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Abstract

My dissertation chapters study the e�ects networks play in an auction setting. My �rst

chapter explores how subcontracting creates a�liation between �rm's costs in an auction

setting. It �rst o�ers a theoretical framework associating subcontractor networks in pro-

curement auctions to a�liated costs of potential bidders. Based on the methodology by Li

and Zhang (2010), I construct a model that allows for cost a�liation depending on �rm-

pair observables. The extension is used to test for entry a�liation caused by overlapping

subcontractor networks in a sample of Oklahoma Bridge building contracts from 2004 to

2011. The empirical analysis �nds a statistically signi�cant presence of a�liation, driven by

subcontracting networks, a�ecting �rms' decision to buy for project plans.

Chapter 2 is joint work with my adviser Dr. Georgia Kosmopoulou, Dr. Dakshina

DeSilva, and Dr. Rachel Pownall. It aims to identify factors contributing to price �uctuations

in artworks after an artist's death. With access to information on seller characteristics from

a historical dataset of all art auctions that took place in London between 1741 and 1913,

we investigate how trading patterns and network e�ects a�ect art sales prices at auctions.

Following an artist's death, we capture dynamic e�ects in sales patterns and �nd that prices

decline by 7%. We attribute this decline on the con�uence of non-strategic and strategic

e�ects, �rstly on a frequent lack of access to professional consultation and secondly on

changes in trading patterns of art dealers posthumously. Our results highlight the long term

in�uence of those factors on high valued art.

xi



The �nal chapter is again joint work this time, with my adviser Dr. Georgia Kos-

mopoulou, Dr. Richard Sicotte, and Dr. Hojin Jung. In public procurement, most contracts

are renegotiated ex post and involve subcontractors. We examine whether there is a causal

link between subcontractor use and the incidence of change orders to amend the original

scope of a project. Since subcontracting is likely related to unobserved project complex-

ity, we use a novel IV, the predicted level of subcontracting from a method modeled after

Christakis et al. (2010), to estimate the likelihood of renegotiation. The results establish

that subcontractors are associated with an increased likelihood of change orders as well as a

higher dollar amount renegotiated.

xii



Chapter 1

Subcontractor Networks and A�liated

Private Values: Evidence from

Oklahoma Bridge Contracts

1.1 Introduction

Networks between economic agents have powerful e�ects on markets. They provide avenues

for information to �ow (Montogomery 1991, Trusov et al. 2009), trust to form (Karlan

et al. 2009), and provide insurance in the absence of formalized institutions (Townsend 1994,

Fafchamps and Lund 2003). However, at the same time networks raise concerns about

assumptions econometricians make when formulating their models. One such concern and

the focus of this paper, is potential interdependence of error terms between connected agents.

Consider a class of students who will study for and then take a test. These students can

either study alone or in pairs. A researcher might hypothesize that studying with others has

a positive e�ect on average test grades, but that is not the only e�ect. Students who study

together learn the material through the same process and thus answer questions in a similar
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manner. So, if one student scores high (low) then we would expect their partner to score

high (low) as well. Essentially the errors between the pair are related. If this relationship is

not considered, then an econometrician will misestimate the average e�ect of studying with

another student.

We study this relationship in the context of highway procurement auctions. Like the

above example, bidders in highway procurement auctions share relationships with one an-

other, primarily through mutual subcontracting. In a sample of Oklahoma bridge auctions

from 2004 to 2011, the average pair of bidders shared 4.3 subcontractors in the previous

year. This paper seeks to answer several questions about how the existence of mutual sub-

contractors a�ect bidders' costs in highway procurement auctions both theoretically and

empirically. These questions are of interest not just to econometricians, but also policy mak-

ers as relationships between bidder's cost change bidding behavior as well, making bidders

less aggressive and leading to higher procurement costs for the state.

Researchers in the auction literature are keenly aware of the possibility of interrelated

costs or values which they refer to as a�liation, as they are interested in bidders underlying

values of items for bid and not just the bids they place strategically. First described in

Milgrom and Weber (1982) (hereafter MW), the concept of a�liation is a generalization of

the relationships between bidder's values, allowing bids to be positively related throughout

the full distribution of values. The introduction of a�liation, as described by MW, changes

bidder strategies and makes them bid less aggressively as compared to those with indepen-

dent private values (IPV).1 Their theoretical work shows that when a�liation is present,

increasing the information access in an auction leads to higher expected revenues. Kagel

et al. (1987) and Goeree and O�erman (2002) tested MW's work to show that the theo-

retical predictions on revenue generation hold in an experimental setting. Pinkse and Tan

1This accrues because if a bidder wins an auction it means they probabilistic misjudged the value of the
item up for auction. This behavior is similar to the winner's curse seen in common value auctions, but to a
lesser extent because values are not perfectly related.

2



(2005) shows theoretically how a�liation in �rst price auction, can lead to violation of the

monotonic properties of the bidding function with respect to the number of bidders, as is

the case with IPV, indicating that it may be in the best interest of the seller to limit the

number of bidders in order to raise prices.

Relationships between bidders, including subcontracting relationships, have been pointed

to as potential causes of a�liation that cannot be controlled for using only auction char-

acteristics. Haile (2001) and Li and Zhang (2010) (hereafter LZ) found that selling timber

rights to subcontractors after an auction created a�liation.2 In a follow up paper, Li and

Zhang (2015) studies how this a�liation a�ects �rm mergers using a structural model. The

existence of common subcontractors and suppliers in the market motivated the inclusion of

a�liation in Nakabayashi (2013) in studying small business set asides, and Rosa (2019) in

studying bid preference programs. On the other hand, Krasnokutskaya and Seim (2011)

dismiss the inclusion of a�liation in their work on bid preferring, citing the relativity small

value that common subcontractors contribute to projects in their sample. While all six pa-

pers are concerned about a�liation remaining between bidders in an auction, each treats

it as a general phenomenon which a�ects all �rms equally. We allow the e�ect of mutual

subcontractors to vary between bidders by incorporating network information about which

subcontractors have work with a bidder in the past.

A�liation is not the only e�ect subcontracting has on bidder's costs. Marion (2009)

shows that government requirements for the inclusion of minority owned subcontractors

increased procurement prices, using California Proposition 209 as an exogenous treatment

for a di�erence-in-di�erence framework. Using a sample of road construction �rms in Texas,

De Silva et al. (2017) �nds that subcontracting helped �rms stay in the market longer,

especially newly established �rms and those without outside options, potential improving

2The way a�liation in Haile (2001) e�ects expected price is di�erent than in MW as a�liation through
the possibility of future subcontracting raises, not lowers expected sale price.
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long-term competition. Marion (2015) looks at how horizontal subcontracting, whereby a

�rm is both a bidder in an auction as well as a subcontractor for another bidder, a�ects

behavior in California highway auctions. He �nds empirically that the practice has a small

negative e�ect on procurement prices. In his setting there are two competing forces at play:

cost reduction and increasing opportunity costs.

The literature on the impact of networks in an auction environment is scarce. De Silva

et al. (2020a) demonstrates that the network of art dealer in London from 1750-1914 passed

information along. Those dealers with advantageous location in the network paid lower

prices, earned higher pro�ts, and stayed in the market longer. De Silva et al. (2020b) shows

dealer's purchase networks of artists helps explain the divergence of art pricing following the

artist's death. Jung et al. (2020) uses subcontractor networks to causally identify the e�ect of

subcontracting on highway procurement renegotiation in Vermont. Lastly, the most closely

related paper to my work is He et al. (2020) which evaluates how network opportunities of

small and Disadvantaged Business Enterprises (DBE) are a�ected by opportunities in the

subcontracting market, and the resulting impact on bidding outcomes and �rms' longevity

in the industry. This paper does not explore the role of a�liation in bidding behavior.

This paper contributes to the literature in three ways. First, we layout a simple theoretical

framework, by which overlapping subcontractor networks lead to a�liated private values as

well as what measures best capture the a�liation. Second, we provide a model by which the

theory can be tested expanding the work of LZ. And �nally, we use that model to empirically

test the theoretical prediction on data from bridge construction projects procured by the

Oklahoma Department of Transportation (ODOT), which show there is strong evidence

associating subcontracting and a�liation among �rms' decision to become planholders and

in �rm's bid values. This sample includes information about subcontractors used by winning

bidders which is used to construct network measures for use in analysis. The most important

of which is the measures of subcontractor overlap between pairs of potential bidders.

4



The rest of the paper is organized as follows. Section 1.2 provides a theoretical framework

for how overlapping networks subcontracting would lead to APV, and which measures are

most closely related to a�liation. In Section 1.3, an extension of the model of LZ to test

for APV, through subcontracting overlap is proposed. Section 1.4 describes the sample of

bridge and approach auctions in Oklahoma from 2004 to 2011. In Section 1.5, the results

from the smooth simulated maximum likelihood estimation are reported. Section 1.6 o�ers

a number of robustness checks for the results. Finally, Section 1.7 o�ers discussion of the

results and concludes.

1.2 Theory

Two models by which the submission of bids will be a�liated, are proposed in LZ. The �rst

model has potential bidders uncovering their cost prior to the decision to submit their bids.

If �rms have a�liated costs, their bidding behavior will be a�liated. This is the most likely

way to create a�liation between bidder in a procurement auction as potential bidders must

buy detailed engineering plans from the state prior to letting. Even before buying plans,

ODOT provides details on projects, such as their location, time to competition, and which

material and jobs will be need on a project. Thus, �rms should have a sense of their private

costs for a project, even before buying plans. The second has �rms deciding to enter an

auction, which comes at some �xed cost, before learning their independent value. Thus, any

�rm deciding to place a bid, must have expected pro�ts of bidding greater than the �xed

entry cost. If the entry costs are a�liated, as might well be expected if a non-trivial part

of the bidding process is standardized by the seller, then bidding behavior will be a�liated.

This model of a�liation is less likely to exist in the data from ODOT as some �rms place

bids on projects that have little prospect of winning. About 1% of bids are in excess of 150%

of the engineer's estimate.

5



A subcontracting network would most likely a�ect bidder behavior through the �rst

model. Using two assumptions and Theorem 3 of MW, we can show that overlapping sub-

contractor networks create a�liation between bidder's private values. The �rst assumption

made is that the total cost of one contractor hiring a subcontractor to complete a job is

a�liated with the total cost of a di�erent contractor hiring the same subcontractor. This

assumption seems reasonable and not very strong as it does not require the cost to be the

same for both contractors. Marion (2015) makes a similar assumption in his model of hor-

izontal subcontracting, where there are two parts of working with a subcontractor, a direct

cost which is the same for all and a coordination cost which di�ers across contractors.3 The

second assumption made is that all contractors minimize their costs on a project, which is a

common assumption in the auction literature (Marion 2009; Miller 2014; Rosa 2019). This

assumption is important as minimization is a nondecreasing function in all its arguments.

The �nal piece is Theorem 3 of MW which states that a�liated imputes fed through a non-

decreasing or nonincreasing function will lead to an a�liated output.4 If both assumptions

are valid, Theorem 3 of MW holds and thus overlapping subcontractor networks lead to

a�liation in bidders' private costs. Furthermore Proposition 1 of LZ,5 also holds and any

discrete-choice decisions by potential bidders will as be a�liated.

Because private values are a�liated through mutual subcontractors, a�liation will not be

equal across all pairs of bidders. Bidder pairs sharing more subcontractors will have higher

levels of a�liation. Additionally, bidders with more outside options should see lower levels of

3The assumption in Marion (2015) is as follows: �[The subcontractor's cost] is comprised of two com-
ponents, the direct cost of �rm j completing the task cBj , and an IID contractor subcontractor speci�c

coordination cost ξij , so that c
B
ij = cBj + ξij .�

4The full text of Theorem 3 of MW is as follows:�If Z1, . . . , Zk are a�liated and g1, . . . , gk are all non-
decreasing functions, then g1(Z1), . . . , gk(Zk) are a�liated�. The Zis can be thought of as a vector of input
cost for all the items a project requires which are available to bidder i. These input costs can be a �rm's
cost to provide an item in house, or the cost of hiring various subcontractors to do the same. While gi(·) is
the rule bidder i uses to pick among the set.

5Proposition 1 of Li and Zhang (2010): �Let D = (D1, . . . , DN ) ∈ {0, 1}N denote bidder 1, ... , bidder
N's entry decision. If V1, . . . VN are a�liated, then D1, . . . , DN are also a�liated.�
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a�liation as the shared subcontractors are less likely to be used. Finally, a�liation will not

be transitive. If Contractor A shares subcontractor X with Contractor B, then their private

values will be a�liated. Similarly, if Contractor B shares subcontractor Y with Contractor

C their values will also be a�liated. However, Contractors A and C's private values will not

be a�liated as they do not share a subcontractor.

After establishing the theoretical existence of a�liation, the next step is to propose a

measure that best captures the a�liation between two contractors because of overlapping

subcontractors. The �rst possible measure is the count of overlapping subcontractors, but it

fails to consider outside subcontracting options. Two other potential measures, from network

theory, are good candidates, as they o�er a normalization of the number of subcontractors

shared between two contractors, by the level of outside options the pair has. They are jaccard

similarity and cosine similarity formally de�ned as:

Jaccardab =
Na ∩Nb
Na ∪Nb

Cosineab =
Na ∩Nb√
Na · Nb

(1.1)

where Ni is the neighbors, in this case the subcontractors, of contractor i. A priori neither

measure should be preferred to the other, as both provide a normalization of overlap between

two contractors.6 However, intuitively both o�er bene�ts over the count of overlapping

subcontractors, the numerator of both, since the e�ect of one overlapping subcontractor

should not be the same if �rms have a di�erent number of private subcontractors.

Here simulation is useful as calculating the exact distribution of the minimum for any dis-

tribution, besides uniform, is di�cult. First, we begin by randomly assigning 2 contractors,

A and B, a number of subcontractors in their network between 1 and 20 inclusive. Then we

randomly assign the number of shared subcontractors by both between 0 and the minimum

of A and B's subcontractor counts. Finally for each subcontractor 10,000 private values are

6please see chapter 2 of Fouss et al. (2016) for more details on jaccard and cosine similarity as well as
other similarity measures.
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drawn, and each contractor's value is taken as the minimum of its subcontractor values, and

a correlation coe�cient is calculated. then the process is repeated 10,000 times for several

distribution (uniform, normal, etc.).

The results of the Monte Carlo simulations can be seen in Figure 1.1. As seen by the

R2 values, both similarity measures do very well in explaining the change in correlation

using only a quadratic projection, though the jaccard similarity slightly outperforms the

cosine similarity in 4 out of the 5 cases. However, it can be seen quite clearly the count of

overlapping subcontractors is a poorer predictor than either normalized method.

The private costs in Figure 1.1 re�ect the costs of a single task. When a project includes

multiple tasks, the relationship becomes more complicated but both jaccard and cosine

similarity performs well. Additionally, the results in Figure 1.1 are that of subcontractor

values that are exactly the same for both contractors. If instead the costs a subcontractor

o�ers are more weakly related the relationship will maintain the same functional form but

will be compressed along the y-axis so that at similarity (either jaccard or cosine) of 1, the

correlation will be less than 1, and the variance will be higher.

1.3 Model

Our test is based on a modi�cation of the method of LZ. They use a smooth simulated

maximum likelihood estimation (SSMLE) method to look at a�liated entry behavior in the

Oregon timber market. In their model a�liation is constant across all �rms in an auction

but our modi�cation allows for variation between �rm pairs based on a �rm-pair observable.

SSMLE is a common method of estimating models with correlated error terms, �rst developed

by Geweke (1991); Börsch-Supan and Hajivassiliou (1993); Keane (1994). It shares many

of the same properties of maximum likelihood estimation, the most important of which is

that as the number of simulations and observations approaches in�nity the results will be
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consistent. The decision to participate in an auction is a discrete choice, and LZ uses a

probit speci�cation. The functional form used in LZ serves as the basis for this paper as well

is:

Dait = I(xat · β + zait · γ + εait > 0) (1.2)

Where Dait is �rm i's decision to compete in auction a at time t, I(·) is an indicator function,

taking a value of 1 when the �rm decides to compete and 0 otherwise, xat is a vector of

auction-level observables, zait is a vector of �rm-level observables, and εait is �rm level error.

The error is assumed independent of xat and zait, but allowed to be a�liated with the other

error values in the same auction, εai′ , where εai′ 6= εai.
7

Without using subcontractor network information, general a�liation can be tested ex-

actly as in LZ. In their speci�cation the variance-covariance matrix for potential bidder in

the same auction is: 
1 ρ

. . .

ρ 1


where all o� diagonal elements are the same constant, ρ, which is between -1 and 1, as it is

a correlation coe�cient. Firms submitting bids will have a�liated values only if ρ ≥ 0.

We go a step beyond and allow ρ to vary for di�erent potential bidder pairs, with respect

to a measure of subcontractor overlap between potential bidder pairs, which as shown in the

previous section cause �rms' private costs to be a�liated. This will allow for the possibility

7LZ also include an auction random e�ect ηat, in their model as well, which is excluded as regressions
with a random e�ect found its size to be small (less than 10−6) and were interfering in calculating standard
errors, as it made the Hessian information matrix near singular.
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of di�erent values in each of the o�-diagonal elements:


1 ρijt

. . .

ρjit 1


Where ρijt = ρjit and −1 ≤ ρijt ≤ 1. For ρijt, we propose the following functional form:

ρijt = ρ0 + ρ1 · Pijt (1.3)

Where Pijt is a pair-wise measure of the overlap in the subcontractor networks of poten-

tial bidders i and j at time t. A linear speci�cation of the a�liation is chosen because it is

more readily interpretable, signi�cance can be shown using standard errors, and it is straight

forward to ensure the correlation parameter does not exceed its natural limits.8 The speci-

�cation divides a�liation into two parts, the general component, ρ0, and a network overlap

component, ρ1. Three measure of network overlap are presented in this paper, the jaccard

similarity, cosine similarity, and the count of overlapping subcontractors. While all three

measures are expected to capture some amount of the a�liation, the count of overlapping

subcontractors is expected to be the weakest, due to the measure not being normalized as

discussed in Section 1.2.

To conduct SSMLE, �rst the auction and potential bidder observables are used to predict

the �rst �rm's entry decision. Then, the predicted entry probability is compared to the

actual entry. Next a simulated error term for the �rst �rm is drawn from a truncated

8A previous version of this paper used a functional form of ρijt = 2/(1 + exp(ρ̃0 + ρ̃1 · Pijt)) − 1 which
also ensured the a�liation was between -1 and 1, and had the added bene�t of having a slight decreasing
returns to scale of the overlap measure. However, to determine signi�cance required using the log likelihood
ratio test and interpreting the marginal e�ects was di�cult so was replaced. Ultimately because all overlap
measure used in this paper skewed toward 0 the change in speci�cation does not change the model goodness
of �t.
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normal distribution.9 This simulated value is then used as an additional control variable

with is coe�cient determined by the error variance-covariance matrix. This continues until

reaching the last potential bidder in an auction, which will use all errors up to that point

to predict its entry decision. The process is repeated in each auction many times to get an

unbiased estimate of the errors. Repeating for each auction and taking the natural logarithm

of the probabilities, allows for a straightforward method to minimize the error term as in

standard maximum likelihood estimation.10

We choose a probit speci�cation over a logit speci�cation because we are interested in

the correlation between observations. A logit model cannot readily incorporate correlation

into the error term as the conditional logistic distribution is not a logistic distribution. On

the other hand, a probit model, with normally distributed errors, can incorporate correlation

with nonzero o�-diagonal elements of the error variance-covariance matrix.

Using the method outlined above, it is possible to establish if contractors have a�liated

private costs, with only a �rm's binary decision, and not their bid value. This property is

valuable as determining private costs through bid values requires assumptions about how

bidders markup their bids from their private costs, and thus is more susceptible to misspeci-

�cation.11 However, not using bid values is throwing out information and can be problematic

if bidding decisions are not closely tied to costs as might be the case if the marginal cost to

preparing a bid is low.12

While the method we propose does have the potential to assign a�liation to the intersec-

9The distribution is truncated because the error term cannot be known exactly, only that if it is above
−xat · β − zait · γ

hait,ait
, when the �rm bids or less than

−xat · β − zait · γ
hait,ait

when the �rm does not.

10Please see Li and Zhang (2010) for a complete understanding of the methods.
11Misspeci�cation concerns often arise from assumptions about the �rms attitudes towards risk (i.e. are

�rms risk neutral or risk averse, if they are risk averse what functional form will the risk aversion take, and
are they all equally risk averse).

12As a robustness check we test for a�liation between bid values in Subsection 1.6.1. These results
also point towards a�liation created by subcontracting overlap but requires additional assumptions on bid
discounting.
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tion of subcontracting networks, one must be cautious declaring the observed relationship

causal. There are other ways that bids could be a�liated, such as overlapping suppli-

ers, which might be expected to be related to overlapping subcontractors, as suggested by

Nakabayashi (2013). Supplier overlap would create a�liation in a similar way to overlapping

subcontractors. Unfortunately, the data is not available to us to explore this hypothesis.

Another potential way for bidders to have a�liated values is through joint ventures between

bidders. Firms which participate in joint ventures may learn about the methods of the other

by working together, which could lead to a�liation in the future if they compete against one

another, while also sharing subcontractors, because of the relationship. While we do know

which �rms have worked together as joint ventures incorporating an additional pairwise vari-

able greatly increases the di�culty of ensuring ρijt does not exceed its bounds. Even with

these shortcomings, this paper still contributes to the literature, as no work has been done

on factors which empirically predict a�liation.

1.4 Data

The data for this paper consists of all projects the ODOT auctioned o� between 2004 and

2011. While the dataset includes all auctions, only bridge and approach contracts, which

are contracts to build new bridges, are focues on for analysis because they o�er a more

homogeneous set. This decision is in line with previous research in the auction literature.

Ji and Li (2008) used only auctions involving bridge repair in their study of secret reserve

pricing, and LZ considered only auctions of a single species of timber. In addition, bridge

and approach projects rely heavily on subcontracting, making them ideal for testing the

importance of subcontracting on a�liation. Of the 516 contracts in the sample, 474, or

92% of winning �rms used at least 1 subcontractor, and on average used 4.9 subcontractors.

Subcontracting also contributes signi�cantly in terms of dollars spent. The average �rm
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awarded a contract during the period paid subcontractors $358,088, or an average of 24% of

the winning bid.

