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Abstract 

Sustainable energy generation is crucial to meet the energy demands in the 21st century while 

keeping the implications of future challenges at its core philosophy. A geothermal power generation 

plant is one of such avenues that meet the associated challenges by utilizing the thermal energy 

stored in the earth to generate clean power. The energy acquired in the process, termed as geothermal 

energy, has the highest baseload due to its independence of seasonal factors (e.g., sunlight, winds, 

cloudiness). Despite the vast potential of geothermal energy, factors such as operational risks during 

drilling continue to limit its widespread development. 

The geothermal drilling is impacted by a high-pressure and high-temperature (HPHT) environment 

at the subsurface. The high temperatures (HT) and the corrosive environment of geothermal drilling 

make the design of the drilling fluid a very complicated task. The HT geothermal drilling leads to 

major concerns, including thermal degradation. The drilling fluid thermal degradation impacts 

drilling processes such as the cuttings evacuation, hole cleaning, filtration, and fluid loss 

performance. These issues can lead to major operational problems such as massive mud losses, stuck 

pipe events, or poor cementing jobs if not adequately addressed. 

Additionally, geothermal fields are characterized by the presence of highly fractured rocks. The 

combination of corrosive environment and fractured rock generates the need to incorporate additives 

for alkalinity, fluid loss control, and lost circulation. Research to analyze the effect of the additive’s 

thermal degradation on the drilling fluid rheological properties in temperatures near or above 300°F 

(149°C) is limited. Thus, an extensive laboratory study is performed on water-based mud (WBM) 

drilling fluids. 
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Laboratory tests were performed using an HPHT rheometer to measure drilling fluid properties up 

to 400°F (204.5°C). Rheological properties, density, filtration, lost circulation, and alkalinity control 

additives at HT were measured during this work. Three different alkalinity control materials (Caustic 

Soda, Potassium Hydroxide (KOH), and Lime) were evaluated. Lime presented the best thermal 

stability at 400°F with an average variation of 2.4 cp (0.0024 pa.s) on apparent viscosity after three 

consecutive tests. Moreover, this alkalinity control material (lime) presented the least volume of 

mud gelled (2%) at HT. In contrast, Caustic Soda showed the highest volume of mud gelled (58%), 

adversely affecting mud rheology. 

Additionally, twelve (12) different lost circulation materials (LCM) were tested for understanding 

their rheological behavior at HT. The study showed that HT has less impact on fine granular 

materials rheological behavior with an average increase of 17.7% compared with the baseline. In 

contrast, flaky, fibrous, and coarse granular materials presented an undesirable increase in rheology. 

The average rheology of the latter was 166% compared with the baseline.  

The second stage of the experimental study consisted of performing laboratory investigation of LCM 

at HT. Eleven (11) different materials were tested; Walnut Fine, Walnut Medium, Sawdust, Altavert, 

Graphite Blend, Bentonite Chips, Micronized Cellulose (MICRO-C), Magma Fiber Fine, 

diatomaceous earth/amorphous silica powder (DEASP), Cotton Seed Hulls, and a Calcium 

Carbonate Blend. The filtration and sealing pressure of the LCMs were measured with HPHT 

equipment up to 300°F (149°C). Furthermore, the particle size distribution (PSD) of granular 

materials was measured. The results show that some LCM materials commonly used in geothermal 

operations are more sensitive to degrade at HT. Characteristics such as shape and size made some 

materials more prone to thermal degradation. Also, it was found that the PSD of LCMs is a key 
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factor in bridging and sealing fractures. The results suggest that granular materials with a wide 

particle size distribution PSD are more suitable for geothermal applications.
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1. INTRODUCTION 

 Research Motivation and Research Hypothesis 

The increase in energy demand worldwide has led to the rise in need for new energy generation 

sources such as renewable energy. Geothermal power generation is one of the most important 

renewable energy resources. A geothermal power generation plant benefits from the thermal energy 

stored in the earth to generate clean power. Geothermal energy is the renewable energy with the 

highest capacity factor. According to information from the U.S. Energy Information Administration 

(EIA 2020), the geothermal energy capacity factor averages 72% in the last ten years (Error! R

eference source not found.). It is not uncommon for certain geothermal plants to reach values well 

over 90% (Sanyal and Enedy, 2011; Vivas et al., 2020). Because of its independence from seasonal 

factors, geothermal energy is one of the more efficient baseload power sources that can operate 

continuously to meet the minimum power demand 24/7. 

 

 Capacity Factors for Utility-Scale for Renewable Energy Sources 2009-2019 
(Vivas et al. 2020) 

Although its potential to provide constant energy, the widespread of geothermal production has been 

limited by various factors such as lack of access to thermal supplies, high capital costs, and operating 

0%

10%

20%

30%

40%

50%

60%

70%

80%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Ca
pa

ci
ty

 F
ac

to
r

Geothermal Hydroelectric Biomass
Solar Photovoltaic Solar Thermal Wind
Wood



2 
 

risks during geothermal well drilling. Marbun et al. (2013) described how operational problems 

associated with mud losses and stuck pipe events, causing the operational drilling times to be four 

times the amount of time initially planned in a field in Indonesia. Pálsson et al. (2014) described how 

non-controlled mud losses prevented the planned well depth from being reached in the Krafla field, 

Iceland. In this operation, multiple sidetracks were attempted, but the loss of circulation did not allow 

reaching the planned target. Bolton et al. (2009) described how total losses caused a well control 

event in the Wairakei field, New Zealand. To stop the blowout, a relief well to intercept the 

uncontrolled well was drilled. These examples depict how operational problems have a high impact 

on the drilling time scheduled, and therefore, the well costs. 

The geothermal drilling process presents different challenges compared to conventional oil and gas 

drilling. A harsh environment with a combination of high temperature and hard rock makes the 

drilling process operationally complex. Special attention needs to be given to drilling fluids design 

and selection since it is the component of the well construction that is greatly affected by temperature 

changes. This component participates in every operation inside the drilling process. The most 

impactful problem during drilling geothermal wells is the mud losses. This is mainly due to the high 

frequency and the associated cost of loss of circulation events (Visser et al., 2018). 

In typical geothermal wells, mud losses often correspond to a significant portion of non-productive 

time (NPT). Visser et al. (2018) reviewed the performance of geothermal wells in the United States. 

In Figure 2, a typical NPT distribution of wells with loss of circulation issues is shown. In that case, 

mud losses led to close to 200 hours of non-productive time. In the perspective of the rig rate, daily 

services, and mud lost in the formation, this particular case represented 24% of the well total cost 

(Visser et al., 2018). Cole et al. (2017) analyzed data from 38 geothermal wells drilled in the United 

States since 2009. The study found that wells accumulated more than 100 hours of non-productive 
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time on average due to loss of circulation, contributing to rig costs of an additional $185,000 or more 

per well. Figure 3 shows the impact of mud losses on the average cost of a 50-MW geothermal 

plant. In this case, the loss of circulation represents 7% of the entire project, which shows how 

critical these events are in geothermal plant's capital costs. 

 

 Non-productive time distribution in a well with mud losses (After 
Visser et al. 2018). 

 

 Capital cost decomposition for a typical geothermal 50-MW plant (modified 
from Cole et al. 2017). 

Usage of lost circulation material (LCM) is necessary for intent to control mud losses. The 

incorporation of LCM in the fluid system affects the mud rheology. As drilling fluid rheology is also 
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affected by temperature increase, in geothermal operations, where temperatures reach close to and 

above 300°F, plastic viscosity and yield point are highly affected.  

The most common detrimental effect of thermal degradation presented in geothermal operations is 

mud gelation. That can adversely increase the viscosity and generates an undesirable thicker filter 

cake. Even though all these problems are widely known, the rheology degradation of the drilling 

fluids exposed at HT is still not completely understood. 

With the forgoing assessment of the drilling fluid effectiveness in geothermal drilling, the following 

hypotheses have been developed for this research: 

1. The high-temperature encountered in geothermal drilling impacts the drilling fluid properties 

such as rheology. 

2. The size and shape of the lost circulation materials significantly impact their effectiveness at 

high-temperature. 

 Research Objectives 

The project's primary objective is to understand the effects of high temperature on the drilling fluid's 

properties to address the drilling fluid challenges present in geothermal drilling. To fulfill this goal, 

following secondary objectives are addressed: 

1. Evaluate the temperature effect on different drilling fluid additives commonly used in 

geothermal applications. 

2. Investigate the potential causes of mud gelation in high temperature, and provide possible 

solutions. 

3. Provide a base mud recipe with thermal stability. 

4. Characterize the impact of different lost circulation materials on drilling fluid rheology. 
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5. Perform a lost circulation materials screening for filtration and sealing pressure. 

 Research Outline and Scope of Study 

In this study, different drilling fluid components were evaluated. Additives for viscosity, density, 

filtration, lost circulation, and alkalinity control were analyzed at HT. Three different alkalinity 

control additives and 12 different lost circulation materials were tested for understanding properties 

that made those components prone to fail at high temperatures. The experiments were conducted 

using an HPHT rheometer and an HPHT permeability plugging tester (PPT). This research is divided 

into the following sections: 

1. Literature review: This section of the study provides a review of information related to 

geothermal drilling fluids, what are their characteristics, and the main challenges faced by 

the industry for addressing geothermal drilling fluids problems. 

2. Experimental research: Laboratory tests were performed using HPHT equipment for 

measuring rheology and filtration. The focus is to understand the behavior of various WBM 

components and their properties at HT.  

3. Post experimental analysis: The rheology and filtration tests are analyzed and contrasted with 

particle size distribution (PSD) analysis. PSD helped to understand some of the test results 

and support the main conclusions derived from this study. 

 

  



6 
 

 

2. LITERATURE REVIEW   

This section presents how the industry has been addressing the thermal degradation in WBM based 

drilling fluids.  Case studies in geothermal field operations were reviewed. Besides, studies related 

to rheological properties at HT are examined. Finally, an LCM review is presented.  

 Case Studies 

The case studies presented are from operations in the US. Despite some of the information was 

generated in the ’70s and ’80s, problems depicted are still common today and not fully solved. 

2.1.1 Imperial Valley 

The Imperial Valley field is located in Southern California, and it is the second-largest geothermal 

field in the US. The Imperial Valley field's main sediments are sandstones, shales, claystones, and 

conglomerates deposited by the ancient Colorado River when it formed its delta (Cromling, 1973). 

Fields in the Imperial Valley reach temperatures near to super-critical temperatures. Kaspereit et al. 

(2016) reported wells in the Salton Sea field with a bottom hole temperature of 390°C (734°F). The 

geothermal reservoirs in the Imperial Valley produces hot high-salinity brines, with pH values 

ranging from 5.7 to 7.6 (Liles et al., 1976). A freshwater gel-lignite mud was the drilling fluid widely 

found in the Imperial Valley. To initiate the well, a simple gel fluid was used. The increase in 

temperature led to mud gelation during operation. Lignite was used as a thinning agent to mitigate 

the adverse effects of mud gelation. The drilling fluid was then modified to a sodium surfactant fluid 

to finish the wells (Table 1).  
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 Materials used to drill a well in Imperial Valley field (After Liles et al. 1976) 

Material Surface to 2,690 ft 
(lb) 

2,690 ft to TD 
(lb) 

Wyoming Bentonite 12800 - 

Barium Sulfate. 16300 13,750 
Treated Lignite 9750 - 

Caustic Soda 1,700 2,500 

Salt - 1,700 

Surfactant - 4,600 
Soda Ash - 1900 

Plastic Foil - 650 

Fine Walnut Hulls - 2750 

Fine Mica - 4250 
Cane Fiber - 2,200 

  

Zilch et al. (1991) identified three generations of drilling fluids for UNOCAL operations in the 

Imperial Valley field. The first generation started in 1976 with Sepiolite muds. These muds had good 

rheology but had insufficient fluid loss control and were prone to contamination by brine or cement. 

