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Abstract 

 Blast-induced injuries affect the health of service members, veterans, and other 

victims, in which the auditory system is often damaged rupturing the tympanic membrane 

(TM) and reducing the number of viable cochlear hair cells. Blast-induced auditory 

damage to the outer and middle ear can usually be non-invasively observed but 

examining the damage to the inner ear is difficult to quantify. Finite element (FE) 

modeling and scanning electron microscopy (SEM) provide tools that allow for the 

prediction of the inner ear functional changes and assessment of the inner ear damage, 

respectively, when the ear is exposed to blast. Hearing protection devices (HPDs) have 

become the critical personal protection equipment to avoid this auditory damage for 

service members. Acoustic test fixtures and human temporal bones (TBs) have been used 

to test and develop HPDs; however, the lack of a cost-effective, standardized model 

impedes the improvement of HPDs. 

 In this study, we utilized a FE model of the human ear with a spiraled, two-

chambered cochlea to simulate the response of the anatomically structured cochlea to 

blast overpressure (BOP) exposure. The FE model included an ear canal, a middle ear, 

and two and a half turns of a two-chambered cochlea and simulated a BOP transmission 

from the ear canal entrance to the spiral cochlea. The model was validated with 

experimental pressure measurements from the outer and middle ear of human cadaveric 

TBs. The results showed high stapes footplate displacements resulting in high 

intracochlear pressures and basilar membrane (BM) displacements at a BOP input of 30.7 

kPa. The cochlea’s spiral shape caused asymmetric pressure distributions across the 

width of the cochlea and significant BM transverse motion. 
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 To create a standardized model for testing HPDs, a 3D printed human TB model 

was developed that reproduces the responses observed in blast testing of human TBs with 

and without HPDs. The 3D printed model consisted of the ear canal, TM, ossicular chain, 

middle ear suspensory ligaments/muscle tendons, and middle ear cavity. Pressures were 

measured at the ear canal entrance (P0) and near the TM in the ear canal (P1) during 

blasts then compared to similar tests in human TBs. Laser Doppler vibrometry was used 

to further validate TM movement under acoustic stimulation. Results indicated that in the 

3D printed TB, the attenuated peak pressures at P1 induced by HPDs ranged from 0.92 – 

1.06 psi (170 – 171 dB) with blast peak pressures of 5.62 – 6.54 psi (186 – 187 dB) at P0 

which were well within the mean and standard deviation of published data from tests in 

human TBs. 

 SEM imaging was used to investigate the viability of outer hair cells (OHCs) of 

chinchillas that were exposed to six consecutive blast exposures ranging from 21-35 kPa 

(3-5 psi) and the effect of liraglutide, a glucagon-like peptide-1 receptor agonist, on OHC 

survival after blast exposure. Results showed that OHC loss did not differ among animal 

groups; however, the auditory brainstem response results showed hearing function loss in 

BOP exposed groups, and drug-treated chinchillas did regain more hearing function after 

blast. 

 The spiral cochlea model reported in this dissertation provides a necessary 

advancement for progress towards a model able to predict the potential hearing loss 

sustained during BOP exposure. The developed 3D printed TB provides an accurate and 

cost-effective evaluation tool for HPDs’ protective function against BOP exposure with 

the potential to perform as a human temporal bone model for research in ear 
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biomechanics for acoustic transmission and the development of middle ear implants. 

Furthermore, the SEM study increases our understanding of the link between TBI and 

hearing loss while also supporting the use of liraglutide as a therapeutic for blast victims. 

In conclusion, the work reported in this dissertation increases our understanding of 

cochlear mechanics and sustained damage from blast exposure, and as such, creates 

opportunities for future research that will progress towards the goals of understanding the 

damage mechanisms of blast in the inner ear, creating a model that can accurately predict 

the damage to the ear from a given stimulus, and improving HPDs’ effectiveness for 

protection against BOP exposure. 
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Chapter 1 Introduction 

1.1 Structure and Function of the Outer and Middle Ear 

Hearing and balancing are the primary functions of the human ear. Figure 1-1 

shows the anatomy of the entire human ear organ, and the ear is comprised of three main 

regions: outer, middle, and inner ear. These three regions are also known as the 

peripheral auditory system (PAS). The ear is responsible for capturing acoustic sound 

pressure waves in the air and transducing them into action potential bound for the central 

auditory system (CAS) region of the brain via the auditory nerve. Humans are capable of 

hearing sound in the frequency range of 20 Hz to 20 kHz. 

 

Figure 1-1. Illustration of the anatomy of the human ear. 

(https://earaudities.wordpress.com/basic-anatomy) 
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 The outer ear is comprised of the pinna (from the helix to the earlobe in Figure 

1-1) and the ear canal. The external portion of the ear, known as the pinna, consists of 

auricular cartilage, and sound localization is the primary function of the pinna which is 

aided by its complex shape.1 Starting at the pinna, the ear canal (or acoustic meatus) is 

2.3 cm (approximately) long and amplifies and carries sound to the tympanic membrane 

(TM) which closes the medial end of the ear canal.29,109  

 The TM is a soft tissue membrane in the ear and is essential for sensing sound 

pressure. The membrane sits at the end of the ear canal and serves as a barrier between 

the outer and middle ear (Figure 1-1). This membrane is sensitive enough to sense the 

small fluctuations in air pressure (sound) which cause it to vibrate. Given its importance 

in the hearing organ, the TM’s ability to perform as intended will influence a person’s 

capability to hear correctly. A few properties of the TM have the most influence on its 

function. The TM’s specific cone shape increases its ability to detect sound waves with a 

typical area between 55.8 to 85.0 mm2,24,91 and despite averaging from 70 to 100 µm in 

thickness, this membrane has an intricate collagen network, with collagen fibers in both 

the radial and circumferential directions, that gives the TM its flexible yet tough 

viscoelastic properties.94,98,111  

 The TM connects to the ossicular chain which consists of three bones: malleus, 

incus, and stapes (Figure 1-2). These bones are responsible for passively transmitting 

vibrations from the TM to the inner ear. The malleus connects to the TM along the arm of 

the malleus (or manubrium) and attaches to the head of the incus at its head through the 

incudomalleolar joint (IMJ). The long process of the incus is connected to the head of the 

stapes by the incudostapedial joint (ISJ). The ossicular chain terminates at the stapes 
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footplate (SFP) where the stapes motion transmits the vibrations from the TM to the 

cochlea at the oval window. The ossicles are suspended by ligaments and muscle tendons 

within the middle ear cavity: superior mallear ligament, lateral mallear ligament, anterior 

mallear ligament, posterior incudal ligament, posterior stapedial tendon, tensor tympani 

tendon. These ligaments and tendons suspend the ossicles so they can freely rotate to 

effectively transmit acoustic pressure from the TM to the cochlea, usually referred to as 

the middle ear transfer function.31 In addition, the stapedial and tensor tympani tendons’ 

muscle contractions perform important functions within the middle ear, such as 

protection from intense sound.5,10 

 

Figure 1-2. Human middle ear highlighting the ossicular chain 

(https://resources.aofoundation.org/-

/jssmedia/surgery/93/93_ls20_treatment_i400.ashx?w=400) 
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1.2 Structure and Function of the Inner Ear 

The inner ear, or cochlea, is where the mechanical energy from acoustic sound is 

transduced into action potentials for the brain to decode. The cochlea has three fluid-

filled chambers, and this fluid is pressurized by the SFP movement to create pressure 

fluctuations within the cochlea’s chambers (Figure 1-3). The three chambers are: scala 

vestibuli (SV), scala media (SM), and scala tympani (ST). The barrier between the SV 

and SM is the vestibular membrane, or Reissner’s membrane (RM), and the barrier 

between the SM and ST is the basilar membrane (BM) (Figure 1-3). The membranes 

isolate the potassium-rich fluid, endolymph, within the SM from the perilymph (sodium-

rich fluid similar to cerebrospinal fluid) in the ST and SV.88 The RM’s function is to 

transport fluid and electrolytes while the BM contains the organ of Corti where the 

sensory receptors are in the ear. 

 

Figure 1-3. Cochlear chambers 

(http://droualb.faculty.mjc.edu/Lecture%20Notes/) 
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The BM vibrates from the pressure fluctuations caused by the stapes and moves 

the organ of Corti (Figure 1-4).88 Some of the cells within the organ of Corti are sensory 

cells called hair cells which detect mechanical movement and turns it into action 

potentials.79,88 This is accomplished through the hair cell’s sensory organelle known as 

the stereocilia. Directly above the organ of Corti is the tectorial membrane which is in 

contact with the stereocilia of the hair cells below. The mechanical motion of the 

stereocilia moves the extra-cellular protein chains that connect the stereocilia rows, 

known as tip links.79,88 This strains the tip links which open potassium ion channels in the 

stereocilia leading to depolarization of the hair cell (Figure 1-4). This is commonly 

referred to as mechanoelectrical transduction.21 The depolarization opens voltage-gated 

calcium ion channels which increase the release of neurotransmitter-filled vesicles at the 

bottom end of the hair cell.79,88 

 

Figure 1-4. Organ of Corti (left) and hair cell structure and function (right) 

(Left: John Wiley & Sons, Inc.; Right: http://what-when-how.com/neuroscience/auditory-

and-vestibular-systems-sensory-system-part-1/) 

The detection of sound is not merely a passive detection of acoustic waves, 

however.  The hair cells play an important role in amplifying, dampening, and focusing 

the movement of the BM.12,36,79,88 The two types of hair cells that exist in the organ of 

Corti are the inner hair cells (IHC) and outer hair cells (OHC), and they interact with 
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each other through a free-to-vibrate tectorial membrane.79,88 IHCs are the main cells used 

for transducing the mechanical vibrations into action potentials, whereas the OHCs play 

an important role in controlling the movement of the BM.88 Myelinated efferent neuron 

terminate directly at the OHC which gives the brain direct feedback to the cochlea.79 This 

synaptic connection can cause the OHC to quickly activate electromotive proteins 

(prestin) that either contract or lengthen the cell’s body which leads to a change in 

frequency detected by the IHCs.12,36,79,88 

Another important mechanic of the cochlea is the slow displacement waves that 

propagate from the base to the apex, known as traveling waves.2,88 In work that awarded 

Georg von Békésy2 the 1961 Nobel Prize for Physiology or Medicine, the traveling wave 

was found to travel along the BM from base to the apex during normal sound stimuli, and 

as the wave propagated, its magnitude grew until it reached its respective frequency 

location at the BM in which it then quickly decays in magnitude.88 The traveling wave of 

the cochlea comes from the mechanical properties of the cochlea, such as mass, stiffness, 

and damping, which passively processes auditory signals with frequency filtering and 

spatial analysis.88 

1.3 Modeling the Ear 

Many researchers have created models of the ear in an attempt to simulate the 

ear’s function,24,28,63,86 analyze difficult to measure parameters,6,85,115 and make 

predictions of the ear’s response or sustained hearing loss from different stimuli.32,73,78,89 

These models range from purely mathematical models to 3D finite element (FE) models 

(Figure 1-5).24,76 Models similar to the FE model shown in Figure 1-5 have been used to 
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analyze the ear’s transfer function and simulate the complex motion of the middle 

ear.24,28,107 

Early models started as mathematical models that attempted to simulate parts of 

the auditory system from experimental observations, and models were created (and still 

being developed) to mimic the auditory system’s response to speech.17,63 Inner ear and 

auditory nerve (AN) models have progressed to attempt to simulate the AN’s activity 

when the ear canal was stimulated by tones, noise, vowel sounds, and even 

speech.4,14,17,63,65,96,115,116 One model in particular by researchers Zilany and Bruce115 

modeled the entire PAS and attempted to predict the active role the cochlea has in sound 

processing. This model was expanded by the researchers to model impaired auditory 

nerve fibers, and other studies used this model as part of or inspiration for later models of 

the PAS.8,38,41,63,89,116 Many of these models were successful in simulating the PAS’s 

response to various stimuli under normal and impaired conditions, and the models’ 

outputs agreed with comparable experimental results. 

 

Figure 1-5. FE model of the human ear24 
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 A particular topic of interest within the field of modeling the ear is predicting the 

harmful effects of dangerous stimuli to the ear6,73,76 or simulating diseased states of the 

ear.32,116 The ultimate goal of these models is to be able to accurately assess the sustained 

damage from various situations without having to experimentally characterize every 

possibility.73 Models that can perform this function would greatly inform scientists and 

physicians on what a patient has experience from their harmful acoustic exposure or 

disease which would aid in better care and preventive measures.73 A known model that 

has been developed for decades by Price and Kalb78 is the auditory hazard assessment 

algorithm for the human ear (AHAAH) model. This model attempts to provide a simple 

output that predicts the possibility of hearing loss by analyzing the resulting motion of the 

BM from a pressure wave input.20 A three-dimensional model by Brown et al.6 simulated 

the blast wave transmission from the entrance of the ear canal to a straight, two-chamber 

cochlea to investigate the motion of the BM. Developed from models that were validated 

through acoustic simulations and experiments, Brown et al. found extreme displacement 

in the TM, SFP, and BM and high pressures in the ear canal near the TM and within the 

cochlea.6 Other models have attempted to predict the ear’s response to diseased states 

such as otitis media,32,112 fixations or detachments of the ligaments,13 and hearing loss 

from noise exposure.7,73,115,116 

1.4 Blast Exposure and Blast-induced Damage to the Ear 

Blast overpressures (BOPs) are rapid and intense increases in pressure that are 

usually caused by explosions or gunfire. A typical pressure waveform of a BOP can be 

seen in Figure 1-6, also known as a Friedlander waveform. Direct exposure to the 

extreme positive pressures of this curve can cause injury to personnel, and the rapid 
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decrease to the negative phase of the Friedlander curve can cause cavitation within tissue 

and cells in the form of micro-bubbles.64 Traumatic injuries from blasts are grouped into 

four main categories: primary, secondary, tertiary, and quaternary. Blast injuries resulting 

from the direct interaction of body tissue with the blast’s high-pressure wave are 

considered primary blast injuries. Secondary blast injuries are caused by debris or bomb 

fragments accelerated by the explosion. Tertiary blast injuries result from when the 

victim is knocked down or thrown into something by the blast, and quaternary blast 

injuries encompass all other effects from the blast such as post-traumatic disorder and 

burns.11 Blast-induced injuries to the ear are often primary blast injuries.18 

 