Next, it is important to know which �rms are potential bidders. LZ assume �rms are

potential bidder, based on the �rms that bid on project in a similar time frame. We use two

di�erent de�nitions in this paper. The �rst is the set of �rms which become planholders for

a project. ODOT requires all bidder to buy the project's plans before bidding. Becoming a

planholder is nearly costless with the average cost of plans being 0.0024% of the estimated

value of the associated project. While low plan costs should not discourage �rms with positive

expected pro�ts for a project from participating, they will prevent extremely disadvantaged

�rms from competing. For example, �rms which already have large commitments on other

projects or �rms located far from the project sight may be discouraged from buying plans.

As such, a second broader de�nition of potential bidder is also used, which we call a potential

planholder. A potential planholder is de�ned as any �rm which was a planholder for any

bridge and approach auction in the month of observation. Using potential planholders also

allows for running regressions on a second discrete choice �rms make, the decision to become

planholders.13

In the ODOT dataset there are 128 unique planholders for bridge and approach contracts,

89 of which went on to bid at least once, and 50 of whom went on to win at least one project.

The dataset includes 516 auctions with 3,061 planholders, and 9,524 potential planholders.14

About 60% of planholder end up submitting bids in any individual auction. A much smaller

number of potential planholder participate, with only 30% becoming planholders and 18%

becoming bidders.

The subcontractors in the sample are even more diverse than the planholders, and in-

volved 268 unique �rms, which completed 2,513 di�erent jobs over the course of the sample

13In Appendix A1.1, we repeat all analysis on potential planholder's decision to bid.
14One outlier auction is dropped, because the engineer's estimate is 6 times that of the next largest project.
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period. The mean amount a subcontractor is hired for was $73,700, though the median

was only $15,750. The itemized lists of the jobs completed by subcontractors suggests that

they mainly perform peripheral jobs, which lines up with previous research (Miller 2014).

Of the 8,057 items that could be linked to subcontractors, the most common type of items

ful�lled by subcontractors where signage (699), guardrails (585), asphalt and surfacing (416),

mulching (390), painting (325), and excavation (292).15

The auction variables available include the number of planholders in the auction,16 the

engineer's estimated value of the contract,17 the number of contract days, the number of items

in a contract, the percentage of contract that is supposed to be set aside for disadvantaged

business enterprises (DBE), and the unemployment rate in Oklahoma18. Most variable are

standard to include in the procurement literature models, except the DBE goal and the

unemployment rate. Prior work o�ers con�icting e�ects of DBE goals, with Marion (2009)

�nding that they lead to an increasing procurement costs while De Silva et al. (2017) �nds no

such e�ect. Finally, the unemployment rate is included as a proxy for the e�ect of the Great

Recession on the demand for new construction in the private sector, which may a�ect �rm's

outside options. Summary statistics for auction variable can be seen in Table 1.1. Several

of the variables have a signi�cant right-skew as indicated by their means being greater than

their medians. This is a common occurrence in highway procurement auctions as there are

a small number of projects that are signi�cantly larger than majority. To counteract the

skew, the natural logarithm of the following variables is taken: engineer's estimate, contract

days, and project items.

The potential bidder speci�c variables include the distance from the job site,19 and the

15It is not until the 13th most common task that a non-periphery job appears, drilling shafts (151).
16For any models involving potential planholders, total potential planholders are used instead.
17For any models involving potential planholders, plan cost is used instead as �rms would not have detailed

information about the project until reviving plans. Plan costs closely relate to engineer's cost as the price
of plans is a function of how many printed pages the plans take up.

18Gathered from the Bureau of Labor Statistics
19Distance from the job site is calculated by taking the distance in miles from a planholder's mail address,
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backlog of the �rm.20 Both variables have been shown to be important in assessing an

individual �rm's private values in prior works: distance from the job sight in LZ, and backlog

in Jofre-Bonet and Pesendorfer (2000).

Lastly, there is the contractor's network of subcontractors. Ideally, to construct each

�rm's subcontracting network all subcontractors a potential bidder considered using for a

project should be included. Obviously, that is impossible to measure, so past subcontrac-

tor use is constructed as a proxy. Previous research shows repeated relationships between

�rms are a mechanism by which to lower transaction costs and manage risk in the face of

incomplete information (Kvaløy and Olsen 2009). To construct the subcontractor network,

all subcontractors a potential bidder used in Oklahoma in the prior 12 months are linked

to the �rm.21 The 12-month window is chosen as that is the 75th percentile length between

repeated subcontractor uses by a contractor in the sample. 54% of links are repeated in this

time frame. Framed another way, if all subcontractors active in the market have the poten-

tial to be chosen to work with the winning bidder, previously unconnected subcontractors

are hired 1% of the time, while connected subcontractors are hired 16.6% of the time. To

initialize the network all observations from 2004 are dropped from analysis. The auctions

from 2004 also help to set up the �rm backlog.

The network formed by subcontracting is a directed one, because subcontracting is not

a reciprocated action. This can be seen in Figure 1.2 where the potential planholders (the

red nodes) are connected to the subcontractors (the blue nodes) by arrows. Figure 1.2 looks

at four slices of the network, in January 2005, April 2007, September 2009, and December

2011. Over time the network becomes denser with more potential bidders and subcontractors

gathered from ODOT's preapproved contractor list, and the center of the county that a project is located
in.

20Backlog is calculated as the value of all current contracts a �rm is currently working on with ODOT,
whether as a contractor or a subcontractor, divided equally for the length of the contract in months, beginning
with the month following the award date.

21This includes subcontractors used on projects outside of the bridge and approach contracts focused on
in the estimation stage.
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entering the market. While most of the links are between the potential bidders and sub-

contractors, there are also links between potential bidders. Thus, horizontal subcontracting

exists in the sample which should be accounted for. Those �rms which are horizontal sub-

contractors may be less likely to bid as their opportunity costs of winning a contract are

higher (Marion, 2015). Lastly on the periphery of the network can be seen a number of

potential bidders who did not use any subcontractors in the sample.22 These �rms create a

problem for properly analyzing a�liation generated by overlapping subcontractor networks

since these �rms likely have relationships with subcontractors, which are unobserved. This

will lead to a downward bias in any network variables. This is particularly concerning re-

garding the similarity measures which will be used to predict a�liation. Thus, all �rms with

no observed subcontracting relationships are dropped from analysis.23

The contractor-subcontractor network can create several useful measures that can be

used as explanatory variables to capture a potential bidder's place in the network. The

measures used in the paper are seen on the bottom of Table 1.2 and are referred to as

centrality measures. The simplest of these is outdegree centrality, which measure how many

subcontractors a potential bidder is linked to. Next, potential bidder's hub centrality is

calculated, which measures a �rm's relative importance in the network by looking at the

subcontractors it is connected to.24 Potential bidders with high hub centralities work with

subcontractors involved with many others in the network. Finally, network information is

also used to determine whether �rms are horizontal subcontractors to other contractors in

the network which about half of potential bidder are.

The �nal variables of importance are the potential bidder pair data, which are theoret-

ically predicted to cause a�liation. Descriptive statistics of these variables can be seen in

22Though di�cult to see because of the many overlapping lines in the center, there are also several other
potential bidders who have no observed subcontractors, but who are connected as horizontal subcontractors.

23We incorporate the �rms with no network in Subsection 1.6.3 by including additional pairwise variables.
24In mathematical terms, hub centrality is the eigenvector corresponding to the largest eigenvalue ofA×AT ,

where A is the Adjacency matrix of the network incorporating all link information about the network.

16



Table 1.3 and histograms of the distribution can be seen in Figure 1.3.25 Overlap is calcu-

lated as the count of subcontractors shared between potential bidders. For planholders, the

average pair shares 4.6 subcontractors though the distribution is right skewed since 7.5% of

pairs have no overlapping subcontractors. For potential planholders the average pair shares

fewer overlapping neighbors at 3.3 subcontractors and 12% of pairs have no overlapping

networks.

To create the jaccard similarity, the number of overlapping subcontractors is divided by

the total number of subcontractors used by the pair. For cosine similarity, the number of

overlapping subcontractors is divided by the square root of the product of the two �rms'

total subcontractors used. Both similarity measures are laid out in Equation 1.1. Because of

the presence of horizontal subcontracting, �rms are linked to themselves so that they appear

in their set of subcontractors. For the average planholder pair the jaccard similarity is 0.13

while for potential planholders it is only 0.10. Again, these number are skewed because there

are many �rms which share no subcontractors. The average and standard deviation of the

cosine similarity is larger as the denominator is smaller. For planholders the average is 0.25

while for potential planholders it is 0.20. The distribution of both similarities can be seen in

Figure 1.3. Most of the data has low levels of overlap, but the long right tail indicates that

some �rm pairs have high levels of overlap.

1.5 Results

With the ODOT data detailed in Section 1.4 and the discrete-choice method outlined in

Section 1.3, it is possible to test for the existence of a�liation brought about by overlapping

subcontracting, which is theoretically predicted in Section 1.2. General a�liation is also

checked for as well, with the method outlined in LZ. We also explore the role of subcontracting

25Again, we take every subcontractor used in the prior 12 months by a potential bidder as in a bidder's
network.
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relationships on potential bidder's costs using the network centrality measure controls. When

using SSMLE, the number of simulations done is a tradeo� between computational e�ciency

and statistical e�ciency. LZ ran 100 simulations, but the nature of the method requires an

increased number of simulations as the number of observations increase. For regressions on

planholders, 400 simulations are used, and those on potential planholders, 700, to counteract

the increased number of observations in the ODOT data, compared with Oregon timber

data.26

The results for planholder's decision to bid, can be seen in Table 1.4. Column 1 is a

standard probit model to compare the other models with. Column 2 contains a regression

with only a general a�liation parameter. There is no evidence of a�liation between plan-

holders decision to bid, and in fact the point estimate for ρ0 is less than 0, but insigni�cant.

Moving to the models with variable a�liation in Columns 3, 4, and 5, there is no indication

of subcontractor created a�liation from the jaccard similarity, cosine similarity, or count

overlap. The results do not show evidence of the theory, but there are concerns with the

model. First, it does not have a great deal of explanatory power with a Pseudo R2 of 0.044 in

all �ve speci�cations. Second, the average probability of entry is 60%. Taken together these

two facts mean the predicted errors feature little variation to �nd an e�ect, as conditional

errors do not feature much variation.

As for the other coe�cients, most traditional independent variables have the expected

sign, or are insigni�cant. Turning to the network parameters, only the hub centrality has

a signi�cant e�ect on bidding behavior. Firms with higher hub centrality are shown to be

more likely to bid. The high value for hub centrality suggests that it is not the number of

subcontractors which a�ects a �rm's cost on a project, but a �rm's connections to highly

used, and therefore experienced subcontractors.

26LZ dataset contains 282 timber auctions with 2,055 potential bidders. For a better understanding of the
asymptotic properties of simulation-based methods, see Train (2009).
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Turning to potential planholders' decision to become actual planholders, in Table 1.5

Column 2, there is evidence for generally a�liated costs. The point estimate for ρ0 is

0.031, and is statistically signi�cant. Bringing in variable a�liation leads to a substantial

improvement in the model and ρ1 being positive and signi�cant at the 1% level in all three

cases but is strongest with the cosine similarity. Once variable a�liation is allowed ρ0 is no

longer positive and signi�cant. In fact, in the case of cosine similarity, ρ0 is negative and

signi�cant. This result may be a product of plan buying being a sequential process, where a

�rm deciding to buy plans later can observe the �rms which have already bought plans and

avoid projects with high levels of competition and thus lower expected pro�ts. Overall the

potential bidder's plan buying decision is better predicted then the bidding decision with a

Pseudo R2 of 0.130 in the general a�liation case. This means the simulated errors contain

more information about that can be used to forecast the other �rms' decisions.

A few of the signi�cance levels changed between Tables 1.4 and 1.5 particularly among the

auction variables. Log working days and �rm, went from being insigni�cant in planholder's

bid decision to signi�cant. This is again likely a product of �rms choosing to avoid becoming

planholders on less pro�table projects.

The network variables continue to show similar e�ects as in Table 1.4, but the outdegree

centrality and horizontal subcontractor dummy both become negative and signi�cant. The

horizontal subcontractor �nding supports the theory of Marion (2015), that horizontal sub-

contractors face higher opportunity costs in bidding decisions. The �nding about outdegree

centrality combined with the continued positive sign on hub centrality reinforces the hypoth-

esis that connections to subcontractors on the periphery of the network are less important

compared to those in the center.

Throughout both decisions, cosine similarity served as the best predictor of a�liation

between pair of potential bidders, while overlap served as the worst predictor. While the

later results are not surprising since based on the theoretical discussion from Section 1.2, the
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former is. In the simulation results jaccard similarity and cosine similarity were about equal,

but the empirical results show a clear preference for cosine similarity. We speculate that the

increased variation within the cosine similarity distribution, due to the smaller denominator,

is the reason for the improvement.

1.6 Robustness Checks

In this section several robustness checks are provided to show the results are not brought

about by the assumptions made in the model. First in Subsection 1.6.1, we show that bid

values are also a�liated with one another. Next in Subsection 1.6.2, we change the window

size for the network from 12 months, up to 18 months and down to 6 months. Subsection

1.6.3 works to included potential bidders without networks into the model, with the inclusion

of more potential bidder pair measures. Lastly in Subsection 1.6.4, we change the network so

that subcontractor links are weighted by the dollar value of service instead of just a dummy

for previous work.27

1.6.1 A�liation in Bid Values

In Section 1.5, a�liation is found only between potential planholder and is strongest in the

decision to buy plans. Potentially, a�liation could only be applicable to the early phases of

the bidding process, after which a�liation no longer exists when �rms submit their bids, due

to information gained throughout the process. Alternatively, the inability to �nd a�liation

between planholders could be due to the low level of predictive power of the model. To

di�erentiate between the two possibilities, we test for a�liation between �rms bid values.

However, unlike the discrete decisions previously examined, a�liation between bid values is

not proof of a�liated private costs, as �rms may strategically change their bids to maximize

27While we present the robustness checks one at a time in the paper, there is nothing to prevent multiple
from being tested at the same time. Any additional checks are available upon request.
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pro�ts. If �rms are assumed to markup their bids linearly, as is done by others such as Kagel

et al. (1987), then a�liation between bids is evidence that subcontracting causes a�liation

in private costs. This assumption is stronger than those made above, and is unlikely to hold

in practice, but the results still shed light on a�liation of bidder's costs.

The method used to test for a�liation between bid values is Bayesian, and is modeled as

follows:

log(bidait) = xat · β + zait · γ + εait (1.4)

just as in the discrete choice models xat is a vector of project characteristics, zait is a vector

of bidder characteristics and εait is a normal distributed error term which is potential related

across bidders in the same auction. The switch from a maximum likelihood framework in

Section 1.5 to a Bayesian one is because the model now includes a contentious value errors,

which can be found through analytically techniques instead of simulation. Still, the model

has complex derivatives, but these can be sidestepped with the Bayesian model.

For the model's prior distributions, we assume an uninformed prior, with the a�liation

parameters this is a uniform distribution between -1 and 1, while for the rest it is a normal

distribution with mean of 0 and standard deviation of 10 times the variable standard devia-

tion. The model uses a Gibb's sampler to sample from the posterior distribution. A sample

from the posterior distribution is found using 4 chains of 10,000 samples thinned by 20 steps.

Again, general a�liation as well as a�liation cause by subcontractor overlap are tested.

When looking to bidding behavior the sample size is greatly reduced with 1,921 bidders,

3,530 pairs, across 514 auctions. However, more information about the errors is revealed

through the estimation process so correlation is easier to detect if present. Table 1.6 shows the

results of the Bayesian regressions. Column 1 show a regression without a�liation. Due to

the strong relationship between the engineer's estimate and bid costs the predictive power of

the model is much stronger than the previous regressions. Column 2 shows a regression with
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only constant correlation parameter between bidders in an auction. The results indicate that

there is a general correlation between bids which is signi�cant at 1%. While this may indicate

a general level of a�liation, it could also indicate there is an unobserved project characteristic

which are causing bids to be correlated as well. Columns 3, 4, and 5 allow for a�liation

related to jaccard similarity, cosine similarity and number of overlapping subcontractors just

as above. In all 3 cases ρ1 is positive and signi�cant at the 1% level. The point estimates

for all 3 are comparable to those found in Table 1.5. Finding variable a�liation among bid

values supports the hypothesis that a�liation is present throughout the bidding process but

is di�cult to �nd between bid decisions since information on the error is scarce.

As for the other parameters all except the bidder's backlog have the expected sign or are

insigni�cant. This may be due to backlog being correlated with a �rm's size, which may

indicate that there are returns to scale in the marketplace. Of the three network variables

only the hub centrality has a signi�cant e�ect, with �rms with more extensive networks

placing lower bids.

The results of Table 1.6 also highlight the importance of including pairwise a�liation

to avoid bias in a model. Several control variables saw their point estimates shift due to

the inclusion of a�liation. The most dramatic shift is seen for hub centrality, which fell

by 21% from Column 1 to Column 4. If a�liation is not included the direct bene�ts of

subcontracting are overestimated.

1.6.2 Changing Network Window

As mentioned in Section 1.4, a 12-month window for the network was chosen because in lined

up with the 75th percentile of time between links that where repeated. But it is possible the

window is too long or too short. As such in this section, the same regressions from Section

1.5 are presented with a 6-month and an 18-month network window. Both come to the same

conclusions as the main results, though the 6-month window's �nding are weaker.
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Due to the requirement of setting up the network and dropping and �rms without net-

works, the sample sizes change due to the changing network window. The models with only a

6-month window have more auctions, but fewer potential bidders and fewer pairs, giving less

power to �nd a�liation, while models with an 18-month window have less auctions, about

the same number of potential bidders, and more pairs, giving more power to �nd a�liation.

For the sake of brevity only the estimates for ρ0 and ρ1 are presented in Tables 1.7 and 1.8.

Both show the same e�ects or are insigni�cant, for jaccard and cosine similarity, though

there are di�erences with regressions using the number of overlapping subcontractors with

a 6-month window in the bid decisions. There potential bidders with higher overlaps see

negatively a�liated values. This may occur because given the short window subcontractors

who have worked on multiple projects may be near capacity and unable to perform work for

either �rm, forcing them to seek di�erent �rms to work with instead.

1.6.3 Incorporating Potential Bidders without Networks

In the main results, due to constraints viewing the past network all �rms which had no

observed subcontracting links in the previous 12 months were dropped. Without further

additional variables, their inclusion would lead to a misestimation of the results since these

�rms would likely use some subcontractors from the available pool, and lead to potential

a�liation. To include these previously dropped observations, three additional pairwise vari-

ables are added to equation (3). Thus, the a�liation between 2 potential bidders' errors is

now:

ρijt = ρ0 + ρ1 · Pijt + ρ2 ·mijt + ρ3 ·mijt · cijt + ρ4 ·mmijt (1.5)

The new pairwise variables are mijt which measures if one, but not both potential bidders

have no observed network in the past 12 months, cijt which measures the number of subcon-

tractors the other �rm has used in the previous 12 months, and �nally mmijt which measures
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if both �rms have no observed network in the past 12 months. In e�ect these cover the 3

possible cases the network coverage between 2 bidders. If both have an observed network

only the Pijt will be nonzero, if one has a network then mijt and cijt will be nonzero, and

if both have no network then only mmijt will be nonzero. As such this speci�cation does

not make it more di�cult to ensure the model is not violate the bounds of ρijt, despite the

increase in parameters.

Under the hypothesis of subcontractor network driven a�liation both, there should be

variations in a�liation between these 3 cases. When only one �rm has a network, theory

suggests that a�liation rises as the �rm with an observed network has more links, since

there are more chances the subcontractors the �rm without a network connects to one of the

�rms the other used. Similarly, if both �rms have no observed network, they should be more

closely related than 2 unlinked �rms with networks, since they have a higher likelihood of

subcontracting out to similar �rms.

The results of incorporating the �rms with missing networks are presented in Tables

1.9 and 1.10. For the sake of brevity only the pairwise variable results are presented. An

additional dummy variable indicating if a �rm has no observed network is also included

when running the regression. Lastly, an increased number of simulations are run due to the

increased sample size of including more �rms. For Table 1.9, 450 simulation are used, while

Table 1.10 uses 800.

The e�ect of network overlap, ρ1, remains similar in all cases, to the main results where

the unlinked �rms were dropped. In further support of the theory the interaction between 1

�rm having a missing network and the others count of subcontractors, ρ3, is positive in all

speci�cations though not always statistically signi�cant. Similarly, pairs where both �rms

have no network, ρ4, is also positive and statistically signi�cant in all speci�cations.

24



1.6.4 Incorporating Dollar Weighted Networks

So far, we have assumed that all links between subcontractors are the same, both for the

centrality measures and for the level of overlap for a�liation. However, subcontractors are

used at di�erent intensities so a weighted measure may be more appropriate. As such in this

subsection, a weight is given to links based on the dollar value of projects subcontracted out

in the previous 12 months.

To adapt the jaccard and cosine similaries to include weighted edges the following de�-

nition is used:

Jaccardabt =

∑N
i=1 min(linkait, linkbit)∑N
i=1 max(linkait, linkbit)

Cosineabt =

∑N
i=1 min(linkait, linkbit)√∑N
i=1 linkait ·

∑N
i=1 linkbit

where linkait is the dollar weighted link between contractor a and subcontractor i at time t.

The set of subcontractors also includes the set of prime contractors, which leads the values of

weighted jaccard and cosine similarity to be much smaller than that the unweighted versions

because �rms ful�ll about 80% of a contract's costs themselves. Changing the network to

a weighted network also changes the values of outdegree and hub centrality for the �rms as

well.

The results for this robustness check are shown in Tables 1.11 and 1.12. For brevity only

the a�liation parameters and network parameters are included in the tables. The results

for the jaccard and cosine similarities continue to be consistent with earlier results, though

the overlap amount is insigni�cant. However, the centrality measures are less signi�cant

predictors as compared to the unweighted network. These contribute to a lower Pseudo R2

values for all three decision. While initially surprising, the result may be due to another

e�ect such as subcontractor backlogs, leading to the unintuitive result. It could be useful in

future research to include both weighted and unweighted network measures simultaneously

to separate the e�ects.
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1.7 Conclusion

On the theoretical side, we �nd that the presence of overlapping subcontractor networks

creates a�liation among the private values of �rms. This theoretical prediction is then

tested and found in the decisions of potential planholders, but not planholders on a sample

of bridge auctions from Oklahoma. The di�erence in results is likely caused by several

factors. First, statistical power is greatly increased when the de�nition of potential bidder is

expanded to include 9,524 observations instead of 3,093.28 Second the independent variables

available at our disposal are better able to predict the potential planholder outcomes than the

planholders based on the pseudo R2, which reduces the overall noise in the model. Though

the a�liation is found only using the broader de�nition of potential bidders, the �nding

is robust to changing the assumptions made in the paper about the network. Lastly, bid

values are also a�liated in the sample because of subcontractor overlap, which under more

restrictive assumptions also implies that private values are a�liated.

