framework. In 

Sugimoto et al. (2009), the radar radial velocity and reflectivity data are assimilated by 

using the Weather Research and Forecasting (WRF) model 3DVAR combined with a 

cloud analysis scheme. The study indicated that the radar reflectivity assimilation is 

helpful for strong precipitation areas and using multiple Doppler radars can be beneficial 

for recovering the full wind component, which is very important within the 3DVAR 

framework.  

The 4DVAR approach, contrast to 3DVAR, adds a time dimension to the cost 

function that allows a comparison between the model state and the observations at the 

appropriate time. Furthermore, the goal of 4DVAR is to find an initial condition that 

enables the forecast to best fit the observations within the assimilation interval. In Sun et 

al. (1991) the full three-dimensional wind and temperature fields are recovered from 

single-Doppler radar data using a new proposed method within 4DVAR framework. The 

study demonstrated that the method is successful in retrieving unobserved velocity 
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components and temperature, but it works only for dry boundary layers. In order to 

assimilate data from single or multiple Doppler radars, Sun and Crook (1997) developed 

a variational Doppler radar analysis system (VDRAS) using a 4DVAR DA technique with 

a warm rain parameterization scheme. They compared the performance of directly 

assimilating radar reflectivity and assimilating rainwater mixing ratio retrieved from 

reflectivity data. Results showed that assimilating retrieved rainwater performed better 

than direct assimilation of reflectivity.  

Wang et al. (2013) later applied a 4DVAR method to the WRF model to assimilate 

radar data and found that the WRF 4DVAR system can improve short-term quantitative 

precipitation forecasting (QPF) skills. Sun and Wang (2013) used a Great Plains squall 

line case to compare the QPF skill of the WRF 4DVAR system with the WRF 3DVAR 

system. They found that the 4DVAR system improved convective-scale initial conditions, 

resulting in better QPF skill than the 3DVAR scheme. Although there are many 

advantages to implementing 4DVAR for radar DA, this approach has limitations when 

applied to warm rain microphysical processes. 

Apart from variational methods, the application of the EnKF technique to radar DA 

has shown to be effective with its own advantages. The primary problem of 3DVAR is 

that the background error covariance is static and non-flow-dependent, which can be 

solved by using an ensemble-based background error covariance adopted in the EnKF 

method. Since there is not required for tangent linear or adjoint models because of 

evolving forecast error covariance within EnKF, the nonlinearity of observation operator 

which is an issue in 3DVAR framework can be easily technically handled. However, the 

problem still exists theoretically. 
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 Tong and Xue (2005) developed a Doppler radar DA system based on EnKF and 

tested it by using simulated radar data. The study showed that the EnKF method was 

effective in retrieving multiple microphysical species with the adaption of complex 

multiclass ice microphysics and in retrieving wind and thermodynamic variables. It was 

noted that when both radial velocity and reflectivity were assimilated, the simulated storm 

could be well reconstructed. They also pointed out that using ensemble-based and flow-

dependent background error covariances had positive impacts on radar DA.  

The large inherent uncertainty due to the impossibility of representing precipitation 

particle parameters distribution and diversity within single-moment microphysics 

schemes resulted in precipitation uncertainty (Gilmore et al., 2004). Yussouf et al. (2013) 

further compared single-moment and double-moment microphysics schemes with a 

combined mesoscale and storm-scale assimilation system based on EnKF. Results 

showed that good analyses and forecasts can be produced with these microphysics 

schemes but using a double-moment microphysics scheme generated better reflectivity 

structure compared to radar observations than a single-moment scheme. 

Johnson et al. (2015) examined the performance of convective-scale precipitation 

forecasts between the GSI-based EnKF and the 3DVAR systems. The results indicated 

that GSI-based EnKF produced better forecasts of convective storms than the 3DVAR 

system. In addition, the storms predicted with EnKF method can persist for longer time 

than that those predicted using the 3DVAR. They concluded that the disadvantages of 

3DVAR were due to static background error covariance while EnKF adapted flow-

dependent background error covariance. Although both EnKF and 4DVAR methods can 
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produce promising analyses with warm rain processes (Caya et al., 2005), the EnKF 

approach systematically outperforms 4DVAR for its easier practical implementation. 

To combine the advantages of both variational method and EnKF, the hybrid 

ensemble-variational (EnVar) approach (Hamill and Snyder, 2000; Lorenc 2003; Buehner 

2005; Wang et al. 2007) was proposed, which combines the static and ensemble 

background error covariances to solve the problem of non-flow-dependent error statistics 

within the variational framework. This idea was applied to convective scale NWP by Gao 

et al. (2013b) and Gao and Stensrud (2014) using the extended control variable approach 

and applied it to the assimilation of simulated Doppler radial velocity and reflectivity for 

a convective storm. Results have demonstrated that the hybrid method produced similar 

performance compared to the EnKF-alone method when using single radar data and they 

both outperformed over the 3DVAR. Additionally, the hybrid method generated smallest 

rms errors with two radars in comparison with the 3DVAR and EnKF methods and the 

storm spin-up time can be reduced within hybrid scheme (Gao et al. 2013b). Similarly, 

Kong et al. (2018) compared a hybrid En3DVar system with 3DVAR, EnKF, and 

‘‘deterministic forecast’’ EnKF (DfEnKF) through observing system simulation 

experiments. They found that the hybrid En3DVar method with a 5%–10% static error 

covariance provided best results when the ensemble size was larger than 20. However, 

larger static covariances performed better for smaller ensemble size. It also indicated that 

EnKF and DfEnKF gave best performance relative to hybrid En3DVar and 3DVAR with 

40 ensemble members. 

In the above discussion, we have reviewed several popular DA methods used 

previously for convective scale NWP, especially for assimilating radar data. Theoretically, 
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4DVAR, EnKF, and the hybrid method are advanced DA methods. However, they are 

relatively expensive for high-resolution convective scale NWP. In many operational 

centers, the 3DVAR method is still used because of its high efficiency in convective scale 

NWP (Simonin, 2014; Brousseau et al., 2016; Gustafsson et al., 2018).  

 

1.2 Review of Previous Studies about Variational Reflectivity Data Assimilation 

Gao and Stensrud (2012) proposed a radar reflectivity forward operator based on a 

cycled 3DVAR system. The forward operator used a hydrometeor classification algorithm 

provided by background temperature fields from an NWP model. Results showed that the 

spinup problem can be alleviated when both radial velocity and reflectivity data are 

assimilated, and the analyses of convective storms are greatly improved with hydrometer 

classification. Liu et al. (2019) instead adopted temperature-dependent background error 

profiles to classify radar-observed precipitation information among hydrometeors and 

solve the problem arose by static background error covariances related to the 3DVAR 

method. Although the above studies demonstrated that improved reflectivity forward 

operators were beneficial to the analyses of supercell storms, the main issue of variational 

reflectivity DA associated with nonlinearity still remained a problem. 

As noted previously, Sun and Crook (1997) found that indirectly assimilating 

rainwater mixing ratio provided better results than assimilating reflectivity directly where 

a highly nonlinear observation operator introduced nonlinearity to the cost function in the 

minimization process. They also found when background rainwater mixing ratio is very 

small, a very large gradient of cost function will occur resulting in difficult minimization 
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convergence when the nonlinear forward operator of reflectivity was used (Sun and Crook 

1997). 

In order to reduce the issue related to nonlinear observation operator, Carley (2012) 

employed a logarithmic form of hydrometeor mixing ratios as control variables to 

assimilate radar reflectivity data based on a Gridpoint Statistical Interpolation (GSI) 

hybrid ensemble-3DVAR system. The study showed that using logarithmic control 

variables was beneficial for reducing errors generated during the linearization process 

compared to using mixing ratios themselves as control variables. However, the 

logarithmic control variables were proved to underestimate the nonlinear reflectivity 

perturbation, which may produce an overestimated increment of mixing ratio (Carley, 

2012). 

Alternatively, Wang and Wang (2017) proposed a new method to direct assimilate 

radar reflectivity without tangent linear and adjoint of the nonlinear observation operator 

by directly using reflectivity as a control variable based on GSI EnVar system. This 

approach avoided the problem related to nonlinearity of the reflectivity observation 

operator when using hydrometeor mixing ratios as control variables, and the problem 

associated with transformation between standard and logarithmic space when using 

logarithmic mixing ratios as control variables. Results indicated that employing 

reflectivity as a state variable produced more consistent results with reality than using 

standard and logarithmic forms of mixing ratios. However, the background error 

covariance in this method was fully derived from an ensemble. Therefore, when adopting 

pure variational or hybrid EnVar systems that include static background covariance, the 

issue of nonlinearity still exists. 



 9 

In order to further explore the problems with respect to nonlinear reflectivity 

operator, Liu et al. (2020) proposed several treatments to alleviate the issues using 

3DVAR method through observing system simulation experiments. The treatments 

included 1) employing lower limits to the mixing ratios or to the equivalent reflectivity, 

2) assimilating radar radial velocity and reflectivity data in separate passes and 3) using 

logarithmic mixing ratios as state variables, implemented with a lower limit and 

background smoothing. The lower limits treatment was able to avoid large cost function 

gradient introduced from small background reflectivity. In addition, the study showed that 

the lower limits imposed on equivalent reflectivity performed better than on mixing ratios. 

The treatment of separately assimilating radial velocity and reflectivity was found helpful 

for solving the problem of ineffective assimilation of radial velocity when assimilated 

together with reflectivity. Furthermore, applying a background smoothing and lower 

limits to the background mixing ratios, when using logarithmic form of control variables, 

alleviated the issue of spurious analysis increments generated by this method. Results 

demonstrated that using logarithmic mixing ratios as control variables, with the several 

treatments mentioned above, created more consistent analysis with observations, and the 

convergence processes were faster. 

In addition to using logarithmic transformation of control variables, Yang et al. (2020) 

adopted a nonlinear transformation function to improve variational analysis of visibility 

and ceiling height based on NCEP’s Real-Time Mesoscale Analysis (RTMA) system. The 

newly proposed transformation function can make non-Gaussian variables become closer 

to the Gaussian distribution. Additionally, it includes linear and logarithmic functions 

adjusted by varying a parameter from 0 to 1. Results demonstrated that the experiment 
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with the application of a nonlinear transformation function produced better analysis of 

visibility and ceiling height and alleviated the issues related to linear approximation. In a 

more recent study, the idea of power transformation of control variables was applied to 

reflectivity DA research by treating the hydrometeor variables as control variables (Cao 

et al. 2010; Chen et al. 2020). The performance of assimilating radar data using the 

transformation function was compared with those using hydrometeor mixing ratios and 

logarithmic mixing ratios as control variables. Results showed that the assimilation of 

reflectivity with the transformation function gave the best reflectivity forecasts in terms 

of root-mean-square error and equitable threat score, compared with other two methods. 