Figure 1-6. Friedlander Waveform64 

Sensitive to pressure changes, the ear is often damaged when a person is subjected to 

blast exposures, which can cause hearing loss by rupturing the TM (Figure 1-7) or reducing the 

number of viable cochlear hair cells.39 Dougherty et al.18 reported a study on 3,981 military 



10 

 

personnel that suffered a blast-related injury and found that TM perforation occurred in 

8% of the individuals. Other studies of blast-exposed patients showed the incidence of 

TM rupture ranged from 10 to 20%.110 In addition to the TM rupture, the blast 

overpressure can also interrupt the ossicular chain, and damage the cochlear hair cells.39  

 

Figure 1-7. Ruptured chinchilla TM after blast exposure27 

 As for the inner ear, a blast wave can transmit through the ear canal (the auditory 

pathway) and cause intense pressure fluctuations and basilar membrane (BM) vibrations 

in the cochlea which causes damage. In addition, the cochlea can experience hair cell loss 

and synaptopathy within cochlea due to the overstimulation during exposure through the 

auditory pathway similar to what is observed from noise-induced hearing loss.18,39,81,102 

The cochlea’s hair cells and ANs can also be damaged from the transmission of the blast 
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wave through the skull to the cochlea.52,70 Figure 1-8 shows scanning electron 

microscopy (SEM) images of the OHCs stereocilia after exposure to a blast wave 

transmitted through the skull by a laser-induced shock wave.70 Depending on the blast 

wave’s energy, Niwa et al.70 found that the stereocilia could be disturbed with the tip-

links broken from shock waves through the skull, and damage to the stereocilia increased 

with increasing blast energy. Histological images of the cochlea also revealed the number 

of OHCs remained steady despite hearing function tests showed significant hearing loss 

in exposed animals, but the study did find a reduction in synaptic ribbons to the hair 

cells.70 

 

Figure 1-8. Scanning electron microscopy images of the stereocilia exposed to BOPs70 
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Similar results were found in a recent study by Hickman et al.39 where OHC loss 

did not show to be significantly higher in chinchillas exposed to BOPs. The authors 

hypothesize that the rupture of the TM could have protected the hair cells from 

mechanical damage through excessive BM motion.39 Furthermore, the animals that did 

not have ruptured TM did experience greater OHC loss. The synaptic ribbons in the 

cochlea were greatly reduced as well as the synaptic activity of the hair cells.39 The 

situation where hearing loss is present in a subject but no obvious damage can be 

observed is referred to as synaptopathy.39,102 This effect has been observed in noise-

induced hearing loss research, but recent work has shown that blast exposure can also 

produce similar synaptopathy symptoms.39,49,50,102 

Research into the blast effects on the ear is relatively new compared to noise-

induced hearing loss so many of the damage mechanisms are still being investigated.11,18 

This is likely due to the intensity and complex interactions during BOP exposure which 

can affect the CAS as well.81 The CAS mainly experiences trauma from BOPs through 

the mechanical transmission of the blast wave through the skull, also known as a blast-

induced traumatic brain injury (TBI).23,61,67,81 This trauma to the nervous system can 

cause cell death and inflammatory effects in auditory regions of the brain and brainstem 

causing the previously mentioned symptoms.23,81 In addition, the CAS is affected by the 

overstimulation and synaptopathy experienced in the PAS.92,93 The BOP’s complex 

effects on the peripheral and central auditory systems often overlap and present similar 

symptoms which significantly increases the difficulty in characterizing the damage to the 

auditory system during blast exposure. 
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1.4.1 Investigation of Hearing Protection Devices for Blast Protection 

Hearing protection devices (HPDs; Figure 1-9), including different types of 

earplugs and earmuffs, are used by military service members to mitigate hearing damage, 

but a certain level of injury to the auditory system is usually inevitable even with 

protection.18 The effectiveness of HPDs can be significantly affected by the type, depth 

of insertion, involvement in bone conduction, and intensity of the blast or noise.3,68 The 

traditional approach to evaluating the protective function of HPDs is a test for the real-ear 

attenuation in human listeners at threshold values designed for low-level noise.3 Other 

studies done in humans have assessed participants' hearing function and perceived 

situational awareness after training excerises101 or have supplied soldiers with the same 

HPD and analyzed their hearing function and surveyed their HPD compliance once they 

returned from deployment.47 While studies in humans did provide useful insights into 

HPD effectiveness and possible improvements, many of the results were subjective 

responses from participants, and obtaining more extensive and standardized data would 

be invasive, unethical, and harmful to the participants. 

 

Figure 1-9. Four types of earplugs26 

Alternative methods in recent studies used microphones to measure the 

attenuation of high-intensity impulse noise and blast overpressure under the cover of the 

HPDs inside the acoustic test fixture (ATF).68,69 ATFs do provide a standardized model 

for testing HPDs during blast exposure, but the cost of the equipment can be prohibitive 
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for researchers who need to risk damaging the equipment during blast tests. In contrast 

with the traditional evaluation methods, the blast wave attenuation of four types of HPDs 

in human cadaveric temporal bones (TBs) was measured by Gan et al.26 This study, and 

those similar to it, showed effective results for assessing the protective function of HPDs 

in a realistic test model;26,105 however cadaveric TB models vary in ear canal size and 

only stay fresh for a limited time which adds variability and time constraints to 

experiments. This limits the ability to test and improve many HPD designs efficiently. 

With the severity of blast-induced injuries, it is vital that HPDs vastly improve soon to 

protect those most at risk. 

1.5 Objectives 

The hearing loss experienced by veterans who have suffered blast-induced 

auditory injuries greatly reduced their quality of life after military service.18,102 

Furthermore, hearing disabilities, such as tinnitus and hearing loss, are the top cost for 

treatment and compensation for the U.S. Department of Veteran Affairs.18 Understanding 

how BOP exposure affects the cochlea and BM is essential for discovering the underlying 

mechanisms of blast-induced hearing loss and protecting against it. In addition, a cost-

effective and accurate test model for evaluating HPD will enhance the development of 

HPDs by providing an accessible and standardizing test model to researchers and 

developers. However, the BOP exposure effects on the cochlea are not well understood 

and evaluation of HPDs for protection against BOP is expensive and inefficient. The aim 

of this study is to increase our understanding of the response of the cochlea during blast 

exposure, both computationally and experimentally, and to improve the evaluation for 

developing HPDs’ protective function against BOPs. Specifically: 
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1) To develop a 3D FE model of the entire human ear for simulation of BOP wave 

transmission from the ear canal to a spiral cochlea, 

2) To develop a 3D printed ear model, or TB, that anatomically and mechanically 

represents the outer and middle ear for the effective evaluation of HPDs during blast 

exposure, and 

3) To utilize SEM to assess the blast-induced hair cell damage in an animal model of 

chinchilla exposed to blast and the potential therapeutic effect of liraglutide on hair 

cell viability. 

1.6 Outline 

Chapter 2 presents the development of a FE model of the human ear with a two-

chambered, spiral cochlea for simulating the cochlear mechanics during blast exposure. 

Chapter 3 presents the development of a 3D printed human ear model for 

standardized testing of hearing protection devices during blast exposure. 

Chapter 4 presents the assessment of the effect of liraglutide on the blast damages 

sustained in the chinchilla cochlea with scanning electron microscopy. 

Chapter 5 presents the summary of this study and outlook for future studies. 
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Table 1-1. Table of abbreviations 

BOP Blast Overpressure 

PAS Peripheral Auditory System 

CAS Central Auditory System 

TM Tympanic Membrane 

BM Basilar Membrane 

RM Reissner’s Membrane 

RWM Round Window Membrane 

SAL Stapedial Annular Ligament 

IMJ Incudomalleolar Joint 

ISJ Incudostapedial Joint 

SFP Stapes Footplate 

TMA Tympanic Membrane Annulus 

3D Three-Dimensional 

FE Finite Element 

TB Temporal Bone 

LDV Laser Doppler Vibrometry 

SPL Sound Pressure Level 

OHC Outer Hair Cells 

IHC Inner Hair Cells 

GLP-1 Glucagon-like peptide-1 

GLP-1R Glucagon-like peptide-1 Receptor 

SEM Scanning Electron Microscopy 

HPD Hearing Protection Device 

SV Scala Vestibuli 

SM Scala Media 

ST Scala Tympani 

ABR Auditory Brainstem Response 

TBI Traumatic Brain Injury 

AHAAH Auditory Hazard Assessment Algorithm for the Human Ear 
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Chapter 2 3D Finite Element Modeling of Blast Wave Transmission 

from the External Ear to a Spiral Cochlea 

2.1 Introduction 

Hearing loss and tinnitus are common disabilities among veterans and active-duty 

military personnel, and although conservation programs have begun to beneficially affect 

their hearing health, hearing loss and tinnitus persist as the top disabilities treated by 

Veteran Affairs.11,18,58 Service men and women are at an increased risk for hearing loss 

from blast-related ear injuries due to working and being deployed to environments where 

BOPs are frequent.18,62,102 BOP exposure damages the middle and inner ear, and while 

multiple techniques exist to observe and treat middle ear injuries, the mechanisms of 

inner ear blast-related injuries, such as cochlear synaptopathy and hair cell loss, are 

neither well understood nor observed non-invasively. 

Various studies have experimentally shown that the TM and stapes experience 

extreme displacements and the cochlea and BM exhibit high pressures during blast and 

intense noise exposure.34,35,44,45 Dual laser Doppler vibrometry (LDV) techniques were 

used to monitor the motion of the TM during blast exposure measuring displacements 

much higher than that during typical sound exposure,31,45,108 and structural damage and 

altered surface motion of the TM were observed post-blast exposure.19,25 Jiang et al.44 

showed that the TM’s motion transmits to the stapes by measuring the displacement of 

the SFP with LDV, and results revealed high SFP movement during exposure 

corroborating a previous study by Greene et al.35 where the authors measured the elevated 

SFP motion and cochlear pressure during intense low-frequency sound. The intracochlear 

pressure during BOP exposure has only recently been measured experimentally to reveal 
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pressures within the cochlea that would undoubtedly cause damage to the tissue within 

the cochlea.34 Recent advancement in experimental studies have provided an early insight 

to the transmitted energy into the cochlea through measurements of the displacements in 

the middle ear and the intracochlear pressure at the base of the cochlea; however, the 

BM’s motion during blast exposure has not been empirically measured due to the harsh 

experimental environment and the degree of precision needed to measure BM 

displacement. 

With the difficulty of observing BM motion experimentally hindering progress for 

understanding cochlear mechanics during BOP exposure, researchers have adapted 

computational models of the ear to simulate blast transmission in the ear.6,73,76 A recently 

published study6 modeled blast transmission from the external ear canal to a straight, 2-

chamber cochlea in a three-dimensional (3D) finite element (FE) model of the human ear 

which augmented a previous experimentally validated, blast model of the middle ear by 

Leckness et al.54 Brown et al.’s6 model predicted the large displacements of the BM and 

the high intracochlear pressures comparable to published measurements of cochlear 

pressure during blast exposure.34 Other computational models, like the Auditory Hazard 

Assessment Algorithm for Humans (AHAAH) model,76 have been developed to predict 

the potential harm from high pressure inputs to the inner ear and the victim’s overall 

hearing health by simulating the input energy to the cochlea or the displacement of the 

BM.73 While current advancements make progress in understanding cochlear mechanics 

during BOP or intense sound exposures, the models of the ear consider the BM in the 

widely used straight cochlear configuration and do not consider the effect the cochlea’s 

spiral geometry has on the pressure transmission and BM displacement during BOP 
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exposure.74 Straight cochlea models have been good approximations for cochlear 

mechanics during acoustic simulations, but differences in pressure distributions do exist 

between spiral and straight cochlea models. While this does not significantly alter the BM 

frequency tuning, significant discrepancies between the two types of models may occur 

when the cochlea experiences high pressures during blast exposure.85 

In the present article, we report the development of a 3D FE model of the entire 

human ear to simulate the transmission of BOP wave from the ear canal through the 

middle ear and into a spiral cochlea to determine the effect from the cochlea’s spiral 

structure during blast exposure. The FE model was validated with the experimental data 

obtained in human temporal bones (TBs) which includes the pressure near the TM in the 

ear canal when the experimentally measured blast pressure was applied at the ear canal 

entrance in the model.  The displacements of the middle ear ossicles (e.g., SFP) and 

cochlea BM and the intracochlear pressures were derived from the model, and the BM 

displacements were compared to displacements simulated in a straight cochlea model. In 

this study, we aim to provide a more anatomically accurate computational tool for the 

prediction of blast wave transmission from the ear canal to the cochlea and for future 

applications for assisting the prevention, diagnosis, and treatment of blast-induced 

hearing loss. 

2.2 Materials and Methods 

2.2.1 FE Model of the Human Ear 

The FE model of the entire human ear was created based on the model reported 

by Brown et al.6 and used the spiral cochlea structure from Gan et al.32. The outer and 

middle ear was constructed from histological cross-sectional images of a human TB (left 
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ear, 55-year-old, male),24 and the spiral cochlea with two and a half turns was also from 

histological cross-sectional images in a different male human TB (left ear, 52-year-old)32. 

The resulting middle ear and cochlea geometries were originally meshed in Hypermesh 

13 (Altair Engineering, Inc., Troy, MI) and ANSYS (ANSYS Inc., Canonsburg, PA), 

respectively. For this model, the straight, 2-chamber cochlea from Brown et al.6 was 

replaced with a 2-chamber, spiral cochlea and connected to the SFP and round window 

membrane (RWM). The cochlea was remeshed in Hypermesh 13 with pyramid and 

tetrahedral elements to improve performance in transient, high deformation analyses in 

the time domain. 

 

Figure 2-1 (A) FE model of the human ear with the ear canal, middle ear, and spiral 

cochlea. (B) The cochlea’s spiral BM mesh surrounded by two supports (spiral lamina 

and spiral ligament). (C) Cochlea fluid volumes: Vestibule, Scala Vestibuli, Scala 

Tympani, and Helicotrema. 