The mud contained Bentonite, Sepiolite, Caustic Soda, Lignite, and Sodium Salt. The second 

generation was a refinement of the first Sepiolite mud. The Bentonite and Lignite concentration in 

the system was increased. The Sepiolite was used mainly for viscosity building, and the Lignite was 

used to achieve filtration control. This second generation of drilling fluids had substantially 

increased filtration control efficiency relative to the initial generation. Such muds, however, had 

undesirable rheological properties and were highly prone to contamination. In the third generation 

of geothermal drilling fluids, the Sepiolite components were removed. The Wyoming bentonite was 

stabilized by a low molecular weight copolymer (sodium salt of maleic anhydride copolymer -

SSMA-). The system also used Lignite and modified lignitic polymer compositions for better 
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filtration control. This fluid had rheological thermal stability, and the filtration properties were less 

affected by contaminants. Figure 4 and Table 2 presented each drilling fluid generation composition 

and a comparison of the effective viscosity measured by an HPHT rheometer.  

  
 Comparison of effective viscosity at constant 100s-1 of the three generations of 

drilling fluids in Imperial Valley UNOCAL operations (generated with information 
from Zilch et al. 1991) 

 Examples of the Drilling fluid composition of the three generations of drilling 
fluids in Imperial Valley UNOCAL operations (after Zilch et al., 1991)  

 Additive Concentration (ppb) 

1st Generation Bentonite 2.5 
Sepiolite 15 

Caustic Soda 0.2 

Sodium Polyacrylate 0.5 

Modified Lignite 1 
Drill Solids 20 

2nd Generation Bentonite 25 

Sepiolite 15 

Lignite 20 
Caustisized Lignite 10 

Caustic Soda 2 

Nonionic Detergent 5 

Drill Solids 20 
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3rd Generation Bentonite 15 

HT Defloculant 0.75 
Modified Lignite 1 

Caustisized Lignite 1 

HT Polymeric Fluid Loss 0.75 

Drill Solids 20 

 

2.1.2 The Geysers 

The Geysers field is located in Sonoma County, Northern California. The drilling operations in this 

field started in 1955, and now it is the most extensive geothermal development in the world. Wells 

range from 3,950 ft to 9,000 ft, with reservoir temperatures from 450°F to 550°F (232.2°C to 

287.8°C) (Grose, 1971). The production interval is mainly composed of sandstones (fine to medium-

grained) with a minor proportion of shale, cherts, greenstones, and serpentines (Cromling, 1973). 

The Geysers is a dry steam geothermal resource (Finger and Blankenship, 2010).  

The drilling fluid used in this field is a low-solid gel in freshwater containing lignin additives (Liles 

et al., 1976). Mechanical treatment using shakers, desanders, and desilters, was used to remove 

solids and combat increased viscosity to conserve a stable fluid. Aerated fluids are preferred when 

drilling in known loss circulation zones. This is to reduce the risk of formation damage associated 

with the clay particles in the water-based drilling fluid lost into the formation, which may seriously 

affect the reservoir's porosity and permeability. 

Drilling fluids can also influence the cementing jobs. Firstly, they contaminate the cement. 

Secondly, drilling fluids that have been gelled and thickened leaves a thick filter cake in the 

formation and the casing, preventing the proper cement bonding. Besides, thickened mud can cause 

cement channeling behind the casing, leading to large zones poorly or not cemented. Such zones can 
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be filled with water that can vaporize at geothermal temperatures, creating voids that can lead to 

casing collapse (Varnado and Stoller, 1978). 

2.1.3 Steamboat Springs  

The Steamboat Springs field is located in southern Washoe County near Nevada's west border 

(White et al., 1964). The Steamboat field is a low-temperature field with bottom hole temperatures 

below 200°C (392°F) (Finger and Blankenship, 2010). Liles et al. (1976) described the drilling fluid 

used for drilling the Steamboat-1 well. The well was drilled with a low pH, Lignite-surfactant mud 

to a depth of 1,078 ft. A description of the materials used in the well is presented in Table 3. 

 Materials used in Steamboat 1 well (After Liles et al. (1976) 
Material Amount (Ib) 
Wyoming bentonite 5,100 

Barium Sulfate 34,900 

Salt 100 

Surfactant  1,640 
Lignite 2,250 

Soda Ash 400 

Caustic soda  200 

Diesel fuel 300-400 

The objective of this formulation was to reduce/mitigate fluid losses and prevent cement 

contamination (Liles et al., 1976). The surfactant mud field trial showed that it was relatively easy 

and cost-effective to prepare and maintain. Test results indicated that the Lignite-surfactant fluid 

maintains acceptable filtration and rheological properties (Table 4). 

 Properties of Surfactant mud of Steamboat 1 well (after Liles et al. 1976) 

Depth, ft Weight, 
Ib/gal 

Plastic 
viscosity, 

cp 

Yield 
point, 

lb/100 ft3 

Initial 
gel, 

lb/100 ft3 

10 -min 
gel, 

lb/100 ft3 

API 
filtrate, 

ml 

Filter 
cake, 

in 
393 10.3 30 8 4 9 3.6 2/32 

432 10.6 28 12 2 10 4.2 2/32 
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462 10.7 29 10 4 9 3.6 2/32 

523 10.8 30 7 4 9 3.6 2/32 
603 11.1 34 6 5 9 3.6 2/32 

634 11.4 36 7 4 6 3 2/32 

873 10.7 19 3 3 6 3.6 2/32 

1,030 11.4 42 12 3 7 3.6 2/32 
1,077 11.1 47 12 3 17 3.8 2/32 

2.1.4 Fenton Hills 

Fenton Hills was the first hot-dry rock (HDR) project located in the Jemez Mountains, Northern 

New Mexico. The reservoir has temperatures from 195°C (383°F) to 235°C (455°F) (Brown, 2009). 

The drilling operation started in the late '70s.  After numerous researches were conducted to evaluate 

HDR geothermal projects' concept in the '80s and '90s, the field has been temporally abandoned. 

Nuckols et al. (1981) described the challenges of the drilling fluids in Fenton Hills operations. The 

sedimentary portion of the wells (from the surface to 2,400 ft approximately) is compounded by 

volcanic and volcanoclastic sediments (Cenozoic rocks) in the upper section, and the lower section 

consists of massive limestones and shales (Paleozoic strata – Abo, Madera, and Sandia Formations). 

The drilling fluid used in that section was a polymeric flocculated bentonite mud. Red clay stringers 

in Abo Formation induced a significant increase in the drilling fluid viscosity (usually a funnel 

viscosity increase of 40 to 60 points) when hydrated. The most affordable approach applied for 

managing viscosity and mud weight was water dilution.  Severe loss of circulation in the Sandia 

limestones caverns caused a reduction of the hydrostatic column, leading to the sloughing of the 

Abo and some of the Madera Formation beds. The consequences were stuck pipe events, repeated 

reaming, poor cement job, and intermediate casing damage. 

Below the sedimentary formations are igneous and metamorphic rocks of Precambrian age (from 

2,400 ft to 15,000 ft). This section well was drilled with water as the primary fluid. Very high 
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temperatures (608°F/320°C) and the abrasiveness of Precambrian Crystalline rocks caused corrosion 

problems. Due to these conditions, corrosion inhibition while drilling with clear water was 

complicated, considering the massive amount of water to provide sufficient cooling. Large quantities 

of an oxygen scavenger (ammonium bisulfite) and keeping a high pH in the system (9.5-11) 

successfully controlled corrosion (Nuckols et al., 1981). 

 Geothermal Drilling Fluids Properties 

In principle, the geothermal drilling fluids have the same functions as O&G drilling fluids. However, 

the geothermal temperatures compromise some of their properties in terms of thermal degradation 

and corrosion. 

Drilling reports from various geothermal wells in many reservoirs revealed common drilling mud 

properties (Finger and Blankenship, 2010). These properties are summarized in Table 5: 

 Typical Geothermal Drilling Fluid Properties (Information from Finger and 
Blankenship, 2010) 

Property Range (SI Unit) Field Units 

Density  1.03 – 1.15 g/cm3  8.58 – 9.58 ppg 

Funnel viscosity  35 – 55 sec  35 – 55 sec  

pH  9.5 – 11.5  9.5 – 11.5  

Plastic viscosity  0.01 – 0.02 Pa-s  10 – 10 cp 

Yield point  35 – 125 kPa  7.3 – 26.1 lbf/100ft2 

 

2.2.1 Density  

Mud density is one of the most common properties of drilling fluid and must be accounted for during 

well planning. Mud density must be designed considering the pore pressure (formation pressure) 

and the fracture gradient expected.  In geothermal applications, it is not rare that formation pressures 
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are lower than O&G wells. WBMs of 9 to 10 ppg are typically used for geothermal drilling, though 

aerated muds are used to prevent mud losses (Liles et al., 1976). A geomechanical study is essential 

to understand the near-wellbore stresses to avoid or limit wellbore instability (breakouts). 

Usage of weighting agents in geothermal drilling is rare since minimum mud densities are desired 

to minimize lost circulation problems. 

Density can be raised using weight additives such as Barite (the most common weighting agent) 

without unnecessarily modifying other drilling fluid properties. Density incremented by drilling 

solids (e.g., cuttings, cavings, sand, silt, among others) is undesirable. Adverse effects derived from 

the rise of drilling fluid density using solids include reducing the rate of penetration (ROP), filter 

cake thickening, and the wear of BHA/drill pipe tubular and mud pump parts by abrasion (Culver, 

1998). 

2.2.2 Viscosity 

Viscosity in a drilling fluid property that must be monitored when working in a high-temperature 

environment. Viscosity is highly affected by temperature changes. Thermal degradation of drilling 

fluids can be manifested in terms of reduction in plastic viscosity (PV) and yield point (YP). This 

affects the drilling cuttings carrying capacity and then the hole cleaning. Besides, thermal 

degradation can cause mud gelation. The latter causes an uncontrolled increase of viscosity, leading 

to stuck pipe events or debonding during cementing jobs. 

The effect of HT in WBM was studied by Amani and Al-Jubouri (2012). In that study, different 

drilling fluids were tested at HPHT conditions. The drilling fluids were tested at temperatures from 

100°F to 500°F (37.8°C to 260°C) and confined pressures from 5,000 to 35,000 psi. The authors 

found the temperature increase impacted rheological properties regardless of the testing pressure 
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(Figure 5 right). In contrast, the pressure increase has a lesser effect on plastic viscosity (Figure 5 

left).  

 
 Plastic Viscosity Versus Temperature [Left] and Plastic Viscosity Versus 

Pressure [Right], (After Amani and Al-Jubouri, 2012).  

From the same research, the yield point (YP) was found to behave similarly. The authors of the study 

suggested that the behavior of rheological properties of the drilling fluids tested under HT is the 

product of the thermal degradation of the mud components. The resultant molecular expansion of 

the mud components lowers the resistance of the drilling fluid to flow, and thus, its PV, YP, and gel 

strength. 

Similar effects were observed by Galindo et al. (2015) in laboratory tests of a high-performance 

WBM at HPHT condition. Rheology values at different temperatures are shown in Table 6, where 

it can be observed how PV and YP reduce with temperature. 

 Rheology of 14 ppg HT/HP WBM formulation from 120 to 400 °F (After 
Galindo et al., 2015). 

Temperature (℉) 120 120 250 300 350 400 

Pressure (psi) 0 2000 2000 2000 2000 2000 

PV (cp) 34.0 29.3 17.6 14.2 13.2 12.7 

Yield Point (lbf/100ft2) 26.0 38.4 18.4 13.2 10.5 10.4 

600 rev/min 94.0 97.0 53.6 41.6 36.9 35.8 

300 rev/min 60.0 67.7 36.0 27.4 23.7 23.1 
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200 rev/min 48.0 54.8 29.5 23.4 20.1 20.2 

100 rev/min 33.0 39.2 21.8 17.6 15.7 15.9 

6 rev/min 12.0 15.9 9.1 7.8 7.0 7.6 

3 rev/min 10.0 14.4 7.9 6.9 6.1 6.8 

  

The most common effect of the HT observed in geothermal wells is the mud gelation (Cromling, 

1973; Finger and Blankenship, 2010; Liles et al., 1976; Tuttle, 2005; Tuttle and Listi, 2003; and  

Varnado and Stoller, 1978). Tuttle and Listi (2003) suggested that gelation is caused by the solids 

drilled contending strongly for the free water in the fluid system, contributing to mud dehydration 

and a severe rise in viscosity. This unfavorable condition increases the frictional pressure losses 

during circulation, leading to an increase in the equivalent circulation density (ECD). This condition 

in narrow mud window operations could lead to induce mud losses. Other adverse effects of mud 

gelation are stuck pipe events or poor debonding during cementing jobs. 