The results shown in this paper are likely of interest to both policy makers and econome-

tricians. For the policy maker, the �ndings raise questions about how subcontracting a�ects

government procurement costs. Previous work, including Milgrom and Weber (1982) suggest

that the presence of a�liation will lead to decreased bidder aggressiveness and thus lead to

higher cost for the state. However, our work also shows that subcontracting networks have a

direct negative e�ect on costs. This leaves the overall e�ect of subcontracting on government

costs ambiguous. Further work on the topic will still need to be done to determine which

e�ect dominates. It is also possible that subcontractor related a�liation does not a�ect costs

exactly as the standard models suggests. A�liation has been shown to a�ect competition

in di�erent ways in di�erent settings (see Haile 2001). Still, we recommend caution when

evaluating policies that encourage intensive use of a narrow set of subcontractors, such as

28the increase in pairwise observations increases even more from 9,471 to 91,497 due to their being N ·
(N − 1)/2 pairs per auction.
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DBE goals.

For the econometrician looking into �rm behavior in auctions, the results reveal a new

feature which must be considered. If overlapping subcontracting exists and she assumes

an IPV framework in her model, results will be biased and inconsistent. This e�ect will

likely be most severe when looking at variables related to subcontracting, as seen in Table

1.6. The methodology laid in this paper, also has potential applications beyond auctions to

any setting where economic agents are making decisions and a network is likely to lead to

correlated behaviors, such as students test taking in the example from the Introduction.

More work is still needed in this area beyond what has been done here. While work in

this paper demonstrates that subcontracting overlap leads to a�liation, there are questions

about how a�liation changes bidder aggressiveness as well. There are also other relationships

such as common suppliers or joint ventures which could create a�liation in a manner like

that of common subcontractors that exists in the market and are worth exploring in the

future. Finally, work to incorporate variable a�liation into a structural model is another

avenue for future research.
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Chapter 2

Posthumous Trading Patterns a�ecting

Artwork Prices

2.1 Introduction

Prior to their deaths, two 19th century British landscape artists, J. M. W. Turner and

Horatio McCulloch, experienced similar patterns of success selling paintings at auctions.

Both were quite popular in terms of the breadth and depth of trading connections their art

had established through the years. After their deaths, their popularity diverged. Turner

became the eminent landscape painter of this era, with art dealers purchasing a larger share

of his paintings. Dealers bought 77% of Turner's paintings compared to 42% of McCulloch's

work. The most prominent art dealer of this period, Agnew, bought 28% of all Turner's

paintings sold after his death. Changes in popularity were further mirrored in art prices.

Turner's paintings appreciated by 122%, while McCulloch's sales prices fell by 32%. This

divergence in prices can be seen up to the present day. The last 24 Turner paintings that

went up for sale at Christie's and Sotheby's had an average hammer price of $926,000, while
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McCulloch's last 16 paintings sold for only $25,800 on average.1 Why did their popularity

diverge so drastically? The prices at which their artwork sold following their deaths seem

to have been in�uenced by the network of dealers and auction houses connected to them at

the time of death.

Posthumous e�ects on art prices have been observed in the literature before, but previous

work about its size and attribution have largely been inconclusive. Does the art market value

the fact that an artist is alive, and can potentially produce more work? Or being alive is

an impediment to posthumous market success once the artist has reached his or her peak?

These questions remain unanswered. It is perhaps rather elusive to try and �nd a one-size

�ts all answer to the question of why it occurs and how it manifests itself. Nevertheless, we

have now an opportunity to use comprehensive records from more than 37,000 transactions

sold in London auction houses over a period of a century and a half containing information

on artists who lived and died in that period. We combine these records with a set of tools to

distill the e�ect of trading networks and provide a more in-depth analysis of the competitive

landscape in this market around the time of an artist's death and beyond, tracing subsequent

posthumous pricing patterns.

The in�uence an artist's death has on the price of their art depends on factors that

a�ect demand and supply. Since art serves as an investment tool, the change in the pricing

of artworks triggered by an artist's death has drawn attention from scholars in economics

and �nance. Agnello and Pierce (1996) were �rst to estimate an increase in prices after an

artist's passing using regression analysis. Posthumous e�ects were documented anecdotally,

however, well before Agnello and Pierce with comments by art dealers and even a play on the

subject written by Mark Twain titled �Is He Dead�.2 Two plausible explanations have been

o�ered for this trend. First, a temporary demand spike after death could be caused by an

1https://www.christies.com/ and https://www.sothebys.com/en/ Accessed January 4, 2020
2The play is about a famous French painter Jean-Francois Millet. An American artist helps Millet fake

his death with the idea that the price of his paintings will skyrocket, and they will escape poverty.
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increase in media attention (Ekelund, Ressler, and Watson 2000 and Matheson and Baade

2004). Alternatively, elimination of supply uncertainty could lead to a permanent increase

in prices. Maddison and Jul Pedersen (2008) use data on Danish artists, and Danish life

expectancy, and their �ndings suggest that conditional life expectancy of the artist at the

time of sale (which is a proxy for anticipated supply conditions) has a statistically signi�cant

negative e�ect on art prices. Once conditional life expectancy is included, the posthumous

e�ects are no longer statistically signi�cant. Ursprung and Wiermann (2011), show that

the death e�ect is negative for young artists, becomes positive with age and eventually

disappears.

The demand for artworks depends crucially on an artist's reputation. Reputation e�ects

are hard to measure and have largely been absent from the literature. Reputation is managed

in the primary market for art by gallerists and art dealers. Schrager (2013) notes that �the

industry has developed an intricate signalling process where a handful of galleries, collectors

and museums, determines what is good and valuable.� Grant (2010) points out that �the

factors determining whether prices will go up or down are much the same when an artist is

dead or alive. These factors include the degree to which the market of an artist's work is

controlled, changes in critical and popular appreciation, the manner in which dealers heirs

or estate executors handle work in their possession and how collectors behave.� The dealer's

ability to strategically drive demand through developing an artist's reputation depends on

a dealer's network and the strategic planning of sales following an artist's death. Greater

access to art professionals prior to an artist's death is likely to a�ect the trajectory of prices

of his work providing vital information in addressing this puzzle.

In this paper, we construct measures of network access and use a quantile regression tech-

nique with selection, developed by Arellano, Blundell, and Bonhomme (2017), to evaluate

the drivers of art prices, with focus on the `'death e�ect� and posthumous trading patterns

extending to 20 years after an artist's death. Even though there is a vast literature on
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networks in economics and broadly the social sciences3, there is very little empirical work

examining the e�ect of trading networks on prices. Oestreicher-Singer and Sundararajan

(2012) �nd that co-purchase networks have an e�ect on the demand for books sold on Ama-

zon. Aral and Walker (2012, 2014) �nd that in�uential users of Facebook cluster together

and have di�erential e�ects on other users based on observable characteristics, such as age

and sex. In the art world, Mitali and Ingram (2018) �nd that artists with many personal

connections but who are not clustered together are more successful in raising their artistic

pro�le. De Silva et al. (2020a) �nd that networks between art dealers and sellers create in-

formational advantages that are re�ected in bene�cial trade conditions. Our results indicate

that the strategic planning of sales following an artist's death can have a signi�cant impact

on art prices in the short and long run.4 Access to art professionals prior to an artist's death

signi�cantly a�ects the trajectory of prices for the most highly priced works of art.

In a similar approach to Etro and Stepanova (2015), we use an historical set of data which

uniquely allows us to look at all art auctions that took place in London from 1741 to 1913 to

study the death e�ect. We �nd, contrary to most of the literature, a decline in unconditional

prices by 7% on average in the 20 years following the death of an artist. At that time, the

art seller is much more likely to be listed as a member of the artist's family (0.7% of art

was sold before death under an artist's last name versus 13% that was sold after death).

These works are sold for much less than other artworks by the same artist bringing forth

considerations of poor quality and strategic planning. Artists themselves may strategically

withhold some artwork from the market, while families acting without consultation with

professionals may engage in nonstrategic liquidation of assets. While these considerations

3Examples include friendship formation in Christakis et al. (2010), job searching in Granovetter (1977),
and micro�nance adoption in Banerjee et al. (2013), and Schilling and Phelps (2007) and Gaonkar and Mele
(2018) dealing with inter�rm patent collaboration, among many others.

4The impact of various strategic and non-strategic e�ects on price trends in sequential sales has been
studied among others by Black and De Meza (1992), Ginsburgh (1998), Deltas and Kosmopoulou (2004)
and Ginsburgh and Van Ours (2007). Deltas and Kosmopoulou also provide an overview of conditions under
which various price patterns can arise in equilibrium.
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might hold in a short period after the death of an artist, the negative e�ect in the long term is

mostly predicted by changes in the composition of the pool of buyers. Artists who see a rise

in price posthumous are bought more often by emerging art dealers. Since only a few artists

experience an increase in dealer interest, most artists' works see a decline in price after the

artist's death. The lack of a signi�cant trading network developed through auctions prior

to death diminishes the chances of an artist's work gaining popularity postmortem. These

changes in the buyer pool is likely not the direct cause of the price change, rather underlying

evolution of collector's taste is at play. However, without a good measure for taste we argue

eigenvector centrality is a useful proxy.

The rest of the paper is organized as follows: Section 2.2 describes the data and how we

construct the trading network measures for the artists and sellers; Section 2.3 describes the

model and the results. Finally, Section 2.4 o�ers concluding remarks.

2.2 Data

The source of our unique historical data set is the auction transactions recorded by (Graves,

1918). In three volumes, Graves documents art auctions that took place in London-based

auction houses from 1741 to 1913, including the name of the auction house. We retrieved

these three volumes from the Victoria and Albert Museum Library in London. Graves

recorded the name of the artist and his/her living status, the name of the artwork and

year of origin, and the medium (painting, �gurine, etc.). Using the name of the artist, the

painting, the title of the painting, and the year of origin, we can categorize each artifact into

a school, movement or a period. The unique feature of the data is the availability of the

original sellers' and buyers' identities in the transactions. However, besides the �rst and last

names of the buyers, the original data does not provide any other biographical information.

Therefore, we used museum archives to identify art dealers among our buyers. With this
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search, we were able to classify 138 distinct buyers as dealers who, in total, account for 43%

of all transactions.

Note that all lots were sold using an English auction format and only the �nal hammer

price is recorded. The size of the dataset, and the length of the time period that it covers,

provide a unique opportunity to trace price �uctuations and trading network connections

throughout an artist's lifetime and beyond his death.

The data allows for the construction of two time-evolving networks used to capture

market in�uence. The �rst is a bipartite network that links buyers and artists through

auction trades.5 The second is a directed network that links buyers and sellers.6 Both

networks are updated monthly and use a 10-year moving window to capture the relevance

of recent information and limitations in institutional memory for dealerships.

Based on the artist-buyer network, we calculate the artist's eigenvector centrality, weighted

by the number of artworks sold. This measure captures the relative importance of individ-

uals in the trading network by considering their full set of trading links across the market

that occurred before the transaction. It is a proxy of the in�uence that an artist's buyers

have in the market and re�ects the con�uence of reputation and popularity of the artist.7

Reputation is keenly important in the art world but is often di�cult to measure. Ursprung

and Zigova (2020) use the length of an artist's obituary as a indicator of reputation. Sim-

ilarly, in another e�ort to isolate general reputational e�ects, Campos and Barbosa (2009)

�nd that paintings exhibited prominently or listed in a catalogue raisonné, a compendium

of an artist's work, sell for a premium.

Eigenvector centrality is a measure attempting to �nd the most important nodes (indi-

5A bipartite network is one in which there are two distinct types of nodes that always connect to a node
of a di�erent type. The network is considered bipartite because the set of buyers and artists do not overlap.

6A directed network is an appropriate framework to represent links between buyers and sellers, since they
have distinct roles with potential overlap. The same individual could be a buyer in one occasion and a seller
in another, which occurs for about 10% of the buyers and sellers.

7Even though the reputation of an artist's work is often di�cult to assess, Fraiberger et al. (2018) use
eigenvector centrality to assess museum and gallery prestige.
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viduals) in a trading network by incorporating information about the buyers who purchase

the work of an artist.8 An additional link to any buyer will increase an artist's eigenvector

centrality, but the size of the increase will vary based on the number of connections the

buyer has. A buyer with no other purchases will cause only a minimal increase, while a

purchase by Agnew, the biggest art dealer, will increase it much more. Thus, artists with

many connections to important buyers will have high eigenvector centrality.9 In our sample,

those important buyers tend to be art dealers, who buy about 50% of art. The eigenvector

centrality is weighted according to the number of art pieces sold, to assign weight and impor-

tance to artists who are repeatedly bought at auction by the same buyer. The buyer-seller

network allows us to capture which sellers have been present in the auction market before,

and how often they sell. Because of the heavily right-skewed nature of the network variables,

we include them in their logarithmic form in all regressions.10

Reputational e�ects of other parties involved in the auction might also a�ect the prices

at which artworks are sold. Sellers with frequent dealings in the market may see their lots

sell for more as the risk of forgery is lower. Similarly, works with anonymous sellers may

su�er a penalty for not revealing their identities. Lastly, the reputation of the auction house

must also be considered. During the time frame, Christie's was the preeminent auction house

responsible for 95% of all auction sales.

We restrict the sample to include only those artworks sold within 20 years of an artist's

death and only artists whose paintings were sold before and after their death. In Table 2.1,

8The eigenvector centrality of all the nodes in a network is the principal eigenvector of the adjacency
matrix, which is an N×N matrix containing all the information about links between nodes. Bloch, Jack-
son, and Tebaldi (2019) includes a full explanation of eigenvector centrality and as well as other centrality
measures.

9Calling the importance of each node in the network as its centrality score, in measuring eigenvector
centrality we want the centrality score to be proportional to the sum of scores of all nodes which are
connected to it. This way if a node is connected to another important node, it will also be important and
vice versa. A more detailed de�nition of eigenvector centrality and the other variable included in the paper
are included in Appendix Table A2.1.1

10Many networks, including our networks, follow a power-law distribution characterized by a long right
tail.
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we provide summary statistics broken down by sales before and after death. We observe

3,127 artworks sold before death and 4,633 sold after death by 160 di�erent artists. This is

a substantial increase in sample size relative to most of previous research. Ekelund, Ressler,

and Watson (2000) included only 21 artists in their sample, Matheson and Baade (2004)

had 13 baseball players, and Maddison and Jul Pedersen (2008) included 93 artists. An

exception is in the work of Ursprung and Wiermann (2011) who, despite their considerable

sample size, focused on the most proli�c artist who sold more than 250 pieces over 26 years.

Most of our observables about the artworks remain largely unchanged, with a few notable

exceptions. First, the average price falls signi�cantly after death from �382 to �355, while

the standard deviation rises from �508 to �566. These two changes suggest that there are

di�erential e�ects throughout the price distribution. Second, art sold with a seller's name

that matches the artist's name increases from 0.7% before death to 13% after death.11 Since

an artist cannot sell work after death, this increase is mostly because the families of artists

were typically selling o� art from their workshops by way of an estate sale. Thus, we refer to

this sales as those sold by family. Artworks sold by the family sell for much less on average

than those sold by others (�184 compared to �382) and have a strong e�ect on price within

the �rst two years of an artist's death. Panel A of Figure 2.1 shows the density in log prices,

identifying whether a seller's name matches the artist's name, in the 20 years after an artist's

death. The artworks sold by the family of the artist are sold at far lower prices compared to

the full sample and are commonly found on the left tail of the combined price distribution.

Panel B of Figure 2.1 shows the timing of pieces sold. For works not sold by family, sales are

consistent throughout the 40 year time period, but 47% of all works sold by family happen in

the year immediately following an artists death, and an additional 8% are sold the following

year.12 The lack of strategic consideration on behalf of the artists' families is a considerable

11Names were matched according to the last name and �rst initial.
12The other large spike at nine years after death is from sales of a single artists work, Benjamin West.
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factor contributing to the short-term �uctuations of prices posthumously. While art sold by

the family may be an important determinant of price changes after death, this observation

o�ers an incomplete explanation of the price trend as 79 out of the 160 artists did not have

family sell their works after death.13

Finally, there is an increase in both measures of artists' trading networks. An artist's

market in�uence measured by his eigenvector centrality increases from 0.0055 to 0.0113

and the number of pieces sold increases from 30.6 to 43. This raw change misrepresents

how artists' networks are changing, as it oversamples artists with many paintings sold. By

comparing an artist's eigenvector centrality at death to later times, we avoid this problem.

Only 33.8% of artists have higher eigenvector centrality ten years after death than at the

time of death, while 37.5% did not have any artworks sold during the same period. The

decline is even more dramatic 20 years after death, with only 25.6% of artists having higher

eigenvector centrality than at death, while 45.5% of artist had no artworks sold for ten years.

Those artists with high eigenvector centralities at death continued to have higher eigen-

vector centralities after death as well. Due to the skewed nature of eigenvector centrality the

natural logarithm is taken. At 10 years out, current log eigenvector centrality and log eigen-

vector centrality at death still strongly correlated, with a correlation coe�cient of 0.532.14

At 20 years out, the correlation remained strong at 0.432. In a similar vein, artists with high

eigenvector centralities were more likely to continue to be sold after death. Those artists

with sales 10 years after death had an average log eigenvector centrality at death of -8.34,

signi�cantly higher than that of artists with no sales, at -9.58. The di�erence is even more

stark at 20 years out, where those with sales had a log eigenvector centrality at death of

-7.74 compared to a log eigenvector centrality of -9.41 of those with no sales.

13This includes J. M. W. Turner and Horatio McCulloch, the two artists mentioned in the introduction.
14This is despite the fact that no artworks have been included in both groups as the window for link

formation is 10 years.
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2.3 Empirical Analysis

In this section, we model how changes in network structure can explain the downturn in

artwork prices following an artist's death in the 19th and early 20th centuries. The �rst

model we estimate is a hedonic regression model of logarithmic prices with artist �xed

e�ects, followed by a quantile regression analysis to study behavior across the distribution.

Ashenfelter and Graddy (2006) provide an excellent overview of the merits of the hedonic

pricing model relative to the repeat sales methodology for art price indices, where the price

of the ith artwork sold in time period, t, is determined by a small number of by now,

conventional hedonic characteristics, x, controlled for in the regression. We control for all

the usual characteristics that are used in these hedonic pricing models, such as artist, size,

medium, and genre. The unique contribution of this dataset is that in addition to the usual

hedonic characteristics, we have the identity of the buyers and the sellers, and can identify

their status, for example, as a dealer, collector, aristocrat, or artist.

Since all prices are determined through an auction process, selection on buyer observables

is a consideration. Di�erent classes of bidders, such as art dealers, may have di�erent

willingnesses to pay for attributes creating di�erences in price. Because our main variable

of interest relates to who buys a work, selection bias would be problematic. Thus, we use

the two-step Heckman process (1979) to estimate the mean, and the method of Arellano,

Blundell, and Bonhomme (2017) to estimate the quantiles of the response variable. Their

method corrects for selection by adjusting the percentile level of each observation based on

the probability of selection. In practice this requires a three-step process. The �rst step uses

a probit model to predict selection, which in our case is the probability that a bidder wins

the auction. The second step estimates the correlation between the probability of winning

and the price. This correlation, along with the probability of winning and the Gaussian

copula15, determine the level to which each observation's `check' function, from a standard

15The Gaussian Copula describes the joint probability distribution of correlated normal random variables
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quantile regression, needs to be rotated. To �nd the correlation parameter that best �ts the

data requires a grid search, testing values from the full range and selecting the one with the

best �t in selected quantiles.16 The �nal step then estimates all the quantiles of interest

utilizing the estimated correlation.

Since all works are sold in an English auction, the hammer price will be determined by

the second-highest bidder's willingness to pay. Thus, we allow bidders of di�erent types-in

particular, art dealers-to have di�ering values of an artwork based on its observable charac-

teristics. As such, we interact a dealer dummy variable with all observable characteristics.

Introducing a selection model allows inclusion of additional buyer speci�c variables which

are determined endogenously through the auction process. Thus, our �rst stage model is:

Pr[winabt|Xabt, dealerbt] = Φ(β ·Xabt + γ ·Xabt · dealerbt) (2.1)

where Xabt captures seller, artist, bidder, and artwork characteristics, and includes a variety

of controls such as dummy variables for seller's type (artist, collector, unknown, etc.), the

logarithm of the seller's volume of past sales, an artist's log eigenvector centrality and log

of the number of artworks sold. Xabt also includes the buyer's log eigenvector centrality

and log capacity, time trends, and the logarithm of the number of buyers. The estimation

incorporates a dummy variable for whether a work of art was sold at Christie's, whether

it was part of a collection, the artist's age, artistic school, artwork medium, and artwork

genre.17 Lastly we also include variable incorporating information about the rival bidder

likelihood of winning including the maximum rival log eigenvector centrality, maximum rival

capacity, and the percentage of bidders who have purchased the artists work previously. Since

a full record of all bidders of an artwork are not known, we consider all winning bidders at

and is used to connect the error of the selection stage to the pricing stage.
16We use the 0.20, 0.40, 0.60 and 0.80 quantiles just as Arellano, Blundell, and Bonhomme (2017) did.
17We could not adequately control for art size, as only a third of artworks have size measurements in the

data.
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the auction house on the day of sale as potential bidders. The bidders who won items in

an auction sale were typically present throughout the day's auction on the �oor assessing

competition and planning their bids. The average auction had 112.8 pieces for sale, bought

by 41.3 buyers. Bidders had an opportunity to submit 316,512 potential bids on artworks

sold within 20 years of an artist's death, of which about one-third could have been generated

by dealers.

The results of this �rst-stage regression can be seen in Table 2.2. Non-dealers are less

likely to purchase art created by artists with higher eigenvector centrality and more likely to

purchase art from artists with many artworks sold in the past or from unknown sellers. Art

dealers are more likely to purchase art by contemporary British artists. A buyer's eigenvector

centrality is of importance to only the dealers' likelihood of purchase. Interestingly, the rival

eigenvector centrality and capacity only a�ect a dealer's likelihood of winning but not a

non-dealer's, hinting at strategic consideration more prominent in dealer's actions.

In the second stage for the mean regression, the log price is estimated using a Heckman

two-step process:

lnpriceabt = β · phabt + δ ·Xabt + σ12 · λabt + αa + εiat (2.2)

where λabt is the inverse mills ratio of bidder b on piece i by artist a, generated from the

estimation of the probit model. The model also includes artist �xed e�ects. Lastly, phabt is

a dummy variable identifying whether an artwork is sold after an artist's death.