The developed ear model consisting of the meshed ear canal, middle ear, and 

cochlea can be seen in Figure 2-1A. The middle ear consisted of the ossicles and their 

suspensory ligaments and tendons, pars flaccida and pars tensa of the TM, TM annulus 
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(TMA), manubrium, incudomalleolar and incudostapedial joints (IMJ and ISJ 

respectively), stapedial annular ligament (SAL), and middle ear cavity. The spiral cochlea 

had two chambers, scala vestibuli (SV) and scala tympani (ST) above and below the BM, 

respectively, with a vestibule volume between the SV and SFP (Figure 2-1A and Figure 

2-1C). The BM separated the SV and ST fluid chambers with two supporting structures 

(spiral lamina and spiral ligament) (Figure 2-1B). The BM was 32 mm in length and 

separated into 124 portions with varying material properties. The resulting meshes for the 

ear canal, middle ear, and cochlea contained 19,522, 48,376, and 139,542 elements, 

respectively. 

2.2.2 Material Properties of Structural Components and Boundary Conditions 

 The structural components of the outer, middle, and inner ear had similar 

boundary conditions and material properties as mentioned in Brown et al.6. The standard 

linear viscoelastic model22 in ANSYS was assigned to the TM, TMA, IMJ, ISJ, SAL, and 

RWM of all middle ear soft tissues with the Prony shear relaxation modulus: 

 𝐺(𝑡) = 𝐺0 [𝛼∞
𝐺 + 𝛼1

𝐺 𝑒
−𝑡

𝜏1⁄ ] (1) 

where G0 is the shear relaxation modulus at t = 0, 𝛼∞
𝐺  is the relative long-term modulus, 

𝛼1
𝐺  and τ1 are the first-order relative modulus and relaxation time, respectively. The 

material properties reported in Table 1 of Zhang and Gan112 were used to determine the 

values in Equation (1) by converting the stated Young’s modulus (E) into shear modulus 

(G): 

 𝐸 = 2𝐺(1 + 𝜈) (2) 

where ν is the Poisson’s ratio of the material. The ossicles, suspensory ligaments and 

tendons, and manubrium were modeled as isotropic elastic materials as reported by Gan 
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et al.28. The ear canal skin was modeled as an isotropic elastic material with a Young’s 

modulus of 0.42 MPa, density of 1050 kg/m3, a Poisson’s ratio of 0.43, and a beta 

damping coefficient of 4.48 x 10-5 s. Fixed boundary conditions were set to the outside 

skin of the ear canal, and the TMA, RWM, SAL, and suspensory ligaments and tendons 

where they met the bony wall of the ear. 

 Similar to Brown et al.6, the material properties varied along the length of the 

BM’s 124 sections with a Young’s modulus that changed linearly per section along the 

BM’s length from 50 MPa at the base to 15 MPa in the middle to 3.75 MPa at the apex 

with a density and Poisson’s ratio of 1200 kg/m3 and 0.3, respectively. The β damping of 

the BM changed linearly from 2.0 x 10-4 s at the base to 9.748 x 10-4 s at the apex. The 

width and thickness of the BM elements changed linearly from 126.6 and 8.46 µm, 

respectively, at the base to 497 and 2.54 µm, respectively, at the apex, and the BM’s 

mesh included 496 eight-node hexahedral elements, four elements per section. The spiral 

lamina and apex bony supports were assumed to have a Young’s modulus of 14.1 GPa, 

density of 1200 kg/m3, Poisson’s ratio of 0.3, and β damping of 1.0 x 10-4 s, and the spiral 

ligament was assigned similar properties except with a Young’s modulus of 5 MPa and a 

density of 1000 kg/m3.28 All the BM support structures were fixed in place to give the 

BM a fixed boundary condition along its edges. 

2.2.3 Fluid Properties and Boundary Conditions 

As with the structural components, the fluid domains of the model (Figure 2-1A and 

Figure 2-1C) were set to similar parameters as in Brown et al.6, and simulation of the 

fluid domains was modeled with ANSYS Fluent. The ear canal and middle ear cavity 

fluid domains were assigned as air that was a compressible ideal gas at sea level with the 
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ambient air pressure set to 101,325 Pa, and the perilymphatic fluid inside the cochlea was 

assigned an initial density of 998.2 kg/m3 and a viscosity of 1.003 x 10-3 kg/m-s. The 

structural components of the ear were set to interact with their adjacent fluid domains 

through fluid-structure interfaces (FSIs): the inner surface of the ear canal, medial and 

lateral surfaces of the TM, SFP, cochlea, and middle ear cavity facing surfaces of the 

RWM, and SV and ST facing surfaces of the BM. All remaining walls were assigned as 

stationary, rigid walls, and all fluid domain walls were defined with a no-slip boundary 

condition. 

2.2.4 FE Analysis 

The FE analysis of the structural components was modeled with ANSYS 

Mechanical and the fluid dynamics was modeled with Fluent within ANSYS Workbench 

v19.1 which transferred the forces and displacements of the FSIs through a coupled 

analysis. The blast simulation ran for a blast duration of 2 ms with a time step of 1 µs for 

the nonlinear, transient simulation. Both ANSYS Mechanical and Fluent were set to 

calculate the large deformations of the FSIs that occur during blast exposure, and the 

deforming fluid domains implemented a remeshing and smoothing function to ensure 

high mesh quality during simulations. 
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Figure 2-2. (A) Experimentally measured BOP used as input for the FE model at P0. (B) 

Input location for BOP at entrance of ear canal, P0, and locations in FE model monitored 

for pressure in the middle ear (P1 and P2). (C) Pressure monitor locations in the cochlea 

during simulations (PSV1 - PSV5 and PST1 - PST5). 
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 Experimental BOP waveforms, collected from cadaveric TB blast tests,45 were 

used as the input BOP waveform at the entrance of the ear canal (P0), and 2 ms of the 

pressure waveform used is shown in Figure 2-2A, 30.7 kPa (4.45 psi) peak pressure. 

Figure 2-2B illustrates the location of P0 where the model’s input was applied. Various 

locations throughout the model were monitored for pressure to track blast wave 

transmission in the ear (Figure 2-2B and Figure 2-2C): near the TM in the ear canal (P1), 

behind the TM in the middle ear cavity (P2), and five points in both the SV and ST along 

the BM from the base to the apex (PSV1 - PSV5 and PST1 - PST5, respectively). The 

additional model-derived results include the displacements of the SFP and BM.  

2.2.5 Experimental Blast Test with Cadaveric Temporal Bones 

The methods used for collecting experimental pressure waveforms in this study 

were extensively described and diagramed by Jiang et al.45 and Leckness et al.54. In short, 

fresh human cadaver TB with no observable ear damage had a pressure sensor (Model 

105C002, PCB Piezotronics, Depew, NY) surgically inserted into the ear canal near the 

TM (P1) and was mounted inside an anechoic chamber to a “head block” placed under a 

blast apparatus designed for open-field blasts. The P0 pressure sensor (Model 102B16, 

PCB Piezotronics, Depew, NY) was mounted 1 cm lateral to the entrance of the ear canal. 

The BOP was generated by bursting a polycarbonate film (McMaster-Carr, Atlanta, GA) 

with compressed nitrogen gas. A data acquisition system using a cDAQ 7194, A/D 

converter 9215 (National Instruments Inc., Austin, TX), and LabVIEW Signal Express 

software (National Instruments Inc., Austin, TX) was used to record and synchronized 

measurements from the pressure sensors.  
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2.2.6 Model Validation with Experimental Results 

The P1 pressure waveforms were used to validate the FE model when compared 

to the experimental results. Similar to Leckness et al.,54 the P1 waveform’s intensity and 

peak wave shape were used to compare the results by analyzing the peak pressure level, 

P1:P0 peak pressure ratio, and A-duration. The A-duration is defined as the measure of 

time (in ms) the positive portion of the peak pressure is sustained, and the B-duration is 

the time interval between the BOP peak pressure and the last value within 20 dB of the 

peak. A pressure waveform duration of 20 ms, sampled at 1 MHz, was used for these 

calculations (Figure 2-2A for the first 2 ms of pressure waveform). The percent error was 

used to compare the P1:P0 ratio and P1 A-duration between the experiment and model 

data. The model’s TM and SFP displacements were compared to published data where 

available. 

2.3 Results 

Figure 2-3A and Figure 2-3B present the pressure waveforms recorded in a TB 

blast test and calculated from the FE model, respectively. The P0 waveform with a peak 

pressure of 30.7 kPa had an A-duration of 0.307 ms and a B-duration of 9.792 ms. The 

P1 peak pressure for the model was 64.0 kPa with a P1:P0 ratio of 2.08, and the P1 peak 

pressure from the experiment was 58.6 kPa with a P1:P0 ratio of 1.91 which gives a 9.2% 

error. The A-durations for the model and experimental P1 pressure waveforms were 

0.154 and 0.175 ms (12.0% error), respectively. It should be noted that P0 was measured 

at 1 cm from the ear canal entrance, while the FE model applied the P0 input pressure on 

the inlet face of the ear canal. Our blast chamber is designed for open-field blast tests, 

and it is subject to the phenomenon that the air velocity and pressure generated from 
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blasts delay with increased distance despite sound pressure traveling at the speed of 

sound.15 This resulted in a faster time of arrival of the P1 peak pressure for the model 

than that shown in experimental blast tests. Despite the difference, the model-predicted 

P1 waveform agrees well with the experimental waveform as shown by Figure 2-3C 

which compares the two P1 waveforms (pressure rise-times have been aligned for a better 

comparison). The middle ear cavity pressure at P2 was not measured during blast tests by 

Jiang et al.45 from which the experimental results in this study originated. Only the 

model-derived P2 pressure is shown in Figure 2-3B. The model-derived P2 waveform in 

Figure 2-3B exhibits a typical reduction of peak pressure across an intact TM with a peak 

pressure of 9.3 kPa inside the middle cavity compared to a P1 peak pressure of 64.0 kPa 

on the lateral side of the TM. The use of a spiral cochlea did not significantly change 

middle ear pressures when compared to that in previous models that utilized a cochlear 

load mass or a two-chamber straight cochlea.6,26,54  
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Figure 2-3. (A) Experimental measures of P0 and P1 during BOP. (B) The FE model’s 

simulated pressures for P1 and P2 with P0 as input. (C) Comparison between FE model 

and experimental pressures of P1. 
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Figure 2-4. Pressures along the cochlea from base to apex during blast exposure. 

Pressures monitored in the scala vestibuli (PSV) and scala tympani (PST) at 2.5, 13, 18.0, 

23.25, and 28.25 mm from the base of the cochlea (A, B, C, D, and E, respectively). 

Figure 2-4 shows the cochlear pressures at various locations in the SV (PSV1-PSV5) 

and ST (PST1-PST5) from the base to the apex (shown in Figure 2-2C): 2.5 (A), 13 (B), 18 

(C), 23.25 (D), and 28.25 (E) mm from the base of the BM. Maximum peak pressures in 

the SV (black lines) were 175.2, 119.1, 96.8, 72.9, and 85.4 kPa at PSV1, PSV2, PSV3, PSV4, 

and PSV5, respectively, and the maximum pressure within the ST (red lines) were 42.7, 
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44.2, 47.1, 61.4, and 68.2 kPa at PST1, PST2, PST3, PST4, and PST5, respectively. As 

illustrated by Figure 2-4, the maximum pressure within the SV of the cochlea decreases 

from the base to the apex with the inverse true for the ST. A trend in the model was 

observed where the pressure waveforms decreased in magnitude difference the closer to 

the apex which was also observed in a previous straight cochlea model6 with the greatest 

pressure difference between the SV and ST being 174.0 kPa near the base (2.5 mm; 

Figure 2-4A) and decreasing to 17.8 kPa near the apex (28.25 mm; Figure 2-4E). The 

greatest positive and negative pressures of 175.2 kPa at 0.175 ms and -100.9 kPa at 1.122 

ms, respectively, were observed in the SV at 2.5 mm from the base (PSV1; Figure 2-4A). 

 

Figure 2-5. (A) Model-derived stapes displacement in the piston, superior/inferior, and 

anterior/posterior directions from BOP exposure. (B) Model-derived stapes displacement 

in the superior/inferior, and anterior/posterior directions, emphasizing the difference in 

magnitude between the stapes’ piston and rocking movements. 
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The motion of the SFP can be seen in Figure 2-5 where the displacement of the 

SFP plane is plotted in three directions (piston, anterior, and superior) over a 2 ms time 

duration. The piston direction is the direction normal to the SFP plane where the negative 

direction would be into the cochlea. The anterior and superior directional movements are 

the rocking motions of the SFP plane in the anterior-posterior and superior-inferior 

directions, respectively. The greatest displacement magnitude was 28.5 µm into the 

cochlea (negative) at 0.25 ms with the largest positive displacement of 27.4 µm at the 

second maximum peak at 0.79 ms (Figure 2-5A). The first two peak-to-peak 

displacements (49.5 and 38.8 µm for the first and second, respectively) seem to have the 

greatest impact on the cochlear pressure since the cochlear pressure in the base quickly 

diminishes after 1 ms (Figure 2-4A). Figure 2-5B plots the superior and anterior 

directional movements of the SFP at a smaller range due to the magnitude of their 

displacements being much smaller than the piston direction displacements. The 

maximum displacements for the superior and anterior directions were 4.0 µm at 0.56 ms 

and 6.9 µm at 0.18 ms, respectively, which were more than four times less than the 

maximum magnitude in the piston direction. Even though these displacements were small 

when compared to the piston direction, all of the displacements were much larger than 

the SFP displacements during low-frequency sound stimuli at 90 dB sound pressure level 

(SPL) (<0.1 µm).31 
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Figure 2-6. Model-derived displacements of the BM at 2.5, 13, 18, 23.25, and 28.25 mm 

from the base of the cochlea. 