Viscosity, according to the needs, can be increased using viscosifiers or decreased using thinning 

agents. API quality Bentonite is the predominant viscosifier for geothermal drilling. Required 

rheological properties can be controlled with Bentonite in moderate concentrations (5-20 ppb), with 

proper filter cake and viscosity results (Tuttle, 2005). Nevertheless, not all Bentonites are 

recommended for geothermal operations. Sepiolite and Attapulgite can generate adverse effects such 

as wellbore instability, thicker filter cake, and inadequate PV and YP. The usage of high-quality 

Bentonite clay is recommended (Tuttle and Listi, 2003). 

Polymer application in the mud system is practical; however, it is affected when exposed to HT for 

a long time (Finger and Blankenship, 2010). Their primary application is for high viscosity pills to 

ensure hole cleaning before wiper trips, electric logs, running casing/liners, or cementing jobs. 

Besides, it is essential to reduce the viscosity when HT gelation or the solids content in the drilling 
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fluid is undesirably high. Recent advances in HPHT polymers have shown success in provided mud 

thinning and gel inhibition (Finger and Blankenship, 2010). 

2.2.3 Alkalinity 

Selecting the appropriate fluid alkalinity is essential for the control of corrosion during geothermal 

drilling. Geothermal drilling fluids with high pH are essential to regulate the effects of certain 

wellbore pollutants (CO2 and H2S). This is indispensable in mitigating corrosion and improving 

certain drilling fluid additives (Finger and Blankenship, 2010). Caustic Soda has been added for 

alkalinity control in fields such as The Geysers, Imperial Valley, and Steamboat Springs (Liles et 

al., 1976). The incorporation of caustic soda in the system has been a conventional way of increasing 

alkalinity. However, Caustic Potash (KOH) is increasing its popularity in geothermal applications 

due to its advantages in wellbore stability (Tuttle, 2005). 

2.2.4 Filtration 

This property represents how well the drilling fluid builds an impermeable coating on the wellbore 

wall to avoid leakage into the permeable rocks. The hydrostatic pressure of the drilling fluid column 

must be higher than the pore pressure. The objective is to prevent the influx of the formation fluids. 

The filter cake can prevent the drilling fluids from penetrating the permeable formations. It is 

necessary that the mud quickly generates a filter cake capable of reducing fluid loss. Besides, filter 

cake needs to be sufficiently thin and easy to remove to permit the production flow into the wellbore 

throughout the production stage of the well (Caenn et al., 2016). 

Various additives for filtration control apply to geothermal drilling operations. The most commonly 

used is Lignite, thanks to its low cost and high accessibility. Lignite concentrations up to 12-20 ppb 

are also needed for sufficient filtration control. However, thermal degradation can potentially 
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generate carbonate contamination in the mud, contributing to an inadequate, very high viscosity 

(Tuttle and Listi, 2003). 

   Drilling Fluids Components and Formulation 

In general, drilling fluid systems consist of base fluid (in WBM drilling fluid, the base fluid is water), 

active and inert solids, and additives to preserve the mud properties. These components control the 

main drilling fluid properties; density (e.g., mud density, specific gravity), viscosity (e.g., PV, YP), 

and chemical reactivity. In geothermal drilling fluids, the most relevant properties are alkalinity, 

formation stability and inhibition, filtration, and fluid loss control. 

As a minimum, a drilling fluid formulation designed to address geothermal drilling challenges must 

include a stable thermal viscosifier, a filtrate control additive, a pH buffer, and LCM if mud losses 

are expected. In addition to the high-temperature constraints, the main limitations are the low-

density requirement and the additives' cost. Some high-tech HPHT additives are cost-prohibited for 

geothermal applications, which could easily turn a technically properly designed well into an 

economic failure (Vivas et al., 2020). 

Tuttle (2005) presented a summary of different additives recommended for geothermal applications 

based on field experience or promising lab tests (Table 7). To generate a basic formulation that 

meets the conditions mentioned above, the additives presented in the cited table provides an initial 

step since some of the components can be easily found. 

 Product Selection Criteria for Geothermal Drilling Fluid (After Tuttle, 2005). 

Property/Characteristic <350°F (<177°C) >350°F (>177°C) 

Rheology Control (Viscosity 

Increase) 

API Bentonite, 

Synthetic Polymers 

API Bentonite, 

Synthetic Co-Polymers 
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Rheology Control (Thinning) Polyacrylates, Desco CF New Co-Polymer Blends, 

Lignite, Desco CF 

Filtrate/Water Loss Control PACs, Starch Derivatives, 

Acrylamides 

HT PAC Blends, 

Modified Acrylamides, Lignite 

Alkalinity/pH Control Caustic Soda, KOH, Lime Caustic Soda, KOH, Lime 

Inhibition/Lubricity K+, Al+++-Based Additives, 

Gilsonite, TORKease 

K+, Al+++-Based Additives, 

Gilsonite, TORKease 

Lost Circulation Cottonseed Hulls, Sawdust, 

Crosslink Plugs 

Cottonseed Hulls, Sawdust, 

Crosslink Plugs 

 

 Mud Losses in Geothermal Drilling 

Lost circulation is caused by mud entering into porous or fractured rock, causing the reduction in 

the hydrostatic column (mud column). In this case, the mud is getting into the formation instead of 

returning to the surface (Hinkebein et al., 1983). The mud loss is the most severe problem during 

the drilling of geothermal wells, mainly due to its high frequency and associated high costs. In 

geothermal reservoirs is common to find complex fractures networks (Rossi et al., 2020). This highly 

fractured rock environment is one of the most common causes of massive mud loss events. Fractures 

that measure 1 to 3 thousand microns or more are complicated to cure at high temperatures (Figure 

6). Even though this is an extensively studied phenomenon, lost circulation is still the most 

problematic and costly issue in geothermal drilling (Vivas et al., 2020). 



19 
 

 

 Large fracture in a geothermal well core sample (Blankenship, 2016) 

Goodman (1981) conducted a study of how the geothermal industry addressed mud losses during 

drilling operations. After an extensive survey, Goodman observed that geothermal operators used 

traditional O&G drilling approaches to solve drilling fluid losses (LCM's, pills, or cement plugs). 

The study revealed that, depending on the individual downhole conditions, these approaches may or 

may not be effective in resolving impaired circulation. Hyodo et al. (2000) analyzed close to 4,500 

lost circulation events in Japan. In that study, 65% of the wells presented total losses, and when 

those losses were treated with LCM', the success rate was about 10%. At present, despite the 

evolution of LCM materials, the treatment's success rate is still low. Cole et al. (2017) analyzed the 

mud losses in 15 wells in California. The effectiveness of lost circulation materials in both; LCM 

incorporated into the fluids system (Figure 7) and LCM pills spotted downhole (Figure 8) were 

evaluated. The analysis was divided into seepage losses (less than 25 bbl/h), partial losses (among 

25 to 100 bbl/h), severe losses (greater than 100 bbl/h with drilling fluid returns), and total losses 

(no returns of drilling fluid). Ninety-five events in total were analyzed, and the overall success rate 

of all treatments with LCM was 25.3%. In general, it can be observed that partial and severe losses, 

the treatments have a better success rate, compared with their performance at total losses, where all 
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LCM treatments failed. Total losses in geothermal wells are commonly attributed to fractures that 

are difficultly healed with LCM. 

  

 The success rate of losses remediation with LCM materials 
incorporated into the fluid system plot generated with information from Cole et al., 

2017). 
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 The success rate of losses remediation with LCM materials spotted on 
the bottom as pills plot generated with information from Cole et al., 2017). 

In the same study, the effect of temperature and depth was analyzed. In Figure 9, LCM treatments 

are showed by depth and formation temperature. The temperature range of data analyzed is mostly 

among 150°F (65.6°C) and 300°F (149°C). Some LCM’s and drilling fluids started to degrade at 

temperatures above 250°F (121.1°C). However, there is no indication that temperature increase has 

a remarkable effect on the losses remediation success/failure ratio in the information presented. 

Failure of losses curing also happens at temperatures way below 200°F. Failure in sealing can 

probably be attributed to an LCM selection rather than thermal degradation in the wells analyzed. 

Paper, cottonseed hulls, nutshells, and calcium carbonate were used in 87% of all events. According 

to interviews with drilling operators of the wells, the LCM components were mostly selected on a 

well-by-well basis through trial and error rather than formation properties. The severity of losses 

provided to operators an indication of whether materials should perform well based on previous 

experiences. 

 

 LCM treatments effectiveness from temperature vs. depth perspective 
(plot generated with Cole et al., 2017). 
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2.4.1 Addressing Mud Losses - History Cases 

Liles et al. (1976) and Zilch et al. (1991) reported that drilling fluids in Imperial Valley used Lignite 

or modified lignitic polymer compositions for filtration control. Liles et al. (1976) reported that lost 

circulation zones are present anywhere along the wellbore. Circulation of LCM was necessary to 

restore mud returns. However, sometimes the rock in the lost circulation zone collapses to heal the 

mud losses itself. In the same report, a lost circulation event on the East Mesa lease was described. 

Total losses were presented at 7,419 feet, and circulation could not be recovered by circulating 

various LCM's (fiber, cottonseed hulls, or mica flakes, among others). Finally, a cement job was 

necessary to cure losses.   

Cromling (1973) reported that mud losses are typical in the Geysers due to the highly fractured 

zones. In the same study, cottonseed hulls were reported to be the most commonly used LCM, and 

12 ppb was a typical concentration to address mud losses in the field. Occasionally, when mud 

circulation could not be restored, cement was used to cure mud losses. 

Nuckols et al. (1981) described a severe loss of circulation case in Fenton Hills (Jemez Mountains, 

Northern New Mexico). Several attempts to cure losses were performed, including the circulation 

of bridging agents (1500 bbl of LCM at 30% of volume), and cementing jobs were performed 

without success. Finally, it was decided to drill without returns and run the casing to isolate the loss 

sections. The consequences of mud losses were stuck pipe events, repeated reaming, poor cement 

jobs, and intermediate casing impairment. 

Geothermal formations are commonly under-pressured, with differential pressure (the difference 

between the hydrostatic pressure of the drilling fluid column and the formation-pore pressure) 

usually above 500 psi. If the surge pressure when drill pipe is tripping downhole is added, which is 
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commonly around 500 psi, that gives a total value of 1,000 psi of sealing pressure (or differential 

pressure), which is used as a reference value for geothermal applications (Hinkebein et al., 1983). 

Functional consequences of lost circulation are diverse, but the most critical are stuck pipe, well-

control, and casing-cement issues (Vivas et al., 2020). 

2.4.2 Lost Circulation Materials 

In general, geothermal drilling operators have available LCM’s at the rig site for immediate usage 

once mud losses are present. The materials are incorporated into the mud system and circulated 

downhole to control the losses, making LCM the first defense line operators prefer (Hinkebein et 

al., 1983).   

Caenn et al. (2016) divided lost circulation materials into four categories summarized in Table 8. 

 Lost Circulation Materials Classification 
LCM Type Examples Characteristics 

Fibrous materials Sawdust, cedar fiber, shredded cane 

stalks, cellulose, bagasse, cotton fibers, 

shredded automobile tires, wood fibers, 

paper pulp 

• Flexible materials 

• Variable sizes 

• Tend to be squeezed into wide 

openings 

Flaky materials Wood chips, shredded cellophane, mica 

flakes, plastic laminate 

• Flat shape 

• Large surface area 

• Can be squeezed into openings 

Granular materials Calcium carbonate, ground nutshells, 

granular marble, Formica, corncobs, 

cotton hulls, granular graphite, 

micronized cellulose 

• Chunky granular shape, with a 

variety of grain sizes. 