The previous studies about reflectivity DA discussed above provide a solid 

foundation for identifying some of the remaining challenges and advancements needed 

to improve reflectivity DA for convective scale NWP.  

 

1.3  Motivation and Outline 

As previously discussed, directly assimilating radar reflectivity in a variational 

framework has problems associated with highly nonlinear reflectivity observation 

operator when using hydrometeor mixing ratios as control variables. When hydrometeor 

mixing ratios from the model background are very small, the cost function gradient can 

be extremely large, which causes slow convergence and then affects the efficiency of 

radar data assimilation. So, my study in this thesis will focus on improving radar 

reflectivity forward observation operator and also applying the power transform function 

to model water vapor variables so that radar reflectivity data can be effectively assimilated 

in the variational system. The topic about applying the power transform function to model 
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water vapor variables is new and has never been studied before. In addition, the idea about 

pseudo-water vapor assimilation proposed by Lai et al. (2019) will be tested together with 

the power transform function to see if it benefits the convective scale NWP in the 

experiment with power transform function applied to hydrometeors. 

Based on the above reference review and discussion, though there are several 

advanced DA methods we can use, we choose a 3DVAR system (Gao et al. 2013) in our 

current study because of its efficiency. The system was built and implemented for the 

Warn-on-Forecast project (Gao et al. 2013; Stensrud et al. 2013) and was designed for 

convective-scale radar DA (Gao et al., 1999, 2004; Ge et al., 2010; Hu et al., 2006a, b; 

Stensrud and Gao, 2010; Gao and Stensrud 2012). 

Several treatments have been proposed in previous studies to solve the problem of 

nonlinear observation operator (Carley, 2012; Liu et al., 2020). But the problems are not 

fully solved. Instead of adopting the logarithmic transformation, Yang et al. (2020) 

applied a nonlinear transformation function to the visibility and ceiling height analysis,  

which transformed the variables to a more uniform variance space. In this study, we will 

apply this power transformation function to hydrometeor mixing ratios, which uses a 

power parameter p to the variable transformation, to see whether this transformation is 

able to solve the operator nonlinearity problem. The power-transformed mixing ratios 

form as new control variables to assimilate reflectivity data within the 3DVAR framework. 

In the first goal of this study is to build this power transformation function into the 

3DVAR system developed by Gao et al. (2004, 2013). 

 In a previous study, the assimilation of pseudo-water vapor, along with radial 

velocity and reflectivity, had positive impact on the analyses and forecasts of convective 
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storms (Lai et al., 2019). The newly developed reflectivity forward operator will also be 

tested along with the pseudo-water vapor observations due to their positive impact. In 

addition, we will also apply the power transformation to the pseudo-water vapor allowing 

it to have equivalent magnitude with other hydrometeor control variables so that the 

solution of the 3DVAR problem may be converged quickly. The performances of newly 

developed component of the system are examined by using three severe weather events 

that occurred in May 2019 and the results are compared with those from the previous 

3DVAR method which uses the nonlinear reflectivity forward operator. We hope this 

transformation of control variables can enhance the convergence rate and improve the 

analyses and short-term severe forecasts. 

The rest of this thesis is outlined as follows. Chapter 2 introduces the 3DVAR system, 

the radial velocity and reflectivity observation operators, the logarithmic and nonlinear 

power transformation function and the pseudo-observation and assimilation algorithm. 

The experimental design is presented in Chapter 3. Chapter 4 shows the experiment 

results of analyses and forecasts with different methods. The discussion and conclusions 

are provided in Chapter 5. Chapter 6 gives the future works. 
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2. Methodology 

2.1 The 3DVAR system 

Lorenc (1986) used Bayesian probabilistic arguments to derive standard equations 

of variational techniques and assumed Gaussian error distributions. The principle of a 

variational technique is to find the best analysis for numerical weather prediction by 

minimizing the cost function. The following description of 3DVAR cost function is 

followed by Gao et al. (2004) which can be written as  

𝐽(𝒙) =
1
2
(𝒙 − 𝒙!)"𝑩#$(𝒙 − 𝒙!) +

1
2
[𝐻(𝒙) − 𝒚%]"𝑹#$[𝐻(𝒙) − 𝒚%] + 𝐽&(𝒙). 112 

The cost function consists of three terms. The first term on the right-hand side which 

is weighted by the inverse of the background error covariance matrix 𝑩 measures the 

distance between the analysis or control vector, 𝒙, and the background vector, 𝒙!.The 

3DVAR system assimilates radar radial velocity, reflectivity and surface observations. 

Thus, there are several variables included in the analysis vector 𝒙: the wind components 

(𝑢, 𝑣	and 𝑤), the hydrometeor mixing ratios for rainwater (𝑞'), snow (𝑞() and hail (𝑞)), 

pressure (𝑝), potential temperature (𝜃) and water vapor mixing ratio (𝑞*). The second 

term of the cost function is the observation term which determines the distance between 

the analysis vector, 𝒙, mapped to the observation locations by the nonlinear forward 

observation operator 𝐻(𝒙), and the observation vector, 𝒚%, and which is weighted by the 

inverse of the observation error covariance matrix 𝑹. The third term, 𝐽&(𝒙), is a penalty 

term which employs the mass continuity equation as a weak constraint (Gao et al., 1999, 

2004). 

To effectively precondition the minimization problem, we follow Courtier et al. 

(1994) and Courtier (1997) and define an alternative control variable v, such that C=
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. This allows the cost function (1) to be changed into an incremental form, 

such that 

𝐽+,&(𝐯) =
$
-
𝐯"𝐯 + $

-
(𝐇𝐂 − 𝐝)"𝐑#$(𝐇𝐂 − 𝐝) + 𝐽&(𝐯), (2)  

where H is the linearized version of H and . The gradient and Hessian of 

Jinc can also be derived by differentiating (2) with respect to v, yielding, 

∇𝐽+,& = (𝐈 + 𝐂"𝐇"𝐑#$𝐇𝐂)𝐯 − 𝐂"𝐇"𝐑#$𝑑 + ∇𝐽&(𝐯), (3) 

where I is the identity matrix. The Hessian then follows as 

∇-𝐽+,& = 	𝐈 + 𝐂"𝐇"𝐑#$𝐇𝐂 + ∇-𝐽&(𝐯). (4) 

From (4), we can see that the preconditioning prevents the smallest eigenvalue from 

becoming close to zero. This can improve convergence of minimization algorithms and 

allows the variational problem to be solved more efficiently. 

The C defined in (2) can be further broken down as 

𝐂 = 𝐃𝐅𝐋, (5) 

where D is a diagonal matrix consisting of the standard deviation of background errors 

and L is a scaling factor. The matrix F is the square root of a matrix with diagonal 

elements equal to one, and off diagonal elements equal to the background error correlation 

coefficients. However, the matrix F is too large to be used directly in the minimization 

calculations. Instead, it is modeled by a spatial recursive filter (Purser et al. 2003). 

 

2.2 Radar forward observation operator 

The radar forward observation operator 𝐻 transforms model state variables (e.g., 

𝑢, 𝑣, 𝑞' , 𝑞() from model space to observational measurements in observation space (e.g., 

radial velocity, reflectivity). Both radar radial velocity and reflectivity are assimilated 

( )b= -Bv x x

( )bo H xyd -º
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within 3DVAR framework in this study. The details of the radial velocity and reflectivity 

forward observation operator are descripted as follows. 

 Radial velocity observation operator 

Radar radial velocity data is part of the observation vector yo in eq. (1).  The radar 

forward observation operator for radial velocity which includes the effect of earth 

curvature is written as follows in Doviak and Zrnic (1993) as  

𝑣' =
𝑑ℎ
𝑑𝑟
𝑤 +

𝑑𝑠
𝑑𝑟
(𝑢𝑠𝑖𝑛𝜙 + 𝑣𝑐𝑜𝑠𝜙), (6) 

where vr is the projected radial velocity, and 𝑢, 𝑣 and 𝑤 is zonal, meridional and vertical 

components of the wind; r is the slant range (ray path distance), h is the height above the 

curving earth’s surface, s is the distance along the earth’s surface, and φ is the azimuth 

angle of the radar beam direction. 

 Reflectivity observation operator 

The assimilation of radar reflectivity by using variational methods is challenging 

due to the highly nonlinear reflectivity observation operator. The forward observation 

operator for radar reflectivity (𝑍 in dBZ) can be written as: 

𝑍 = 10𝑙𝑜𝑔$.(𝑍/), (7) 

where 𝑍/ is the equivalent radar reflectivity factor in linear units (𝑚𝑚0𝑚#1) obtained 

from the sum of three hydrometeor species (rainwater, snow and hail), according to the 

following formulation (Dowell et al., 2011; Gilmore et al., 2004; Y.-L. Lin et al., 1983): 

𝑍/ =	𝑍/(𝑞') +	𝑍/(𝑞() +	𝑍/(𝑞)). (8) 

In Eq. (8), 𝑍/(𝑞'), 𝑍/(𝑞() and 𝑍/(𝑞)) represent the equivalent radar reflectivity factors 

contributed from rainwater, snow and hail, respectively. The above equation is consistent 

with the Thompson microphysics parameterization scheme implemented within the WRF 
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model and used in this study. The Thompson microphysics parameterization scheme 

predicts the mass mixing ratios for five hydrometeor variables (cloud, ice, rain, snow and 

hail) and the number concentration for rain and ice. 