Figure 2-6 shows the displacement of the model’s BM over 2 ms at 2.5, 13, 18, 

23.25, and 28.25 mm from the base of the cochlea, and the maximum displacements at 

these points were -9.7, -29.1, -39.4, -41.6, and -43.2 µm, respectively, with a negative 

value indicating displacement downward towards the ST normal to the plane of the BM. 
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The maximum upward displacements were 6.5, 15.9, 14.4, 2.6, and 0.0 µm, respectively, 

over the 2 ms time duration. The results show the BM motion near the base was closely 

tied to the cochlear pressure generated by the SFP (Figure 2-4A), and the motion of the 

BM was more centered around the origin than the motion of the BM further away from 

the base. While the cyclic wave response can be seen in the BM away from the base, a 

negative broad peak formed in the BM and grew with increasing distance from the base 

of the BM. This reflected a passive, low frequency traveling wave often discussed with 

BM inner ear mechanics,83,97 and interestingly, such a prominent traveling wave effect 

was not observed in a previous blast model.6 

 

Figure 2-7. Comparison of the transverse displacements of the BM at 2.5, 13, 18, 23.25, 

and 28.25 mm from the base of the spiral cochlea and the straight, 2-chamber by Brown 

et al.6 
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To illustrate the effect a spiral cochlea has on the BM response, Figure 2-7 plots 

the transverse displacement of the BM from the spiral cochlea model and compares it to 

that from the straight cochlea model reported by Brown et al.6. The BM transverse 

motion is the direction perpendicular to the length of the BM element with the positive 

motion being toward the center of the cochlea’s spiral. The maximum displacements for 

each position along the length of the BM (2.5, 13, 18, 23.25, and 28.25 mm) were -0.02, 

0.10, 0.22, 1.24, and -0.75 µm, respectively. The trend of the transverse motion in the 

BM mirrored the BM’s motion shown in Figure 2-6 except for at 28.25 mm where most 

of the motion was away from the center of the cochlea; however, the transverse 

displacement of the BM was about two magnitudes less than the normal displacement of 

the BM. While the transverse displacement was far less than the normal displacement, it 

was much greater than the transverse displacement simulated by the straight two-chamber 

cochlea model reported by Brown et al.6 which the max displacement was 0.59 nm and 

the typical displacement was less than 300 pm. In addition, the transverse motion of the 

basilar membrane was greater than normal directions displacements measured during 

acoustic simulation (<10 nm at 120 dB).71 
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Figure 2-8. Pressure contour plots of SV and ST of the spiral (A-C) two-chamber cochlea 

models. Plots illustrate the pressure distribution at planes perpendicular to the perilymph 

flow in the cochlea at 2.5 (A), 18 (B), and 28.25 mm (C) from the base of the BM. 

Pressure distributions are from the first pressure peak at the respective locations. Note 

that the SV and ST plots of A and B have separate legends for the pressure distribution 

due to the large difference in pressure range between the two chambers. 

The pressure distribution within the SV and ST of the spiral cochlea (pressure 

contour plot) is shown in Figure 2-8 (A-C) at three different positions along the BM at 

the base (2.5 mm), middle (18 mm), and apex (28.25 mm) turns. The time point for each 

pressure contour is the time at which the first maximum peak pressure occurred at the 

respective position. It is important to note the pressure contours for the basal (Figure 

2-8A) and middle (Figure 2-8B) turns have separate pressure scales due to the large 

difference in pressure ranges between the SV and ST chambers. The right side of the 

contour plots are toward the center of the spiral cochlea. As seen in Figure 2-8, the 

increase in pressure distribution asymmetry is apparent from the base to the apex of the 

cochlea. The base of the cochlea shows minimal symmetry across the width of the 

cochlea with a pressure variation of less than 3 kPa between the left (outer) and right 

(inner) sides of the SV (Figure 2-8A). When the first pressure peak occurs at the apex 
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(Figure 2-8C), the pressure distribution was completely asymmetric across the width of 

the spiral cochlea with the higher pressure skewing to the outer curve of the cochlea. The 

increase in asymmetry across the BM in Figure 2-8C correlates to the increased 

transverse displacement of the BM beyond the base of the cochlea (Figure 2-7). The 

pressure difference between the outer (left) and inner (right) curve of the cochlea was less 

than 3, 4, and 2.1 kPa for the basal, middle, and apex turns of the SV, respectively, and 

0.24, 1.2, and 2.4 kPa for the basal, middle, and apex turns of the ST, respectively. 

2.4 Discussion 

2.4.1 Spiral Cochlea Effect and Model Comparison 

Blast models of the human body aim to predict and assess the damage sustained 

during blast exposure as a final goal, and models of the auditory system attempt to predict 

the long-term hearing loss caused by BOPs.6,20,73,77 The AHAAH model was such a 

model that has been incrementally improved since the early 1990s to an easy-to-

understand program that analyzed a sample pressure waveform and attempted to predict 

the possible long-term hearing loss with a simple output.20 Mathematical models like the 

AHAAH model are created from data obtained from animal experiments then are 

converted to a human model through patient data.76–78 These models do continue to 

improve as more data becomes available; however, these models are intrinsically unable 

to model the complex fluid dynamics within the cochlea during blast exposure. Studies 

have shown that, even under normal sound stimuli, the spiral shape of the cochlea has an 

effect on the fluid dynamics and pressure distribution within the cochlea when compared 

to a straight cochlear model59,85,113 and would undoubtedly have an effect during BOP 

exposure. Advancing blast models of the peripheral auditory system to include the spiral 
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shape of the cochlea is a necessary step to accurately represent the cochlear response 

during blast. 

The blast model by Brown et al.6 is the most relevant study for comparing the 

cochlear response between straight and spiral cochlea models. By utilizing the same 

experimental BOP as input for P0, it was found that there were no significant changes in 

the pressures of the middle ear and displacement of the TM. The spiral cochlea did 

change the resulting displacement of the SFP when compare to the straight cochlea. The 

overall trend of the SFP piston motion and initial displacement into the cochlea were very 

similar (-28.5 and -27.5 µm for the spiral and straight cochlea, respectively); however, 

the following maximum peaks after the initial minimum were less than half the 

magnitude of the maximum SFP displacement reported by Brown et al.6. Furthermore, 

the initial anterior directional movement was greater for the spiral cochlea model, but 

overall displacement magnitudes were similar. When compared to Jiang et al.’s SFP 

measurements during blast exposure,44 the frequency trend of the SFP motion was similar 

between the model and experimental results in that the stapes sharply displaced between 

the positive and negative peaks; however, the magnitude displaced was greater for the 

experimentally measured SFP despite the same BOP waveform (TB sample 18-1L in 

Jiang et al.44) being used for P0 in the model.  

As previously mentioned, the BM of the spiral cochlea exhibited a broad negative 

peak that grew as the pressure transmitted from the base to the apex. This was not 

observed to this degree in the BM reported by Brown et al.6. The BM displacement of the 

straight cochlea model was smaller in magnitude and the cyclic motion centered around 

the origin throughout most of the cochlea. In addition, the BM fluctuations that originated 
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at the base persisted and grew in magnitude until near the apex where most of the waves 

combined.6 The greater BM displacement seen in the spiral cochlea model may be due to 

the greater intracochlear pressure when compared to the straight cochlea (49.9 and 175.2 

kPa for the straight and spiral cochleae, respectively). This was likely due to the smaller 

cross-sectional area and volume of the spiral cochlea which would increase the resulting 

pressure from the same amount of input energy from the stapes. Moreover, the pressure 

distribution differed across the cross-section of the spiral cochlea (Figure 2-8) where 

straight cochlea models have shown to have a symmetrical pressure distribution across 

the cochlea.85 Similar results were observed by Ren et al.85 where straight and spiral 

cochlear models were directly compared in an acoustic simulation, and the pressure 

distribution skewed towards the outer curve of the spiral cochlea while the straight 

cochlea model exhibited a symmetric pressure distribution. Ren et al.85 did not find any 

significant changes in neither the normal nor transverse displacements of the BM; 

however, the intracochlear pressure were far less than the current study and the boundary 

constraints of the BM elements did not allow for transvers motion. In the current study, 

the asymmetric pressure distribution and pressure difference between the SV and ST 

caused the BM to deform in the transverse direction where the symmetry of the straight 

cochlea did not allow for much transverse motion (Figure 2-7). 

2.4.2 Limitations and Future Work 

 The lack of experimental intracochlear pressure measurements during blast is a 

limitation for further validating cochlear blast models, as very few studies have measured 

cochlear pressure during blast exposure.34 Greene et al.34 measured the intracochlear 

pressure in cadaveric heads in blast conditions, and while this was an important 
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advancement for the field, intracochlear pressure measurements exhibited large variances 

within the results showing the need for further research. Previous ear blast models 

simulated pressures in the cochlea that were within the range of the reported experimental 

results, but the present spiral cochlea model exceeded that range.6,34 As mentioned 

previously, this was likely due to the smaller volume and cross-sectional area of the spiral 

cochlear chambers when compared to the straight cochlea model by Brown et al.6. Future 

work will compensate for the smaller fluid volume to improve the accuracy of the 

simulated intracochlear pressure. 

 Currently, a few studies compare the results between straight and spiral cochlea 

models to determine the significant effects between the model geometries,85,86 but a spiral 

cochlea model has not been used to model blast exposure. Understanding how the spiral 

shape of the cochlea affects BM motion and BOP pressure transmission throughout the 

cochlea will help with future developments of a more comprehensive ear blast model. 

Future work includes developing a three-chambered, spiral cochlea capable of simulation 

blast pressures from the ear canal entrance to the cochlea. A model with this capability 

would give insight into how the Reissner’s membrane and three chambers affect pressure 

transmission through the cochlea. In addition, it is unclear if the Reissner’s membrane 

protects the organ of Corti from the initial high pressure increase of the BOP or if it 

passively transmits pressure to the scala media.  

2.4.3 Preliminary Work on Three-Chamber, Spiral Cochlea 

Preliminary work has begun to develop the FE ear model with a three-chambered, 

spiral cochlea for simulation of blast wave transmission from the entrance of the ear canal 

to the cochlea (Figure 2-9). The developed model was built on the previous work in 
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Chapter 2 to enhance the cochlear portion of the model. This model is meant to improve 

the spiral, two-chamber cochlea to a spiral, three-chamber cochlea that includes: the SV, 

scala media (SM), ST, BM, and Reissner’s membrane (RM). This will allow us to 

analyze how the cochlea’s anatomy affects the blast transmission within the cochlea and 

to investigate the more advanced fluid mechanics from the addition of the SM and RM. 

 

Figure 2-9. (A) 3D FE model of the human ear with spiral cochlea (posterior view). C1 

and C3 are the middle ear suspensory ligaments. (B) FE model of the spiral cochlea with 

BM (SV, SM, and RM are transparent here). (C) Cross-section of the cochlea model 

displaying the three chambers and two membranes. 

 

Preliminary simulations have been conducted using the same P0 (Figure 2-2) for 

the model in Chapter 2; however, the response of the RM has been damped while 
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stability and RM material properties are being improved. The pressure of P1 and P2 for 

the three-chamber model did not differ significantly from that of the two-chamber 

cochlea model as the outer and middle ear was identical in both models. Figure 2-10 plots 

the pressure at the base of the three-chamber cochlea in the SV, SM, and ST. 

Interestingly, the pressure in the SV and SM were almost the same values throughout the 

simulation while the ST pressure was much lower, similar to the two-chamber, spiral 

cochlea model. This was likely due to the large surface area of the RM and its tight 

coupling to the fluid in the SV and SM where the SM and ST boundary has a much 

smaller surface area with the BM. Also, the maximum pressure at the base of the three-

chamber cochlea was less than half that of the two-chamber with max pressures of 66.9 

and 175.2 kPa, respectively. 
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Figure 2-10. Pressure in the cochlea near the base of the BM in the SV (PSV1, black), SM 

(PSM1, blue), and ST (PST1, red). 

Figure 2-11 shows the displacement of the stapes footplate in the piston direction 

(movement of the stapes in and out of the cochlea) and the superior and anterior 
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directions (rocking motion of the stapes). The trend of the stapes footplate motion was 

very similar to the two-chamber cochlea model with the same trend in the piston direction 

motion. The maximum displacement magnitudes were higher in the three-chamber 

model, however. Also, the rocking motion of the SFP decreased with this model. The 

maximum displacement magnitude for the spiral cochlea was 38.9 µm (negative) where 

that in the two-chamber cochlea model was 28.5 µm (negative). 

 

Figure 2-11. (A) Model-derived stapes displacement in the piston, superior/inferior, and 

anterior/posterior directions from BOP exposure. 

Figure 2-12 shows the displacement of the BM at various points along the BM 

(2.5 to 28.25 mm from the base of the BM). The displacement of BM is in the normal 

direction of the surface of the BM. The BM displacement of the three-chamber model 

was more centered around the origin and the effect of the broad, negative low-frequency 

peak was less prevalent in this model compared to the two-chamber model. Furthermore, 

the maximum magnitudes were at least 10 µm less for the three-chamber model at 

distances greater than 13 mm from the base. The maximum displacement of the BM was 
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28.7 µm (negative) at 23.24 mm from the base. The RM appeared to stabilize the motion 

of the BM by controlling the variation in pressure in the SV and SM. 

 

Figure 2-12. Model-derived displacements from the three-chamber cochlea of the BM at 

2.5, 13, 18, 23.25, and 28.25 mm from the base of the cochlea. 

The displacement of the RM can be seen in Figure 2-13. The motion of the RM 

was far less than that of the BM after the basal region of the cochlea. At the base of the 

cochlea (2.5 mm from the base; Figure 2-13), the RM experiences an increasingly 

negative displacement. Interestingly, this was not seen closer to the apex. This could be 

due to the strict damping parameters of the RM and the decrease in SV pressure when 
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compared to the two-chambered model. Future work in this model will include further 

optimizing the material properties of the RM to achieve a representative response from 

the membrane and to further analyzed the pressure distribution throughout the cochlea. 

 

Figure 2-13. Model-derived displacements from the three-chamber cochlea of the RM at 

2.5, 13, 18, 23.25, and 28.25 mm from the base of the cochlea. 

2.5 Conclusions 

A human ear FE model with a two-chamber spiral cochlea was developed and 

simulated BOP transmission throughout the outer, middle, and inner ear. The BOP input 

with a peak pressure of 30.7 kPa resulted in large displacements of the stapes which 

caused high intracochlear pressures and significant BM displacements. The abnormally 

high SFP displacement had a maximum magnitude of 28.5 μm resulting in intracochlear 
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pressures as high as 175.2 kPa and BM displacements up to 43.2 μm which both would 

indicate permanent damage to the cochlea after BOP exposure. The spiral shape of the 

cochlea caused an asymmetric pressure distribution across the width of the cochlea or the 

SV and ST chambers and allowed for significant transverse motion of the BM. 