• Strong and stiff materials 

• Ideal materials are insoluble and 

inert inside the mud. 
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Slurries Hydraulic cement, diesel oil-bentonite-

mud mixes, and high filter loss muds 

• Designed to harden with time 

As observed, LCM’s are diverse in shape, density, or stiffness, and depending on their attributions, 

they work differently in reducing and avoiding drilling fluid get into the formation. 

Another group of LCM material is the engineered polymers. The usage of polymers for addressing 

mud losses in geothermal drilling has been investigated. Magzoub et al. (2020) presented different 

applications of crosslinked polymers as LCM in HPHT applications. Mansour et al. (2019) 

introduced a shape memory polymer that can be programmed to expand at a predetermined 

temperature. Polymers and silicates can be used for plugging fractures at 350°C (575°F) or above 

for an extended time (Bauer et al., 2005, 2004; Mansure et al., 2004). Micronized Cellulose has been 

applied successfully in geothermal operations in low-density drilling fluids (8.5 to 8.9 ppg) as 

individual LCM (Rickard et al., 2012; Samuel et al., 2011).  

2.4.3 Previous LCM Experimental Research at HT 

Experimental research had been performed to evaluate the performance of LCMs. Although some 

experimental studies have been performed at room temperatures, they had been fundamental to 

understanding the sealing mechanisms. Others have tried to evaluate the performance of 

temperature-aged LCMs to understand their impact under geothermal conditions, but the tests are 

performed at room conditions. Few experimental studies have been conducted measuring properties 

directly at high temperatures. This is due to the challenges of managing temperatures of 300°F 

(149°C) and above. High pressures (necessary to avoid evaporation), very long heating and cooling 

times, or testing equipment wear (especially elastomers) are some of HPHT research limitations. 
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Howard and Scott  Jr. (1951) made an experimental study of different LCM performance at dynamic 

conditions and room temperature. They measured the sealing capability (a seal capable of holding 

1,000 psi of differential pressure) using different fracture sizes versus material concentration 

(Figure 10). One of the experimental study outcomes is that granular materials are more effective 

for closing large fractures (up to 5,000µm). Researchers found that granular LCM requires less 

material concentration to seal similar size fractures compared with fibrous and flaky LCMs.  

 

 Effect of LCM concentration at different fracture sizes (After Howard 
and Scott  Jr., 1951) 

Hinkebein et al. (1983), in another experimental study, three cellulosic materials were studied: 

cottonseed hulls, Kwik-Seal (a combination of granular, fibrous, and flakes components), and Ruf-

Plug (ground corn cobs). Paper pulp was also tested, but due to poor results, it was dropped from 

the study. All materials were tested with a low-density drilling fluid (8.8 ppg), compounded by water 

and Wyoming bentonite. According to the results presented, derived from extensive laboratory 

experiments (223 experiments), the LCM concentration increase in all three materials increases the 

likelihood of successful sealing (Table 9). However, they found that the LCM concentration 

increase for the materials tested does not conclusively increase the sealing pressure. The conclusion 
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was due to the results' randomness, where the same type of material was tested under the same 

conditions, and sealing pressures cannot be replicated.    

  Comparison of Percentage of Successful 1000 psi Sealing Pressures at Different 
Concentrations  

Slot Size Cotton Seed Hulls Kwik-Seal Ruf-Plug 

in 5 ppb 10 ppb Dif 5 ppb 10 ppb Dif 5 ppb 10 ppb Dif 

0.06 66.7% 100.0% 33.3% 100.0% 100.0% 0.0% 66.7% 100.0% 33.3% 

0.08 37.5% 100.0% 62.5% 33.3% 100.0% 66.7% 0.0% 11.8% 11.8% 

0.12 6.7% 20.0% 13.3% 11.8% 45.5% 33.7% 0.0% 0.0% 0.0% 

0.16 0.0% 0.0% 0.0% 0.0% 54.5% 54.5% - 0.0% - 

0.2 0.0% 7.7% 7.7% 0.0% 23.1% 23.1% - 0.0% - 

In the same research, the temperature effect was analyzed. In this case, the materials were hot rolling 

aged at different temperatures (Figure 11). The results show that all materials at room temperature 

managed to seal the 0.06” (1524µm) fractures, reaching 1000 psi of sealing pressure. However, 

when materials were tested after being hot-rolling at 400°F (204.5°C), cottonseed hulls and Ruf-

Plug LCM failed to seal the fracture, and the Kwik-Seal lost 30% of its sealing pressure strength. 

These results suggest that thermal degradation of LCM’s properties affect their sealing performance.  
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 Sealing pressures of three cellulosic LCM products at different 
temperatures using a 0.06” (1524µm) fracture (plot generated with information 

from Hinkebein et al., 1983) 

2.4.4 Bridging and Sealing 

The process in which LCM is utilized to cure mud losses has been analyzed for years. LCM creates 

a restriction that avoids or at least reduces fluid loss by plugging the pores and fractures in the 

borehole. The addition of LCM to the drilling fluid increases the particle size distribution to plug 

pores or fractures (White, 1956). However, frequently, LCM usage in geothermal drilling is based 

on trial and error or based on experience rather than as a product of an optimization analysis (Cole 

et al., 2017). 

The life cycle of how LCM works can be divided into four stages; dispersion, bridging, sealing, and 

sustaining (Lavrov, 2016). 

Dispersion is how the LCM arrives at the fracture. The LCM must overcome various restrictions 

during its journey through the mud pits and pumps system, the journey through the drill pipe, and 

the restrictions of the different components of the BHA until it reaches the fracture. 

Bridging consists that once LCM gets into the fracture, they start forming a permeable layer across 

the fracture, robust enough to withstand the pressure gradients, and hold smaller particles that will 

create the seal. 

Sealing is the process in which the small particles, either undersized LCMs or mud solids (p.e., 

bentonite, barite), accumulates on the bridge built by the coarse LCM. These smaller particles fill 

all the spaces of the bride, generating an impermeable layer. This layer prevents the fluid continue 

passing through the fracture. 
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Sustaining is fundamental since the seal generated by LCM needs to withstand mechanical loads 

and differential pressure enough time to permit drill through the theft zone, case, and cement the 

well. 

Understanding the process is important for a successful sealing strategy. One of the most important 

factors is the size of the LCM. If the bridging material is larger than the fracture width, the sealing 

will be formed outside the fractures' mouth. This is undesirable since the drilling action can easily 

remove it. In contrast, if LCM is too small compared to the fracture size, it cannot effectively build 

a bridge (Lavrov, 2016). As fractures in geothermal wells can vary in size, and LCM strategy may 

consider diverse particle sizes. A particle size distribution analysis is essential. The sealing and 

bridging process is depicted in (Figure 12) 

 LCM bridging and sealing process (Adapted from Lavrov, 2016) 

Fracture before 
application of LCM 

Larger LCM particles 
bridge the fracture. 

Fine particles (LCM, 
mud solids) are 

deposited on the 
bridge and seal the 

fracture. 
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The connection between the particle size of an LCM and its capability to bridge fractures has led to 

the development of different methods to select the proper particle size. 

One of the most accepted criteria was proposed by Abrams (1977). The method is consisting of two 

rules for selecting bridging material. The first rule is that the particle size's mean size must be equal 

to or greater than one-third of the mean of the rock pore size. The second rule is that the sealing 

material must be no less than 5% of the drilling fluid volume. 

Since then, different criteria have been proposed. They are summarized in Table 10. The downside 

of the earlier methods is that they are based on pore size. However, they have been used as selection 

criteria for sealing fractures. Alsaba et al. (2017) proposed a new selection criterion based on a 

statistical analysis of extensive experimental research. LCMs with diverse particle size distributions 

were tested on fractures from 1000 µm to 3000 µm.  

 Summary of LCM selection by Particle Size (After Alsaba et al., 2017) 
Method Selection Criteria Authors 

Abrams Rule D50 ≥ 1/3 the formation average pore size Abrams, 1977 

D90 Rule D90 = the formation pore size Smith et al., 1996 

Hands Velsen et al., 

1998 

Vickers Method D90 = largest pore throat 

D75 < 2/3 the largest pore throat 

D50 ≥ 1/3 

D25 = 1/7 the mean pore throat 

D10 > the smallest pore throat 

Vickers et al., 2006 

Halliburton Method D50 = fracture width Whitfill, 2008 
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Alsaba Method D50 should be ≥ 3/10 the fracture width 

D90 should be ≥ 6/5 the fracture width 

Alsaba et al., 2017 

2.4.5 Wellbore Strengthening 

An evolution to the traditional LCM addition to the mud system is the concept of wellbore 

strengthening. This consists of LCM usage to intentionally increase the fracture gradient of a 

wellbore by adding LCM to bridge and seal fractures near-wellbore (Salehi and Nygaard, 2011). 

Three physical models describe the wellbore strengthening concept and how they enhance the 

wellbore strength in drilling operations; stress cage model, FCS (Fracture Closure Stress) model, 

and FPR (Fracture Propagation Resistance) model (Magzoub et al., 2020). 

The concept of stress cage was introduced by Alberty and McLean (2004), and it explains how mud 

additives help to seal fractures induced during drilling. The stress caging theory is to place solids at 

or close the mouth of a recently drilling-induced fracture that will serve to build a bridge. The bridge 

creates the support to hold particles that generates the seal, insulating the drilling fluid pressure from 

the rest of the fracture. If the seal is successful, the fluid pressure of the isolated portion of the 

fracture will be dissipated to the pore pressure. Then, the fracture, without the pressure that maintains 

it open, will close (Figure 13). This process increases the hoop stress around the wellbore beyond 

its original value.  

 
A bridge is 

formed 
Fluid Pressure 

starts dissipating 
Fracture Closes, 

compressing the bridge 

Hope stress 
increases  
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 Stress cage process (after Alberty and McLean, 2004) 

In the FCS model (Figure 14), a fracture in the wellbore is generated and widened, expanded in 

length but not in width. LCM is forced to fill the fracture. LCM starts to accumulate inside the 

fracture, and as the carrier fluid is filtrating into the formation, it creates an “immobile mass” within 

the fracture. The immobile mass holds the fracture open and isolates the fracture end from the 

drilling fluid pressure. Fracture is getting more difficult to open due to increased fracture closing 

tension and the fracture end isolation (Dupriest, 2005). 

 

 Fracture Closure Stress process (based on Dupriest, 2005) 

In the FPR model, unlike FCS and stress cage models, the hope stress is not increased (Magzoub et 

al., 2020). This wellbore strengthening approach relies in the continuous addition/maintenance of 

lost circulation materials. The concentration of the latter is supported by the continuous recovering 

Fracture widens until it will accept 
barite-sized particles, then it will 

increase its length but not its width 

Fluid loss creates immobile mass. 
Fracture pressure increase as mas 
resist hydrostatic head. Pressure 

widens the fracture 

Pressure is held. Filtrate loss 
continues until fracture is packed 
back to the wellbore. Width and 

increased FCS are trapped by solids. 

In low permeability, or if great width 
is required, hesitation is conducted to 

build width in layers. 

P 

P 

P 

P 
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and re-usage of solids, that contributes to generate a fracture resistance propagation (Van Oort et al., 

2011). The idea is that a mud cake generates an impermeable layer that prevents the drilling fluid 

pressure from expanding the fracture (Figure 15) (Morita et al., 1996). 

 

 Cross-section view of mud cake formed around a fracture tip (Based on 
Morita et al., 1996). 

2.4.6 Fracture Size Estimation 

Fracture size estimation is one of the most challenging properties to be identified. Acoustic and 

electric image logs and conventional logs can be used to determine fracture size (Ran et al., 2014). 

Also, fracture size can be determined in the laboratory, measuring directly from core samples (Huy 

et al., 2010). The limitation of the mentioned methods is that they required well/s previously drilled.  