Due to the price variance increasing after death, we then estimate a �xed e�ect version

of Arellano, Blundell, and Bonhomme (2017) to assess how the death and network e�ects

change the distribution of prices. The same �rst stage from the Heckman model is used to

�nd the selection error, but the method for calculating the correlation between the �rst and

second stage errors is di�erent. The correlation coe�cient, ρ̂, is estimated through a grid
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search. Using ρ̂ from the second stage grid search and the inverse Gaussian copula the �nal

stage becomes:

Qlnpriceiat(τ |phiat, Xiat, ρ̂) = βG−1(τ,p̂(z);ρ̂) · phiat + δG−1(τ,p̂(z);ρ̂) ·Xiat + αaG−1(τ,p̂(z);ρ̂) (2.3)

where G−1(τ, p̂z; ρ̂) is the inverse Gausian copula, between the �rst and third stages. Due

to the nature of the model, standard errors are estimated using bootstrapping.

The results of the panel quantile regression can be found in Table 2.3. In Panel A, we

included only an artist �xed e�ect and a dummy variable for the living status of the artist,

but no correction for sample selection. A signi�cant negative e�ect is observed in all but

the 0.10 conditional quantile. In contrast, when controls are added in Panel B, there is

no signi�cant posthumous e�ect at any quantile, suggesting the observable changes in an

artist's network and estate sale strategy can explain the large decline in prices. The same

results are shown graphically for all quantiles in Figure 2.2. While sample selection was

possible, we did not �nd a statistically signi�cant relationship between the �rst- and second-

stage errors as seen in ρ̂ being insigni�cantly di�erent from 0 at both the mean and across

the entire distribution.18 This low correlation is most likely due to the winner being the

bidder with the highest private value for the artwork but the price being determined by the

second-highest private value. Of the controls introduced in Panel B, the sale of artwork by

family members has the most profound negative e�ect on prices. The e�ects can also be seen

graphically in Panel B of Figure 2.3. Consistently, across the distribution, we observe a steep

decline in sales prices for those families who did not use professional consultation and chose

to sell directly at auction.19 The art market, in general, seems to place a heavy premium

18Results of the regressions without sample selection are quantitatively the same and are available from
the authors upon request.

19Interestingly, the mean estimate is below all the quantile point estimates between the 10th and 90th

quantiles. This is most likely caused by a severe penalty in the quantiles below the tenth. Due to the artist
�xed e�ects, a consistent estimate below the tenth conditional quantile is impossible.
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on reputation, with art sold at Christie's, the leading auction house, selling for a premium.

Paintings sold by anonymous sellers sell for signi�cantly less. The insigni�cant e�ect of the

seller's volume of transactions is most likely due to low variation of sales numbers per seller.

Networks developed through the auction trades have a bene�cial e�ect on prices. An

artist log eigenvector centrality has a strong positive in�uence on prices, with the strongest

e�ect observed near the median of the distribution. The e�ect at all quantiles can be seen in

Panel A of Figure 2.3. Note that, the volume of artwork is controlled and has a negative e�ect

throughout the distribution.20 The buyers log eigenvector centrality has a negative e�ect

on prices, suggesting that those buyers with large networks are able to discover underpriced

works. The result is in line with �ndings in De Silva et al. (2020a) suggesting that a network is

a source of information creating advantages that are re�ected in bene�cial trade conditions.

This e�ect is strongest at the upper end of the distribution. Similarly, dealers pay lower

prices when they buy, compared to non-dealers.

Prices continue to evolve overtime estimated through the use of a cubic time trend in-

cluded in all regressions.21 However this trend does not intuitively describe price changes

overtime. As such, we ran a second regression replacing the time trend with three dummy

variables identifying non-overlapping time intervals after an artist's death. The �rst covers

the �rst two years after death, the second from two to ten years after death and the �nal

from ten to twenty years after death. Since all other coe�cients are nearly identical to the

�rst model, only the estimates of the dummies are shown in Figure 2.4. None of those point

estimates are statistically signi�cant at the 5 level, though the point estimates are lowest

20Results of a robustness check replacing the artist's log eigenvector centrality with the log count of dealer
purchases is available upon request. This measure is more intuitive but lacks the ability to di�erentiate
within groups. It does not capture the relative importance of a dealer in comparison to others. As such,
it suggests that dealers with a high count of previous purchases buy a lot more inexpensive art, while the
results on eigenvector centrality suggest that important dealers (in relative terms) not only buy inexpensive
artwork but highly-priced pieces as well.

21The cubic time trend was chosen as it o�ered �exibility about the evolution of prices around an artist's
death.
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between the 0.5 and 0.75 quantiles and in the second window.

While artists' trading connections have a signi�cant e�ect on prices, it is less clear whether

a network that has been developed around the time of death is a good indicator of prices in

the years after an artist's death. To explore this question, we focus on the log eigenvector

centrality in the 10-year window ending with the month an artist died, as a measure of the

artist's importance in the network. In particular, we estimate the following model:

lnpriceit = β · lneigenvectorit + δ ·Xit + εit (2.4)

The regression includes all the same controls introduced earlier except for the artist �xed

e�ects and sample selection, since eigenvector centrality at death is constant per artist, and

there was no evidence of statistically signi�cant sample selection in the previous regressions.

We run this regression on both the mean using OLS, and on the distribution using quantile

regression, similar to the previous estimation e�orts. The regression is repeated for three

time windows after death. The �rst includes information for two years following death, the

second from two to ten years, and the �nal from ten to twenty years.

The results for the e�ect of log eigenvector centrality at death on log price can be seen

in Table 2.4 and Figure 2.5. At the mean, the log eigenvector centrality is signi�cant only in

the �rst window. The point estimate also falls as the window span increases. If we instead

consider the conditional quantiles, an interesting pattern emerges. For the 0.25 conditional

quantiles the e�ect of the eigenvector centrality at death is indistinguishable from zero in

all three windows. It is only at the upper tail that a signi�cant e�ect can be seen. At the

0.90 conditional quantile, the e�ect is highly signi�cant with a magnitude that diminishes

gradually after death. In fact when looking at the upper tail, the eigenvector centrality at

death is a stronger predictor of price in the ten to twenty year window, compared to the two

to ten year window. Even twenty years after death the network at death remains signi�cant
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at the 1% level for high priced art. For all the other quantiles there is a steep decline in the

e�ect of this measure on price with distance from death.

The dataset provide us with a unique opportunity to investigate the role of the family

on the price distribution following an artist's death. In Table 2.4, we see that sellers with

the same family name as the artists sell the most expensive artworks �rst, with the highest

coe�cient on the 90% quantile. The coe�cient is negative and statistically signi�cant,

providing empirical evidence that the artworks are sold at a discount and indicating that

families sell the most valuable paintings �rst. Since we only capture a fraction of the owners of

the estate, it is likely that we underestimate the e�ect of family sales. It is interesting to note

that, in the time horizon between ten and twenty years after the death of an artist, the results

become positive and statistically signi�cant in the center of the distribution, reinforcing the

belief that nonstrategic sales dominated family actions in the period immediately after an

artist's death.

The quantile regression results in Table 2.4 for the 0.9 quantile, which represents the high

end of the price distribution, is re�ective of the masterpieces of the time. Our �ndings suggest

that, network e�ects increase sales prices more at the higher end of the sales distribution and

could help bridge studies of repeat sales data to network e�ects in primary sales, to shed light

on price patterns for masterpieces of this era, especially the subsequent under-performance of

Masterpieces noted in the seminal works by Pesando (1993) and Mei and Moses (2002), but

notably not by Goetzmann (1993). Our �ndings suggest that, any subsequent sale would

need to incorporate the price premium for network e�ects at the higher end of the sales

distribution a�ecting the performance of this art in the secondary market.
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2.4 Conclusion

The results of this study identify two factors contributing to price �uctuations in artwork

after an artist's death. Nonstrategic estate sales by family members of an artist and a dealer's

buying interest both have a signi�cant impact on the change in art prices over time with

di�ering short and long term e�ects. Analysis of network measures allows us to capture

factors that were not accounted for in the literature before, to explore the death e�ect in

art prices. Once several network measures are introduced (to capture the reputation of

artists and in�uence of buyers) and we consider the dynamic evolution of prices in the 19th-

and early 20th-century English art market, the negative death e�ect captured by a unique

identi�er gets to be attributed to other distinct factors.

The development of network measures also allows us to observe a mechanism by which art

prices change over time. J. M. W. Turner's paintings saw an appreciation in value after his

death because his works were overwhelmingly bought by art dealers with high connectivity

captured by their eigenvector centralities. These purchases by dealers helped elevate his

reputation and sale prices signi�cantly over time. Horatio McCulloch's works conversely

saw a decline in value due to his art being bought more frequently by individuals with no

professional market engagement, who were less likely to make repeat sales (see Figure 2.6).

While McCulloch did not see a decline in the number of dealers who purchased his art, the

dealers who did buy his work were less connected through trades than those who bought

from Turner, as seen by the smaller size dots representing them in the scatter plot.

While our results are able to explain away the death e�ect, the question still remains as

to why a negative unconditional death e�ect exists in the 19th- and early 20th-century art

market, while the opposite is observed in other more modern samples. We would point to the

increased sample size of our dataset, especially the number of artists. Smaller datasets tend

to focus disproportionately on artists with more prominence, creating a bias toward positive
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e�ects in prices. Even Ursprung and Wiermann (2011) who use a large dataset spanning 26

years, are still basing their conclusions on a sample of top achievers who have been sold at

least 250 time throughout the period. In that sense, our dataset provides the opportunity

of tracing a large number of artists for a long period of time, providing a more complete

sampling from the distribution of sales.
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Chapter 3

Subcontracting and the Incidence of

Change Orders in Procurement

Contracts

3.1 Introduction

A pervasive feature of procurement contracts is their susceptibility to ex post renegotiations.

Typically, these renegotiations are executed through �change orders.� Government agencies,

while recognizing their ubiquity, are keenly aware that change orders are costly. On the one

hand, there are costs associated with adapting the project due to delays, the re-scheduling of

tasks, haggling and legal expenses. Bajari et al. (2014) estimate that adaptation costs add

between 8% and 14% to the average California highway construction contract. On the other

hand, in itemized-bid contracts, �rms that anticipate change orders in some items, can skew

their itemized bids strategically, thereby in�ating ex post project costs (Jung et al. 2019;

Miller 2014). If letting agencies are better able to forecast the incidence of change orders,

they could reduce total project costs and accordingly bene�t taxpayers.
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Previous studies of change orders tend to emphasize the complexity and uncertainty sur-

rounding contracting as key in�uences on the likelihood of renegotiation (see Anastasopoulos

et al. 2010; Bordat et al. 2004; Hsieh et al. 2004; Iossa et al. 2007; Oudot 2006). Our focus

is on the role of subcontractor use on contract renegotiation. Like change orders, subcon-

tracting is widespread in many procurement contexts. In our dataset of Vermont highway

projects, the average project employed 5.09 subcontractors, while 90.7% of projects used at

least one subcontractor. Government interventions in highway procurement encourage the

use of subcontractors through disadvantaged business enterprise (DBE) programs. Previous

work on the e�ectiveness of DBE programs stops short of considering their entire impact

by analyzing only the bidding stage of the process. These studies �nd mixed results rang-

ing from no increase to small and in some cases insigni�cant increase in procurement costs

(De Silva et al. 2012; Marion 2009). If subcontracting leads to disproportionate increases in

procurement costs at the implementation stage of the project, then the evaluation of di�erent

DBE programs is incomplete.

Our dataset consists of all Vermont Agency of Transportation construction (VTrans)

contracts procured between May 2004 and December 2009. In OLS regressions using these

data, the number of subcontractors signi�cantly raises the number of change orders and the

dollar amount of the contract that is renegotiated. There are two possible interpretations

of this association. First, more complex projects that use more subcontractors are more

likely to require renegotiation. In this interpretation, the positive conditional correlation

is caused by an omitted variable capturing unobserved complexity. The second possibil-

ity is that the number of subcontractors on a project directly increases the probability of

renegotiation. Subcontractors might have a direct impact on the probability of renegotiation

because of poor coordination and miscommunication between subcontractors and prime con-

tractors. This possibility is substantiated in the literature (Masten et al. 1991; Miller 2014).

An additional reason that subcontracting might contribute to change orders is because of
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incentives resulting from procurement regulations. For instance, in Vermont, the Agency

of Transportation applies a ten percent premium payment to primes above subcontractors'

costs when new items are added to the contract.1 It is conceivable that this regulation could

lead prime contractors to engage in behavior that increases the likelihood of new items being

added, and then to employ subcontractors for the task in order to obtain the ten percent

pro�t.

To determine which interpretation is correct, we use an instrumental variable, the pre-

dicted number of subcontractors estimated from a sequential Bayesian framework modeled

based on Christakis et al. (2010) and adjusted to a dynamic setting. This IV helps us

disentangle the subcontracting activity from unobserved project complexity as a cause for

renegotiation. The model allows for interdependencies in subcontracting decisions and in-

cludes information on the experience of subcontractors and the networks developed by both

contractors and subcontractors. Our analysis includes control variables representing project

characteristics, such as the size and complexity of the project, and its geographic location,

that make the work of the state engineer who is tasked with project planning more di�cult.

These increase the likelihood that the plans will need to be revised after the contract is

awarded. We also control for the characteristics of the prime contractor. It is possible that

large �rms exert more in�uence on project design ex post and are more likely to be able to

convince the state authorities that change orders are required. The IV provides additional

information about a �rm's subcontracting needs and habits that are independent of any

unobserved complexity of the project. We �nd that subcontracting leads to signi�cantly

higher ex-post change orders and a higher dollar renegotiation amount, supporting the view

that there is a causal link between the use of subcontractors and contract renegotiation. In

doing so we contribute to a growing literature on the indirect e�ects of subcontracting on

procurement auctions (Branzoli and Decarolis 2015; Marion 2015; De Silva et al. 2017).

1See page 1-137 of the VTrans Standard Speci�cations for Construction 2011.
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The paper proceeds as follows. Section 3.2 provides a description of the data. Section 3.3

describes our model. Section 3.4 presents empirical results and section 3.5 o�ers concluding

remarks.

3.2 Data and Descriptive Analysis

The data used in this paper contains information on all 312 construction projects auctioned

by the Vermont Agency of Transportation between May 2004 and December 2009. Our

dataset provides information on project scope, date, duration, and cost estimates made

by state engineers prior to the auction. The engineers stipulate all items required for the

contract, and the quantities of each item. Firms provide itemized bids, from which a project-

level total bid is calculated. The state awards the contract to the lowest-bidding quali�ed

�rm. Change orders are either adjustments in the quantity of a pre-speci�ed material or task,

such as asphalt or roadside �aggers, or the addition of a new item not originally contemplated

in the plans.2 For each change order on each project, we know the changed quantity and

unit-price for every renegotiated item within a contract. Regulation requires that change

orders be �led if the changes of plans or speci�cations impose at least a 5% increase in costs.

Nevertheless, it is the practice of Agency engineers to submit change orders whenever the

quantity of any item in a project increases by more than ten percent, even if total project

costs increase by less than the �ve percent threshold.3

As shown in Table 3.1, 254 of the 312 contracts in our sample had at least one change

order. The mean number of change orders in those projects was 4.27, resulting in an average

2A special case of quantity adjustments are when the item is dropped entirely from the project. Besides
those quantity adjustments, there are some limited price adjustments applied to asphalt or fuel items when
unforeseen circumstances lead to large �uctuations in the price of oil. These price adjustments are made
according to formula linked to the price indexes of those items and are beyond the discretion of the �rm or
the agency. We restrict attention to change orders �led for quantity adjustments.

3The engineers do this in order to avoid onerous reporting requirements if those increases are only reported
after the project is completed, rather than while it is in progress. We thank Deputy Chief Engineer Ann
Gammell for this information.

49



cost increase of 7.2% over the winning bids. Over the period of analysis, VTrans spent

an average of $105,020 on renegotiations per contract. Most change orders include some

renegotiation about unanticipated tasks in the �eld. The histograms presented in Figure 3.1

clearly show skewed distributions for both the number of change orders, and for the dollar

amount of the change order.

The Vermont Agency of Transportation awarded the 312 contracts to a total of 62 �rms.

These �rms used an average number of 5.09 subcontractors on each project. The distribution

of subcontracting use is depicted in Figure 3.2. The histogram shows the distribution of

subcontractors. The most frequent number of subcontractors is 5 or 6. Projects are relativity

likely to feature 0 or 1 subcontractors, but relatively unlikely to use 2 or 3 subcontractors.

The average project consisted of 60.2 items, 31.9 of which on average were subcontracted

out, representing 19.8% of the winning bid. Figure 3.3 presents the distribution of items

and the percentage of those completed contracts by subcontractor on projects that used at

least one subcontractor. The percentage of contracts completed by subcontractors, follows a

similar distribution to that of the number of subcontractors. The distribution of items shows

that while in most projects few items are completed by subcontractors, there is a long tail.

Both panels in this �gure show that while subcontracting is an important part of highway

construction it makes up only a relatively small portion of the monetary cost of a project.

From the data on subcontracting, we create a time evolving directed network which

connects contractors to the subcontractors they used over the previous 12 months in Vermont.

An image of the network can be seen in Figure 3.4. Each node represents a �rm in the

market over the full length of the dataset. Nodes are colored according to their position in

the network. Firms which worked only as contractors are represented by white nodes, while

�rms which worked only as subcontractors by red. The pink nodes represent �rms working

as both. Only 30 of 277 �rms worked in both capacities. Nodes are adjusted in size to re�ect

the relative number of connections in the market while the thickness of links between nodes
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represent the number of times �rms worked together. At the center of the network are a

few contractors and subcontractors who are very active in the market. In the periphery are

located �rms with lower level of activity. Finally, there is a group of subcontractors that

have only been involved in one contract and are placed at the network's outermost edges.

These �rms represent a large fraction of the network, with 118 out of 277 �rms being used

as subcontractors only once.

From this network, we can create several variables which provide information about �rm

engagement, seen at the bottom of Table 3.1. First, we represent the presence of links

between a contractor and subcontractor. Prime contractors have a strong a�nity to working

with subcontractors that they have already contracted with in the past. In our sample,

on each project a subcontractor has a 24.2% chance of being hired as long as the prime

contractor on that project has previously used them, whereas if they had not previously

been used that probability drops to 2.8%. The table also presents centrality measures which

attempt to ascertain a �rm's importance in the directed network. For contractors, we use

the �rm's outdegree centrality and hub centrality, while for subcontractors we use the �rm's

indegree centrality and authority centrality. The outdegree (indegree) centrality is simply the

count of unique subcontractors (contractors) the contractor (subcontractor) has worked with.

The hub and authority centralities are more complex measures. Both use eigenvector theory

and the adjacency matrix to calculate a �rm's importance in the network. Conceptually, a

contractor (subcontractor) will have a high hub (authority) centrality when it is connected

to subcontractors (contractors) with high authority (hub) centrality.4 Lastly, we use the

network to identify those �rms which work both as contractors and subcontractors in the

market. These �rms may behave di�erently than other �rms due to di�erences in opportunity

costs (see Marion 2015).

4For more complete explanation of hub and authority centrality, and how they di�er from out- and
indegree centrality, please see Appendix A3.2.
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Our dataset also includes information about the tasks required to complete each project

and the �rms that performed these tasks as either contractors or subcontractors. These

projects consist of nearly 1000 unique jobs. We aggregate those tasks within a category,

as de�ned by VTrans, since tasks in the same category are typically similar and a �rm

pro�cient in one such task is likely to be competitive in the execution of other similar tasks as

well.5 After aggregation, the average project has 24.6 di�erent categories. With these data,

we determine the percentage of categories, the prime contractor and subcontractors have

experience with, from the beginning of the sample to the auction date. We also determine

if a subcontractor has pro�ciency in a category in which the winning bidder does not.

Beyond subcontracting, we include other variables relevant to renegotiation. Given Ver-

mont's varied terrain, geography is chief among these. The maps in Figure 3.5 show the

spatial distribution of contracts and their likelihood of renegotiation. There are blue and

red marks displayed on the �gure that vary in size by the number of contracts procured

and renegotiated. Red marks are superimposed on the blue marks. A blue ring surrounding

a red mark shows that some contracts procured in this region have not been renegotiated.

Red marks dominate the picture as renegotiations seem to be widespread. The right panel

shows the percentage of contract value renegotiated. It is evident in this �gure that the

contracts renegotiated in higher proportion are those in remote, less populated areas or in

mountainous terrain. There is a lower percentage of renegotiations on the more frequently

repaired interstate highways. This �gure suggests that the frequency of renegotiation is di-

rectly related to the degree of uncertainty, because engineers face greater uncertainty with

projects in more di�cult topography, and lower uncertainty on interstate projects that have

been repeated many times over the same stretch of road. Accordingly, we include variables

5Tasks are encoded as a number with the numbers before a decimal indicating the category and the
numbers after. For example, all item beginning with 201 correspond to clearing trees. Item number 201.15
corresponds to removing medium trees, 16 to large trees, etc. Vermont Agency of Transportation 2015
English/Metric Construction Manual.
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indicating a project's elevation. We also incorporate the following project-level controls: the

engineer's cost estimate, the expected duration, the number of items, and the type of project

(highway, bridge and other).

In addition, it is necessary to control for characteristics of the prime contractor, as there

are signi�cant di�erences in their tendency to employ subcontractors. The top �rms in the

market use an average of 6.36 subcontractors per project while the remaining �rms use only

3.66. Top �rms also subcontracted out 25.8% of the value of their projects compared to

only 17.7% by smaller �rms. Unsurprisingly the top �rms are also central to the network

presented in Figure 3.4. The labels on the nodes correspond to those in Table 3.2. In

addition to information on prime contractors' use of subcontractors, we know all �rms'

years of experience, their assets and liabilities. Table 3.1 provides summary statistics on

some of these variables, and Table 3.2 displays information on contract renegotiation and

subcontracting behavior by �rm. Nine �rms in the industry carried out more than half of

all projects, constituting approximately 76% of the total value of projects, whereas 53 fringe

�rms undertook the remainder.6 Further evidence of market concentration is that one �rm

undertook nearly one-fourth of all projects worth 36% of contracts. The average experience

of engineers is higher for projects awarded to top �rms. In the econometric analysis, we use

a binary variable identifying top �rms and a continuous variable capturing �rm experience.7

A top �rm designation is based on having assets in the top decile of the distribution the

year prior to the bid letting. By employing the threshold, we are able to separate �rms into

groups similar to those shown in Table 3.2 and to assign a similar proportion of top �rms as

in Bajari et al. (2014). Larger and more experienced contractors are more likely to undertake

6An additional 30 �rms bid on projects during the period but did not win any projects.
7Firms' assets are disclosed each year prior to the renegotiation process. This information is omitted

in prior estimation results in the literature because it is often proprietary. We explored other variables
connected to �rm heterogeneity, such as an indicator for those �rms that won a disproportionate number of
contracts in Vermont, an indicator for �rms with Vermont headquarters, and variables re�ecting the distance
from the �rms' headquarters to the project. Those results were very similar to the results for the �top �rm�
designation we use in this paper and are available upon request.
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more projects due to their �nances and range of capabilities. We expect that they are likely

to submit more change orders as their knowledge and experience could help their chances of

renegotiation with the state government.