Preliminary work into the development of a three-chambered, spiral cochlea has begun as 

well with promising results. The spiral cochlea model developed in this study provides a 

necessary advancement from the commonly utilized straight cochlea model to increase 

understanding of the cochlear mechanics during blast exposure, and in doing so, 

progresses towards a model able to predict the potential hearing loss sustained during 

BOP exposure. 
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Chapter 3 A 3D Printed Human Ear Model for Standardized 

Testing of Hearing Protection Devices to Blast Exposure 

3.1 Introduction 

Noisy work environments and increased risk of BOP exposure have caused 

hearing loss to be a prominent disability among veterans.16,18 Blast-related ear injuries, 

such as TM rupture and cochlear damage, can result in hearing impairments.11,23,84 

Hearing protection devices (HPDs) are necessary for preventing hearing loss while 

deployed in hazardous environments, and even though various HPDs are widely 

available, some troops feel HPDs reduce situational awareness.18,101 Advanced HPDs 

have been developed to increase perceived situational awareness and improve uptake of 

HPDs; however, recent studies indicate the need for further HPD improvement with 

reliable and efficient testing methodologies.47,68,101 

Previous studies utilized different computational and experimental methods to 

investigate the efficacy of HPDs when exposed to noise impulses or BOP.26,68,101 

Utilizing HPDs did attenuate intense impulse noises during human experiments, but early 

indications of hearing loss were still found emphasizing that assessment of numerous 

HPD designs in humans would be unethical and cause the subjects long-term harm 47,101. 

Human cadaveric temporal bones (TBs) were used to investigate the protective function 

of different earplugs; however, cadaveric TB models are impractical for thoroughly 

testing HPD designs during development as they rely on donor availability and TB ear 

canals’ size differences add variability to the results.26,105 Acoustic test fixtures (ATFs) 

have been utilized to test insertion loss of HPDs during exposure to impulse noises 

relevant to a military environment, e.g. gunfire.68,69 While Murphy et al.68 did obtain 
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consistent results when testing HPDs in ATFs, the sound pressure levels (SPLs) used 

were below that observed in blast exposures where pressure levels could damage 

expensive ATFs. Computational models offer a cost-effective and time-efficient method 

of testing HPDs in high-pressure environments, and Gan et al.26 were able to simulate 

BOP exposure to their ear model with and without HPDs. While the model provided 

insight into the ear’s response to BOP that could not be measured experimentally, the FE 

model’s results did exhibit some discrepancies when compared to the experimental 

results demonstrating that physical models for testing HPDs are essential until 

computational models improve.  

Due to the technology’s versatility and low cost, 3D printing technology provides 

an intriguing tool for customized solutions for otolaryngology applications.40,53,114 3D 

printed auricular prostheses and ossicular chain prostheses were used to improve the 

cosmetic outcome and mechanical function, respectively, of defected or damaged ears in 

patients, and work has been done to create TM grafts that could aid in restoring the TM to 

its original structure after tympanoplasty.40,48,51,114 3D printed models have the possibility 

to mimic the ear’s function such as in models that simulate mastoid surgery,66,90 however, 

3D printing has not been utilized to create models for the development of HPDs. A model 

that takes advantage of this technology’s benefits could vastly improve the testing and 

evaluation of HPDs. 

In the present article, we report the development of a 3D printed ear model or TB 

that anatomically and mechanically represented the outer and middle ear for the effective 

evaluation of HPDs during blast exposure. This 3D printed TB utilized flexible and rigid 

materials to print the ear canal, TM, middle ear ossicles with suspensory ligaments, and 
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middle ear cavity, and was created using Gan et al.’s24 FE model of the human ear. 

Experiments exposed the 3D printed TB to BOPs with and without HPDs, and results 

were compared with that from similar experiments using cadaveric human TBs for 

validation. These experiments monitored pressure at the ear canal entrance and near the 

TM, with and without earplugs, during BOP exposure. The TM displacement was 

measured during acoustic simulation and compared to published results for further 

validation. This novel 3D printed TB was developed with the aim to provide a 

standardized testing model for the efficient, cost-effective, and repeatable evaluation of 

HPDs’ performance under blast conditions in hopes to hasten the improvement of HPDs.  

3.2 Material and Methods 

3.2.1 3D Printed TB Design and Fabrication 

 The 3D printed TB was designed from an FE model originally developed by Gan 

et al.24 using histological cross-sectional images of a 55-year-old human male TB (left 

ear). The FE and 3D printed TB model consisted of the structural components of the 

human outer and middle ear including the ear canal, TM, ossicular chain, middle ear 

suspensory ligaments/muscle tendons, and middle ear cavity (Figure 3-1a). The FE model 

was imported into SolidWorks (3DS, Waltham, MA) to optimize the human ear model 

for 3D printing, and as seen in Figure 3-1b, a sectional view of the CAD model of 3D 

printed TB shows how the human ear model was encased in the outer TB structure. An 

assembled CAD model of the 3D printed TB is shown in Figure 3-1c-e. The outer ear 

portion contained most of the ear canal and was designed to attach to the “head block” 

used in blast exposure tests as described by Gan et al.26 (Figure 3-1c), and the middle ear 

portion contained the TM, ossicular chain with joints and suspensory ligaments, as well 
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as ports for measuring air pressure near the TM (P1) and in the middle ear cavity (P2) 

and allowing access to the stapes footplate (Figure 3-1d). The 3D printed TB was printed 

as two main sections: outer and middle ear (Figure 3-1e) The cavity seals (Figure 3-1d 

and Figure 3-1e) were initially printed separately from the middle ear portion to facilitate 

removal of support material within the middle ear cavity then fastened to the middle ear 

portion to enclose the middle ear cavity. The access port to the stapes footplate was 

sealed to create an enclosed air cavity for a cochlear load. Future studies will use water 

pressure to simulate the cochlear load. 

 

Figure 3-1. (a) FE model of the human ear with the ear canal, middle ear, and cochlear 

load. (b) Sectional view of the assembled CAD model showing the enclosed ear canal 

and middle ear tissues. (c) Lateral view of the CAD model of the 3D printed TB 

highlighting the ear canal entrance. The model’s shape was designed to mount into the 

head block for blast exposure tests. (d) Medial view of the CAD model of the 3D printed 

TB. The pressure ports to the ear canal near the TM (P1) and middle ear cavity (P2) are 

shown where pressure sensors are threaded for measurements. A port for access to the 

stapes footplate for future studies is also shown. (e) Exploded view of the 3D printed 

TB’s CAD model showing the parts to be printed separately: the outer ear, middle ear, 

and cavity seals. 
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The model was printed using an Objet350 Connex3 3D printer (Stratasys, Eden 

Prairie, MN), which has the capability to print materials with varying mechanical 

properties by mixing multiple proprietary, acrylic-based, UV-cured polymers. Mixing 

rigid and flexible materials (VeroWhitePlus and TangoBlackPlus, respectively) during 

printing allowed the 3D printed TB parts to be printed with different flexibility or rigidity 

per part. Flexible polymer mixtures were used to print the ear’s soft tissues (TM, 

ligaments, tendons, and canal skin) and rigid material mixtures were used to print the 

ear’s hard tissues (ossicles, manubrium, and TB structures). Table 3-1 lists the material 

properties for the 3D printed TB parts. Materials were chosen by their closeness to their 

respective part’s published mechanical properties. Limited information was available for 

the 3D printer materials’ composition and mechanical properties due to Stratasys’ 

materials being proprietary.99,100 

Table 3-1. Material properties of the 3D printed materials used for each part in the 3D 

printed TB. 

Structure 

3D Printer Material Propertiesa 

Tensile Strength 

(MPa) 

Elongation at 

Break (%) 

Young's Mod. 

(MPa) 

Tympanic Membrane 1.3 - 1.8 125%  

Skin 3.5 - 5.0 75%  

Manubrium 40 - 60 25% 1700 - 2300 

Ossicles & TB 50 - 65 10 - 25% 2000 - 3000 

Stapedial Annular Ligament 0.8 - 1.5 170 - 220%  

Other Ligaments 1.3 - 1.8 125%  

Tympanic Annulus 1.3 - 1.8 125%  

Posterior Stapedial Tendon 3.5 - 5.0 75%  

Tensor Tympani Tendon 1.9 - 3.0 105%  

Incudostapedial Joint 2.5 - 4.0 80%  

Incudomalleolar Joint 8.5-10.0 50%  

Abbreviations: Elong. = Elongation; Mod. = Modulus; TB = Temporal Bone 
a Materials used in the Objet350 are proprietary and material properties are reported as 

published by Stratasys Ltd. 99,100 
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3.2.2 3D Printed TB and Human Cadaveric TB Blast Exposure Tests 

 Blast exposure tests in 3D printed TB and human cadaver TB were performed 

similarly to HPD characterizations performed by Gan et al.26. The TBs were packed in 

dry ice and shipped from Science Care, Inc., a certified human tissue supplier for military 

health research. The study protocol was approved by the Office of Research Protections, 

US Army Medical Research and Material Command. The 3D printed TB or human 

cadaveric TBs were exposed to BOPs in an anechoic chamber while fixed to the “head 

block” under a blast apparatus designed for open-field blasts (Figure 3-2a and Figure 

3-2b). Exploding a polycarbonate film (McMaster-Carr, Atlanta, GA) with nitrogen gas 

at the blast aperture (Figure 3-2a) produced BOPs in the range of 6 – 8 psi. Figure 3-2c 

illustrates where pressures were monitored: P0, at the entrance of the ear canal, and P1, in 

the ear canal near the TM. P0 pressure sensor (Model 102B16, PCB Piezotronics, Depew, 

NY) was mounted 1 cm lateral to the entrance of the ear canal (Figure 3-2a), and the P1 

pressure sensor (Model 105C002, PCB Piezotronics, Depew, NY) was either surgically 

implanted (human TB) or screwed (3D printed TB) into an opening near the TM.  
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Figure 3-2. (a) Image of the blast test setup within an anechoic chamber where the “head 

block” sits below the blast aperture. A human cadaveric TB is mounted to the head block 

and the pressure sensor P0 is mounted outside of the ear canal entrance. (b) Image of the 

3D printed TB mounted to the head block. (c) The FE model highlighting where the 

pressures were monitored during blast exposure: at the entrance of the ear canal, P0, and 

in the ear canal near the TM, P1. (d) Images of the foam earplug (left) and Lyric earplug 

with a stick holder (right) used in blast exposure tests. 

The pressure in the middle ear cavity (P2) was not monitored in this study for the 

human TB nor the 3D printed TB as it was in Gan et al.26. Pressure sensor readings were 

recorded and synchronized with a cDAQ 7194, A/D converter 9215 data acquisition 

system (National Instruments Inc., Austin, TX) using LabVIEW Signal Express software 

(National Instruments Inc., Austin, TX).  

Blast tests were performed with and without earplugs inserted into the ear canal of 

the TBs. Either a 3M foam earplug (3M Co., St. Paul, MN) or Lyric hearing aid (Phonak, 
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LLC, Warrenville, IL) was used as HPDs during BOP exposure (Figure 3-2d left and 

Figure 3-2d right, respectively). The Lyric hearing aid (or earplug) is a deep insertion, 

passive hearing aid that is installed 4 mm away from the TM and has the potential to 

offer protection against BOPs.9,26 This was installed without the battery in both the 

human and 3D printed TBs.  

3.2.3 3D Printed TB Validation and HPDs Evaluation 

 To validate the functional capability of the 3D printed TB for sound transmission 

through the ear, the movement of the TM was measured using laser Doppler vibrometry 

(LDV) under acoustic stimulation, and the data were compared with published human 

TM’s displacement in the literature.30 The LDV measurements performed in this study 

were similar to those performed by Gan et al.31; however, only the TM velocity was 

recorded. Sound was delivered in the ear canal near the TM from a speaker (Model MF1, 

TDT, Alachua, FL) through a 1 mm ID tube which was controlled by a dynamic signal 

analyzer (HP 35670A, Palo Alto, CA) and a power amplifier (B&K 2718, Norcross, GA). 

The system’s output sound pressure level was monitored with a probe-tipped microphone 

(Etymotic Research ER-7C, Elk Grove Village, IL) 2 mm away from the TM which 

allowed the system to generate and maintain a pure tone of 90 dB SPL from 200 – 10,000 

Hz. The TM movement was measured by the LDV (Polytec CLV 2534, Irvine, CA) with 

the laser focusing on a piece of reflective tape attached to the TM’s umbo and recorded 

by the dynamic signal analyzer. 

Comparison between P1 pressure waveforms from the human and 3D printed TBs 

were used as validation for the model as an effective HPD test standard. Measures used to 

compare P1’s intensity and waveform were the peak pressure level, P1:P0 peak pressure 
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ratio, and A-duration (the measure of time the positive portion of the peak pressure is 

sustained). In addition, BOP attenuation by the earplugs was examined and compared 

between the 3D printed and human TBs. The percent error among recorded data was used 

to evaluate the accuracy of the 3D printed TB model to the human TB. The human TB 

blast test data used for comparisons were previously published in Gan et al.26 where blast 

tests were performed on 13 TBs with foam earplugs (age 74.5 ± 7.6) and six TBs with 

Lyric earplugs (age 79.7 ± 5.2). 

3.3 Results 

A finished print of the 3D printed TB’s unassembled middle ear can be seen in 

Figure 3-3a-d where rigid materials were printed in either white or yellow (hard tissues) 

and flexible materials were printed in shades of gray or black (soft tissues). The lateral 

surface of the TM can be seen through the ear canal in Figure 3-3a while Figure 3-3b 

shows the medial-inferior side of the TM within the middle ear cavity. The ossicular 

chain was freely suspended after the removal of the support material. The top and back 

seals (Figure 3-3c) were affixed to the middle ear portion to form the middle ear cavity. 

For clarity, the TM, ossicular chain and their attached ligaments and tendons were 3D 

printed separately and are shown in Figure 3-3d. The ossicular chain was printed at a 1:1 

scale from the human ear or FE model and retained its shape throughout the 3D printed 

TB’s fabrication. Figure 3-3e and Figure 3-3f show the fully assembled 3D printed TB. 