Estimation of the fracture size in unexplored areas is more difficult. Without wells drilled, surface 

geophysical methods are the main tools to detect fractures. P-wave methods can provide fracture 

direction, azimuth, and fracture density (Rüger and Tsvankin, 1997). Elastic properties can be 

estimated by microseismic fracture characterization, which permits the inference of zones prone to 

fracture (Refunjol et al., 2011). Although the mentioned methods permit fracture characterization, 

the level of detail is limited to the seismic resolution, making the estimation of the fracture size very 

Fractured Zone 
Invaded with Mud 

Mud Dehydrated 
Zone 

Non-Invaded Zone Process Zone 
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difficult. In areas with limited information, the LCM design should consider a range of fracture sizes 

rather and a specific fracture width. 
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3. LABORATORY MATERIALS AND METHODS 

   Overview 

The experimental study consisted of two main stages. The first stage of experiments consisted of 

building a base WBM formulation with thermal stability. This formulation will serve as the 

foundation for a mud recipe that addresses the geothermal challenges. The main challenges are 

related to degradation of rheological properties and filtration and fluid loss prevention. The second 

stage of experiments consists of screening different LCM's to evaluate their capability of sealing 

fractures at HT. Besides, HT's effect in rheology tests when LCM's were incorporated into the 

geothermal base formula was analyzed. The main challenges are related to the thermal degradation 

of rheological and filtration properties. A successful geothermal mud recipe needs to satisfy different 

conditions low density (8.58 to 9.58 ppg), high pH (9.5 – 11.5), and the capability to maintain 

rheological stability at HT conditions. 

 Materials. 

Table 11 presents the materials to be tested to find a basic formulation in the first stage of the 

experimental study. These materials are among the most commonly used in geothermal applications. 

They also were selected due to their easy availability and their relatively low cost. Those conditions 

are relevant since geothermal drilling operations are very cost-sensitive.  

 Materials selected for 1st stage of experiments 
Material Property 
Bentonite Rheology Control – Viscosity 

Increase 
Lignite Rheology Control – Thinning 

Filtrate/Water loss Control 
Caustic soda Alkalinity/pH Control 
Cedar Fiber  Lost Circulation 
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The materials presented required no preparation, except for the cedar fiber. The latter was sieved in 

a 600µm mesh sieve shaker. This was done to have a more homogeneous size distribution. The 

objective of this process is to obtain consistent results during experiments (Figure 16). 

 
 Electromagnetic sieve shaker used to sieve cedar fiber. 

Table 12 presents the lost circulation materials tested. LCMs have a wide range of sizes, shapes, 

densities, and textures. This provides a comprehensive LCMs range to identify characteristics that 

made some materials more suitable to geothermal conditions than others. The materials presented 

are ready to use and required no preparation.   

 Materials selected for the experimental study 
Material Type Characteristics Image 

Walnut Fine Granular • Non-deformable LCM 
• Chemical inert 
• Biodegradable 
• SG: 1.25-1.30 
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Walnut 
Medium 

Granular • Non-deformable LCM 
• Chemical inert 
• Biodegradable 
• SG: 1.25-1.30 

 
Sawdust Flaky/Fibrous • Deformable LCM 

• Temporary 
Temperature 
degradable 

• SG: 0.4-0.6 

 
Altavert Fiber • Deformable LCM 

• Hole sweep additive 
• Temporary 

Temperature 
degradable 

 
Graphite 

Blend 
Granular • Non-deformable LCM 

• Blend with different 
sizes 

• Torque reducing 
material 

• SG: 2.19–2.26 
 

Bentonite 
Chips 

Granular • Deformable LCM 
• Non-toxic 
• SG: 1.11-1.14 (dry) 

 
Micronized 

Cellulose 
(MICRO-C) 

Granular • Non-deformable LCM 
• Water-insoluble 
• Cellulosic Material 
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Magma Fiber 
Fine 

Fiber • Deformable LCM 
• Acid soluble 
• Non-fermenting and 

non-corrosive 
• SG: 2.6 

 
Diatomaceous 
earth/amorph

ous silica 
powder 
(DEASP) 

Granular • Non-deformable LCM 
• Silica powder 
• Squeeze pill design 

 
Cotton Seed 

Hulls 
Fiber/Granular • Deformable LCM 

• Biodegradable 
• Temporary 

Temperature 
degradable 

• SG: 0.24 
 

Calcium 
Carbonate 

Granular • Non-deformable LCM 
• Acid soluble 
• A blend of three sizes: 

200, 80, and 30 CC 
• SG: 2.75 

 
 

 Rheology Testing 

All mud systems formulated were aged for 24 hours before being tested at HT. The rheometer used 

was a Grace instrument M5600 for measuring rheology at HPHT (Figure 17). The M5600 has a 

frictionless bob shaft construction capable of instantly measuring small changes in shear stress by a 

non-mechanically rotational torque signal.  
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 M5600 Rheometer used for HPHT rheology tests. 

Figure 18 presents the schematic of the components used to perform the HPHT rheology 

experiments. The testing temperature was 400°F (204.5°C), and the testing pressure was 400 psi. 

All samples were tested using the same protocol and measurement sequence. The same scale and 

baker were used in all experiments to reduce the minimize divergence among results and make them 

comparable. The experiments were conducted two times to corroborate the results. 

 

 Schematic of HPHT rheology test setup. 
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 Filtration Testing 

For the static filtration tests, the equipment used was an HPHT permeability plugging tester (PPT). 

This equipment is designed for performing filtration tests while avoiding LCM settling. This is 

because the slotted disc (disc with simulated fracture) and the collecting assembly are placed at the 

pressure cell top. For this study, the equipment was operated at 300°F (149°C) for the LCM 

screening. 

Different tests are performed to evaluate the effectiveness of LCM's for sealing fractures. However, 

they involved the usage of complex flow loops or the modification of filtration equipment. The 

downside of these approaches is that the results are hard to replicate or compare unless the same 

flow loop/equipment is used. In this research, a PPT equipment is used, with a slotted disk to 

simulate a fracture (Figure 19). The novelty of the process is using a solids-free mud; in this case, 

distilled water with an HPHT polymer. The polymer is a commercial polymer that ¨activates¨ with 

temperature, providing enough rheology to keep the LCM in suspension. 

 
Pressure

Pressurized oil

Sample of 
Polymeric 

base + LCM

Tapered Slot 

Backpressure

Fluid Loss 
Collection
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 Diagram of the pressure cell of the PPT apparatus for LCM filtration 
screening. 

The advantage of using a free of solids mud for the test is that the LCMs directly generate the sealing 

action. This helps to provide an individual evaluation of each material sealing performance. The 

HPHT polymer was activated using the PPT cell, heating it to 300°F (149°C). In Figure 20, the mud 

before (a) and after (b) heating is presented. Before heating up, the mud has the minimal capability 

to keep LCM in suspension, then the LCM sag. After heating the mud, its rheology increased, and 

solids can be maintained in suspension. This is advantageous since the fluid keeps its solids carrying 

capacity at high temperatures in a static condition. The free of solids mud was also tested at the same 

conditions without LCMs showing no sealing capacity with open fractures. Then, any sealing effect 

in the fracture is generated by LCMs themselves. In addition, this reduces the likelihood of errors 

attributed to inconsistent mud preparation. 

 

 Walnut fine mixed with synthetic mud; a) walnut settling in mud non 
thermally activated, b) walnut evenly distributed in thermally activated mud, and c) 

top of the PPT pressure cell filled with mud+LCM. 

The mud was prepared with distilled water and 3% in weight of the HPHT polymer. The mud was 

then aged for 24 hours and heated up to 350°F (176.7°C) at 500 psi for activation. Once the mud is 

activated, it was mixed with the LCMs. The mud mixed with LCMs is aged for 24 hours before 

a) b) c)
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tested in the PPT apparatus. For this initial screening, the disc with 1000µm fracture was selected to 

evaluate each LCMs performance, and experiments were performed twice. 

The LCM’s screening experiments used a similar methodology to the one presented by Savari et al. 

(2014). The purpose is to measure the filtration for 30 minutes. Once it is confirmed that the LCM 

can hold a sealing with mud pressure of 800 psi and backpressure of 300 psi, the pressure is raised 

by hundreds until the sealing is lost. The maximum sealing pressure obtained is recorded (this is the 

differential pressure of the pressure and the backpressure). 

 Particle Size Distribution Analysis 

For fine granular materials, particle size distribution (PSD) tests were performed. The equipment 

used was the LS 13 320 laser diffraction particle sizing analyzer (Figure 21). The particle size 

measurement in this equipment ranges from 0.375 µm to 2000 µm. This equipment was used for 

measuring PSD in dry samples.  

 

 Laser diffraction particle sizing analyzer. 

 Alkalinity Tests 

Alkalinity control additives were also tested. To evaluate the pH buffers’ performance, pH tests were 

performed using the PH700 Benchtop pH Meter (Figure 22). 
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 pH Meter used for alkalinity tests. 

 Experimental Error 

Rheology and filtration experiments are exposed to errors. These errors are the expression of the 

different uncertainties during the experimental research's various steps, rather than the direct 

association to "mistakes" (Taylor, 1997).  Precision and accuracy of equipment measurements, 

inconsistencies in the mixing process, and human errors in reading the weight scales are examples 

of uncertainties during rheology and filtration experiments. Although it is inevitable to have a certain 

level of uncertainty, it was established some procedures to make the results conclusive in this 

experimental research. 

For rheology experiments, the rheometer was calibrated following the manufacturer's procedure and 

tested successfully.  

Rheology readings are sensitive to temperature changes. The HPHT rheometer has a cooling system 

that uses water to cool down the sample cup. For reducing the effect of room temperature changes, 

all samples were cooled down to temperatures below the room temperature (to 75°F /23.9°C). This 

step makes that all experiments have the same initial temperature. 

For preparing the mud samples, the same weight scale, and beakers, and mixed the additives in the 

same sequence (water®gel®pH buffer®deflocculant®LCM) and mixing times. All the mud 
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samples were aged for 24 hours at room temperature. This is a conventional practice that permits all 

additives are incorporated, and bentonite absorbs water. The objective is to have more homogenous 

rheological properties.  

For filtration experiments, it has been documented that the randomness of shape, size of the different 

LCM, and the random way that they are dispersed in the drilling fluid affects the tests' repeatability 

(Alsaba et al., 2014; Jeennakorn, 2017). Although the mentioned conditions cannot be fully 

controlled, to tackle this, an HPHT polymer was used as described in the filtration testing section. 

The usage of a solids-free mud makes the only solids in the mud are the LCM's themselves. This 

removes a portion of the uncertainty in this experimental research by removing the solids from other 

additives. Besides, as the HPHT polymer increases its rheology with the temperature increase, it 

maintains the LCM's in suspension, helping with a more even distribution. However, for some 

materials, especially the fibers, the filtration test results presented a more apparent deviation. 
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4. TEST RESULTS AND DISCUSSION 

 Overview 

In this section, the results of the tests are presented and discussed. Rheology tests were performed 

to find which additives are best suited for geothermal temperatures. Then, a base mud formula with 

thermal resistance materials is found. That formulation was used to evaluate the impact on the mud 

rheology of different LCMs. The LCMs filtration capability was measured at high temperatures to 

evaluate its applicability in geothermal environments. 

 Drilling Fluid Rheology  

To perform rheological experiments, a WBM formulation was designed. Distilled water was mixed 

with 20 ppb of Bentonite (20B) for rheology addition, 0.5 ppb of Caustic Soda (0.5CS) for alkalinity 

control, and 5 ppb of Cedar Fiber (5CF) as LCM. The MW of the sample was 8.6 ppg (1.032 sg). 

Figure 23 presents the apparent viscosity at a constant shear rate (170 s-1) for the samples heated up 

from room temperature to 400°F (204.5°C). The viscosity of the sample was relatively stable up to 

200°F (93.33°C). After 200°F, rheological behavior considerably changed, showing a viscosity 

increase, until reaching 380°F (193.33°C). Then, the viscosity readings started to decrease. After the 

test was finished, the temperature was decreased to 85°F (29.5°C), and the pressure was ramped 

down to room pressure before removing the sample cup. Once the sample cup was removed, it was 

found that the mud sample had a portion that was gelled (Figure 24), mainly located above the 

rheometer bob (red rectangle in Figure 24). This could be an explanation for the behavior observed 

in Figure 23. As the sample was heated above 200°F (93.33°C), the viscosity began to increase, and 

the mud sample began to thicken. As a result of the bob rotation, part of the sample was removed 

from the sample cup and accumulated at the top of the bob (Figure 24). This reduction in the sample 
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cup volume causes the torque on the bob to be decreased (the friction is reduced), and the viscosity 

measurement apparently decreases. 