Based on Smith et al. (1975), the rain component of reflectivity can be calculated 

from 

𝑍/(𝑞') = 	
10$2 × 720(𝜌𝑞')$.45

𝜋$.45𝑁'..45𝜌'$.45
, (9) 

where 𝑁' = 8.0 × 100𝑚#6 represents the intercept parameter for rain in the Marshall–

Palmer exponential raindrop size distribution, 𝜌 (in 𝑘𝑔	𝑚#1) is the atmospheric density 

and 𝜌' = 1000	𝑘𝑔	𝑚#1 represents rainwater density. After plugging in the default values 

of intercept parameter and the rainwater density, the equation of the equivalent radar 

reflectivity factor contributed from rainwater (Eq. 9) can be further simplified as 

𝑍/(𝑞') = 3.63 × 107(𝜌𝑞')$.45. (10) 

Snow can be divided into dry snow and wet snow. The reflectivity factor from dry 

snow when the temperature is less than 0℃ is 

𝑍/(𝑞() = 	
10$2 × 720𝐾+-𝜌(..-5(𝜌𝑞()$.45

𝜋$.45𝐾'-𝑁(..45𝜌+-
, (11) 

where 𝐾+- = 0.176 is the ice dielectric factor and 𝐾'- = 0.93 is the dielectric factor for 

rainwater, 𝑁( = 3.0 × 100𝑚#6  represents the intercept parameter for snow, 𝜌( =

100	𝑘𝑔	𝑚#1  is the snow density and 𝜌+ = 917	𝑘𝑔	𝑚#1  is the same for ice. The 

simplified form of Eq. (11) based on the default values can be simplified as 

𝑍/(𝑞() = 9.80 × 102(𝜌𝑞()$.45. (12) 

If the temperature is higher than 0℃, the component of the equivalent reflectivity factor 

for wet snow, similar as rainwater, is calculated from 
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𝑍/(𝑞() = 	
10$2 × 720(𝜌𝑞()$.45

𝜋$.45𝑁(..45𝜌($.45
. (13) 

It can be further simplified as,  

𝑍/(𝑞() = 4.26 × 10$$(𝜌𝑞()$.45. (14) 

For hail, the reflectivity formulation based on Smith et al. (1975) is employed with 

𝑍/(𝑞)) = 	a
10$2 × 720

𝜋$.45𝑁)..45𝜌)$.45
b
..75

(𝜌𝑞))$.00-5, (15) 

where  𝜌) = 913	𝑘𝑔	𝑚#1  is the hail density and 𝑁) = 4.0 × 106𝑚#6  represents the 

intercept parameter for hail. Here, the value of 𝑁) is slightly larger than that used in Smith 

et al. (1975), which implies hail at smaller sizes occur more frequently. Then the 

simplified equation for hail is 

𝑍/(𝑞)) = 4.33 × 10$.(𝜌𝑞))$.00. (16) 

The radar reflectivity forward observation operators mentioned above are highly 

nonlinear which may cause the large gradient of the cost function when background 

mixing ratios are very small (Sun et al. 1997; Liu et al., 2020). The explanation is 

described as follows. 

The linear approximation of reflectivity operator with respect to the rainwater 

mixing ratio based on Eqs. (7)-(16) is 

𝜕𝑍
𝜕𝑞'

=
𝜕𝑍
𝜕𝑍/

𝜕𝑍/
𝜕𝑞'

=
6.35 × 10$. × 𝜌$.45𝑞'..45

ln 10 × 𝑍/
. (17) 

The equations for snow and hail mixing ratios are similar as for rainwater which are 

𝜕𝑍
𝜕𝑞(

=

⎩
⎪
⎨

⎪
⎧1.715 × 10

$. × 𝜌$.45𝑞(..45

ln 10 × 𝑍/
					𝑇 ≤ 0℃

7.455 × 10$- × 𝜌$.45𝑞(..45

ln 10 × 𝑍/
					𝑇 > 0℃

, (18) 
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𝜕𝑍
𝜕𝑞)

=
7.19 × 10$$ × 𝜌$.00𝑞)..00

ln 10 × 𝑍/
. (19) 

When there is only rainwater contributing to reflectivity (𝑍/ = 𝑍/(𝑞') ), the linear 

approximation of reflectivity operator with respect to rainwater mixing ratio (Eq. 17) can 

be simplified as 

𝜕𝑍
𝜕𝑞'

=
17.5

ln 10 × 𝑞'
. (20) 

Similar situation can be applied to snow and hail when having snow or hail mixing ratio 

only. The equations become 

𝜕𝑍
𝜕𝑞(

=
17.5

ln 10 × 𝑞(
, (21) 

𝜕𝑍
𝜕𝑞)

=
16.6

ln 10 × 𝑞)
. (22) 

From Eqs. (17)-(22), when the background hydrometeor mixing ratios or the total 

equivalent reflectivity factor are close to zero, the gradient of reflectivity becomes 

extremely large which will cause the convergence problem during the minimization 

process of cost function (Sun and Crook, 1997; Wang and Wang, 2017; Liu et al., 2020). 

 

2.3 Logarithm transformation of hydrometeor mixing ratios 

Using hydrometeor mixing ratios themselves as control variables has issues related 

with very large gradient as illustrated above though some special treatments can be done 

to avoid this (Sun and Crook 1997; Gao and Stensrud 2012). Another way to avoid this 

problem is by using logarithmic mixing ratios as the control variables (Carley, 2012; 

Wang and Wang, 2017). The logarithm transformation can be expressed as 

𝑞m = log$.(𝑞) , (23) 
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where 𝑞m  denotes the transformed hydrometeor variables including 𝑞m' , 𝑞m(  and 𝑞m) . 

Therefore, the equivalent reflectivity factors for rainwater, snow and hail become, 

respectively, 

𝑍/(𝑞m') = 3.63 × 1071𝜌1089!2$.45, (24) 

𝑍/(𝑞m() = p
9.80 × 1021𝜌1089"2$.45					𝑇 ≤ 0℃

4.26 × 10$$1𝜌1089"2$.45			𝑇 > 0℃
, (25) 

𝑍/(𝑞m)) = 4.33 × 10$.1𝜌1089#2
$.00

. (26) 

Then, the total equivalent reflectivity factor is 

𝑍/ =	𝑍/(𝑞m') +	𝑍/(𝑞m() +	𝑍/(𝑞m)). (27) 

According to Eq. (7), the logarithm transformation allows the relation between 

reflectivity and 𝑞m become linear, at least when there only one hydrometeor variable exists. 

The linear approximation or the gradient of radar reflectivity forward observation 

operator when using logarithmic mixing ratios as control variables can be derived as 

𝜕𝑍
𝜕𝑞m'

=
17.5 × 𝑍/(𝑞m')

𝑍/
, (28) 

𝜕𝑍
𝜕𝑞m(

=
17.5 × 𝑍/(𝑞m()

𝑍/
, (29) 

𝜕𝑍
𝜕𝑞m)

=
16.6 × 𝑍/(𝑞m))

𝑍/
. (30) 

If there is only one hydrometeor species contributing to the reflectivity (i.e., 𝑍/(𝑞m') =

𝑍/), the gradient of the reflectivity becomes a constant value from Eqs. (28)-(30). If 

considering more than one hydrometeor species, the gradient variates corresponding to 

different value of reflectivity and is likely less than 17.5 dBZ [log(𝑘𝑔𝑘𝑔#$)]#$ . 
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Therefore, the logarithm transformation can alleviate the issue with possible very large 

gradient of the cost function. 

However, new problems arise when transforming the analysis increments from 

logarithm space back to the standard space. The problem can be illustrated with the single-

observation analysis which is located at grid point 𝑗  (Liu et al., 2020). Then the 

relationship between background error correlation in normal control variables space 𝜌 

and in logarithm control variables space 𝜌m at grid points 𝑖 and 𝑗 can be written as 

𝜌+: =
𝛿𝑞+
𝛿𝑞:

=
s1 + ∑ (ln 10);#$𝛿𝑞m+;#$(𝑘!)#$<

;=- v
s1 + ∑ (ln 10);#$𝛿𝑞m:;#$(𝑘!)#$<

;=- v
×
𝑞!$
𝑞!%

× 𝜌m+: , (31) 

where 𝛿𝑞 represents the analysis increment of 𝑞, and 𝛿𝑞m is for 𝑞m; 𝑞! is the background in 

q space. Details for how to derive this equation can be found in Liu et al. (2020).  

Based on Eq. (31), if the background error correlation is Gaussian-like in logarithm 

space, the spatial correlation function in q space is almost Gaussian-like only if the 

analysis increments in log(q) space are very small and the background is homogeneous 

(𝑞!$ = 𝑞!%). When the analysis increments of log(q) are not very small or the background 

is not homogeneous, the background error correlation in q space is no longer Gaussian-

shaped, which will result in spurious analysis increments of q. 

In order to solve the problem with spurious analysis increments when transforming 

the analysis increments from logarithm space back to the q space, Liu et al. (2020) applied 

a background smoothing and a lower limit treatments to the background mixing ratios.  

Wang and Wang (2017) used reflectivity directly as control variables in addition to 

hydrometeor mixing ratios in logarithm space. While both methods help to mitigate these 

issues, the problems still exist, especially it is difficult to get rid of spurious cells. 
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2.4 Power transformation of hydrometeor mixing ratios 

Instead of using logarithmic hydrometeor mixing ratios as control variables, Yang et 

al. (2020) proposed a nonlinear power transformation function to improve variational 

analysis of visibility and ceiling height. This power transformation function is applied to 

the hydrometeor mixing ratios in this study which can be defined as 

𝑞m =
(𝑞> − 1)

𝑝
		(0 < 𝑝 ≤ 1), (32) 

where 𝑞m denotes the power transformed hydrometeor mixing ratios and p represents a 

parameter which is larger than zero and smaller than or equal to 1. When p equals to 1, 

this equation becomes 

𝑞m = 𝑞 − 1, (33) 

which is a linear relationship between 𝑞 and 𝑞m. The nonlinearity of the equation grows 

along with the decrease of p value. When p approaches zero, this transformation function 

becomes a natural logarithm function. Fig. 2.1 (taken from Fig. 1 in Chen et al. 2020) 

shows the variability of this function with different p values. Thus, the nonlinear power 

transformation allows a range of possibility for including both linear and logarithmic 

functions at each end of the parameter range. 
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Figure 2.1: The natural logarithm function and the nonlinear transformation 
function with different parameter p (Chen et al., 2020). 

 
Therefore, the equivalent reflectivity factors for rainwater after power 

transformation can be written as follows: 

𝑍/(𝑞m') = 3.63 × 107 x𝜌(𝑝𝑞m' + 1)
$
>y
$.45

. (34) 

In addition, 𝑞m needs to be greater than −1/𝑝 to avoid negative value when transforming 

back to the standard space. 

Chen et al. (2020) examined the performance of using power transformed 

hydrometeor mixing ratios as control variables with different p values. Results indicated 

that when p equaled to 0.4, the 1-h reflectivity forecasts produced the best performance. 

Thus, we choose p=0.4 in this study to test different transformation functions. 

 

2.5 Pseudo-water vapor mixing ratio observations 
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Some research found that the assimilation of pseudo-water vapor along with radar 

radial velocity and reflectivity had positive impact on the analyses and forecasts of 

convective storms (Carlin 2017; Lai et al., 2019). The pseudo-water vapor mixing ratio 

observations can be produced based on vertically integrated liquid water (VIL), which is 

derived from reflectivity observations (Lai et al. 2019). The procedures for how to derive 

the pseudo-observations based on VIL are shown in Fig. 2.2. Details behind each step in 

the procedures can be found in Lai et al. (2019). 