The model was designed to mount in our current head block with pre-printed mounting 

holes and allow space to adhere a silicone pinna (Figure 3-3e). Figure 3-3e demonstrates 

how the Lyric earplug would be fitted into the ear canal. A medial view of the 3D printed 

TB can be seen in Figure 3-3f where ports to the ear canal (P1), middle ear cavity (P2), 
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and stapes footplate are highlighted. The ports for P1 and P2 were printed to the 

recommended specifications of the pressure sensors used in blast exposure tests to ensure 

a secure fit (Figure 3-3f). The port to the stapes footplate was designed to allow the 

application of a cochlear pressure to the stapes footplate in future applications, and as 

with the P2 port, it was not used in the present study. 

 

Figure 3-3. Images of a finished print of the 3D printed TB’s unassembled middle ear 

portion. (a) Lateral view of the middle ear portion showing the ear canal and TM within. 

(b) Medial view of the middle ear portion of the 3D printed TB showing the opening used 

for cleaning. (c) Posterior view of the 3D printed TB’s middle portion with the seals. (d) 

A 3D print of the ossicles, TM, and ligaments, and tendons from within the middle ear 

cavity of the 3D printed TB. The ossicles were imaged without the surrounding material 

and with a scale to highlight the detail and size of the middle ear tissues. (e) Lateral view 

of the assembled 3D printed TB with a Lyric earplug inserted into the ear canal. A 

silicone mold of the pinna was adhered to the 3D printed TB to simulate the outer ear. (f) 

Medial view of the assembled 3D printed TB showing the ports to measure the pressures 

at the TM and in the middle ear cavity and to access the stapes footplate. 

Figure 3-4 displays the peak-to-peak displacement of the 3D printed TB’s TM and 

compares it to data published by Gan and Wang.30 The published data was recorded using 

LDV measurements in seven human cadaveric TBs with no observable TM damage, and 

their results and average are shown in Figure 3-4. While the displacement of the 3D 
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printed TM follows a similar trend as the human TM, the peak-to-peak displacement of 

the 3D printed TM was substantially lower than the human’s at frequencies lower than 3 

kHz. The greatest discrepancy between the human TB average and 3D printed TM 

occurred at 275 Hz with a difference of 0.058 µm (72.5% error, 0.080 and 0.022 µm for 

Gan and Wang30 average and 3D printed TM, respectively), and the closest values 

occurred at 5,248 Hz with a difference of 0.003 µm (41.1% error, 0.007 and 0.004 µm for 

Gan and Wang30 average and 3D printed TM, respectively). It is important to note that 

the 3D printed TB was initially designed to test HPDs’ effectiveness in protecting the ear 

during BOP exposure and was not designed for acoustic SPL experiments, but future 

iterations of the model will aim to include acoustic tests. 

 

Figure 3-4. Plot of the peak-to-peak displacement of the TM over the frequency range of 

200 – 10,000 Hz for the 3D printed TB’s TM (red line) and seven human TB samples 

(solid black lines) from Gan and Wang 30. The average of the seven samples is plotted in 

the black dotted line. 
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The pressures measured during BOP exposure without an HPD for the 3D printed 

TB and human TB are shown in Figure 3-5a. Specifically, the plot compares the 

pressures recorded at P0 (entrance of the ear canal) and P1 (in the ear canal near TM) for 

the printed TB and a human. The peak P0 pressure values were 5.89 psi (186 dB) and 

5.92 psi (186 dB) for the human TB and 3D printed TB, respectively, and the A-duration 

of the P0 waveforms for the human TB and 3D printed TB were 0.32 ms and 0.28 ms, 

respectively. The P0 waveforms for both test TBs in Figure 3-5a exhibited very similar 

magnitudes and shapes. The resulting P1 pressure waveforms had peak values of 10.38 

psi (191 dB) and 9.79 psi (191 dB) (5.7% error) which occurred at 0.79 ms and 0.69 ms 

(12.7% error) for the human TB and 3D printed TB, respectively. The A-duration of the 

P1 waveforms were 0.05 ms and 0.08 ms for the human TB and 3D printed TB, 

respectively, with a small difference of 0.03 ms. While the P1 peak pressures and A-

durations were similar, the time-of-arrival for the P1 peak was sooner for the 3D printed 

TB than with the human TB (Figure 3-5a). This was likely due to the 3D printed TB 

having a shorter ear canal than the compared human TB sample and the delay of air 

velocity and pressure from BOP with increased distance.15 In addition, the time-of-arrival 

difference shown in Figure 3-5a was within the variance reported in previous publications 

testing HPDs during BOP exposure.26 The P1:P0 ratio was 1.76 for the human TB sample 

and 1.65 for the 3D printed TB with a relatively low percent error of 6.19%, and 

according to an HPD characterization study by Gan et al.26, the P1:P0 ratio of the 3D 

printed TB was well within the standard deviation reported (typically a mean and 

standard deviation of 1.7 ± 0.4). 
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Figure 3-5. (a) Plot of the P0 (ear canal entrance) and P1 (in the ear canal near the TM) 

pressures measured in blast tests of the 3D printed TB (red line for P0 and purple line for 

P1) and a human cadaveric TB (blue line for P0 and black line for P1) without hearing 

protection. (b) and (c) are plots of the P0 and P1 pressures measured in blast tests of the 

3D printed TB (b) and human cadaveric TBs (c) protected with a foam earplug (blue line 

for P0 and black line for P1) or Lyric earplug (red line for P0 and purple line for P1). 

Figure 3-5b and Figure 3-5c report the measured pressures during BOP exposure 

for the human and 3D printed TBs with earplugs equipped.  The P0 and P1 pressures 
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recorded while the 3D printed TB had either the foam or Lyric earplug inserted into the 

ear canal can be seen in Figure 3-5b, and Figure 3-5c plots the similar data for that in a 

human TB sample. For the 3D printed TB, the peak pressures were 6.54 psi (187 dB) and 

1.06 psi (171 dB) for the foam earplug (blue and black lines) and 5.62 psi (186 dB) and 

0.92 psi (170 dB) for the Lyric earplug (red and green lines) at P0 and P1, respectively. 

The P1 peak times occurred at 0.55 ms and 1.57 ms for the foam and Lyric earplugs, 

respectively. As for the human TB, the peak pressures were 6.43 psi and 0.65 psi for the 

foam earplug and 8.24 psi (189 dB) and 1.18 psi (172 dB) for the Lyric earplug at P0 and 

P1, respectively (Figure 3-5c). The P1 peak times occurred at 1.93 ms with the foam 

earplug and 0.83 ms with the Lyric earplug. Qualitative observation of the results initially 

revealed that HPDs in the 3D printed TB attenuated blast pressures similar to that in 

human TBs; however, P1 peak pressure and time differences between the 3D printed and 

human TBs were 20% greater for all values. Earplug fit and ear canal variation may 

account for much of the difference between the human and 3D printed TBs. An ear canal 

designed to better fit standard sized earplugs can be considered for future model 

iterations.  

Despite discrepancies in the measurements at P1, the 3D printed TB’s ability to 

evaluate HPDs’ protective function was within the desired operating range. For the foam 

earplug, the drop in pressure from the entrance of the ear canal to the TM (P0 – P1, in 

decibels) was 19.9 dB in the human TB and 15.8 dB in the 3D printed TB (20.7% error), 

and while that was a difference of 4.1 dB, the decibel loss for tests performed in the 3D 

printed TB was within the standard deviation for tests performed in human cadaveric TBs 

with the same earplugs as reported by Gan et al.26 (mean and SD of 12.3 ± 6.4 dB for 
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foam earplugs). The P0 – P1 for the Lyric earplug in the human TB was 16.9 dB and 15.7 

dB in the 3D printed TB with the same earplug (7.0% error). The difference in pressure 

level drop across the Lyric earplug between the two TBs was also within the standard 

deviation reported by Gan et al.26 (mean and SD of 16.3 ± 1.7 dB the Lyric earplug), and 

it is important to note that the Lyric earplug was fitted in both the human and 3D printed 

TB by an experienced audiologist from Phonak to ensure a correct fit which may account 

for the decreased variance among samples. Table 3-2 summarizes pressure measurements 

previously mentioned (in decibels) for Figure 3-5. 

Table 3-2. Summary of the pressure intensities measured during blast exposure tests. 

TB 

Model 

P0 (dB) 

w/out EP 

P1 (dB) 

w/out EP 

P1:P0 ratio 

w/out EP 
P0 w/EP (dB) P1 w/EP (dB) P0 - P1 w/EP (dB) 

    Foam Lyric Foam Lyric Foam Lyric 

3D Printed 186.2 190.6 1.65 187.1 185.7 171.3 170.0 15.8 15.7 

Human 186.2 191.1 1.76 186.9 189.1 167.0 172.2 19.9 16.9 

Abbreviations: EP = Earplug, Foam = Foam Earplug, Lyric = Lyric Earplug, TB = Temporal Bone 

3.4 Discussion 

3.4.1 Application of 3D Printed TB for Evaluation of HPDs 

 The use of a standardized blast test model for assessing the protective function of 

HPD designs should greatly assist in HPD development by offering an efficient, accurate, 

and cost-effective model. Improved HPDs would undoubtedly reduce the occurrence of 

hearing loss among veterans.18 Previous publications have reported studies that 

thoroughly test various HPDs at the sound pressure level of military firearms68,69 (about 

130 – 170 dB), but few studies investigated the effectiveness of HPD in blast pressures 

above 180 dB.9,26,105 Gan et al.’s26 study published the most comparable results to the 

tests performed with the 3D printed TB with blast exposures performed at levels above 
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185 dB. The P1 pressures measured in the 3D printed TB were similar to that observed 

by Gan et al.26, and as previously mentioned, many of the metrics measured with the 3D 

printed TB followed the same trend and were well within the standard deviations reported 

by Gan et al.26.  In addition, the P1 reduction (P1 with an earplug subtracted from P1 

without an earplug) of the foam and Lyric earplugs in the 3D printed TB were 19.3 dB 

and 20.5 dB, respectively, which were within the reported standard deviations (17.3 ± 6.8 

dB and 20.9 ± 5.3 dB for the foam and Lyric earplugs, respectively26). Brungart et al.9 did 

report an impulse peak insertion loss (i.e. P0 – P1) of 30 – 34 dB at blast pressures from 

150 – 190 dB using a Lyric extended wear hearing aid. The greater than 10 dB difference 

in attenuation may be due to the use of an ATF, and the authors mentioned that the Lyric 

hearing aid needed to be placed against the ATF’s microphone (i.e., eardrum) due to the 

short length of its ear canal. Since the 3D print TB’s ear canal was anatomically correct, 

the Lyric hearing aid was inserted at the correct length. The 3D printed TB, with HPD 

attenuation function measurements similar to literature,9,26,105 demonstrated that this 

developed model may function as an accurate standardized model for efficiently 

evaluating HPDs’ performance. 

ATFs have been used as a model for evaluating high-pressure transmission in the 

ear, and high-pressure ATFs do exist that withstand pressures as high as 193 dB,68,105 

however, the test fixture alone would cost above $1,000. Such a high equipment cost 

would be prohibitive for many researchers who desire to test HPD designs in a blast 

environment not to mention risking damage to the expensive ATF during tests. Our 3D 

printed TB provides an effective blast test model for evaluating HPDs where if a 

researcher has access to a similar 3D printing system, a researcher may obtain our model 
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for less than $100 of printing material. A low-cost, accurate test fixture like the 3D 

printed TB presented here would make blast exposure tests available to more HPD 

developers increasing their beneficial impact on the prevention of blast-related ear 

injuries. 

3.4.2 Limitations and Future Work 

 The middle ear tissues attached to the ossicular chain are viscoelastic in which 

their response to stimuli is heavily dependent on time or strain rate. This is a limitation of 

the current 3D printed TB model as the materials used to print the TB exhibited an elastic 

behavior. The difference in LDV displacement measurements between the 3D printed 

TM and published human TM should be due to the lack of viscoelastic behavior of the 

3D printed TM and middle ear. While this was not the primary goal of this study, a 3D 

printed TB that can model the mechanical response of the ear from blast and acoustic 

stimuli would be greatly beneficial to the development of HPDs. Refinement of the 

acoustic response of the 3D printed TB’s middle ear is planned for future iterations of our 

model, which include mass-balancing middle ear tissues and exploring alternative 

materials for the model. 

Moreover, discrepancies between the LDV data from the 3D printed TB and 

human TB (Figure 3-4) indicated that the transfer function of the middle ear in 3D 

printed TB needs to improve.31 To address the mass-damping balance of the 3D printed 

TB’s middle ear, the addition of a cochlear load (along with material improvement) will 

further improve the acoustic response of our 3D printed TB. As shown in Figure 3-1d and 

Figure 3-5b, the design of the 3D printed TB considered this as a way to provide the fluid 

pressure feedback from the cochlea during ossicular movement. Once the middle ear 
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transfer function of the 3D printed TB is improved, LDV measurements of the TM and 

ossicular chain are planned to further validate our model, and with the versatility of 3D 

printing, measuring the velocity of the incus and stapes footplate can be facilitated by 

incorporating windows for the vibrometer to simply measure the ossicles. 