 

 Apparent Viscosity of mud sample composed of Bentonite, Caustic 
Soda, and Cedar Fiber. 

 

 

  A gelled portion of samples placed on top of the rheometer bob after 
400°F test (left), and a portion of mud sample with a high concentration of burn 

Cedar Fiber in the bottom of the sample cup (right). 
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Also, a low viscosity liquid portion with a high concentration of Cedar Fiber was settled at the 

bottom of the sample cup. 

The experiments also showed a separation of a gelled portion and a liquid portion of the samples. 

The Cedar Fiber accumulated on the sample cup bottom could be explained by the lack of suspension 

capability of the degraded mud. In this case, the reduction in viscosity observed when the sample 

reached 380°F (193.4 °C) was probably an effect of mud gelation, rather than a reduction in the 

sample viscosity. 

To understand the potential causes of gelation, each component of the mud was tested individually. 

This allows identifying their particular thermal stability and contribution to the gelation effect. The 

first test was performed with distilled water and 20 ppb of Bentonite concentration. An extended 

test was performed to replicate the effect of three "circulations". In this test, the Bentonite sample 

was exposed to three consecutive temperature ramp-ups. Initially, the fluid was ramped up from 

85°F to 400°F (29.5°C to 204.5°C) at a constant shear rate (170 s-1). The sample was then cooled 

down to room temperature and again ramped up to 400°F (204.5°C). This process was repeated three 

times to replicate the effect of temperatures ramp-up and cooling-down during drilling. This 

simulates the thermal stress when the mud is circulated from the surface at ambient temperature, 

then pumped down where it is heated up until reaching the drill bit (maximum temperature), and 

then cooling down when the mud flows through the annular to surface and cooled in cooling towers. 

The test results showed that Bentonite alone has a very high thermal stability (Figure 25 and Figure 

26). 
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 Apparent viscosity vs. temperature of a sample of distilled water + 
Bentonite (20 ppb).  

 

 Rheology of a sample of distilled water + Bentonite (20 ppb). 

Once Bentonite thermal stability was verified, samples of Bentonite (20 ppb) combined individually 

with Caustic Soda (0.5 ppb), Lignite (5 ppb), and Cedar Fiber (5 ppb) were prepared. The Caustic 

Soda concentration was selected due to its primary function as a pH buffer rather than its effect on 

the mud rheology. Increasing the alkalinity to higher values than required could have adverse effects 

on drilling tools and casing. 

 Figure 27 presented the apparent viscosity at constant 170 s-1 of Bentonite alone, Bentonite and 

Cedar Fiber, Bentonite and Lignite, and Bentonite and Caustic Soda. The results observed permit 
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indicate that Caustic Soda has poor thermal stability. At 150°F (65.6°C), the viscosity of the sample 

of Bentonite and Caustic Soda was around 17 cp (0.017 Pa.s), then when the temperature is increased 

to 350°F (176.7°C), the sample viscosity increased up to 80 cp (0.08 Pa.s). This is more than four 

times the previous value. This shows how this sample is sensitive to temperature increase. 

Additionally, the rheology test with Caustic Soda failed during readings at 400°F (204.5°C), where 

the rheometer rotor was staled out. 

 

 Apparent viscosity vs. Temperature and rheology of different samples. 

In Figure 28, the rheometer bob pictures and the liquid portion recovered after each test are 

presented. Sample (a) is the Bentonite alone (20 ppb), sample (b) is the Bentonite (20 ppb) with 

Caustic Soda (0.5 ppb), sample (c) is the Bentonite (20 ppb) with Cedar Fiber (5 ppb), and sample 

(d) is Bentonite (20 ppb) with Lignite (5 ppb). The sample with Caustic Soda (sample b) shows a 

high amount of gelled portion, with less liquid phase recovered than the other samples. This confirms 

the rheometer readings. The sample of Bentonite and Cedar Fiber (sample c) presented a reduction 

in viscosity from 56 to 25 cp (0.056 to 0.025 Pa.s) when ramped up from room temperature to 300°F 

(149°C). Then, the viscosity started to increase up to 68 cp (0.068 Pa.s) at 400°F (204.5°C). When 
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the Bentonite and Cedar Fiber sample was removed from the sample cup, we found the sample 

viscosity increased. However, no evidence of mud gelation was found. The Bentonite and Lignite 

sample (sample (d)) presented similar behavior compared with the Bentonite sample alone, 

suggesting they have an acceptable thermal resistance. 

 

              (a)                                 (b)                                  (c)                                     (d) 

 Pictures of rheometer’s bob and liquid portion of the samples of 
Bentonite alone (a), Bentonite + Caustic Soda (b), Bentonite + Cedar Fiber (c), and 

Bentonite + Lignite (d).  
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To verify if the Caustic Soda concentration has some gelation effect, samples of distilled water with 

Bentonite (20 ppb) and Cedar Fiber (5 ppb) were prepared. Then, caustic Soda was added at different 

concentrations (0.5, 1.0, and 1.5 ppb). Figure 29 presents the apparent viscosity at a constant shear 

rate (170 s-1) for the three samples, showing that Caustic Soda concentration has an apparent impact 

on mud samples rheology behavior. All three samples were relatively stable up to 200°F (93.3°C). 

After 200°F, rheological behavior considerably changed, showing a viscosity increase. 

 

 Apparent viscosity of a mud sample measured at 170s-1 varying Caustic 
Soda concentration. 

The viscosity of the mud sample varies with the concentration of Caustic Soda. Although viscosity 

adjustments are required in some operations, using Caustic Soda for controlling viscosity is not 

recommended. Caustic Soda is an alkalinity control additive, and its usage to control other mud 

properties can lead to inadequate alkalinity values, which can trigger corrosion issues. 

Besides, in operations where mud alkalinity rise would be required, the increase in Caustic Soda 

concentration can contribute to mud gelation. As mud gelation contributes to adverse effects as stuck 
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pipe events, an uncontrolled increase of ECD, or poor cementing jobs, the need for an alternative 

pH buffer additive has been identified. 

4.2.1   Replacing Caustic Soda (NaOH) as pH Buffer. 

For alkalinity control, Potassium Hydroxide (KOH), and Lime (inorganic, calcium-based mineral), 

are alternatives for pH regulation in geothermal drilling (Tuttle 2005). Due to their easy availability 

and relatively low cost, both were selected to be tested in the laboratory at geothermal conditions as 

potential Caustic Soda replacers. 

In the first experiment, we prepared a sample of Bentonite (20 ppb) combined with KOH (0.5 ppb), 

Lignite (5 ppb), and Cedar Fiber (5 ppb). A long test was performed with this formulation replicating 

the effect of three “circulations”. The same sample was exposed to three consecutive temperature 

ramp-ups from 85°F to 400°F (29.5°C to 204.5°C) at a constant shear rate (170 s-1), then cooled 

down to room temperature, and again ramped up to 400°F (Figure 30). 

 

 Apparent viscosity vs. Temperature of WBM formulation with 
Bentonite (20 ppb), KOH (0.5 ppb), Lignite (5 ppb), and Cedar Fiber (5 ppb). 
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The results showed that the formulation with 0.5 ppg of KOH tends to increase the viscosity above 

300°F (149°C). Also, at 400 °F (204.5°C), results varied among circulations. In the first circulation, 

the sample viscosity was 86.4 cp (0.0864 Pa.s). Then, in the second and the third circulation at the 

same temperature, the viscosity values were 106.8 cp (0.1068 Pa.s) and 82.5 cp (0.0825 Pa.s), 

respectively. Besides, during experiments, it was found that a thick and strong foam layer was 

formed at the mixing vessel surface once the sample was aged and stirred. This kind of foam can 

generate undesired effects if not controlled with defoamer. 

The second alkalinity control material tested was Lime. A sample of Bentonite (20 ppb) was 

prepared in combination with Lime (0.5 ppb), Lignite (5 ppb), and Cedar Fiber (5 ppb). Also, an 

extended test was performed with this formulation replicating the effect of three “circulations”. The 

same sample was exposed to three consecutive temperature ramp-ups from 85°F to 400°F (29.5°C 

to 204.5°C) at a constant shear rate (170 s-1). The sample was then cooled down to room temperature 

and again ramped up to 400°F (Figure 31 and Figure 32). 

 

 Apparent viscosity vs. Temperature of WBM formulation with 
Bentonite (20 ppb), Lime (0.5 ppb), Lignite (5 ppb), and Cedar Fiber (5 ppb). 
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 Rheology of WBM formulation with Bentonite (20 ppb), Lime (0.5 
ppb), Lignite (5 ppb), and Cedar Fiber (5 ppb). 

The results showed that the formulation with 0.5 ppb of Lime presents consistent values, especially 

after the first circulation. During the three circulations, once the sample reached the target 

temperature of 400°F (204.5°C), the sample becomes stable. Apparent viscosities around 60 cp (0.06 

Pa.s), with a range of 2.4 cp (0.0024 Pa.s), were registered after the sample reaching 400°F (Figure 

32). The results showed that once the sample is initially heated up to HT, it can maintain stable 

properties. The stability remains despite the thermal stress caused by the heating up and cooling 

down during the circulation process. After each temperature ramp-up, the rheology readings were 

taken. Consistency Index (K) and Flow Behavior Index (n) were computed at 400°F (Table 13). K 

and n values slightly decrease after each temperature ramp-up, but the decrease is not extensive. The 

results confirm that despite the thermal stress imposed on the sample, the rheological results 

remained consistent.   

 Consistency and Flow Behavior Indexes at 400°F (204.5°C) after consecutive 
temperature ramp-ups 

Sample Consistency Index 
K 

Flow Behavior Index  
n 

Base+0.5 Lime 1st Temp Ramp-up 2.319 0.223 
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Base+0.5 Lime 2nd Temp Ramp-up 1.790 0.336 

Base+0.5 Lime 3dr Temp Ramp-up 1.571 0.346 

 

After all the experiments were performed using the Caustic Soda, KOH, and Lime, a comparison of 

the liquid portion recovered from the sample cup showed that Lime presented the highest recovery 

with 98% (Figure 33). This represents the portion of the sample that was not gelled. The sample 

with KOH presented a recovery of 66%, and the sample with Caustic Soda has a recovery of 42%. 

In this case, Lime is the alkalinity control material that presented the best performance.  

 

 Liquid Portion of Sample Recovered 

To evaluate the Lime effectiveness as alkalinity control at HT, additional rheology tests were 

performed. The effect of Lime concentration on long HT exposure was tested. Samples of Bentonite 

(20 ppb), combined with Lignite (5 ppb), and changing the Lime concentration to three different 

concentrations (0.5, 1.0, and 3.5 ppb), were tested. For each test, the temperature was ramped up 

from room temperature (80°F, 26.7°C) up to 400°F (204.5°C). Then, we maintained the temperature 

for 1 hour. This experiment evaluates the sample thermal stability exposed to the HT and if thermal 

stability remains during the time evaluated. In Figure 34, the test results are presented. During the 
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period of time evaluated, there is no major increase or decrease in the apparent viscosity, making 

this material suitable for the conditions tested.   

 

 Apparent viscosity at a constant shear rate (170s-1) of a base mud with 
0.5, 1, and 1.5 ppg of Lime. 

Finally, to confirm the Lime capability for alkalinity control, the pH was measured in the three 

samples tested. In Figure 35, it is presented the pH test results. The Lime concentration increase has 

an impact on increasing the sample pH. Adding 1 ppb of Lime to the base sample+0.5 Lime 

increased the pH by 1.75 units, and rheology variation was just 1.6 cp (0.0016 Pa.s) at 400°F 

(204.5°C). In this case, Lime can adjust the alkalinity without a significant impact on the mud sample 

rheological behavior. 
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 pH measurements of a base mud with 0.5, 1, and 1.5 ppg of Lime. 