In this study, the pseudo-water vapor is assimilated together with the radar data to 

further investigate the impact of the pseudo-water vapor on convective scale analyses and 

short-term forecasts. In addition, we also apply the power transformation function 

discussed in 2.4 to the pseudo-water vapor to examine if this can improve the analysis of 

water vapor mixing ratio and also the short-term forecasts. 
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Figure 2.2: Flowchart highlighting the steps for deriving pseudo–water vapor mixing 
ratio (Lai et al., 2019). 
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3. Experimental Design 

To test the impact of different transformation functions on the assimilation of radar 

data within an 3DVAR framework, three real data cases are selected from 2019 Warn-

on-Forecast (WoF) spring experiments. The forecast model employed in this study is the 

WRF-ARW model version 3.7.1 which uses the physics configuration including: the 

Thompson microphysics scheme (Thompson et al., 2008), the Yonsei University (YSU) 

planetary boundary layer scheme (Hong et al., 2006), the Rapid Radiative Transfer Model 

for Global circulation models (RRTMG) shortwave and longwave schemes (Iacono et al., 

2008) and the unified Noah land surface model (Tewari et al., 2016). The experiment 

domain for all the cases in this study has 600 × 600 grid points in the horizontal with a 

grid spacing of 1.5km, and 41 vertical levels. 

The flowchart of the cycled DA and forecast experiments is shown in Fig. 3.1. The 

experiments are cold started at 1900 UTC and extend to 2300 UTC where the 3-km High-

Resolution Rapid Refresh (HRRR) forecast fields provide the initial background for the 

DA cycles and the lateral boundary conditions for forecasts. The radar observations 

downloaded from the NEXRAD Level-II data at the National Centers for Environmental 

Information repository (https://www.ncdc.noaa.gov/nexradinv/) are assimilated every 15 

minutes during the 4-h cycling period, and the conventional observations (e.g., soundings, 

surface stations) are assimilated hourly at 1900, 2000, 2100, 2200 and 2300 UTC. Started 

from 2000 UTC, 3-h forecasts are launched hourly until 2300 UTC. 

Five experiments are performed for each case in this study labeled as Q, Q_qv, 

LOGQ_qv, PQ_qv and PQ_Pqv. Symbols Q, LOGQ and PQ represent using hydrometeor 

mixing ratios themselves, logarithmic and power transformed hydrometeor mixing 
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Figure 3.1: Illustration of cycled DA and forecast experiments. “Obs” represents the 
assimilated observations including conventional observations (Conv) and radar 
observations (Rad). The yellow arrows show the times when the observations are 

assimilated. The radar observations are assimilated with 15 min intervals while the 
conventional observations are assimilated every hour. 

 
ratios, respectively, as control variables. “qv” indicates the pseudo-water vapor 

observations are assimilated together with radar data, while “Pqv” represents that the 

power transformation is also applied to pseudo-water vapor mixing ratios to form as new 

control variables. The detailed descriptions of the experiments are provided in Table 3.1. 

Experiment Q serves as the control experiment, or the benchmark experiment by using 

the original hydrometeor variables as part of control variables and assimilating radar 

reflectivity and radial velocity data, but without assimilating pseudo-water vapor.  

Experiment Q_qv also uses the original hydrometeor variables as part of the control 

variables but assimilates pseudo-water vapor in addition to radar reflectivity and radial 

velocity. Same as Q_qv, however, LOGQ_qv uses the logarithmic function of 

hydrometeors and PQ_qv uses the power transformation function of hydrometeors as part 

of the control variables. Finally, experiment PQ_Pqv uses the power transformation 

function of both hydrometeors and pseudo-water vapor as control variables with the 

assimilation of both radar data and pseudo-water vapor observations. Five experiments 

are divided into the following three groups for comparisons and discussions. 
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Firstly, Experiments Q and Q_qv are compared to investigate the impact of the 

pseudo-water vapor on convective scale analysis and short-term forecasts. Secondly, 

Experiments labeled as Q_qv, LOGQ_qv and PQ_qv are compared to test the impact of 

different transformation functions on the assimilation of radar observations. Finally, 

PQ_qv with PQ_Pqv are discussed to test the impact of power transformation function 

on pseudo-water vapor by using power transformed qv as control variables. 

Table 3.1: Description of experiments. 
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4. Results 

4.1 Overview of the 22 May 2019 case 

The first case selected for this study occurred on May 22, 2019. Environmental 

conditions were favorable for the development of tornadoes and severe thunderstorms 

across the northeast Oklahoma and Missouri. Early in the afternoon, isolated intense 

thunderstorms existed in southwest and central Oklahoma. Thunderstorms developed 

across northeast Oklahoma, southeast Kansas, central and southwest Missouri that 

produced several tornadoes and widespread large hail (3 inches in diameter likely; Fig. 

4.1). Then the storms spread northeastward through the evening which persisted into the 

early overnight period and then weakened somewhat. In all, 47 tornadoes were reported 

ranging from EF0 to EF3, and 16 of them occurred in Oklahoma. 

The simulation domain for 22 May 2019 case includes most of Kansas, Oklahoma, 

Arkansas, and Missouri (Figs. 4.1, 4.2). 
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Figure 4.1: The storm reports of 22 May 2019 from the Storm Prediction Center. The 
black square box represents the simulation domain of the experiments for this case. 

 

 

Figure 4.2: The simulation domain and locations of the radar sites for 22 May 2019. 
The red triangles, green rhombuses and blue triangles indicate the observed 
tornadoes, hail and wind events from SPC storm reports, respectively. The 

geographical center of the model simulation domain is at (37.09°N, 95.60°W). 
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 Results from comparison of experiments Q with Q_qv 

The 1-3 h predicted composite reflectivity fields from experiments Q and Q_qv 

initiated at 2300 UTC and corresponding observed composite reflectivity are compared 

(Fig. 4.3) to investigate the impact of assimilating pseudo-water vapor observations along 

with radar radial velocity and reflectivity. The observed composite reflectivity fields (Fig. 

4.3a, d, g) show that several mesoscale convective systems (MCSs) gradually propagate 

northeastward with new storm cells continuously forming and developing in the middle 

and northeast of the simulation domain. To better illustrate the differences between two 

experiments and the observations, the precipitation system is divided into two main 

regions labeled as A and B from north to south in the simulation domain (Fig. 4.3a). At 

0000 UTC, several convective cells are seen in region B (Oklahoma and Texas border) 

which gradually weaken when propagating northeastward and finally dissipate by 0200 

UTC (Fig. 4.3g). In contrast, the weak storm cells in the region A (north central Oklahoma) 

at 0000 UTC (Fig. 4.3a) grow and form mature supercells after a few hours. 

At 1-h forecast (valid at 0000 UTC), the convective cells in region B are absent from 

experiment Q (Fig. 4.3b) but are predicted in Q_qv (Fig. 4.3c). In addition, the cells in 

region A are stronger in Q_qv (Fig. 4.3c) than those in Q (Fig. 4.3b), which is in better 

agreement with the observed reflectivity fields (Fig. 4.3a). At 2-h forecast (valid at 0100 

UTC), although the cells in region B are predicted in Q_qv at 1-h forecast (Fig. 4.3c), 

they are so weak and dissipate very quickly (Fig. 4.3f). Moreover, the intensity of the cell 

in region A at 1-h forecast in Q (Fig. 4.3b) decrease quickly and dissipate at 2-h forecast 

as well (Fig. 4.3e). 
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To quantitatively examine the performance of assimilating pseudo-water vapor 

observations, the equitable threat score (ETS, Clark et al., 2010) and bias (Roebber, 2009) 

are calculated where there are observations every hour for 0-3h forecasts from 2000 UTC 

to 2300 UTC with the thresholds of 20, 30 and 40 dBZ for experiments Q and Q_qv (Fig. 

4.4). ETS = 0.0 indicates no skill of the prediction. The analysis or forecast is verified 

against reflectivity, which is better with the ETS increasing, and the best if ETS equals to 

1.0. As for bias, the values close to 1.0 also represent good forecasts, or no bias. For the 

20 dBZ thresholds (Fig. 4.4a), Q and Q_qv have nearly same ETS values at analysis time. 

However, Q_qv produces better skill for 1-3h forecasts compared to Q. For 30 and 40 

dBZ thresholds (Figs. 4.4c, e), Q_qv has higher ETS values during all 0-3h forecast 

periods. Moreover, the biases for Q_qv are closer to 1.0 compared with those of Q. 

Overall, Q_qv has best forecast skills for all three thresholds which shows the assimilation 

of pseudo-water vapor is beneficial to the prediction. 
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Figure 4.3: The observed composite reflectivity (left) and corresponding 1-3h 
forecasts initiated at 2300 UTC 22 May 2019 from experiments Q (middle) and Q_qv 
(right). Plots are shown for the 1-h forecast valid at 0000 UTC (a)-(c), 2-h forecast 

valid at 0100 UTC (d)-(f), 3-h forecast valid at 0200 UTC (g)-(i). 
  

A 

B 
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Figure 4.4: Equitable threat score (ETS) and bias of 0-3h forecasts for (a)-(b) 20 
dBZ, (c)-(d) 30 dBZ and (e)-(f) 40 dBZ thresholds on 22 May 2019. The black lines 

are for experiment Q and the red lines are for experiment Q_qv. 
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 Results from comparison of experiments Q_qv, LOGQ_qv and PQ_qv 

As discussed above, the 0-3h forecasts from Q_qv are more consistent with the 

corresponding observed reflectivity fields when compared with Q. The experiment Q_qv 

obtains higher ETS values than Q indicating better forecast skills for Q_qv. 

Because of the positive impact of assimilating pseudo-water vapor observations, 

they are also applied into all remaining experiments. In this section, three experiments 

Q_qv, LOGQ_qv and PQ_qv are compared to examine the impact of different 

transformation functions on the short-term forecasts. The analysis and forecast composite 

reflectivity fields from Q_qv, LOGQ_qv and PQ_qv for 0-3h forecasts initiated at 2300 

UTC and corresponding observed composite reflectivity fields are shown in Fig. 4.5. The 

convective cells within the simulation domain are divided into three main regions (labeled 

as A, B and C) to better illustrate the comparisons. At the analysis time (valid at 2300 

UTC), the reflectivity patterns of three experiments are similar to the observed composite 

reflectivity fields (Fig. 4.5a) in term of storm locations. However, the storm intensity 

differs from each experiment. The storm cells in region A from LOGQ_qv and PQ_qv 

(Figs. 4.5c, d) are stronger than that of Q_qv (Fig. 4.5b) and are more consistent with the 

observations. The analyzed reflectivity fields for LOGQ_qv (Fig. 4.5c) and PQ_qv (Fig. 