3.5 Conclusion 

 In summary, a 3D printed TB was created for the purpose of providing 

standardized testing of HPDs to blast exposure. Two HPDs (a standard foam earplug and 

Lyric hearing aid) were included for testing the protective function with the 3D printed 

TB during blast. The attenuated peak pressure near the TM was as low as 0.92 psi (170 

dB) with a blast peak pressure of 5.62 psi (186 dB) at the entrance of the ear canal with 

an HPD in use, and without an HPD, the pressure near the TM was 9.79 psi (191 dB) 

with a similar blast peak at the entrance of the ear canal. Results show that the pressure 

measurements in the 3D printed TB were well within the mean and standard deviation of 

the published data from tests performed in human cadaveric TBs demonstrating that our 

3D printed TB is a valid model for testing HPD designs. The 3D printed TB developed in 

this study provides an accurate and cost-effective evaluation tool for HPDs’ protective 

function against BOP exposure. The printed ear model has the potential to perform as a 

human temporal bone model for research in ear biomechanics for acoustic transmission 

and the development of middle ear implants. 
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Chapter 4 Assessing the Effect of Liraglutide on the Blast Damages 

Sustained in the Chinchilla Cochlea with Scanning Electron 

Microscopy 

4.1 Introduction 

The inner ear, or cochlea, has long been the subject of research for investigating 

sensorineural hearing loss (SNHL) occurring after noise exposure damages the inner 

ear.50,57,80 Furthermore, noise exposure has been shown to damage the synaptic 

connections and neuron synapses within the cochlea, also known as synaptopathy, while 

leaving their respective hair cells intact.49,57 Despite the correlation between noise and 

inner ear damage becoming more clear, research into how blast affects the inner ear is 

still relatively new.11,18,39,70,102 Previous studies in BOP exposure to the ear suggested that 

blasts can damage the cochlea hair cells,39,70 the spiral ganglion and their synaptic 

connections,39 and even cause damage to the central auditory system.23,61,82 Since the 

extreme pressures from blasts can affect both the peripheral and central auditory systems 

(PAS and CAS, respectively) and cause overlapping symptoms, more work is needed to 

assess the specific damage mechanisms occurring within the cochlea. 

Therapeutics to mitigate long-term hearing loss after blast exposure are needed 

and sought after since many deployed service members of the military are at high risk for 

blast exposure and hearing loss is commonly developed in those who are exposed.18 A 

long-lasting glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, binds to the 

GLP-1 receptor of neurons which results in an increase in protein kinase A and B which 

in turn activates transcription factor cAMP-responsive element-binding protein (CREB) 
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and promotes cell proliferation. Furthermore, the activation of the GLP-1R pathway 

protects the cell by downregulating the blast-induced oxidative stress that can lead to 

apoptosis. Liraglutide was shown in studies to exhibit these potential protective effects in 

neuronal tissue by ameliorating neurodegeneration induced by Parkinson’s and mild 

traumatic brain injury (TBI).103 Clinical research on military personnel has shown a 

strong correlation between TBI and sensorineural hearing loss, and the auditory cortex 

neuron and spiral ganglion loss from blast-induced damaged shared similar mechanisms 

with memory loss induced by TBI.72,104 This strongly suggests that liraglutide can also 

protect the neurons of the auditory system after blast exposure as well. While there is 

potential for protecting the neuronal tissue of the auditory system, the effect of liraglutide 

has on the cochlea after blast exposure is unknown, and since the health of the spiral 

ganglion and hair cells are closely related,39,57 the blast-induced cochlear damage needs 

to be assessed to fully understand liraglutide's effect on the inner ear post-blast exposure. 

Scanning electron microscopy (SEM) has been used as a tool for analyzing hair 

cells and their stereocilia.42,43,70,75,106 The high resolution and excellent topographical 

detail provided by SEM allowed researchers to easily visualize subtle physical damages 

to the stereocilia of OHC caused by blast or noise exposure and even observe the tip links 

between the stereocilia.33,43,70 Through SEM studies, it was observed that the stereocilia 

could recover their shape and tip links as soon as four days after noise exposure to levels 

that cause temporary hearing loss (110 dB for 30 minutes), as well as the progressive 

decay of stereocilia and the loss of hair cells exposed to noise at permanent hearing loss 

levels (120 dB for 150 minutes).33 The blast-induced disruption of the stereocilia was also 

observed using SEM.70 Since the scarring of the organ of Corti after hair cell loss and the 
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damage to the stereocilia can effectively be observed with SEM, SEM is a valuable tool 

for observing the blast-induced effects on the organ of Corti and if liraglutide 

significantly protects against hair cell loss in the cochlea. 

The reported study aimed to utilize SEM to assess the blast-induced hair cell 

damage in chinchillas exposed to blast and the potential therapeutic effect of liraglutide 

on hair cell viability. Chinchillas were exposed to six consecutive blasts at levels ranging 

from 21-35 kPa (3-5 psi or 180-185 dB SPL). Auditory brainstem response (ABR) was 

measured on Day 1 (before and after blast) and on Days 4, 7, and 14 to characterize the 

progression of the hearing damage. A seven-day-long liraglutide treatment was started 

two days before blast exposures, and the results measured from hearing function tests and 

SEM analysis were performed to investigate the therapeutic function of the liraglutide for 

protecting the cochlea and its outer hair cells (OHCs). 

4.2 Materials and Methods 

4.2.1 Animal Protocol for Drug Administration and Blast Exposure 

Young, chinchillas (Chinchilla laniger) with mixed-gender provided by Ryerson 

Chinchilla Ranch (Plymouth, OH) were included in this study. The study protocol was 

approved by the Institutional Animal Care and Use Committee of the University of 

Oklahoma following the guidelines of the National Institutes of Health and the US 

Department of Agriculture. All animals went through health exams to ensure they are 

healthy at the beginning of the experiment. 

Nineteen chinchillas were randomly separated into three groups: blank control, 

pre-blast drug treatment, and blast control (N = 5, 8, and 6, respectively). Figure 4-1 

shows the time course and experimental procedures for the pre-treatment drug group. 
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Key procedures such as blast exposure, hearing function tests, and euthanasia are 

emphasized by arrows. Animals in the pre-blast treatment group were subcutaneously 

injected daily with liraglutide (Victoza, Novo Nordisk Inc. Plainsboro, NJ) two days 

before the blast exposure and every day thereafter for seven consecutive days. The blast 

control chinchillas underwent blast exposure procedure only without the liraglutide 

treatment. The dose of liraglutide was 246.7μg/kg/day, which was equivalent to the 

human dose (20μg/kg/day) normalized to body surface area across species and considered 

respective to the dosage used for published mice and rats studies.37,56 The hearing 

function tests were performed before and after the blast on Day 1 and Days 4, 7, and 14. 

Upon the completion of the Day 14 hearing function test,  some of the chinchillas from 

the blast control and pre-blast treatment groups were euthanized to harvest the cochleae 

for SEM imaging, and the remaining chinchillas were euthanized after the Day 28 

hearing function test where the cochleae were harvested for SEM imaging. 

 

Figure 4-1. Schematic diagram of the time course and experimental procedure for the pre-

blast treatment group. 

 For the blast procedure, the animals were anesthetized with an intramuscular 

injection of 35 mg/kg Ketamine (Henry Schein Animal Health, Dublin, OH) and 3 mg/kg 

Xylazine (Akorn Inc., Lake Forest, IL) to ensure the chinchilla was sedated during blast 

exposures. The experimental blast setup used for this study was previously reported by 

Smith et al.95 In short, the chinchilla was placed in a specifically designed L-shape animal 
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holder and fixed with straps to position the top of its head facing the center of the blast 

source (Figure 4-2). The nose of the chinchilla pointed forward and the pinna remained 

unfolded to ensure the ear canal was naturally open during the blast exposures. A 

pressure sensor (Model 102B16, Piezotronics, Depew, NY) was fixed to the animal 

holder with the measuring surface next to the chinchilla’s ear to monitor the blast 

pressure at the entrance of the ear canal. 

 

Figure 4-2. Schematic of the animal experimental setup with blast apparatus. The top of 

the chinchilla’s head was facing the blast source and the nose of the chinchilla pointed to 

the front. Figure from Jiang et al.46 

 A well-controlled compressed nitrogen-driven blast apparatus, located inside an 

anechoic chamber (Figure 4-2), was used to generate BOPs at peak pressure levels of 21-

35 kPa (3-5 psi) using polycarbonate films of thickness 0.25 mm (McMaster-Carr, 
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Atlanta, GA). The chinchilla was exposed to six consecutive blasts at 5-minute intervals. 

The pressure signals from the sensor were processed by a cDAQ 7194 and A/D converter 

9215 (National Instruments Inc., Austin, TX) at a sampling rate of 100k/s (10 ms dwell 

time) using a LabVIEW software package (National Instruments Inc., Austin, TX) for 

data acquisition and analysis. 

4.2.2 Hearing Function Measurements 

 The testing for the hearing function was performed on Day 1 pre- and post-blast 

and Days 4, 7, and 14. For hearing tests performed on Days 4-14, the chinchillas were 

sedated by isoflurane (Covetrus, Dublin, OH) at a concentration of 1%-3% in the oxygen 

at a flow rate of 1L/minute. Isoflurane sedation was not used on days with blast exposure 

due to the inability of the sedation equipment to withstand blast exposure. Before each 

hearing function measurement, the condition of the ear canal and TM were examined 

with a 3.9 mm digital otoscope (ScopeAround), and wide-band tympanometry (Titan, 

Interacoustics, Denmark) measurements were recorded as well to determine TM and 

ossicular function. Thereafter, ABR measurements were performed on anesthetized 

animals at the previously specified time intervals. 

 Following a protocol previously reported by Smith et al.95, ABR measurements 

were recorded bilaterally using a TDT system III (Tucker-Davis Technologies, Alachua, 

FL). While anesthetized, stainless steel needle electrodes were placed subcutaneously at 

the vertex of the skull and ventrolateral surfaces of the ear, and a ground electrode was 

placed in the rear leg. Tone burst stimuli of 0.5-ms rise-fall time and 4-ms duration with 

alternating polarity at frequencies of 1, 2, 4, 6, and 8 kHz were used.27 The stimuli signals 

were designed by the SigGenRP and BioSigRP software, created by an RP2.1 signal 
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processor, attenuated by a PA5 programmable attenuator, amplified by two stages of SA1 

stereo power amplifier and power amplifier TYPE 2718 (BRUEL & KJAER, Nærum, 

Denmark), generated by an MF1 multi-field magnetic speaker, and delivered into the 

chinchilla ear canal through a 10 cm tube. The sound pressure level in the ear canal was 

calibrated and monitored by a probe microphone (ER-7C, Etymotic Research, Elk Grove 

Village, IL). The electrode recordings were pre-amplified and collected by an RA16 

Medusa base station at a rate of 25 kHz.  

 ABR thresholds were determined by visually examining the prominent ABR 

peaks to determine the lowest sound level at which reproducible waveforms were 

observed. If an ABR response was not detected at the maximum acoustic stimulation, the 

threshold was arbitrarily set to be 100 dB. Alternatively, the threshold was arbitrarily set 

to be 20 dB if the ABR signal continued to appear at 20 dB. The ABR threshold shifts on 

Days 1, 4, 7, and 14 were calculated by subtracting the threshold measured pre-blast from 

the threshold measured at the post-blast time points. 

4.2.3 SEM Preparation and Imaging 

After the hearing function measurements on Days 14 or 28, the chinchilla was 

anesthetized with ketamine/xylazine, and transcardial perfusion was performed with 

phosphate buffer saline (PBS) followed by 4% paraformaldehyde. Once the animal was 

euthanized, the cochlea was immediately harvested, and the round and oval window 

membranes were removed. The cochlea sample was then fixated in 2% paraformaldehyde 

(Sigma-Aldrich) and 2.5% glutaraldehyde (Ted Pella, Inc) with 0.1M PBS solution 

containing 5% sucrose overnight at 4 °C. The samples were then decalcified with 0.5M 

ethylenediaminetetraacetic acid (Sigma-Aldrich) in PBS for seven days and micro-
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dissected for a post-fixation with 1% OsO4 (Ted Pella, Inc) at 4 °C for 30 min.  Samples 

were then dehydrated in ethanol, critical point dried with CO2, sputter-coated with 

gold/palladium, and examined with an electron microscope at the University of 

Oklahoma Samuel Roberts Noble Microscopy Laboratory (either with the JSM-840 

[JEOL Ltd., Tokyo, Japan], TM3000 [Hitachi Ltd, Tokyo, Japan], or NEON [ZEISS, 

Jena, Germany]). Cochlea samples were imaged at the characteristic frequency regions of 

the organ of Corti at: 0.5, 1, 4, 6, and 8 kHz (roughly 13, 10.5, 5.5, 4, and 3 mm from the 

base of the BM, respectively). Note that SEM imaging was not performed for every 

animal within the groups of this study (n = 5, 4, 4, 3, and 3 for control, Day 14 and 28 

pre-blast treatment, and Day 14 and 28 blast control, respectively) due to animal tissues 

being preserved for other histological studies. 

4.2.4 Statistical and Imaging Analyses 

 The ABR threshold was expressed as the mean ± SEM (standard error) and was 

plotted in GraphPad Prism (GraphPad Software Inc., Version 9.0). A two-way repeated-

measures ANOVA test (α = 0.05) was used to check whether the effects of the treatment 

(pre-blast treatment and blast control) and post-blast recovery time were significant (p < 

0.05). 

 OHC counts were performed on the SEM images of the organ of Corti at the 0.5, 

1, 4, 6, and 8 kHz frequency positions. OHC bin sizes of 15x3 (maximum of about 45 

OHCs) were used for the cell count areas. Note it was possible to have more than 45 

OHCs within the counting area due to extra OHCs being present. One-way ANOVA test 

(α = 0.05) was used to test for significance (p < 0.05) among the groups per frequency 

position. 
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4.3 Results 

 Figure 4-3 shows representative SEM images from each group at the 0.5, 4, and 8 

kHz regions. Missing OHCs in Figure 4-3 can be recognized from the area where the 

Deiters’ cells redistribute to seal the reticular lamina after an OHC dies (black arrows).55 

Notice that the control cochlea samples exhibit a baseline amount of hair cell loss that 

occurs occasionally along the length of the organ of Corti. SEM imaging did not show a 

significant increase in hair cell loss when compared to the control SEM imaging analysis. 