4.2.2 Establishing a base WBM for High Temperatures 

For establishing a base case scenario, a mud formulation with Bentonite, Lignite, and Lime 

(materials tested thermally stable) was prepared. The mud density was increased from 8.6 ppg to 11 

ppg to avoid LCM sag during tests. Barite was added to increase the density. Besides, adding Barite 

permits to evaluate if the mud density can be adjusted and remain thermally stable. This base 

formula, without LCMs, was tested at a constant shear rate (170s-1). The test comprises two stages; 

in the first stage, the temperature was ramped up from 90°F to 300°F (32.2°C to 149°C). Then, in 

the second stage, the temperature was maintained constant at 300°F for 1 hour. The objective is to 

evaluate the mud thermal stability at high temperatures. Once the sample reached 300°F and 

maintained HT for 1 hour, the apparent viscosity did not present major fluctuations (±4 cp to the 

average rheology at 300°F) (red line in Figure 36 and Figure 37). This confirmed the results 

obtained during the previous experiments, where we tested all the base formulation components as 

thermally stable. 
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The main advantage of this thermal stable formulation (Table 14) is that it permits identifying the 

effects of the temperature on the different LCM’s and its impact on rheology. Any major variation 

of the sample rheology can be attributed to the LCM (or the chemical interaction of the particular 

LCM with any of the mud components) tested in this experimental stage. 

  Additives of Base Formulation 
Products Concentration of 

product (ppb) 
Property/Characteristic 

Bentonite 25.00 Viscosifier 

Lime 1.00 Alkalinity/pH Control 

Lignite 5.00 Filtrate 

Barite 121.2 Weighting agent 

4.2.3 LCM HPHT Rheology Tests 

After the establishment of a base scenario, eleven different LCM’s; walnut fine, walnut medium, 

sawdust, Altavert, graphite blend, Bentonite chips, Micronized Cellulose, magma fiber fine, 

diatomaceous earth/amorphous silica powder (DEASP), cottonseed hulls, and calcium carbonate 

blend, were tested individually, mixed with the base formulation (Table 15).  

 Materials and concentration of the base formulation. 
Lost Circulation 
Material 

Type Concentration 

Walnut Fine Granular Coarse 15 ppb 

Walnut Medium Granular Coarse 15 ppb 

Sawdust Flaky, Fiber 8 ppb 

Altavert Fiber 0.5 ppb 

Graphite Blend Granular Fine 15 ppb 

Bentonite Chips Granular Coarse 15 ppb 
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Micronized Cellulose Granular Fine 5 ppb 

Magma Fiber Fine Fiber 8 ppb 

DEASP Granular Fine 8 ppb 

Cotton Seed Hulls Fiber 12 ppb 

Calcium Carbonate Blend Granular Fine 20 ppb 

After analyzing the test results, a difference in the rheological behavior of coarsely granular, flaky, 

and fibrous materials was noticed. In Figure 36Figure 37, rheology tests of the mentioned materials 

are presented. The average percent difference between rheology readings of coarsely granular, flaky, 

and fibrous materials compared with the baseline is 166%. Fibrous materials, Sawdust and Magma 

Fiber, represent the highest variations to the baseline with 336% and 283%, respectively. Those 

materials also were tested prone to be gelled more than the rest of the materials. Walnuts also 

presented a high deviation in viscosity, with a relevant observation. Walnut Medium size LCM 

presented a variation of 219% to the baseline, and Walnut Fine presented a variation of 152%. 

Considering that both materials chemistry and physical properties are the same, the variation can be 

attributed to the size difference. Larger Walnut size presented a greater deviation of rheology.   
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 Apparent viscosity of fibrous and coarse LCM’s 

The LCM of this group that behaves similar to the baseline was the Bentonite Chips. Initially, as 

this LCM is made of Bentonite, it seemed plausible that the material has a neutral effect. However, 

It was noticed when this material was incorporated into the mud and mixed; it started to agglomerate. 

The material was mechanically separated and mixed with the mud into the rheometer sample cup 

for the HPHT rheology test. Once the test finished, and the sample cup was disassembled, it was 

found that the Bentonite chips again agglomerated and stuck together on the bottom of the sample 

cup. As the material was found separated from the liquid portion of the sample, it is difficult to 

identify if the effect of the LCM in the rheology was measured or not. The Bentonite Chips 

concentration in the rheology test was 15 ppb. Different attempts to mix the material without 

agglomeration at different conditions were tried without success. Mixing the material without aging 

or mixing with reduced concentrations of 10 and 5 ppb was attempted. However, in all of them, the 

Bentonite chips agglomerated and deformed. 

0

20

40

60

80

100

120

140

160

180

0.01

0.1

1

0 10 20 30 40 50 60 70 80
Time (min)

Te
m

pe
ra

tu
re

 (°
C)

Vi
sc

os
ity

 (P
a-

s)

Minutes

Base Walnut Med Walnut Fine
Magma Fib Sawdust Cotton Seed
Altavert Bentonite Chips Temperature



60 
 

A group of fine granular materials was tested at the same conditions; Calcium Carbonate Blend, 

Graphite Blend, DEASP, and Micronized Cellulose. By contrast to coarsely granular, flaky, and 

fibrous materials, the fine granular materials behave similarly to the base case (Figure 37). The 

average deviation of the materials tested to the baseline was 17.6%. The mentioned products do not 

show that they significantly alter the base fluid rheology. Besides, no evidence of mud gelation was 

observed. It is possible to infer that these materials are more thermally resistant at the tested 

temperatures than coarse, flaky, and fibrous materials. 

 

 Apparent viscosity of fine granular LCM’s. 

To better understand the influence of LCM’s particle size, a PSD (Particle Size Distribution) 

experiment was performed on fine granular materials. The PSD equipment measures particles from 

0.375µm up to 2000µm. In Table 14, the test results on calcium carbonate blend, DEASP, 

Micronized Cellulose, and graphite blend are presented. 

 Summary of PSD test on various LCM’s 
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Variable CaCO3 
Blend 

DEASP Micronized 
Cellulose 

Graphite 
Blend 

From (µm) 0.375198 0.375198 0.375198 0.375198 

To (µm) 2000 2000 2000 2000 

Volume  100 100 100 100 

Mean (µm): 165.78 15.67 505.66 761.21 

Median(µm): 88.24 11.21 406.97 717.12 

Mean/Median ratio: 1.88 1.40 1.24 1.06 

Mode (µm): 390.96 13.61 623.27 1908.87 

S.D. (µm): 186.50 18.66 452.19 632.72 

Variance (µm2): 34782.60 348.30 204476.00 400336.00 

It is observed that the LCM with the smallest mean size, The DEASP, also presented the lowest 

average apparent viscosity at 300°F (149°C), with a value of 45.6 cp (0.0456 Pa.s). CaCO3, with a 

mean size of 165.75µm, and Micronized Cellulose with a mean size of 505.66µm, presented average 

apparent viscosities at 300°F of 56 cp (0.056 Pa.s) and 91.5 cp (0.091 Pa.s) respectively. This shows 

the influence of size in rheological readings at HT. The mean size of Graphite Blend is the largest 

of the granular materials tested. However, the average apparent viscosity at 300°F is very close to 

the baseline (58.5 cp (0.0585 Pa.s)). This can be attributed to the Graphite lubricity. The effect 

lubricity of a graphite-based LCM was also documented by Alsaba et al. (2014). 

4.2.4  Discussion 

Considering the geothermal drilling challenges, incorporating additives to control density, viscosity, 

alkalinity, filtration, and fluid loss are fundamental. However, the simple act of putting together 

additives to meet those functions does not guarantee a successful application in geothermal 

operations. Some additives thermal degradation has an apparent effect on the drilling fluids rheology 
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and identifying which fluid components of the mud formulation are originating gelation has not been 

widely studied. 

In this case, it is worthwhile to evaluate the effects of certain components individually in the drilling 

fluid rheology when exposed to high temperatures. This may help identify some of the 

characteristics that made some additives more sensitive to temperature changes than others. 

In this experimental work, Bentonite rheological behavior was evaluated at high temperatures, 

finding no mud gelation evidence. Two of the most common additives used in geothermal 

applications, Caustic Soda (alkalinity control) and Lignite (filtration, deflocculation), were tested. It 

was identified when Caustic Soda is mixed with Bentonite and exposed to temperatures above 200°F 

(93.3°C), mud gelation begins to occur. 

Two materials were tested as potential replacements for Caustic Soda; Potassium Hydroxide and 

Lime. In HPHT rheological experiments, Lime showed better thermal stability than KOH and 

Caustic Soda. 

We initially tested the LCM effect with a Bentonite and Cedar Fiber sample, showing that LCM also 

influences rheology at high temperatures. As diverse LCM additives have been used in geothermal 

drilling with diverse characteristics and properties, we selected 11 different LCM materials to cover 

different alternatives.  

After analyzing the HPHT rheological experiments results, we identified that materials that 

performed better were fine granular materials compared with coarse larger-sized granular materials 

and fibers. The probable reason is that smaller particles have a larger surface area per unit of mass, 

meaning that the heat is distributed in a larger surface area at high temperatures, making these 

materials more thermally stable. 
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 Filtration Tests 

One of the main objectives of this experimental study is to understand the effect of high temperatures 

on LCM's performance. In the previous experimental stage, it was found that increasing 

temperatures to values equal to or above 300°F (149°C) affect the rheology of some LCM. This 

suggests that the exposure of some LCM to high temperatures generates a change in the materials 

themselves. This change caused by the high temperature in some LCM can potentially affect sealing 

and bridging fractures' effectiveness. Hinkebein et al. (1983) found experimentally that temperature 

increase reduces the sealing pressure of some cellulosic LCM's. In Figure 38 it is presented a 

comparison test performed with the base mud with cedar fiber (5 ppb) at 120°F (49°C) and 300°F 

(149°C).  

 

 
 Filtration test perform with a base mud (Bentonite, Barite, Lignite and 

Lime), and Cedar Fiber with a 5 ppb concentration.  

The results show how the sealing capability is reduced at high temperatures. However, as the higher 

temperature test take longer before filtration start, it was also suspected that material sagging could 
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affect the results. For that reason, the filtration tests for screening LCM’s were performed as 

described in section 3.4. The advantage to performing the filtration experiments using a solids-free 

mud formula is that all solids in the sample come from LCM’s themselves. Besides, as the HPHT 

polymer is HT resistant, once activated, it maintains its rheological properties. This helps to reduce 

the LCM’s sagging during the extended high-temperature tests. 

In Figure 39, the 30 minutes filtration profile results of the different tests are presented. The LCM’s 

that performed best were MICRO-C, calcium carbonate blend, and graphite blend. The similarity 

between these materials is that they are granular, with small particle size, and all of the three are 

blends, so they have a wide range of particle size.   

 
 Filtration results of individual tests of the free of solids mud + LCMs 

In Figure 40, it is presented the 30 minutes filtration tests and the maximum sealing pressure for 

each LCM. The maximum sealing pressure was obtained by the graphite blend, calcium carbonate, 

Altavert, and MICRO-C. 
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 Filtration volume and maximum sealing pressure obtained of different 
LCMs 

It was observed that the deviation among filtration tests is more apparent in fibrous materials, such 

as Sawdust, Magma Fiber, and Cotton Seed Hulls. In contrast, the fine granular materials present 

more uniform results. 

Figure 41 showed a close-up view of the 1000µm fracture of the three materials that performed best 

in the filtration experiment. The three LCMs successfully sealed the fracture without other solids. 

The graphite blend was the only LCM that reached the maximum sealing pressure of 1200 psi. This 

value could be higher, considering that the maximum mud pressure was limited to 1500 psi for safety 

reasons (and the backpressure was a constant 300 psi). The Calcium Carbonate blend provided a 

sealing pressure of 900 psi. When the pressure was increased above 900 psi, the sealing pressure 

was suddenly lost, and it was not possible to recover it back. The MICRO-C sealing pressure was 

700 psi. When the sealing pressure was increased above 700 psi in the MICRO-C test, the sealing 

pressure was reduced gradually, but with time, the sealing was recovered, and pressure could be 
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increased again to 700 psi. This effect can be visualized in Figure 41, where it can be seen that in 

the CaCO3 experiment, the seal was lost, and the fracture is open. In contrast, the MICRO-C sealing 

was maintained. This effect can be attributed to the deformability of MICRO-C and the non-

deformability of CaCO3. 