4.5d) indicate that a cluster of several convective cells in region B is more vigorous than 

that for Q_qv (Fig. 4.5b), in better agreement with the observed reflectivity fields as well. 

Moreover, the weak cell in region C located in the southern boundary of the simulation 

domain for LOGQ_qv and PQ_qv is closer to the observations in terms of pattern and 

intensity.  
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Although using logarithmic and power transformed hydrometeor mixing ratios as 

control variables produces more consistent analyses of reflectivity fields, the performance 

does not persist in the forecasts. At 1-h forecast (0000 UTC), the left cells in region B and 

the weak cell in region C decay very quickly (Figs. 4.5f, g, h) and ultimately dissipate at 

3-h forecast for all the three experiments (Figs. 4.5n, o, p). 

To further evaluate the performance of different transformation functions applied on 

hydrometeor mixing ratios as control variables, the composite maximum reflectivity 

swaths for 0-3h forecasts initiated at 2300 UTC are compared with the observed 

composite reflectivity swaths (Fig. 4.6). The SPC storm reports are also overlaid in the 

simulation domain. From the forecast beginning at 2300 UTC, the forecasted reflectivity 

tracks are similar for all the experiments (Figs. 4.6b, c, d) but are all weaker than the 

observed reflectivity tracks (Fig. 4.6a). In addition, all three experiments miss the 

supercells in northeast Oklahoma which produced severe weather, including tornadoes 

and hail reports. For the storm cells in the border of Missouri and Illinois, there is a 

southward bias for all the experiments (Figs. 4.6b, c, d). The predicted reflectivity tracks 

over the boundary between Oklahoma and Missouri are more consistent with the 

observations for PQ_qv (Fig. 4.6d) with relatively smaller phase errors compared with 

that of Q_qv (Fig. 4.6b) and LOGQ_qv (Fig. 4.6c). Moreover, the mesoscale convective 

systems in north Missouri for LOGQ_qv and PQ_qv generate stronger forecasted 

composite reflectivity tracks than that of Q_qv. 

In order to quantitatively investigate the performance of using logarithmic and 

power transformed mixing ratios as control variables, the ETS values are also calculated 

at every hour for 0-3h forecasts from 2000 UTC to 2300 UTC with the thresholds of 20, 
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30 and 40 dBZ for Q_qv, LOGQ_qv and PQ_qv (Fig. 4.7). At the analysis time, the ETS 

values for LOGQ_qv and PQ_qv are much higher than that for Q_qv for all thresholds 

which indicates that using logarithmic and power transformed mixing ratios as control 

variables greatly improves the analysis. Additionally, PQ_qv outperforms LOGQ_qv with 

higher ETS values at the analysis time. Although the logarithmic and power 

transformations of hydrometeor mixing ratios are beneficial for the analysis, their impact 

on the prediction is quite small. The ETS values for 0-3h forecast are quite similar for all 

three experiments which is consistent with the forecasted composite reflectivity fields. 

The root-mean-square innovation (RMSI) is calculated in this study to quantify and 

compare the analysis performance of different transformation functions. The RMSIs of 

radar radial velocity and reflectivity analyses for the three experiments are shown in Fig. 

4.8. For the RMSIs of radial velocity, LOGQ_qv and PQ_qv exhibit similar innovations 

which greatly reduces the errors associated with analyzed radial velocity when compared 

with Q_qv. Additionally, the forecast error growth is faster in Q_qv for radial velocity. 

For the RMSI of reflectivity, the innovations in analyzed reflectivity are smallest for 

PQ_qv and are largest for LOGQ_qv. Overall, PQ_qv has best performance with RMSIs 

in both radial velocity and reflectivity during the analysis cycles, suggesting that using 

power transformed mixing ratios as control variables produces most reasonable analyses. 

As discussed above, PQ_qv produces higher ETS values than that of LOGQ_qv for 

all reflectivity thresholds at the analysis time. Also, although PQ_qv and LOGQ_qv 

exhibit very similar RMSIs for radial velocity, PQ_qv improves the analyzed reflectivity 

with the smallest RMSIs during the analysis cycles. To further simplify the comparison, 
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only Q_qv and PQ_qv are considered in the rest of section to thoroughly examine the 

impact of assimilating the power transformed control variables. 

To compare the convergence rates of Q_qv and PQ_qv, the cost functions of total 

and individual observational parts (radial velocity, reflectivity and pseudo-water vapor) 

normalized by their corresponding initial values are calculated (Fig. 4.9). It is suggested 

that PQ_qv has faster convergence rates than Q_qv, especially for radial velocity and 

pseudo-water vapor observations (Figs. 4.9b, d). For the cost functions of total and 

reflectivity (Figs. 4.9a, c), Q_qv and PQ_qv exhibit very similar convergence rates.  

To quantitatively evaluate the prediction skill for precipitation by using different 

control variables, the fractions skill scores (FSS, Roberts & Lean, 2008) of 1-h 

accumulated precipitation for Q_qv and PQ_qv with different thresholds are calculated 

(Fig. 4.10). The precipitation forecasts are verified against National Centers for 

Environmental Prediction (NCEP) Stage IV precipitation dataset (Y. Lin, 2011). For the 

0-1h forecast (Fig. 4.10a), PQ_qv has relatively higher score for all thresholds than that 

of Q_qv. For the 1-2h forecast (Fig. 4.10b), Q_qv and PQ_qv show similar FSS values at 

the threshold of 1mm. PQ_qv outperforms Q_qv for higher scores at the thresholds of 

2.5mm and 5mm. For the 2-3h forecast (Fig. 4.10c), the FSSs of PQ_qv are slightly higher 

than that of Q_qv for 2.5mm and 5mm thresholds. However, Q_qv produces higher scores 

at the threshold of 10mm. Overall, using power transformed hydrometeor mixing ratios 

as control variables exhibits better quantitative precipitation prediction forecast (QPF) 

skills. 

The performance diagrams (Roebber, 2009) are analyzed in this section to supply a 

thorough examination of the overall performance of the analysis and forecast by using 
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different control variables. The probability of detection (POD), bias, critical success index 

(CSI) and false alarm ratio (FAR) or its equivalent, success ratio (SR = 1 - FAR) are all 

included in the performance diagrams. Fig. 4.11 shows the performance diagrams for 0-

3h forecasts initiated at 2300 UTC with 20, 30 and 40 dBZ thresholds. The closer the 

values of POD, CSI and SR are to unity, the better the forecast is. Therefore, the upper 

right of the diagram indicates a perfect forecast. At the analysis time, although the POD 

value of PQ_qv is slightly lower than that of Q_qv at the threshold of 20 dBZ (Fig. 4.11a), 

PQ_qv produces higher CSI and SR for reflectivity at all thresholds indicating the 

improvement of analysis in PQ_qv. At 1-h forecast, Q_qv performs better than PQ_qv. 

As for 2-3h forecasts, Q_qv and PQ_qv exhibit similar performance which is in 

agreement with the evaluation with ETS. 
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Figure 4.5: The observed composite reflectivity (left) and corresponding 0-3h 
forecasts initiated at 2300 UTC 22 May 2019 from experiments Q_qv (second 

column), LOGQ_qv (third column) and PQ_qv (right). Plots are shown for the 
analysis time at 2300 UTC (a)-(d), the 1-h forecast valid at 0000 UTC (e)-(h), 2-h 

forecast valid at 0100 UTC (i)-(l), 3-h forecast valid at 0200 UTC (m)-(p). 
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Figure 4.6: Composite maximum reflectivity swaths: observed (a), Q_qv (b), 
LOGQ_qv (c) and PQ_qv (d) for 0-3h forecasts initiated at 2300 UTC 22 May 2019. 

The green rhombuses, red and blue triangles represent hail, tornadoes and damaging 
winds from SPC reports, respectively. 
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Figure 4.7: Equitable threat score (ETS) of 0-3h forecasts for 20 dBZ (a), 30 dBZ (b) 
and 40 dBZ (c) thresholds on 22 May 2019. The black, brown and khaki lines 

represent Q_qv, LOGQ_qv and PQ_qv forecasts, respectively. 
 

 

Figure 4.8: The RMSIs of (left) radial velocity (m/s) and (right) reflectivity (dBZ) 
analyses from Q_qv (red line), LOGQ_qv (black line) and PQ_qv (yellow line). 
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Figure 4.9: The normalized cost function of total (a), radial velocity (b), reflectivity 
(c) and pseudo-water vapor (d) for Q_qv and PQ_qv for the analysis at 1900 UTC 22 

May 2019. 
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Figure 4.10: The FSSs of 1-h accumulated precipitation with different thresholds for 
Q_qv and PQ_qv. 

 
 

 

Figure 4.11: Performance diagrams for 0-3h forecasts of composite reflectivity fields 
beginning at 2300 UTC 22 May 2019 for 20dBZ (a), 30dBZ (b) and 40 dBZ (c) 
thresholds. The black curves represent the critical success index (CSI) and the 

diagonal gray lines represent the bias. The number in the dots is the forecast length 
(“0” represents 0-h forecast or analysis, “1” represents 1-h forecast … etc.). 
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 Results from comparison of experiments PQ_qv with PQ_Pqv 

As described earlier, the assimilation of pseudo-water vapor observations along with 

radar radial velocity and reflectivity has positive impact on the analyses and forecasts of 

convective storms. Moreover, using power transformed mixing ratios as control variables 

greatly improves the analyses and has faster convergence rates. Therefore, the power 

transformation function is also applied on pseudo-water vapor in this section to test 

whether it can help improve convective scale short term severe weather forecasts. 

The performance diagrams for 0-3h forecasts initiated at 2200 UTC and 2300 UTC 

for PQ_qv and PQ_Pqv are compared (Fig. 4.12). At the analysis time, the impact of 

applying power transformation function on pseudo-water vapor is mixed. PQ_Pqv 

produces slightly lower CSI and SR values than that of PQ_qv for all thresholds. 

Additionally, these discrepancies between the experiments increase with the reflectivity 

threshold from 20 dBZ to 40 dBZ. For the 1-3h forecasts, the POD and SR values of 

PQ_Pqv are higher at all thresholds along with an increase in CSI, especially for 2h and 

3h forecast. This indicates that using power transformed pseudo-water vapor as control 

variables is slightly beneficial for short term forecasts. 

  



 45 

 

Figure 4.12: As in Fig. 4.11, but for PQ_qv and PQ_Pqv and it is initiated at 2200 
UTC and 2300 UTC. 
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4.2 Overview of the 28 May 2019 case 

The second case selected for this study occurred on May 28, 2019. Initially in the 

afternoon that day, there was a slow-moving front from northeastern Kansas into northern 

Missouri. Storms formed and moved northeastward along the front. Scattered supercells 

developed along the dryline from west central Oklahoma northward into central Kansas 

which favored the development of very large hail (3 inches in diameter likely). The 

ongoing elevated thunderstorms persisted for several hours and isolated severe storms 

formed and moved eastward across west central Kansas through the evening. These 

storms produced several tornadoes. Eventually, an EF4 tornado formed with maximum 

winds of 170 mph. In all, 35 tornadoes were reported ranging from EF0 to EF4, and 

among them 21 tornadoes occurred in Kansas. 