We measure the degree of competition in the market by using the expected number of

bidders.8 We have no priors about the expected number of bidders or the type of project. It

is possible that greater competition might lead �rms to either ask for more or fewer change

orders after winning the contract. In order to test whether certain types of projects are

more susceptible to change orders, we use three binary indicators (road construction, bridge

construction and miscellaneous projects). We also include two controls for changes in the

business environment - the unemployment rate and the logarithm of the real value of all

projects auctioned o� in a month. These may a�ect renegotiation behavior if �rms submit

change orders more or less aggressively as the business environment changes.

A �nal control that we employ relates to the experience of the state engineers manag-

ing the project. In practice, the resident engineer and the project manager assigned to the

project have the primary responsibility dealing with renegotiation. We measure the engi-

neer's experience by counting in how many projects an engineer has been involved over the

sample period. We then average across the resident engineer's and the project manager's

experience. Across all projects, the average experience of the resident engineer and project

manager is approximately 16 projects.

8Due to the concern of endogenous entry, we use the expected number of bidders instead of the actual
number of bidders in this analysis, considering whether the plan-holders' identities are publicly announced
prior to the letting. It is calculated using information over the past twelve months for each bidder and
planholder on the list. We construct the probability of submitting bids conditional on being a plan-holder.
For an auction at time t, the expected number of bidders is the summation of the participation probabilities.
Then, we multiply a dummy variable by the expected number of bidders in order to identify auctions in
which there are more than three quali�ed plan-holders on the plan-holder list. The state releases information
on plan-holders' identities only when there are more than three quali�ed plan-holders.
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3.3 Model and Estimation Method

In the section, we discuss the model and estimation method. N �rms are observed in our

sample. A total of Pt projects are procured in period t with t ∈ {1, 2, ..., T}) using a low price

sealed bid auction format. A �rm that is awarded a project can subcontract part of the work

to another �rm from the pool of available contractors who form a potential subcontracting

network. We describe �rms' subcontracting networks by the adjacency link matrix. An

adjacency link matrix Linkpt is an N ×N matrix, whose elements depict the subcontracting

status between each pair of �rms in project p in period t. We say that �rm i forms a link with

�rm j if the prime contractor i wins the project and subcontracts part of it to subcontractor

j. In Vermont, it is typical that these subcontracting decisions are made after the contract is

awarded. We de�ne Linkijpt = 1 (i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., N}, i 6= j, p ∈ {1, ..., Pt}, t ∈

{1, 2, ..., T}), where Linkijpt is the ith and jth element of the link matrix Linkpt. If i and

j do not form a link, Linkijpt = 0. Since subcontracting is a directional relationship ( i

subcontracting to j and j subcontracting to i are di�erent), the subcontracting networks

between �rms are directional as well. In addition, we de�ne Linkiipt = 0 since �rm i cannot

subcontract to itself. We also de�ne Linkt as the aggregation of Linkpt across all projects

in period t and Link as the aggregation of Linkt across all time periods.

In each project, we begin estimation after the state has awarded the project to the lowest

bidder, and thus all potential subcontractors can connect to a single �rm. The contractor

on the project, denoted by i, then needs to determine which if any subcontractors it will

hire from the available pool, St, which includes all �rms that served as a subcontractor in

Vermont in the year prior to the letting and those that are hired in the 3 months following

the project let date. To better capture all �rms' subcontracting relationships, we use a

12-month moving window to track �rms' subcontracting network. De�ne Networkt as an

N ×N matrix, whose ith and jth element Networkijt = max{Linkijpτ : i, j ∈ {1, ..., N}, p ∈
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{1, ..., Pt}, τ ∈ {t, ..., t − 12}}. Networkt indicates whether each pair of �rms has formed a

link before the current period but within the last 12-months.

Following the Bayesian estimation method �rst appearing in Christakis et al. (2010) and

further developed by He and Kosmopoulou (2020), we assume that each pair of potential

prime contractors and subcontractors meet once to decide whether i forms a link with j for all

relevant projects during each period t according to some meeting order (MOt), which will be

determined endogenously in the Bayesian estimation. Our structure considers decisions made

sequentially, as opposed to simultaneously. The sequential nature of the model allows for

interdependence between the individual subcontracting decisions, creating better predictions

in our framework, while also making a less strict assumption about how decision makers

act. We then aggregate the individual decisions to arrive at a predicted project level of

subcontracting that can then be used as an IV for the number of subcontractors on a project.

A project procured in period t is relevant to potential prime contractor i if �rm i submits

a bid in the project. Since a �rm can be a bidder for one project and a subcontractor for

another project, the potential primes and subcontractors may include the same set of �rms.

We also assume that the outcome of each meeting is known to all �rms immediately after

the meeting takes place, so �rms make their decisions in subsequent meetings based upon

what has already happened in the same period. We then de�ne MO as the aggregation of

MOt across all time periods.

The contractor i who is maximizing expected pro�t Ei(π
j
ipt) j = 1, ..., N at the time

of bidding will subsequently hire subcontractor j at a meeting on project p at time t if

Ei(π
j
ipt) − Ei(π

−j
ipt) ≥ 0, where Ei(π

−j
ipt) indicates the pro�t made by �rm i if it chooses

not to hire subcontractor j and instead complete the project by itself or with previously

hired subcontractors. Likewise, subcontractor j will form a subcontracting agreement if

Ej(π
i
jpt) ≥ 0, where πijpt is the pro�t for �rm j if it links with �rm i. We assumes that utility
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is perfectly transferable between the prime contractor and a subcontractor.9 Implicitly,

this means that if a contractor has a high positive expected pro�t from a link, while the

subcontractor has a slightly negative expected pro�t, the contractor can simply pay the

subcontractor more money to make the pro�t of the link greater than 0 for both parties

so that a link can be formed (Ej(π
j
ipt) − Ej(π

−j
ipt) + Ei(π

i
jpt)) ≥ 0). Note that implicit in

this expected pro�t function are characteristics of the contractor-subcontractor relationship

and regulatory provisions that a�ect the likelihood of contract renegotiation as well as their

monetary consequences.

A bidder who intends to subcontract part of a project at the time of bidding faces

uncertainty about the speci�cations of the subcontracted tasks and the size of the transfer.

Thus the probability of a change order is higher, and more expensive for subcontracted work

(Miller 2014).10 Furthermore, subcontractors often have more specialized knowledge on the

tasks that they undertake. Finally, the existence of the aforementioned 10% premium on

subcontracted work for new items added may also create incentives for primes to petition

for change orders with the intent of employing subcontractors on the added task.

We use a two-stage model to estimate the e�ect of subcontracting on contract renegoti-

ation. In the �rst stage, we predict the probabilities of the prime contractor on a project

hiring each potential subcontractor. The model's �rst stage is Bayesian so that the meeting

order of �rms can vary while still making the problem mathematically tractable. Note that,

the number of potential meeting orders for a project is St!. The normalized value of the win-

ning bidder hiring a subcontractor (hereafter referred to as a link) on a project is estimated

9Christakis et al. (2010) use a di�erent model for friendship link formation where both individuals must
have a positive value of friendship to create a link, but also lay out a perfectly transferable utility model, as
well as a partially transferable utility model.

10Miller takes the change order and its amount as given in his model. He estimates separate itemized bid
functions based on whether a subcontractor or contractor carries out a particular function (which must be
declared ex ante in his California sample), and then backs out cost estimates to conclude that subcontractors
are associated with higher renegotiation costs. Our approach instead endogenizes both the contracting choice
and the contract renegotiation.
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as:

log(Pr(linkijpt = 1)/(1− Pr(linkijpt = 1))) =

α · edgeijpt + β · Nijpt + γ ·Nipt + δ ·Njpt + θ · Iijpt + η ·Xipt + εijpt (3.1)

where edgeijpt is a dummy indicating if the prime contractor i worked with subcontractor j

in the previous 12 months prior to the letting of project p at time t. Nijpt is a vector of infor-

mation about the links formed on the current project including the number of subcontractors

already hired, a dummy to indicate at least one subcontractor has been hired, the number of

items previous subs have experience on, and a dummy to indicate if the subcontractor has

experience with an item neither the winning bidder nor previously hired subcontractors has

had experience with. The inclusion of the dummy for a least one subcontractor hired is to

allow for a �xed cost that must be born for hiring any number of subcontractors.

Other variables included are, a vector of prime contractor network characteristics (Nipt),

a vector of potential subcontractor network characteristics (Njpt), a vector of prime con-

tractor and subcontractor item characteristics (Iijpt) and a vector of project and contractor

characteristics (Xipt) to be included in the second stage as well. All the variables and their

descriptions are listed in Table A3.1.1 in the Appendix. Finally, an error term following a

type II extreme error distribution εijpt is included, leading to a logit model.

Notice that the model is not forward looking, as �rms do not directly take future sub-

contractor meetings into consideration while making current decisions. This assumption is

necessary to make the model tractable and is not uncommon in network models (see Jackson

and Watts (2001), Badev (2013), and Mele (2013)). The data provide some indirect mea-

sures of the outside options of the �rms with the total number of �rms in the market and

the network variables.

Since the model is Bayesian in nature it requires a prior distribution for all parameters
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and the meeting order. For both, we assume an uninformed prior. The parameters have a

prior which is normally distributed with a mean of 0 and standard deviation of 100, while

the meeting order has a uniform prior.

We use a Gibbs sampler to generate the posterior distribution of the parameters, updating

parameters one at a time. For each parameter a new potential sample of the posterior is

drawn from a normal distribution centered with a mean equal to the current value.11 The

potential value is accepted if the following condition is true:

α ≤ min(1, (Pr(D|MOk,N , X; θ) · p(θ))/(Pr(D|MOk,N , X; θk) · p(θk))) (3.2)

where α is a randomly drawn number between 0 and 1, D is the observed subcontracting

outcomes, MOk is the current meeting order, N is the network information at the current

meeting order, X represents the other variables, θ is the proposed parameter set, θk is

the previous parameter set, and p(θ) is the likelihood of θ in the prior distribution. After

calculating equation (2) for all parameters, then the estimator proposes a new meeting order.

To help prevent the estimator from attempting many unlikely meeting orders, new meeting

orders are generated by reordering 1% of the subcontractors. As above, the proposed meeting

order is accepted if the following is true:

α ≤ min(1,Pr(D|MOp,N , X; θk)/Pr(D|MOk,N , X; θk)) (3.3)

where MOp is the proposed meeting order.12 After the new meeting order is either accepted

or rejected, the process starts over with a new proposed value for the �rst parameter.

To arrive at a su�cient sample for the posterior distribution, we run four parallel chains

11The standard deviation for each parameter is di�erent so as to increase the e�ciency of the sampler
because some parameters have less informed posteriors.

12There is no prior distribution for the meeting order in the equation since the meeting order is assumed
to be uniform and thus all con�gurations are equally likely.
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of 10,000 samples, thinned every 40 iterations and a burn-in period of 20,000 iterations.13

The individual subcontractor hiring decisions are then simulated many times using draws

from the posterior distribution of parameters and the meeting order. These decisions are

then aggregated up to the project level to arrive at the predicted level of subcontracting on

the project such that:

ˆsubipt = (1/A) ·
A∑
a=1

St∑
j=1

ˆlinkaijpt (3.4)

where ˆlinkaijpt is the a
th predicted link between contractor i to subcontractor j on project p at

time t. The predicted level of subcontracting incorporates data on the prime contractor's and

subcontractors' experiences and networks. The key variables used to estimate the instrument

are the network connections between individual �rms, and their complementarities across

tasks.

In the second stage, the number of change orders is estimated using a Poisson count

model:

yipt = exp(α · subipt + β ·Xipt) + εipt (3.5)

The number of change orders (yipt) are function of the number of subcontractors on project p

used by contractor i at time t, (subipt), a vector of other project and contractor characteristics

(Xipt), and an additive error term (εipt). Xipt is assumed to be uncorrelated with the error

term, but subipt may be correlated to unobserved heterogeneity. We then use the level of

predicted subcontracting from the sequential Bayesian process described above as an IV for

actual subcontracting.

The instrumental variable thus is the predicted number of subcontractors, and the ex-

ogenous variables identifying it principally consist of contractor and subcontractor network

13Despite these e�orts the e�ective sample size of some parameters is rather low due to autocorrelation,
especially on the variables a�ected by the meeting order. This is due to meeting order having a major e�ect
on the potential values these variables can take at a point in time, slowing movement through the posterior
distribution.
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variables. These variables are orthogonal to project complexity, conditional on the included

covariates, because �rms' subcontractor networks depend upon many idiosyncratic factors,

such as cross-�rm personnel relationships. It could be argued that large �rms are more

likely to have large subcontractor networks and are also more likely to win bids on complex

projects. For that reason, we include �rm size as a covariate in each stage of our estimation

procedure. Thus, the resulting predicted number of subcontractors is orthogonal to this in-

�uence. Furthermore, much of the predictive power is from subcontractor-centered network

measures, rather than prime contractor-centered network measures (see the discussion of

Table 3.3 that follows). In our dataset, the network density of individual subcontractors is

strongly in�uenced by local market structure, which is driven at least in part by �xed costs

and entry barriers. An example noted by VTrans engineers is the fact that in Vermont there

are only three �rms that conduct work on guardrails, which is not an item especially associ-

ated with project complexity. The subcontractors conducting guardrail work have indegree

and authority centrality measures 4 times that of other subcontractors (For indegree 7.56 vs

1.99 and for authority 0.024 vs 0.005). In a similar vein, the edge variable, capturing whether

�rms were linked together in the last year, also represents connections to specialized subcon-

tractors responsible for non-complex task, such as guardrails, �agging, or line painting. For

each of these reasons, we believe there is no relationship between the instrumental variable

and unobserved complexity.

3.4 Empirical Analysis

The �rst step in our econometric investigation is to predict the individual subcontracting

decisions as described in Equation 3.1. These results can be seen in Table 3.3. In addition

to the sequential Bayesian model presented in Column 1, two simultaneous speci�cations are

shown - a traditional maximum likelihood logit model in Column 2, and a Bayesian logit
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model in Column 3. Both assume each subcontracting decision is made independently. A

total of 28,678 potential subcontractor options across 273 projects are used as data. The

�rst four variables appear only in the sequential model, as they indicate how the next sub-

contracting decision depends upon previous ones. It is immediately evident that there are

interdependencies among subcontracting decisions as evidenced by the �rst four point es-

timates. First, contractors are more reluctant to hire additional subcontractors the more

subcontractors they have already hired. There is a divergence of the pattern with an in-

creased likelihood of hiring a second subcontractor after the �rst. This change, after the

�rst subcontractor is hired, is dramatic. Evaluating the model at the means, the probability

that a particular subcontractor is hired is 0.5% when no others have previously been hired.

After the �rst subcontractor is hired though the probability rises to 4% for the second. It

may be more costly for �rms to hire the �rst subcontractor than subsequent ones, perhaps

because of a �xed cost of subcontracting management that is spread across all subcontractors

on a project. Additionally, the range of jobs previously hired subcontractors can perform

decreases the likelihood of the next subcontractor being hired, while a subcontractor that is

able to �ll a gap in the project is more likely to be hired. Together the sequential assumption

and the additional variables lead to a substantial improvement of the model over the two

simultaneous speci�cations. The simulated pseudo R2 is 0.388 in the sequential model com-

pared to 0.350 in the maximum likelihood model.14 The increased predictive power comes

from improved predictions by the sequential model of the number of subcontractors used in

larger projects. As the sequential model includes additional control variables it more closely

replicates the observed patterns of subcontracting making it a more e�cient instrument

14Simulated log likelihood and pseudo R2 is calculated by simulating 16,000 di�erent outcomes using 800
parameter sets and meeting orders from the posterior distribution, and taking the average. The simulated log

likelihood is then calculated as

N∑
i=1

yipt · log((1/A) ·
A∑

a=1

ŷaipt)+(1−yipt) · log(1−(1/A) ·
A∑

a=1

ŷaipt), where yipt is

the realized subcontracting outcome, ŷaipt is a simulated outcome, and A is the total number of simulations.
The simulated pseudo R2 is calculated by taking the di�erence between simulated log likelihood and a the
log likelihood for a constant-only model and dividing it by the log likelihood for a constant-only model.
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overall.

In both the sequential and simultaneous models, the variables describing contractor-

subcontractor networks are important predictors of linkages. Speci�cally, the outdegree,

indegree and authority network measures are all statistically signi�cant with similar mag-

nitudes across all models. Well connected subcontractors, those with high indegree and

authority centrality, are more likely to be hired. The extension of a prime's network, repre-

sented by their outdegree centrality, reduces the probability that any given subcontractor will

be hired, which is logical given that those primes with large networks have a greater number

of attractive options. Not surprisingly, given the regulatory requirements, the DBE status

of a subcontractor increases the probability that they are hired.15 The results also support

the hypothesis that the number of items a subcontractor has experience with increases the

likelihood that they are hired, but as the signi�cance and magnitude of the quadratic term

indicates, this e�ect rapidly tails o�.

Most shared parameters between the simulations and sequential models have similar signs

and magnitudes, but three have a substantial di�erence, that can be attributed to the model.

First, the log number of subcontractors in the market is insigni�cant in the sequential model

but negative and signi�cant in the simultaneous models. With previously hired subcontrac-

tors included in the sequential model, available subcontractors become unimportant. Second,

subcontractors that �ll a gap in the prime contractor's skill set are more likely to be hired

in the simultaneous model and less likely in the sequential model. This is because of the

addition, in the sequential model, of the dummy indicating that a subcontractor �lls a gap

in both the contractor and previously hired subs skill sets. Thus, in the sequential model

the interpretation of the coe�cient is di�erent, as it signals that the subcontractor may have

skills that were previously been contracted for. Third, in the sequential model the coe�cient

15VTrans is required to meet annual goals for DBE usage, but it does not set speci�c requirements at the
project level.

63



of top �rms although smaller, becomes statistically signi�cant at the 1% level because its

standard error falls dramatically. This is likely due to the inclusion of the additional variables

in the sequential model that permit a more precise estimation of the e�ect of top �rms.

As mentioned before, the sequential model o�ers an improved prediction for the indi-

vidual subcontracting decisions, but equally important is how it predicts the number of

subcontractors on a project. Figure 3.6 illustrates how the di�erent models' predicted dis-

tributions compare with the observed distribution of subcontracting. Neither simultaneous

model captures the behavior near 0 and has subcontractor usage fall o� more slowly past

the peak. The sequential model does a superior job on both fronts. The model features a

spike at zero before dropping o�, rising and then falling o� quickly again. The model is still

imperfect - it overpredicts no subcontractor use, and underpredicts a single used contractor

but o�ers an improvement at the project level.

We use these estimations of the link probabilities to construct ˆsub, as noted in equation

4. That variable is then included in the estimation of the actual level of subcontracting,

from which we derive the instrument. It is clear that the sequential model also performs well

predicting subcontractor usage for individual projects, seen in Table 3.4. All three models

provide information left out by the other control variables and are signi�cant at the 1%

level. Still, the sequential model outperforms the other two with a coe�cient close to 1

in the speci�cations where predictive subcontracting enters on its own (Columns 1, 3, and

5). In the univariate model, the sequentially predicted subcontracting explains 58.2% of the

variation in actual subcontractor use, better than the 54.9% from the simultaneous models.

The only control variables with statistically signi�cant coe�cients (at the ten percent level

or better) are the project's number of items and the top �rm dummy.16

16An alternative speci�cation to Table 3.4, that uses the percentage of the project value subcontracted as
a dependent variable is presented in Table A3.4.1 in the appendix. In this speci�cation, we use a quadratic
form for the predicted number of subcontracts, because the marginal subcontractor is used less than the
average. The results show a strong quadratic relationship with each additional subcontractor hired doing a
smaller portion of the work than the previous one.
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Next, we examine how subcontracting a�ects the number of change orders. The results,

presented in Table 3.5, are obtained using the generalized method of moments (GMM) esti-

mator. The �rst column presents a Poisson regression with no instrument for the number of

subcontractors. Here, an increase in the number of subcontractors increases the likelihood of

additional change orders, but the �nding cannot be interpreted as causal because the num-

ber of subcontractors may be correlated with unobserved project complexity not captured

by other controls. As such, we instrument for it in Column 2 using the predicted level of

subcontracting from Table 3.4, Column 2. The coe�cient on the number of subcontractors

increases in magnitude and remains statistically signi�cant. One might expect that the co-

e�cient would become smaller because unobserved complexity was introducing a positive

bias on the subcontracting coe�cient in Column 1. However, coe�cients of some control

variables are sensitive to the inclusion of the IV especially the log of the engineering cost

estimate and the number of items. This suggested that prior to the inclusion of the IV the

coe�cients of those variables re�ected confounding e�ects.17 Evaluated at the mean level

of the control variables, a project with 5 subcontractors will have 2.52 change orders, but

increasing the number of subcontractors to 6 will lead to a 0.45 increase in change orders.18

This amounts to an elasticity of 0.89 at the means. We also use predicted subcontractors,

from Table 3.3 Column 1, as a proxy variable for subcontractors in Column 3 and �nd similar

results.19

Other observable characteristics also raise the likelihood of renegotiation. The project's

duration, number of items, and engineers estimate all have positive signs in Column 1,

17It is not uncommon for 2SLS estimates to be larger than OLS even when selection pressures would
suggest the OLS estimate is overestimated. For example, larger e�ects have recently been found in a study
of the impact of air pollution on tra�c accidents (Sager 2019).

18One additional subcontractor on a project with 2 and another with 8 subcontractors will lead to an
additional 0.38 and 1.04 change orders respectively.