 

 Close up view of 1000µm fracture once the disk was removed from the 
pressure cell. 

4.3.1 Particle Size Distribution Tests 

To better understand the influence of LCMs particle size, a PSD (Particle Size Distribution) analysis 

was performed on fine granular materials. The PSD equipment measures particles from 0.375µm up 

to 2000µm. Figure 42 and Figure 43 show the test results on calcium carbonate blend, DEASP, 

MICRO-C, and graphite blend. 
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 PSD test on different fine granular LCM’s 

 
 Frequency curve of particle diameter test on different fine granular 

LCM’s 

As it can be observed in the PSD analysis, the DEASP curve shows a Gaussian distribution of the 

values (bell shape), and the other materials presented a wider range of particle diameters with their 

curves right-skewed. To determine the PSD influence on the filtration performance, the filtration 

results of the components analyzed are presented in Figure 44. 
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 Filtration and differential pressure results of fine granular LCMs 
tested. 

According to the filtration results, the materials with a wider particle size distribution (graphite 

blend, calcium carbonate, and MICRO-C) showed the best filtration performance. In contrast, the 

DEASP, the granular material with a narrower particle diameter values range, had a higher filtration 

volume. Having a wide range of particle sizes is a desirable condition in an LCM for sealing 

fractures; larger grains can build the bridge, creating support for the smaller particles that generate 

the effect of sealing.  In Table 17, it is summarized the PSD test values. The mean diameter of the 

DEASP is 15.67 µm, which is significantly smaller than the average diameters of the other LCMs 

analyzed.  

 

 Summary of PSD test on various LCM’s 
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To (µm) 2000 2000 2000 2000 

Volume  100 100 100 100 

Mean (µm): 165.78 15.67 505.66 761.21 

Median(µm): 88.24 11.21 406.97 717.12 

Mean/Median ratio: 1.88 1.40 1.24 1.06 

Mode (µm): 390.96 13.61 623.27 1908.87 

S.D. (µm): 186.50 18.66 452.19 632.72 

Variance (µm2): 34782.60 348.30 204476.00 400336.00 

4.3.2 Discussion 

After analyzing the experimental results, it was identified that materials that performed better in the 

filtration tests were fine granular, blended materials. This does not necessarily mean that they are 

the best materials for all applications. However, the testing conditions show that those materials are 

suitable for geothermal environments. 

Fine granular materials behave better at high temperatures compared with coarse larger size granular 

materials and fibers. A reasonable argument is that smaller particles have a larger surface area per 

unit of mass. This means that the heat is distributed in a larger surface area at high temperatures, 

making these materials more thermally stable. That indicates small granular materials can keep their 

sealing properties at HT better than fibers and coarse materials. 

For sealing a fracture, it is beneficial to have a large size range. Larger particles create a permeable 

bridge, and the smaller particles fill out the bridge spaces to build a seal. This can explain why LCMs 

like calcium carbonate and graphite blends or MICRO-C, with a wide range of particle diameters, 
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worked better than the DEASP. The variance of DEASP (348.3µm2) is significantly smaller than 

the variance of the other LCMs that present the best performance in the filtration tests. 

As the filtration tests were performed with a free of solids mud, all the sealing action came from 

each LCM. However, in practice, drilling fluids contain solids from the mud additives and the 

drilling cuttings. The mentioned solids also contribute to the fracture sealing process. 

The ratio between the size of the fracture and the particle size is another important factor to consider. 

In Table 18, it is summarized the particle size distribution of the fine granular materials analyzed. 

Considering those values, the particle sizes were evaluated based on the different particle size 

criteria used in the industry (Table 10). The results presented in Table 19 are the values computed 

based on each specific condition. 

 Summary of PSD analysis for fine granular materials. 

Material Fracture 

Size 

D10 

µm 

D25 

µm 

D50 

µm 

D75 

µm 

D90 

µm 

CaCO3 Blend 1000 µm 5.71 24.42 88.24 256.31 456.51 
DEASP 1000 µm 1.65 5.81 11.21 18.21 29.87 
MICRO-C 1000 µm 32.59 119.47 406.97 758.07 1153.87 
Graphite Blend 1000 µm 12.77 95.11 717.12 1297.28 1696.26 
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 Summary of application of particle size selection methods based on the 
material’s PSD results.   

Method Selection Criteria CaCO3 
Blend 

MICRO-
C 

Graphite 
Blend DEASP 

Abrams Rule 

(Abrams 1977) 

D50 ≥ 1/3 the formation average 

pore size 
No Yes Yes No 

D90 Rule 

(Smith et al. 

1996, Hands et 

al. 1998)  

D90 = the formation pore size No Yes Yes No 

Vickers Method 

(Vickers et al. 

2006) 

D90 = largest pore throat No Yes Yes No 

D75 < 2/3 the largest pore throat Yes No No Yes 

D50 ≥ 1/3 No Yes Yes No 

D25 = 1/7 the mean pore throat No No No No 

D10 > the smallest pore throat - - - - 

Halliburton 

Method 

Whitfill, 2008 

D50 = fracture width No No No No 

Alsaba Method 

(Alsaba et 

al.2016) 

D50 should be ≥ 3/10 the 

fracture width 
No Yes Yes No 

D90 should be ≥ 6/5 the fracture 

width 
No Yes Yes No 

 
There are no selection criteria from Table 19 that calcium carbonate blend, graphite blend, and 

MICRO-C together completely meet. Graphite blend meets most of the conditions of the different 
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selection criteria presented. MICRO-C also meets most of the criteria except Vickers and 

Halliburton Methods. For Halliburton Method, the criteria in the D50 is 1000µm, and no one of the 

materials tested satisfy that criterion.  

Sealing a fracture involves the LCM's ability to build a bridge inside the fracture. The D90 size is 

considered in some of the recent selection criteria. The D90 includes the largest size particles, 

destined to bridge the fractures.  As observed, MICRO-C and graphite blend met some of the D90 

size criteria methods used in the industry. However, the calcium carbonate blend, LCM that showed 

a good performance in the filtration test, did not meet most of the criteria methods. 

Calcium Carbonate blend has a D90 size of 456.51 µm, close to half of the fracture width size 

(1000µm). Since Calcium Carbonate successfully sealed the fracture, the D90 size value in some of 

the selection criteria could be re-evaluated in the future. 

This suggests that 10% of the particles with size near the half of the fracture are enough to build the 

bridge into the fracture. Then it is possible to distribute the remaining 90% to create a wider range 

of particle size. Once the bridge is built, a wider range of smaller particles will fill the permeable 

bridge spaces to generate the sealing. 

This is an important condition since, in geothermal applications, large fractures are frequently found. 

In this case, materials with greater particle size need to be included. However, if the particle size is 

unnecessarily large, they will become prone to degrade/fail at high temperatures. 

According to the experimental results, we suggest that size selection criteria must have at least two 

conditions. The first is that the D90 has enough size to build the bridge. The second condition is that 

LCM needs to have a large size distribution. This will help to generate the seal. This experimental 
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research suggests that the PSD variance could be considered to guarantee a large particle 

distribution. 
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5. SUMMARY AND CONCLUSIONS 

High temperatures affect the rheology of WBM. These drilling fluids formulations commonly use 

Bentonite as a viscosifying agent and additives to improve rheology, filtrate control, and pH. To 

identify how thermal degradation is manifested, drilling fluid additives have to be tested individually 

at HT. The followings are the outcomes of this study: 

• In literature, it is claimed that bentonitic fluids tend to gel at high temperature. However, in 

this research, we found that Bentonite itself has high thermal stability. In accordance, it is 

recommended to continue using Bentonite as a viscosifier for geothermal drilling fluids due 

to its thermal stability, easy accessibility, and low cost. 

• Caustic Soda, the most common additive to control pH, presented poor thermal stability, 

evidencing a tendency to gel at temperatures above 200°F (93.3°C). 

• After evaluating Lime and KOH as potential substitutes of Caustic Soda, we found it via 

experiments at geothermal conditions that Lime is the alkalinity control material that 

presented the best performance in rheological stability at high temperatures. 

• A basic formula consisted of water, Bentonite, Lime, and Lignite was tested at high 

temperatures, showing adequate thermal stability. This basic formulation can be adjusted in 

density using Barite, remaining thermally stable. 

• The lost circulation materials that performed better in the HPHT rheology tests were fine 

granular materials. These materials showed less rheology impact in the base mud formulation 

than the impact caused by coarse larger-sized granular materials and fibers. 

• We found experimentally that the particle size of LCM materials has a direct influence on 

the rheology when tested at HT. 
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• A methodology of screening lost circulation materials is presented by an innovative way to 

use the PPT at high temperatures. The usage of free of solids mud permits to determine the 

capability of different LCMs to seal an open fracture at HT. Besides, their sealing pressure 

can be measured in controlled conditions. 

• It was identified that materials that performed better in the filtration tests to seal the 1000µm 

fracture were granular, blended materials. Graphite blend, MICRO-C, and calcium carbonate 

blend sealed the 1000µm fracture, generating higher sealing pressure compared with other 

materials. 

• Based on the experimental findings, it is recommended that the size selection criterion must 

have at least two conditions. The first is that the D90 is big enough to create a bridge. The 

second criterion is that the LCM should have a wide size distribution. This is going to help 

create the seal. This experimental research indicates that the PSD variance may be considered 

a guarantee of the large particle distribution needed. 

• Experimental research at high temperatures is helping us to identify materials that work best 

than others. Size, shape, and particle size distribution impact the filtration capability of LCM. 

The conclusions presented were based on observations made during this research and applied to the 

different mud samples used in the analysis. It is important to remember that muds with different 

additives concentrations can have varying responses to high temperatures. However, the general 

behavior of mud is assumed to be roughly comparable.  
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6. RECOMMENDATIONS AND FUTURE WORK 

This study presented experimental research on how HT affects the performance of different drilling 

fluid additives.  Some of the outcomes of this study suggest further research that can improve how 

to design a drilling fluid capable of addressing geothermal drilling challenges. 

• Conduct experiments using different fracture sizes. This, combined with the particle size 

distribution results, will provide new information to generate new size distribution criteria 

for HT/Geothermal applications. 

• Generate an HPHT filtration experiment in dynamic conditions. With some adjustments, the 

drilling simulator setup in the Well Construction Technology Center (WCTC) can be used 

to conduct those experiments. 

• Screen the fine granular LCM, adding drilling cuttings to the drilling mud to evaluate their 

impact. 

• Similarly, evaluate the implementation of nanoparticles. This especially could impact the 

sealing pressure. 

• Conduct experimental research using shape memory polymers as a filtration enhancer. This 

is for vugs/large fractures.     
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7. NOMENCLATURE AND ACRONYMS 

 
Abbreviations and Acronyms 

Symbol Description Units 

BHA Bottom Hole Assembly -- 

CaCO3 Calcium Carbonate -- 

CO2 Carbon Dioxide -- 

DEASP Diatomaceous Earth/Amorphous Silica Powder -- 

ECD Equivalent Circulation Density ppg 

EIA U.S. Energy Information Administration -- 

GPM Flow rate in gallons per minute gpm 

H2S Hydrogen Sulfide -- 

HDR Hot Dry Rock -- 

     HT High temperature -- 

HPHT High Pressure High Temperature -- 

KOH Potassium Hydroxide -- 

LCM Lost circulation material -- 

MD  Measured Depth Ft 

Micro-C Micronized Cellulose -- 

MW Mud Weigth ppg 

NaOH Caustic Soda -- 

NPT Non-Productive Time -- 
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O&G Oil and Gas -- 

P Pressure psi 

ppb Pounds per Barrel ppb 

ppg Pounds per Gallon ppg 

PPT Permeability Plugging Tester -- 

PSD Particle Size Distribution -- 

PV Plastic Viscosity Cp 

ROP Rate of Penetration ft/hr 

SSMA Sodium Salt Of Maleic Anhydride Copolymer  

      T Temperature °F or °C 

   𝑇𝑉𝐷    True Vertical Depth Ft 

WBM Water-based mud -- 

      YP Yield point lbf/100ft2 
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