Furthermore, disturbed stereocilia could be observed in some of the images (Figure 4-3J-

M for example), but the source of that disruption can be assumed to be from sample 

preparation since stereocilia have shown to recover from temporary damage within four 

days or advanced degeneration of the OHC and stereocilia would have set in within this 

study’s observation time.33  
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Figure 4-3. (A-O) SEM images of the OHCs of the three animal groups: control (A-C), 

Day 14 (D-F) and Day 28 (J-L) blast control, and Day 14 (G-I) and Day 28 (M-O) pre-

blast treatment. Images from each group are from the 0.5, 4, and 8 kHz frequency region 

of the BM. Arrows point out missing OHCs and the scale bar represents 10 µm. 
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 Figure 4-4 shows the mean and error bars (standard error) of the OHC counts 

from the SEM images. Cell counts were performed at BM frequency positions of 0.5, 1, 

4, 6, and 8 kHz for each of the animal groups: blank control (n=5), Day 14 (n=4) and Day 

28 (n=4) pre-blast treatment, and Day 14 (n=3) and Day 28 (n=3) blast control. Each 

groups’ means were above 40 for every frequency position except for Day 14 pre-blast 

treatment at 6 kHz. This led to the result that the blast exposure treatment (six 

consecutive blasts at pressure levels of 21-35 kPa) did not cause a significant loss in 

OHCs at the imaged frequencies 14 or 28 days after blast exposure, neither could 

liraglutide’s protective effect be observed at those frequencies and time points. Even 

though the mean for Day 14 pre-blast treatment at 6 kHz was 32.75, the OHC count for 

this group varied widely causing a standard error of 7.21 (SD of ±14.42) which resulted 

in no significant difference for this groups mean amongst the other groups. The organ of 

Corti for some of the Day 14 pre-blast treatment at 6 kHz sample exhibited heavy 

scarring and missing OHC while other samples within this group did not show any loss of 

OHCs. As shown by Figure 4-4, many areas of the observed cochleae in the test groups 

did not show more OHC loss than what was observed in control samples. 
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Figure 4-4. Mean and standard error bars of outer hair cell count from SEM images of the 

three animal groups: control (n=5), Day 14 (n=4) and Day 28 (n=4) pre-blast treatment, 

and Day 14 (n=3) and Day 28 (n=3) blast control. Cell counts for each group are 

compared at BM frequency positions of 0.5, 1, 4, 6, and 8 kHz. 

 Figure 4-5 shows the mean and standard error of the ABR threshold shifts for 

animals in the pre-blast treatment and blast control groups on Days 1 (post-blast), 4, 7, 

and 14 (n=14 ears in each group). The mean threshold shifts post-blast ranged between 

35 dB to 50 dB for both groups with shifts tending to be lower at 1 kHz and greater at 4 

to 8 kHz. The ABR threshold shifts decreased over time from Day 1 to Day 14 and at a 

decreasing rate with the greatest reduction occurring between Days 1 and 4. As shown in 

Figure 4-5A, the mean threshold shifts for Day 14 of the drug treatment group ranged 

from 5 dB at 1 kHz to approximately 25 dB at 6 kHz. The blast-control group results 

shown in Figure 4-5B showed greater threshold shifts on Day 14 than the liraglutide-

treated group with the mean threshold shift value increasing from 15 dB at 1 kHz to 30 

dB at 8 kHz. The ABR threshold shift indicated the blast-induced acute damage on Day 1 
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was approximately at the same level for both groups of chinchillas, and the high-

frequency (4-8 kHz) was more severely damaged than the low-frequency hearing (1-2 

kHz).  The liraglutide treatment facilitated the recovery of the ABR threshold after blasts. 

The two-way ANOVA analysis at each frequency point indicated the recovery time 

significantly (P<0.05) changed the mean of the ABR threshold shift at all frequencies. 

The liraglutide treatment introduced a significant change of the ABR threshold shifts at 1, 

2, 5, and 8 kHz but not on 4 kHz (P = 0.69). 

 

Figure 4-5. ABR threshold shifts (mean ± SEM, n = 14 ears in each group) measured on 

Days 1, 4, 7, and 14 from (A) pre-blast treatment and (B) blast control groups. Figure 

from Jiang et al.46 

 For reference, Figure 4-6 shows the ABR threshold hearing function tests on drug 

and sham control animals. These plots only present the direct threshold readings and not 

the shift in ABR threshold relating to pre-blast exposure levels. This was due to the shift 

for each control being too small to meaningfully present. The ABR threshold results 

show that the liraglutide drug treatment and anesthetization procedures did not alter the 

ABR threshold of the animals. 
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Figure 4-6. The ABR threshold was measured from (A) drug control (mean ± SEM, n = 6 

ears) and (B) sham control (mean ± SEM, n = 4 ears) groups. In the drug control group, 

the measurement was conducted on Days 1(Pre), 4, 7, and 14. In the sham control group, 

the measurement was only conducted on Days 1(Pre), 4, and 7. Figure from Jiang et al.46 

4.4 Discussion 

4.4.1 Effect of Liraglutide on OHC and Hearing Loss 

With blast-induced auditory injury research becoming more relevant, studies 

investigating the blast damage to the cochlea have increased;11,39,70,82 however, it is 

becoming more apparent that blast-induced hearing loss and TBI correlate and affect each 

other as the field matures.60,82 While investigating a therapeutic drug for mitigating blast-

induced CAS damage, it is necessary to determine the therapy’s effect on the cochlea due 

to the dependent relationship between blast damage and the peripheral and central 

auditory systems.60 In this study, the OHC loss along the BM after exposure to six 

consecutive blasts was investigated along with the liraglutide’s effect on that OHC loss. 

The cochleae were examined at 14 and 28 days after exposure to BOPs ranging from 21-

35 kPa (3-5 psi). ABR threshold shifts were also reported to analyze the resulting hearing 

function and compare them to the SEM images. Interestingly, the widespread permanent 

threshold shifts observed in Figure 4-5 did not reflect in the SEM imaging analysis 

(Figure 4-4). The missing OHC counts from the blast groups were not more than what 
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was seen in the control group. All animal groups had the occasional missing OHCs, but a 

pattern did not exist that would result in a significant difference among the groups. This 

result is not surprising, however, as researchers have characterized the loss of hearing 

where synapses and spiral ganglion are damaged or degenerated but the hair cell remains 

as synaptopathy.39,49,57 Liberman et al.49 reported the degeneration of hair cell’s efferent 

and afferent neurons after noise-induced hearing loss, but their respective hair cells could 

remain up to two weeks after exposure. Furthermore, damaged areas showed lower 

synaptic activity at the hair cell showing that the hair cell could recover from temporary 

hearing loss while the neuron does not.33,49 A follow-up study showed that similar results 

were found where chinchillas developed synaptopathy after being exposed to blasts at a 

level that caused temporary hearing loss.39 Blast-induced cochlear damage has been 

shown to affect both the neurons of the cochlea and the hair cells, but at lower BOP 

levels, such as in this study, the cochlear damage my not obviously damage the hair cells 

of the cochlea.39,70 

All the chinchillas of this study experienced TM rupture during the six blast 

exposures. While the damage to the TM and middle ear was apparent, the rupture of the 

TM had a protective effect on the inner ear. The pressure the TM experienced during 

blast exposure was partially relieved when a rupture occurred. Thus, the displacement 

magnitude of SFP would be reduced, and the TM rupture subsequently lowered the input 

energy into the cochlea. This could further explain why OHC remained viable even at the 

base of the cochlea. A similar effect was observed by Hickman et al.39 The authors 

observed that hair cell survival was higher for chinchillas when their eardrum ruptured 

during blast exposure compared to those who did not experience eardrum rupture.39 
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While this gives incite to the high survival rate of OHCs in this study, it does not explain 

the widespread hearing loss for chinchillas in blast groups. This study is further evidence 

that blast-induced hearing loss is greatly intertwined with damage to the CAS and 

auditory nerve, and with the greater recovery in hearing function in drug-treated animals 

compared to that in untreated animals, liraglutide showed to be a potential therapeutic 

drug for blast exposure victims.  

Variability and sample size was a limitation for this study. Even though some 

cochleae did have organ of Corti regions that had significant losses in OHCs, this hair 

cell loss was not consistent even within a group at the same frequency position. Figure 

4-7 shows an example of inconsistent OHC loss within an animal test group. The images 

are of the 4 kHz region of the BM from two samples of Day 28 pre-blast treatment drug 

group. The image in Figure 4-7A had very few missing OHC while Figure 4-7B 

exhibited a much higher loss in OHC. With this variance within some sample groups, it 

would be difficult to accurately determine the effects of blast exposure when compared to 

controls. The variation among group samples imposes a limitation on this study and 

demonstrates the need for larger sample sizes per group to overcome that variance in 

future efforts. Furthermore, SEM analysis of cochleae at different recovery times (i.e., 

post-blast, 4 and 7 days after blast) would give insight to the progression of OHC loss 

after blast exposure. 
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5.1.1 Limitations and Future Work 

 

Figure 4-7. SEM images of the 4 kHz frequency position of the organ of Corti for two 

samples in the Day 28 pre-blast drug treatment group. The left image (A) is an example 

of an organ of Corti sample with little to no OHC loss, and the right image (B) shows a 

sample exhibiting significant OHC loss. One increment of the black scale bar is 5 µm. 

The black arrows point out missing OHCs. 

 Another improvement for this study would be to include distortion product 

otoacoustic emission (DPOAE) measurements to observe the active cochlear function. 
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This noninvasive measurement is essential for determining how blast affects the cochlear 

tuning ability during sound stimuli (i.e. the function of the OHCs).87 With the results of 

this study suggesting that the blast-induced hearing loss was not caused by extensive 

OHC loss, Histological studies on spiral ganglion neurons, hair cell vesicle activity, 

ribbon synapses, middle genicular body, and auditory cortex could provide extensive 

evidence for the ties between auditory injury and TBI and discover how liraglutide 

improved hearing recovery after blast. Our future studies will seek to include these tests 

along with obtaining DPOAE measurements permitting good TM conditions. 

Conclusions 

 This study aimed to investigate the viability of OHCs of chinchillas that were 

exposed to six consecutive blast exposures ranging from 21-35 kPa (3-5 psi) and if 

liraglutide had a significant effect on OHC survival after blast exposure. Results showed 

that OHC loss was not significantly greater than controls for blast-exposed chinchillas 

with or without the drug treatment despite some blast-exposed cochleae showing some 

OHC loss. Conversely, the ABR results showed blast-exposed chinchillas suffered 

hearing function loss throughout the frequency range of 1-8 kHz. Furthermore, the 

chinchillas treated with liraglutide did significantly recover more hearing function than 

chinchillas without the drug treatment. With the results showing increased ABR 

thresholds but little loss in OHCs, BOPs at the tested pressure levels appear to damage 

the CAS and neurons of the PAS, and liraglutide has shown to have the potential to 

protect the auditory system’s neuronal tissue while having no adverse effect on OHC 

survivability. This study increases our understanding of the link between TBI and hearing 

loss while also supporting the use of liraglutide as a therapeutic for blast victims.  
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Chapter 5 Summary and Future Work 

 With the damage mechanisms in the cochlea that occur during blast largely 

unknown, it is important to further understand how BOPs affect the cochlea. In this 

study, the cochlea’s response to blast exposure was modeled by a FE model of the ear 

with a two-chambered, spiraled cochlea to give insight into how the high pressures and 

large displacements within the cochlea could cause hearing loss. Furthermore, the 

cochleae of chinchillas were imaged using SEM to observe that possible blast-induced 

damage to the hair cells of the cochlea and to determine the possible protective effect of 

liraglutide in the cochlea. 

 Given that the ear is quite vulnerable to BOPs, better hearing protection is desired 

from our service men and women to prevent permanent hearing loss. This study also 

developed a 3D printed TB for standardized testing of HPDs for cost-effective, accurate, 

and efficient improvement of HPDs. The 3D printed test module was used to evaluate 

HPDs during blast exposure and showed the potential for being used for acoustic stimuli 

tests as well. 

 Chapter 2 of this dissertation reports the development of a FE model of the ear 

with a two-chambered, spiral cochlea to simulate the response of the ear when exposed to 

BOP. A BOP input with a peak pressure of 30.7 kPa resulted in large displacements of 

the stapes which subsequently caused high intracochlear pressures and significant BM 

displacements which would indicate permanent damage to the cochlea after BOP 

exposure. The spiral shape of the cochlea caused an asymmetric pressure distribution 

across the width of the cochlea or the SV and ST chambers and allowed for significant 

transverse motion of the BM. The spiral cochlea model reported in this chapter provides a 
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necessary advancement for progress towards a model able to predict the potential hearing 

loss sustained during BOP exposure.  

 In the next chapter, Chapter 3, a 3D printed TB was created for the purpose of 

providing standardized testing of HPDs to blast exposure and was used to test two 

different HPD designs under blast conditions. Results show that the pressure 

measurements in the 3D printed TB were well within the mean and standard deviation of 

published data from similar tests performed in human cadaveric TBs demonstrating that 

our 3D printed TB is a valid model for testing HPD designs. The 3D printed TB 

developed in this chapter provides an accurate and cost-effective evaluation tool for 

HPDs’ protective function against BOP exposure with the potential to perform as a 

human temporal bone model for research in ear biomechanics for acoustic transmission 

and the development of middle ear implants.  

 Chapter 4 investigated the viability of OHCs of chinchillas that were exposed to 

six consecutive blast exposures ranging from 21-35 kPa (3-5 psi) and the effect of 

liraglutide on OHC survival after blast exposure. Results showed that OHC loss did not 

differ among animal groups; however, the ABR results showed hearing function loss in 

BOP exposed groups, and drug-treated chinchillas did regain more hearing function after 

blast. This study increases our understanding of the link between TBI and hearing loss 

while also supporting the use of liraglutide as a therapeutic for blast victims. 

 The work reported in this dissertation increases our understanding of cochlear 

mechanics and sustained damage from blast exposure, and as such, creates opportunities 

for future research that will progress towards the goals of understanding the damage 

mechanisms of blast in the inner ear, creating a model that can accurately predict the 
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damage to the ear from a given stimulus, and improving HPDs’ effectiveness for 

protection against BOP exposure. Future research directions include: 

• To develop a blast FE model of the ear that can accurately simulate the cochlear 

mechanics in response to blast utilizing an anatomically correct, three-chambered, 

spiral cochlea, 

• To improve the acoustic response of the middle ear materials in the 3D printed TB 

allowing the model to be used as an accurate and cheap model for acoustic and 

blast testing situations, 

• To increase the range of BOP levels tested, sample number, and frequency 

regions imaged with SEM to decrease variance in the results and better 

understand the extent that BOP affects the stereocilia of hair cells, and 

• To perform histological and immunofluorescent studies on the cochlea’s synaptic 

ribbons and hair cell vesicle activity and the CAS to clarify the damage 

mechanisms of blast and determine the therapeutic effect of liraglutide on the 

auditory system. 
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