The simulation domain of the experiments for 28 May 2019 case includes most of 

Oklahoma, Kansas, Missouri, Arkansas, Iowa and Illinois (Figs. 4.13, 4.14). 
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Figure 4.13: As in Fig. 4.1, except for 28 May 2019. 

 

Figure 4.14: As in Fig. 4.2, except for 28 May 2019. The geographical center of the 

model simulation domain is at (38.42N, 94.75W). 
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 Results from comparison of experiments Q with Q_qv 

First of all, we compare the experiments Q with Q_qv to investigate the impact of 

assimilating pseudo-water vapor observations along with radar radial velocity and 

reflectivity. The forecasted composite reflectivity fields from experiments Q and Q_qv 

for 1-3 h forecasts initiated at 2200 UTC are compared with observed composite 

reflectivity (Fig. 4.15). Similar to the last case, to better illustrate the differences between 

two experiments compared with the observations, three main regions are marked and 

labeled as A, B and C from north to south in the simulation domain (Fig. 4.15a). The 

observed composite reflectivity fields show that the weak cells in south central Kansas at 

2300 UTC (Fig. 4.15a) grow quickly which merge with the convective cells in region A 

to form a MCS at 0100 UTC (Fig. 4.15g). There are two major supercells in region C 

which gradually move northeastward. Additionally, several storm cells in the east border 

of Kansas and Missouri gradually weaken while propagating eastward. 

At 1-h forecast (valid at 2300 UTC), the convective cells in region A which is located 

in the northwest of Kansas dissipate in the experiment Q (Fig. 4.15b) but are predicted in 

Q_qv (Fig. 4.15c) though with smaller coverage. In addition, a weak cell in region B is 

predicted in Q_qv but not in Q. At 2-h forecast (valid at 0000 UTC), although the weak 

cell in region B is well predicted in Q_qv, it weakened very quickly and completely 

dissipated (Fig. 4.15f). Moreover, the southernmost cell in region C is not predicted in Q 

(Figs. 4.15b, e), but intensifies in Q_qv (Figs. 4.15c, f) which is more consistent with the 

corresponding observations (Figs. 4.15a, d). 

To quantitatively examine the performance of assimilating pseudo-water vapor 

observations, the ETS and bias are calculated at every hour for 0-3h forecasts from 2000 
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UTC to 2300 UTC with the thresholds of 20, 30 and 40 dBZ in experiments Q and Q_qv 

(Fig. 4.16). For the threshold of 20 dBZ, Q_qv has higher ETS values than that of Q 

during the entire 0-3h forecasts (Fig. 4.16a). For the 30 and 40 dBZ thresholds, Q_qv 

greatly improves the analysis for higher ETS values (Figs. 4.16c, e). However, Q_qv 

shows only slightly better prediction skills 2-h into the forecasts. As for bias, the value of 

Q_qv is closer to 1.0 indicating better forecasts with little biases, especially for the 

thresholds of 20 and 30 dBZ (Figs. 4.16b, d). Overall, Q_qv has better forecast skills for 

all the thresholds which shows the assimilation of pseudo-water vapor is beneficial to the 

convective scale short-term forecasts. 
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Figure 4.15: As in Fig. 4.3, except for 28 May 2019 and it is initiated at 2200 UTC. 
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Figure 4.16: As in Fig. 4.4, except for 28 May 2019. 
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 Results from comparison of experiments Q_qv, LOGQ_qv and PQ_qv 

Similar to the first case, three experiments Q_qv, LOGQ_qv and PQ_qv are 

compared to examine the usefulness of different transformation functions.  The analyzed 

and forecasted composite reflectivity fields for 0-3h forecasts initiated at 2200 UTC for 

the three experiments Q_qv, LOGQ_qv and PQ_qv and corresponding observed 

composite reflectivity fields are shown in Fig. 4.17. The three main regions from north to 

south are marked and labeled as A, B and C to better illustrate the comparisons. At the 

analysis time (valid at 2200 UTC), the reflectivity patterns of three experiments are 

similar to the observed composite reflectivity (Fig. 4.17a) in term of storm locations. 

Similar to the first case, however, the storm intensity differs from each experiment. The 

intensity of the cell in region A for LOGQ_qv and PQ_qv (Figs. 4.17c, d) is closer to the 

observations compared with that of Q_qv (Fig. 4.17b). The analyzed reflectivity fields 

for LOGQ_qv (Fig. 4.17c) and PQ_qv (Fig. 4.17d) indicate that the convective cells in 

region B for both experiments are more vigorous than that for Q_qv (Fig. 4.17b), in better 

agreement with the observed reflectivity fields. Moreover, a cluster of several storm cells 

in region C from LOGQ_qv and PQ_qv are also stronger in comparison with Q_qv which 

shows more consistence with the observations. Spurious cells are produced in Q_qv, 

especially in south Nebraska and the border of Oklahoma and Kansas, which can be 

greatly reduced in both LOGQ_qv and PQ_qv. 

Although using logarithmic and power transformed hydrometeor mixing ratios as 

control variables produces more consistent analyses of reflectivity fields, the performance 

cannot persist in the forecasts. At 1-h forecast (valid at 2300 UTC), there are several 

convective cells in region A for both LOGQ_qv and PQ_qv (Figs. 4.17g, h), while only 
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one cell in Q_qv (Fig. 4.17f). However, other cells dissipate when moving northward in 

LOGQ_qv and PQ_qv at 2-h forecast (Figs. 4.17k, l). At 3-h forecast, there is a spurious 

cell in southern Kansas for LOGQ_qv (Fig. 4.17o) while PQ_qv can alleviate this issue 

(Fig. 4.17p), which is consistent with the findings in previous studies (Carley, 2012; Chen 

et al., 2020; Liu et al., 2020). Totally, all the three experiments exhibit very similar 

forecast performance for composite reflectivity fields. 

To further evaluate the performance of different transformation functions applied to 

hydrometeor mixing ratios as control variables, the composite maximum reflectivity 

swaths for 0-3h forecasts initiated at 2200 UTC are compared with the observed 

reflectivity swaths (Fig. 4.18). From the forecast beginning at 2200 UTC, the reflectivity 

tracks are similar for all the experiments (Figs. 4.18b, c, d) but are all weaker than the 

observed reflectivity tracks (Fig. 4.18a). In addition, the three experiments all exhibit a 

clear northward bias, especially for the storm tracks in central and north of Oklahoma, 

central Kansas and the border between Kansas and Nebraska. However, there still exists 

a few discrepancies among the three experiments. The predicted reflectivity tracks over 

the boundary between Kansas and Missouri where the tornadoes are observed are more 

consistent with the observations for PQ_qv (Fig. 4.18d) and LOGQ_qv (Fig. 4.18c) with 

smaller phase errors and stronger intensities compared with that of Q_qv (Fig. 4.18b). 

The ETS values are calculated at every hour for 0-3h forecasts from 2000 UTC to 

2300 UTC with the thresholds of 20, 30 and 40 dBZ for all three experiments Q_qv, 

LOGQ_qv and PQ_qv to quantitatively investigate the performance (Fig. 4.19). At the 

analysis time, the ETS values for LOGQ_qv and PQ_qv are much higher than that for 

Q_qv for all thresholds which indicates that using logarithmic and power transformed 
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mixing ratios as control variables greatly improves the analyses. Additionally, PQ_qv 

outperforms LOGQ_qv with higher ETS values, especially at the analysis time. However, 

the contributions from LOGQ_qv and PQ_qv to the prediction are mixed. For the 20 dBZ 

threshold (Fig. 4.19a), the ETS for Q_qv is superior at 1-h forecast. For the thresholds of 

30 and 40 dBZ (Figs. 4.19b, c), the three experiments have very similar ETS values at 2-

3h forecasts. 

The RMSIs of radar radial velocity and reflectivity analyses for the three 

experiments are shown in Fig. 4.20. For the RMSI of radial velocity, LOGQ_qv and 

PQ_qv exhibit similar innovations which greatly reduce the errors associated with 

analyzed radial velocity compared with Q_qv. For the RMSI of reflectivity, the 

innovations in analyzed reflectivity are smallest for each cycle with PQ_qv. However, 

the forecast error growth is faster in LOGQ_qv and PQ_qv than that in Q_qv for 

reflectivity. Similar to the first case, PQ_qv produces more balanced analyses for lower 

RMSI values in both radial velocity and reflectivity. 

Since PQ_qv produces higher ETS values than that of LOGQ_qv for all reflectivity 

thresholds at the analysis time and improves the analyzed reflectivity with the smallest 

RMSIs during the analysis cycles, only Q_qv and PQ_qv are compared with the 

convergence rates to thoroughly examine the impact of the use of the transformed control 

variables. The cost functions of total and individual parts are presented (Fig. 4.21). It is 

shown that PQ_qv has faster convergence rates than Q_qv, especially for the parts 

corresponding to radial velocity and pseudo-water vapor (Figs. 4.21b, d). For the 

normalized total cost function (Fig. 4.21a), Q_qv converges faster at the first two iteration 

steps and PQ_qv converges faster for the rest of iterations. For the reflectivity (Fig. 4.21c), 
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Q_qv has faster convergence rates at the first six iteration steps. Overall, PQ_qv 

converges faster by reaching the smallest cost function values in comparison with that of 

Q_qv. 

To quantitatively evaluate the QPF skills by using different control variables, the 

FSSs of 1-h accumulated precipitation for Q_qv and PQ_qv with different thresholds are 

calculated (Fig. 4.22). When the threshold increases from 1.0 mm to 10.0 mm, the scores 

decrease for both Q_qv and PQ_qv. For the 0-1h forecast (Fig. 4.22a), PQ_qv has 

relatively higher FSS values for all thresholds when compared with Q_qv. For the 1-2h 

and 2-3h forecasts (Figs. 4.22b, c), Q_qv and PQ_qv produce similar FSS values. 

However, the FSSs of PQ_qv are slightly lower than that of Q_qv, especially at 5.0mm 

and 10.0mm thresholds. 