19We also run a normalized version of these regressions in Table A3.4.2. To do this we divide the number
of change orders by the number of items since that is the level of renegotiation. We �nd that each additional
subcontractor leads to an extra 1.8% of items to be renegotiated.
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which is unsurprising as all three are related to the complexity of the project. As expected,

the elevation of the project's location is a signi�cant predictor of renegotiation, though

the e�ect fades as the elevation squared has a negative e�ect. None of the other variables

have statistically signi�cant coe�cients, including the dummy designating large �rms and

experience of either the �rm or the engineers. 20

Recall that, change orders may either be for new added items that were not included

in the original plans, or merely for adjustments in the quantities of items that were in the

plans. It is plausible that change orders consisting of quantity adjustments, are more likely

caused by the coordination costs between a contractor and its subcontractors than change

orders which add brand new items to a project. Following this line of reasoning, we estimate

our speci�cation in a subsample of projects that only have quantity adjustments. These

results are displayed in Columns 4 through 6 of Table 3.5. The coe�cient on the number of

subcontractors is of similar magnitude as in the full sample and is statistically signi�cant at

the 1% level. The fact that the coe�ent on the restricted sample, without �new items added�,

is similar in magnitude to that in the full sample, supports the view that coordination costs,

rather than the special 10% premium on subcontracted new items, is ultimately driving the

result. Again evaluating the marginal increase from 5 subcontractors to 6, for a project at

the means of the controls leads to an increase of 0.429 additional change orders.21

Lastly, we estimate the factors in�uencing the costliness of change orders. In Table

3.6, we present the ordinary least squares and IV regression estimates with the dependent

variable being the dollar value of change order costs. The costs measured here are those that

appear on the invoice. Because �rms are likely to add premia to their bids in anticipation

20We also used a propensity score method to test for di�erences between the likelihood of renegotiation
between large and small �rms as the two groups may win di�erent types of projects. Matching on expected
duration, number of items, engineers' cost estimates, all factors encompassing uncertainty, and engineer
experience, we found no signi�cant di�erence in the number of change orders. Those results are available
upon request.

21A marginal increase from 2 to 3 subcontractors adds 0.29 change orders, while a change from 8 to 9 lead
to an additional 0.64 change orders.
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of possible adaptation costs that might occur as a result of change orders, the change order

invoice contains elements of �direct� and �adaptation� costs.

Our estimation of the determinants of cost produces results that are similar to those

of the count models. As with change orders, the number of subcontractors is a signi�cant

predictor of cost overruns, albeit at the 10% level. With the inclusion of the IV, the point

estimate rises and remains signi�cant. The results in Column 2 of Table 3.6 suggest that each

additional subcontractor on a project adds $48,000 in readjustment costs.22 Other important

determinants of the renegotiation costs are the project duration, the engineer's cost estimate

and the paving project dummy.23 We also run the same regressions on renegotiation costs

normalized by the engineer's estimate and log dollar value renegotiated.24 These regressions

again suggest that the number of subcontractors leads to more costly renegotiations, though

the coe�cient is not statistically signi�cant in the log regression.25 For the normalized

regression the results suggest that each additional subcontractor raises costs by 1.8% of the

engineer's estimate, which for the average project size of $1.9 million would be $34,000. The

lower e�ect size in these two speci�cation may be because subcontracting disproportionately

a�ects smaller projects, while the log and normalized speci�cations imply the opposite. State

regulations dictate that change orders should be implemented only if the unanticipated costs

exceed 5% of the project's value, so small projects are more likely to require renegotiation.

Finally, one potential area of concern is that �rms with large subcontractor networks may

systematically choose projects that are more prone to change orders. If that is the case, sub-

contracting networks may a�ect the incidence of change orders through a channel other than

22We carry out a Hausman test that the point estimates in OLS and the IV are equal, and we reject that
hypothesis at the 10% level.

23Paving projects have an automatic readjustment mechanism for asphalt costs caused by �uctuations in
the price of oil, one of its major inputs.

24For regressions normalized by the engineer's estimate we do not include the engineer's estimate as a
control variable. For regressions with log dollar value renegotiated, 6 projects have a negative value of
renegotiation those observations are lost because of the log transformation.

25The marginal impact at 2, 5, and 8 subcontractors is $515, $4,694, and $42,700 respectively.
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the network's in�uence on the number of subcontractors employed. As an additional check,

we estimate the number of change orders, and the renegotiation amount in a speci�cation

that includes both the instrument and the network variables entered independently in addi-

tion to the other controls. We �nd that the coe�cients on these network variables are small

and statistically insigni�cant which we interpret as evidence that the network variables are

only important for change orders through their in�uence on the number of subcontractors.

We o�er evidence in Appendix A3.3, Table A3.3.1.

3.5 Conclusion

Our analysis demonstrates that the number of subcontractors on a project is a powerful pre-

dictor of the likelihood of contract renegotiation and their �nancial importance. We estimate

that each subcontractor on a project leads to 0.45 additional change orders and adds $48,000

to costs. We employ an instrumental variable - the predicted number of subcontractors -

that depends on network variables. These network variables, conditional on control variables

that we include such as �rm size, are orthogonal to unobserved project complexity, and are

therefore crucial for establishing the validity of our IV. As a consequence, our estimates of

the e�ect of subcontractors on change orders are of a direct causal impact. Therefore, our

paper provides new evidence in support of the hypothesis that coordination costs and other

transaction costs associated with subcontracting can lead to contract renegotiations (Masten

et al. 1991; Miller 2014).

Our conversations with Vermont Agency of Transportation o�cials o�er important con-

text for our results. It is often the case the prime contractors limit the information about

the project that they share with subcontractors, and that this has the potential to lead to

miscommunication and coordination failures. A possible policy implication of our �nding is

that the Transportation Agency could mandate more complete information sharing up front.
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This could preempt coordination problems to a degree and obviate the need for some change

orders. Nevertheless, prime contractors may be reluctant to share full information with sub-

contractors because it is costly to do so. It also could be the case that prime contractors feel

that more extensive information sharing could reveal private information about their costs

or capabilities that could compromise their competitive position. Given that many subcon-

tractors are also prime contractors in their own right, or deal with other prime contractors

as well, this is a very real concern. Agencies may wish to conduct experiments with di�erent

information-sharing protocols in order to determine the extent of any unintended negative

consequences. Finally, letting agencies might debrief separately subcontractors and prime

contractors ex post on projects that result in unusually large numbers of change orders.

This could permit the identi�cation of speci�c sources of coordination problems and possible

remedies.
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Figures

Chapter 1 Figures

Figure 1.1: Monte Carlo Simulation with Overlapping Subcontractors and Symmetric Means

Panels show the relationship between a measure of similarity and the correlation between the private
values of 2 contractors. The top row uses jaccard similarity, the middle uses cosine similarity, and the
bottom uses the overlap count. Each column uses a di�erent underlying distribution for the subcon-
tractors. From left to right they are a uniform distribution, normal distribution, logistic distribution,
chi-squared distribution, and negative chi-Squared distribution. R2 values of a quadratic �t line are
shown below each panel.
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Figure 1.2: Contractor-Subcontractor Network: Four Slices

(a) January 2005 (b) April 2007

(c) September 2009 (d) December 2011

Potential Bidders are shown in red. Subcontractors that were never potential bidders are shown in
light blue. Node location is constant in all 4 slices. The links are directed from potential bidders to
subcontractors, using information on subcontracting from the prior 12 months. Node size varies based
on the maximum of hub and authority centrality at that time. All images are constructed using Gephi.
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Figure 1.3: Subcontractor Network Similarity Histograms

(a) Planholder Pair: Overlap (b) Potential Planholder Pair: Overlap

(c) Planholder Pair: Jaccard Similarity (d) Potential Planholder Pair: Jaccard Similarity

(e) Planholder Pair: Cosine Similarity (f) Potential Planholder Pair: Cosine Similarity
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Chapter 2 Figures

Figure 2.1: Family Sales

(a) Price Density by Seller Identi�cation (b) Count of Sales by Seller Identi�cation

In Panel A, The blue dashed line represents the price density of pieces sold by sellers who's names match
the artist's. The solid red line represents pieces sold by all other sellers. In Panel B, the red bars represent
pieces sold by family sellers in a given year, while the blue bars represent those works sold by others.

Figure 2.2: Distributional Posthumous E�ect on Log Price

(a) Unconditional E�ect (b) Conditional E�ect

Panel A captures distributional posthumous e�ects on log price corresponding to estimates in Panel A of
Table 3. Panel B captures distributional posthumous e�ects corresponding to estimates in Panel B of Table
3. The solid lines are the point estimate for each quanitle. The shaded regions represent the bootstrapped
95% con�dence interval from 1000 repetitions.
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Figure 2.3: All Quantiles: Network E�ects

(a) Artist: Log Egienvector Centrality (b) Seller: Family

Panel A captures the artist's log eigenvector centrality e�ects corresponding to estimates in Panel B of
Table 3. Panel B captures the e�ect of family sales corresponding to estimates in Panel B of Table 3. The
solid lines are the point estimate for each quanitle. The shaded regions represent the bootstrapped 95%
con�dence interval from 1000 repetitions.

Figure 2.4: All Quantiles: Prices changes after death

(a) ≤ 2 Years after Death (b) 2-10 Years after Death (c) 10-20 Years after Death

Panels A, B and C capture price change in three bins following death, instead of using a continuous time
trend. Panel A includes works sold between 0 and 2 years after death, B includes works sold 2 to 10 years
after death and C includes works sold 10 to 20 years after death. The solid lines are the point estimate for
each quantile. The shaded regions represent the bootstrapped 95% con�dence interval.
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Figure 2.5: All Quantiles: Network at Death

(a) ≤ 2 Years after Death (b) 2-10 Years after Death (c) 10-20 Years after Death

Panels A, B and C capture log eigenvector centrality e�ects corresponding to estimates in Panels A, B and
C of Table 4 respectively. The solid lines are the point estimate for each quanitle. The shaded regions
represent the 95% con�dence interval.
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Figure 2.6: Artist comparison

(a) J.M.W. Turner

(b) Horatio McCulloch

The black line shows the log eigenvector centrality of each artist from 20 year before his death, to 20 years
after. The vertical red line indicates the year each artist died. The dots show log prices of pieces sold. The
blue dots are pieces bought by dealers and the red dots those bought by others. The dots are scaled to the
square root of the buyers eigenvector centrality.
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Chapter 3 Figures

Figure 3.1: Histograms of the Number of Change Orders and the Cost of Change Order

Figure 3.2: Number of Subcontractors by Project

Figure 3.3: Histograms of the Subcontractor Items and Percentage of Winning Bid completed by

Subcontractors
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Figure 3.4: Contractor-Subcontractor Network
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Figure 3.5: Project Locations and Change Orders in the Vermont Highway Construction Industry
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Figure 3.6: Number of Subcontractors by Project
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Tables

Chapter 1 Tables

Table 1.1: Auction Variable: Summary Statistics

Auction Variables Mean Median Std dev

Total Bidder 4.31 4 2.141
Total Planholders 7.19 7 3.04
Total Potential Planholders 23.66 24 8.114
Plan Cost 22.3 11.9 25.6
Engineer's Estimate ($1000) 1,136 529 1,625
Contract Days 140 120 61.8
Project Items 45.7 35 28.4
DBE Goal (%) 2.74 3 2.80
OK Unemployment Rate 5.15 4.6 1.23

Observations 516

The Oklahoma Unemployment Rate is taken from the Bu-
reau of Labor Statistics. All other data comes from ODOT
bridge and approach contracts from 2005 to 2011.

Table 1.2: Potential Bidder: Summary Statistics

Planholders Potential Planholders

Mean Median Std dev Mean Median Std dev

Bidder 0.621 1 0.485 0.202 0 0.401
Planholder 1 1 0 0.325 0 0.468
Distance from job site (mi) 91.58 78.11 67.35 129.5 112.6 88.61
Backlog ($1000) 767.4 428.4 894.8 760.8 350.0 982.4
Outdegree Centrality 18.33 16 11.94 16.03 14 11.20
Hub Centrality 0.025 0.020 0.018 0.021 0.016 0.016
Horizontal Subcontractor 0.499 0 0.500 0.512 1 0.500

Observations 3,093 9,524

All data comes from ODOT bridge and approach contracts from 2005 to 2011. Firms
with no subcontracting connections are dropped.
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Table 1.3: Potential Bidder Pair: Summary Statistics

Planholder Pair Potential Planholder Pair

Mean Median Std Dev Mean Median Std Dev

Subcontractor Overlap 4.557 3 4.147 3.253 2 3.346
Jaccard Similarity 0.132 0.116 0.089 0.103 0.091 0.078
Cosine Similarity 0.250 0.243 0.134 0.201 0.199 0.124

Observations 9,471 91,497

All data comes from ODOT bridge and approach contracts from 2005 to 2011. Firms
with no subcontracting connections are dropped. Each observation is a potential
bidder pair in an auction.
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Table 1.4: Planholder Bid Decision

Standard Constant Jaccard Cosine Overlap
(1) (2) (3) (4) (5)

ρ1 0.024 0.069 0.001
(0.207) (0.135) (0.005)

ρ0 -0.016 -0.019 -0.033 -0.022
(0.016) (0.032) (0.037) (0.027)

Potential Bidders -0.048*** -0.048*** -0.048*** -0.048*** -0.048***
(0.009) (0.009) (0.009) (0.009) (0.009)

Log Estimate -0.105 -0.105 -0.106 -0.108 -0.107
(0.069) (0.067) (0.067) (0.067) (0.067)

Log Working Days 0.131 0.135 0.136 0.138 0.137
(0.103) (0.100) (0.100) (0.100) (0.100)

Log Items -0.253** -0.254** -0.253** -0.250** -0.252**
(0.115) (0.112) (0.112) (0.112) (0.112)

DBE Goal -0.002 -0.002 -0.002 -0.002 -0.002
(0.009) (0.009) (0.009) (0.009) (0.09)

Time Trend 0.003 0.003 0.003 0.003 0.003
(0.002) (0.002) (0.002) (0.002) (0.002)

OK Unemployment 0.115*** 0.116*** 0.116*** 0.116*** 0.116***
(0.030) (0.029) (0.029) (0.029) (0.029)

Distance (100 mi) -0.224*** -0.223*** -0.222*** -0.222*** -0.222***
(0.038) (0.038) (0.038) (0.038) (0.038)

Backlog ($mill) -0.026 -0.029 -0.029 -0.028 -0.028
(0.030) (0.030) (0.030) (0.030) (0.030)

Outdegree Centrality -0.008 -0.008 -0.008 -0.007 -0.007
(0.006) (0.006) (0.006) (0.006) (0.006)

Hub Centrality (X100) 0.153*** 0.151*** 0.151*** 0.151*** 0.151***
(0.041) (0.041) (0.041) (0.041) (0.041)

Horizontal Sub -0.058 -0.056 -0.056 -0.056 -0.057
(0.048) (0.048) (0.048) (0.048) (0.048)

Log Likelihood -1962.6 -1962.2 -1962.2 -1962.0 -1962.1
Pseudo R2 0.044 0.044 0.044 0.044 0.044

A standard probit regression is shown in Column 1. The results of the replication of
Li and Zhang (2010) on ODOT data are seen in Column 2. Columns 3, 4, and 5 allow
a�liation between �rms to vary according to their jaccard similarities, cosine similarities
and number of overlapping subcontractors respectively. Columns 2 through 4 use 400
simulation and �nite di�erences to estimate derivatives. Standard errors are shown in
parenthesis. * indicates signi�cance at the 10% level, ** signi�cance at the 5% level,
and *** signi�cance at the 1% level.
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Table 1.5: Potential Planholder Buy Decision

Standard Constant Jaccard Cosine Overlap
(1) (2) (3) (4) (5)

ρ1 0.462*** 0.348*** 0.006***
(0.080) (0.054) (0.002)

ρ0 0.031*** -0.014 -0.034*** 0.013
(0.008) (0.011) (0.013) (0.010)

Potential Bidders -0.030*** -0.031*** -0.030*** -0.030*** -0.030***
(0.003) (0.003) (0.003) (0.003) (0.003)

Log Plan Cost 0.113*** 0.112** 0.111** 0.111** 0.105**
(0.040) (0.045) (0.046) (0.046) (0.046)

Log Working Days 0.328*** 0.332*** 0.310*** 0.302*** 0.318***
(0.056) (0.064) (0.065) (0.066) (0.065)

Log Items -0.388*** -0.386*** -0.369*** -0.364*** -0.384***
(0.071) (0.081) (0.082) (0.083) (0.081)

DBE Goal -0.009 -0.008 -0.010 -0.010 -0.009
(0.006) (0.006) (0.006) (0.006) (0.006)

Time Trend 0.006*** 0.006*** 0.006*** 0.006*** 0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)

OK Unemployment 0.157*** 0.158*** 0.142*** 0.138*** 0.146***
(0.019) (0.021) (0.021) (0.022) (0.022)

Distance (100 mi) -0.630*** -0.639*** -0.626*** -0.623*** -0.636***
(0.022) (0.022) (0.022) (0.023) (0.022)

Backlog ($ mill) -0.106*** -0.105*** -0.103*** -0.100*** -0.103***
(0.018) (0.018) (0.018) (0.018) (0.018)

Outdegree Centrality -0.015*** -0.017*** -0.017*** -0.016*** -0.017***
(0.004) (0.004) (0.004) (0.004) (0.004)

Hub Centrality (X100) 0.238*** 0.247*** 0.246*** 0.240*** 0.247***
(0.025) (0.025) (0.026) (0.026) (0.025)

Horizontal Sub -0.066** -0.071** -0.076*** -0.076*** -0.074**
(0.029) (0.029) (0.029) (0.029) (0.029)

Log Likelihood -5230.5 -5221.1 -5204.5 -5199.5 -5217.0
Pseudo R2 0.129 0.130 0.133 0.134 0.131

A standard probit regression is shown in Column 1. The results of the replication of
Li and Zhang (2010) on ODOT data are seen in Column 2. Columns 3, 4, and 5 allow
a�liation between �rms to vary according to their jaccard similarities, cosine similarities
and number of overlapping subcontractors respectively. Columns 2 through 4 use 700
simulation and �nite di�erences are used to estimate derivatives. Standard errors are
shown in parenthesis. * indicates signi�cance at the 10% level, ** signi�cance at the 5%
level, and *** signi�cance at the 1% level.
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Table 1.6: Bidding Behavior

Standard Constant Jaccard Cosine Overlap
(1) (2) (3) (4) (5)

ρ1 0.377*** 0.329*** 0.013***
(0.132) (0.087) (0.003)

ρ0 0.166*** 0.373*** 0.341*** 0.365***
(0.003) (0.030) (0.033) (0.027)

Potential Bidders -0.012*** -0.013*** -0.014*** -0.013*** -0.013***
(0.002) (0.002) (0.003) (0.003) (0.003)

Log Engineer's Estimate 0.921*** 0.920*** 0.921*** 0.921*** 0.920***
(0.010) (0.011) (0.014) (0.014) (0.014)

Log Working Days 0.079*** 0.084*** 0.092*** 0.092*** 0.093 ***
(0.015) (0.017) (0.022) (0.022) (0.022)

Log Items 0.128*** 0.123*** 0.114*** 0.114*** 0.115***
(0.017) (0.019) (0.024) (0.024) (0.024)

DBE Goal -0.001 -0.001 0.000 0.000 0.000
(0.001) (0.001) (0.002) (0.002) (0.002)

Time Trend 0.001*** 0.001*** 0.001*** 0.001*** 0.001***
(0.000) (0.000) (0.000) (0.000) (0.000)

OK Unemployment -0.053*** -0.052*** -0.051*** -0.051*** -0.051***
(0.004) (0.005) (0.006) (0.006) (0.006)

Distance (100 mi) 0.039*** 0.035*** 0.032*** 0.032*** 0.032***
(0.006) (0.006) (0.005) (0.006) (0.006)

Backlog ($ mill) -0.017*** -0.014*** -0.012*** -0.012*** -0.011***
(0.005) (0.004) (0.004) (0.004) (0.004)

Outdegree Centrality 0.002 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Hub Centrality -1.114* -1.008* -0.893* -0.881* -0.991**
(0.588) (0.531) (0.489) (0.484) (0.483)

Horizontal Sub 0.008 0.008 0.009 0.009 0.008
(0.007) (0.006) (0.006) (0.006) (0.006)

Pseudo R2 0.970 0.975 0.977 0.977 0.977

The results use a Bayesian method to capture a�liation between bids. A Standard re-
gression is done in Column 1. General a�liation is tested for in Column 2. Columns 3, 4,
and 5 allow a�liation between �rms to vary according to their jaccard similarities, cosine
similarities and number of overlapping subcontractors respectively. Posterior distribution
standard deviations are shown in parenthesis. * indicates signi�cance at the 10% level, **
signi�cance at the 5% level, and *** signi�cance at the 1% level.
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Table 1.7: Planholder Bid Decision: Windows

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

Panel A: 6-month window

ρ1 -0.245 -0.070 -0.013**
(0.245) (0.149) (0.007)

ρ0 -0.009 0.020 0.006 0.032
(0.018) (0.035) (0.038) (0.029)

Log Likelihood -1863.7 -1863.2 -1863.6 -1861.9
Pseudo R2 0.038 0.038 0.038 0.039

Panel B: 18-month window

ρ1 -0.166 -0.100 -0.002
(0.186) (0.125) (0.003)

ρ0 -0.025* -0.002 0.001 -0.016
(0.015) (0.030) (0.036) (0.025)

Log Likelihood -1949.7 -1949.3 -1949.4 -1949.6
Pseudo R2 0.051 0.051 0.051 0.051

The results use the same regressors and methods as Table 1.4.
Panel A has 560 auctions, 2,945 planholders, and 7,803 plan-
holder pairs. Panel B has 493 auctions, 3,087 planholders,
and 9,846 planholder pairs. General a�liation is tested for in
Column 1. Columns 2, 3, and 4 allow a�liation between �rms
to vary according to their jaccard similarities, cosine similar-
ities and number of overlapping subcontractors respectively.
Standard errors are shown in parenthesis. * indicates signif-
icance at the 10% level, ** signi�cance at the 5% level, and
*** signi�cance at the 1% level.
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Table 1.8: Potential Planholder Buy Decision: Windows

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

Panel A: 6-month window

ρ1 0.202** 0.158*** 0.001
(0.093) (0.059) (0.003)

ρ0 0.035*** 0.016 0.007 0.033***
(0.009) (0.013) (0.014) (0.012)

Log Likelihood -4815.6 -4813.1 -4811.8 -4815.5
Pseudo R2 0.137 0.137 0.137 0.137

Panel B: 18-month window

ρ1 0.451*** 0.358*** 0.005***
(0.078) (0.054) (0.002)

ρ0 0.028*** -0.017 -0.041*** 0.008
(0.008) (0.011) (0.012) (0.010)

Log Likelihood -5329.1 -5312.4 -5305.9 -5323.6
Pseudo R2 0.129 0.132 0.133 0.130

The results use all the same regressors and methods as Table 1.5.
Panel A has 562 auctions, 8,722 potential planholders, and 69,552
potential planholder pairs. Panel B has 494 auctions, 9,836 po-
tential planholders, and 101,901 potential planholder pairs. Gen-
eral A�liation is tested for in Column 1. Columns 2, 3, and 4
allow a�liation between �rms to vary according to their jaccard
similarities, cosine similarities and number of overlapping subcon-
tractors respectively. Standard errors are shown in parenthesis.
* indicates signi�cance at the 10% level, ** signi�cance at the 5%
level, and *** signi�cance at the 1% level.
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Table 1.9: Planholder Bid Decision: No Network

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.035 0.069 0.001
(0.206) (0.135) (0.004)

ρ2 -0.040 -0.027 -0.040
(0.063) (0.066) (0.060)

ρ3 0.005** 0.005** 0.005**
(0.002) (0.002) (0.002)

ρ4 0.162* 0.175* 0.163*
(0.095) (0.097) (0.093)

ρ0 0.002 -0.023 -0.035 -0.023
(0.014) (0.032) (0.037) (0.026)

Log Likelihood -2357.0 -2352.5 -2352.4 -2352.5
Pseudo R2 0.056 0.057 0.058 0.057

The expands the results of Table 1.4 to incorporate �rms
with no observed network. This leads to an increased sample
size of 516 auctions, 3,709 planholders, and 13,861 planholder
pairs. General A�liation is tested for in Column 1. Columns
2, 3, and 4 allow a�liation between �rms to vary according
to their jaccard similarities, cosine similarities and number
of overlapping subcontractors respectively. The number of
simulations used increases to 450. Standard errors are shown
in parenthesis. * indicates signi�cance at the 10% level, **
signi�cance at the 5% level, and *** signi�cance at the 1%
level.
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Table 1.10: Potential Planholder Buy Decision: No Net-

work

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.546*** 0.418*** 0.008***
(0.077) (0.054) (0.002)

ρ2 0.038** 0.062*** 0.005
(0.019) (0.019) (0.017)

ρ3 0.001 0.001 0.001
(0.001) (0.001) (0.001)

ρ4 0.104*** 0.126*** 0.075***
(0.027) (0.027) (0.026)

ρ0 0.030*** -0.026** -0.049*** 0.004
(0.007) (0.011) (0.012) (0.010)

Log Likelihood -6624.0 -6597.1 -6589.8 -6613.8
Pseudo R2 0.116 0.120 0.121 0.118

The expands the results of Table 1.5 to incorporate �rms with
no observed network. This leads to an increased sample size of
516 auctions, 12,209 potential planholders, and 155,286 potential
planholder pairs. General A�liation is tested for in Column 1.
Columns 2, 3, and 4 allow a�liation between �rms to vary accord-
ing to their jaccard similarities, cosine similarities and number of
overlapping subcontractors respectively. The number of simula-
tions used increases to 800. Standard errors are shown in paren-
thesis.* indicates signi�cance at the 10% level, ** signi�cance at
the 5% level, and *** signi�cance at the 1% level.
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Table 1.11: Planholder Bid Decision: Weighted Network

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.295 0.105 -0.012
(0.426) (0.222) (0.040)

ρ0 -0.016 -0.025 -0.024 -0.013
(0.016) (0.021) (0.024) (0.019)

Outdegree ($mil) 0.014** 0.014** 0.014** 0.014**
(0.007) (0.007) (0.007) (0.007)

Hub Centrality -1.237 -1.265 -1.265 -1.216
(0.980) (0.982) (0.982) (0.982)

Log Likelihood -1985.6 -1985.4 -1985.5 -1985.6
Pseudo R2 0.032 0.033 0.033 0.033

The expands the results of Table 1.4 to dollar weights to �rm's
network. General A�liation is tested for in Column 1. Columns
2, 3, and 4 allow a�liation between �rms to vary according to
their jaccard similarities, cosine similarities and number of over-
lapping subcontractors respectively. Standard errors are shown
in parenthesis. * indicates signi�cance at the 10% level, ** sig-
ni�cance at the 5% level, and *** signi�cance at the 1% level.

Table 1.12: Potential Planholder Buy Decision: Weighted

Network

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.468*** 0.505*** 0.010
(0.104) (0.073) (0.010)

ρ0 0.025*** 0.013 -0.004 0.023
(0.008) (0.008) (0.009) (0.008)

Outdegree ($mil) -0.002 -0.002 -0.001 -0.002
(0.004) (0.004) (0.004) (0.004)

Hub Centrality -0.652 -0.647 -0.663 -0.628
(0.553) (0.559) (0.561) (0.556)

Log Liklihood -5346.2 -5338.1 -5324.5 -5345.7
Pseudo R2 0.110 0.111 0.113 0.110

The expands the results of Table 1.5 to dollar weights to �rm's
network. General A�liation is tested for in Column 1. Columns 2,
3, and 4 allow a�liation between �rms to vary according to their
jaccard similarities, cosine similarities and number of overlapping
subcontractors respectively. Standard errors are shown in paren-
thesis. * indicates signi�cance at the 10% level, ** signi�cance at
the 5% level, and *** signi�cance at the 1% level.
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Chapter 2 Tables

Table 2.1: Descriptive Statistics

Before Death After Death

Varriable Mean / Count STD Mean / Count STD

Number of Pieces Sold 3,127 4,633
Number of Unique Artists 160 160
Number of Unique Buyers 647 946
Number of Unique Sellers 716 929
Number of Unknown Sales 381 516
Price 381.7 508.1 355.2 596.0
Average Number of Bidders in an Auction 40.19 19.56 42.11 20.92
Artist: Eigenvector Centrality 0.005 0.006 0.011 0.018
Artist: Number of Art Sold 30.59 33.07 43.04 42.4
Buyer: Eigenvector Centrality 0.024 0.038 0.024 0.038
Buyer: Capacity 11,095 16154 12000 17,974
Buyer: Dealer 0.664 0.473 0.627 0.484
Artist-Buyer Link 0.481 0.500 0.511 0.500
Seller: Family 0.007 0.084 0.129 0.336
Seller's Past Volume 3.82 14.68 3.176 12.51
Unknown Seller 0.122 0.327 0.111 0.315
Christie's Dummy 0.967 0.179 0.942 0.233

Before Death includes pieces sold at auction from 20 years prior to death. After Death includes
pieces sold at auction till 20 years after death. Source: Authors' calculation.
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Table 2.2: Buyer Likelihood to Purchase Artwork at Auc-

tion

Dealers Others All

Variable of Interest (1) (2) (3)

Posthumous -0.008 -0.001 0.018
(0.050) (0.054) (0.037)

Artist: Log Eigenvector -0.003 -0.020*** -0.009*
Centrality (0.006) (0.006) (0.004)

Artist: Log # of Art Sold -0.036** 0.028* -0.011
(0.015) (0.016) (0.011)

Buyer: Log Eigenvector 0.078*** -0.005 0.043***
Centrality (0.005) (0.004) (0.003)

Buyer: Log Capacity 0.039*** 0.043*** 0.059***
(0.008) (0.006) (0.005)

Artist-Buyer Link 0.566*** 0.530*** 0.572***
(0.019) (0.029) (0.015)

Seller: Family -0.001 0.038 -0.004
(0.037) (0.037) (0.026)

Seller: Unknown -0.108*** 0.137*** -0.012
(0.025) (0.025) (0.018)

Seller: Log Past Sales -0.025* 0.038** 0.000
(0.013) (0.015) (0.010)

Max Rival: Log -0.188*** 0.002 -0.129***
Eigenvector (0.015) (0.013) (0.019)

Max Rival: Log -0.115*** 0.004 -0.109***
Capacity (0.020) (0.019) (0.013)

Mean Rival: Artist-Buyer -0.658*** -0.399*** -0.551***
Link (0.116) (0.129) (0.086)

Artist: Contemporary 0.043* -0.041 0.004
British (0.022) (0.025) (0.016)

Observations 110,217 206,295 316,512
Other Controls Yes Yes Yes
Pseudo R2 0.147 0.068 0.137

Each observation is a bidder at an auction who may buy a paint-
ing. Column 1 includes only the bidders who were art dealers. Col-
umn 2 includes only the bidders who were not art dealers. Column
3 looks at the full sample. All columns incorporates other control
variables as well, including log number of buyers, log number of
painting for sale, a dealers capacity, dummies for an artwork's
medium and genre. Source: Authors' calculation.
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Table 2.3: Distributional Posthumous E�ect on Log Price

Quantiles(τ)
Variables of Interest Mean 0.1 0.25 0.5 0.75 0.9

Panel A. Without Controls

Posthumous -0.120*** -0.009 -0.130*** -0.198*** -0.215*** -0.180***
(0.026) (0.021) (0.027) (0.028) (0.027) (0.038)

Controls No No No No No No
Artist Fixed E�ects Yes Yes Yes Yes Yes Yes

Panel B. With Controls and Sample Selection

Posthumous -0.007 0.085 -0.031 -0.052 -0.046 0.036
(0.047) (0.130) (0.105) (0.087) (0.115) (0.145)

Artist: Log Eigenvector 0.084*** 0.062** 0.085*** 0.096*** 0.072*** 0.042***
Centrality (0.012) (0.042) (0.034) (0.032) (0.030) (0.032)

Artist: No Network -0.981*** -0.684** -0.917*** -1.116*** -0.944** -0.636**
(0.147) (0.439) (0.343) (0.330) (0.364) (0.444)

Artist: Log Number of -0.050** 0.008 -0.017 -0.095* -0.095** -0.090*
Art Sold (0.027) (0.095) (0.070) (0.058) (0.058) (0.069)

Buyer: Log Eigenvector -0.054*** -0.022 -0.034 -0.033 -0.053 -0.067
Centrality (0.008) (0.064) (0.049) (0.045) (0.044) (0.061)

Buyer: No Network 0.731*** 0.404 0.544* 0.536** 0.671** 0.705**
(0.079) (0.504) (0.389) (0.313) (0.359) (0.429)

Buyer: Log Capacity 0.269*** 0.158*** 0.186*** 0.215*** 0.272** 0.302**
(0.014) (0.047) (0.038) (0.038) (0.058) (0.086)

Buyer: Dealer -0.194*** -0.165 -0.132 -0.195 -0.176* -0.207*
(0.031) (0.202) (0.166) (0.148) (0.101) (0.143)

Artist-Buyer Link -0.079 0.014 -0.013 -0.020 -0.031 -0.053
(0.050) (0.335) (0.298) (0.290) (0.373) (0.429)

Seller: Family -0.307*** -0.265 -0.256 -0.231* -0.209** -0.260*
(0.060) (0.166) (0.120) (0.098) (0.108) (0.125)

Log Seller's 0.003 0.008 -0.003 -0.020 -0.016 -0.008
past volume (0.019) (0.058) (0.042) (0.032) (0.034) (0.042)

Unknown Seller -0.137*** -0.078* -0.116** -0.125** -0.142** -0.167*
(0.028) (0.084) (0.073) (0.058) (0.073) (0.100)

Christie's Dummy 0.463*** 1.252*** 0.621*** 0.356* 0.251 0.179
(0.077) (0.497) (0.450) (0.331) (0.272) (0.254)

ρ̂ -0.025 -0.060
(0.103) (0.444)

Controls Yes Yes Yes Yes Yes Yes
Artist Fixed E�ects Yes Yes Yes Yes Yes Yes

Total number of observations is 7,760 for all columns. Sample selection on the mean uses the method
of Heckman (1979) while for the quantiles Arellano, Blundell, and Bonhomme (2017) is used. Other
control variables include a cubic time trend, log number of buyers, a quadratic in the age of the artist,
a dummy for if the art was part of a collection, as well as seller type dummies, medium dummies,
and genre dummies. The standard errors are calculated using 1000 bootstrap repetitions. * indicates
signi�cance at the 10% level, ** indicates signi�cance at the 5% level, *** indicates signi�cance at
the 1% level. Source: Authors' calculation.
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Table 2.4: Network at Death on Prices distribution

Quantiles(τ)
Variables of Interest Mean 0.25 0.50 0.75 0.90

Panel A: Less than 2 years after death

Artist: Log Eigenvector 0.060* 0.041 0.053* 0.091** 0.119***
Centrality at Death (0.033) (0.029) (0.028) (0.036) (0.030)

Artist: Log Number 0.060 0.095 0.047 -0.036 0.000
of Art Sold (0.067) (0.074) (0.063) (0.076) (0.063)

Seller: Family -0.543*** -0.269* -0.481*** -0.529*** -0.755***
(0.154) (0.145) (0.123) (0.154) (0.130)

Seller: Log Past Volume -0.063 -0.025 -0.010 0.011 -0.075
(0.077) (0.084) (0.057) (0.080) (0.071)

R2 0.311 0.278 0.290 0.262 0.168

Panel B: Between 2 and 10 years after death

Artist: Log Eigenvector 0.022 0.006 0.015 0.047* 0.068**
Centrality at Death (0.022) (0.015) (0.017) (0.028) (0.028)

Artist: Log Number -0.119 -0.112 -0.026 0.049 0.128**
of Art Sold (0.115) (0.121) (0.117) (0.108) (0.052)

Seller: Family -0.813* -1.137*** -0.555 -0.492 0.034
(0.465) (0.415) (0.575) (0.330) (0.317)

Seller: Log Past Volume -0.056 -0.044 -0.062*** -0.095** -0.149***
(0.039) (0.035) (0.040) (0.042) (0.055)

R2 0.246 0.232 0.227 0.173 0.117

Panel C: Between 10 and 20 years after death

Artist: Log Eigenvector -0.021 -0.031 -0.013 0.046* 0.094***
Centrality at Death (0.028) (0.029) (0.022) (0.027) (0.034)

Artist: Log Number 0.042 0.044 0.079 0.115* 0.141**
of Art Sold (0.081) (0.065) (0.063) (0.068) (0.070)

Seller: Family 0.226 0.060 0.769* 0.723*** 0.240
(0.697) (1.179) (0.436) (0.258) (0.195)

Seller: Log Past Volume -0.040 -0.040 -0.020 -0.034 -0.037
(0.035) (0.028) (0.060) (0.056) (0.066)

R2 0.379 0.362 0.367 0.325 0.266

Total number of observations is 902 in Panel A, 1,876 in Panel B and 1,855 in Panel C.
R2 for quantile regressions is actually pseudo R2. Other control variables include a cubic
time trend, log number of buyers, a quadratic in the age of the artist, A dummy if sold at
Christie's, a dummy for if the art was part of a collection, as well as seller type dummies,
medium dummies, and genre dummies. Robust standard errors shown in parenthesis.
* indicates signi�cance at the 10% level, ** indicates signi�cance at the 5% level, ***
indicates signi�cance at the 1% level. Source: Authors' calculation.
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Chapter 3 Tables

Table 3.1: Descriptive Statistics

Variable Mean
Standard

Min Max
Number of

Deviation Observations

Number of Change Orders 4.272 4.245 1 35 254
Change Order Amount (thousands of dollars) 105.02 185.10 -116.85 1421.65 254
Change Order Percentage 7.173 9.525 -17.28 61.89 254
Number of Subcontractors 5.093 3.291 0 21 312
Number of Items Subcontracted 31.87 32.15 0 191 312
Percentage Subcontracted 19.79 14.43 0 82.11 312
Engineering Cost Estimate (millions of dollars) 1.910 2.432 0.026 24.551 312
Expected Duration (days) 191.619 124.562 14 813 312
Number of Items 60.228 35.346 2 245 312
Elevation (hundreds of feet) 7.164 3.704 1 22.5 312
Engineer Experience (projects) 16.032 11.820 1 41.5 312
Firm Experience (years) 66.017 45.171 3 140 303
Expected Number of Bidders 2.516 2.743 0 11.524 281
Unemployment Rate 4.637 1.431 3.3 7.3 312
Real Volume of Projects (millions of dollars) 3.049 2.678 0.038 13.979 312
Number of Subcontractors in the Market 98.385 25.957 15 128 312
Contractor Outdegree Centrality 8.978 10.774 0 38 312
Contractor Hub Centrality 0.045 0.069 0 0.226 312
Contractor Past Item Experience (percentage) 0.646 0.338 0 1 312
Subcontractors Hired 0.052 0.222 0 1 30696
Contractor-Subcontractor link 0.091 0.288 0 1 30696
Subcontractor Indegree Centrality 1.658 2.479 0 24 30696
Subcontractor Authority Centrality 0.004 0.010 0 0.082 30696
Horizontal Subcontractor 0.080 0.272 0 1 30696
DBE Subcontractor 0.292 0.455 0 1 30696
Subcontractor Item Experience (percent) 0.128 0.217 0 1 30696
Subcontractor Unique Item Dummy 0.243 0.429 0 1 30696
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Table 3.2: Bidding and renegotiation activities of 92 �rms

Firm ID (A) (B) (C) (D) (E) (F) (G)

(1) 71 35.954 65 6.894 3.775 6.45 0.266

(2) 33 12.204 30 8.374 3.970 6.21 0.254

(3) 9 10.147 8 4.408 8.889 9.11 0.235

(4) 8 4.976 6 7.118 2.625 4.25 0.214

(5) 9 3.697 9 3.183 6.333 7.00 0.143

(6) 8 3.359 7 10.550 5.125 6.25 0.190

(7) 12 2.417 10 6.016 3.583 5.42 0.210

(8) 8 1.956 8 2.714 3.250 5.88 0.211

(9) 8 1.781 7 5.877 3.125 6.38 0.136

(Remaining 83 Firms) 146 23.509 104 4.874 2.692 3.66 0.177

All Firms 312 100.000 254 5.859 3.478 5.09 0.225

(A): Number of Wins
(B): Value of Winning Projects/Value of Procured
(C): Number of Contracts Renegotiated
(D): Average Value of Change Orders/Winning Bid on Project (%)
(E): Average Number of Change Orders per Project
(F): Average Number of Subcontractors Used
(F): Percentage of Bid Completed by Subcontractors
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Table 3.3: Link Prediction

(1) (2) (3)
Sequential Simultaneous

ML Bayesian

Project Subs Hired -0.149***
(0.032)

At Least 1 Sub Hired 2.250***
(0.276)

Rival Sub: Items % -0.794**
(0.356)

Unique Item: Prime and Rival 2.296***
(0.238)

Edge 2.492*** 2.281*** 2.288***
(0.112) (0.101) (0.101)

Log Available Subs 0.100 -0.462** -0.463**
(0.262) (0.210) (0.211)

Prime: Outdegree -0.033*** -0.029*** -0.029***
(0.009) (0.008) (0.008)

Prime: Log Hub -0.007 -0.017 -0.015
(0.053) (0.044) (0.044)

Prime: Item % -6.185*** -4.969*** -4.984***
(0.562) (0.473) (0.479)

Prime: Item % sqr 4.169*** 3.127*** 3.135***
(0.570) (0.486) (0.491)

Sub: Indegree 0.198*** 0.169*** 0.170***
(0.013) (0.011) (0.011)

Sub: Log Authority 0.253*** 0.254*** 0.255***
(0.031) (0.029) (0.029)

Sub: DBE 0.499*** 0.498*** 0.498***
(0.090) (0.083) (0.084)

Sub: Horizontal Sub -0.254* -0.221* -0.221*
(0.140) (0.127) (0.128)

Sub: Item % 1.988*** 2.027*** 2.038***
(0.587) (0.543) (0.542)

Sub: Item % sqr -2.968*** -2.589*** -2.615***
(0.710) (0.664) (0.665)

Unique Item: Prime -1.095*** 0.506*** 0.508***
(0.211) (0.092) (0.092)

Prime: Top Firm 0.121*** 0.167 0.168
(0.034) (0.114) (0.112)

Observations 28,678 28,678 28,678
Simulated Log Likelihood -3412.2 -3621.7 -3629.9
Simulated Pseudo R2 0.388 0.350 0.349

*** Denotes statistical signi�cance at the 1% level, ** denotes signi�cance at the 5%
and * denotes signi�cance at the 10% level. Standard deviation of posterior in paren-
thesis for Columns 1 and 3. Standard errors in parenthesis for Column 2. Additional
control variables include Log Project Duration, Number of Items, Log Engineer's Es-
timate, Elevation and its square, a Top Firm Dummy, Engineer's Experience, Firm's
Experience, Expected Number of Bidders, Unemployment Rate, Log Volume, and
Dummies for Project Type. Full Results available upon request.
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Table 3.4: Predicting Actual Subcontractor use

(1) (2) (3) (4) (5) (6)
Sequential Simultaneous

ML Bayesian

ˆsub 0.815*** 0.295*** 0.744*** 0.249*** 0.743*** 0.249***
(0.049) (0.095) (0.045) (0.074) (0.045) (0.074)

Log of Expected Duration -0.253 -0.272 -0.270
(0.272) (0.266) (0.266)

Number of Items 0.048*** 0.050*** 0.050***
(0.008) (0.007) (0.007)

Log of Engineer's Estimate 0.230 0.262 0.262
(0.172) (0.168) (0.168)

Elevation (hundreds of feet) -0.027 -0.033 -0.033
(0.091) (0.091) (0.091)

Elevation squared 0.003 0.003 0.003
(0.004) (0.004) (0.004)

Top Firm 0.796* 0.868** 0.864**
(0.416) (0.402) (0.402)

Engineer Experience (projects) 0.052 0.035 0.037
(0.233) (0.234) (0.234)

Firm Experience (years) -0.005 -0.005 -0.005
(0.004) (0.004) (0.004)

Expected Number of Bidders 0.036 0.037 0.037
(0.050) (0.050) (0.050)

Unemployment Rate 0.044 0.048 0.047
(0.079) (0.080) (0.080)

Log Volume -0.079 -0.091 -0.090
(0.128) (0.128) (0.128)

Asphalt Project 0.277 0.335 0.332
(0.478) (0.465) (0.465)

Bridge Project 0.214 0.295 0.294
(0.504) (0.489) (0.489)

Observations 273 273 273 273 273 273
R2 0.582 0.673 0.549 0.673 0.549 0.673

*** Denotes statistical signi�cance at the 1% level, ** denotes signi�cance at the 5% and * denotes
signi�cance at the 10% level. Robust standard errors in parenthesis. ˆsub is the predicted level of
subcontracting from 16,000 simulations of results.
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Table 3.5: Number of Change Orders

Full Sample Subsample

GMM GMM IV GMM Proxy GMM GMM GMM Proxy

Number of Subcontractors 0.053*** 0.165** 0.045*** 0.133***
(0.020) (0.073) (0.017) (0.043)