Fig. 4.23 shows the performance diagrams for 0-3h forecasts initiated at 2200 UTC 

with 20, 30 and 40 dBZ thresholds. At the analysis time, although the POD value of 

PQ_qv is slightly lower than that of Q_qv at the threshold of 20 dBZ (Fig. 4.23a), PQ_qv 

produces higher CSI and SR for reflectivity at all thresholds indicating the improvement 

of analysis in PQ_qv. As for 1-3h forecasts, Q_qv and PQ_qv exhibit similar performance 

at 30 dBZ threshold. For the thresholds of 20 and 40 dBZ, PQ_qv performs better for 

slightly higher SR values, especially for 1-h forecast. 
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Figure 4.17: As in Fig. 4.5, except for 28 May 2019 and it is initiated at 2200 UTC. 
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Figure 4.18: As in Fig. 4.6, except for 28 May 2019 and it is initiated at 2200 UTC. 
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Figure 4.19: As in Fig. 4.7, except for 28 May 2019. 

 

 

Figure 4.20: As in Fig. 4.8, except for 28 May 2019. 
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Figure 4.21: As in Fig. 4.9, except for 28 May 2019. 
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Figure 4.22: As in Fig. 4.10, except for 28 May 2019. 

 

 

Figure 4.23: As in Fig. 4.11, except for 28 May 2019 and it is initiated at 2200 UTC. 
The red and blue dots represent PQ_qv and Q_qv, respectively. 
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 Results from comparison of experiments PQ_qv with PQ_Pqv 

The power transformation functions are also applied on pseudo-water vapor 

observations for this case. The performance diagrams for 0-3 h forecasts initiated at 2200 

UTC and 2300 UTC for PQ_qv and PQ_Pqv are shown (Fig. 4.24) to test whether 

PQ_Pqv can help improve convective scale short term severe weather forecasts. 

At the analysis time (0-h forecast), the impact of applying power transformation 

function on pseudo-water vapor is little bit better. PQ_Pqv produces slightly lower CSI 

and SR values than that of PQ_qv for all thresholds. As for 1-3h forecasts, PQ_qv and 

PQ_Pqv show very similar performance. The POD of PQ_Pqv is slightly higher than that 

of PQ_qv at 1-h forecast. 
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Figure 4.24: As in Fig. 4.12, except for 28 May 2019. 
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4.3 Overview of the 20 May 2019 case 

The third case selected for this study occurred on May 20, 2019. Early in the 

afternoon, several supercell thunderstorms developed across west Texas, the eastern half 

of the Texas Panhandle. These thunderstorms produced an outbreak of tornadoes which 

included intense and long-track tornadoes and very large hail events (4 inches in 

diameter). In the early evening, semi-discrete storms from far eastern Oklahoma evolved 

and produced tornadoes as they gradually moved northeastward across northeast 

Oklahoma, southwest Missouri and southeast Kansas. In the late evening, the isolated 

supercells persisted across the Low Rolling Plains with more storms initiated farther 

across southwest Texas. In all, 38 tornadoes were reported ranging from EF0 to EF1 and 

17 of them occurred in Oklahoma. 

The simulation domain of the experiments for 20 May 2019 case includes most of 

Texas, Oklahoma and Kansas (Figs. 4.25, 4.26). 
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Figure 4.25: As in Fig. 4.1, except for 20 May 2019. 

 

Figure 4.26: As in Fig. 4.2, except for 20 May 2019. The geographical center of the 

model simulation domain is at (34.32°N, 98.03°W). 
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 Results from comparison of experiments Q with Q_qv 

The forecasted composite reflectivity fields from experiments Q and Q_qv for 1-3 h 

forecasts initiated at 2300 UTC are presented together with observed composite 

reflectivity (Fig. 4.27). To better illustrate the differences between two experiments 

compared with the observations, three main regions are also marked and labeled as A, B 

and C from north to south in the simulation domain (Fig. 4.27a). At 0000 UTC (Fig. 

4.27a), the observed composite reflectivity fields show that there are some weak cells in 

region A which grow quickly when they are moving northeastward. The two supercells 

in region B at 0000 UTC merge at 0100 UTC (Fig. 4.27d) and develop farther. Initially, 

there are two main cells in region C which split into several convective cells after a few 

hours. Moreover, a line of storms in central Oklahoma and south Kansas gradually 

propagates northeastward with new storm cells continuously forming and developing in 

the north and northeast of the simulation domain. 

As for 1-3h forecasts, the composite reflectivity fields of Q and Q_qv behave very 

similar in terms of the reflectivity patterns. The convective cells in both Q and Q_qv move 

northeastward faster than that in the observed reflectivity fields. However, there still 

exists a slight difference between the two experiments. At 1-h forecast (valid at 0000 

UTC), there are some spurious weak cells predicted at the border of Oklahoma and 

Arkansas in Q (Fig. 4.27b) which can be reduced in Q_qv (Fig. 4.27c). At 3-h forecast 

(valid at 0200 UTC), experiment Q (Fig. 4.27h) produces a storm cell in the southwest of 

the simulation domain while Q_qv does not (Fig. 4.27i). 

The ETS and bias are calculated at every hour for 0-3h forecasts from 2000 UTC to 

2300 UTC (2000, 2100, 2200 and 2300 UTC) with the thresholds of 20, 30 and 40 dBZ 
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in experiments Q and Q_qv (Fig. 4.28). Q_qv provides better analyses and forecasts with 

higher ETS values in comparison with Q for all thresholds (Figs. 4.28a, c, e). As for the 

bias, Q_qv performs better for closer to unity, especially at analysis time for all thresholds 

(Figs. 4.28b, d, f). 
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Figure 4.27: As in Fig. 4.3, except for 20 May 2019. 
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Figure 4.28: As in Fig. 4.4, except for 20 May 2019. 

  



 69 

 Results from comparison of experiments Q_qv, LOGQ_qv and PQ_qv 

Same as two other cases, Q_qv, LOGQ_qv and PQ_qv are compared to examine the 

impact of different transformation functions. The analyzed and forecasted composite 

reflectivity fields from Q_qv, LOGQ_qv and PQ_qv for 0-3h forecasts initiated at 2300 

UTC are displayed with the observed composite reflectivity fields in Fig. 4.29. Three 

main regions from north to south are marked and labeled as A, B and C to better illustrate 

the comparisons. At the analysis time (valid at 2300 UTC), the reflectivity patterns of 

three experiments are similar to the observed composite reflectivity fields (Fig. 4.29a) in 

term of storm locations. However, the storms are stronger in LOGQ_qv and PQ_qv (Figs. 

4.29c, d) compared with that in Q_qv (Fig. 4.29b) and are more consistent with the 

observations (Fig. 4.29a). The analyzed reflectivity fields for LOGQ_qv and PQ_qv 

indicate that the three convective cells in region B are more vigorous than that for Q_qv, 

in better agreement with the observed reflectivity fields. There are several storm cells in 

region C which are very weak in Q_qv at 2300 UTC. In contrast, a cluster of several 

storm cells in region C from LOGQ_qv and PQ_qv are stronger which is closer to the 

observations.  

For the 1-3h forecasts, the line of storms in all three experiments move 

northeastward faster than that in the observed reflectivity fields. At 1-h forecast (valid at 

0000 UTC), there is a weak spurious cell predicted in Q_qv (Fig. 4.29f) at the border of 

Oklahoma and Kansas, which can be reduced in LOGQ_qv and PQ_qv (Figs. 4.29g, h). 

The spurious cell gradually develops and moves northward and, ultimately, outside of the 

simulation domain at 3-h forecast (valid at 0200 UTC, Fig. 4.29n). Overall, all the three 

experiments exhibit very similar forecast performance for composite reflectivity fields. 
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To further evaluate the performance of different transformation functions applied on 

hydrometeor mixing ratios as control variables, the composite maximum reflectivity 

swaths for 0-3h forecasts initiated at 2300 UTC are overlaid with the SPC storm reports 

in the simulation domain (Fig. 4.30). From the forecast beginning at 2300 UTC, the 

forecast reflectivity tracks are similar for all the experiments (Figs. 4.30b, c, d) and 

weaker than the observed reflectivity tracks (Fig. 4.30a). In addition, the three 

experiments all exhibit a large northeastward bias, especially for the storm tracks at the 

border of Texas and Oklahoma and the border of Oklahoma and Kansas, which is 

consistent with the conclusions drawn from the forecast composite reflectivity fields. 

The ETS values are calculated at every hour for 0-3h forecasts from 2000 UTC to 

2300 UTC with the thresholds of 20, 30 and 40 dBZ for all three experiments Q_qv, 

LOGQ_qv and PQ_qv to quantitatively investigate the performance (Fig. 4.31). At the 

analysis time, the ETS values for LOGQ_qv and PQ_qv are much higher than that for 

Q_qv for all thresholds which indicates that the analysis performance is quantitatively 

improved by using logarithmic and power transformed mixing ratios as control variables. 

However, for this case, LOGQ_qv outperforms PQ_qv at analysis time for the thresholds 

of 30 and 40 dBZ (Figs. 4.31b, c). For 0-3h forecasts, the contributions from LOGQ_qv 

and PQ_qv to the prediction are not obvious. For the 20 dBZ threshold (Fig. 4.31a), the 

ETS values for Q_qv are superior during the first 1-h forecast period. Totally, the three 

experiments have very similar ETS values for the 0-3h forecasts though the two 

experiments with logarithmic and power transformed mixing ratios as control variables 

are a little better in initial forecasts. 
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The RMSIs of radar radial velocity and reflectivity analyses for three experiments 

are also calculated (Fig. 4.32). For the RMSI of radial velocity, LOGQ_qv and PQ_qv 

exhibit great error reductions during the analysis steps when compared with Q_qv. For 

the RMSI of reflectivity, the patterns for error reduction are quite similar for all the three 

experiments. However, the forecast error growth is little faster in LOGQ_qv and PQ_qv 

than that in Q_qv for reflectivity.  

The convergence rates for the experiments Q_qv and PQ_qv are compared to further 

examine the usefulness of power transformed function as hydrometeor control variables. 

The cost functions of total and individual parts are presented (Fig. 4.33). It is suggested 

that PQ_qv has faster convergence rates than Q_qv for total cost function and radial 

velocity observations (Figs. 4.33a, b). For reflectivity (Fig. 4.33c), Q_qv has faster 

convergence rates at the first 18 iteration steps. After 18 iterations, PQ_qv converges 

faster than Q_qv for reflectivity. Although blurred by oscillations of the cost function for 

pseudo-water vapor (Fig. 4.33d) at some iteration steps, the convergence rates of PQ_qv 

are faster than that of Q_qv most of times. In general, PQ_qv produces faster convergence 

rates in comparison with that of Q_qv. 

To quantitatively evaluate the prediction skill for precipitation by using different 

control variables, the FSSs of 1-h accumulated precipitation for Q_qv and PQ_qv with 

different thresholds are calculated (Fig. 4.34). When the threshold increases from 1.0mm 

to 10.0mm, the scores decrease for both Q_qv and PQ_qv during each forecast period. 

Generally, Q_qv and PQ_qv exhibit very similar behavior. PQ_qv performs slightly better 

than Q_qv for the prediction skills. Fig. 4.35 shows the performance diagrams for 0-3h 

forecasts initiated at 2300 UTC with 20, 30 and 40 dBZ thresholds. At the analysis time 
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(Figs. 4.35a, b), PQ_qv produces higher CSI and SR value for reflectivity at all thresholds 

indicating the improvement of analysis in PQ_qv. As for 1-3h forecasts, Q_qv and PQ_qv 

exhibit very similar performance for all thresholds. 
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Figure 4.29: As in Fig. 4.5, except for 20 May 2019. 
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Figure 4.30: As in Fig. 4.6, except for 20 May 2019. 
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Figure 4.31: As in Fig. 4.7, except for 20 May 2019. 

 

 

Figure 4.32: As in Fig. 4.8, except for 20 May 2019. 
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Figure 4.33: As in Fig. 4.9, except for 20 May 2019. 
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Figure 4.34: As in Fig. 4.10, except for 20 May 2019. 

 

 

Figure 4.35: As in Fig. 4.11, except for 20 May 2019. The red and blue dots represent 
PQ_qv and Q_qv, respectively. 
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 Results from comparison of experiments PQ_qv with PQ_Pqv 

The power transformation functions are also applied on pseudo-water vapor 

observations to test whether it can help improve convective scale short term severe 

weather forecasts. The performance diagrams for 0-3h forecasts initiated at 2200 UTC 

and 2300 UTC for PQ_qv and PQ_Pqv are plotted (Fig. 4.36). For this case, the impact 

of applying power transformation function on pseudo-water vapor is also mixed. PQ_Pqv 

produces slightly lower CSI and SR values than that of PQ_qv, especially at 30 dBZ 

threshold (Figs. 4.36b, e). However, when it is initiated at 2300 UTC, the POD and CSI 

of PQ_Pqv are higher at the threshold of 40 dBZ (Fig. 4.36f). For the 1-3h forecasts, 

PQ_qv and PQ_Pqv show very similar performance at all thresholds. 

  



 79 

 

Figure 4.36: As in Fig. 4.12, except for 20 May 2019. The red and blue dots represent 
PQ_qv and PQ_Pqv, respectively. 
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5. Conclusions 

Directly assimilating radar data in a variational framework has issues related to 

highly nonlinear radar reflectivity forward observation operator, especially with 

hydrometeor mixing ratios as control variables (Gao & Stensrud, 2012; Liu et al., 2020). 

Several approaches have been proposed to solve this issue. These include using 

logarithmic mixing ratios of hydrometeors as control variables (Carley, 2012), applying 

power transformation function on hydrometeors to form new control variables (Yang et 

al., 2020; Chen et al., 2020). In addition, a new algorithm to derive pseudo-water vapor 

observations from radar reflectivity has shown to be beneficial to the analyses and 

forecasts of convective storms (Lai et al., 2019).  

As in Chen et al. (2020), they mainly focus on examining the performance with 

different values of parameter p through GSI En3DVar system. In this study, the impact 

of different transformation functions on the assimilation of radar data and pseudo-water 

vapor observations is tested within the 3DVAR system developed for NSSL WoF project 

(Gao et al., 2013). Three severe weather cases of 22 May, 28 May, and 20 May 2019 are 

tested to find out if the above methods can help improve the efficiency and accuracy of 

radar reflectivity DA and convective-scale short-term severe weather forecasts. Three 

major conclusions can be reached by this study. 

 

5.1 Experiments Q vs Q_qv -- The usefulness of the pseudo water vapor 

Experiments Q and Q_qv are compared to investigate the impact of pseudo-water 

vapor observations on short-term severe weather forecasts with three case studies which 

are generally representative for the severe weather events happened in the U.S. Mid-West 
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during the spring season. For the composite reflectivity forecasts, the convective cells in 

region B for the 22 May case and in region A, B and C for the 28 May case dissipate in 

Q but are predicted in Q_qv at 1-h forecast, which is more consistent with the reflectivity 

observations. Some spurious cells are predicted in Q but are reduced in Q_qv on 20 May. 

Therefore, the forecast performance is qualitatively improved by assimilating pseudo-

water vapor observations. 

To quantitatively examine the performance, the ETS and bias are calculated with 

different thresholds in Q and Q_qv. It is suggested that the ETS scores are enhanced in 

Q_qv when compared with Q for all the three cases. In addition, the forecasts in Q_qv 

has lower bias than that in Q. Overall, the assimilation of pseudo-water vapor 

observations qualitatively and quantitatively improves the analyses and 0-3h forecast 

performance of reflectivity. This conclusion further confirms the usefulness of 

assimilating pseudo-water vapor provided in Lai et al. (2019). 

 

5.2 Experiments Q_qv, LOGQ_qv vs PQ_qv -- The usefulness of the application of 

the power transform function to hydrometeors  

When using logarithmic and power transformed hydrometeor mixing ratios as 

control variables, the pseudo-water vapor observations are also assimilated along with 

radar data due to their positive impacts. Experiments Q_qv, LOGQ_qv and PQ_qv are 

compared to test the impact of different transformation functions on the short-term 

forecasts. For the composite reflectivity, the patterns are similar to the observations in 

terms of storm locations for all three experiments at the analysis time. However, the storm 

intensity differs from each experiment. Convective cells in LOGQ_qv and PQ_qv are 
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stronger in comparison with Q_qv, and in better agreement with the observed composite 

reflectivity. In addition, some spurious cells are produced in Q_qv for all the cases, which 

in the cases studied are comparatively reduced when applying LOGQ_qv and PQ_qv. For 

the 1-3h forecasts, all the three experiments exhibit very similar forecast performance for 

composite reflectivity. The composite reflectivity swaths for 0-3h forecasts show that the 

forecast reflectivity tracks are similar for all three types of experiments and are all weaker 

than the observed reflectivity tracks. However, there is a northeastward bias for the storm 

tracks on 20 May, a southward bias on 22 May and a northward bias on 28 May. The 

predicted composite reflectivity tracks in some regions are more consistent with the 

observations for PQ_qv with smaller phase errors compared with that of Q_qv, especially 

for the cases of 22 May and 28 May. 

ETS values are calculated with different thresholds to quantitatively investigate the 

performance. For the three case studies examined, the ETS values for LOGQ_qv and 

PQ_qv are higher than that for Q_qv for all thresholds at the analysis time. Detailed 

analysis found variability in ETS values for PQ_qv and LOGQ_qv, depending on the case. 

PQ_qv outperforms LOGQ_qv with higher ETS values at the analysis time for the 22 

May and 28 May cases. However, for the 20 May case, LOGQ_qv outperforms PQ_qv at 

the analysis time for the thresholds of 30 and 40 dBZ. For the 0-3h forecasts, the ETS 

values are similar for all three experiments. The RMSIs during the assimilation cycles 

show that LOGQ_qv and PQ_qv exhibit similar innovations which greatly reduces the 

errors associated with analyzed radial velocity when compared with Q_qv. For the RMSI 

of reflectivity, the forecast error growth is faster in LOGQ_qv and PQ_qv than in Q_qv. 
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The cost functions of total, radial velocity, reflectivity and pseudo-water vapor are 

normalized to compare the convergence rates. For the normalized cost function of radial 

velocity and pseudo-water vapor, PQ_qv has faster convergence rates than Q_qv. The 

FSSs of 1h accumulated precipitation with different thresholds are calculated to 

quantitatively evaluate the QPF skill. For the cases examined, PQ_qv outperforms Q_qv 

with higher FSS values for majority of thresholds, indicating better prediction skills for 

QPF by using power transformed mixing ratios as control variables. The performance 

diagrams represent the overall performance of the analysis and forecast. At the analysis 

time, PQ_qv produces higher CSI and SR for reflectivity at all thresholds. For the 1-3h 

forecasts, Q_qv and PQ_qv exhibit a similar performance for most thresholds. 

Similar to Chen et al. (2020), using PQ as control variables produces the best 

analyses in terms of RMSIs and ETS. The convergence rate of PQ is also faster than Q as 

control variables. Furthermore, in this study, PQ is shown to have better prediction skills 

for QPF compared with that of Q. Instead of providing the best reflectivity forecasts with 

PQ as control variables in Chen et al. (2020), the forecast performance is very similar for 

all the three experiments in this study. 

 

5.3 Experiments PQ_qv vs PQ_Pqv -- The usefulness of the application of power 

transformation functions to pseudo water vapor 

Compared with previous studies, the power transformation functions are first applied 

to pseudo-water vapor observations to test whether it can help improve the convective-

scale short term severe weather forecasts. The performance diagrams indicate that the 

impact of applying power transformation function on pseudo-water vapor is mixed with 
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lower CSI and SR values compared to PQ_qv for all thresholds at the analysis time. And 

these discrepancies between the experiments increase with the reflectivity threshold from 

20 dBZ to 40 dBZ, especially for cases of 22 May and 28 May. For the 1-3h forecasts, 

the POD and SR values of PQ_Pqv are higher at all thresholds, especially for 2h and 3h 

forecast for 22 May cases. For the 20 May and 28 May cases, PQ_qv and PQ_Pqv show 

very similar performance for forecasts.  

  



 85 

6. Future Research 

The performance of using different transformation functions on hydrometeor 

variables and pseudo-water vapor observations, however, is only tested for three case 

studies during the same season and the same year. More cases from 2020 WoF spring 

experiments are available for study to see if the patterns explored in this study are 

representative. Furthermore, the power transformation function can be used in a pure or 

hybrid En3DVar DA system to test whether it shows positive impact when the ensemble 

information can be incorporated into the analysis and forecast system. The ensemble 

information may help make the analysis more balanced among different model variables. 

There still exists a few issues that need to be further investigated in the future work: 

• Although using logarithmic and power transformed mixing ratios as control 

variables produces better analysis than hydrometeor mixing ratios themselves 

as control variables, the contributions from LOGQ and PQ to the prediction of 

severe weather storms are limited, which exhibit similar performances with the 

experiment Q. The reason for the mixed forecast performance may be related to 

the imbalance of the analyses of model variables which needs further 

examination in future studies. We will adopt 3DEnVar (Gao et al. 2014) to do 

more tests in the future. 

• When the power transformation function is applied to the pseudo-water vapor 

observations, the analysis performance is mixed with lower CSI and SR values. 

The reason of affecting the analysis performance by using power transformed 

pseudo-water vapor also requires further investigation. 
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