ˆsub 0.071*** 0.075***
(0.025) (0.023)

Log Duration 0.243** 0.290** 0.235* 0.194 0.236** 0.197*
(0.122) (0.115) (0.121) (0.119) (0.111) (0.117)

Number of Items 0.004* -0.004 0.003 0.005*** -0.001 0.002
(0.002) (0.005) (0.002) (0.002) (0.003) (0.002)

Log of Engineer Estimate 0.172** 0.103 0.172** -0.028 -0.090 -0.020
(0.079) (0.096) (0.083) (0.078) (0.087) (0.080)

Elevation (hundreds of feet) 0.081* 0.078* 0.082** 0.087** 0.080** 0.080**
(0.042) (0.041) (0.041) (0.035) (0.036) (0.035)

Elevation squared -0.003* -0.003* -0.003* -0.004** -0.004** -0.003**
(0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

Top Firm 0.054 -0.064 0.024 0.076 -0.046 0.053
(0.151) (0.185) (0.151) (0.155) (0.185) (0.154)

Engineer Experience (projects) -0.110 -0.088 -0.121 -0.170* -0.150 -0.189**
(0.094) (0.100) (0.095) (0.089) (0.094) (0.089)

Firm Experience (years) 0.001 0.003 0.002 0.000 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Expected Number of Bidders 0.003 -0.006 0.003 -0.032 -0.042* -0.030
(0.023) (0.025) (0.023) (0.021) (0.022) (0.021)

Unemployment Rate 0.007 -0.003 -0.001 0.036 0.025 0.025
(0.033) (0.034) (0.033) (0.033) (0.036) (0.032)

Log Volume -0.047 -0.017 -0.046 -0.082** -0.058 -0.078*
(0.047) (0.056) (0.046) (0.041) (0.047) (0.040)

Asphalt Project -0.047 -0.151 -0.047 0.227 0.130 0.191
(0.243) (0.275) (0.235) (0.282) (0.310) (0.275)

Bridge Project -0.076 -0.133 -0.084 0.093 0.001 0.057
(0.231) (0.249) (0.228) (0.282) (0.301) (0.280)

Observations 273 273 273 173 173 173

*** Denotes statistical signi�cance at the 1% level, ** denotes signi�cance at the 5% and * denotes signi�cance
at the 10% level. Clustered standard errors are in parentheses.
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Table 3.6: Value of Contract Renegotiation

Value of Change (Change Orders Log(Value of
Orders ($10,000) / Estimate) X100 Change Orders +1)

OLS 2SLS OLS 2SLS OLS 2SLS

Number of Subcontractors 1.336* 4.823* 0.619** 1.785* 0.151 0.736
(0.726) (2.671) (0.259) (0.997) (0.114) (0.651)

Log of Engineer Estimate 4.030*** 2.828* 0.958** 0.766*
(1.441) (1.576) (0.386) (0.432)

Log Duration 4.707 5.978* 2.589* 2.826* 1.628** 1.842***
(3.289) (3.392) (1.557) (1.550) (0.662) (0.712)

Number of Items -0.050 -0.285 -0.080** -0.166** 0.003 -0.036
(0.076) (0.186) (0.032) (0.079) (0.014) (0.047)

Elevation (hundreds of feet) 0.387 0.539 -0.268 -0.228 0.075 0.082
(0.686) (0.821) (0.421) (0.439) (0.234) (0.233)

Elevation squared -0.030 -0.042 0.000 -0.003 -0.005 -0.007
(0.033) (0.042) (0.019) (0.020) (0.011) (0.011)

Top Firm -3.513 -7.570 -0.819 -2.305 -0.375 -1.034
(3.992) (5.940) (1.559) (2.164) (0.903) (1.133)

Engineer Experience (projects) -1.359 -1.537 -0.493 -0.707 0.385 0.264
(1.996) (2.118) (0.923) (0.939) (0.460) (0.481)

Firm Experience (years) 0.019 0.042 0.021 0.028 0.019* 0.024**
(0.050) (0.060) (0.021) (0.023) (0.010) (0.011)

Expected Number of Bidders -0.167 -0.339 0.201 0.150 0.239** 0.207*
(0.319) (0.379) (0.250) (0.251) (0.115) (0.117)

Unemployment Rate 0.701 0.475 0.197 0.100 -0.059 -0.099
(0.628) (0.642) (0.369) (0.361) (0.176) (0.182)

Log Volume -0.130 0.278 0.266 0.372 0.195 0.256
(0.785) (0.765) (0.600) (0.597) (0.214) (0.223)

Asphalt Project 4.719** 3.203 2.806* 2.290 -0.738 -1.099
(2.344) (3.002) (1.629) (1.746) (0.896) (1.001)

Bridge Project -1.637 -3.034 2.623 2.189 -0.977 -1.360
(2.646) (3.348) (1.816) (1.893) (0.897) (1.045)

Observations 273 273 273 273 257 257
R2 0.205 0.059 0.069 0.001 0.310 0.250

*** Denotes statistical signi�cance at the 1% level, ** denotes signi�cance at the 5% and * denotes
signi�cance at the 10% level. Robust standard errors are in parentheses.
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Appendix

Chapter 1 Appendixes

A1.1 Potential Planholder's Decision to Bid

Table A1.1.1: Potential Planholder Bid Decision: Win-

dows

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

Panel A: 6-month window

ρ1 -0.143 -0.017 -0.010***
(0.107) (0.067) (0.003)

ρ0 0.000 0.015 0.003 0.029**
(0.009) (0.015) (0.016) (0.014)

Log Likelihood -3938.7 -3937.8 -3938.7 -3934.2
Pseudo R2 0.129 0.130 0.129 0.130

Panel B: 18-month window

ρ1 0.108 0.154** -0.001
(0.090) (0.060) (0.002)

ρ0 -0.002 -0.015 -0.037** 0.003
(0.008) (0.013) (0.015) (0.011)

Log Likelihood -4160.5 -4159.7 -4157.1 -4160.3
Pseudo R2 0.139 0.140 0.140 0.139

The results use all the same regressors and methods as Table
A1.1.2. Panel A has 562 auctions, 8,722 potential planholders,
and 69,552 potential planholder pairs. Panel B has 494 auctions,
9,836 potential planholders, and 101,901 potential planholder
pairs. General A�liation is tested for in Column 1. Columns
2, 3, and 4 allow a�liation between �rms to vary according to
their jaccard similarities, cosine similarities and number of over-
lapping subcontractors respectively. Standard errors are shown
in parenthesis. * indicates signi�cance at the 10% level, ** sig-
ni�cance at the 5% level, and *** signi�cance at the 1% level.
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Table A1.1.2: Potential Planholder Bid Decision

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.123 0.150** -0.001
(0.094) (0.061) (0.002)

ρ0 -0.001 -0.015 -0.034** 0.003
(0.008) (0.013) (0.015) (0.012)

Potential Bidders -0.030*** -0.030*** -0.030*** -0.030***
(0.003) (0.003) (0.003) (0.003)

Log PlanCost 0.080* 0.078* 0.077* 0.081*
(0.044) (0.044) (0.044) (0.044)

Log Working Days 0.315*** 0.312*** 0.309*** 0.316***
(0.063) (0.063) (0.063) (0.063)

Log Items -0.501*** -0.495*** -0.492*** -0.502***
(0.080) (0.080) (0.080) (0.080)

DBE Goal -0.009 -0.010 -0.010* -0.009
(0.006) (0.006) (0.006) (0.006)

Time Trend 0.007*** 0.007*** 0.007*** 0.007***
(0.001) (0.001) (0.001) (0.001)

OK Unemployment 0.169*** 0.166*** 0.163*** 0.170***
(0.021) (0.021) (0.021) (0.021)

Distance (100 mi) -0.690*** -0.687*** -0.684*** -0.691***
(0.028) (0.029) (0.029) (0.028)

Backlog ($mill) -0.087*** -0.086*** -0.085*** -0.087***
(0.020) (0.020) (0.020) (0.020)

Outdegree Centrality -0.020*** -0.019*** -0.019*** -0.020***
(0.004) (0.004) (0.004) (0.004)

Hub Centrality 27.486*** 27.361*** 27.126*** 27.524***
(2.693) (2.715) (2.720) (2.688)

Horizontal Sub -0.084*** -0.086*** -0.086*** -0.084***
(0.032) (0.032) (0.032) (0.032)

Log Likelihood -4137.6 -4136.7 -4134.5 -4137.5
Pseudo R2 0.136 0.136 0.137 0.136

The results of the replication of Li and Zhang (2010) on ODOT data are
seen in Column 1. Columns 2, 3, and 4 allow a�liation between �rms to
vary according to their jaccard similarities, cosine similarities and number
of overlapping subcontractors respectively. All columns use 700 simula-
tion. Finite di�erences are used to estimate derivatives. Standard errors
are shown in parenthesis. * indicates signi�cance at the 10% level, **
signi�cance at the 5% level, and *** signi�cance at the 1% level.
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Table A1.1.3: Potential Planholder Bid Decision: No

Network

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.159* 0.177*** 0.000
(0.093) (0.061) (0.002)

ρ2 0.015 0.035 -0.002
(0.026) (0.026) (0.025)

ρ3 0.001 0.001 0.001
(0.001) (0.001) (0.001)

ρ4 0.108*** 0.128*** 0.090**
(0.039) (0.040) (0.038)

ρ0 0.002 -0.024* -0.044*** -0.006
(0.007) (0.013) (0.015) (0.011)

Log Likelihood -5011.3 -5005.8 -5002.9 -5007.3
Pseudo R2 0.136 0.137 0.137 0.136

The expands the results of Table A1.1.2 to incorporate �rms
with no observed network. This leads to an increased sample
size of 516 auctions, 12,209 potential planholders, and 155,286
potential planholder pairs. General A�liation is tested for in
Column 1. Columns 2, 3, and 4 allow a�liation between �rms
to vary according to their jaccard similarities, cosine similari-
ties and number of overlapping subcontractors respectively. The
number of simulations used increases to 800. Standard errors are
shown in parenthesis.* indicates signi�cance at the 10% level, **
signi�cance at the 5% level, and *** signi�cance at the 1% level.

108



Table A1.1.4: Potential Planholder Bid Decision:

Weighted Network

Constant Jaccard Cosine Overlap
(1) (2) (3) (4)

ρ1 0.383*** 0.370*** 0.002
(0.130) (0.088) (0.012)

ρ0 -0.005 -0.016* -0.031*** -0.005
(0.008) (0.008) (0.010) (0.008)

Outdegree ($mil) -0.001 0.000 0.000 -0.001
(0.004) (0.004) (0.004) (0.004)

Hub Centrality -0.969 -1.002 -1.045 -0.969
(0.633) (0.638) (0.640) (0.634)

Log Liklihood -4265.6 -4261.8 -4257.1 -4265.6
Pseudo R2 0.109 0.110 0.111 0.109

The expands the results of Table A1.1.2 to dollar weights to �rm's
network. General A�liation is tested for in Column 1. Columns 2,
3, and 4 allow a�liation between �rms to vary according to their
jaccard similarities, cosine similarities and number of overlapping
subcontractors respectively. Standard errors are shown in paren-
thesis. * indicates signi�cance at the 10% level, ** signi�cance at
the 5% level, and *** signi�cance at the 1% level.
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Chapter 2 Appendix

A2.1 Variable De�nitions

Table A2.1.1: Variable De�nitions

Variable De�nition

Price The hammer price of a work sold in an English auction
recorded in pounds.

Average Number of Bidders Number of unique seller who purchased artwork in the
auction house on the day a artwork was sold

Posthumous Dummy variable indicating if an artwork is sold follow the
artist's death.

Artist Eigenvector Centrality Eigenvector centrality of an artist in the 10 years prior
to the sale date. Eigenvector centrality measures the relative
in�uence of nodes (in this case an artist) in a network by
calculating the primary eigenvector of the network adjacency
matrix. The variable is continuous on the interval [0,1]

Artist Eigenvector Centrality Eigenvector centrality of an artist calculated in the
at Death window from 10 years before an artist death till their death.

The variable is continuous on the interval [0,1]
Artist Log Number of Art Sold Number of pieces by an artist sold at auction in the 10 years

prior to the sale date.
Buyer Eigenvector Centrality Eigenvector centrality of a buyer in the 10 years prior to the

sale date. The variable is continuous on the interval [0,1]
Buyer Capacity Highest amount ever spent by a buyer in the past.
Artist-Buyer link Dummy indicating a buyer has purchased an artwork

by the artist in the 10 years prior to the sale date.
Seller: Family Dummy indicating the seller's name and artist's name in

Graves's records match
Seller: Past Volume Number of pieces sold by the seller in the 10 years prior to

the sale date.
Seller: Unknown Dummy indicating the seller is listed as Unknown in Grave's records
Christie's Dummy indicating a work was sold at Christie's auction house
Max Rival Eigenvector Highest eigenvector centrality of the other bidders

Centrality at auction
Max Rival Capacity Highest Capacity of the other bidders at auction
Mean Rival Artist-Buyer Link Percentage of other bidders which have previously purchased an

artist's work.

Medium Medium of an artwork. Can be a painting, drawing, sculpture,
engraving, or copy

Genre Genre of an artwork. Can be animal, landscape, still life, history,
religion, mythology, genre, portrait, marine, or other.

School Art school of an artwork. Either contemporary British or
contemporary continental.
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Chapter 3 Appendix

A3.1 Variable Description

Table A3.1.1: Variable Description

Variable Description

Edge Contractor has hired the potential subcontractor in the previous 12 months
Number of Subcontractors Number of subcontractors hired by the contractor for a project
ˆsub Number of predicted subcontractors from the sequential Bayesian model

Nijpt

Project Subs Hired Number of subcontractors hired on a project prior to current subcontractor
At Least 1 Sub Hired Dummy indicating at least 1 subcontractors hired prior to current subcontractor
Rival Sub: Item % Percentage of item types previously hired subcontractors have experience with
Unique: Item: Prime and Rival Dummy indicating the potential subcontractor has experience with an item which

neither the contractor or previously hired subcontractors have experience with

Nipt

Log Available Subs Natural logarithm of the number of subcontractors active in the market
Prime: Outdegree Centrality The number of unique subcontractor the contractor has worked with in the

previous 12 months
Prime: Log Hub Centrality The natural logarithm of contractors hub centrality in the network of contractors

and subcontractors in the previous 12 months
Prime: Missing Network Dummy indicating the contractor has not hired a subcontractor in the previous

12 months

Njpt

Sub: Indegree Centrality The number of unique contractors the potential subcontractor has worked with in
the previous 12 months

Sub: Log Authority Centrality The natural logarithm of potential subcontractors authority centrality in the
network of contractors and subcontractors in the previous 12 months

Sub: Missing Network Dummy indicating the potential subcontractor has not worked as a subcontractor
in the previous 12 months

Sub: DBE Dummy indicating the potential subcontractor is a disadvantage business enterprise
Sub: Horizontal Sub Dummy indicating the potential subcontractor performed work as a contractor in

the previous 12 months

Iijpt

Prime Item % Number of items the contractor has experience performing
Sub: Item % Number of items the potential subcontractor has experience performing
Unique Item: Prime Dummy indicating the potential subcontractor has experience with an item which

the contractor does not have experience with

Xipt

Log of Expected Duration Natural logarithm of expected project length in days
Number of Items Number of unique items required for a project
Log of Engineer's Estimate Natural logarithm of engineer's cost estimate
Elevation Number of feet above sea level the project is located
Top Firm Dummy indicating a �rm is in the top 10% in terms of assets
Log Engineer's Experience Natural logarithm of number of projects the engineer worked on during the sample
Firm Experience Number of years the �rm has been active in the market
Expected Number of Bidders Expected Number of Bidders based on publicly available information at the

time of letting
Log Volume Natural logarithm of the dollar value of projects in Vermont during

the month the project was let
Asphalt Project Dummy indicating the project is a repaving project
Bridge Project Dummy indicating the project is a bridge project
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A3.2 Network Example

To explain the hub and authority measures more fully, we created a simple stylized network,
example presented in Figure A3.2.1. It consists of four contractors, labeled A through D,
and eight subcontractors, labeled 1 through 8. The network is laid out in a similar way
as in Figure 3.4, with contractors represented by white nodes and subcontractors by red
nodes. The nodes are sized according to their hub (for contractors) and authority (for
subcontractors) centrality values. The values of the centrality measures can also be found
in Table A3.2.1.

This network example helps reveal how the ranking of hub (authority) centrality does
not always align with outdegree (indegree) centrality. Contractor A has a higher outdegree
centrality than contractor D, but since four of A's �ve connections are to peripheral subcon-
tractors, while all three of D's connections are to central subcontractors, D has a higher hub
centrality. This same intuition follows when comparing contractors B and C. While C has
more connections it is less centrally located in the network, compared to B leading to lower
hub centrality.

With the subcontractors, the authority centrality does not overturn the ordering based
on indegree centrality, though in theory it could. The example highlights how subcontrac-
tors with the same number of connections can have di�erent levels of authority centrality.
Subcontractors 1 and 2 both are linked to three of four contractors, but since 2 is linked to
the more centrally connected A, as compared with C, it has the higher authority centrality.
This pattern is repeated with the subcontractors 3, 5, 6, 7, and 8 located in the periphery.
Since by the measure of hub centrality A is more central than C, its subcontractors end up
with higher authority centrality.

To calculate hub and authority centrality we use eigenvector theory and the adjacency
matrix of the network, which stores all links of the network in an N × N matrix. The
authority centrality is calculated as:

a = A · h

where a is an N × 1 vector of authority centralities, A is the adjacency matrix, and h is an
N × 1 vector of hub centralities. Similarly hub centrality is calculated as:

h = A′ · a

For small networks the centrality measures can be calculated analytically, but for larger
networks they are calculated by beginning with a constant vector and repeatedly iterating the
measures until a steady state is reached. For more information on hub, authority, outdegree
and indegree centrality measures see Bloch et al. (2019).
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Figure A3.2.1: Example Network

Table A3.2.1: Centrality Measures

Contractor Outdegree Hub

A 5 0.547
B 2 0.437
C 3 0.414
D 3 0.582

Subcontractor Indegree Authority

1 3 0.547
2 3 0.598
3 1 0.158
4 2 0.380
5 1 0.209
6 1 0.209
7 1 0.209
8 1 0.209

A3.3 Direct Network E�ects on Renegotiation

One potential area of concern is that �rms with large networks may systematically choose
more complex projects, thus violating the exclusion restriction for the instrumental variable.
In order to provide additional evidence that there is no such correlated complexity, we provide
regressions with additional control variables, namely the winning contractors outdegree and
hub centralities, and the subcontractor averages for indegree and authority centrality, for
use in Table A3.3.1. Whether only outdegree and indegree centrality (Columns 1 and 4),
hub and authority centrality (Columns 2 and 5), or all 4 are included (Columns 3 and 6) the
network variables are always statistically insigni�cant and the point estimates on the e�ect
of the number of subcontractors changes little. When considering the number of change
orders the e�ect remains statistically signi�cant, though for the value of change orders it
is not. These results provide evidence that contractor networks a�ect change orders only
indirectly through their impact on the number of subcontractors used in a project.
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Table A3.3.1: Correlated Unobserved Complexity across Projects

Number of Change Orders Value of Change Orders

GMM IV GMM IV GMM IV 2SLS 2SLS 2SLS

Number of Subcontractors 0.162** 0.163** 0.159** 4.744 4.387 4.305
(0.068) (0.071) (0.066) (2.907) (2.935) (2.791)

Prime: Outdegree 0.003 0.006 0.127 0.098
(0.008) (0.009) (0.194) (0.208)

Sub Average: Indegree 0.016 0.013 0.204 0.299
(0.027) (0.035) (0.497) (0.855)

Prime: Log Hub -0.029 -0.048 0.029 -0.291
(0.056) (0.058) (1.034) (1.042)

Sub Average: Log Authority 0.081 0.034 0.700 -0.041
(0.101) (0.094) (1.218) (1.931)

Observations 248 248 248 248 248 248

*** Denotes statistical signi�cance at the 1% level, ** denotes signi�cance at the 5% and *
denotes signi�cance at the 10% level. Robust standard errors are in parentheses. All regressions
include the other control variables found in Tables 3.5 and 3.6.
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A3.4 Further Normalizations

Table A3.4.1: Percentage of Contract Subcon-

tracted

(1) (2)

ˆsub 4.099*** 2.657***
(0.513) (0.794)

ˆsub squared -0.203*** -0.160***
(0.033) (0.037)

Log of Expected Duration 0.553
(1.745)

Number of Items 0.044
(0.058)

Elevation (hundreds of feet) 0.468
(0.691)

Elevation squared -0.043
(0.030)

Top Firm 5.190*
(2.665)

Engineer Experience (projects) 0.549
(1.491)

Firm Experience (years) 0.019
(0.031)

Expected Number of Bidders 0.465
(0.392)

Unemployment Rate 0.379
(0.563)

Log Volume -1.118
(0.792)

Asphalt Project 5.299
(3.403)

Bridge Project -0.610
(3.405)

Observations 273 273
R2 0.174 0.275

*** Denotes statistical signi�cance at the 1% level, denotes
signi�cance at the 5% and * denotes signi�cance at the 10%
level. Robust standard errors are in parentheses.
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Table A3.4.2: Percentage of Items Renegotated

(1) (2)
OLS 2SLS

Number of Subcontractors 0.350** 1.809**
(0.139) (0.756)

Log Expected Duration 2.001** 2.532***
(0.839) (0.929)

Number of Items -0.060*** -0.158***
(0.020) (0.059)

Log of Engineer Estimate 0.165 -0.338
(0.588) (0.641)

Elevation (hundreds of feet) 0.398 0.461
(0.301) (0.330)

Elevation squared -0.017 -0.023
(0.013) (0.015)

Top Firm 0.712 -0.984
(1.036) (1.303)

Engineer Experience (projects) -1.435 -1.510
(1.009) (1.013)

Firm Experience (years) 0.004 0.014
(0.011) (0.013)

Expected Number of Bidders -0.106 -0.178
(0.194) (0.212)

Unemployment Rate -0.102 -0.196
(0.285) (0.316)

Log Volume 0.235 0.406
(0.339) (0.382)

Asphalt Project -0.536 -1.170
(1.776) (1.849)

Bridge Project -0.511 -1.095
(2.105) (2.137)

Observations 273 273

*** Denotes statistical signi�cance at the 1% level, ** de-
notes signi�cance at the 5% and * denotes signi�cance at
the 10% level. Robust standard errors are in parentheses.
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